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Preface

This thesis marks the culmination of my Masters journey at the Faculty of Aerospace Engineering, Delft University
of Technology. The research presented here explores the tactile navigation of drones using biomimetic vibrissal
sensors, a field that merges biology-inspired engineering with advanced robotics. The specialized sensory organs of
animals, particularly the whiskers of rodents and other mammals, serve as a testament to natures ingenious solutions
for navigating complex environments. My goal has been to bring some of these biological insights into the realm of
aerial robotics, where tactile sensing is relatively unexplored.

This project has been both challenging and rewarding, requiring a deep dive into areas as diverse as sensor design,
signal processing, and real-time system integration. Coming into this thesis with no hardware experience, I was
thrown into the deep end of robotics and everything that comes with it. The journey has been a learning experience,
filled with moments of both frustration and excitement as ideas were brought to life. A special thank you goes to
everyone at the MAVLab. The collaborative spirit at MAVLab is one-of-a-kind, and I already miss it.

I am especially grateful to my supervisor, Dr. Salua Hamaza, for her unwavering guidance, support, and encourage-
ment throughout this journey. To Nils de Krom, without whom our drone might never have taken flight, thank you for
being a friend and partner during our theses.

Im incredibly grateful to my family for always believing in me and giving me the motivation to keep going.

I hope this thesis will contribute to the ongoing research in biomimetic sensors and inspire further exploration in the
field of aerial tactile navigation.

Mahima Yoganarasimhan
Delft, August 2024
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Introduction

The rapid advancements in robotic technology have necessitated the development of sophisticated sensory systems,
enabling robots to interact with their environment with greater precision and intelligence. Among various sensory
modalities, tactile sensing plays a pivotal role in robotic perception, allowing robots to detect objects, navigate
complex terrains, and perform precise manipulations. One promising approach to enhancing tactile sensing in
robotics is the use of biomimetic vibrissal sensors, inspired by the specialized sensory organs of mammals such as
rodents, seals, and cats. These whiskers provide exquisite sensitivity to tactile stimuli, enabling animals to perceive
their environment with remarkable accuracy.

In recent years, research has focused on replicating the function and structure of natural whiskers to develop advanced
tactile sensors for robotic applications. These biomimetic sensors offer several advantages over traditional tactile
sensors, including lower weight, reduced power consumption, and the ability to function in diverse environmental
conditions without altering the environment. This thesis explores the integration of biomimetic vibrissal sensors
into aerial platforms, a relatively uncharted territory in tactile sensing. By leveraging the tactile capabilities of these
sensors, this research aims to enhance the navigation and interaction capabilities of drones in complex environments.
Hence, this thesis aims to answer the following research question and sub-questions:

“To what extent can a drone equipped with our modular whisker-inspired sensors achieve accurate contour
following, measured by its ability to maintain a desired distance from contours?"

A Metric Definition:

i How can accuracy in contour following be precisely defined in the context of maintaining a desired
distance from a contour?

B Methodology:

i How does the drone’s performance vary when following contours with different curvatures?

ii What are the key indicators of successful contour following, including wall contact identification,
orientation inference, sustained contact, and consistent distance maintenance?

C Literature Comparison:

i How does the performance of the sensor-equipped drone compare to the simple implementation by Jung
& Zelinsky (1996) [1]?

ii How does the performance of our drone solution compare to the complex contour-following solutions
presented by Zhang et al. (2022) [2] and Xiao et al. (2022) [3], considering factors such as accuracy and
robustness?

D Challenges and Solutions:

i What are the primary challenges associated with mounting whisker-inspired sensors onto an MAV,
considering factors such as vibrations, inertial effects, and interaction with the propeller wake?

ii How can these challenges be addressed to ensure accurate and reliable contour following in a real-world
environment?

E Applications:

i What specific advantages does accurate contour following by the drone offer for search and rescue
missions in environments with limited visibility, such as dark or smoke-filled areas?

ii How could the drone’s contour-following capabilities be applied to navigate and explore confined spaces,
such as caves, that are challenging for human access?

The structure of the report is as follows. Firstly, Part II presents the research that was carried out to answer the
above-mentioned research questions. In Part III, an extensive literature review is provided on whisker-inspired
perception in robotics. The appendices can be found in Part V.
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Drones’ tactile navigation using biomimetic vibrissal
sensors

Faculty of Aerospace Engineering, Delft University of Technology

ABSTRACT

This study explores the potential of biomimetic vib-
rissal sensors for tactile navigation in aerial robotics. In-
spired by the sophisticated sensory system of rodents, we
developed a non-intrusive, whisker-based tactile sensor
system integrated into a drone platform. The system en-
ables real-time detection and navigation through complex
environments by emulating the tactile perception capabil-
ities of natural whiskers. Our approach includes a novel
platform design for easy sensor integration, a preprocess-
ing solution to mitigate signal distortion as well as a sim-
ple static calibration set-up to estimate normal contact
distances. The effectiveness of the system was validated
through contour following tasks, where the whisker sen-
sors provided feedback for precise navigation along sur-
faces with varying orientations. Results demonstrate that
our system can estimate normal distances and wall ori-
entations with sufficient accuracy, despite challenges such
as lateral slip. This research highlights the potential of
whisker-inspired sensors in enhancing the tactile sensing
capabilities of aerial robots, offering significant advan-
tages over traditional tactile sensors in terms of weight,
power consumption, and operational flexibility in diverse
environmental conditions.

1 INTRODUCTION

Tactile sensing is an essential component of a robot’s abil-
ity to interact with its environment. It enables robots to detect
and identify objects, navigate through complex environments,
and manipulate objects with precision [1]. One domain of re-
search that has garnered interest in recent years is the use of
biomimetic vibrissal sensors for tactile perception in robotics.
Whiskers are specialized sensory organs found in many mam-
mals, including rodents, seals, and cats. These structures are
used for a variety of purposes such as navigation, prey detec-
tion, and social communication.

The vibrissal system of rats has long been employed as
a classic model in neuroscience for investigating the mecha-
nisms of sensorimotor integration and active sensing [2, 3].
Whiskers, or vibrissae, are an essential part of many ani-
mals’ sensory systems. These specialized hairs provide tac-
tile information about the environment in which the animal
explores. The bending of the whisker shaft is converted to
a neural signal by mechanoreceptors situated in the follicle
[4]. Mimicking this behaviour for applications in robotics is
a challenging, but compelling, objective.

Figure 1 Our novel aerial drone platform for whisker integra-
tion. Size comparison with C2 coin.

Whisker-inspired sensors mimic the structure and func-
tion of natural whiskers and have several advantages over tra-
ditional tactile sensors. They are lightweight, low-power, and
can operate in a wide range of environmental conditions. Lit-
erature demonstrates the potential to detect subtle changes in
the environment, such as air currents [5–7] and texture gradi-
ents [8–10]. Arguably, one of the biggest advantages over
traditional tactile sensors is that vibrissal sensors are non-
intrusive, meaning that interaction with the environment does
not require changing the state of said environment. Further-
more, unique environments such as smoke filled settings or
covert operations in the dark may herald vibrissal sensing ap-
plications. These features make vibrissal sensing for tactile
perception an intriguing sensory modality.

In our previous literature review [11], we categorized on-
going research into four distinct categories: shape inference,
texture discrimination, fluid flow analysis, and navigation.
Shape inference often depends heavily on a contact localiza-
tion solution and is typically not resolved in real-time. Re-
cently, Lin et al. [12] and Ye et al. [13] considered time-
series information and data-driven solutions respectively that
map whisker readings to distance estimations, which con-
trasts with the more common use of Euler-Bernoulli beam
theory to model whisker behavior. In contrast, most naviga-
tion solutions do not address the contact localization problem
directly and instead rely on occupancy maps [14, 15] based
on binary touch events for exploration and robot localization.
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Additionally, the majority of research has been conducted
on robotic arms/end-effectors [12, 16–18], and ground-based
mobile robots [15, 19–21]. To our knowledge, no research
has integrated vibrissal sensing into aerial platforms until re-
cently, when Ye et al. [13] proposed a biomorphic whisker
sensor for aerial tactile applications. Therefore, this research
focuses on developing an integrated navigation solution that
uses real-time contact localization estimations as a controller
input for an aerial platform. Our work will integrate the sen-
sors proposed by Ye et al. [13] onto a novel aerial platform.
The contributions of this study are listed below:

• We design and build a novel, modular drone platform
that allows for whisker placement on top and around
the side of the drone (Figure 1) .

• We propose a real-time preprocessing solution to com-
bat the effects of vibration, hysteresis, and drift due to
airflow on the whisker sensors.

• We propose a real-time contact localization solution us-
ing strategically placed whiskers and straightforward
calibration. Our method achieves a root mean square
error (RMSE) of 0.026 meters, with a standard devia-
tion of 0.025 meters.

• We can determine the orientation of a surface with one
contact event in real time, with an RMSE of 6.8◦.

• We demonstrate setpoint tracking during contour fol-
lowing with a standard deviation of 0.041 meters using
only the estimated normal distance as feedback.

2 WHISKER DESIGN AND MANUFACTURING

We manufacture the whiskers as described by the method
in [13]. The whisker consists of a 200mm nitinol wire shaft
with diameter 0.4mm. The follicle structure is made up of
a 5mm rubber tube, UV resin and three MEMS barometers
attached to an integrated micro-controller PCB (see Figure
2A). The mass of the whisker is 1.52g.

The metal package covering the MEMS barometers is re-
moved to expose the sensing element. The nitinol wire is
straightened using a hot air gun at 520°C. A 2 mm thick sten-
cil is placed on the PCB to create the triangular mold around
the three barometers. A rubber tube, 5 mm in height with
outer and inner diameters of 3 mm and 2 mm respectively, is
positioned at the center of the three barometers. The PCB is
then placed in a manufacturing/curing stand (see Figure 2B).
The straightened nitinol wire is lowered into the rubber tube
through a very small hole in the stand, ensuring it aligns per-
pendicular to the PCB surface. A syringe is used to inject 1.5
ml of UV resin into the rubber tube. The resin flows until a
uniform surface is formed within the mold. The resin is cured
under a UV lamp for two minutes, and for 48 hours in natural
light after that.

Figure 2 —A: Whisker base PCB with three integrated
barometers (top) and STM32 micro-controllers (bottom) [13].
—B: Manufacturing and curing stand.

3 SYSTEM INTEGRATION AND SIGNAL
CONDITIONING

Frame SpeedyBee FS225 V2 5 inch Frame

Electronic Speed Controller (ESC) SpeedyBee F7 V3 BL32 50A 4-in-1 ESC

Autopilot Pixracer R15 (PX4)

Companion Computer Raspberry Pi 5 (Bookworm OS server)

Table 1 Components used on aerial platform

The barometers (BOSCH BMP390) are sampled at
50Hz through SPI communication by the STM32F070F6
(32Kbytes flash memory, 48 MHz CPU) microprocessor. The
whiskers are integrated onto a novel aerial platform com-
prised of the components outlined in Table 1; they are se-
rially connected to the Raspberry Pi 5 pinout and transmit
data at 50Hz through UART. All signal reading, signal pro-
cessing and navigation code is written in C++ and communi-
cation is achieved through ROS2. The Raspberry Pi is seri-
ally connected to the Pixracer autopilot, and communication
between the two components is achieved through an XRCE-
DDS bridge that converts uORB topics to ROS2 topics and
vice-versa. ROS2 nodes and the DDS bridge run in their own
respective docker containers with ROS2 humble base image
to ensure modularity. A visual representation of the system
architecture can be found in Appendix A.

To reduce the effects of temperature drift, the BMP390
register is accessed to apply the temperature compensation
coefficients to raw data as specified by the manufacturer’s
manual. On the Raspberry Pi, additional preprocessing is
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Figure 3 Preprocessing steps for incoming whisker data to
mitigate effects of vibration, drift and hysteresis. Plots shown
for one barometer during flight in which contact is made with
a wall head on, and then moves back. The incoming data
(light green) shows drift due to air pushed onto sensors during
flight. This is corrected online by estimating the linear rate of
change in pressure during an in-flight calibration sequence
and correcting subsequent readings (dark green). Hysteresis
is observed due to low frequency signals that arise from the
soft materials during the unloading phase. The effect of signal
noise and hysteresis is filtered out by means of a 1st order
Butterworth bandpass filter (black).

done to combat the residual effects of platform vibration, hys-
teresis and drift. The resulting data is shown in Figure 3. The
aggressive drift that is observed in the whisker data is caused
by the air pushed onto the barometers by the propellers. This
is compensated by identifying the rate of change of pressure
in a calibration sequence performed in the first 35 seconds of
flight. After takeoff, the drone holds its position for 20 sec-
onds to allow the whiskers to return to their nominal state and
for the nonlinear effects of takeoff-induced drift to stabilize.
In the subsequent 15 seconds, the whisker data is recorded
and a linear rate of change is computed. Using this, the suc-
cessive whisker data is flattened to reduce the effect of drift.
The effect of this drift compensation is shown by the dark
green curve. Noteably, after the contact period, the pressure
does not return to the nominal state. To account for this hys-
teresis and to reduce noise, a 1st order real-time Butterworth
band-pass IIR filter with passband frequency of 0.03 to 3Hz
is applied to the data. The drift-corrected and bandpassed
data is used for contact detection and contour following in
this study.

For the aerial platform, we propose a modular mechanical
design (Figure 1) that allows whiskers to be easily placed at
various designated points on the drone. This is achieved using
3D printed connector-clamping pairs arranged in an octago-
nal shape with carbon rods. The platform supports whisker
placement either on top of or on the side of the quadcopter,
making it suitable for multiple applications and enhancing

its sensory capacity. A simplified render of the platform is
shown in Figure 4. In this research, we place whiskers in
the two front connectors for object detection and contour fol-
lowing. The connectors are angled upwards by 30° to ensure
consistent behavior during binary contact events and sweep-
ing motions, as further discussed in subsection 4.2.

4 NAVIGATION

4.1 Environment and behaviour

We equip the aerial platform with two whisker sensors
placed at the front of the drone, as shown in Figure 4. As
previously mentioned, the whiskers are placed at a 30◦ an-
gle. The drone’s behaviour is controlled by a finite state ma-
chine (FSM) running at 50Hz, illustrated by Figure 5. The
FSM comprises five states; calibration, waypoint navigation,
surface evaluation, contour following, and land. The surface
evaluation and contour following states make use of the pre-
processed whisker data in real-time, and are further explained
in Subsection 4.3.

Figure 4 Simplified render of aerial platform. Top section re-
moved to show nodes used for this study. We define three
different reference frames. The drone body frame {B}, the
sensor frame {S}, and the normal frame {N}. The {S}
frame is aligned with the sensor, such that the x-axis always
points along the undeflected whisker shaft. In this research,
the whiskers are angled up by 30◦(α = 30◦).
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Figure 5 Finite State Machine (FSM) Logic. After takeoff, the drone initiates a calibration sequence to perform the preprocess-
ing steps outlined in Section 3. It then transitions to the waypoint navigation state, where it travels to a predetermined waypoint.
If the contact threshold of either whisker is exceeded, the drone reverses and enters the surface evaluation state. During this
state, the surface orientation is estimated based on the contact event, and the drone is reoriented accordingly. It then returns
to the initial point of contact. If contact is confirmed, the drone transitions to the contour following state, where a controller
maintains a fixed distance to the surface as described in subsection 4.3. Once contour following is complete, the drone re-enters
the waypoint navigation state. Upon reaching the waypoint, the drone initiates the landing state. To conserve battery and for
simplicity, the drone will proceed to the land state immediately after completing contour following in this study.

Control of the drone is achieved by supplying trajectory
set-points to the PX4 position controller in the world refer-
ence frame {W}. We will denote world-frame coordinates
{x, y, z}T as

⇀
p . Let

⇀
p i and

⇀
pwp denote the current position

of the drone and the waypoint respectively. A smooth trajec-
tory is generated by sending incremental waypoints

⇀
p i+1 to

the PX4 position controller of magnitude k, as in Equation 1.
In this research k = 0.1 meters.

⇀
p i+1 =

⇀
p i +

⇀
pwp −

⇀
p i∣∣∣⇀pwp −
⇀
p i

∣∣∣ · k (1)

4.2 Contact localization method and assumptions
Generally speaking, contact locations along the whisker

shaft and resulting whisker deflections are non-unique pairs.
In literature, efforts have been made to accurately estimate
contact location by means of Euler-Bernoulli beam theory
[22], data driven methods [13], and time-series methods
[12]. By leveraging smart positioning of the whiskers on the
robotic platform, we reduce the expected state space of the
whisker deflection. As a result, we use a simple linear regres-
sion to demonstrate sufficient accuracy for navigation tasks.
As illustrated by Figure 4, three reference frames are defined.
Let {S} denote the sensor frame, where the x-axis points in
the direction of the whisker shaft. We can define reference
frame {N} as the normal reference frame. We will describe
the contact location in this reference frame. Listed below are
the assumptions made:

1. Deflections of the whisker only occur about the sen-
sor’s local y-axis (deflections occur in the xz-plane).
This will be true for whiskers positioned as shown in
Figure 4 and for contact with objects of low curvature.

We will limit our work to contact with flat walls.
2. The whisker does not buckle, it only bends. This im-

plies no contact at the tip of the whisker, only along the
shaft.

3. Friction on the whisker shaft has negligible effect on
the sensor readings.

The sensitivity of the whisker in the expected deflection
direction is determined through a simple static calibration
setup. By mounting the whiskers at a 30° angle, bending pri-
marily occurs around the y-axis of both the {S} and {N}
frame. In addition, for contour following we are only inter-
ested in the normal contact distance, reducing the problem to
1D contact localization. During static calibration, the whisker
is set up identically to its placement on the platform: in an an-
gled connector with barometer 3 aligned with the attachment
point of the whisker to the base (See Figure 6). In this con-
figuration, the bending stress at barometer 3 is solely due to
the bending deflection around the local y-axis when contact
is made.

Our calibration model g : R → R maps the whisker’s
pressure reading to a 1D contact location. If

⇀
pS and

⇀
pN are

the contact location {x, z} in the sensor and normal frame
respectively, then the rotation matrix SRN between them is
given by Equation 2 (α = 30◦).[

xN

zN

]
=

[
cosα sinα
− sinα cosα

] [
xS
zS

]
(2)

For contour following, we are only interested in the nor-
mal distance xN . Given that we have three barometers on a
whisker, our hypothesis function is given by:

hθ(b) = θ0 + θ1b1 + θ2b2 + θ3b3 (3)
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Figure 6 Results of static calibration set-up for barometer 3
of one whisker. Linear regression with approximately 10,000
data points (R2 value of 0.98 and RMSE of 105 Pa). During
calibration, the whisker is placed in the same connector as on
the aerial platform to ensure consistency.

Where bi is the pressure value associated to each barom-
eter. However, from our assumption that bending only occurs
in the xz-plane of the {S} frame, and that this bending direc-
tion aligns with barometer 3, we can simplify this hypothesis
function to:

hθ(b3j ) = θ0 + θ3b3j (4)

For each training sample j, or in matrix form:

⇀
hθ(B) = B

⇀

θ (5)

where B is the matrix of input features (pressure readings
from barometer 3) with an added column of ones for the in-
tercept. We arrive at the normal equation for our simplified
system:

⇀

θ = (BT B)−1BT⇀
xN (6)

Solving Equation 6 yields optimal parameters {θ0, θ3}.
θ0 is tuned in-flight such that the normal distance is estimated
w.r.t the body frame of the aerial platform. We call this dis-
tance xB, where {B} denotes the body reference frame of the
quadcopter, as shown in Figure 4.

The pressure readings are zeroed before data is collected
for contact at different normal distances from the sensor base
(xN ). Data is collected by placing a box at known distances
from the whisker base, simulating contact with a wall. Mea-
surements are taken in 0.01 m increments, ranging from 0.05
m to 0.15 m from the base. Linear regression of the whisker
data resulted in R2 values ranging from 0.89 to 0.98, and
Root Mean Squared Error (RMSE) values between 26 Pa and
105 Pa, depending on the whisker. Discrepancies are primar-
ily due to manufacturing variations, particularly in how the
resin flows during manufacturing. Since there is limited con-
trol over the resin’s distribution around the PCB, the resin

coverage on and around the barometers may vary between
whiskers.

While this 1D model is suitable for the environment con-
sidered in this research, out-of-plane deflections occurring
when contact is made with curved surfaces could lead to in-
accuracies. This issue is further discussed in Section 6.

4.3 Contour following controller design
Before entering the contour following state, the orienta-

tion of the wall is estimated. This is done by using the differ-
ence in estimated normal distance between the two whiskers
from the contact event that triggered the surface evaluation
state (see Figure 7). This estimated orientation is sent as a
yaw command to the autopilot before making contact with
the wall again, such that the whiskers are perpendicular to the
wall during contour following.

Figure 7 Surface Evaluation State - The drone estimates the
orientation of the surface from a single contact event by cal-
culating the difference in normal distance estimation between
the two whiskers.

The contour following controller uses a single whisker
as input to provide reference positions to the PX4 position
controller. Figure 8 illustrates how this reference position is
determined. During testing, we found that the PX4 position
controller was not responsive enough to small and sudden
changes in position inputs (A more detailed comment on the
limitations of the position controller is given in Appendix B).
As such, we were not able to directly use the error as a posi-
tion command. Instead, we chose to supply a fixed corrective
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action xinput of ±0.01 meters when the estimated normal dis-
tance to the wall exceeded the deadband of ±0.03 meters and
apply a smoothing filter. This is done by means of an expo-
nential moving average filter (α = 2

N+1 , with N = 20) to
smooth the inputs and determine the reference position pro-
vided to the position controller. Thus, the filtered reference
position is given by:

⇀
p i+1EMA

=
⇀
p i+1α+ (1− α)

⇀
p iEMA

(7)

Figure 8 Contour Following Controller Logic. The drone
moves parallel to the surface. This direction is determined by
the estimated orientation in the surface evaluation state and
corresponds to the drone’s yaw angle (Ψ̂). The preprocessed
whisker data is linearly transformed into an estimated normal
distance from the wall by the calibration model. If this dis-
tance deviates by more than ±0.03 meters from the setpoint
(deadband), a corrective position input (xinput

B ) is supplied to
adjust the drone’s normal distance from the wall.

5 EXPERIMENTS

In this section we perform a system demonstration of the
contour following capabilities of the proposed whisker-based
aerial sensing platform.

5.1 Set-up
The experiments take place in an indoor drone arena

equipped with OptiTrack Motion Capture cameras. The op-
titrack position estimate is communicated via ROS2 to the
PX4 autopilot to be used by the on board EKF2 state es-
timator. The set up of the experiment is as shown in Fig-
ure 9. Mattresses are placed near the wall for softer land-
ing. The following coordinates are given in the World-frame

Figure 9 Drone arena experimental set-up for system demon-
stration. Wall oriented at three different angles: 0◦, 15◦, 30◦.

{W}. The drone takes off from
⇀
p0 = {0.00, 0.00,−0.27}T

meters to
⇀
p to = {0.00, 0.00,−1.80}T meters. Once the al-

titude is reached, the finite state machine is initialized. Af-
ter calibration, the drone navigates to the supplied waypoint
⇀
pwp = {2.00, 0.00,−1.80}T . Between the take-off position
and the waypoint, a wall of length 2.5 meters is placed. Fif-
teen flights were performed at three different wall orientations
with respect to the forward direction of the drone (45 flights in
total). Given the right-handed coordinate system used, these
orientations were Ψ = {0◦,−15◦,−30◦}. In the contour fol-
lowing state the controller follows the wall for 2.0 meters,
after which the drone enters the land state to conserve battery
and returns to the position

⇀
p land = {0.00, 0.00,−0.30}T to

land. Before each flight, a new setpoint is given to the con-
troller for the contour following state. This setpoint is ran-
domly sampled from X ∼ U(0.24, 0.34).

5.2 Results

0 ◦ 15 ◦ 30 ◦ All Flights

RMSE

Normal distance estimation [m] 0.021 0.025 0.030 0.026
Wall orientation estimation [◦] 8.8 5.0 5.7 6.8

Standard Deviation

Normal distance estimation [m] 0.019 0.024 0.030 0.025
Setpoint tracking [m] 0.037 0.039 0.045 0.041

Table 2 Summary of performance metrics for distance estima-
tion, wall orientation estimation, and setpoint tracking. The
accuracy of normal distance estimation consistently exceeds
the setpoint tracking accuracy of the PX4 position controller,
indicating that this simple linear calibration model provides
sufficient accuracy for aerial navigation.

Figure 10A illustrates the FSM states and transitions dur-
ing a flight test with a wall orientation of 15◦. Only one
whisker is used during the contour following phase. The con-
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tour following trajectory setpoints and the resulting odome-
try for this flight are shown in Figure 10B. Due to the PX4
position controller’s inability to maintain centimeter-level ac-
curacy, fluctuations in whisker readings are observed. Nev-
ertheless, the calibration model estimates the distance to the
wall with sufficient accuracy, given the controller’s tracking
performance. These results validate the success of the FSM
framework employed in this study and suggest potential for
further research within each state.

Figure 10 —A: Finite State Machine (FSM) states and tran-
sitions based on whisker data with a wall orientation of 15◦.
In the first half of the Surface Evaluation state, the drone in-
fers the wall’s orientation. In the second half (denoted by the
dashed line), a second contact event is attempted. The dif-
ference in pressure between the left and right whiskers dur-
ing the transition from waypoint navigation to surface eval-
uation is used to estimate the wall’s orientation, leading to
an adjustment in yaw. These results highlight the impor-
tance of our calibration model, which maps whisker read-
ings to 1D contact locations, as pressure readings differ be-
tween the whiskers even when perpendicular to the surface.
Our FSM framework demonstrates the ability to successfully
detect contact, infer orientation, and estimate the normal dis-
tance to the wall during contour following. —B: Contour Fol-
lowing State trajectory setpoints and odometry for the flight
shown in A. The right whisker is used for wall following. The
PX4 position controller’s inability to maintain centimeter-
level accuracy results in the fluctuations observed in whisker
readings in subfigure A.

Figure 11A shows specifically the contour-following re-
sults from one flight-test with wall orientation 0◦. Figure 11B
presents the error between the actual and estimated normal
distances for the example in Figure 11A. Generally, the er-
ror is maintained within a 0.02-meter range. However, the
large error at around 4 seconds suggests that near the whisker
base the behaviour may not be linear. However, these re-
sults demonstrate the effectiveness of a simple linear mapping
from pressure to 1D normal distance.

In Figure 11C and 11D, we plot the normal distributions
of calibration model error across all flights. In the former we
aggregate the results for all the flights and compute the mean
and the standard deviation of the results. In the latter we do
the same, but per wall orientation. Notably, the error is gener-
ally lower than the setpoint tracking error of the PX4 position
controller, indicating that the accuracy of this simple calibra-
tion model is sufficient for aerial navigation. This can be seen
in Table 2, which summarizes the results of normal distance
estimation, wall orientation estimation, and setpoint tracking
performance across all flights. The RMSE for the 0° orien-
tation estimation is higher due to one flight where the drift
correction for one of the whiskers was underestimated, re-
sulting in an estimated orientation of around -28°. Excluding
this flight, the RMSE would decrease to approximately 4.90°.
Considering this, we can conclude that the performance of
distance estimation degrades with increasing wall orientation.
This is due to the contact event between the whisker and the
surface deviating from the static calibration model, which as-
sumed that the whisker would deflect only around its local
y-axis. However, as wall orientation increases, lateral slip
against the surface occurs. This out-of-plane contact event
leads to less accurate wall orientation and distance estima-
tions, as the whisker’s orientation with respect to the surface
becomes less perpendicular. Since this distance estimation is
an input for the contour following controller, the standard de-
viation of setpoint tracking increases. However, with a dead-
band of ±3 cm, the standard deviations for setpoint tracking
are within expected limits. These results demonstrate that
this non-intrusive perception strategy is suitable for real-time
navigation tasks for aerial platforms.

6 FUTURE WORK

Future research could extend from this work in several
directions:

6.1 Sensor model that includes out-of-plane deflections
Extending the static calibration setup to account for lat-

eral slip by incorporating an additional barometer into the re-
gression process could significantly improve the accuracy of
the sensor readings, particularly on surfaces with steeper an-
gles. By integrating this additional barometer and including
angled surfaces into the static calibration setup, the system
could more effectively detect and correct for lateral move-
ments, thereby reducing the error observed during contact
with inclined surfaces. Furthermore, augmenting the plat-
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Figure 11 —A: Contour following results from a single flight with a wall orientation of 0◦. The estimated normal distance
(xB) is relative to the body frame. The plateau at 0.225 meters is due to a constraint setting any distance below 0.225 meters
to this value, reflecting the distance from the drone’s center of gravity to the whisker base. —B: Distance error from plot A,
with a significant error around 4 seconds, indicating potential non-linearity near the whisker base. —C: Normal distribution
of estimated distance errors during contour following across all flights. —D: Normal distribution of distance errors by wall
orientation, showing increased standard deviation with orientation due to more lateral slip.

form with additional sensors—such as in the positions shown
in Figure 4 could provide even more comprehensive cover-
age. These additional whiskers would be especially beneficial
for decreasing the occurrence of lateral slip during the surface
orientation estimation at higher angles. This enhanced sensor
array could lead to improved overall accuracy of the platform
when navigating and interacting with complex environments.
Additionally, exploring non-linear models could improve the
accuracy of distance estimation, particularly when the plat-
form is in close proximity to the surface.

6.2 Towards pose estimation and SLAM
We can conceptualize the level of perception in robotic

systems as existing on a spectrum that ranges from basic
binary obstacle detection to sophisticated Simultaneous Lo-
calization and Mapping (SLAM). As we progress along this
spectrum towards more advanced capabilities like pose esti-
mation and SLAM, we could leverage the Extended Kalman
Filter (EKF) solution presented in [12]. In this work, contact
localization is achieved by defining a process model that al-
lows for precise tracking of the contact point over time. The
process model is given by the following equation:

xk+1 = Axk +B

[
vs
ws

ωs
ws

]
+wk (8)

Where the notation vaab is the linear velocity of reference

frame A relative to B (subscript) as viewed in the reference
frame A (superscript). {W} and {S} denote the world and
the sensor frame respectively, ωk is process noise and xk is
the contact location pc.

The velocity of the contact point in the body frame {B}
is derived as 1:

vb
bpc

= −
[
I [pc]

] [ vb
wb

ωb
wb

]
(9)

The linear and angular velocities vb
wb, ωb

wb are accessible
through the PX4 state estimator. We can also say that:

xk+1 = xk + δtv
b
wpc

(10)

This leads to A = I and B = −δt
[
I [pc]

]
. By combin-

ing this process model of the contact point, with the sensor
model (derived in subsection 4.2), we can track contact lo-
cations from a sequence of measurements through Bayesian
filtering.

b (xt) = p (xt | z1:t,u1:t)

= ηp (zt | xt,ut)

∫
p (xt | xt−1,ut) b (xt−1) dxt−1

(11)
1Refer to [12] for the full derivation.
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This recursive algorithm estimates the state distribution based
on a history of control inputs and sensor data. In the equation,
η is a normalization factor, b (xt−1) represents the prior dis-
tribution, and the terms p (zt | xt,ut) and p (xt | xt−1,ut)
are derived from the sensor model and process model, respec-
tively. By incorporating this EKF-based approach, we can
more accurately estimate the contact point and enhance its
ability to map the environment in real-time. This method rep-
resents a significant step forward in advancing to a more nu-
anced and comprehensive understanding of the environment,
enabling the robot to operate with greater autonomy and pre-
cision in complex settings.

6.3 More robust preprocessing
While advanced static calibration and improved contact

localization methods would enhance system accuracy and
help mitigate lateral slip, the success of these models fun-
damentally relies on consistent data preprocessing across all
flights. Uniform preprocessing is crucial for the reliability
and effectiveness of these approaches. Developing a more ro-
bust filter for drift correction holds significant potential, as it
would improve contact localization accuracy and overall sys-
tem precision under varying flight conditions. Currently, drift
correction is applied throughout the flight, and refining this
process would likely increase sensor model accuracy. Addi-
tionally, it is important to consider the impact of linear and
angular accelerations on drift. A high-pass filter is currently
used to attenuate these effects at low speeds, but a deeper un-
derstanding of how platform dynamics influence sensor read-
ings could facilitate the transition toward using the whiskers
for pose estimation.

6.4 Controller
Transitioning from a position controller to a lower-level

control mechanism, such as a rate controller, could sig-
nificantly reduce the standard deviation observed in wall-
following tasks. This shift would help minimize the risk of
intrusive contacts with the environment, thereby enhancing
the safety and effectiveness of the system in practical appli-
cations. By providing more responsive and precise control, a
rate controller could better manage the subtleties of maintain-
ing consistent distances from surfaces, which is particularly
important in complex or sensitive environments.

7 CONCLUSION

In this study, we showcased the potential of non-intrusive
biomimetic vibrissal sensing for aerial robotics. We intro-
duced a novel platform that facilitates easy integration of
sensors and a real-time preprocessing solution to mitigate
signal distortion caused by the platform. We demonstrated
that a simple static calibration setup, combined with strategic
whisker placement, effectively localizes contact for contour-
following tasks using only whisker data. Our novel drone
platform, equipped with two modular sensors, maintains a
desired distance from a flat contour within 8 centimeters and

estimates its distance within 5 centimeters, as well as the
surface orientation within 13.5°—all with 95% confidence.

This work marks the first successful integration of
biomimetic vibrissal sensors into a modular aerial platform,
setting a new standard in the field of tactile navigation for
aerial robotics. By achieving real-time, online processing
of tactile data for contact localization and surface orienta-
tion estimation, we have laid a solid foundation for future
research in this domain. The modular and adaptable nature
of the platform paves the way for further advancements, en-
abling more sophisticated applications such as exploration in
cluttered environments or tactile mapping. This research not
only demonstrates the feasibility of real-time tactile sensing
in aerial platforms but also opens up new possibilities for en-
hancing robotic perception and interaction in complex, dy-
namic settings.
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ABSTRACT

Whisker/Vibrissae-inspired sensors are an
emerging class of tactile sensors that mimic
the vibrissal systems observed in nature.
These sensors offer several advantages over
traditional tactile sensors, including ease of
manufacturing and non-invasiveness during
operation. Biomimetic vibrissal sensors have a
wide range of proven applications such as shape
inference, navigation, texture discrimination,
and fluid profile analysis. This review provides
an overview of past and current research in the
field of vibrissal sensing for robotics, including
their design principles, morphologies, robotic
applications and challenges. We argue that
this novel tactile sensing scheme can bring the
unique opportunity to continuously improve
upon the sensory capacity of machine perception
by closely aligning robotic modalities with
ongoing research on the rat’s sensorimotor
system.

1 INTRODUCTION

Tactile sensing is an essential component of a robot’s abil-
ity to interact with its environment. It enables robots to de-
tect and identify objects, navigate through complex environ-
ments, and manipulate objects with precision [1]. Tactile sen-
sors have been used in robotics for decades, but the develop-
ment of new sensor technologies and their integration with
advanced control algorithms have led to significant improve-
ments in robotic tactile perception.

One domain of research that has garnered interest in re-
cent years is the use of biomimetic vibrissal sensors for tac-
tile perception in robotics. Whiskers are specialized sensory
organs found in many mammals, including rodents, seals,
and cats. These structures are used for a variety of purposes
such as navigation, prey detection, and social communica-
tion. Whisker-inspired sensors mimic the structure and func-
tion of natural whiskers and have several advantages over tra-
ditional tactile sensors. They are lightweight, low-power, and
can operate in a wide range of environmental conditions. The
reviewed literature demonstrates the potential to detect subtle
changes in the environment, such as air currents, vibrations,
and texture gradients. Arguably, one of the biggest advan-
tages over traditional tactile sensors is that vibrissal sensors
are non-intrusive, meaning that interaction with the environ-
ment does not require changing the state of said environment.

Furthermore, unique environments such as smoke filled set-
tings or covert operations in the dark may herald vibrissal
sensing applications. These features make vibrissal sensing
for tactile perception an intriguing sensory modality.

In robotics, whisker-inspired sensors have been used in a
variety of applications, including object recognition, naviga-
tion, surface exploration, and velocity profiling. The use of
such sensors for tactile perception in robotics is still a rela-
tively new area of research [2], and many challenges remain.
This review paper explores the past and current adoption of
vibrissal sensors in robotics, and the challenges that are faced.

The structure of the review is as follows. First, whisker-
based tactile perception in nature is briefly introduced in Sec-
tion 2. In Section 3 an overview of whisker design is pre-
sented. Careful consideration is given to choice of material,
geometry, transducer, actuation and array morphology of the
sensing system for a given robotic application. Throughout
the paper, four robotic applications are explored: shape infer-
ence, navigation, texture discrimination and fluid flow anal-
ysis. The various implementations of the sensors are thor-
oughly discussed for all four robotic applications in Section
4. Throughout the discussion, challenges within the specific
application domain are considered. Finally, the global chal-
lenges and opportunities that exist for vibrissal sensing for
robotic applications are discussed in Section 5.

2 WHISKER-BASED TACTILE PERCEPTION IN
BIOLOGICAL SYSTEMS

The vibrissal system of rats has long been employed as
a classic model in neuroscience for investigating the mecha-
nisms of sensorimotor integration and active sensing [4, 5].
Whiskers, or vibrissae, are an essential part of many ani-
mals’ sensory systems. These specialized hairs provide tac-
tile information about the environment in which the animal
explores.

The arrangement of whiskers can vary between different
animals. Rodents, such as mice and rats, have long, conical,
stiff whiskers arranged in rows on their faces [2, 3, 6]. Of
approximately 30 macrovibrissae , the longest whiskers are
typically found on the top row, with shorter whiskers on the
lower rows [7]. Cats have whiskers located on their cheeks,
eyebrows, and chin, and use them for social communication
with other cats. Different positions of the whiskers convey
different meanings. In contrast to rodents, cat whiskers are
shorter and have a higher taper ratio, allowing more precise
sensing of small movements [8]. Seals and other marine
mammals have whiskers that are used to detect prey in the
water [9]. These whiskers have elliptical cross-sections, and
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Figure 1 Sensory pathway layout of the whisker [3]. —a: schematic illustration of a mechanoreceptor terminal. —b: illlustra-
tion of the 2D grid formed by the vibrissae. Arranged in five rows (A-E), each including five to nine whiskers (1-9).

are arranged in an irregular pattern [2].

A schematic of a rodent’s sensory pathway layout is given
in Figure 1. The bending of the shaft is converted to a neu-
ral signal by mechanoreceptors situated in the follicle [10].
These signals are brought together in the primary afferent
neurons of the brainstem trigeminal nerve. A schematic of
this is given in Figure 1a. Information on direction, velocity,
duration of whisker displacements and torques are encoded
in these neurons [10], and enable rodents to localize objects,
infer size, shape, orientation and texture with high precision
[11–17]. Before reaching areas of the brain involved in mem-
ory, spatial mapping, and decision making, sensory signals
generated by whisker stimulation travel from primary affer-
ent neurons to different processing stations in the brainstem,
midbrain, cerebellum, and forebrain [6]. Barrels are cellular
aggregates of neurons in the primary somatosensory region
of the rat cortex. These aggregates have a somatotopic one-
to-one mapping with the whiskers [6]. In other words, each
whisker has a corresponding “barrel“ of neurons in the brain
that responds to its stimulation. This is shown in Figure 1b.
The existence of these barrels (often referred to as the barrel
cortex [18]) makes it easier to identify and study the process-
ing of vibrissal sensory signals in the brain.

“Whisking” is a rhythmic, controlled motion of the vib-
rissae that rodents perform during tactile exploration [19].
Whisking occurs at frequencies between 5-25Hz [7], and is
speculated to differ between tasks [6]. For example, ex-
ploratory whisking exhibits different patterns when compared
to ‘free-whisking’ [20]. Specifically, observations [20] have
shown differences in ‘spread’ between whiskers during ob-
ject contacts. These whisking behaviours are believed to stem
from a ‘Central Pattern Generator’ (CPG) [21], of which the
specific location within the rodent’s body is yet to be pin-
pointed. By using movement to acquire and refine incoming
sensory data, sensing is considered an ‘active’ process [7].

This process is thus, aside from the signal processing that
occurs, heavily dependent on the material, mechanical, and
morphological characteristics of the vibrissal system. Such
characteristics include (but may not be limited to) stiffness
[22, 23], resonant frequencies [24], damping [24], 3D mor-
phology [7] and geometry [23, 25]. As such, mimicking
this behaviour for applications in robotics is a challenging,
but compelling, objective. The sensorimotor system of ro-
dents remains one of the most actively researched fields. This
brings the unique opportunity to continuously adapt and im-
prove artificial sensors congruently.

3 DESIGNING VIBRISSAL SENSORS

Recently, a review on designs and manufacturing methods
of whisker-inspired sensors was published [2]. This review
provides in depth explanations and analyses of material and
sensor design choices that have been made in literature. Thus,
this section will focus on trends and provide a more global
overview of designing vibrissal sensors for robotics.

3.1 Whisker Design
Sensor design varies in literature based on the goals of the

research. The length, material and geometry of the whisker
are most affected by what conclusions are to be drawn from
the data the whisker sensor aims to collect. For example,
a thin, tapered whisker may be more conducive to texture
discrimination [23]. However, such a sensitive design may
not be required for applications in which more global con-
clusions are to be drawn from the environment, for example
SLAM. Furthermore, a portion of available literature focuses
on biomimetic vibrissal sensors as a ‘proof of concept’ and
places an emphasis on signal processing. As such, the design
is often arbitrary and conclusions can not always be drawn
between application and sensor design choices.

We observe the following generalized design across
most published literature: the whisker shaft (a (tapered)
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straight/curved beam), attached to a follicle (transducer).
When an external load is applied to the whisker shaft, the
experienced forces and moments result in a deformation at
the follicle. This signal is thus measured by the transducer.
The sensitivity of the sensor depends on material and geo-
metric properties of the shaft, as well as the chosen trans-
ducer. The desired sensitivity is dependent on the robotic ap-
plication. Exceptions to this standard design do exist. For
example, vision based [26–28] methods do not directly mea-
sure signals due to deformation, but track specific features in
an image. Seth et al. [29] implemented a sensor in which the
shaft was made of two polyamide strips adhered back-to-back
such that bending could be measured along the entire whisker
shaft. Schlegl et al. [30] proposed ‘virtual whiskers’ formed
by an electric field, where detection of objects did not require
any contact. Figure 2 visualizes the observed trends in ap-
plication - transducer - shaft material combinations found in
literature. Newer applications, such as fluid flow and naviga-
tion, make use of polymer shafts more frequently. Shape in-
ference, one of the most researched applications for vibrissal
sensing in robotics, makes use of steel shafts often. The strain
gauge is the most commonly used transducer, and is also used
across all four applications. Second to this is the hall effect
sensor; used primarily in more recently published literature.
Both of these sensors have a bandwidth that is conducive to
all applications. Finally, it may be noteworthy to mention
that microphones and barometers have only been used with
real vibrissae and polymers respectively. Table 1 maps the
combinations of commonly used transducers and applications
as found in literature. Binary whiskers and potentiometers
[31] are the most simple transducers used. Binary whiskers
are only able to distinguish between contact and no-contact
scenarios based on an electrode at the base of the whisker
shaft. As such, they are suitable for object detection applica-
tions. Potentiometers measure the torque of the whiskers due
to contact, and are mostly paired with steel whiskers [32].
Due to their size and cost, strain gages are one of the most
commonly used sensors across all applications. By placing
them at the follicle, the resistance of the whisker (bending
moment) to an external force is measured. Often, the strain
gages are placed in a wheatstone bridge. This arrangement of
multiple strain gages also allows for directionality in the mea-
surements, which is not achievable with electret microphones
[6]. However, durability and excessive noise may pose is-
sues. Hall effect sensors measure the variations in the mag-
netic field due to the deformation of the follicle. Magnets are
attached to the whisker base which is mounted above the hall
effect sensor. The deformation of the whisker base (due to
the moment) will cause the magnet to displace with respect to
the sensor. As such, the sensitivity of the sensor is adjustable.
The transducer that can provide the most information is the
six-axis force/torque load cell. Load cells are able to measure
all three components of the forces and moments at the base.
Though accurate, load cells tend to be expensive and bulky.

As can be seen in Table 1, load cells are most commonly used
for shape inference/contour extraction experiments. These
experiments tend to be isolated – meaning less consideration
is given to scalability of the whisker into an array, or ensuring
suitability for platform integration. Recently, MEMS barom-
eters have been used [33, 34] as transducers (shown in Fig-
ure 3-I1). These pressure sensors are lightweight, small, and
can achieve high accuracy. However, they are prone to drift
[34]. For texture discrimination and fluid flow, where the fre-
quency response of the sensor is valuable, the bandwidth of
the transducer is important [35]. With a larger bandwidth, the
high frequency vibrations at the tip of whisker are captured.
Microphones (high cutoff frequency in the tens of kHz [35])
are thus very appropriate for texture discrimination. Strain
gages, load cells, MEMS barometers, and hall-effect sensors
have a moderately large bandwidth (10-1000Hz [35]), and are
also suitable for other applications as they are able to capture
low frequencies. This makes these transducers appropriate
choices for multi-modal applications. Microphones have a
low cutoff frequency of around 10-Hz, making them unsuit-
able for low frequency applications such as navigation and
shape inference.

Texture
Discrimination

Shape
Inference Navigation

Fluid Flow
Profiles

Binary [31]

Strain Gage [36][37][38]
[39][36][38]
[40][41][42][43] [38] [42][44]

Hall Effect [45][46] [47][48][49] [50][51] [52] [49] [53]

Force/Torque Load Cell [54] [55][56][57][58][59]

Potentiometer [32] [31]

Microphone [22][60] [61] [62] [63] [64][61][65]

Barometer [34] [34] [33]

Vision-Based [66] [26][27]

Piezoelectric [46] [48] [67]

Accelerometer [35]

Table 1 Mapping of transducer used in Literature by Experi-
ment

Regarding material choice for the whisker: a trade-off ex-
ists between sensitivity and durability. Rigid materials may
lead to damage of the environment and of the sensor, as the
reactions experienced at the base will be higher. Highly flex-
ible materials may delay the reaction at the follicle (base) of
the whisker due to lower/no reactions for a given whisker de-
flection [22, 38]. In a study performed by Fend et al. [65], an
evolutionary algorithm came to various whisker morpholo-
gies using rigid and flexible whiskers for obstacle avoidance
and exploration purposes. With flexible whiskers, more va-
riety of whisker morphologies were found than with a rigid
whisker. In addition, rigid whiskers evolved to be shorter
when compared to flexible whiskers.

Materials used in research range from real rat vibrissae
[22, 60], to a variety of metals (steel [31], aluminium [35],
copper [36], nitinol [47]) to polymers [28] and composites
[33]. Early research [31, 32] made use of steel wires as
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Figure 2 Mapping of whisker design combinations found in literature for different robotic applications.

whisker shafts. Steel, however, is under-damped compared
to real vibrissae [24]. More recently [44, 47] nitinol has
been used. Nitinol is more flexible compared to steel, and
exhibits better damping behaviour. For sensors that aim to
more closely replicate geometry and material properties of
real vibrissae [68], polymers and composites are used. Multi
modal sensors (suitable for more than one robotic applica-
tion) [26, 33, 34, 49] require a range of whisker shaft char-
acteristics that are conducive to different applications. For
example, texture discrimination requires a stiff material for
greater sensitivity when differentiating between surfaces [22].
For fluid flow applications, the shaft should be sufficiently
sensitive such that even very small applied pressures are ob-
servable [69]. Thus, manufacturing whisker shafts in which
the characteristics are highly tunable (as with composites) is
beneficial for multi-modal sensors.

When considering whisker geometry, design choices can
be made regarding the taper and curve of the whisker shaft.
Using curved whiskers can have structural benefits, as they
prevent supporting large axial loads and thus are able to avoid
buckling [32]. Lin et al. [47] also observed that curved
whiskers can achieve better ’passive whisking’, and are able
to track object contours with a higher accuracy when com-
pared to their straight counterparts. However, production of a
curved whisker is not straight-forward and should be consid-
ered. Especially in array-morphologies, consistent geome-
tries may be hard to achieve for all whiskers in the array.
Yokoi et al. [61] conducted a thorough analysis on tapered
whiskers. They found that the conical shape was more ro-
bust against mechanical stress and fractures. This allows for
longer whiskers, and thus also a longer sensing range. In ad-

dition, tapered designs are often lighter. This may be ben-
eficial for platforms, such as MAV’s, in which weight may
be a limiting design factor. For texture discrimination ap-
plications, the eigen-frequency of the shaft and the ability to
transduce the frequency characteristic of the sensed surface
is important. The conical whisker acts as a highly discrimi-
nating bandpass filter, displaying greater sensitivity towards
specific frequencies and transmitting distinct modes of vibra-
tion with increased efficiency [61]. It has been suggested
[23] that tapered whiskers have the advantage of more pro-
nounced ‘stick-slip’ signals for texture discrimination. How-
ever, more so than curved whiskers, manufacturing tapered
whiskers has proven to be challenging as conventional draw-
ing, extrusion, casting and molding processes are not suit-
able [43]. Thus far in literature, tapered whiskers have been
manufactured through methods [68] and materials [37, 70]
that don’t allow for optimum geometries [68, 71]. Collinson
et al. [43] proposed a novel manufacturing method termed
‘surface conforming fiber drawing’ (SCFD) that is able to
achieve higher aspect ratios and finer tip diameters. The ta-
pered SCFD whiskered demonstrated improved contact point
localization (median distance error 0.57cm) when compared
to a cylindrical whisker (median distance error 1.3cm).

3.2 Array Morphology

Array morphologies are beneficial for maximising data
collection. In literature, arrays implemented for shape infer-
ence usually consist of multiple identical whiskers mounted
next to each other, and don’t give much attention to specific
morphologies. This is in contrast to navigation applications,
where whiskers are more often arranged in a morphology that
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aids in decision making. Fend et al. expanded on previous re-
search on array morphologies [22] in a series of papers that
explore optimal morphologies for navigation [60, 65]. Six
different array morphologies were investigated for their per-
formance in obstacle avoidance and exploration tasks. Con-
trary to what is often found in nature, the morphology that
performed best had the long whiskers mounted towards the
center of the ‘head’, with the lengths decreasing towards the
back. The spread of the whiskers was around 20 degrees.
Although opposite to what is found in nature, it is also in-
tuitive that this morphology works best for this application -
as mounting the larger whiskers towards the back (as in na-
ture) would imply less obstacle detection right in front of the
robot. In addition, objects located on the sides of the robot
would be detected and avoided, even though the risk of col-
lision with these obstacles is low when the robot is moving
forward. This in turn would also reduce exploration, as many
more false positive exist. The Bristol Robotics Labratory
has published iterations of several standardised whiskered
robots, mounted with array morphologies: Whiskerbot [70],
SCRATCHbot [72] and Shrewbot [73], each design build-
ing upon the previous. The most recent robot, Shrewbot,
makes use of the modular BIOTACT sensor [68] (see Fig-
ure 3-I3), mounted onto a conical shaped ‘head’. As the
sensors are modular, they can be mounted in any desirable
morphology onto the Shrewbot’s head (Figure 3-S1). Com-
pared to the SCRATCHbot, the main innovation is the mor-
phology of the macrovibrissal array. Shrewbot has six rows
of three columns of whiskers that are arranged in a circular
pattern around its head. This is different from SCRATCHbot,
which has its whiskers arranged in a linear pattern. The de-
sign of Shrewbot’s whiskers emphasizes the radial symmetry
of the macrovibrissae found in rats [73]. Shrewbot is used
as a platform for investigation biomimetic morphology and
control in vibrissal active touch [51]. The BellaBot [74] is
another biomimetic whiskered robot platform, also consisting
of a ‘head’, containing 20 identical whisker-inspired sensors,
mounted onto a 5 DoF manipulator. The BellaBot (shown
in Figure 3-S2) has demonstrated the ability to accommodate
imperfections in the sensory map that may be a result of poor
manufacturing or damages to the array. This is a compelling
concept, as generally robot performance is increased when
using arrays, but tactile sensors are prone to damage due to
their constant interaction with the environment. In addition,
when working with highly tapered or curved whiskers, man-
ufacturing differences may give rise to differences in signals.
Thus, such a system could allow for robust and continued use
of vibrissal arrays in robotics.

3.3 Whisker Actuation

To achieve active sensing in artificial vibrissae, the sen-
sors may be actuated by a miniaturised electric motor. Al-
ternative approaches include actuation through ‘muscle-like’
properties such as shape-memory alloys [75], or ‘air muscles’

[41]. This is commonly referred to as ‘active whisking’.
Passive whiskers (non-actuated) may be based on the vib-

rissae found on, for example, the lower limbs of cats [47].
Though easier to manufacture, a number of hurdles arise
when using passive whiskers. The most prominent being that
the number of contacts with an object is limited, as contacts
are limited to one interaction, rather than multiple probes
[47]. The second hurdle is that the movement of the whiskers
becomes entirely dependent on the control actions of the mo-
bile platform on which the passive whisker is mounted. Most
mobile platforms are not tuned to maximise exploration for
short range sensors such as whisker-inspires sensors. A con-
troller may be implemented to alter the actions of the platform
based on the signals obtained, as has been done in navigation
applications [31, 37]. However, these control actions are gen-
erally less precise compared to the actuation of the whisker
itself.

During whisking, differences exist between the patterns
that are tracked. Simple actuation may include whisking
through an arc. Kim and Möller [48] chose to whisk through
an arc of 50◦ and added an additional 21◦ when contact was
made with an object to increase contact events. Sullivan et
al. implemented a more elaborate approach [68]. Two active
sensing strategies were introduced: rapid cessation of pro-
traction (RCP) and contact-induced symmetry (CIA). While
RCP is a feedback control strategy that stops the forward pro-
traction of the whiskers as soon as contact is made [76], CIA
is a feedforward strategy that regulates the contacts on sub-
sequent whisks by moving them asymmetrically after contact
has been made. Two coupled oscillators (to allow for both
in-phase and out-of-phase whisking of the two sides) were
generated that could be perturbed by the environment. These
strategies follow the ’minimal impingement, maximal con-
tact’ (MIMC) whisking concept termed in [76], where the
animal attempts to make as many contacts as possible with-
out allowing excessive bending of the whisker. Pearson et al.
[73] suggest that the MIMC approach may also be useful for
maximizing information quality in robotics, as contact events
are usually normalized. Thus, with an increased number of
contacts, the range of the data will be less varied.

Towal and Hartmann [19] investigated bilateral free-
whisking behaviour when a rat’s head and whisker move-
ments occur simultaneously. They found that coupling exists
between the head and whisker movements, as the rat compen-
sates its head movements in order to process the information
acquired by the vibrissae. Such coupling was implemented
on the Shrewbot [51], where the movement of the head and
body is coordinated with the whisker motion. They found
that their control strategy promoted complex behaviour pat-
terns such as exploration.

To conclude this design section, Figure 3 collates some of
the designs proposed in literature. Each row focuses on either
individual sensor designs (I1-I3), mounted sensors (M1-M4),
or standardized array morphologies (S1-S2). In the caption,
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information can be found on the main design choices, and the
application for which they were used.

4 APPLICATIONS IN ROBOTICS

4.1 Shape Inference
Shape inference and surface reconstruction for tactile sen-

sors has drawn inspiration from both local and global com-
puter vision algorithms. Local methods rely on shape de-
scriptors/feature learning, and often use ’tactile images’ to
learn object classification. Pezzementi et al [79] presents a
process to learn ’bag-of-features’ models for each object class
by using k-means clustering of data. Descriptors are extracted
through methods such as the Scale Invariant Feature Trans-
form (SIFT) [80] and MR-8 [81]. Luo et al. [82] proposed
a tactile-SIFT algorithm in which local observations are used
to perform global shape recognition. Global methods, such as
point cloud methods [83], Gaussian process implicit surfaces
(GPIS) [84] and Bayesian inference algorithms [85] aim to re-
construct entire object surfaces based on sparse data through
probabilistic methods [86]. Recently, GPIS has been imple-
mented by Suresh et al. [87] for tactile shape recognition and
localization through planar pushing.

Early research by Russel [32] and Wilson and Chen [41]
into surface reconstruction using a whisker-inspired sensor
considered only contact at the tip of the whisker. 2D sur-
face profiles were reconstructed from the known location of
the mobile platform and the known angular deflection at the
whisker base. By applying translations and rotations to these
measurements, the location of the contact point with respect
to the robot platform is known. Preliminary shape inference
could then be achieved by plotting the contact localization
points on a grid for a single whisker with multiple probing
events. This method was able to track surface contours ad-
equately for both concave and convex shapes. However, en-
suring only object contact at the tip is tedious, and increases
sparsity of data. Shape inference through tactile perception
thus presents a dual challenge. The central aspect of this
challenge revolves around the precise localization of contact
forces along the whisker shaft. This critical step precedes the
actual process of shape inference. Consequently, a significant
portion of research within this domain is dedicated to address-
ing and refining the contact force localization problem.

Rodents possess both slowly adapting and rapidly adapt-
ing mechanoreceptors located around the whisker shaft
within the follicle. Physiological evidence indicates that these
receptors play a role in encoding signals related to deflection
amplitude and velocity at the ganglion cell level [88, 89]. As
such, this phenomenon is often modelled by using elastica
theory [90], which relates the curvature of a deformable beam
to the moment at its base [91].

The slope of a whisker-sensor resulting from the applica-
tion of torque (τ ) during a contact event can be determined us-
ing the Bernoulli-Euler equation, given by Equation 1. Where
E and I are the Young’s modulus and area moment of inertia

Figure 3 Collection of designs found in literature. Row
I: individual whisker designs, Row M: whiskers mounted
on a platform, Row S: standardized designs. —I1: non-
actuated, tapered resin whisker shaft with MEMS barometer
transducer designed for fluid flow, pre-contact sensing [33].
—I2: schematic of non-actuated nitinol whisker shaft with
hall effect transducer designed for probabilistic shape infer-
ence [47]. —I3: actuated, tapered nanocure25 whisker shaft
with hall effect transducer designed for simultaneous local-
isation and mapping (SLAM) [73]. —M1: non-actuated,
nylon whisker shaft with strain gauge transducer mounted
on a mobile rodent-inspired robot used for wall following,
texture discrimination, and shape inference [38]. —M2:
non-actuated, polyester whisker shaft with camera transducer
mounted on an aerial platform used for obstacle avoidance
[28]. —M3: schematic of non-actuated piano wire (front)
and steel (side) whisker shafts with binary and potentiome-
ter transducers respectively, mounted on a mobile robot used
for obstacle avoidance and wall following [31]. —M4: non-
actuated, nitinol whisker shaft covered with plastic straw with
strain gauge transducer mounted on an test set-up for tomo-
graphic imaging of the air-flow [44]. —S1: standardised de-
sign ”Shrewbot” using sensor described in I3 on mobile robot
platform for tactile SLAM. Shrewbot consists of a Robotino
[77] ”body”, an Elumotion [78] 3 DoF ‘neck’ and a cus-
tom built end-effector ‘head’ [51]. —S2: standardised de-
sign ”BellaBot”. Actuated, tapered nanocure25 whisker shaft
with hall effect transducer. BellaBot consists of a custom
built ”head” that holds an array of 20 whiskers on a 5DoF
industrial manipulator used for tactile sensory map calibra-
tion. [74]
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of the whisker shaft respectively, x is the position along the
whisker shaft, xc is the distance of the contact point from the
base of the whisker and tan θ is the slope at any position x.

EI tan θ =
τ

2d
x2 − τx+

1

3
τxc (1)

Depending on how the system is configured, includ-
ing variations in the positioning of the base relative to the
whisker, the choice of transducer, and any additional assump-
tions, it is possible to develop the model [48]. This model
can then be used to assess the impact of an object’s contour
on the deflection signal patterns. After its first implemen-
tations [55, 58], variations of this approach have been stud-
ied extensively. Linearized solutions have been proposed in
conjunction with sensor designs that allow simplifications of
the ODE [36, 39, 91], but attempts have also been made to
solve the ODE’s numerically [57] and analytically [38, 92].
However, the elastica model relies on an assumption of a sin-
gle point contact (SPC). For surfaces characterized by low
curvature or minimal friction, this assumption becomes un-
tenable as the shaft undergoes transverse sliding and contact
force increases [91]. Illustrated in Figure 4B, this is known
as lateral slip and poses a challenge in 3D contact point lo-
calization. Active [91] and passive [93] solutions exist to try
and correct for lateral slip. The passive solution proposed by
Solomon and Hartmann [93] includes estimating the friction
coefficient between the whisker and the surface. By analysing
the degradation in accuracy of the model under different fric-
tion conditions and object lateral curvatures, specific move-
ment strategies can be selected to alleviate these inaccura-
cies. An extension of this research introduced the whisker-
sweeping technique [39]. This novel sweeping method allows
for continued estimation of contact point - all the while ac-
counting for lateral slip. As such, we move away from prob-
ing/tapping, and are able to extract a continuous segment of
an object’s profile with a single whisk using torque informa-
tion with sub-millimeter accuracy. Will et al. [92] expanded
upon this method by including a single equation for a decision
of the contact behaviour of the shaft with the object: contact
at the tip, or contact between base and tip.

Limitations of using a physical model such as the elas-
tica model for contact localization are that restrictions are
imposed on the design and application. The method favours
straight, cylindrical, uniform beams - imposing restrictions
on sensor design. Many of the elastica solutions require bulky
sensors, such as load cells, for accurate shape inference. This
makes scalability and integration into a platform difficult. In
addition, most literature assumes a convex-shaped environ-
ment with low curvature to ensure that the SPC condition is
met. For concave objects, the SPC condition cannot always
be met (Figure 4A). Recently, Merker et al. [59] proposed a
method in which two-point-contacts (TPC) can be identified
by analysing the kinks in support reactions produced at the
base of the sensor.

With the limitations of a physical model in mind, Lin et
al. [47] demonstrate the ability of three different Bayesian fil-
tering algorithms (Extended Kalman Filter (EKF), Unscented
Kalman Filet (UKF), and Particle Filter) [94] to outperform
the novel sweeping algorithm [39] by achieving tracking
within sub-millimeter accuracy (schematic of whisker design
shown in Figure 3-I2). This accuracy is achieved without ac-
tuation (which previously outlined methods [95] require for
accurate contact localization). Through use of a calibration
set-up, the issue of non-unique bending moments (Figure 4C)
to contact localization is mitigated by creating a data-driven
sensor model (a mapping of contact point locations to pre-
dicted moment measurements). Along with a process model,
the sensor model is fed to a Bayesian filter to find the proba-
bility distribution of the contact location. Xiao et al. [34] ob-
tain the contact sequence through Hopf oscillator implemen-
tation and directly connect the contact points to extract ob-
ject contours. In addition, a classification algorithm is imple-
mented. The classification algorithm [1, 96] transforms con-
tour points and probing points into higher dimensions using a
multilayer perceptron (MLP) with ReLU activation function.
To our knowledge, this is one of the only probabilistic object
classification algorithms implemented for vibrissae-inspired
sensors. Geometric object classification has been done pre-
viously by Russel [97], by fitting geometric primitives, and
Bayesian filtering has been previously introduced in simula-
tion [98]. As such, there remains a notable research gap in the
broader exploration and development of probabilistic/data-
driven techniques for addressing challenges in shape infer-
ence and contact point localization.

4.2 Navigation

Tactile sensing for navigation, as opposed to shape infer-
ence, is a less explored area due to the short range nature
of the sensor and limited informative value for each con-
tact (Figure 4D). Due to this, a large variation exists be-
tween the different approaches discussed in literature. How-
ever, research in this field has demonstrated the potential of
whisker-inspired sensors for obstacle avoidance [31, 61, 64],
wall/contour following [29, 31, 38], scene exploration [34]
and SLAM [49]. Despite their short range, these sensors can
repeatedly interact with their environment to make inferences
whenever necessary, without damaging or changing the state
of the environment. This would be more difficult with, for
example, planar pushing [87].

Wall following and obstacle avoidance (often tackled
hand-in-hand) are reactive navigational behaviours that are
achievable using whisker-inspired sensors. Although a seem-
ingly simple task, wall following behaviour can provide a ba-
sis for short-range SLAM solutions [99]. One of the sim-
plest wall following methods would be to mount at least two
neighbouring whiskers onto a platform and adjust the heading
of the platform based on the difference in readings between
the whiskers [31]. The schematic of the set-up required in
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shown in Figure 3-M3. This navigation is purely reactive,
and thus does not create an internal map, does not have mem-
ory, and does not learn. This initial reactive behaviour can
thus be extended to purposeful navigation. Purposeful navi-
gation includes the use of a Purposive Map (PM) [100]. The
PM is a graph in which the nodes are representative of spe-
cific points in the environment that are to be sensed by the
robot. Links in the graphs serve as indications of the robot
behaviour that should be triggered in order to move to the
following node. As such, the mobile robot is able to follow a
predetermined path, while purposefully avoiding detected ob-
stacles by selecting the desired behaviour from the PM. This
navigation system is able to learn the environment by adding
new nodes and links to the PM as additional landmarks are
detected during its locomotion, and is reminiscent of current
Simultaneous Localisation and Mapping (SLAM) solutions.
Such ’desired behaviour’ for obstacle avoidance was also im-
plemented by Fend et al. [65] through Distributed Adaptive
Control (DAC) [101, 102] by learning a set of hardwired re-
flexes based on readings from an infrared sensor. By repeated
correlated activity in whisker sensors and infrared sensors,
connections are formed such that the avoidance reflex can be
triggered solely by activity in the whisker sensor.

More recently, the algorithms have moved towards active
navigation through exploratory policy design [34] and SLAM
[49]. Tactile exploration plays an essential role in accom-
plishing various objectives within robotics and machine per-
ception, encompassing tasks like object identification, scene
reconstruction, and the formulation of manipulation strate-
gies [34]. Designing an exploration policy for a whisker-
based agent is a challenge that hinges on the efficient sam-
pling of information to gather sufficient data for subsequent
control actions. Recently, Xiao et al. [34] implemented a hy-
brid exploration policy that switches between two states de-
fined in a finite state machine (FSM): Object Searching (OS)
and Contour Tracing (CT). The OS policy is an informative
path planning (IPP) method [103, 104], based on an infor-
mation acquisition function and an occupancy map. The in-
formation acquisition function is estimated through a Gaus-
sian process with an RBF kernel. Within the search space,
a rapidly-exploring random tree is expanded, and a heuristic
sampling process guides the expansion towards regions with
a high acquisition function value. From the fully expanded
tree, the path that maximises the acquisition function is cho-
sen. The policy for the CT state is a Hopf oscillator that is
used to generate a path along the object contour. The FSM,
inspired by the procedures that characterizes human explo-
ration [105], switches from OS to CT when a contact event
occurs. Exploration efficiency metrics showed that the pol-
icy performed well, and the agent was even able to choose
and propagate through paths that were were planned through
small areas of the environment. The main limitation of this
system is the loss of accuracy in cluttered environments, as
mapped objects begin to merge into each other. The mounted

whisker sensor is shown in Figure 3-M1.
The primary goal of SLAM is to provide the ability for

a robot to operate in an environment that is unknown, un-
structured, and possibly dynamic, by continuously updating
a map of the environment and its own location within it
[106, 107]. Implementation of SLAM algorithms for tactile
sensors has been done successfully with GPIS and pose esti-
mation on a factor graph [87], and using particle filters [108].
Other SLAM solutions formulated for short-range sensors
have been proposed in simulation [98, 99] are often designed
to make probabilistic inferences about the environment based
on hierarchical model priors, for example, identifying a table
by sensing one leg. Implemented SLAM solutions for vib-
rissal sensors range from 2D [50, 51], to 3D [52], to 6D [49]
solutions.

The 2D solutions both use standard particle filters. In
[50], a simple FSM is implemented to determine control ac-
tions based on contact/no-contact with a whisker. Whereas
in [51] the whisker sensory information is transformed into
a 3D map that represents the volume surrounding the robot’s
head, allowing the robot to locate the most salient point in
the environment. The robot’s head and body are moved to
direct its nose towards this point, while the whiskers are posi-
tioned mid-protraction to enhance exploration, wall following
and novelty seeking behaviors [109]. The mapping aspect of
tactile SLAM may be viewed as a lower resolution shape-
inference problem as discussed in Subsection 4.1. Simple
mapping may be achieved by fusing a small, local Gaussian
distribution into the grid map at the contact location [50, 51].
To extend this, the assumption can be made that all objects
in an environment are primarily made of long, straight edges.
Thus, a blur of long, oriented edges are placed at the loca-
tion of contact [50] based on the difference in contact angle
between two whiskers. Data driven approaches may also be
considered in which geometric templates are trained based
on data collected by driving the robot into a wall at different
angles multiple times [50, 110]. As expected, this template-
based mapping achieved better contour predictions than the
previous two methods [50]. However, it can only discrimi-
nate between trained contact points. Training the classifier on
every possible contact would be impractical, reinforcing the
point made in Subsection 4.1 that there may lie solutions in
probabilistic methods [111, 112].

The 3D and 6D solutions are implementations of the ex-
isting vision-based SLAM algorithm: RatSLAM [113], for
tactile data. In [52], tactile data is fed to RatSLAM in the
form of tactile images. Tactile information is represented as
a single point contact at the tip of the whisker. Each whisker
is represented as a 3x6 pixel image. The intensity of each
pixel is proportional to the estimated vertical height of an en-
countered object. This system was able to demonstrate loop
closure [51]. The grid-based mapping approaches as pro-
posed for the 2D solutions are limited in terms of the size
and resolution of the map that can be created and updated
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with constrained computing resources. The RatSLAM algo-
rithm creates a topological map by associating local view and
odometry, which are projected as nodes and edges into a 2D
plane called the experience map. However, due to the lim-
ited sensory information available from the whisker-array and
ambiguity in local views, there is a high potential for incor-
rect re-localization with RatSLAM [49]. Vibrissal sensing
for SLAM presents an additional challenge due to the corre-
spondence problem: in order to reduce uncertainties in pose
estimation, the objects encountered during exploration must
be uniquely discernible as known landmarks [49] (illustrated
in Figure 4E). To address this issue, the RatSLAM algorithm
has been extended to include explicit landmarks in the ex-
perience map [49]. This is achieved by introducing a mode
switch triggered by the robot’s interaction with the environ-
ment. When the robot encounters an object, the algorithm
switches to object exploration mode, which initializes a new
6D map called an object exploration map. Similar to [34], this
is a more elaborate shape inference algorithm [83], integrated
into a global navigation algorithm in order to accomplish bet-
ter mapping, localization and exploration capabilities. The
whisker design used for this application can be seen in Figure
3-I3.

4.3 Texture Discrimination

Studies of texture discrimination in rats show the impor-
tance of so called ’stick-slip’ events, which describes the con-
tinuous transition between static and dynamic contact with a
surface. The application of texture discrimination in robotics
is varied. For example, it may be beneficial for a house-
hold robot (such as a Roomba [115]) to be able to discrim-
inate between textures when cleaning. Terrain exploration
(and mapping) may be improved [36] with added texture in-
formation. Or, it may aid in estimating the error in odom-
etry data on a mobile robot, such that localization can be
improved [63]. Texture discrimination and classification has
been done through temporal [54] and frequency [22] meth-
ods. Two main approaches exist: the first applies a Fourier
Transform, the texture of the surface can be inferred from the
Power Spectral Density (PSD) of the tactile data [22]. Al-
ternatively, a feature based method [116] can be adopted in
which a model is trained to differentiate between (and clas-
sify) textures based on a set of chosen features.

Qualitative texture discrimination can be achieved by
transferring the whisker sensor data into the frequency do-
main [22]. From this, a human observer can distinguish the
different spectra and infer which textures correspond to the
spectra. Similarly, the power spectra of individual sweeps
were computed, smoothed, and combined together to gener-
ate an average-power spectrum by Fend et al [60]. They con-
cluded that texture identification could be improved by using
all whiskers at the same time and by sweeping the whiskers
across a surface multiple times. Schultz et al. Schultz et
al. [36] presented spectra for five surfaces of three different

types, through which smooth and rough textures were dis-
tinguishable by eye. However, no formal classification of
textures was implemented. As illustrated in Figure 4F, the
classification of textures through a frequency analysis poses
a challenge. As accurate texture discrimination relies on the
sensitivity of the whisker, we may also expect a lower SNR -
making it challenging to achieve classification. Furthermore,
the perceived signal is dependent on the characteristics of the
whisker, which is difficult to encode into such a frequency
analysis.

In contrast, Seth et al [29] presented a robot that used
whisker-based sensing to explore a walled environment and
learn to avoid textures associated with a negative reward.
They analyzed the data in the time domain, with 20 lagged
curvature inputs fed into a biologically inspired neural net-
work classifier. Kim and Möller [46] also performed simi-
lar experiments using a non-actuated steel whisker attached
to a fixed base contacting a rotating, textured drum. A
neural network was used to classify the low-band spectra
and achieved a success rate of 85% accurate classification
over seven textures. However, classification was better with
shorter whiskers and the classifier failed when the whisker
base was allowed to move. Classification was also attempted
by Hipp et al. [45], actuated whiskers were used to differenti-
ate between eight different grades of sandpaper with a success
rate of 39% using multidimensional Gaussian density estima-
tors.

Quantitative classification of textures of an unconstrained
base was introduced by Fox et al. [37] by providing useful
statistics of data or ‘features’ as inputs to a standard clas-
sifier (Gaussian [117]). Several higher-level candidate fea-
tures within and across three different experimental settings
(the position and movement of the robot platform relative to
the investigated surface) were tested. Frequency-based clas-
sifiers were able to perform well within a setting, but did not
generalize particularly well across settings. The two best per-
forming classifiers were based on the primary afferent model
(PA) [70, 118] and on the onset feature. The onset feature is
recognizable in rough surfaces as an increase in energy in the
2-3 kHz band, and acoustically by a pronounced ’click’ sound
when the whisker interacts with the surface [37]. The use of
features was also shown by Giguere et al. [35], where 8 fea-
tures were extracted from the sensor’s (accelerometer) mea-
surements in both the time and frequency domains. The neu-
ral network classifier, trained on a data-set of over ten differ-
ent indoor and outdoor surfaces, was sensitive enough to dis-
criminate between tiled and untiled linoleum. More recently,
a state vector machine (SVM) model was implemented for
texture discrimination and classification [38]. Four features
of the signal were selected to be used for classification of four
textures; the signal energy (ENG), spectral entropy (SEN),
spectral centroid (SCE), and average interval of peaks (AIP).
During classification, each of the four support vector ma-
trices are convolved with the input vector. The matrix that
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Figure 4 Challenges per robotic application. Colours correspond to applications as indicated in Figure 2. —A: Multi Point
Contact. Solutions addressed in [59]. —B: Lateral Slip. Solutions addressed in [47, 91, 93]. —C: Non-unique mapping
of contact location and bending moment. Solutions addressed in [47, 95]. —D: Short-range sensor. Solutions addressed in
[34, 51, 98, 99]. —E: The correspondence problem. Solutions addressed in [49]. —F: Texture classification problem. Solutions
addressed in [35, 37, 38]. —G: Non-linear/unknown shaft dynamics in turbulent flow conditions. Solutions addessed in [114].

results in highest convolution score indicates the texture. If
all four scores are below 0.3, the model will output ”none”.
The accuracy of this classifier was 88.3%, and has an ad-
vantage over neural network and Gaussian classifiers due to
the lower amount of training data needed and computational
time respectively. It must be noted, however, that the model
was made to classify four varied textures (writing paper, flan-
nelette, tissue paper, sandpaper). As such, no conclusions can
be drawn on how successful this SVM model would work on,
for example, different grades of sandpaper (as was attempted
in [45]).

4.4 Fluid Profile Analysis
To our knowledge, fluid flow analysis is the most recent

addition to vibrissal sensing applications. As we know, when
an external load is applied to a whisker, the forces and mo-
ments are transmitted through the whisker shaft and result
in the deformation of the ”follicle” (measured by a trans-
ducer). However, the external load is not limited to contact-
only situations, but can also exist from fluid flow interactions
around the whisker. With the first papers being published
only around 2014, the amount of research done is limited.
However, efforts have already been made to reconstruct to-
mographic images [44], map gas fields [69], investigate char-
acteristic mechanical responses to airflow stimuli [114], and
observe differences between airflow stimuli and inertial stim-
uli due to whisking [26]. While some inspiration is drawn
from mammalian vibrissae such as rats, research also stems
from marine mammals such as sea lions [27], whiskers lo-

cated on bat wings [119], and on hair-like airflow sensors as
found on arthropods [120–122]. As such, there is a strong
foundation in nature to pursue whisker-inspired sensors as
airflow sensors. From an engineering standpoint, the sensi-
tivity can be easily controlled by choosing suitable materials,
shapes, and transducers (see Table 1). This way, multi-modal
sensors may be achieved that are suitable for both contact/no-
contact detection. Applications range from collecting rela-
tive velocity information, to gust rejections [33], to obstacle
avoidance. And in accordance with[33, 53], see large benefits
for implementation on drones.

Solomon et al. [42] proposed an array of whisker-like
sensors made of flexible plastic strips that were deflected by
a stream of air flowing towards the center of the array. The
deflection of each whisker provided an estimate of the flow
velocity at a given height, but did not allow for the recon-
struction of a full 2-D cross-sectional image of the fluid-flow
field. Takei et al. [69] developed electronic whiskers based on
highly tunable composite films of carbon nanotubes and sil-
ver nanoparticles patterned on high-aspect-ratio elastic fibers.
The whiskers exhibited excellent bendability and high strain
sensitivity, with a pressure sensitivity of up to approximately
8%/Pa. The authors demonstrated the ability to map 2D and
3D gas fields using these electronic whiskers. Tuna et al.
[44] proposed a novel tactile fluid flow imaging technique
that relates rat’s whisker movements to tomographic imag-
ing to extract fluid-flow characteristics with a robotic whisker
array (set-up shown in Figure 3-M4). The experimental re-

10



sults demonstrated that the approach offers a fundamentally
novel sensor technology for flow-field measurements. How-
ever, relative errors between 19-45% were reached when test-
ing three different steady flow patterns.

Evidently, one of the challenges of using vibrissal sensors
for fluid profile sensing is that the dynamics of the whisker
must be known in order to be able to make inferences of the
fluid field with which the system is interacting. This chal-
lenge is illustrated in Figure 4G. Yu et al. [114] investigated
the mechanical response of isolated rat macrovibrissae to air-
flow. The following main conclusions are drawn:

1. The whisker bends primarily in the direction of airflow
and vibrates around a new average position at frequen-
cies related to its resonant modes

2. The bending direction is not affected by airflow speed
or by geometric properties of the whisker

3. The bending magnitude increases strongly with airflow
speed and with the ratio of the whisker’s arc length to
base diameter

4. To a much smaller degree, the bending magnitude also
varies with the orientation of the whisker’s intrinsic
curvature relative to the direction of airflow.

Yang et al. [67] experimented with whisker’s response to
airspeed, showing that voltage readings appeared to be related
to the adjustments in airspeed (consistent with the third con-
clusion by Yu et al. [114]). Characterisation of the whisker
dynamics can also be attempted by means of vision-based
methods (see Table 1). Cameras have been used to capture
whisker dynamics under Von-Karman vortices to improve
characterisation [27]. Muthuramalingam et al. provided a
theoretical and experimental insight into the mechanism be-
hind the detection of the Strouhal frequency of flow-induced
oscillations of the whiskers. The authors proposed that the
frequency response of the whiskers may be tunable by chang-
ing the material and geometric properties of the whiskers.

More recently, Deer and Pounds [33] use airflow sens-
ing as a mechanism to detect the “bow-wave” of air pushed
ahead of an approaching object in addition to fluid velocity
sensing (shown in Figure 3-I1). The sensors are able to mea-
sure contact forces as low as 3.33 µN, and fluid velocities as
high as 7.5 m/s. As the sensor is highly sensitive, it enables
the detection of an approaching object’s advancing pressure
wave and can thus aid in anticipating impending contacts. A
warning of 0.037 seconds can be given for a hand moving
at 0.53 m/s when it is 20 mm away and detected by the sys-
tem. To our knowledge, this is the first insight into using
the whiskers as airflow sensors to aid in decision making. It
does beg the question of how robust this application may be
to false positives - as a suitable pressure threshold needs to be
found that eliminates detections due to inertial motion of the
platform. However, this development could make for very

interesting obstacle detection systems. Especially for aerial
robotics, where such ”bow waves” may be more apparent pre-
contact. Most notable is that the same whisker array is used
for both contact and pre-contact modalities, with good results.
While multi-modal biomimetic vibrissal sensors have started
arising, the ability to distinguish the type of modality during
signal processing poses a challenge.

One of the advantages of whisker-inspired sensors is their
ability to detect fluid flows with high sensitivity and resolu-
tion, even in low-speed and turbulent environments. Addi-
tionally, by using insights from hair-like sensors on arthro-
pods, miniaturisation is achievable, allowing for the creation
of small and precise sensors. Dagamseh et al. [120] devel-
oped this concept by fabricating an artificial hair flow-sensor
using MEMS surface micro-machined technology. The sen-
sor consists of a suspended silicon nitride membrane with
a 1 mm long SU-8 hair on top. By extending the sen-
sor to an array formation [121] with separate electrodes,
the measurement of signals from different hairs individually
and simultaneously are taken. A Frequency Division Mul-
tiplexing (FDM) technique was used as an array-addressing
scheme to reduce the complexity of interfacing hair-sensor ar-
rays. Furthermore, an additional advantage of using whisker-
inspired sensors as airflow sensors is that directionality can
be achieved if the transducers are implemented appropriately.

Greater sensitivity also gives way to lower signal to noise
ratios (SNR). Most studies thus far consider airflow experi-
ments in very controlled environments. As such, generalized
conclusions, other than those presented in [114], can not yet
be drawn across all environments. Whisker dynamics in tur-
bulent environments may be difficult to characterise, meaning
that effective signal processing can become challenging (Fig-
ure 4G). A notable trend that is observable in [42, 44, 53]
is the modification of the whisker sensors with flatter, large
pieces of plastic such that the surface area normal to the flow
is increased. This modification also aids in increasing SNR.

5 CHALLENGES AND OPPORTUNITIES

Most research thus far focuses either on experimentation
with isolated whisker-inspired sensors, or mounts the sensors
on a mobile platform. Very little work has been done thus
far on underwater or aerial applications. Especially under-
water, evidence suggests that harbour seals are able to dis-
criminate object shape and location based on the produced
wakes [9]. This presents intriguing opportunities for addi-
tional sensory capacity for autonomous underwater vehicles
(AUV). For aerial applications, opportunities exist for search
and rescue missions and 3D mapping of locations such as
caves or other hard-to-reach environments. Although drones
add complexity due to the added degrees of freedom, the easy
maneuverability may be beneficial for passive whisking pur-
poses. As such, sensor complexity may be reduced.

Vibrissae found in nature are multi-modal, meaning they
are able to perform all four of the above mentioned tasks si-
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multaneously. Next to the challenges outlined per applica-
tion (illustrated in Figure 4), the most over-arching problem
is that we are not yet able to achieve the same modality that
is found in nature. Recently, some multi-modal sensors have
been developed [33, 34]. However, the application is known
during the performed experiments. As such, it is still un-
clear how one could clearly distinguish which whisker mo-
tions/behaviours belong to which stimuli [26]. This is espe-
cially the case when considering the combinations of whisk-
ing, airflow and contact signals. Kent et al. [26] performed
experiments using a vision-based set-up to try and classify
stimuli by the associated signals. Whiskers were subjected
to high, medium, and low airflow speeds. Deliberately, no
attempt was made to ensure laminar airflow such that the air-
flow was more comparable to the natural environment. The
inertial effects introduced by whisking [123, 124] can be dis-
tinguished from the effects of airflow by their frequency con-
tent. The following main conclusions are drawn:

1. Non-contact mechanical stimuli like airflow and iner-
tial forces tend to impact all whiskers in an array simi-
larly, whereas contact stimuli can lead to more selective
or localized responses.

2. Compared to the higher frequency oscillations that ac-
company airflow, inertial motion leads to relatively
smoother and lower frequency translations of the
whisker.

While these conclusions provide valuable insights into
dynamic behaviour of whisker arrays; a standardized whisker
shaft design is currently lacking, making characterisation of
whisker behaviour difficult. Understanding and predicting
sensor response to stimuli is imperative to advance signal pro-
cessing capability across all modalities.

In addition, scalability remains a challenge. As previ-
ously discussed, arrays are required to aid in data acquisi-
tion. If multi-modality is to be achieved, each whisker needs
to have an appropriate transduction mechanism to account for
all stimuli. In our opinion, the most promising transducer cur-
rently is the MEMS barometer; lightweight, accurate, and has
already demonstrated multi-modal applications [33]. How-
ever, achieving similar modalities and accuracy to biologi-
cal whiskers would require a significant increase in computa-
tional and hardware complexity [26].

From these challenges, one of the greatest opportunities
that we identify is to use probabilistic and data-driven meth-
ods to aid in characterising the whisker sensor, and in the
tasks to be performed. A great example of where this was
successful was in [47], where Bayesian filtering and a data-
driven calibration set-up was used to achieve high-accuracy
contact localization along the whisker in the presence of
slip. Compared to image-based sensors, for example, there
is much more freedom to place the sensor on a platform.
And due to the light-weight structure, ease of manufacturing,

and low RAM/CPU requirements for the additional data, not
many hurdles are faced when we want to extend the sensory
capacity with these sensors. As such, we could have access
to data in locations in which we would otherwise not easily
be able to place other sensors. By exploiting this opportunity,
and by applying more probabilistic and data driven methods,
we believe there is potential to bring this novel sensing tech-
nology to higher accuracy results and increased modality.

6 CONCLUSION

This literature review presented past and current work in
the domain of vibrissal sensing for robotic applications. Four
general applications/taxonomies were identified: shape infer-
ence, navigation, texture discrimination and fluid flow. Phys-
ical design choices were discussed, and the implemented al-
gorithms in literature were outlined across all four applica-
tions. It has been shown that, regardless of the challenges
faced, vibrissal sensing proves to be a promising tactile sens-
ing method to improve the sensory capacity of robots. As the
rodent’s vibrissal system remains a common model for inves-
tigating the mechanisms of sensorimotor integration and ac-
tive sensing [4, 5], we believe that there exists the unique op-
portunity to continuously improve upon robotic sensing from
both the physical sensor design, as well as the signal process-
ing methods congruently. By closely aligning the biological
and robotic modalities, multi-modal sensing for robotics us-
ing whisker-inspired sensors may allow for a wide range of
sensing capabilities that have not yet been realized by tradi-
tional sensors.

7 FURTHER RESEARCH

The challenges and opportunities discussed in Section 5
highlight a clear research gap in the area of whisker-based
tactile navigation for aerial robotics. As such, the follow-
up research to this literature review will be a preliminary
whisker-based tactile navigation solution for drones. The re-
search will use a SpeedyBee frame [125] with a PixRacer
R15 autopilot [126]. The MAV will be equipped with 16
whisker-inspired sensors. Each sensor comprises a 200mm
nitinol wire (diameter: 0.4 mm) attached to a follicle structure
made up of three MEMS barometers and an integrated micro-
controller PCB. The follicle is attached to the whisker shaft
by means of a UV resin, creating a so called ”follicle struc-
ture sensing unit”. As a first step, these 16 modular whisker-
inspired sensors will be mounted onto the SpeedyBee frame
to perform contour following and obstacle avoidance tasks.
We believe that by addressing contour following as the first
navigational task, we also address challenges associated with
shape inference (and if time permits, texture discrimination).
Furthermore, as the sensors are to be mounted onto an aerial
platform, we expect to encounter more challenges stemming
from inertial movements and vibrations when compared to a
mobile platform. As such, we believe this research to provide
a foundation for future whisker-based tactile SLAM solutions
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for aerial platforms. The following main research question
will be addressed:

To what extent can a drone equipped with our 16 modular
whisker-inspired sensors achieve accurate contour follow-
ing, measured by its ability to maintain a desired distance
from contours of varying curvature?

In answering this research question, the following sub-
questions will be extensively explored:

A Metric Definition:

i How can accuracy in contour following be pre-
cisely defined in the context of maintaining a de-
sired distance from a contour?

B Methodology:

i How does the drone’s performance vary when fol-
lowing contours with different curvatures?

ii What are the key indicators of successful contour
following, including wall contact identification,
orientation inference, sustained contact, and con-
sistent distance maintenance?

C Literature Comparison:

i How does the performance of the whisker-
inspired sensor-equipped drone compare to the
simple implementation by Jung & Zelinsky
(1996) [31]?

ii How does the performance of our suggested
drone solution compare to the complex contour-
following solutions presented by Zhang et al.
(2022) [38] and Xiao et al. (2022) [34], con-
sidering factors such as accuracy, robustness, and
adaptability to varying environmental conditions?

D Challenges and Solutions:

i What are the primary challenges associated with
mounting whisker-inspired sensors onto an MAV,
considering factors such as vibrations, inertial ef-
fects, and interaction with propeller wake?

ii How can these challenges be addressed to ensure
accurate and reliable contour following in a real-
world environment?

E Applications:

i What specific advantages does accurate contour
following by the drone offer for search and rescue
missions in environments with limited visibility,
such as dark or smoke-filled areas?

ii How could the drone’s contour-following capa-
bilities be applied to navigate and explore con-
fined spaces, such as caves, that are challenging
for human access?

By addressing these sub-questions, our research will compre-
hensively investigate the feasibility, challenges, and poten-
tial applications of using whisker-inspired sensors for contour
following by drones.
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A
System Architecture

Figure A.1: System architecture
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B
PX4 Position Controller

As discussed in the paper, the research involved feeding trajectory set-points to the PX4 controller. During testing,
it became evident that the position control was unable to achieve precise tracking. The primary issues were that
the controller failed to respond effectively to sudden changes in set-points and showed inadequate response when
set-points were too small. This behavior is particularly problematic when operating in close proximity to obstacles.
After consulting forums, it was discovered that the best tracking others had managed was within a 0.05m margin
of the set-point. Although completely resolving the issue was unlikely, several attempts were made to optimize the
controller’s performance. Below are the approaches that were tested:

1. PID Tuning: Efforts were made to tune the position (P) and velocity (PID) controllers. Increasing the P
gains slightly improved response and reduced significant errors, particularly when holding position. However,
these adjustments did not enhance the contour following performancethe PX4 controller still failed to respond
adequately to sudden or large inputs. Modifying the I gain had no noticeable effect, and altering the D gain led
to instability.

2. Feed-Forward Velocity: To specifically improve wall-following performance, feed-forward velocity set-points
were calculated alongside the trajectory set-points and fed into the PX4 controller. This approach aimed to
circumvent the position controller’s sluggish response by directly providing a feed-forward velocity term to the
velocity controller. Although this method showed promise, time constraints prevented optimization. Issues
arose, such as increased velocity set-points requiring greater acceleration, leading to more aggressive collisions
with the wall. Additionally, sudden accelerations distorted the whisker signals.

3. EMA Filtering: The final approach involved applying an Exponential Moving Average (EMA) filter. Rather
than attempting to force the controller to work with the given inputs, the inputs were adjusted to better suit the
controller’s capabilities. The filter was used to smooth the controller’s inputs; however, over-smoothing could
slow the system’s response, increasing the risk of collisions. After testing various window sizes, a window of
N=20 was selected as the optimal compromise.
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