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Preface

Before you lies the thesis work ”Video captioning for the visually impaired”. The goal of this thesis is to give
an attempt to develop a video caption model, helping visually impaired people recognise their surroundings
better. There are many people with visual impairment that meet difficulties in daily life in this world. The
rapid developing deep learning technology is promising to help them. That is the motivation of this thesis.
This thesis project was in collaboration with the IBM CAS Benelux and performed in Multimedia Comput-
ing Group at TU Delft for Koninkijke Visio, an institution that supports people with visual challenge and
researches on what can help them.

This thesis is the final achievement of my study at Delft University of Technology. I believe I benefit from
this journey even from a life-long perspective. In the aspect of academic, it provide an opportunity for me to
dive deeper into the multidisciplinary area concerning nature language processing and computer vision. In
the aspect of personal growth, this journey gives me a chance to develop a better understanding of myself.

I would like to thank Prof. Julian Urbano Merino and my company mentor Benjamin Timmermans firstly.
Ben offered me this thesis project and Julian accepted to be my supervisor. During the whole process, they
gave me not only the excellent supervision and guidance but also great patience and kindness. Furthermore,
I would like to thank Dr. Zhe Li for his generous help and professional feedback. He was always willing to
give useful advices when necessary. Finally, I would like to thank my family and friends for being there for me
throughout this journey, in particular my mother. I couldn’t find the words to thank her enough. Her deep
and quiet love is through everywhere in my life. Without her I would not be who I am today.

Fenglu Xu
Delft, September 2024
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1
Introduction

1.1. Motivation
There are many people with visual impairment in the world. The statistics from the World Health Organi-
sation (WHO) show that globally, more than 2.2 billion people have a vision impairment as of 2022. In the
Netherlands, it was estimated that 311,000 individuals were visually impaired in 2008, comprising 77,000 who
were blind and 234,000 with low vision. If current intervention measures remain unchanged, this number is
projected to rise by 18%, reaching approximately 367,000 by 2020.1

Their life should be seen. Not as the majority of the non-blind community reckon, the blind people or
the visually impaired can lead a normal life in their own way of doing things. Indeed, they meet difficulties
in daily life because of different barriers like inaccessible public infrastructure, unreachable information etc..
Investigating those barriers can help us understand them, and using new technology might be helpful to
eliminate barriers that hinder them from gaining independence.

Research on new technology for the visually impaired and blind people have become an important con-
cern in the research area of assistive technologies. It traditionally focused on mobility, navigation, Internet
of thing(IoT) and object recognition; but more recently on visual question answering (VQA), image/video
caption and social interaction as well.

The rapid development of deep learning technology brings breakthroughs to many technologies that
could be used to enhance the lives of people with visual impairment in the near future. Thanks to the avail-
ability of GPUs and CPU clusters as well as large amounts of training data, recent deep learning facilitated
great success in computer vision (CV) and also gradually led to good performance on natural language pro-
cessing (NLP) tasks like machine translation, etc. Video captioning, such a task that bridges CV and NLP to-
gether, has been revolutionised by deep learning as well, particularly Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs). CNNs excel at analyzing visual imagery, such as object recognition,
while RNNs have great influence over sequence modeling in machine translation and image captioning.

Video captioning is a promising research direction that may help blind and visually impaired people live
much more independently. Video captioning is the process that "translates" a sequence of video frames into
textual descriptions. It can be divided into two parts: understand the video contents visually and describe the
video contents grammatically. In other words, it bridges two branches of AI, CV and NLP. Prevalent research
work emerge, applied with the technology from Sequence-to-sequence model[157] to Transformer[154], in
this field. It is a potential research area that may help visually impaired and blind people get verbal descrip-
tions of their surroundings. While not limited to this, it can have more applications like video surveillance,
human-robot interaction, and even help communication with speech-impaired people by "translating" sign
language.

In the area of video captioning, the research community has integrated deep neural networks in various
forms and has encouraged performance. Compared to template-based methods, deep learning methods
are data-hungry, which allows video captioning to extend from fine-grained to open domain. In addition,
deep learning relieves the burden of manually crafted features and manually designed language templates
by multiple-layer neural network learning. Many deep learning methods are involved in developing video

1https://pubmed.ncbi.nlm.nih.gov/19995201/
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captioning models like attention mechanism[24], deep reinforcement learning[140], generative adversarial
networks[40], transformer[154], and so on.

All of these reasons aforementioned contribute to the motivation of this thesis. By developing a video
caption model, we aim to help visually impaired people recognize their surroundings better. The research
reported in this thesis extends the work of [157]. In this thesis, this model is enhanced to meet the needs of
people with vision challenges. Extensive experiments demonstrate the effectiveness and interpretability of
the model designed. The results are reported in the following chapters.

1.2. Research questions
The main research question of this research thesis is defined as follows:

How to develop a video captioning model for the visually impaired?

This main question can be split into six sub-questions, and these questions are answered in the following
chapters.

1. What techniques can be used to build a video caption model for the visually impaired is investigated.

2. What are the requirements for video captioning special from the visual impaired?

3. How can we improve the performance of the baseline video caption model? (The baseline model is the
S2VT model [157] with an attention layer)

Because of the results found from the user study, more detailed research questions come up. Logically,
these questions should be derived from the survey results presented in Chapter 3. However, to enhance
the clarity of the thesis’s structure, we will address them here in advance.

4. How can we design the video caption model to be more sensitive to actions?

5. How can the video caption model generate a sentence with good readability?

6. How to reduce the latency of the video caption model?

1.3. Thesis contribution
In summary, our contributions are four-fold.

1. Literature review. We present a comprehensive literature review on the video captioning task, with a
particular focus on deep learning methods. Additionally, we summarize assistive solutions aimed at
individuals with visual challenges, particularly those based on smartphone technology.

2. Survey. We conducted a survey of young visually impaired individuals at the Visio organization. For
comparison, we also included senior participants aged over 60 in this survey. Based on the findings
from the survey, we summarized several key insights that can guide and assist others researching the
same topic.

3. Model. We propose a video captioning model tailored for individuals with visual impairments, grounded
in an encoder-decoder framework that includes modifications to the temporal attention mechanism
and specialized features. This model ultimately meets the requirements identified in our user study for
the target user group.

4. Evaluate the model by readability. We employ readability metrics to evaluate the captions generated
by the model. To our knowledge, no other work has utilized readability metrics for model assessment.
This approach offers a novel perspective on evaluating model performance.

1.4. Thesis outline
The thesis is organized as follows.

1. We first proceed to a literature review of the different fields concerned with our research questions
(the contemporary research work of video captioning and assistive technology for the visually impaired
mainly) to answer the first sub-questions (Chapter 2).
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2. Then we tackle the second subquestion (RQ2): As we aim at designing a video caption model for the
visual impaired, we conducted several questionnaires with the visually impaired. Based on the ques-
tionnaires, we formed a list of requirements, and interesting insights are also included in Chapter 3.

3. Afterwards, In Chapter 4, we focus on the model design with respect to research questions 3-5 (which
are directly tailored to the visually impaired people’s needs), from sampling strategy and feature extrac-
tion to encoder-decoder architecture.

4. In the next chapter, we analyse dataset used firstly and then we give details of how we prepare the data
and the procedure we train the models (Chapter 5).

5. Chapter 6 is experiment result and analysis where the details of four ablation study are discussed for
remaining four research subquestions respectively. We compare the performance of our model with
different add-on components like adjusted attention and various pertained feature models. Then, we
present the model performance on different categories of video in order to investigate the effectiveness
of the solution we give to Research Question 3: How can we design the video caption model more sen-
sitive to actions? In the following subsection, we introduce several metrics to measure the readability
of our models. In the last subsection, the latency of the model with different add-on components is
contrasted. Furthermore, Research Question 5: How to reduce the latency of the video caption model?
is addressed.

6. In the next two Chapters, we discuss the limitations and future work first (chapter 6) and then conclude
the overall results with respect to research questions.

7. This thesis was started in 2018 and has been interrupted several times over the years due to personal
health reasons. This year, I was able to continue working on this thesis again. Since a long time has
passed, I have started a new chapter here to fill in the time gap with a summary of the latest research
works. Based on the latest research developments, I will review my original research design as well
as reflect on it. At the same time, I propose, based on the current literature review, how I would have
designed the research and video captioning model.



2
Literature review

In order to solve the first research question, we start with a literature review to investigate the contemporary
state-of-the-art of video captioning and applications for the visually impaired in the related field.
In this literature review, firstly, we give a brief introduction in section 2.1 on video caption as well as an expla-
nation of some terminologies used in the field. Next, we dive into the pool of different video caption methods
from the perspective of template-based generation, seq2seq model, reinforcement learning, and adversarial
learning. In section 2.3, we present relevant video datasets in the area of video understanding and highlight
ones that are significant to the video captioning task. Later, existing evaluation and readability metrics are
reviewed and further discussed in terms of their merits and drawbacks in sections 2.4 and 2.5. In the coming
section 2.6, we show the practical application for the visually impaired in the field of visual understanding. In
the end, we conclude this literature review and reveal some insights into it.

2.1. Introduction
Video captioning is the process of generating a caption for a sequence of video frames. A caption is a textual
description of what happens in the given video. Broadly, video captioning can be split into two main parts:
understanding the visual content and then describing it grammatically. Thus, it bridges computer vision(CV)
and natural language processing(NLP) techniques together. With the advance of computer vision and natural
language processing, image captioning (the process of generating a caption for a single image), as the fusion
of two tasks, emerged first and obtained great success. Further, the fusion is moved to be on video.

Compared to well known image captioning, video captioning is different and even more challenging. Un-
like image, video contains spatial, temporal and even audial information. Accordingly, it is more difficult to
process. Video is a sequence of images. There is a dependency between them that need to be learned to com-
prehend its content. As video has sequential frames, it is easier to detect motion. However, not all objects and
actions in the video are useful for caption generation.

Video captioning can be divided into three groups according to the characteristics of the output.

• video caption often refers to a task that involves automatic sentence generation to describe the main
event/activity that happens in a short video clip. Fig. 2.2 gives an example.

• video paragraph caption refers to a task that generates multiple sentences or a paragraph for a short
video.[177]

• dense video caption compared to the aforementioned two tasks, is a new emerging area. It aims to
detect and describe multiple events in a video based on various timespan. The dataset used for this
task is ActivityNet Captions dataset[62], which is shown in Fig. 2.1.

Although the concept of video captioning still needs to overcome many challenges to get an ultimate form,
It is not hard to imagine its applications in real life, from alleviating social problems to overcoming technical
puzzles:

• Helping Visually Impaired people. People with vision challenge need a navigation system that help
them to live. The very first step of a navigation system is to understand the user’s surroundings, where
video captioning can help. Video captioning model can describe the surroundings in natural language.
What’s more, the generated can be easily turn into audio for the visually Impaired people.

4
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Figure 2.1: ActivityNet Captions dataset[62] for dense video caption
task.

A car drives along a track.

Figure 2.2: MSR Video-to-Text dataset[171] for video caption task.

• Helping people with speech impairment. Video captioning model can make the interaction with the
speech impaired people easier. The model can be designed to understand the sign language(hand
gesture and pose) and then translate it into natural language.

• Human Robot Interaction. It is no wonder that video captioning will pay a key role in human robot
interaction(HRI). The video captioning technique can help the AI agent understand its surroundings
and human instruction and then start a meaningful conversation with human.

• Storage Minimization. Videos consume many space to be stored in the computer, while text files oc-
cupy far less space. Therefore, transforming visual content into text data will save a lot of storage space.

• Video Surveillance. Suspicious activity detection in surveillance videos takes a lot time by naked eye.
With the aid of video captioning, the tedious process can be automated.
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2.2. Video captioning method
The development of video captioning methods is highly correlated to the surge of other fields of computer
science, such as object detection, machine translation, deep learning, etc. In this part, video captioning
methods are categorized and presented based on their backbone technologies individually. In each subsec-
tion, each classical method together with its posterior works is introduced. Furthermore, the advantages and
limitation of these approach are discussed as well.

2.2.1. Template-based captioning
In early stage, researches on video captioning are mostly use language template to generate a sentence for the
input video, hence here we call it template-based captioning. Generally, this method consists of two stages,
content identification and sentence generation.

• Content identification is a stage where things like objects and activities are detected from the visual
content. Thanks to the success of object detection and activity recognition, techniques from these
two areas consecutively contributed to this stage. For instance, to detect an object in the video, HAAR
features[159] or Scale Invariant Feature Transform(SIFT)[92] feature matching is used; to recognize
activity, models like dynamic Bayesian Networks, Hidden Markov Models have been employed.

• Sentence generation is focused on selecting the detected words from the former stage and filling them
into a language template for grammatically correct sentences. The template here refers to a predefined
sentence structure with blanks for certain categories of syntactic components(like grammatical sub-
jects, verbs, objects, etc.). The detected words from the first stage serve as lexicons, and only the most
suitable ones are picked to form the sentence.

The earliest research in this line of work is [61] in 2002, which proposes an activity concept hierarchy
to describe the action of a single person in the video. Given that this work highly relies on the correctness
of activity concept hierarchy and the videos used are in constrained environments, it can barely be used in
different situations. After that, more works appeared in this field, while most of them still tackled videos in
restricted domains and small vocabulary corpora.

In 2013, [63] started to work on open-domain YouTube videos(This dataset consists of 1,967 short YouTube
video clips whose duration is 10 to 25 seconds, and each of them contains a single activity) while the subjects
and objects used are still restricted to 20 entities. Their main contribution lies in using extra text corpora
to help screen SVO tuples (subject-verb-object tuples). Inspired by [63] and [41], [147] utilities, a compara-
tively larger number of entities and activities (45 candidate entities for the grammatical subject, 241 for the
grammatical object, 218 candidate activities for the grammatical verb). Diffident from ancestors, this work
involves a scene detector which can recognise a list of 12 scences/places in the video.1 Besides, the Factor
Graph Model(FGM) is proposed to aid in selecting optimal SVOP tuples (subject-verb-object-place tuples) by
using language statistic from four extra text corpora.

To get rid of template-based engineering methods to generate captions, [130] treats video captioning as
a machine translation problem. Firstly, they learn a CRF model to get an intermediate semantic represen-
tation of the input video. Then the semantic representation is translated to a natural language sentence via
phrase-based statistical machine translation. Consequently, the semantic representation serves as the source
language and the generated sentence as the target language. For training, they explore a parallel corpus of
videos and textual descriptions and evaluate their work on TACoS dataset[123] (which annotates the cooking
activities in the indoor environment and is discussed further in 2.3).

In summary, the use of language templates, although it ensures the grammatical correctness and com-
pleteness of synthesized sentences, leads to poor description in terms of sentence syntax. Besides, this
method, as well as the statistical method, may face a great challenge to scale to open domain videos like
MSR-VTT dataset[171] (which is discussed further in section 2.3) because a simple template is less flexible
and insufficient for large video dataset that contains an unforeseeable number of subjects, objects, activities,
and places. In other words, a manual-designed template is costly and even infeasible in such a case. Addi-
tionally, The separation of two stages ignores the interplay between the visual content and linguistic pattern.
Accordingly, the joint latent space between visual and linguistic representations is not taken into considera-
tion as well.

1mountain, pool, beach, road, kitchen, field, snow, forest, house, stage, track, and sky
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2.2.2. Deep learning methods
Thanks to the availability of GPUs and CPU clusters as well as large amounts of training data, recent deep
learning brings great success to computer vision (CV) and also gradually leads to good performance on nat-
ural language processing (NLP) tasks like machine translation, etc. Video caption, such a task that bridges
CV and NLP together, has been revolutionized by deep learning as well, particularly Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs). CNNs excel at analyzing visual imagery, such as
object recognition, while RNNs have great influence over sequence modeling in machine translation and im-
age captioning. In the area of video captioning, the research community has integrated these deep neural
networks in various forms and has had an encouraging performance.

Compared to template-based methods, deep learning methods are data-hungry, which allows video cap-
tioning to extend from fine-grained to open domain. In addition, deep learning relieves the burden of man-
ually crafted features and manually designed language templates by multiple-layer neural network learning.
In the following sections, the mainstreaming Encoder-Decoder framework of deep learning methods is in-
troduced firstly in section 2.2.2.1 and how other techniques like attention mechanism, deep reinforcement
learning, generative adversarial networks, and transformer improve this framework are demonstrated in sec-
tion 2.2.2.2, 2.2.2.3, 2.2.2.4, and 9.2.2 sequentially.

Encoder-Decoder
Motivated by the work in machine translation and image captioning, some early works treat video captioning
as a machine translation task and propose an Encoder-Decoder structure to solve it. Similar to the template-
based method, this method can be divided into two stages sequentially as well:

• Encoding stage is a stage where the CNN, RNN, LSTM, or any other DNN is employed to encode video
into semantic representation and then feed them to the next stage.

• Decoding stage is also known as text generation, in which stag, the semantic video representation from
the forming stage, is translated to natural language sentences. Different variants of RNNs, such as deep
RNN, bi-directional RNN, LSTM, or GRU, are used for decoding.

[33] presented the LRCN model, the first application that employs deep learning in the video captioning task.
Have seen the overwhelming performance of LSTM shown in the machine translation task, they replaced the
statistical machine translation in [130] (which has been discussed in section 2.2.1) with the same two-layer
LSTM for encoding and decoding. Different from the LRCN model[33], where CRF plays a role in getting
supervised intermediate representation, [156] was proposed in end-to-end fashion by directly appending the
LSTM to a deep CNN. They adopted a pretrained CNN to generate a fixed-length feature vector from the input
video to avoid manual feature selection. To be specific, They implemented a mean pooling of over-extracted
features across all sampled frames and generated a single one-dimensional vector to represent the entire
video. This actually reduces the video captioning task into an image captioning one. Then the feature vector
is fed into a two-layered LSTM as input at every time step, as the result, the caption is generated. Although
mean pooling is a simple and cheap way to represent the video, in later literature [157], it has been pointed
out to collapse the temporal structure of a video.

Later, the combination of CNN and LSTM architecture became the mainstream form for video captioning
tasks. Many works extended it by learning a joint embedding space between video and sentence[108], adding
extra semantic attributes(such objects attributes from frames and actions label from video flow)[127], adding
extra knowledge to decoder[158], etc. Although the Encoder-Decoder framework makes video captioning
in the open domain possible and most later works are based on it, early models either ignore the temporal
structure of video by simply reducing video captioning to image captioning or insufficient utility temporal
information of the video.

Attention Mechanism
Nowadays, Attention Mechanism is one of the most influential concepts in the Deep Learning community.
Inspired by humans that allocate consideration unevenly (focus on things that they are interested in while
ignoring or diminishing the importance of others), Attention Mechanism learns to make choices about which
features they pay attention to. Initially, it was designed for machine translation to adaptively control how
much each hidden unit remembers or forgets while reading/generating a sequences in Seq2Seq Model.[24]
Later, when integrated with neural word embeddings, Attention Mechanism becomes a crucial component
of algorithms like Transformer [154] and BERT [30] that is quite a leap in setting new benchmarks in Natural
Language Processing tasks. In addition, the attention mechanism has been widely used in visual captioning
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Figure 2.3: The illustration of S2VT. [157] Figure 2.4: The illustration of temporal attention. [175]

tasks. The task of image captioning mainly explores spatial attention mechanisms. Take [172] as an example,
they employed visual attention mechanism to automatically focus on regions-of-interest (ROI) in the images
and then generate a word according to it. In contrast, the utility of the attention mechanism in video caption
tasks is comparatively complex since video is a multi-modal carrier.

To exploit the temporal dynamics of the video further, [175] proposes an approach for exploiting both the
local and global temporal structure. In order to capture local motion dynamics, they used a 3D convolutional
neural network(3D CNN) [151]. The 3D CNN is pre-trained on an activity recognition dataset so as to produce
a higher-level representation that is tuned to human actions from short-frame sequences. This is achieved
by first dividing the input video clip into a 3-D spatio-temporal cuboid, and each cuboid is represented by
concatenating the histograms of oriented gradients, oriented flow, and motion boundary. For the global tem-
poral structure, they incorporated the soft attention mechanism with the decoder to learn the long-term
dependencies and ordering of activities. As shown in Fig. 2.4, the soft attention mechanism generates a vec-
tor of attention weights αt

n for all selected frames at each time step t based on the previous hidden state ht−1

from the decoder (which presumably summarizes all the previously generated words) and the corresponding
frame’s temporal feature vector Vn . Instead of a simple averaging strategy used in [33], the dynamic weighted
sum of the temporal feature vectors according to attention weights generated at each time step is fed into
the caption generator (the decoder). The attention mechanism makes the decoder capable of focusing on a
certain subset of frames by increasing the attention weights al pha of the corresponding temporal feature V
and vice versa. In later work for video captioning, adopting temporal attention in the decoder has become
very popular.

Although temporal attention helps to capture the global temporal structure of videos, it does not pay at-
tention to multiple salient objects within a single frame, which may lead to detail missing in captions. In-
spired by the aforementioned work [172], [152] proposes a spatial-temporal attention (STAT) method for
video captioning to handle this issue, which can selectively focus on a certain subset of frames as well as
salient objects in that subset. As illustrated in Fig. 2.5, STAT consists of three layers. Layer 1 is the spatial
attention where different weights are assigned to local features (the semantic embedding of objects detected
by faster-RCNN) for each frame. Layer 2, the temporal attention, works separately on global-motion features
(the concatenation of frame-level features extracted by GoogLeNet and motion dynamics captured by C3D)
and the weighted local features from Layer 2. Then, Layer 3 fuses the two temporal representations from Layer
2 and forms the new representation for the decoder at each time step. This method benefits from incorporat-
ing the object attributes from frames into attention mechanism, thus it can generates relatively detailed and
accurate captions.

Apart from selectively focusing on the frames and ROI like [152], [51] expands the attention model to
selectively attend input features across modalities like visual features, motion features, and audio features,
namely multimodal attention. Fig. 2.6 shows how multimodal attention works together with temporal atten-
tion: The multimodal attention stacks on top of two temporal attentions, which are applied to two features of
different modalities, respectively. Multimodal attention weights are obtained in a similar way to the temporal
attention mechanism.
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Figure 2.5: The illustration of spatial-temporal attention (STAT).
[152]

Figure 2.6: The illustration of multimodal attention mechanism.
[51]

As the underlying concept of the attention mechanism is to mimic the human’s way of thinking, much
effort was put into introducing extra data from human perception to further improve the preciseness of the
attention mechanism. In their work, Sun et al. add an extra step in the encoding phase, where multi-modal se-
mantic attributes will be detected and generated for video. Then, this high-level semantic attribute is passed
to the decoding phase to guide the attention mechanism to generate a better description. Human gaze data,
as another type of human perception, is utilized by Yu et al. to find the Region of Interest (ROI) in the video
frame. The model of Chen and Jiang proposed is reported that the spatial attention is better supervised by
the motion learned from stacked optical flow image. Unlike other methods, SGN[133] aligns phrases with
a collection of relevant frames, which are called semantic groups in this work. Contrastive attention loss is
proposed to ensure the inner coherence of semantic groups with respect to meaning, especially when they
are free from human annotation. In other words, the Contrastive Attention Loss takes advantage of human
perception and guides the model to generate better captions.

Most recently, Transformer[154] has attracted tremendous interest across multiple disciplines. In the
principle, Transformer can be regards as "a stack of attention layers" but it still follows the encoder-decoder
structure. The details of the Transformer are discussed in section 9.2.2.

Deep reinforcement learning
Reinforcement learning (RL) is generally an artificial intelligent agent for sequential decision-making prob-
lems, which learns an optimal policy from rewards or punishments of the environment by trial and error
[140]. Owing to powerful computation and big data, the integration of reinforcement learning and deep learn-
ing, aka ’deep reinforcement learning’ (DRL), has achieved great success in many real-world games against
humans. For example, AlphaGO[135] makes remarkable achievements in the two-player zero-sum game,
and its descendant AlphaGO Zero[136] also makes great progress in chess and Shogi. Recently, the research
community has raised interest in using the DRL technique to tackle the problem of captioning tasks as well.

Standard video captioning models (most of the aforementioned models) typically minimize cross-entropy
loss during training while their performance is assessed on other discrete metrics such as CIDEr[155], METEOR[8],
etc. (Metrics are further discussed in section 2.2). This is known as the objective mismatch. Nevertheless,
these models suffer from exposure bias as well. During training, these models are exposed to ground truth
during training. During testing, models rely on the former predictions to generate the next output. If the pre-
vious prediction is wrong, the error will accumulate and ultimately lead to terrible results. The most straight-
forward way to fix the first issue is to optimize the same metric both in training and testing. Meanwhile, the
commonly used metrics are not differentiable. For the second issue, scheduled sampling may help since it
gradually exposes models to input words from the model distribution instead of the ground truth. However,
it might prevent diverse caption generation to a certain degree [111].

To tackle with aforementioned two problems, [121] propose a Mixed Incremental Cross-Entropy Rein-
force (MIXER), whose underlying concept is to use hybrid loss function to optimize the score of BLEU[109]
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metric in the end. Initially, the model utilizes cross-entropy loss for pretraining, then slowly deviates from
using reinforcement learning with a baseline for finetuning where sentence generation relies on its own pre-
dictions, as is done at test time. After that, the BLEU score is used to compute the reward and update the
sentence generator. The later work [124] proposes self-critical sequence training (SCST) for image caption-
ing, which basically inherits the MIXER structure from [121] but employs the output of the greedy decoding
as the baseline at each time to avoid high variance. Another empirical finding in this work is when opti-
mizing the CIDEr[155] metric, the scores of all other metrics increase. Since then, most of the later work
has used CIDEr or its variants as the reward. Based on the previous insight, [113] propose a Self-Consensus
Baseline (SCB) for video captioning. Different from SCST, using greedy decoding as a baseline, they calculate
the mean reward of all ground-truth sentences of the same video and allow training on several captions at
the same time. Using frame-level features simply concatenated with C3D, MFCC(as the audio feature), and
category information, this model achieves the best performance against the popular benchmarks from our
knowledge.

Figure 2.7: The illustration of HRL video captioning.[162]

In order to grasp the semantic flow of a higher level, [162] proposes a fully-differentiable neural network
with hierarchical reinforcement learning(HRL) for video captioning, as shown in Fig. 2.7. This work still fol-
lows the encoder-decoder architecture. A pretrained CNN, Bi-LSTM, and LSTM are employed in the encoding
stage. At the same time, the HRL agent serves as the decoder, which has three components: the high-level
Manager, the low-level Worker, and an internal critic. The underlying concept is "Divide and conquer": The
Manager generates the context between textual segments, and the Worker follows the guidance of the Man-
ager to generate segments sequentially. The internal critic decides whether the worker completes segment
generation or not. With such a compositional and complex framework, this work does not significantly out-
perform its baseline methods from the perspective that its goal is to generate longer sentences.

From a different angle, [20] sheds light on frame selection in video captioning. In order to avoid redundant
visual information and expensive computation costs, they propose PickNet to select the most informative set
of frames by rewarding visual diversity and penalizing textual discrepancy. It was presented to be a design that
makes a trade between speed and accuracy. From their experiments, Using 6 to 8 frames can get competitive
results against contemporary works.

In the most recent, [76] introduces Multitask Reinforcement Learning to video captioning, learning a
video representation and a reward together at the same time to regulate the search space for caption gen-
eration. Similar to MIXER[121], they pretrain the model by cross entropy loss and reinforcement learning
reward consecutively in stages 1 and 2. In stage 3, inspired by [169], they provide extra gradients from a video
attribute prediction module directly to the encoder and jointly train the encoder and decoder by minimiz-
ing the convex combination of the attribute loss and the REINFORCE loss. In contrast to previous work that
uses CNN only as the encoder to extract features, it works in a truly end-to-end learning fashion. Although
it does not considerably outperform other RL-based work, this work shows that the domain-adopted video
representation(the predicted video attributes) is more powerful than the generic frame-level features from its
ablation studies.

To conclude, introducing RL to directly optimize a favored metric in the training stage addresses the expo-
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sure bias and objective inconsistency. It definitely achieves a higher score on the video captioning benchmark
than previous work. However, there is no theoretical proof that optimizing one metric can gain consistent im-
provements in overall metrics, and the automatic metrics still fail in low correlation with human judgment.
Besides, RL-based methods have been reported to have unwanted artifacts sometimes, like ungrammatical
sentence endings [44], higher object hallucination [129], and lack of diverse content [32]. Taken above issues
into consideration, the research community start to integrate RL with adversarial learning in visual caption-
ing. Work in this line is discussed in next section.

Generative Adversarial Network
Regardless of unsupervised learning or semi-supervised learning, Generative Adversarial Networks (GANs)[40]
provide us with a new way of thinking about problems, which is to introduce game theory into the machine
learning process. The original GAN, proposed by Goodfellow et al.[40] in 2014, consists of a generative model
and discriminative model: the generative model tries to capture the data distribution and produces similar
data while the discriminative model learns to tell whether the data is from data distribution or the model dis-
tribution. In other words, the generative model is trained to fool the discriminative model, generating data
as realistic as possible that the discriminative model can not distinguish. After the introduction of the GAN,
many variants have been proposed to avoid instability and mode collapse [101][116][5][42] or reformulate
it from different perspective[18]. One worth mentioning is the Conditional Generative Adversarial Network
(CGAN)[101], an earlier improved version of the original GAN. The original GAN does not have control over
what to generate since the output only relies on random noise. To handle this problem, CGAN adds a condi-
tional input apart from random noise to the model, providing extra information to guide the data generation
process. The conditional input here, in theory, can be anything related to the output, like the image label,
attributes of the object, or text embedding. Although the modifications are really simple, the idea is very
instructive.

Figure 2.8: In the Left, the real data and the generated data from Generator (G) are used to fool the Discriminator(D). In the right, G
directly uses policy gradient to update its state and decide its next action, in which the final reward is from D and calculated via Monte

Carlo search.[178]

Recently, GANs have been adopted by computer vision(CV) and achieved great success in tasks such as
image synthesis[67][122], image transfer[187], etc. Research on applying GAN in natural language process-
ing(NLP) is also an intriguing trend, where training GAN is tougher since many NLP tasks are discrete domain
generation issues (GAN was originally designed for continuous data). Although GAN makes encouraging
achievements in real-value data synthesis, the difficulty in differentiation for discrete data and evaluation of
partially generated sequences hinder conventional GAN from succeeding in NLP tasks like text generation.
Inspired by the idea of reinforcement learning, SeqGAN[178] treats text generation as a sequence decision-
making problem and models the generator as a stochastic policy as shown in fig.2.8. To solve the differentia-
tion problem, the generator directly uses a policy gradient to update its parameters. Monte Carlo Tree Search
(MCTS) with a roll-out policy is employed to sample the unknown remaining tokens and approximates the
state-action value to evaluate the partially generated sequence at an intermediate step.

Both CGAN and SeqGAN have inspired work that integrates GAN into visual captioning models, as visual
captioning tasks can be regarded as text generation tasks conditioned on the image/video content. On top of
CGAN, [28] is the first work that introduces GAN to the image captioning task. To generate captions that are
more diverse and less distinguishable from human ones, they trained a generator and an evaluator together
and applied Policy Gradient with early feedback as well. It is reported to outperform the state-of-the-art in
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terms of naturalness, diversity, and relevance. From a different starting point, [176] adopts GAN architecture
to train a binary classifier to be an effective metric. The binary classifier, which, in fact, is the discrimina-
tive model of GAN, acts as a human critique to tell human-written and machine-generated captions apart.
Along with the lines of [28], the most recent work [12] proposes a similar framework, extending RL-based
encoder-decoder architecture with CGAN and SeqGAN. In contrast to [28], this work makes a trade-off be-
tween naturalness and fidelity (achieve improvements in overall evaluation metrics). Another latest work in
this line is [74], which generates diverse captions across images. They propose a comparative adversarial
learning framework, where the discriminator evaluates the quality of captions by comparing them with other
captions within the image-caption joint space.

Figure 2.9: The generator aims to generate a sentence for the video as relevant as possible, but the discriminator is designed to tell the
generated sentences from reference sentences. The orange sentences that feed into the discriminator are the reference sentences, while
the black sentences are synthesized by the generator. Otherwise, badly constructed sentences or uncorrelated sentences are generated

by the generative model. MP here represents the max pooling layer. [173]

LSTM-GAN[173] is the first attempt that applies GAN to an LSTM-based video captioning task. Although
LSTM is seen to be promising in the sequence generation task, it suffers from exponential grammatical er-
ror accumulation. This may lead to generating words of lower association when the video length increases.
The authors[173] thought introducing GAN to distinguish if the generated sentences are relevant to the video
can further compensate for the deficiencies of LSTM. Identical to other GAN models, LSTM-GAN contains
a generator and discriminator as shown in figure 2.9: The generator aims to generate a sentence for the
video as relevant as possible, but the discriminator is designed to tell the generated sentences from refer-
ence sentence. To enhance the classifying ability, the discriminator is designed to have a convolutional layer,
a max-pooling layer, and a fully connected layer sequentially. Motivated by CGAN[101], the discriminator
takes not only the sentences as input but also the video features from the Encoder of the generator as extra
information. When it comes to the discrete data differentiation problem of GAN, rather than using reinforced
learning like [176] [163], they use an embedding layer[52] to convert the discrete outputs into a continuous
representation. As far as we known, LSTM-GAN marginally improve the quality and diversity of the generated
sentence, meanwhile, it is potential to perform better by taking advantage of Reinforcement Learning.

I have seen the exploration of reinforcement and adversarial learning in image/video captioning tasks,
and the research community has applied them to other branching tasks: visual storytelling [163], video para-
graph (multi-sentence) captions [110]. [163] proposed an adversarial reward learning scheme for synthe-
sizing abstract stories for photo streams, where a reward function is learned from the human description.
Noticing the difficulties of jointly training the GAN model(If the discriminator is too strong that the generator
gradient vanishes and learns nearly nothing.[4]), [110] trained the discriminator to pick up the best one from
a collection of sampled candidate sentences during the inference of generator, namely Adversarial Inference.
Besides, they used the three discriminators for sentences: semantic, relevance to visual features, and cohe-
sion across sentences, respectively. This model has been reported to outperform previous approaches like
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SCST and GAN in human evaluation.
In summary, Applying adversarial training to visual captioning tasks encourages more diverse and "human-

like" captions as opposed to optimizing a metric. GAN loss is shown to be helpful to decrease object hallu-
cination as well[129]. Although some trials on integrating GAN together with RL to image captioning model
have been witnessed, only a few works on applying them to video captioning model have been found so far,
probably due to the complex nature of video data. Accordingly, till now, no significant improvement have
been reported. In addition, GAN has its own limitations. It is difficult to achieve stable training because of
the discrete output space and its lack of coherence in text generation. Still, the concept of learning to tell
human-written sentences from the machined-generated ones is very compelling and promising.

2.2.3. Discussion
Currently, the interest of the research community in the field of video caption has shifted from a template-
based method to a deep-learning method. Especially, recent years have witnessed the distinguishing per-
formance that transformers achieved in machine translation tasks. Transformers become popular across
different disciplines. Research work related to transformers in video captioning tasks started to emerge. In
this section, the merits and drawbacks of different methods are concluded.

Template-based captioning
The use of language templates ensures the grammatical correctness and completeness of synthesized sen-
tences at the cost of poor description in terms of sentence syntax. Besides, the majority of template-based
methods isaretatistical, which leads to poor scalability to open domain videos. A simple template is less flex-
ible and insufficient for a large video dataset that contains an unforeseeable number of subjects, objects,
activities, and places. In other words, a manual-designed template is costly and even infeasible in such a
case. Additionally, The separation of two stages(encoding and decoding) ignores the interplay between the
visual content and linguistic pattern. Accordingly, the joint latent space between visual and linguistic repre-
sentations is not taken into consideration as well.

Deep learning method
Compared to template-based methods, deep learning methods are data-hungry, which allows video caption-
ing to extend from fine-grained to open domain. In addition, deep learning relieves the burden of manually
crafted features and manually designed language templates by multiple-layer neural network learning. In
the following paragraphs, the pros and cons of various deep learning methods applied in the video caption-
ing task are discussed.

• Attention mechanism. The attention mechanism usually goes with the encoder-decoder framework.
In essence, the attention mechanism enables each output from the decoder to access the entire input
sequence by retaining each hidden state of the input sequence in the course of decoding. This means
the decoder can choose specific elements from that input sequence to produce the output.[96] As no-
ticed, temporal attention is good at capturing global information across multiple frames but fails to
interpret the details of specific frames. That is exactly why later spatial attention is proposed to find
regions of significance. There are many variants of attention based on these two types, generally it can
be classified into two directions: attention for modality selection and guidance for attention. Since the
attention mechanism more or less is an add-on component of the encoder-decoder framework, it faces
the problem of recurrent networks like the inability to scale up and parallelize.

• Reinforcement learning. Introducing RL to directly optimize a favored metric in the training stage is to
address the exposure bias and objective inconsistency. It definitely achieves a higher score on the video
captioning benchmark than previous work. However, there is no theoretical proof that optimizing one
metric can gain consistent improvements in overall metrics, and the automatic metrics still fail in low
correlation with human judgment. Besides, RL-based methods have been reported to have unwanted
artifacts sometimes, like ungrammatical sentence endings [44], higher object hallucination [129], and
lack of diverse content [32]. Taking the above issues into consideration, the research community started
to integrate RL with adversarial learning in visual captioning.

• Adversarial training. applying adversarial training to visual captioning tasks encourages more diverse
and "human-like" captions as opposed to optimizing a metric. GAN loss is shown to be helpful to
decrease object hallucination as well[129]. Although some trials on integrating GAN together with RL to
image captioning models have been witnessed, only a few works on applying them to video captioning
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models have been found so far, probably due to the complex nature of video data. In addition, GAN has
its own limitations. It is difficult to achieve stable training because of the discrete output space and its
lack of coherence in text generation. Still, the concept of learning to tell human-written sentences from
the machined-generated ones is very compelling and promising.
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2.3. Dataset
The prevalent cluster of well-annotated datasets is highly associated with the surge in the research area of
video caption, which has been concluded in Table 2.1.

Table 2.1: Dataset used for video captioning

Dataset Domain Caption
KTH dataset[134] six human action single sentence

UCF101[138] sport-related YouTube videos single sentence
Sports1M[56] sport-related YouTube videos single sentence
HMDB_51[64] movie clips single sentence

Hollywood2[97] movie clips single sentence
MPII MD [128] movie clips single sentence

M-VAD[148] movie clips single sentence
TaCoS Dataset[123] cooking single sentences

TACoS-Multi Dataset[126] cooking multiple sntences
MSVD dataset[13] open domain single sentences

MSR Video-to-Text [171] open domain single sentence
Activitynet[38] human activities multiple sentences

Object-oriented captions[186] human activities multiple sentences
UET Video Surveillance (UETVS)[31] Surveillance sentences

Earlier, datasets for video understanding are mostly narrow in the degree of visual content and simple
in terms of annotations. The first video database, KTH dataset[134], is centric on six human actions 2 in
grayscale. After that, several datasets throw some light on human action recognition in sport-related YouTube
videos, such as UCF101[138], Sports1M[56] and etc. Then HMDB_51[64] and Hollywood2[97] lead video un-
derstanding to human action in movie clips. In the cooking domain, TaCoS Dataset[123] annotates the cook-
ing activities in the indoor environment with sentences.

However, the Microsoft Video Description MSVD dataset[13], which is also called YouTube2Text, is one
of the earliest datasets in the open domain and is still widely used today. It consists of 1,970 video clips with
80,839 sentences in total, covering a number of topics like animals, sports, food, etc. Each clip lasts for around
10 seconds and is annotated with approximately 41 parallel sentences (’parallel’ here means the sentences are
from different Amazon Mechanical Turk workers). Every sentence contains about 8 words and is available in
various languages. As a result, MSVD has a vocabulary of 13010 unique words.

Later, with a zeal for bridging video semantics to language, more datasets are released. The extension
of the aforementioned TaCoS Dataset, TACoS-Multi Dataset[126], uses paragraphs for annotation but still
narrows in the cooking scene. MPII MD [128] and M-VAD[148] are two new large-scale movie description
datasets. Both of them employed Descriptive Video Service(DVS) narrations (DVS is a service that makes
multimedia, especially visual content, accessible to people who are blind or visually impaired.)3 and the
annotation of the latter one is manually aligned with movie clips.
Recently, MSR Video-to-Text [171], another open-domain dataset, was released and soon became one of the
most popular video captioning benchmarks due to its largest amount of clip-sentence pairs (200K in total).
Similar to the MSVD dataset, each clip in MSR-VTT is annotated with multiple independent sentences as well
(20 sentences per clip). All 7180 videos in this dataset are collected from the online search engine, covering
20 representative categories4.Those videos are segmented into clips of 10 to 30 seconds. Altogether, it is 41.2
hours long and contains 29,316 unique words. Besides, this dataset encloses an audio channel, which may be
used as the multimodal feature.

In the recently dense video captioning task, Activitynet[38] captions dataset is collected in order to han-
dle multiple (time-overlapping) events in a video. It contains 20,000 open-domain videos that are 180s long
on average. Different from MSVD and MSR-VTT, every video is captioned with a paragraph, and each event
that occurs in the video is temporally localized and described in one single sentence. And sentences for their

2walking, jogging, running, boxing, hand waving, and hand clapping
3http://main.wgbh.org/wgbh/pages/mag/description.html
4These 20 categories include music, people, gaming, sports (actions), news (eventspolitics), education, TV shows, movie, animation,

vehicles, how-to, travel, science (technology), animal, kids (family), documentary, food, cooking, beauty (fashion), advertisement.
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respective videos retain the contextual information between events. Every video is captioned by an average
of 3.65 sentences with an average length of 13.48 words, which leads to a total of 100,000 sentences in this
dataset. Remarkably, Activitynet is an action-centric dataset involving a large portion of human activities.
Based on ActivityNet[38], Zhu et al. construct a new dataset Object-oriented captions[186]. They select videos
from ’playing games’ class of ActivityNet and re-annotate them by explicit object-sentence pair. They claim
this dataset is more diverse in terms of activities and scenes than other datasets. Unfortunately, object-
oriented captions are not allowed to be downloaded.
UET Video Surveillance (UETVS)[31], as its name implies, is a domain-specific dataset used for surveillance
purposes. It consists of 1200 videos. Each video is annotated with 3-6 parallel sentences. The dataset is not
available for download.

Since the scope of our work is focus on video captioning in the open domain for people who are blind
or visually impaired and the video is limited to 30s , we will use MSR-VTT dataset in this work. The detail of
dataset analysis will be given in the following chapter.

C1: a car drives along a track
C2: racers drive around the corner
C3: a group of people watching cars race
C4: cars are racing down a mountain path
C5: an old car with the logo packs is racing against another car
C6: cars are traveling down a road surrounded by people in a forest

Figure 2.10: an example of MSR-VTT dataset

2.4. Evaluation metrics
The evaluation of the video caption is a considerably subjective task since a video can be validly described in
different ways; in other words, there is no specific ground truth for evaluation. As the example taken from the
MSR-VTT dataset shown in Fig. 2.10, several given sentences all correctly describe the video clips but vary
in syntax, semantics, and attention. For instance, Sentence C5 is more focused on the details of the racing
car ("an old car with logo packs"), while Sentence C4 gives more information about the scene ("a mountain
path"). Nowadays, both human evaluation and automatic evaluation are employed to determine the model’s
performance in this task.

2.4.1. Human evaluation
Human evaluation, just as its name implies, is letting people manually judge the quality of the generated sen-
tences. It can be implemented by using crowdsourcing tools such as AMT(Amazon Machine Turk5)or expert
knowledge. Generally, machine-generated sentences can be evaluated from two aspects: correct grammar
and relevance. In items of relevance, sentences are ranked, and only two sentences that are exactly the same
will have the sink scorerank. Despite the subjectivity, human-based evaluations are time-consuming and
labor-costly as well. Thus, the research community tends to use automatic evaluation metrics as alternatives
to develop models and compare them with their works. These metrics calculate a single score, which repre-
sents the similarity or dissimilarity between the model-generated sentence and a set of reference (human-
annotated) sentences.

2.4.2. Automatic evaluation
When it comes to automatic evaluation for video captioning, commonly used metrics are mainly borrowed
from machine translation and image caption tasks, which are summarised in Table. 2.2. The majority of

5https://www.mturk.com
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metrics(BLEU, ROUGE, METEOR, and CIDEr) are based on lexical similarity, counting matches between n-
grams of the generated and the reference captions by applying different formulas. However, SPICE measures
the semantic similarity of candidate and reference captions by using Scene Graphs, and WMD calculates the
Word Mover’s Distance between them by utilizing the word2vec embedding. In the following several sections,
we are going to discuss the strengths and weaknesses of those metrics further.

Table 2.2: Automatic Metrics used for video caption evaluation

Metric Original Task Main concept
BLEU[109] Machine translation n-gram precision
ROUGE[82] Document summarisation n-gram recall
METEOR[8] Machine translation n-gram with WordNet
CIDEr[155] Image captioning tf-idf weighted n-gram

SPICE[2] Image captioning Scence-graph
WMD[66] Document similarity Word Mover Distance on word2vec

BLEU
BLEU (Bilingual Evaluation Understudy[109]) is proposed as a quality measure of machine translation, mea-
suring the similarity between the machine-generated text and that of a human. It is defined as the sum of the
geometric mean of n-gram precisions and a simple term that penalizes the generated text that is shorter than
the reference ones. Specifically, in the video captioning task, BLEU measures how well the correspondence
between a generated sentence and its multiple reference sentences by calculating the rate of the coincident
n-grams between them in the generated caption. From its definition, we can see that BLUE is simple and fast
to compute. Meanwhile, BLUE is highly affected by the word choice, word order, and sentence length and ig-
nores the structure and the semantics of the sentence. This may lead to unauthentic evaluation of sentences
that are of less overlapping n-grams with the reference ones but are still semantically similar. Additionally,
Using BLEU to evaluate a single sentence might not be fair because it is initially for assessing documents. In
this thesis, the smoothed version of BLEU is used.

ROUGE_L
On the contrary to BLEU, ROUGE(Recall Oriented Understudy for Gisting Evaluation[82]) is a recall-based
n-gram metric. ROUGE is first employed in document summarisation, and its variant ROUGE_L is popular in
image and video captioning. This metric computes the F1 score of the longest common subsequences(LCS)
in each candidate-reference sentence pair. LCS is defined as the in-sequence matches, other than consec-
utive matches, which reflect sentence-level word order. Because it always seeks for the longest in-sequence
common n-grams, we do not need to preset the n-gram length. However, ROUGE_L has bias as well. It prefers
longer sentences due to its dramatic dependence on recall.

METEOR
METEOR(Metric for Evaluation of Translation with Explicit Ordering [8])is explicitly designed to deal with the
drawbacks of BLEU by introducing recall and exact word matching. It is computed based on the harmonic
mean of the precision and recall of uni-gram alignments between the generated and reference sentences, to-
gether with a penalty that involves longer n-gram matches. As aforementioned, BLEU does not cater to the
semantic content of sentences. To some extent, METEOR solves this issue by integrating WordNet-based syn-
onym matching, but this metric is still not capable of capturing sentence-level semantic similarity. In a study
in 2014[37], METEOR is reported to be the best metric amongst BLEU and ROUGH in terms of correlation
with human evaluation.

CIDEr
CIDEr(Consensus based Image Description Evaluation[155]) is a metric proposed specially for image cap-
tions, it extends the contemporary metircs with IF-IDF (term frequency and inverse document frequency) on
n-grams of higher order. To be specific, it stems all words in generated and reference sentences and treats
every sentence as a bag of n-grams(1 to 4 words). Later stemmed n-grams are encoded by IF-IDF. (Under the
assumption that common words across the whole dataset are less informative in terms of visual content, the
n-grams frequently occurring in the whole dataset will be lower weighted. In contrast, commonly appearing
n-grams in the reference sentences will be weighted higher). In the end, CIDEr measures the mean cosine
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similarity between n-grams from generated and reference sentences. Theoretically, using higher order of IF-
IDF weighted n-grams helps to get better grammatical properties and semantics. In fact, IF-IDF may also
overweights some unimportant images details, which may lead to unfair evaluation.

SPICE
SPICES(Semantic Propositional Image Captioning Evaluation[2]) is another recently proposed metric for im-
age captioning. SPICES computes the F1-score between the scene graph tuples of sentences. Through the
dependency parse tree, texts are transformed into semantic scene graphs, where a set of tuples contains
three tokens: the object, its attributes, and its relationship. In the research of[89], Liu et al. demonstrates
that SPICE tends to regard sentences with repeating clauses as good captions. However, till now, not much
research work has used SPICES as an evaluation metric. Another disadvantage is evident. SPICES relies on
parsing. The quality of parsing may affect its performance on caption evaluation.

WMD
WMD stands for Word Mover’s Distance, which measures the semantical distance between texts in word2vec[99]
(semantically meaningful vector representations) embedding space. Earth Mover’s Distance(EMD)[132] is
used to compute the distance between texts, which was originally employed to calculate the transportation
cost. Two sentences share lots of the same words, but that does not mean they are semantically similar. Vice
versa, two sentences that vary in word choice may still have the same semantic meanings. WMD is proposed
to handle this case. As reported in [59], Compared to BLUE, ROUGE, and CIDEr, WMD is less sensitive to
word order or synonym swapping. Further, similar to CIDEr and METEOR, it gives high correlation against
human judgements.[59]

2.4.3. Conclusion
To summarise, automatic evaluation may face the risk of bias caused by the subjectivity of reference sen-
tences annotated by humans. To treat this issue, introducing more reference captions is reported as an ef-
fective way to bring more reliable evaluation in [155]. Besides, each metric has its obvious merits and blind
spots. In many works like [155] [37], CIDEr and METEOR are found to be more closely correlated to human
judgments. Meanwhile, In study [59], CIDEr and SPICE are found to be much more sensitive to synonym
replacement in sentences. BLEU, ROUGE, and CIDEr are highly affected by word order. Although SPICE and
WMD are the two latest metrics that capture better semantics compared to others, SPICE ignores the fluency
of sentences, and WMD is rarely reported in the literature at the time of this thesis.

2.5. Readability metrics
When it comes to readability, there are plenty of metrics that can be used. Some research implies that there
is no significant difference among results across different readability metrics.[70] However, there are also
some study indicates variance among results from different readability metric instead of the similarity.[165]
Besides, there is some literature that gives evidence that different readability metrics may be suitable for
different tasks. Considering our target audience is teenagers with visual impairment, we decided to use the
following four readability metrics in the experiment. The details of these four metrics and the reason why we
chose them are below.

The SMOG Index[69] is a readability metric where SMOG stands for ’Simple Measure of Gobbledygook’. It
counts the number of words that contain three and more than 3 syllables in three 10-sentence samples from
the text. It is suggested to be used on text that contains more than 30 sentences. The formula is shown below.

T he SMOG Index = 3+
√

pol y s yl l abi c count

In the formula, the polysyllabic count is defined as below:

1. Sample ten consecutive sentences near the beginning of the text, 10 in the middle, and ten near the
end, totaling 30 sentences

2. Counting every word with three or more syllables and add them together

The SMOG Index should be interpreted with respect to Table 2.3.
The Gunning Fog Index[43] is calculated based on average sentence length and the percentage of com-

plex words. The formula is shown below. Complex words here are defined as those containing three or more
syllables. Its values normally fall in the range between 0 and 20. Values indicate the education level the reader
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Value School level Student age range Notes
0-1 Pre-kindergarten - 1st grade 3-7 for those who just learn to read books.
1-5 1st grade - 5th grade 7-11 Very easy to read.
5-8 5th grade - 8th grade 11-14 ideal for average readers.

8-11 8th grade - 11th grade 14-17 Fairly difficult to read.
11 and above 11th grade - college 17 and above Too hard to read for the majority

Table 2.3: SMOG Index Interpretation

is expected to have to comprehend the text. If the text targets at the public, it should aim for an index around
8. Values should be interpreted with respect to Table 2.4.

Gunni ng Fog Index = 0.4∗ [ASL+100∗PCW ]

ASL = Aver ag e Sentence Leng th

PCW = Per cent ag e o f Complex W or d s

Flesch Reading Ease[39] compute the readability score based on average sentence length and average word

Value School level Student age range Notes
0-1 Pre-kindergarten - 1st grade 3-7 for those who just learn to read books.
1-5 1st grade - 5th grade 7-11 Very easy to read.
5-8 5th grade - 8th grade 11-14 ideal for average readers.

8-11 8th grade - 11th grade 14-17 Fairly difficult to read.
11-20 11th grade - college 17 and above Too hard to read for the majority of readers.

Table 2.4: The Gunning Fog Index Intepretation

length. The formula is shown below. In the formula, the average word length is defined as the average number
of syllables per word. Usually, the score ranges from 1 to 100, and 100 is the highest. If the text is scored
between 70 and 80, it indicates the reader is required to have a school grade level of 8 and above. This also
means the text is ideally readable for the average adult. Scores should be interpreted with respect to Table
2.5.

Read abi l i t y E ase = 206.835–(1.015∗ ASL)–(84.6∗ ASW )

ASL = Aver ag e Sentence Leng th

ASW = Aver ag e number o f s yl l abl es per wor d

The New Dale-Chall formula[55] use a predefined set of "common" words6 that are considered familiar to

Value School level Student age range Notes
100.00 - 90.00 5th grade 11 Very easy to read.

90.0 - 80.0 6th grade 11-12 Easy to read.
80.0 - 70.0 7th grade 12-13 Fairly easy to read.
70.0 - 60.0 8th grade - 9th grade 13-15 Standard, plain English.
60.0 - 50.0 10th grade - 12th grade 15-18 Fairly difficult to read.
50.0 - 30.0 College 18-19 Difficult to read.
30.0 - 0.0 College graduate 22-23 Very difficult to read.

Table 2.5: Flesch Reading Ease Interpretation

fourth-graders to measure the readability of text. The more unfamiliar words contained in the text, the higher
education level the reader is required to comprehend the text. The formula is shown below. This metric is
only available for English due to the predefined English word set. Values refer to the US grade level and should

6Dale-Chall common word list: https://www.readabilityformulas.com/articles/dale-chall-readability-word-list.php
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be interpreted according to Table 2.6. Research like [98] suggests that The New Dale-Chall is the most suitable
metric for evaluating and selecting text material for the students.

New Dal e C hal l Scor e = 0.1579∗ (PDW )+0.0496∗ ASL

PDW = Per cent ag e o f Di f f i cul t W or d s

ASL = Aver ag e Sentence Leng th i n wor d s

Value School level Student age range Notes
4.9 or lower Pre-kindergarten - 4th grade 3-10 Very easy to read.

5.0 - 5.9 4th grade - 6th grade 10-12 Easy to read. Conversational English.
6.0 - 6.9 6th grade - 9th grade 12-14 Fairly easy to read.
7.0 - 7.9 9th grade - 10th grade 14-16 Standard, plain English.
8.0 - 8.9 10th grade - 12th grade 16-18 Fairly difficult to read.
9.0 - 9.9 12th grade - college graduate 18-22 Difficult to read.

10 and above University graduates 22 and above Very difficult to read.

Table 2.6: New Dale-Chall Interpreation

2.5.1. Conclusion
There is very rare literature on the intersection of readability and people with visual challenges. However, this
research [125] implicates that the use of short words and the inclusion of more familiar words can improve
readability and comprehension for people with dyslexia. This finding is inspiring. The SMOG Index, The
Gunning Fog Index, and Flesh Reading Ease involve syllables counting in computation, though in different
ways. That means these three metrics favor text with short words. When it comes to including more familiar
words, The New Dale Chall can be helpful since it uses a set of predefined common words to evaluate. In
addition, the New Dale Chall is reported to be more suitable for students[98], which exactly coincides with
our target audience. Therefore, we select these four metrics to evaluate the readability of sentences from our
models.
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2.6. Technology for the visually impaired and blind people
There are many people in the world suffering from visual challenge. The statistics from the World Health
Organisation (WHO) shows globally there is more than 2.2 billion people who have a vision impairment. In
the Netherlands, the estimated population who suffer from visual challenge reaches 32 million by 2020, of
whom, up to 45 thousand people are blind. With the population growth and ageing, the figure of people
acquire vision impairment may increase.

Visually impaired and blind people encounter many challenge in daily life. Not as the majority of the non-
blind community reckon, the blind people or the visual impaired can lead a normal life in their own way of
doing things. Indeed, they meet difficulties in daily life because of different barriers like inaccessible public
infrastructure, unreachable information and etc.. Investigating into those barriers can help us understand
them and using new technology might be helpful to eliminate barriers that hinder them gain independence.

Researchers in the field of assistive technology (AT) are devoted to help individuals with different impair-
ment and the elderly people who need increase the quality of life. In the following subsections, we firstly
give a broad view of assistive technology (AT) for people with vision challenge. Then we introduce assistive
solutions that are especially based on smartphone.

2.6.1. Assistive technologies
Assistive technology for the visually impaired and blind people is aimed at helping them live independent like
other people in the society by reducing physical, social, infrastructural and accessibility barriers. “technolo-
gies, equipment, devices, apparatus, services, systems, processes and environmental modifications” are all or
partially involved in the field of assistive technology for the visually impaired and blind people.[49] It is such
a complex flied with big scope varying from psychological phenomena, medical intervention to computer
science technique. It can not be simply covered by few paragraphs.

There are many excellent survey on assistive technology for the visually impaired and blind people with
different scope and emphasis: the complementary review across multiple disciplines by Bhowmick and Haz-
arika; the surveys on smart-phone based solution by Khan and Khusro and Hartato et al.; the research on
mobile and wearable devices[10]; etc.. As far as we know, there is no review from the perspective of computer
science technology on assistive technology for people with vision challenge yet. Here, we provides a summary
mainly focus on assistive technology in the area of computer science as below.

• Computer vision. Vision substitution solutions collect data from a user’s environment and extract in-
formation from a variety of sources, including images, captions, tags, visual codes, and stickers. This
extracted information is conveyed to the user through auditory or haptic feedback, enhancing their
ability to perceive the surroundings. Numerous vision substitution systems and techniques have been
developed for specific applications, such as navigation and shopping. Recently, there has been an in-
creased focus on advanced functionalities, particularly in facial recognition, object recognition, and
access to printed materials. These developments aim to augment the capabilities of computer vision,
ultimately improving accessibility and independence for individuals with visual impairments

• Semantic augmentation. Blind individuals encounter considerable difficulties in perceiving unfamiliar
spaces, landmarks, and points of interest. Effective navigation requires robust spatial modeling of the
surrounding environment. A variety of representations have been developed to aid in spatial model-
ing, including geometric models, graph theory, symbolic representations, and hybrid approaches. Ge-
ometric models employ a coordinate system to facilitate queries such as locating roundabouts, while
symbolic models utilize symbols to convey relationships and semantic meanings among different ele-
ments. The purpose of semantic annotation is to enhance the understanding of spatial semantics and
navigational context, allowing for more informed responses to changes in the environment. Blind in-
dividuals face substantial challenges in navigating landmarks and avoiding obstacles. Enhancing the
accessibility of navigational information for blind users is therefore crucial for improving their spatial
awareness and overall independence.

• Augumented reality. Augmented reality has made significant strides in the past decade, primarily driven
by improved processing capabilities and the incorporation of various sensors and multimedia features.
Modern smartphones, equipped with high-resolution cameras, touch screens, and sensors such as
accelerometers, GPS, and compasses, serve as comprehensive tools for blind users. These devices
are powerful enough to support audio and echolocation functionalities enhanced by allied sensors.
Although most augmented reality applications focus on visual modalities—overlaying virtual objects
onto real-world scenes via live camera feeds—blind users benefit predominantly from auditory or hap-
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tic feedback. Audio augmented reality is particularly useful for helping blind individuals perceive their
environment through audio interfaces.

• Text to speech. Enhancing accessibility is a critical need for blind individuals. Screen reading applica-
tions offer significant assistance by converting text to speech, although they do have some limitations.

2.6.2. Smartphone-based assistive solutions
With the advance of mobile computing and sensors technology, smartphone is not just a simple communica-
tion device but also a carrier of diverse services. As a large number of visually impaired and blind people are
using smart phone, researchers have investigated the opportunity in smartphone to provide blind-friendly
technological solutions. In the following sections, some smartphone-based assistive solutions in different
fields are illustrated.

• Navigation.BlindSquare functions as a GPS navigation tool that employs voice feedback to inform users
about their current location and the surrounding area. It provides directions to specified destinations,
announces nearby points of interest, and integrates smoothly with other apps, such as Uber and Google
Maps. Furthermore, the application features extensive customization options to meet individual pref-
erences and requirements.

• Accessibility. Similar to BlindSquare, Lazarillo places greater emphasis on public transportation and
accessibility. It provides information on the nearest bus stops, subway stations, and bike-share loca-
tions, along with real-time updates on arrival times and routes. Additionally, it offers details about
nearby accessible venues, such as restaurants, hotels, and ATMs, allowing users to rate these locations
based on their accessibility features.

• Computer vision. Seeing AI is a free application that serves as a multifunctional tool for individuals with
visual impairments, integrating various features into a single, user-friendly interface. Its primary func-
tion is to provide detailed descriptions of the surrounding environment, enabling users to recognize
text, objects, people, and colors. Additionally, the app can read text aloud, describe scenes in photos,
and identify currency. Although there may be a slight learning curve, the app is generally intuitive and
proves to be exceptionally useful once users become familiar with its functionalities.

• Semantic augmentation. OKO is an application that utilizes artificial intelligence to detect pedestrian
signals, facilitating easier navigation for blind and visually impaired individuals at intersections. Be-
yond simply indicating the current status of signals, the app also assists with orientation, making it an
invaluable resource for users with visual impairments. It functions directly on the mobile device, en-
suring immediate response times and allowing use in airplane mode if desired. The reliability of OKO
has contributed to its rapid growth and increasing popularity among users.

• Augumented reality. Aira is a mobile application that offers users on-demand access to a team of certi-
fied agents who assist with everyday tasks through live video streaming and augmented reality. With the
app, users can connect to Aira agents, who provide visual information and guidance for various activ-
ities, such as navigating unfamiliar environments, reading labels, identifying objects, and even online
shopping. The agents leverage live video streaming and augmented reality technology to visually access
the user’s perspective and offer real-time assistance.

• Others. Be My Eyes is a mobile application that connects blind and visually impaired individuals with
sighted volunteers for real-time visual assistance, enhancing user independence in daily activities. The
app utilizes the smartphone’s camera to stream live video to a volunteer, who aids with tasks such as
reading labels, identifying objects, and providing directions. Available in over 180 countries and trans-
lated into more than 180 languages, it serves as a global platform for accessibility. The application has
received significant recognition for its innovative approach to promoting inclusivity, winning awards
such as the 2018 Google Play Award for Best Accessibility Experience and the 2017 AppleVis Golden
Apple Award for Best Assistive Technology. Its user-friendly interface facilitates seamless interaction
between visually impaired users and volunteers. Upon requesting assistance, users are matched with a
volunteer who speaks their language.

2.6.3. Discussion
Based on the reviewed research, no existing tool or technology can be deemed ideal for assisting individuals
with visual impairments. Consequently, it is essential to develop more sophisticated systems that directly
address ongoing challenges. A key aspect of this development should be the involvement of intended users
in the design, development, and evaluation processes of these systems.
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• Integrating user interface modalities into the design and development process is essential for enhanc-
ing system accessibility and usability. Smartphone-based assistive aids can significantly improve in
usability, accessibility, learnability, and adaptability by implementing effective user interfaces and ad-
vanced human-computer interaction techniques. Since interactions and body awareness are funda-
mentally multimodal experiences, assistive technology interfaces for visually impaired persons (VIP)
should adopt this multimodal approach, allowing customization according to user preferences. By
facilitating intuitive interactions through a combination of visual, auditory, and haptic feedback, the
design can empower VIPs and improve their overall engagement with the technology.

• It is essential to distinguish between the needs of visually impaired persons (VIPs) who retain some vi-
sion or experience color blindness and those who are completely blind. This differentiation may create
new research opportunities to address challenges beyond total blindness. Furthermore, the difficul-
ties encountered by individuals with partial vision impairments and other chronic conditions, such as
diabetes, have been insufficiently addressed in the existing literature.

• We propose that future assistive tools and technologies should capitalize on technological advance-
ments to develop globally accessible navigation aids. These innovations should prioritize the creation
of new concepts that employ low-cost technologies, efficient algorithms, and low power consumption.
By focusing on affordability and sustainability, these navigation aids can become more widely available
and effective, enhancing user experience and independence for individuals with visual impairments.
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2.7. Summary
Although video captioning has achieved evident progress so far, there is still a long way to get optimal output.
In the following paragraphs, we include challenges that exist in the video captioning task and point out the
possible trends in the future based on the research.

Domain gap
The major research work in the video captioning task employs action recognition datasets like Kinetics-
600[57] for pre-training and then uses the video captioning dataset for fine-tuning. The difference between
datasets (in terms of quality, diversity quantity, etc.) for pre-training and fine-tuning will result in the domain
gap.

Modality gap
Video captioning transforms video into text, which means it is a process to map continuous data to discrete
data or a process to convert multi-modal data (image, audio) to single-modal data. In other words, the vi-
sual data and textual data are supposed to be mapped to the shared space. Obviously, there is a gap between
the input and output. There is some research on leveraging the correspondence between textual and visual
data.[112] [84] The latest research[80] firstly describes the modality gap generally and provides some quali-
tative and quantitative analysis on how the modality gap affects downstream tasks. However, they point out
that "it’s not clear that it’s desirable to have no modality gap" [80]. In some tasks like zero-shot learning, hav-
ing a larger modality gap may help fairness. Whether Modality gap have positive or negative impact on video
caption is unknown, which need future study.

Insufficient dataset
It seems there are plenty of datasets for video captioning tasks. However, the truth is datasets available are far
from sufficient with respect to several dimensions:

• Diversity. According to the research, the majority of caption datasets is fine-grained, centring on certain
domain like movie[97], cooking[131], surveillance [31] and etc.. There are two open-domain datasets,
MSVD [13] and MSR-VTT dataset [171], which are widely used. However, they only have a small number
of classes. For instance, MSR-VTT only has 20 categories. A dataset with a large number of categories
will help the video captioning model work better. The deeper the model is, the more diverse data is
needed for training and avoiding over-fitting.

• Quality. The quality of the video and captioning are crucial for video captioning tasks. As a cross-
modal task, the video captioning task brings CV and NLP together. Image quality is always one of the
most important problems in CV tasks. Most captions in the existing datasets are collected by crowd-
sourcing, the quality of which is difficult to ensure homogeneousness. Better quality of the dataset will
result in less noise and bias.

• Quantity. With the development of deep learning, the architecture of video captioning models become
deeper and deeper. To some extent, the model requires vast data to be trained with to facilitate its
potential capacity. The number of videos and captions in the video captioning dataset may not ensure
models converge gradually.

Lack of explicit metric
So far, most accuracy measure metrics for video captioning models are originally designed for machine trans-
lation tasks and image captioning tasks. For instance, BLEU[109], ROUGE_L[82], METEOR[8] are from ma-
chine translation task; SPICE[2], CIDEr[155] are proposed for image captioning task. Since there is no explicit
metric designed for video captioning task, the evaluation of model is considerably limited. The mainstream
way is to score the model across different metrics and then analyze some samples that somehow depend on
human evaluation. There is some effort to utility adversarial learning to optimize a metric[176]. Very recently,
just after the emergence of Bert[30], the research community started to study the possibility of applying Bert
for better evaluation for text generation [181] and image caption[71]. Lee et al. combine Bert and adversarial
learning together and put forward an unreferenced metric for image captioning. However, related research
is rare and immature. The lack of standard measuring metric, to a certain degree, has hindered the develop-
ment of the video captioning model.

Efficiency
The efficiency problem is comparatively the most critical challenge that video captioning holds for several
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reasons. The process of translating video to textual data is not as easy as putting a video into the model and
then the text is ready. The video has to go through several preprocessing steps(like sampling, feature prepa-
ration, etc.) followed by the video representation formation and sentence generation. That’s why there is
merely no robust video captioning model that process realtime video and generate captions online.[53] Sec-
ondly, with the advance of research and the pursuit of performance, the model structure becomes deeper,
and accordingly, the parameters scale grows bigger. This calls for huge computing powers. For instance, the
transformer-related captioning model is outstanding for its performance and time/space complexity. Con-
sidering the current computing power and the video preprocessing procedure, the SOTA video captioning
model is hardly possible to apply in practice.



3
User study

This chapter aims to answer the Research question: What are the requirements for video captioning for the
visually impaired? In this part, we give details of how we prepare and conduct the user study.

3.1. Survey design
In order to answer this research question, we conducted a survey with the people in Visio twice. The first ques-
tionnaire is designed to get basic information about the visually impaired people at Visio and their dilemmas
in life. The second questionnaire is designed based on the information collected from the first one. With the
purpose of further verifying the needs of the target audience, we propose a scenario: There is an app on the
mobile phone. They can use it to get some information about the environment they are in or things that hap-
pen nearby by taking a video of their surroundings (the algorithm behind the app is what we aim at). From
this survey, we got some requirements that helped us design the video captioning model afterward.

3.2. Survey result
In this subsection, the demography of the people in the Visio is presented. The difference between intervie-
wee is addressed as well. Besides, we form a list of requirements that we concludes from the surveys, which
decides the research direction of this thesis. Some interesting points are further discussed in the end of this
chapter.

3.2.1. Demography
Given that Visio at Grave is an institution that provides education and support to students with visual im-
pairment, the audience of our survey is teenagers in the age range of 16 to 19 years old. In total, there were
5 students who participated in our survey. There is a difference between students who are blind their whole
life and students who became blind at an older age. Most of these blind students see a little bit (useful for
mobility and shapes). As most of them are not good at English, their coach serves as the interpreter and co-
ordinator for the whole procedure. For comparison, we also involved senior people over 60 years old in this
survey. The overall demography is shown below:

Table 3.1: Demography

Name Age Gender Sight saw before
Person 1 16 M blind (low sight. Has the best vision of this group)
Person 2 17 M blind (low sight. became blind on an older age. saw pretty good) �
Person 3 19 F blind (very low sight. Useful sight for mobility, shapes)
Person 4 18 F blind (very low sight. Useful sight for mobility, shapes)
Person 5 16 M blind (very very low sight. Useful sight for mobility, shapes)

the Senior >60 M blind(low sight. became blind on a older age. saw pretty good) �

From the table 3.1, we can see that 6 participants are well selected. Students of different sight levels are
chosen, ranging from low, very low to very very low. (The coach said they belong in the blind category. Thus,
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we call them blind in the table.) As we observed, people who can see before and people who are born to be
blind have significantly different preferences when filling in the questionnaires. We involved a student who
lost sight at an older age in the survey. To see how blind people of different ages differ, we also invited senior
people to answer the questionnaires.

3.2.2. Insight
Based on the data we collected from two questionnaires, we formed a list of requirements as below. As we
gave interviewees a scenario: There is an app on the mobile phone. They can use it to get some informa-
tion about the environment they are in or things that happen nearby by taking a video of their surroundings.
Questions were asked on the foundation of this scenario.

Table 3.2: List of Requirements

Num Question Answer
1 How long will the video take? no longer than 30s
2 How many seconds of latency can you accept at most? limit to 3-4s
3 When will you use this system for help? when there is loud music/noise
4 What do you want this system tell you? a wide variety of topics but care actions most
5 How do you prefer the system to describe the video? by a single sentence briefly

Regarding some questions, interviewees had different opinions. All the requirements are formed based
on their consensus. Each requirement is further explained in the following section.
Requirement 1: The video should not be longer than 30s. Interviewees gave different answers to these ques-
tions, from a few seconds to 1 minute at most. Therefore, to form the first requirement, we take the average
30s seconds.
Requirement 2: :The latency should be limit to 3-4s. The latency here is defined as the time interval between
the user finishes taking the picture/video, and the system starts to describe it. Answers to the latency didn’t
vary much. Interviewees said they could wait longer if more information is needed.
Requirement 3: Scene: when there is loud music/noise. From the survey, we learned that visually impaired
and blind people could use accurate hearing to recognize things that happen around them, not as the ma-
jority of people reckon. For example, they get orientation from hearing echoes from walls. If there is a lot of
noise, they can’t recognize things. Loud bikes, cars, trucks, and buses are most of the time the problem. Thus,
they tend to use this system when there is loud music/noise.
Requirement 4: The dataset should cover a wide variety of topics, but the actions that happen are most im-
portant for them. When we asked the interviewees what they expected the system to tell them, they came
up with many answers. They want to know the details about their surroundings, information about people
(where they are, how many are there, how someone looks), the appearance of something, and so on. They
also wish the system could help them cook. One of them said he does not care about people unknown. All
of them agreed that they care more about What people are doing (human action). Based on this finding, we
realized that they expect a system that works for the open domains. To verify this assumption, we asked in-
terviewees to pick up their topics from people, sports/actions, vehicles/autos, howto, travel, animals/pets,
kids/family, food/drink, cooking, beauty/fashion, and advertisement. Most of the topics were picked. There
was a small controversy on topics such as people, kids, beauty, and science. To cover the interviewees’ needs,
we have included all the topics in this thesis work.
Requirement 5: The video should be described in a single sentence briefly. The purpose of this question is to
know what kind of output the visually impaired and blind people expect from the system. Because the type
of descriptive output determines different research directions in the field of video captioning. Most intervie-
wees want the system to describe the video in a single sentence briefly and in a very detailed, story-telling
way. However, when it comes to latency (the more detailed description requires more time to generate), in-
terviewees tend to use brief descriptions. In most cases, they expect responsive descriptions.

Interesting findings
There are a few things that are worth mentioning here:

1. There is a difference between interviewees who are blind since they born and interviewees who became
blind on an older age. Interviewees who are born-blind show less interest in the realistic world. This
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is probably because they do not establish awareness of many objects and events in their mind without
useful sight at an early age. In contrast, interviewees who became blind at an older age are more curious
about events in their surroundings and are eager to know more.

2. Counter-intuitively, most of the interviewees have laptops, phones, iPads, and even PlayStations. They
prefer the iPhone to Android as the iPhone is more blind-friendly. They use social media(like Instagram
and Facebook), agenda, digital paying, email, and so on.

3. From the survey, the interviewees show many needs in real life, such as recognizing friends, reading
text, recognizing surroundings, etc. These needs lead to different research fields or tasks like facial
recognition, text recognition, object recognition, and so on. Their needs are complex and cannot be
met solely with algorithms or models as far as current technology goes.

In summary, we interpret the five requirements briefly here: The interviewees expect a system or algorithm
that can describe the video in less than 30s by a single and brief sentence with latency limited to 3-4s (the
latency here is defined as the time interval between the user finish taking the picture/video and the system
starts to describe it). The algorithm should work on many topics, which indicates that the dataset used for
training should be open-domain. Human actions are the most important topic that needs to be paid attention
to. The interviewees tend to use this system when there is a lot of noise. This means the algorithm should be
robust to noise, or the audio should not be suitable as input. The noise may lead to bias in real life.



4
Model Design

In this chapter, we propose a video captioning model for the visually impaired based on the mainstreaming
encoder-decoder framework but with modified temporal attention and designed features. As shown in Fig.
4.1, we present an overview of the model, which can be briefly decomposed into three parts from left to right:
Frame sampling, feature extraction (Encoder), and language model (Decoder). Firstly, the video is split into
n equal-sized segments, and then a single RGB frame is sampled from each segment. The selected frames
are fed into three different pretrained dnns (Resnet, ECO, and Res3D) for features of various levels, ultimately
yielding a representation of the video by concatenation. Ultimately, the video representation is decoded by
the RNN-based language model with an attention mechanism in text. From the user study, we know that the
visually impaired more care about the actions in the video content and the latency of the model. Thus, we
tailor our design to their needs by emphasizing capturing video dynamics and reducing time costs. Besides,
we decide not to use the audio information. In the following sections, the details of the model are introduced.

Figure 4.1: the video captioning model for the visual impaired is designed in this thesis.

4.1. Sampling strategy
In our model, we adopt the sparse temporal sampling strategy proposed by Temporal Segment Network(TSN)
[161] and its later work Efficient Convolutional Network (ECO)[188] in the field of action recognition. As
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Figure 4.2: Sampling strategy. figure is adopted from [188].

shown in Fig. 4.2, the entire video is split into n equal-sized segments, and then a single frame is randomly
sampled from each segment. As a result, a stack of selected frames awaits to be processed in the next step.
The underlying concept is that the information in adjacent frames in the video stream is redundant, thus
randomly sampling fixed number of frames from evenly split video segments not only ensure the coverage of
long-range temporal structure of video but also reduce the computation cost in later processing. Unlike TSN
and ECO, which employ a so-called two-stream architecture (RGB stream and optical flow stream), we only
use RGB stream here to avoid the heavy time and computation cost of extracting the optical flow from the
video. In this thesis, we sample 16 frames per video.

4.2. Encoder-Decoder framework
The encoder-decoder framework is widely applied in the open-domain video captioning task, as we already
introduced in the section 2.2.2.1. Most approaches use pretrained CNN on ImageNet to extract frame-level
features and optical flow or C3D to capture video dynamics during the encoding stage. Then, these fea-
tures are simply concatenated or fused as the video representation. The learned video representation is later
passed through the decoder (usually using RNNs like GRU or LSTM) to generate captions. Our proposed
model follows this framework as well. Still, we are more focused on retaining the motion in the video content,
from capturing local motion features during the encoding stage to obtaining the global temporal structure of
the video during the decoding stage.

4.2.1. Feature extraction (Encoder)
During the encoding stage, we use three pretrained deep neural networks (Resnet, Res3D, and ECO) to extract
frame-level feature, long-term action feature, and short-term dynamics, respectively, and then concatenate
them to form the final video representation.

Frame-level feature
A residual network, namely Resnet[47], was designed to deal with the degradation problem of the deep neural
networks caused by the gradient vanishing via introducing an identity shortcut connection. In the left of Fig.
??, a Resnet block is presented: Given x as the input, H(x) is the underlying mapping for the stacked layers.
While [47] applies a shortcut connection by a simple identity mapping presented as a bypass in the figure
and adding its outputs x to the outputs of stacked layers. Intrinsically, now this block approximates a residual
mapping F (x) := H(x)− x, instead of H(x). Thus, the original function is converted to F (x)+ x. That’s where
the main difference between ResNet and traditional DNNs lies. Traditional DNNs learn a mapping of H(x)
directly; ResNet forces itself to understand the residual of input x and output of the stacked layers. This
enables the gradient to flow back when the number of layers increases. That is, when F (x) = 0, Resnet can
still pass x back as H(x) = x. In other words, Resnet forwards the gradient from higher layers to lower layers
without any modification.

Once Resnet was proposed, it set new benchmarks for image recognition tas,k, and more and more vari-
ants emerged. Besides, lots of pretrained Resnet and its variants on ImageNet are available. We use the
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pretrained Renets provided by torchvision 1 to extract visual features. Given a sequence of n selected frames,
F = f1, f2, ..., fn , each frame image is scaled to 224×224 pixel and then is fed into the pretrained Resnet to get
2048-dimensional feature vector x. As a result, we get a stack of visual features X = x1, x2, ..., xn . As observed

Table 4.1: Error rates (percentage) of Resnet with different layers on the ImageNet validation set.[47]

Model # params top-1 err. top-5 err.
resnet34 21.8M 21.53 5.60
resnet50 25.6M 20.74 5.25

resnet101 44.5M 19.87 4.60
resnet152 60.2M 19.38 4.49

in [180], Resnet shows its potential to scale up to thousands of layers with increased performance. However,
it is at the cost of adding up the numbers of parameters largely to train. In the table 4.1, we summarise the
most popular Resnet with a different number of layers 4.1 and their performance on the ImageNet. From
the table, we can see that one percentage decrease in error rate approximately requires doubling the number
of parameters. In order to make a trade-off between performance and efficiency, we compare them in the
experiments.

Short-term dynamics
C3D[151] stands for 3D convolutional network, a simple yet effective approach for learning spatiotemporal
features in the short term. Different from 2D ConvNets that apply 2D convolution on videos and result in a 2D
feature map, C3D generates feature volume for a video via small 3 × 3 × 3 convolution kernels, preserving tem-
poral information. To explore how effective deep CNNs with 3d kernels work on the existing video datasets,
[45] make experiments on a bunch of 3D CNNs covering comparatively shallow networks to very deep ones.
For example, they propose to integrate Resnet (or its variants) with the 3D architecture, namely Res3D. There
are several interesting findings: 1) the Kinetics dataset is capable of training deep 3d networks such as 3d
ResNets of 152 layers without over-fitting. 2) The performance of 3d ResNets on the Kinetics dataset is sim-
ilar to the 2D ResNets on ImageNet. 3) The ResNeXt-101[170] achieved the best accuracy, and its pretrained
model outperforms other networks on UCF-101[138] and HMDB-51[64] datasets.

Figure 4.3: The architecture of ResNeXt compared with the architecture of Resnet.
Left: a Resnet block. Given x as the input, H(x) is the underlying mapping for the stacked layers. While [47] applies a shortcut

connection by a simple identity mapping presented as a bypass in the figure and adding its outputs x to the outputs of stacked layers.
Intrinsically, now this block approximates a residual mapping F (x) := H(x)−x, instead of H(x). Thus, the original function is converted

to F (x)+x.
Right: a ResNeXt block. A block of ResNeXt has several branches, which are formally called transformations. All of them share the same
topology, and their outputs are aggregated by summation. In other words, ResNeXt extends Resnet with a new dimension that is defined

as "cardinality" (the number of transformations). Each transformation is on low-level embedding, whose outputs are aggregated
together by summation. Similar to Resnet, a shortcut connection is employed as well. This figure is adopted from [170] and modified.

Following these interesting findings, in this thesis, we choose 3D ResNeXt101 to extract short-term dy-
namics from videos. ResNeXt-101[170] is a variant of Resnets of 101 layers that adopts the aggregated trans-
formations inspired by the split-transform-merge concept of Inception (GoogLeNet)[141]. As shown in the

1https://github.com/pytorch/vision
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right of Fig. 4.3, we can see that a block of ResNeXt has several branches, formally which is called transforma-
tions. All of them share the same topology, and their outputs are aggregated by summation. In other words,
ResNeXt extends Resnet with a new dimension that is defined as "cardinality" (the number of transforma-
tions). Each transformation is on low-level embedding, whose outputs are aggregated together by summa-
tion. Similar to Resnet, a shortcut connection is employed as well. As reported in [170], although ResNeXt
has more complex architecture than Resnet, owing to the homogeneous branches, the number of hyper-
parameters needed to be set is approximately the same as Resnet, and it can outperform Resnet in some
tasks.

We adopted the pretrained 16-frame ResNeXt model that achieves the best accuracy on the Kinetic dataset
in the video classification task from [45]2. It has 101 layers and 32 cardinality. For the short connection, it uses
shortcut Type B [47] that adds an extra convolutional layer in the identity shortcut path to solve the dimension
mismatch between the input and output. Then, we finetune its Conv5x and fc layers on our training set until
it converges (about 25 epochs) and uses the finetuned model to extract short-term dynamics from the videos.
More specifically, for each input video, we implemented the spatial transform and the temporal transform.
Temporal transform aims to split the video into non-overlapped n 64-frame segments (if the segment is less
than 64 frames, we loop itself as many times as necessary). Spatial transform is to crop every frame image in
the segments around a center position to 112x122 pixels. Accordingly, the size of each sample is 3x64x112x112
(channel x frame x pixel x pixel), and the output from the pretrained model for each video is a stack of 2048-
dimension features. In the end, we take the arithmetic mean along the axis of the stack, which results in a
single 2048-dimension context vector.

Long-term action features
Although Res3D shows its capacity in the action recognition task, it cannot cover the temporal information
of the entire video. To deal with this problem, we introduce ECO(Efficient Convolutional Network for On-
line Video Understanding)[188], to abstract the most significant action overtime and capture the relationship
among frames. Fig. 4.4 presents the overall architecture of ECO. Firstly, we can see that ECO uses the same

Figure 4.4: firstly, we can see that ECO uses the same aforementioned sampling strategy in section 4.1, dividing the whole video into N
equal-sized segments and randomly selecting one single frame from each of them. The sampled frames are fed into a 2D convolutional
network separately, the weight of which is shared. Accordingly, each frame is encoded into a Kx28x28 feature map for the scene. Later,
all of them are stacked together(KxNx28x28) and passed through a 3D convolutional network to learn the relationship of frames and

trace the action in the scene over time. [188]

aforementioned sampling strategy in section 4.1, dividing the whole video into N equal-sized segments and
randomly selecting one single frame from each of them. The sampled frames are fed into a 2D convolutional
network separately, the weight of which is shared. Accordingly, each frame is encoded into a Kx28x28 feature
map for the scene. Later, all of them are stacked together(KxNx28x28) and passed through a 3D convolu-
tional network to learn the temporal relationship of frames and trace the action in the scene over time. ECO
has a compact and straightforward architecture, which naturally can be easily adapted from its original field
(Action recognition) to other video understanding tasks like video captioning.

We adopted a 16-frame ECO Lite model that pretrained on the Kinetic dataset from [188]3. Then, we

2For details, see: https://github.com/kenshohara/video-classification-3d-cnn-pytorch
3For details, see: https://github.com/mzolfaghari/ECO-pytorch
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finetune the last fc layers of the 3D net on our training set until it converges (about 20 epochs) and use the
finetuned model to extract long-term action features from the global pool layer of the model. More specifi-
cally, for each input video, we transform it 3x16x224x224 (channel x frame x pixel x pixel) and pass it through
the pretrained model, which yields a single 512-dimension context vector as the long-term action feature.

Feature concatenation
In summary, we get three different kinds of features as presented in table 4.2. In order to achieve a final
representation that encodes scene information with (short-term and long-term) dynamics for the video, we
treat the features extracted from pretrained ResNeXt101 and ECO as the context and simply add them to the
end-of-frame-level features, which leads to a representation of 16x4608 dimension. In the experiments, we
further analyze how the context vector influences the model performance.

Table 4.2: Summary of features

pretrained model Dataset Fintuning Feature dimension Feature
Resnet ImageNet No 16x2048 Frame-level feature

ResNeXt101 Kinetics 25 epochs 2048 (short-term) local temporal feature
ECO Kinetics 20 epochs 512 (long-term) local temporal feature

4.2.2. Language Model (Decoder)
When the video representation V from the encoder is obtained, we employ the language model to automati-
cally decode it into a sentence S = {s1, s2, ..., sT } to describe the video content. Our language model (as shown
in the right part of Fig. 4.1) adopts the sequence-to-sequence architecture together with two layers, temporal
attention and sentinel gate. In the following sections, we illustrate how we modify them and integrate them
together.

Sequence-to-sequence architecture
Before we explain the adopted sequence-to-sequence architecture, we briefly introduce its key component
in the field of sentence generation, Recurrent Neural Network (RNN). RNN is frequently used due to its ability
to recognize patterns in sequences of data. Different from feedforward networks, RNNs have a feedback
loop connected to their past decisions, taking their output of the last time as the new input. Theoretically,
RNN can preserve the sequential information and find the correlation between events that are separated at
different times as long as possible. From another perspective, RNN is capable of sharing weights over time.
However, in practice, training RNN relies on Backpropagation Through Time (BPTT) [166]. BPTT suffers
from the vanishing gradient problem, which hinders RNN from learning the long-term dependency. Later,
two variants of RNN were proposed to solve this problem.

• Long Short Term Memory (LSTMs)[50] is a variant of RNN, which is designed to avert the vanishing
gradient problem so as to learn long-term dependencies. The key to LSTMs is a memory cell mt , which
is controlled by three gates (input it , forget ft , and output ot ). The memory cell works like a carrier of
information over time. it decides whether the input can change the state of mt while ft determines
what to remember or forget by the cell. Gate ot allows or prevents the cell state from impacting the
other neurons. LSTMs are formulated as below:

it =σ(Wi yt +Ui ht−1 +bi ) (4.1)

ft =σ(W f yt +U f ht−1 +b f ) (4.2)

ot =σ(Wo yt +Uoht−1 +bo) (4.3)

g t =φ(Wg yt +Ug ht−1 +bg ) (4.4)

mt = ft ⊙mt−1 + it ⊙ g t (4.5)

ht = ot ⊙φ(mt ) (4.6)

yt denotes the input to the LSTM at time t, and W, U, and b are parameters (the weight matrices for the
input yt , the previous hidden state ht−1, and the bias, respectively) need to be learned. σ is the sigmoid
activation function. In addition to it and g t , the candidate information, as shown in Equation 5.4, is
computed to determine what goes as the input into the memory cell when some more information is
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required. In Equation 5.6,φ represents the hyperbolic tangent function, and ht denotes the new hidden
state.

• Gated Recurrent Unit(GRU)[25] is a new generation of RNN, which is proposed to handle the short-
term dependency and gradient vanishing problem as well. GRUs follow the same input/output archi-
tecture from RNN but adopt the underlying concept of LSTMs. GRUs remove the memory cell and use
the hidden state ht directly to transfer information. It only has two gates: a reset gate rt and an up-
date gate zt . rt works similar to it of an LSTM. It determines how to combine the new input with the
previous memory (what input information to use or discard). zt is used to decide how much of the
previous memory ht−1 to keep around and can choose to forget and remember at the same time. GRU
is formulated as below:

zt =σ(Wz yt +Uz ht−1 +bz ) (4.7)

rt =σ(Wr yt +Ur ht−1 +br ) (4.8)

ĥt =φ(W yt + rt ⊙Uht−1 +b) (4.9)

ht = zt ⊙ht−1 + (1− zt )⊙ ĥt (4.10)

yt denotes the input to the GRU at time t, and W, U, and b are parameters (the weight matrices for the
input yt , the previous hidden state ht−1, and the bias, respectively) that need to be learned. σ is the
sigmoid activation function. In Equation 5.9, ĥt is introduced as a new memory content that uses rt to
preserve the relevant past information. ht in Equation 5.10 denotes the new hidden state. It is also the
final memory at the current time t, which is calculated to decide what to collect from current memory
content ĥt and what from the past ht−1.
From the equations, it is notable that GRU has fewer tensor operations than LSTM. Thus, it is compara-
tively easier to train and computationally cheaper than LSTMs. As reported in [25], GRUs have a similar
performance to LSTMs in many applications. There is not a clear winner as to which one is better.

Back to the topic, we follow the Sequence-to-sequence architecture of Sequence to Sequence model - Video
to Text (S2VT)[157] (which is aforementioned in Section 2.2.2.1). S2VT employs a two-layer stacked LSTM to
generate descriptions of the video content. As presented in the left of Fig. 2.3, the first LSTM layer processes a
sequence of visual frame features and encodes them into the hidden representations, while the second LSTM
layer turns them out into the word sequence when it receives the beginning-of-sentence tag. S2VT naturally
keeps the temporal structure of video, and it is able to generate sentences of variable lengths. Inspired by
this work, we also use two layers of RNN for sentence generation, namely the top and bottom RNN. How-
ever, we combine it with the attention mechanism and compare how effective LSTM and GRU work in the
experiments.

Figure 4.5: The illustration of temporal attention.[175] Figure 4.6: Temporal attention.[175]

Attention mechanism
We use res3D to obtain short-term dynamics and ECO to learn the relationship of actions that appear among
frames, but both of them model the local temporal structure of the video. To capture the global temporal
structure, we employ the Attention mechanism. Attention mechanisms in deep neural networks are inspired
by human attention that sequentially focuses on the most relevant parts of the information over time. We
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adopt the temporal attention mechanism [175] to learn a mapping that guides the model to know which
set of moments (frames) to look at when generating word sequences. As illustrated in Fig. 4.5, there is a
video with its caption "A man is shooting a gun" where "man","shooting" and "gun" point to the collection
of frames that contains the figure of themselves respectively. To generate a word like "man" the model ought
to focus on the set of frames that contains the figure of man. Similarly, to generate "shooting" and "gun" the
model needs to look at their relevant temporal regions.

Intuitively, temporal attention can assist this work. However, in the same sentence, words like "a" and "is"
are less relevant to the content of the video, which means the model does not need to use the visual informa-
tion from the video to generate such words. To handle this issue, on top of the temporal attention, we add
an extra layer, namely the sentinel gate[93], that decides whether the model utilizes the visual information
or relies on the context learned by the language model when generating words. In the paragraphs below, we
explain how the temporal attention with the sentinel gate works.

• Temporal attention [175]
Specifically, we use soft attention to capture the temporal structure of the video. Soft attention com-
putes the gradient in the regular backpropagation way, which makes it easy to adapt to RNN. As shown
in Fig. 4.6, the soft attention mechanism generates a vector of attention weights αi

t for all selected
frames at each time step t based on the previous hidden state ht−1 from the bottom RNN of our model
(which presumably summarizes all the previously generated words) and the corresponding frame’s
temporal feature vi from the top RNN. Instead of a simple averaging strategy used in [33], the dynamic
weighted sum of the temporal feature vectors according to attention weights generated at each time
step are fed into the bottom RNN (the actual caption generator). The attention mechanism makes the
decoder capable of focusing on a certain subset of frames by increasing the attention weights α of the
corresponding temporal feature Ve and vice versa.

• Sentinel gate[93]
Lu et al. introduces the sentinel gate in the image captioning task to automatically guide the decoder
when to look at the image and when to rely on the language model to generate the next word. They
extend the LSTM structure with an additional (sentinel) gate (which is similar to other gates in LSTM),
generating a sentinel vector other than a single hidden state.

ϵt = wTφ(Wa ˆht−1 +UaVe +ba) (4.11)

αt = so f tmax(ϵt ) (4.12)

ct = 1

N

i=1∑
N
αi

t vi , wher e
i=1∑
N
αi

t = 1 (4.13)

Overall
In summary, With the aforementioned background information, our decoder can be formulated as below:

• Top RNN layer
Input: the sequence of video features V output: encoded video features Ve and the hidden state ht

• Attention layer
using the hidden state of the top RNN at the last time step to initialize the hidden state of the bottom
RNN
Given the current hidden state of the bottom RNN layer ˆht−1 and the sequence of encoded video fea-
tures Ve

ϵt = wTφ(Wa ˆht−1 +UaVe +ba) (4.14)

αt = so f tmax(ϵt ) (4.15)

ct = 1

N

i=1∑
N
αi

t vi , wher e
i=1∑
N
αi

t = 1 (4.16)

• Sentinel gate
Given the current hidden state of the top RNN layer ĥt

ĉt =βt ct (4.17)

βt =ϕ(Ws ht +bs ) (4.18)
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Figure 4.7: The illustration of language model.

βt is projected into the range of denotes the parameters to be learned βt is projected into the range of
[0,1]. When βt = 1, it indicates that full visual information is considered, while when βt = 0, it indicates
that no visual information is considered to generate the next word.

• Bottom RNN layer
For the bottom RNN layer, one of the input xt is the embedding vector of the previous word st at each
time, given by:

xt =We st (4.19)

concatenate with the ĉt

x̂t = [xt , ĉt ] (4.20)

• MLP layer
The probability distribution over a set of possible words is obtained using the output of the Top RNN
layer as

pt = so f tmax(Upφ(Wp ĥt +bp )+d) (4.21)

4.2.3. Beam search
As we discussed in the last section, we get a probability distribution of words in the vocabulary through a
linear MLP layer. To get the word st , the most straightforward and greedy approach would be to pick up the
word with the highest likelihood and use it to predict the next word. Although this approach is simple and
time-saving, it is not optimal. In essence, what we expect is the best sequence other than a set of words of the
highest likelihood at each time. As the decoder generates the rest sequence relying on the previous word, we
need to get the sequence of the highest overall conditional probability. Thus, we employ Beam Search[167].

Other than greedy search that decides word immediately, Beam Search considers several candidates each
time and save a table of the candidate sequences. After the decoding finishes completely, the sequence that
has the highest overall score from a basket of candidate sequences is selected. The number of candidate word
is called beam width.
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Figure 4.8: Beam search. figure is modified from [167].

The above figure gives an instance of how Beam search works with beam width 3. Vertically, the top 3
probable words are taken into consideration at each time t. Horizontally, each path presents a candidate
sequence. Let us assume the blue chunks are the words picked by the greedy search: "The blue dog barks."
This means that at each time t, only the word with the highest probability is selected. Searching over each
path in the figure, "A red dog runs quickly now" in the golden chunk’ is the sequence found by Beam search.

There are few thing to note. Theoretically, beam search strategy enlarges the search space, it helps to find
a better solution. However, to search over all possible outcomes is time-consuming. Sometimes it may not
result in a goal at all, therefore beam width is set to limit the search space and prevent the endless loop when
a goal cannot reach.

The readers may observe the generated sequences are of different length. It is because during the sen-
tence generation, a EOS token is used to suggest when the process can stop. Normally it would be 0. In our
case, when a EOS token generated from the top RNN layer, the bottom RNN layer will stop decoding. Vice
versa, a SOS token is used as well to tell the decoder to start decoding. In practice, the sentence length will be
manually limited to prevent some extreme situations.
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Experiment Setup

In this part, the dataset we use is going to be introduced first. We will give details of how we prepare the data
and the procedure by which we train the models.

5.1. Data preparation
In this section, we explain with analysis how we select the dataset and what preprocessing procedure we take
on the dataset before we train the model.

5.1.1. Dataset and Analysis
We use MSR Video-to-Text [171] to evaluate the effectiveness of our proposed model. It is an open-domain
dataset that has the largest amount of clip-sentence pairs (200K in total). These videos are segmented into
clips that last 10 to 30 seconds. Each clip is annotated with 20 independent sentences. All videos in this
dataset are collected from the online search engine, covering 20 representative categories1. Altogether, it is
41.2 hours long and contains 29,316 unique words. B sides, this dataset encloses an audio channel, which
may be used as the multimodal feature.

There are several reasons why we chose this dataset. First, there is no available video dataset annotated
with descriptions for the visually impaired. Second, due to the pandemic and privacy issues, it is not possible
to collect data within a short time. M R-VTT dataset is what we could find the most suitable one that meets the
requirements of the visually impaired. From the User Study 3, we know that the target audience has several
requests that influence the choice of dataset:

1. The dataset should cover a wide variety of topics. ( people, sports/actions, vehicles/autos, howto, travel,
animals/pets, kids/family, food/drink, cooking, beauty/fashion, advertisement)

2. The video should not be longer than 30s.
3. The video should be described in a single sentence briefly.

We analyse this dataset with respect to aforementioned three requirements. In the following paragraphs,
we will explain why the MSR-VTT dataset meets the user requirements and is the best choice among several
existing datasets. The MSR-VTT dataset is the best choice in our case compared with other datasets. Let’s
look into Table. 5.1.

In terms of diversity, M-VAD[148], MPII-MD[128], and TACoS-multi-level[126] are narrowed in the field
of movie or cooking, Although MSVD[13] consists of videos which of different categories, its number of video
(1970 in total) is far too less for training. In contrast, the MSR-VTT dataset contains 7180 videos of 20 cate-
gories that are crawled from a commercial video site. Fig. 5.1 presents the distribution of video categories in
the MSR-VTT dataset. To ensure the representativeness of the dataset, MSR-VTT contains the top 150 videos
for the top 257 representative queries regarding 20 categories[171]. us, this distribution reflect the real in-
terest of people in daily life. The scale of MSR-VTT (7180 videos in total) ensures the diversity of video as
well.

1These 20 categories include music, people, gaming, sports (actions), news (eventspolitics), education, TV shows, movie, animation,
vehicles, how-to, travel, science (technology), animal, kids (family), documentary, food, cooking, beauty (fashion), advertisement.
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Table 5.1: Comparison among different video-to-text datasets

Dataset Context
Total

videos
Total
clips

Avg. clip length
(s)

Total video
(h)

Total
sentences

M-VAD Movie 92 48,986 6.2 84.6 55,904
MSVD Various/open 1970 1970 10 5.3 70,028

MPII-MD Movie 94 68,337 3.9 73.5 68,37
TACoS-multi-level Cooking 185 14,105 360 27.1 5 52,593

MSR-VTT Open 7180 10,000 20 41.2 200,000
ActyNet Cap. Open 20000 20,000 180 849 100,000

Figure 5.1: The distribution of video categories in the MSR-VTT dataset. Figure is adopted from [171]

Concerning the average clip length, across all datasets, only MSR-VTT (20 seconds) is close to 30 sec-
onds, as required. The video length of other datasets is either too long or too short. The video lengths of
M-VAD[148], MPII-MD[128], and MSVD [13] are all below ten on average. The figure of that for ActyNet Cap.
[38], and TACoS-multi-level[126] are 180 seconds and 360 seconds, respectively, far from our 30-second re-
quirement. To further analyze the MSR-VTT dataset, we make a box plot to see the distribution of clip length
among different categories as shown in Fig. 5.2. From the figure, we can see that the majority of clip length
lies in the range from 10 seconds to 20 seconds, no matter for what category; the outliners do not exceed 30
seconds.

Regarding sentence complexity, we draw a box plot to see the distribution of caption length among dif-
ferent categories, as shown in Fig. 5.3. st caption lengths are floating around ten words. Although some
outliners are extremely long, we can filter them out from the dataset when doing data preprocessing, which
won’t influence the semantics since each clip is paired with 20 descriptive captions. To conclude, the MSR-
VTT dataset is currently the most suitable dataset we could achieve for video diversity, video length, and
sentence complexity.

5.1.2. Data Preprocessing
We employ its standard dataset split [171]. It consists of 10000 clips, of which 6,513 are for training, 497 are
for validation, and 2,990 are for testing. The ch video is annotated with 20 English captions and a category tag
(20 categories in total).
Before we train the model, we prepare the textual data. Firstly, NLTK is used to tokenize words out from
sentences as a bag of the words where ’SOS’ and ’EOS’ are added to the start and end. Words with frequency
less than 3 are filtered out. Captions with a length longer than 28 are also removed from the dataset and
captions with less than 28 words are zero-padded.

5.2. Metric
We use BLEU@4[109], CIDEr-D[155], METEOR[8], and ROUGE[82] for evaluation. The official codes from
Microsoft COCO evaluation server[19] are employed to compute the score. To analyze the readability of cap-
tions, we use several readability indexes, which we will introduce in the next chapter.
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Figure 5.2: The Y axis represents the clip duration (second); the 0 to 19 index in the X axis refers to 20 categories in the sequence of
music, people, gaming, sports (actions), news (eventspolitics), education, TV shows, movie, animation, vehicles, how-to, travel, science

(technology), animal, kids (family), documentary, food, cooking, beauty (fashion), advertisement, respectively.

5.3. Feature extraction
We use the pretrained Resnet152 provided by torchvision 2 to extract visual features. Given a sequence of
16 selected frames, F = f1, f2, ..., fn , each frame image is scaled to 224×224 pixel and fed into the pretrained
Resnet to get 2048-dimensional feature vector x. As a result, we get a stack of visual features X = x1, x2, ..., x16.

We adopt the pretrained 16-frame ResNeXt model that achieves the best accuracy on the Kinetic dataset
in the video classification task from [45]3. Then, we finetune its Conv5x and fc layers on our training set
until it converges (25 epochs) and uses the finetuned model to extract short-term dynamics from the videos.
Specifically, for each input video, we implemented the spatial transform and the temporal transform. Tempo-
ral transform aims to split the video into non-overlapped n 16-frame segments (if the segment is less than 16
frames, we loop itself as many times as necessary). Spatial transform crops every frame image in the segments
around a center position to 112x122 pixels. Accordingly, the size of each sample is 3x16x112x112 (channel x
frame x pixel x pixel), and the output from the pretrained model for each video is a stack of 2048-dimension
features. In the end, we take the arithmetic mean along the stack’s axis, resulting in a single 2048-dimension
context vector.

We adopted a 16-frame ECO Lite model that pretrained on the Kinetic dataset from [188]4. Then, we
finetune the last fc layers of the 3D net on our training set until it converges (20 epochs) and use the finetuned
model to extract long-term action features from the global pool layer of the model. Specifically, for each input
video, we transform it 3x16x224x224 (channel x frame x pixel x pixel) and pass it through the pretrained model,
which yields a single 512-dimension context vector as the long-term action feature.

We treat the features extracted from pretrained ResNeXt101 and ECO as the context and pad them to the
end of frame-level features, which leads to a representation of 16x4608 dimension. In the experiments, we
further analyze how the different features influence the model performance.

5.4. Training details
We use negative log-likelihood loss and Adam Optimizer[60]. P torch nn.embedding is employed to take the
word token IDs and convert these to word vectors. T e weights for the nn.The embedding layer is learned
during the training process as well. The model is optimized by Adam Optimizer[60]. The initial learning rate

2https://github.com/pytorch/vision
3For details, see: https://github.com/kenshohara/video-classification-3d-cnn-pytorch
4For details, see: https://github.com/mzolfaghari/ECO-pytorch
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Figure 5.3: Y axis represents the clip caption length; the 0 to 19 index in the X axis refers to 20 categories in the sequence of music,
people, gaming, sports (actions), news (eventspolitics), education, TV shows, movie, animation, vehicles, how-to, travel, science

(technology), animal, kids (family), documentary, food, cooking, beauty (fashion), advertisement, respectively.

is set to 4e-4 with a weight decay of 5e-4 every every 50 epochs. To avoid an explosion of gradients, we clipped
all gradients with five as the maximum norm. The hidden size of the LSTM is 512, and dropout is used with
a value of 0.5 for regularisation. A beam search with a size of 2 is used for generating the final captions when
testing.

We train the models on a single Titan GeForce GTX GPU with 12GB memory and conduct the following
study.
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Result

The goal of this chapter is to answer Research Question 3 - 6. In order to answer these four questions, we
carry out several experiments. The chapter is organized as follows:
Firstly, we compare the performance of our model with different add-on components like adjusted attention
and various pertained feature models. This subsection is aimed to validate the hypothesis we hold for Re-
search Question 3: How can we improve the performance of the baseline video caption model? The next
subsection presents the model performance on different categories of video in order to investigate the ef-
fectiveness of the solution we give to Research Question 4: How can we design the video caption model
more sensitive to actions? The following subsection introduces several metrics to measure the readability
of our models. It gives evidence that our model can generate sentences that are suitable for people with vi-
sual impairment regarding Research Question 5: Can the video caption model generate sentences with good
readability? In the next subsection, the latency of the model with different add-on components is contrasted.
Furthermore, the Research Question 6: How to reduce the latency of the video caption model? is addressed.
At the end of this chapter, we give some examples of captions generated by our best model against the ground
truth.

42
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6.1. Accuracy Analysis
In this subsection, we compare the performance of our model with different add-on components like ad-
justed attention and various pretrained feature models such as eco and c3d. They are evaluated across four
different metrics ( Bleu_4, CIDEr, ROUGE_L, and METEOR) on the MSR-VTT dataset. The results are shown
in Table 6.1.

Feature Model Bleu_4 CIDEr ROUGE_L METEOR
1 res152 (baseline) att 36.1 40.1 58.3 26.5
2 res152 adj_att 36.8 41.3 58.9 26.8
3 res+eco adj_att 38.0 41.7 59.5 27.0
4 res+c3d adj_att 38.8 42.5 59.4 27.4
5 res+c3d+eco adj_att 40.0 44.6 60.0 27.7
6 res+c3d(d)+eco adj_att 38.2 43.1 58.9 26.9
7 res+c3d+eco adj_att (b=2) 40.2 46.0 60.3 27.9
8 Res101+RN SGN(b=5) 40.8 49.5 60.8 28.3

Table 6.1: Performance on the MSR−VTT dataset with different add-on components. res152(res), eco, c3d, Res101 and RN denote
Resnet152, 16-frame ResNeXt[45],16-frame ECO Lite[188], Resnet101 and 3D−ResNext−101, respectively. They are pretrained models

for feature extraction. att, ad ja t t and b refer to attention, adjusted attention, and beam search width, respectively. SGN[133] is the
state−of−the−art model that uses a similar backbone with this work.

With the purpose of seeing if add-on components are effective, the 1st to 7th row in the table shows the
results across different metrics. Compared to the other three metrics, CIDEr is more important for evalu-
ating performance. It is because CIDEr is designed for the captioning task, and CIDEr is stated to be more
consistent with human judgment than the others[155].

The first row of the table presents the performance of the baseline model. It is an encoder-decoder ar-
chitecture with a soft attention mechanism. Pre-trained resnet152 is used for its feature extraction. When
adjusted attention layer is added to the baseline model, there is a performance increase on all four metrics,
especially on the CIDEr metric from 40.1 to 41.3. This indicates that the adjusted attention layer helps to
improve the performance of the baseline model.

From the 2nd to 5th row in the table, we study the add-on features (res152, eco, and c3d feature). The ac-
curacy of the model with adjusted attention and resnet152 feature is presented in the 2ed row, 36.8, 41.3,58.9,
and 26.8 in Bleu_4, CIDEr, ROUGE_L, and METEOR, respectively. By adding the eco feature or c3d feature,
the performance of the model is improved across all four metrics. This implies that these two features give
the model more dynamic information that resnet152 can not provide to generate the correct sentences. The
most obvious enhancement is on the Bleu_4 metric. The eco feature and c3d feature help the model improve
from 36.8 to 38 and 38.8 separately. This may because Bleu_4 is initially designed for assessing documents,
these two features assist the model produce longer and richer sentence.

If eco and c3d features are employed together (Row 5), the model with an adjusted attention layer gets a
more significant boost in performance. Compared to the model only using the resnet152 feature, there is an
8.7%, 8.0%,1.7%, and 3.4% increase in Bleu_4, CIDEr, ROUGE_L, and METEOR, respectively. This pander to
our assumption that eco and c3d can provide different kinds of action features. The eco feature is for long-
term action, while c3d is for short-term dynamics. They are complementary in capturing action in videos.
Since the c3d pretrained model takes much time to extract features from the video, we do down−sampling on
video frames to see how the performance alters. Row 6 in the table shows that down-sampling will not decline
the performance much. As CIDER is most consistent with human judgment, the score is only dropping from
44.6 to 43.1.

On top of it, the performances of model on CIDEr can be further improved to 46 if beam search technique
with beam size 2 is applied (Row 7). Compared to the baseline model, Our model has a 14.7% increase on
CIDEr.
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6.2. Category Analysis
In this section, we evaluate the performance of each model in different video categories across different met-
rics. To see if adding eco and c3d features helps the model be more sensitive to actions.
There are 20 video categories in total, including music, people, gaming, sports/actions, news, education, TV
shows, movies, animation, vehicles, how-to, travel, science (technology), animal, kids (family), documentary,
food, cooking, beauty (fashion), advertisement. Four different metrics, Bleu_4, CIDEr, ROUGE_L, and ME-
TEOR, are used to evaluate the performance. Three models are compared here: a model with resnet, a model
with resnet and eco, and a model with resnet, eco, and c3d.

In the following sections, r, c, and cc are used to represent the model with resnet, a model with resnet and
eco, and a model with resnet, eco, and c3d, respectively. In the following four line charts, we introduce three
new representations, c_over_r, cc_over_r, cc_over_c. c_over_r represents the percentage of improvement in
the model with resnet, and eco gets over the model with resnet. The same goes for cc_over_r and cc_over_c.
We first see the performance of each model in all video categories generally. And then, we look at the howto
and sports/actions categories since these two categories contain more complex Human actions.

6.2.1. Improvement on Metric CIDEr
For the line charts below, we can see the model improvement on metric CIDER.

In the first line chart, Model c has a positive enhancement over Model r in 12 categories. The greatest
one is on tv-show which is over 20%. In the second line chart, Model cc has an positive enhancement over
Model r in 12 categories, with the greatest one exceeding 30% on tv-show. Comparing model c and model
cc, we can see the third line chart illustrates that Model cc defeats Model c in tv-show and beauty by a large
margin while witnessing an evident decrease in education. We look at the last line chart; model cc has a small
advantage over Model c. However, Model cc only has a performance rise in half of the categories. The margin
of enhancement is still larger than that of the decrease in the other half of the categories.

Figure 6.1: Improvement on Metric CIDEr

To conclude, in terms of CIDER, Model c and Model cc outperform Model r in majority of video cate-
gories. Both Model c and Model cc has an improvement on howto and sports/actions categories compared to
Model r. Model cc takes advantage over Model c in most categories, but the improvements are not significant.
Besides, Model c performs slightly worse than Model c in the howto and sports/actions categories.
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6.2.2. Improvement on Metric METEOR
For the line charts below, we can see the model improvement on metric METEOR.

In the first line chart, Model c has a marginal enhancement over Model r in 13 categories. The one with the
highest rise is in how-to, which is 5%. There is an obvious decline in ads, bottoming out to 8%. In the second
line chart, Model cc has a positive enhancement over Model r in 14 categories, with the greatest one exceeding
8% on beauty. Similar to Model c, Model cc has decline in ads by 8% as well. Comparing Model c and model
cc, the third line chart illustrates that Model cc defeats Model c in tv-show and beauty by large margin while
witness the evident decrease in education. Looking at the last line chart, Model cc has an evident advantage
over Model c. Model cc only has small performance decline in 4 categories and a 8% drop on education.

In summary, in terms of METEOR, Model c and Model cc still outperform Model r in majority of video
categories. Both Model c and Model cc has an improvement on howto category compared to Model r but the
performance on the sports/actions category is marginally enhanced. Model cc take evident advantage over
Model c in most of categories but have no enhancement on the sports/actions category.

Figure 6.2: Improvement on Metric METEOR

6.2.3. Improvement on Metric ROUGE_L
For the line charts above, we can see the model improvement on metric ROUGE_L.

In the first line chart, Model c has a marginal enhancement over Model r in 13 categories. The one with
the highest rise is in tv-show which is 5%. There is a decline in ads, exceeding 4%. In the second line chart,
Model cc has a positive enhancement over Model r in 14 categories. Three categories (beauty, howto and
tv-show) have a surge above 5%. While Model cc still has decline in ads by 3%.

Comparing Model c and model cc, we can see the third line chart illustrates that Model cc defeats Model c
in animals, animation, and vehicles by a large margin while witnessing a slight decrease in education by 2%.
Looking at the last line chart, we can see model cc has an evident advantage over Model c. Model cc only has
small performance decline in 3 categories and a 3% drop on education.
To conclude, in terms of ROUGE_L, Model c and Model cc still outperform Model r in majority of video cate-
gories. Both Model c and Model cc has an improvement on howto category compared to Model r but the per-
formance on the sports/actions category is slightly enhanced. Model cc take evident advantage over Model c
in most of categories but smaller enhancement on on the howto and sports/actions categories.
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Figure 6.3: Improvement on Metric ROUGE_L

6.2.4. Improvement on Metric Bleu_4
For the line charts above, we can see the model improvement on metric Bleu_4.

In the first line chart, Model c has an enhancement over Model r in 12 categories. The one with the highest
rise is movie which is nearly 15%. There is a large decline in ads, around 15%. In the second line chart, Model
cc has a considerable enhancement over Model r in 15 categories. Three categories (movie, science and tv-
show) have a surge above 10%. While Model cc still has a decline in ads by more than 10

Comparing Model c and model cc, we can see the third line chart illustrates that Model cc defeats Model
c in tv-show and animation by a large margin while witnessing an evident decrease in movie. Looking at the
last line chart, we can see model cc still has an evident advantage over Model c. Model cc only has perfor-
mance decline in 2 categories, around 10% drop on people and movie.

To conclude, in terms of Bleu_4, Model c and Model cc outperform Model r in majority of video categories.
However Model c and Model cc do not have an improvement on the howto and sports/actions categories.
Model cc take evident advantage over Model c in most of categories. And Model c and model cc have the
similar performance on these two categories.

6.2.5. Conclusion
• Adding eco and c3d features helps the model to perform better on many video categories across four

metrics. As the MSRVTT dataset is rich in action among categories, it has been widely used for action
recognition tasks. From this point on, eco and c3d features help the model improve. This implies that
they enhance the sensitivity of the model to the actions.

• The model performance on the howto and sports/actions categories is only slightly improved. This
may be because the actions contained in videos from these two categories are more complex. The
sports/actions category contains a lot of sports videos that include many people, which adds to the
difficulty for the model in capturing the most action and generating a single sentence. Videos in the
howto category are more trivial; most of them are instructions that teach people to do something step
by step and normally with audio. This enhances the challenge for the model to summarise.

• The model performance drop on ads and education is predictable for two reasons. The videos related to
ads and education are always accompanied by rich audio as supplementary information. We exclude
the audio of the dataset from training. Ads and education videos generally involve more stationary
objects like products and text. Our model is designed to be tailored to human action. Thus, the model
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Figure 6.4: Improvement on Metric Bleu_4

may be less sensitive to ads and educational videos.
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6.3. Readability Analysis
From the User Study 3, we know that visually impaired people prefer generated sentences by video caption
models that are easy and simple to understand. This results in our Research Question 5: Can the video
caption model generate sentences with good readability? In addition, we add an extra adjusted gate to the
attention mechanism in the model, which we intuitionally believe can guide the decoder to learn a better
attention weight. Thus, the model can generate sentences with better readability.

As to answer this research question and check the effectiveness of adjusted gate, we conduct a study.
e use several readability metrics to evaluate sentences generated by the models with and without adjusted
gate. eadability score is a computational index normally based on sentence length, syllable density and word
familiarity. t can tell us the age range and education level the reader need to comprehend the input text.

6.3.1. Experiment setup
We choose the model with attention mechanism (the baseline model) and the model with adjusted attention
mechanism (the second model refers to Accuracy table 6.1) as a comparison. e only select these two models
for two reasons. e would like to validate if an extra adjusted gate can guide the model generate sentence with
better readability. We also want to exclude the interference caused by the pretrained model from the result.
There is very rare literature on the intersection of readability and people with visual challenges. owever, this
research [125] implicates that the use of short words and the including more familiar words can improve
readability and comprehension for people with dyslexia. This finding is inspiring. The SMOG Index, The
Gunning Fog Index, and Flesh Reading Ease involve syllables counting in computation, though in different
ways. That means these three metrics favor text with short words. When it comes to including more familiar
words, The New Dale Chall can be helpful since it uses a set of predefined common words to evaluate. n
addition, the New Dale Chall is reported to be more suitable for student[98], which exactly coincides with
our target audience. Therefore, we select these four metrics to evaluate the readability of sentences from our
models. Since readability metrics are designed to evaluate text. pply them in every single sentence will lead
to bias. e aggregate all captions generated for test set and treate them as a whole text input to four different
metrics.

6.3.2. Result
Table 6.2 presents the readability scores across four selected metrics. For simplicity, we refer Model att to the
model with an attention mechanism and model adj_att to the model with an adjusted attention mechanism.
enerally, two models get quite similar performance across four metrics. Model att gets 5.68, 3.85, 85.39, and
4.90, scored by SMOG, Gunning Fog, Flesch Reading Ease, and Dale Chall, respectively; Model adj_att gets
5.46, 3.80, 85.97, and 4.94 scored by SMOG, Gunning Fog, Flesch Reading Ease, and Dale Chall respectively.
inIncewo models differ marginally in scores by each metric; the recommended reader age falls in the same
range: 11-14, 7-11, 12-13, 10-12 suggested by SOMG, Gunning Fog, Flesch Reading Ease, and Dale Chall
in the order given.

Querying the Interpretation Table of four metrics (table 2.3, 2.4 and 2.6) given in section 2.5, we can see
that two models are evaluated to be easily read by the public. The suggested age range of 7-14 is also below
the age of our target audience. Model adj_att outperforms Model att in SMOG and Gunning Fog by 3.9% and
1.3% while is defeated slightly in Flesch Reading Ease and Dale Chall by 0.68% and 0.82%. Since SMOG and
Gunning Fog favor text involving fewer syllables, this result implies that Model adj_att probably can generate
sentences involving more short words compared to Model att. the decline in Dale Chall indicates that Model
adj_att may tend to generate sentences including words that are unfamiliar to 4th-grade students. However,
from the writer’s perspective, regarding the significant accuracy improvement (by 3% in CIDEr), the decline
in Flesch Reading Ease and Dale Chall is too marginal to reflect the tendency.

To answer Research Question 5, the video caption model can generate sentence with good readability
and it is suitable for our target audience and the public to read easily. y adding an extra adjusted gate to
attention mechanism, it increases the model performance in accuracy without adding difficulty in reading.
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Table 6.2: Readability Score across four metrics
att represents the model with attention mechanism; adj_att represents the model with an adjusted attention mechanism.

Model Smog Gunning fog Flesch Dale Chall

att
score 5.68 3.85 85.39 4.90

age range 11-14 7-11 12-13 10-12

adj_att
score 5.46 3.80 85.97 4.94

age range 11-14 7-11 12-13 10-12

Interpretation
ideal for

average readers
very easy

to read
fairly easy

to read
easy

to read
Improvement 3.9% 1.3% -0.68% -0.82%

6.4. Latency Analysis
In this subsection, the latency of the model with different add-on components is contrasted. Then, we try
to analyze the relation between video and latency in terms of video length and the number of frames. Fur-
thermore, we try to find a proper answer to the Research Question 6: How to reduce the latency of the video
caption model? By downsampling and changing the model parameters, the latency of the model has been
reduced.

Firstly, we plot two histograms to see the distribution of video length and video’s number of frames sepa-

Figure 6.5: Histgram for video length in the test set. Figure 6.6: Histgram for video’s num of frames in test set

rately in the test dataset, as shown above. The left histogram for the video length presents a long-tail like
distribution. All the video are less than 30 seconds. About 65% of video is short than 15 seconds and only 5%
video are longer than 25 seconds. The right histogram shows nearly 60% videos have number of frames in the
range from 250 to 400.

6.4.1. Latency
At the beginning of this study, the model had a high latency, but then we found out that it was because of a
conflict between Pytorch and Windows. An error was caused by setting num_workers, which is the parameter
of Dataloader in Pytorch, greater than 0 in the Windows environment.

When the value is 0, only the primary process is used to load the dataset, and when the value is greater
than 0, the corresponding number of sub-processes will be created to be responsible for the related data
loading work. This method uses the multiprocessing package to create a new subprocess and multi-process
synchronization, and the fork function can be used to execute a new subprocess from the corresponding code
(using the fork statement) in Linux-related systems, while there is no corresponding function in Windows-
related systems. This difference will lead to some code being executed repeatedly in the relevant training
code in the Windows environment, resulting in some exception errors. Thus, once we set the num_workers
to zero, the model latency meets our requirements.

Latency histogram
The latency of the model with different add-on components is shown in Fig. 6.7.
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Figure 6.7: Lantency distribution

From the figures, we can clearly see that:

• Model 1 is the model with adjusted attention model, which is only trained on the reset feature. The
latency on all the test videos is less than 0.65 seconds.

• Model 2 is the model with adjusted attention model, which is trained on resnet and eco features. Com-
pared to Model 1, the latency has increased a little. The latency of the majority is below 0.8 seconds.

• Model 3 is the model with adjusted attention model, which is trained on three features: resnet, eco, and
c3d. With the joining of c3d, the latency has significantly increased. The latency on 90% of videos is
less than 3 seconds. There are some extreme cases whose latency exceeds 4 seconds. The outliers are
further analyzed in the next section.

• Model 3(d) is the model with adjusted attention model, which is trained on three features: resnet, eco,
and c3d. We have witnessed a large-time increase by using the c3d model; we evenly downsample the
video to 24 frames per second. Compared to Model 3, the latency has been reduced a lot. The latency
of the majority is below 2.75 seconds.

Latency vs. video length and number of frames
To explore the the relation between the relation between latency and video in terms of length and number of
frames, we plot line charts for each model. From the figures 6.8,6.9,6.10 and6.11 , we can clearly see that:

• Generally, the latency of model 1 fluctuates around 0.5 seconds with a margin between 0.65 and 0.25
seconds on both the latencyframe and latencyduration plots. When the duration is close to 30 seconds,
and the number of frames reaches 900, the latency jumps to 0.75 seconds.

• The latency of model 2 has a similar trend with model 1 but has increased a little. It fluctuates in the
range from 0.2 to 0.8 seconds, with a mean of around 0.575 seconds. It rises dramatically over 0.85
seconds when the duration is close to 30 seconds, and the number of frames reaches 900 as well.

• The latency of model 3 and model 3d share a similar trend. The relation between latency and frame
number or duration is approximately linear.
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Figure 6.8: model 1: resnet

Figure 6.9: model 2: resnet+eco

Figure 6.10: model 3: resnet+eco+c3d
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Figure 6.11: model 4: resnet+eco+c3d(downsample)

6.4.2. Comparison
In this section, further analysis on outliers and is conducted. What leads model 3 to be timeconsuming is
investigated as well.

Figure 6.12: Boxplot

We divide the whole process into two parts: transform and extract feature inference. Transform and ex-
tract feature is the time used to prepare the features; inference is the time used to generate sentences. The
time used by each part is measured. The result is presented in three box plots; see Fig. 6.12. Firstly, we
look into the bottom box plot. Resnet (Model 1) and resnet+eco (Model 2) have very low latency and are
distributed tightly within a range from 0.5 to 1.0 seconds. Regarding resne+eco+c3d (Model 3), it is compara-
tively widespread, with a mean of around 2.25 seconds. While it has many outliers. Similarly, resnet+eco+c3d(d)
(Model 3 with downsampling) has many outliers as well, and its mean is around 1.5 seconds. Comparing the
first and second box plots, we can infer that the transform and extract feature contributes the most time to
the latency. Also, the outliers are from this part as well with respect to Model 3 and Model 3d.
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Outliers
From the box plots and histograms, we can see there is some outliers. In this part, those videos whose la-
tency exceed the third quantiles are defined as the outliers. These video are drawn from the dataset and their
information are listed in below table.

There are a total of 14 outliers, as shown in the table. It is the video’s original ID in the MSRVTT dataset,
where all the videos have the exact resolution. Duration stands for the video length in seconds. n_frame is
the total number of frames contained by the video. Category or cat_map represented the video category, as
the name implies. All the outliers have long lengths, ranging from 26 to 30 seconds roughly. Their number of
frames is more than 800. It is interesting to find that 5 out of 14 outliers are from the sports/actions category.
This is to exclude the possibility that videos in the sports/actions category are much longer than videos in
other categories. We check the mean of n_frame of videos in different categories. The mean varies from 330
to 450 frames, and 15 out of 20 categories have a mean of n_frame more than 400 frames. The means of
n_frame of videos in sports/actions category is 432. It does go above average. That suggests that the videos
from this category contains richer information in frame than others.

Figure 6.13: Outliers

outliers of Model 3d and Model 3d. It is the video’s original ID in the MSRVTT dataset, where all the videos
have the same resolution. Duration stands for the video length in seconds. n_frame is the total number of
frames contained by the video. Category or cat_map represented the video category, as the name implies.

We randomly draw one outlier from the sports/actions for the case study. Video7505 is selected, which
is 29 seconds long and 870 frames. By inspecting this video (see figure 6.14), we find the video content is
considerably rich: a man is getting interviewed and is talking about the accident that happened to him in the
sea. Then, the video shows how he was rescued by people in the speedboat. At last, the man shows up again,
touching his head with his hands. In summary, these three factors add to the increase in latency.

From the table 6.13, we can see all the outliners are longer than 26 seconds and contain more than 800
frames. In contrast, we randomly drew one video from the test set, which met the same conditions but was
not an outliner. Video7339, which is 27 seconds long and 810 frames. However, the video is long and has a
large number of frames. Its content is comparatively unitary (see figure 6.15): A firework blooms and fades
away slowly in the night sky, accompanied by the cheers of the people in the background.
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Figure 6.14: Video7505

A man is getting interviewed and is talking about the accident that happened to him in the sea. Then, the
video shows how he was rescued by people in the speedboat. At last, the man shows up again, touching his

head with his hands.

Figure 6.15: Video7339

A firework blooms and fades away slowly in the night sky, accompanied by the cheers of the people in the
background.
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6.5. Case study
This subsection presents some good or bad examples of captions generated by our best model(adjusted
model with resnet, eco, and c3d features) against the ground truth.

6.5.1. Good examples

Figure 6.16: Good example 1

GT: a crowd of people are dancing. Ours: a group of people are dancing

Figure 6.17: Good example 2

GT: an advertisement about a baby stroller. Ours: A woman is showing us how to use a stroller.

• Good example 1. Although our model uses another phrase, a group of ’, to substitute a crowd of people,’
the caption generated expresses the same meaning.

• Good example 2. Two captions have different biases. The ground truth explains the scene where this
video takes place. Our captions directly describe the activity contained in the video. In another way, it
proves that our model is more sensitive to the action in the video.
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6.5.2. Bad examples
• Bad example 1. Comparing the ground truth and caption generated by our model, our model failed to

recognize it as a ‘new’ system in the video game. There are probably two reasons behind it. The model
wasn’t specifically trained to recognize the text in the image. We didn’t use the audio to train the model.

• Bad example 2. Our model succeeded in detecting the activity but failed to recognize the color dress of
the dominant woman in the video. It may be interfered with by another model in a black dress in the
background.

Figure 6.18: Bad example 1

GT: there is a man talking about a new system Ours: a person is explaining about the video game

Figure 6.19: Bad example 2

GT: a female model is walking down a runway. Ours: a woman in a black dress is walking down the runway
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Discussion

In this chapter, the Limitation of this work will be discussed and the direction of furture work will be also
pointed out.

7.1. Limitation
Throughout this thesis, some limitations will be discussed. It is worth to analyze and understand not only for
this thesis but also for future work. We will address the limitations in four aspects as below.

• Sampling. In this thesis, we are subject to the pre-trained models (Resnet and ECO) used for feature
extraction, and we sample a fixed number of frames from videos. With respect to another pretrained
C3d model, we use all frames for feature extraction. From the ablation study on latency, we see that the
bottleneck of latency lies in the feature extraction, and the time consumed by the C3d model among
the three pre-trained models is dominant. By downsampling at a fixed frame rate for the C3d model,
the latency has been significantly reduced. Meanwhile, it still does not meet the latency requirement of
our target audience. A dynamic sampling strategy is likely to be ideal for practice.

• Latency. As mentioned in this work, the model with the best performance does not meet the latency
requirements, and its bottleneck relies on feature extraction by using the C3d model. And the latency
can be reduced by changing the sampling strategy. Currently, the model is running on a single Titan
GeForce GTX GPU with 12GB of memory. If we have multiple GPUs, we can use data parallel or model
parallel with pipeline input to speed up according to Pytorch Documentation 1. In addition, we can
also assign each pre-trained model to each GPU to extract features simultaneously to reduce latency.
[78] Another possible solution is to use the quantization technique to scale down the model itself.

• Human Evaluation. Apart from automated evaluation metrics, human evaluation is also often used to
judge the quality of machine-generated captions as a supplement. In this thesis presented above, we
have not covered this. We have considered and designed a human evaluation survey, but our imple-
mentation of human evaluation has been hindered by several obstacles. We have designed a survey on
the Online crowdsourcing platform Figure eight 2 where 20 most representative videos are enclosed to-
gether with captions generated by different models. We employ a tutor (as our participants are students
from Visio, one of them is the best candidate who understands this project but also knows the visually
impaired people very well) to explain the purpose of the survey and guide the participants all the time.
The tutor’s main responsibility is to describe the video content from the perspective of the visually
impaired people to our participants. Then, with the description given, the participants are required
to score several models in terms of three measurements: Correctness, Complexity, and Relevance. In
addition, we asked the coach to write down the description beforehand to maintain consistency. Ac-
cordingly, we can find the best model. However, the result is unsatisfying. We see homogeneous scores
across these three measurements per model. This is obviously not what we want since it indicates that
Correctness, Complexity, and Relevance are probably not distinguishing criteria for visually impaired

1https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html
2https://f8federal.com
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people to evaluate captions. From the first iteration of the human evaluation survey, we also learned
that our participants had difficulty accessing the online crowdsourcing platform and understanding the
survey. Without a tutor who knows the project and participants well to guide the process all the time,
we probably cannot collect valuable and authentic results. This leads to the conclusion that the survey
can not be conducted online. In the second iteration of the human evaluation survey, we decided to
use usefulness as the measurement instead. The participants are supposed to rank the captions given.
Usefulness is defined as the subjective score, with highest rank to the “Most useful” and lowest rank to
the “Least useful”. No two captions should be given the same rank unless they are identical. The second
iteration of human evaluation survey was suspended firstly due to scheduling problem with tutor and
then has been aborted due to pandemic.

• Dataset. There is no available video dataset that is annotated with descriptions for visually impaired
people. Besides, due to the pandemic and privacy issues, it is not possible to collect data within a short
time. The MSR-VTT dataset is the most suitable one for meeting the requirements of visually impaired
people, although there exists some ambiguity in the division of categories. If we could collect the data
directly from people with visual challenges, it would be helpful to train a model that fits their needs
better.

7.2. Future work
This thesis has presented the preliminary work on video captioning for the visually impaired people. For
future work, there are several directions can be further investigated.

More work can be done on the sampling strategy. As we discussed in section Limitation, a dynamic sam-
pling strategy would be more practical: Sample more frames for longer videos while sampling fewer frames
for shorter videos. It would also be interesting to investigate the informative frame picking in the video, sam-
pling frames that contain more information for video captioning.

With respect to reduce latency, quantisation technique can be performed to scale down the complexity of
model. By storing tensor at lower bitwidths and etc., the model can be more compact and can be deployed
on hardware platforms easier.

More effort can be devoted to human evaluation. Human evaluation plays a crucial role in natural lan-
guage processing. However, there are no perfect experimental and reporting standards for the non-blind
community[153], let alone the visually impaired people. More research on the visually impaired community
can be helpful to create a more sensible evaluation criterion for them. If human evaluation can be carried
out, the result will give the direction to enhance the current model.

Currently, there is no available video dataset that annotated with description for the visually impaired
people particularly. If such dataset can be created, it would a great contribution in the research area of assis-
tive technologies, computer vision, nature language processing (NLP) and even crowdsourcing.
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Conclusion

This chapter will answer the following research questions set out in this thesis:

How to develop a video captioning model for the visually impaired?

This main question can be split into six sub-questions, and these questions are answered below.

1. What techniques can be used to build a video caption model for the visually impaired?
2. What are the requirements for video captioning special from the visual impaired?
3. How can we improve the performance of the baseline video caption model?
4. How can we design the video caption model to be more sensitive to actions?
5. How can the video caption model generate a sentence with good readability?
6. How to reduce the latency of the video caption model?

Question 1: In order to solve the first research question, we start with a literature review to investigate the
contemporary state-of-the-art of video captioning and applications for the visually impaired in the related
field. In this literature review, firstly, we give a brief introduction in section 2.1 on video caption as well as
an explanation of some terminologies used in the field. Next, we dive into the pool of different video caption
methods from the perspective of template-based generation, seq2seq model, reinforce learning, adversarial
learning, and the latest works that employ transformer in section 2.2. In section 2.3, we present relevant video
datasets in the area of video understanding and highlight ones that are significant to the video captioning
task. Later, existing evaluation and readability metrics are reviewed and further discussed in terms of their
merits and drawbacks in sections 2.4 and 2.5. In the coming section 2.6, we show the practical application for
the visually impaired in the field of visual understanding.

To conclude, recently, encoder-decoder architecture has become the main-streaming backbone of video
caption models with different deep learning techniques like attention, reinforcement learning, and adversar-
ial learning as the previous template-based method lacks the scalability with the dramatic increase in data
amount.

Question 2: In order to answer this question, we conducted a survey with the people in Visio twice. The
first questionnaire is designed to get basic information about the visually impaired people at Visio and their
dilemmas in life. The second questionnaire is designed based on the information collected from the first one.
With the purpose of further verifying the needs of the target audience, we propose a scenario: There is an app
on the mobile phone. They can use it to get some information about the environment they are in or things
that happen nearby by taking a video of their surroundings (the algorithm behind the app is what we aim at).
From this survey, we get some requirements that help us design the video captioning model, as shown below.

1. The video should not be longer than 30 seconds.
2. The Latency should be limited to 3-4s.
3. Scene: when there is loud music/noise
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4. The dataset should cover a wide variety of topics. (People, sports/actions, vehicles/autos, howto, travel,
animals/pets, kids/family, food/drink, cooking, beauty/fashion, advertisement)

5. The video should be described in a single sentence briefly.

Question 3: Considering the user requirements and the pursuit of performance together, we put some
effort into enhancing the model accuracy from 3 aspects:

1. Video representation. The video is fed into three different pre-trained dens (Resnet, ECO, and Res3D)
for features of different levels(frame-level feature, long-term action feature, and short-term dynamics),
ultimately yielding a representation of the video by concatenation. Particularly, we tailor our design to
lay more emphasis on capturing video dynamics since we know that the visually impaired care more
about the actions in the video content from a user study.

2. A modified attention layer. Complementary to the video representation obtained from the pre-trained
model, the attention layer is employed to capture the global temporal structure. An extra adjusted gate
is added on top of temporal attention in the model to guide the decoder in learning a better attention
weight. Thus, the model can generate better sentences.

3. Beam search. Other than the greedy search that decides words immediately, Beam Search considers
several candidates each time and saves a table of the candidate sequences. After the decoding finishes
completely, the sequence that has the highest overall score from a basket of candidate sequences is
selected. Theoretically, beam search strategy enlarges the search space, it helps to find a better solution.

We carry out the ablation study to evaluate the model performance with aforementioned component across
different metrics. Referring to the result, by learning a video representation with Resnet, ECO and Res3D,
adding adjusted gate on top of attention and using beam search (beamsize is 2), the model get better score
against the baseline model.

Question 4: For the sake of enhancing the model’s sensitiveness to the actions contained in the video,
we use res3D to obtain short-term dynamics and ECO to learn the relationship of actions that appear among
frames, but both of the models the local temporal structure of the video. To capture the global temporal
structure, we employ an attention mechanism. Attention mechanisms in deep neural networks are inspired
by human attention that sequentially focuses on the most relevant parts of the information over time. We
adopt the temporal attention mechanism [175] to learn a mapping that guides the model to know which set of
moments (frames) to look at when generating word sequences. To see if res3D, ECO, and temporal attention
make the model more sensitive to action, we conduct the study based on performance across different video
categories. Adding eco and c3d features helps the model perform better in many video categories across four
tires, as the Msrvtt dataset is rich in action among categories. It has been widely used for action recognition
tasks. From this point on, eco and c3d features help the model improve. This implies that they enhance the
sensitivity of the model to the actions.

Question 5: From the User Study3, we know that visually impaired people prefer generated sentences by
video caption models that are easy and simple to understand. We add an extra adjusted gate to the attention
mechanism in the model, which we intuitionally believe can guide the decoder to learn a better attention
weight. Thus, the model can generate sentences with better readability. To answer this research question and
check the effectiveness of the adjusted gate, we conduct an ablation study. We use several readability metrics
to evaluate sentences generated by the models with and without adjusted gates.

According to the study, the video caption model can generate sentence with good readability and it is
suitable for our target audience and the public to read easily. By adding an extra adjusted gate to attention
mechanism, it increases the model performance in accuracy without adding difficulty in reading.

Question 6: A Latency analysis is conducted to find a proper answer to the Research Question 6: How
to reduce the latency of the video caption model? The analysis consists of three parts: 1) the contrast of
the latency of the model with different add-on components; 2) the analysis of the relation between video
and latency in terms of video length and video’s number of frames; 3) the latency contribution of different
process and further analysis on outliers. By downsampling and changing the model parameters, the latency
of the model has been reduced. At the beginning of this study, the model had a high latency, but then we
found out that it was because of a conflict between Pytorch and Windows. An error was caused by setting
num_workers, which is the parameter of Dataloader in Pytorch, greater than 0 in the Windows environment.
Thus, once we set the num_workers to zero, the model latency meets our requirements.
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Development and Reflection since 2019

9.1. Introduction
This thesis was started in 2018 and has been interrupted several times over the years due to personal health
reasons. This year, I was able to continue working on this thesis again. Since a long time has passed, I have
started a new chapter to fill the time gap with a summary of the latest research works. Based on the latest
research developments, I will review and reflect on my original research design. At the same time, I propose,
based on the current literature review, how I would have designed the research and video captioning model.

This chapter contains two main sections. The first section presents a literature review on video captions,
emphasizing the period from late 2023 to the present. The second section illustrates what I will do in this
research if I start today.

9.2. Literature Review
In recent years, Artificial Intelligence has experienced a notable transformation, largely driven by the rise
of Transformer[154] architectures in Language Models. This architectural innovation, developed by Google
in 2017, has significantly influenced Natural Language Processing and then boosted the development of the
area of Computer Vision. A prominent early example of this influence is the Vision Transformer (ViT)[183]
proposed in 2020, which applies Transformers to partition images into multiple patches, treating each patch
as a distinct visual token for input representation.

As a downstream task of computer vision, the video caption domain is also beginning to utilize transform-
ers to improve the model performance. More and more research is going on in this direction. Some literature
reviews have covered these works, like [1] and [120], providing a comprehensive survey on video captioning
concerning the deep learning approach.

Since 2023, the surge in Large Language Models (LLMs) has naturally led to the development of a new cat-
egory of generative models called Multimodal Large Language Models (MLLMs). Furthermore, Large Vision
Language Models (LVLMs) are a specialized category of Multimodal Models that integrate text and image in-
puts and generate text outputs. The community of the vision and language has achieved significant progress
in developing large image-language models [87][88][86][21][16][15]. While very recently, the video-language
community starts to explore and apply Large Language Models for video understanding tasks such as video
captioning, etc..

In the following chapters, we will first summarise the development and changes observed in video cap-
tioning over the past few years. Next, we will provide a detailed overview of the Transformer model and
its significant research contributions to video captioning. The introduction of Transformers has profoundly
impacted research in video captioning from 2020 to 2023 and has laid the foundation for developing Large
Language Models (LLMs). Subsequently, we will introduce LLMs and their prominent model families. We
will then explore the applications of LLMs in the multimodal domain, Multimodal Large Language Models
(MLLMs). Finally, we will focus on its specialized category, Visual Language Models (VLLMs). The latest
VLLMs on video captioning tasks will be reviewed and discussed. Last, we discussed and analyzed the newest
application for the visually impaired.
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9.2.1. Video Captioning
In recent years, we have witnessed three main research concern shifts in the video captioning research com-
munity.

Firstly inspired by the transformer and further influenced by the breakthrough development of large lan-
guage models(LLMs), the research community has begun integrating LLMs for visual understanding tasks.
Moreover, the exploration of multimodal large language models(MLLMs) and large video language mod-
els(LVLMs) is appearing.

The research center has been transferred from the single-sentence video captioning task to the dense
video captioning task (which is also known as video description, generating multiple sentences for the target
video). This transfer is probably due to the large language models requiring huge data to train them.

The dense video captioning task and the single sentence video captioning task use different datasets to
train and metrics to evaluate. Indeed, the change of task arises from the change of datasets and metrics.
Further, more and more work is involved in developing better video caption/description benchmarks since
the current video captioning benchmarks are relatively simplistic.

Many excellent literature reviews are on video captioning like [1] and [120]. They discuss and summarise
the research works in this field before and in 2023. Since the emergence of the LLMs in late 2023, the video-
language community has just started to explore the application of LLMs in video captioning. Till now, there
has been no survey on this topic. The latest and most relevant reviews are [184], [143], and [11]. The for-
mer two reviews concentrated on the general video understanding tasks with LLMs and did not cover video
captioning tasks in depth. The third one[11] presents a comprehensive review of the current state of Large
Language Models (LLMs) with multimodal capabilities, as well as the latest developments in Multimodal
Large Language Models(MLLMs). However, it mainly focused on the historical development of models and
did not address the video captioning task, nor did it even address video understanding.

Single Sentence Video Captioning
However, the mainstream video captioning research community has shifted its interest to dense video cap-
tioning. There is still some literature on single-sentence video captioning tasks in 2024.[48][103] [174]

In this work[48] introduce a compact encoder-decoder model for video captioning that utilizes CLIP as
the encoder and Visual GPT, an adaptation of GPT-2 for text generation, as the decoder. The model operates in
two phases: keyframe selection using CLIP and dynamic information encoding. Keyframes are identified by
sampling frames that exhibit significant scene transitions, reducing the need for human heuristics. Dynamic
information is encoded through the self-attention mechanism of the transformer block. During decoding,
Visual GPT enhances the synthesis of visual and textual information. It utilizes cross-attention like GPT-2 but
adds a dynamic controller to improve the interaction between caption context and visual data, facilitating
better multimodal integration. Notably, CLIP is applied only in the keyframe selection phase. It is kept fixed
during training, allowing the model to primarily rely on GPT-2 and a few transformer blocks, thereby reducing
resource requirements.

NarrativeBridge[103] is a framework encompassing a benchmark and architecture designed for causal-
temporal narrative learning. The Causal-Temporal Narrative (CTN) captions benchmark employs a large
language model (LLM) and few-shot prompting to generate video descriptions that clearly express cause-
effect relationships and temporal sequences. This benchmark facilitates the generation of cohesive captions
demonstrating how events, such as reckless driving leading to a damaged car and subsequent group behav-
ior, are interconnected. By improving models’ abilities to convey the significance and order of events, this
approach mitigates the limitations of existing datasets. It highlights the need for causal-temporal under-
standing in video captioning. To ensure caption quality, an automatic evaluation framework is proposed that
assesses relevance to the video content, retaining or discarding captions based on a defined scoring thresh-
old.

Similar to [103], in this work [174], the multifaceted video captioning approach is introduced to enhance
video-language datasets by improving their modality and context awareness. This approach captures various
elements, including entities, actions, speech transcripts, aesthetics, and emotional cues, ensuring a compre-
hensive representation of video content while allowing flexible alignment between textual descriptions and
video representations in multimodal training models. They also explored strategies for using language mod-
els to generate high-quality, factual descriptions, creating an agent-like framework to ensure standards are
met and to minimize hallucinations, thereby reducing the need for human intervention. Finally, the method’s
effectiveness on language-video embeddings is evaluated through text-video retrieval tasks. Significant im-
provements are demonstrated using the MSR-VTT dataset and several multimodal retrieval models without
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pretraining, attributable to the enhanced dataset. However, this has limitations, including a narrow focus
on the MSR-VTT dataset and a limited range of models. Additionally, relying on metrics like recall at k (r@k)
may overlook subtle improvements, suggesting a need for human evaluations to provide a more nuanced
assessment of dataset quality.

9.2.2. Transformer

Figure 9.1: The standard transformer inherits the overall encoder-decoder structure from neural sequence models. Both encoder and
decoder consist of 6 stacked identical layer blocks. Each block has two sub-layers for the encoder: a multi-head self-attention layer and

a position-wise fully connected feed-forward layer. For decoder, each block has the aforementioned two sub-layers in the encoder
block and an encoder-decoder attention layer as third sub-layers.[154]

Transformer networks[154] is first designed to tackle machine translation and English constituency pars-
ing tasks in Neural Language Processing (NLP). The standard transformer inherits the overall encoder-decoder
structure from neural sequence models, as shown in Fig.9.1. Both encoder and decoder consist of 6 stacked
identical layer blocks. Each block has two sub-layers for the encoder: a multi-head self-attention layer and a
position-wise fully connected feed-forward layer. For the decoder, each block has two sub-layers above the
encoder block, and an encoder-decoder attention layer is a third sub-layer. The novelty of the transformer
is that it does not use recurrent connections and only uses an attention mechanism to solve sequence prob-
lems. The non-use of recurrent connections gives global information capture and parallel computation an
advantage.

Transformer becomes so popular it is not because it avoids the weakness of recurrent networks like be-
ing inability to scale up and parallelize, it is because of the propose of BERT [30]. As its name implies,
BERT(Bidirectional Encoder Representations from Transformers) is a transformer-based model. It only uses
an encoder similar to the standard transformer’s encoder, which means it only contains Attention and feed-
forward layers. BERT can be trained on the larger dataset unsupervised and then finetuned to the smaller
dataset to solve downstream tasks. Since BERT is proposed and its pre-trained BERT model on the sizeable
unlabelled text corpus gains excellent performance on a wide range of NLP tasks like question answering
and language inference, the transformer-based pretraining method has become very popular across different
deep learning research fields. After the propse of BERT, more and more transformer-based models appears.
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Figure 9.2: the structure of the transformer-based model of three main categories

The structure of the transformer-based models can be classified into three main categories, as shown in Fig.
9.2.

• Encoder-Only (Autoencoding) Models: Encoder-only models, also known as autoencoding models, are
pre-trained using a masked language model, in which certain tokens in the input sequence are ran-
domly masked, and the goal of the model is to predict the masked tokens to reconstruct the original
sentence. The representative models are: BERT[30], RoBERTa[90]. Since most of MLLM is generative,
this structural model is less present in MLLM.

• Decoder-Only (Autoregressive) Models: decoder-only models, pre-trained using a causal language model,
aim to predict the next token based on a sequence of previous tokens. This process is also known as
complete language modeling. Unlike encoder-only models, decoder-only models mask the input se-
quence and iteratively predict the next token, creating a unidirectional context. This model type utilizes
the original architecture’s decoder component without the need for an encoder. Representative models
are: GPT[115], BLOOM[168], Qwen[7], LLAMA[149]. This architecture is currently the dominant one in
MLLM.

• Encoder-Decoder (Sequence-to-Sequence) Models: Sequence-to-sequence models combine the en-
coder and decoder components of the original Transformer architecture. Sequence-to-sequence mod-
els are useful for translation, summarisation, and question-answer tasks and are represented by T5[119],
BART[73].

In addition, the exploration of the Mixture of Experts (MoE) has attracted more and more attention. Com-
pared with the Dense model, sparse architectures can scale up the total parameter size without increasing
the computational cost by selectively activating the parameters. That is, the training speed is faster under the
same computational resources, and larger models can be trained. Empirically, the MoE implementation per-
forms better than the Dense model on almost all benchmarks. The Representative model is Mixtral 8x7B[54].

The vision community has grown interested in adopting transformer-based methods to solve problems
in their area. The research of Dosovitskiy et al.[35] shows that in the image classification task, a Vision Trans-
former(ViT) performs better than a convolutional neural network. Later in the video classification field, a
Video Vision transformer(ViViT) is proposed to encode spatiotemporal tokens extracted from video [6]. Sim-
ilarly, TimeSformer also uses the transformer architecture to learn spatiotemporal representation with dif-
ferent self-attention schemes[9]. In action recognition, the Video Swin Transformer(VidSwin) attains bet-
ter results by using an inductive locality bias in the video transformer instead of computing self-attention
globally[91].

There are some transformer-based works on video captioning. Lin et al. proposed SwinBERT, an end-
to-end transformers for video captioning. As demonstrated in Fig. 9.3, SwinBERT generally consists of two
parts: Video Swin Transformer (VidSwin) and Multimodal Transformer Encoder. The pre-trained VidSwin[91]
is used to encode densely sampled video frames into video tokens. The Multimodal Transformer Encoder
takes video tokens from VidSwin and word tokens from caption description as input and then encodes them
to predicted word tokens by masked language modeling. To enhance the efficiency of modeling long video to-
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Figure 9.3: In general SwinBERT consists of two parts: Video Swin Transformer (VidSwin), and Multimodal Transformer Encoder. The
pre-trained VidSwin[91] encodes densely-sampled video frames into video tokens. The Multimodal Transformer Encoder takes video
tokens from VidSwin and word tokens from caption description as input and then encodes them to predicted word tokens by masked

language modeling. As shown on the right, a Sparse Attention Mask is employed as the regularizer for the Multimodal Transformer
Encoder to enhance the efficiency of modeling long video tokens.[83]

kens, a Sparse Attention Mask is employed as the regularizer for the Multimodal Transformer Encoder. Sparse
Attention guides the model in placing more emphasis on tokens that have rich spatial-temporal information.
Adding Sparse Attention to SwinBERT is reported to outperform SOTA on many benchmarks.[83]

The pros and cons of SwinBERT are evident. Thanks to the flexibility of the transformer, SwinBERT can
process video input at variable lengths. However, it is computational memory intensive since its architecture
is considerably complex. It consists of two transformer encoders (VidSwin and BERT), requiring sufficient
GPU memory. Besides, in their implementation, the sparse attention mask is not time-efficient because it is
realized via an extra learnable embedding.[83]

The transformer-based method has shown superiority in many vision tasks. However, transform-related
architecture in video captioning has not been fully explored. There remain some challenges that need further
study:

1. Domain gap between pretraining and finetuning. Unlike Convolutional Neural Networks (CNNs), trans-
formers lack inductive biases; thus, they require massive data for pretraining. Accordingly, the quality,
diversity, and quantity of the dataset greatly influence the performance of the transformer. In most
practice for video captioning tasks, action recognition datasets are used for pretraining. For example,
SwinBERT[83] uses the transformer that is pre-trained on Kinetics-600[57] and then is finetuned on
video captioning datasets like MSR-VTT[171]. This leads to a domain gap between pretraining and
finetuning. As reported in [77], data volume cannot eliminate the domain gap.

2. Efficiency. Transformers face the efficiency problem in terms of quadratic time and memory complex-
ity. Although there are some studies on improving the efficiency of transformers, most of them are
from the NLP domain [114][29][68]. Compared to text, video contains much more information. Never-
theless, Video captioning requires a deeper model structure and more extensive parameters to process
multimodal information and generate sentences. This adds up to the difficulty of applying transformer-
based methods for video captioning in practice.

9.2.3. LLMs
The key module that serves as the brain in MLLM is the large language model (LLM). It is more efficient and
practical to use pre-trained models than to train an LLM from scratch. Through large-scale pretraining on
web corpora, LLMs have been embedded with rich world knowledge and exhibit strong generalization and
inference capabilities.

A large language model (LLM)[100] is a specific category of artificial intelligence (AI) technology capable
of recognizing and generating text, among other tasks. "large" refers to the extensive datasets on which these
models are trained. LLMs are based on transformer models. Many LLMs leverage vast amounts of text data
gathered from the Internet, amounting to thousands or millions of gigabytes.
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Self-supervised Pre-training
Pre-training a large language model is conducted through a self-supervised approach that leverages unla-
beled data primarily sourced from the internet. This method removes the necessity for manual annotation,
allowing the model to autonomously learn the intricate patterns and structures that characterize human lan-
guage. However, the vast array of online text often contains biases, inaccuracies, and typographical errors,
underscoring the importance of implementing a data quality filter. This filter is crucial for eliminating ex-
traneous and harmful data, as such noise can compromise the model’s performance instead of enhancing
it. Once the filtering process is completed, training can commence. Three distinct variants of the trans-
former model exist, each designed for specific training objectives: encoder-only, decoder-only, and encoder-
decoder. We discussed them in the former section.

Regardless of the transformer variant utilized in the training process, the initial phase remains consistent
across all models. The encoder generates embeddings for the tokens, which are vector representations that
encapsulate the semantic information associated with each token. This process lays the foundation for sub-
sequent training stages, enabling the model to grasp complex language nuances and contextual relationships
effectively.[100]

Supervised Fine-tuning
Fine-tuning is the process of extending the training of a general large model to specialize it for specific tasks.
Pre-trained models, while versatile, require fine-tuning to become suitable for particular applications. Early
models like BERT[30], trained through self-supervision, could not perform specific tasks without fine-tuning
on labeled data, referred to as supervised fine-tuning; for example, BERT was fine-tuned for 11 different tasks.
Although recent large language models (LLMs) might function without fine-tuning, they still benefit from
task-specific adjustments. The fine-tuning process differs from pre-training, as it employs supervised learn-
ing and requires labeled features, thus needing only a few thousand data points to adapt the model, which
already has general language knowledge.

A primary goal of fine-tuning is to align model responses with user expectations during instruction-based
prompts, a process known as instruction tuning. This involves creating a dataset of prompt-completion pairs,
where model predictions are compared to the desired answers (ground truth) to calculate loss, inform gra-
dient calculations, and facilitate weight updates in the network. While effective, instruction fine-tuning can
lead to catastrophic forgetting, where the model may lose previously learned knowledge relevant to other
tasks while gaining specialization in the new task.[100]

RLHF and RLAIF
Instruction tuning, as previously discussed, brings large language models (LLMs) closer to achieving align-
ment. However, in many instances, additional steps are necessary to enhance model alignment further and
mitigate unintended behaviors. Reinforcement Learning from Human Feedback (RLHF) and Reinforcement
Learning from AI Feedback (RLAIF) are widely recognized approaches utilized in optimizing and aligning
LLMs. RLHF involves the development of a reward model that learns to align outputs based on feedback
provided by human annotators. After tuning, this reward model can evaluate and score multiple outputs ac-
cording to human preferences for alignment. The insights generated by this reward model are then utilized
to refine further and enhance the original large language model (LLM) performance. [100]

Conversely, RLAIF directly connects a pretrained, well-aligned model to the LLM, facilitating its ability to
learn from larger, more refined models. This method enhances the LLM’s performance by allowing it to bene-
fit from the knowledge and alignment of more advanced systems. RLHF and RLAIF collectively represent sig-
nificant advancements in natural language processing, as they leverage both human and artificial intelligence
feedback to improve model alignment, functionality, and overall effectiveness in various applications.[100]

There are three main families of LLMs: GPT, LlaMA, and PaLM.

The GPT Family
Recent progress in natural language processing (NLP) has paved the way for the creation of robust language
models like the GPT[115] and its variants, encompassing large language models (LLM) like ChatGPT. These
models undergo pre-training on extensive text datasets and exhibit exceptional performance across various
NLP tasks like language translation, text summarization, and question-answering. ChatGPT has showcased
its versatility in domains such as education, healthcare, reasoning, text generation, human-machine interac-
tion, and scientific research. A significant milestone in LLM advancement is InstructGPT[107], a framework
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allowing for instruction finetuning based on Reinforcement Learning from Human Feedback (RLHF). This
approach empowers LLMs to adapt to diverse NLP tasks by leveraging human feedback and aligning it with
human preferences and values to enhance performance beyond traditional unsupervised pretraining meth-
ods.

As a successor to InstructGPT, ChatGPT has integrated these advanced techniques since its launch in De-
cember 2022, demonstrating remarkable proficiency in reasoning and text generation. These enhanced NLP
capabilities offer extensive applications in fields like education, healthcare, human-machine interaction, and
scientific research, driving significant interest and exploration into ChatGPT’s potential. Most recently, GPT-
4V and GPT-4o have been released. ChatGPT, GPT-4V, and GPT-4o are three distinct variants of OpenAI’s
advanced language models, each tailored to specific functionalities and applications within the field of arti-
ficial intelligence.

GPT or GPT-1 [115], the first model in the Generative Pre-trained Transformer (GPT) series developed by
OpenAI, marked a significant advancement in natural language processing (NLP). Released in 2018, GPT-1
demonstrated the effectiveness of the transformer architecture for language modeling. It was trained using
unsupervised learning on a diverse dataset comprising millions of web pages, enabling it to learn a broad
range of linguistic patterns and generate coherent text based on the input it received.

The architecture of GPT-1 consists of a 12-layer transformer with 117 million parameters. This design
allowed the model to capture long-range dependencies in text, a crucial improvement over previous models.
GPT-1’s training process involved a two-stage approach: pre-training on a large corpus of text data to predict
the next word in a sentence and finetuning specific tasks with labeled data. This approach showcased the
model’s ability to generalize knowledge from pre-training to various downstream tasks.

Despite its relatively modest size compared to its successors, GPT-1 demonstrated the potential of large-
scale pre-trained language models. It performed well on several NLP benchmarks, including text classifica-
tion, question answering, and text generation, setting the stage for developing more advanced models like
GPT-2 and GPT-3. GPT-1’s success underscored the importance of pre-training and finetuning in creating
versatile and powerful language models.

InstructGPT[107] is a specialized variant of OpenAI’s language models designed to follow human instruc-
tions more accurately and helpfully. Unlike standard GPT models that generate text based on general patterns
in the data, InstructGPT is finetuned to understand and adhere closely to user prompts, providing more pre-
cise and contextually appropriate responses. This finetuning process involves training the model on a dataset
of instructions and desired outputs, allowing it to learn how to respond effectively to specific queries.

The primary goal of InstructGPT is to improve the usability and reliability of AI-generated content, mak-
ing it more aligned with user intentions. This is particularly useful in applications where precise and accurate
responses are critical, such as customer service, education, and content creation. InstructGPT reduces the
likelihood of generating irrelevant or off-topic responses by focusing on following instructions, thereby en-
hancing the overall user experience.

Additionally, InstructGPT incorporates feedback mechanisms where human reviewers rate the model’s
outputs based on relevance and correctness. This feedback loop further refines the model’s ability to generate
high-quality, instruction-following responses. Overall, InstructGPT represents a significant advancement in
creating AI systems that are not only powerful but also more aligned with human needs and expectations.

ChatGPT[106] is a conversational AI model built on the GPT-3.5 architecture, designed primarily for gen-
erating human-like text in interactive settings. Its strength lies in understanding and producing coherent,
contextually appropriate responses, making it highly effective for customer support, virtual assistants, edu-
cational tools, and general-purpose text generation applications. ChatGPT excels in scenarios where natural
language understanding and generation are crucial for user engagement and automated communication.

OpenAI has made substantial advancements in deep learning with the release of GPT-4, a comprehensive
multimodal language model designed to process both image and text inputs and generate text outputs. Al-
though it does not yet fully match human capabilities in all real-world contexts, GPT-4 exhibits human-level
performance on various professional and academic benchmarks. For example, it scored within the top 10% of
test-takers on a simulated bar examination, significantly outperforming GPT-3.5, which scored in the bottom
10%.

The development process of GPT-4 involved six months of iterative alignment, during which insights were
incorporated from OpenAI’s adversarial testing program and the deployment of ChatGPT. This iterative pro-
cess has culminated in GPT-4 achieving unprecedented performance regarding factual accuracy, steerability,
and compliance with provided guidelines.

GPT-4V[105] expands upon the capabilities of GPT-4 by incorporating multimodal functionalities, en-
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abling the model to process and interpret both text and visual data. This model can generate detailed de-
scriptions of images, answer questions related to visual content, and create images from textual descriptions.
GPT-4V is particularly valuable in fields that require a blend of visual and textual understanding, such as im-
age captioning, interactive educational tools, and creative content creation. Its ability to handle both modal-
ities makes it a versatile tool for applications where integrating visual context with language is essential.

GPT-4o[104] is a specialized variant focused on optimization tasks, leveraging the core GPT-4 architecture
to solve complex problem-solving scenarios efficiently. Unlike ChatGPT and GPT-4V, GPT-4o is not designed
for visual understanding but excels in mathematical and algorithmic applications. It is tailored for industries
like logistics, finance, manufacturing, and energy management, where optimization of processes, resource
allocation, and decision-making are critical. GPT-4o’s capability to generate and refine solutions for opti-
mization problems makes it a powerful tool for enhancing operational efficiency and reducing costs.

Version Uses Architecture Parameter Count Year

GPT-1 General
12-level, 12-headed Transformer decoder
(no encoder), followed by linear-softmax
with Book Corpus: 4.5 GB of text

117 million 2018

GPT-2 General
GPT-1, but with modified normalisation
with Web Text: 40 GB of text

1.5 billion 2019

GPT-3 General
GPT-2, but with modification to allow
larger scaling with 570 GB plaintext

175 billion 2020

InstructGPT Conversation
GPT-3 fine-tuned to follow instructions
using human feedback model

175 billion 2022

ChatGPT Dialogue
Uses GPT-3.5, and fine-tuned with both
supervised learning and reinforcement
learning from human feedback (RLHF)

175 billion 2022

GPT-4 General
Trained with both text prediction and RLHF
and accepts both text and images as input,
third party data

1.76 trillions 2023

GPT-4V(ision) General GPT-4, with an encoder transforming visual modality 1.76 trillions 2023
GPT-4o(mni) General GPT-4, processing multi-modal input 1.76 trillions 2024

ChatGPT is optimized for conversational text generation, GPT-4V integrates visual and textual data pro-
cessing for multimodal applications, and GPT-4o focuses on solving optimization problems across various
industries. Each model leverages the foundational GPT-4 architecture to address specific user needs, show-
casing the adaptability and wide-ranging potential of OpenAI’s AI technologies in diverse domains.

The LLaMA Family
LLaMA[149], developed by Meta AI, is a series of open-source large language models (LLMs) designed to
advance research and application development within natural language processing (NLP). The first set of
LLaMA models was released in February 2023. Meta AI’s objective was to provide the research community
with accessible tools to explore the dynamic landscape of LLM applications. The LLaMA series includes
foundational models with parameters ranging from 7 billion to 65 billion. Unlike models emphasizing rapid
training, LLaMA is optimized for execution on a single GPU, prioritizing inference speed over the reduction
of training time.[149]

In July 2023, Meta AI introduced LLaMA-2[150] and LLaMA-2 Chat, updated iterations of the LLaMA
model series. These models, with parameter sizes ranging from 7 billion to 70 billion, feature several key
improvements. Notably, LLaMA-2 benefits from a 40% larger pretraining corpus and an extended context
length increased from 2,048 to 4,096 tokens. A distinct advancement in LLaMA-2 and LLaMA-2 Chat is in-
tegrating the finetuning method known as Reinforcement Learning from Human Feedback (RLHF), which
differentiates these models from their predecessors.

Meta LLaMA 3[36], the latest iteration in the LLaMA series, was released for widespread use this year.
This version includes pretrained and instruction-fine-tuned models with 8 billion and 70 billion parame-
ters, catering to various applications. The LLaMA 3 models mark a substantial advancement over LLaMA 2,
establishing new benchmarks for language models at these parameter scales. Advances in pretraining and
post-training techniques have led to these models achieving superior performance at the 8B and 70B param-
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eter levels. Specifically, improvements in post-training methodologies have notably decreased false refusal
rates, enhanced model alignment, and increased the diversity of responses.

The LLaMA family is expanding rapidly, with an increasing number of instruction-following models be-
ing developed based on LLaMA and LLaMA-2, including Alpaca[144] (finetuned from the LLaMA-7B model),
Vicuna-13B[23] (by finetuning LLaMA on user-shared conversations), Koala[142] (built on LLaMA and center
on long video question answering), just to name a few.

The PaLM Family
Google’s PaLM (Pathways Language Model)[26] family is at the forefront of advancements in large language
models (LLMs), pushing the limits of language comprehension and generation. While these models are pri-
marily closed-source with limited public availability, they have significantly advanced the capabilities of few-
shot learning and complex reasoning tasks.

The original PaLM model was proposed in April 2022 and remained proprietary until March 2023. This
large language model (LLM) features 540 billion parameters and is based on a transformer architecture. It un-
derwent pre-training on a comprehensive text corpus containing 780 billion tokens, encompassing a diverse
array of natural language tasks and applications.

U-PaLM[146] is a variant of the PaLM model that focuses on improving computational efficiency and is
continuously trained to augment its performance and capabilities. By using UL2R[145], a technique designed
for the incremental training of large language models (LLMs) utilizing a limited number of steps with UL2’s
mixture-of-denoiser objective. This training methodology reportedly achieves approximately a 2x computa-
tional savings rate.

Furthermore, U-PaLM was enhanced through instruction finetuning, resulting in the development of
Flan-PaLM[27]. Unlike the previously mentioned instruction finetuning efforts, Flan-PaLM’s finetuning pro-
cess employs a considerably larger number of tasks, utilizes larger model sizes, and incorporates chain-of-
thought data. As a result, Flan-PaLM significantly surpasses the performance of earlier instruction-following
models.

PaLM-2[3] is trained using a mixture of objectives. It introduces enhancements in efficiency, multilingual
proficiency, reasoning abilities, and performance on downstream tasks compared to its predecessor, PaLM.

Med-PaLM[137] and its successor Med-PaLM 2 are domain-specific PaLMs and are designed to provide
high-quality answers to medical questions. Med-PaLM is finetuned on PaLM through instruction prompt
tuning, a parameter-efficient technique for aligning large language models (LLMs) to new domains using a
limited number of exemplars. While Med-PaLM demonstrates promising results across various healthcare
tasks, it remains less effective than human clinicians. Med-PaLM 2 enhances the capabilities of Med-PaLM
through domain-specific finetuning and ensemble prompting.

Comparison
We compare these three families from the following perspectives:

• Accessibility. The LLaMA family is open-source, offering broad access to model weights and encourag-
ing collaborative research. Conversely, the GPT and PaLM families are mainly closed-source.

• Specialization and generalization. These model families exhibit a dual trend toward specialization and
generalization. Med-PaLM, for instance, highlights how LLMs can revolutionize specialized domains
by providing expert-level insights into the medical field. In contrast, models such as GPT-4 show ex-
ceptional generalization capabilities, efficiently managing a broad range of tasks without task-specific
training.

• Efficiency and scalability. The development of models such as Guanaco based on LLaMA aims to op-
timize performance while minimizing environmental and economic impacts associated with training
large-scale models. Concurrently, the progressive enhancement of models like PaLM-2 reflects an effort
to improve computational efficiency, thereby facilitating more sustainable advancements in artificial
intelligence.

9.2.4. MLLMs
A Multimodal Large Language Model (MLLM) is defined as a model that integrates the cognitive capabilities
of Large Language Models (LLMs), such as GPT-4 and LLaMA-3, with the ability to interpret, reason, and
generate responses using multimodal information. This feature enables the model to process and analyze
various types of inputs, including both textual and visual data. In May 2024, the launch of OpenAI’s GPT-4o
attracted considerable media attention. [11]
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Figure 9.4: the architecture of the classical MLLM

The classical MLLM can be abstracted into three modules, i.e., Modality Encoder, LLM, and Connector,
a modal interface that connects them, as shown in fig.9.4. Similar to humans, Modality Encoder such as
Image/Audio is the eye/ear that receives and preprocesses the light/acoustic signals, whereas the LLM acts
like a human brain that understands and reasons about the processed signals. In between, modal interfaces
are used to align the different modalities. Some MLLMs also include a Generator for outputting non-textual
modalities.

9.2.5. LVLMs
Large Vision Language Models (LVLMs) are a specialized category of Multimodal Models that integrate text
and image inputs and generate text outputs. The community of the vision and language has achieved signif-
icant progress in developing large image-language models (Image-LLMs).[87][88][86][21][16][15]

In summary, these models link pre-trained video encoders with pre-trained large language models (LLMs)
to achieve zero-shot video understanding capabilities. It normally consists of three primary parts: a visual
encoder, a connector, and a large language model (LLM). As its name implies, the visual encoder is used
for visual feature extraction. The connector maps the visual and textual information together. The large
language model (LLM) is employed to decode the context between these two modalities. LLaVA-1.5[85] is the
most representative model, which has significant performance. It employs Vicuna-v1.5[182] as the language
decoder and CLIP-Large[117] as the visual encoder. Between them is the connector, which is a two-layer MLP.
Inspired by this work, the video-language community started to develop video-LLMs, transforming video
into tokens that LLMs can accept to improve the performance of video understanding tasks. [65][81][79]
For instance, VideoChat2[65] uses a video transformer and a Q-Former[75] to encode the video content into
tokens.

As more video LLMs emerge this year, we will discuss and review what the author feels is the most repre-
sentative SOTA in the following paragraphs.

As we mentioned in the former section, two literature [103] and [174] are reported to employ LLMs to gen-
erate better datasets for the single sentence video captioning. There exists another work [16] that proposes
to use LVLMs to generate better video-caption pairs for dense video captioning tasks. Chen et al. developed
a ShareGPT4Video[16] dataset, which contains 40,000 high-quality video-caption pairs across various cate-
gories. The Differential Sliding-Window Captioning strategy (DiffSW) is proposed as an efficient and scalable
approach for generating video captions. It reformulates the all-frames-to-caption task into a differential de-
scription task. A detailed caption is first created for the initial frame, followed by applying a sliding window
of length two for the subsequent frames. The multimodal model GPT4V identifies changes between frames
based on three inputs: the previous frame, its differential caption, and the current frame, capturing variations
in camera movement, object movement, character actions, and scene transitions. After generating all differ-
ential captions, these are processed by GPT4 to create a cohesive caption for the entire video. It is claimed
these captions incorporate extensive world knowledge, object attributes, camera movements, and detailed
temporal descriptions of events. Further, Based on the collected dataset, the ShareCaptionor-Video model
is obtained upon finetuning the IXC2-4KHD model[34]. In their experiments, ShareGPT4Video enhances
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the performance of existing large video language models (LVLMs) across various benchmarks, particularly in
tasks that necessitate complex temporal understanding. Among the tested LVLMs, VideoLLaVA-7B exhibits
the most substantial improvements from the proposed dataset across three comprehensive multimodal video
benchmarks. As a result, the final ShareGPT4Video-8B model is constructed upon the LLaVA-Next-8B image
multimodal model, consistent with earlier LVLM strategies. However, this model is limited by GPT4V’s inabil-
ity to incorporate audio information concurrently.

Tarsier[160] is a video-LLM with a simple architecture but a carefully designed two-stage training proce-
dure. It has been reported to outperform existing open-source models in video description capabilities sig-
nificantly. Tarsier model consists of a CLIP-ViT[118] encoder, a projection layer, and a LLM. CLIP-ViT encodes
frames individually, and a LLM is employed to capture inter-frame temporal relationships. The training pro-
cess involves two stages: the first is a multi-task video-to-text pretraining that helps the model comprehend
videos from various perspectives. In contrast, the second stage focuses on instruction tuning for generating
detailed video descriptions, using high-dynamic videos with well-matched text. Furthermore, a new bench-
mark for evaluating video description models is designed, which includes a challenging dataset of videos from
diverse sources with varying complexities and an automated method for assessing the quality of fine-grained
video descriptions. Contrary to Tarsier, Maaz et al. presents comparatively complex video-LLM, a Video Con-
versation Model called VideoGPT+. Its architectural design comprises four key components:segment-wise
sampling, a dual visual encoder(image and video), vision-language adapters, and a large language model.
Initially, frames selected through segment-wise sampling are processed by a dual encoder that integrates
both image and video encoders, allowing for a comprehensive visual data analysis. The extracted feature
sets are then transformed into the language space using vision-language (V-L) adapters, which facilitate the
alignment of visual and textual representations and project visual features into the language domain. These
tokens undergo adaptive token pooling to manage dimensionality and enhance representational efficiency
before being concatenated and input into the LLM. Although the model’s architecture is considerably compli-
cated, the introduction of segment-wise sampling reduces the complexity of computation. Video encoders
often encounter computational limitations, restricting their processing capabilities to sparse frames. Uni-
form sampling exacerbates the computational complexity of self-attention, as it necessitates attending to
features from all frames. Furthermore, video encoders are generally trained on sparse frames, and increasing
the number of processed frames can impair their ability to capture temporal information accurately. In con-
trast, the segment-wise sampling approach partitions the video into smaller, more manageable segments,
allowing the encoder to extract rich temporal cues within each segment efficiently.

Live video captioning is an emerging and complex issue that has not been extensively explored in the sci-
entific literature. Current SOTA models generally operate on a fixed number of down-sampled frames, pro-
ducing a single prediction only after processing the entire video. In response, [185] is proposed as a streaming
dense video captioning model featuring two novel components: a clustering-based memory module is intro-
duced that can manage arbitrarily long videos while maintaining a fixed memory size; a streaming decoding
algorithm is developed that allows the model to generate predictions before completing the analysis of the
entire video. Streaming video captioning[185] is limited to supporting captions and does not allow for free-
form dialogue. Additionally, its temporal regions for captioning are fixed, which reduces its flexibility and
generality compared to VideoLLM [14]. Chen et al. introduce Learning-In-Video-strEam (LIVE), a framework
that enables large language models (LLMs) to process streaming video effectively. This framework facilitates
the generation of temporally aligned responses, accommodates extended video duration, and ensures high
inference efficiency. The online VideoLLM model developed within the LIVE framework comprises three core
components: the CLIP ViT-L encoder as the image encoder to extract video frame embeddings at a rate of 2
frames per second; an MLP projector to convert embeddings into frame tokens and interleave with language
tokens to create input for the LLM; a large language model, specifically Llama-2 or Llama-3.

Very recently, VideoLLaMA 2[22] builds upon its predecessor by incorporating a custom Spatial-Temporal
Convolution (STC) connection in place of Q-Former, effectively capturing the spatial and temporal dynam-
ics of video data while producing fewer video tokens. The model employs image-level CLIP (ViT-L/14) as its
vision backbone, facilitating compatibility with various frame sampling strategies and enabling flexible ag-
gregation of video features. Additionally, an Audio Branch is integrated through joint training, enhancing the
model’s multimodal understanding by incorporating audio cues. For video captioning, experiments are con-
ducted using the Multi-Source Video Caption (MSVC) benchmark, which comprises 500 videos with human-
annotated captions from MSVD, MSRVTT, and VATEX to ensure diverse scenarios. A ChatGPT-assisted eval-
uation is employed to assess both generated and human-annotated captions for accuracy and detail. Re-
sults show that VideoLLaMA 2 demonstrates competitive performance among open-source models and ap-
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proaches the quality of some proprietary models across multiple benchmarks. As far as this review has been
done, VideoLLaMA is the only work that incorporates video and audio for video captioning tasks.

Evaluating LLMs and LVLMs is challenging yet essential for their advancement and enhancement. Over
the past year, benchmark scores for various tasks have consistently improved; however, the practical perfor-
mance of these models remains unsatisfactory. This issue stems from inadequate evaluation methods that
do not accurately assess the applicability of the models in real-world scenarios. The latest work [15] has dis-
closed two main issues present in current benchmarks. First, visual content is often unnecessary for many
samples, as answers can frequently be inferred from the questions and options or derived from the general
knowledge embedded in large language models (LLMs). This is a common characteristic observed across ex-
isting benchmarks. Second, unintentional data leakage occurs during LLMs and large video language models
(LVLMs) training. These models can answer visual-dependent questions without the corresponding visual
inputs, indicating that they may have memorized these examples from their extensive training datasets. With
the aforementioned two observations, Chen et al. proposes MMStar, a new benchmark for evaluating LVLM.

9.2.6. Application
Be My Eyes is a mobile application designed to support visually impaired and blind individuals by connecting
them with sighted volunteers for visual assistance through a live video call. Since its launch in 2015, the appli-
cation has grown exponentially, fostering a global community that bridges the gap between sighted helpers
and those in need of visual aids.

The core concept of Be My Eyes is straightforward. When visually impaired users need help with tasks
requiring eyesight, such as reading labels, navigating unfamiliar environments, or troubleshooting technical
issues, they can initiate a video call via the app. The call is routed to a sighted volunteer who can see through
the user’s camera and provide real-time assistance.

Be My Eyes now has integrated with GPT-4 technology. The application added a new function called
Be My AI. The GPT-4 is an automated assistance in scenarios where a human volunteer is not immediately
available. For instance, when a visually impaired user needs help identifying objects or reading text, Be My
AI, which is actually GPT-4, can analyze images taken by the user and provide descriptions or transcriptions
in real time. Besides, the GPT-4 enhances the experience of interactions. GPT-4 can handle routine queries
and offer detailed explanations.

A small group of employees tested the beta version of the GPT-backed assistant in early February 2024.
In summary, Be My Eyes leverages the power of community and AI to provide double support to visually
impaired users. While the current release still has some limitations:

1. First of all, GPT-4 is not designed especially for people with low vision. Secondly, Be My AI has not
been tested on people with low vision. According to our findings, people who are born blind and those
who turn blind in their older age perceive the world very differently. People with acquired blindness
perceive the world similarly to sighted people. On the contrary, people who are born blind perceive the
world differently. For example, color is not very important to them since they do not have the concept
of color.

2. Be My AI processes a single image at once other than video streaming.
3. Be My AI processes images and provides very detailed descriptions by default. Thus, it takes a high

latency. As I have witnessed, the latency is usually over 5 seconds.

9.2.7. Summary
While image-large language models (image-LLMs) have achieved impressive capabilities, video-large lan-
guage models (video-LLMs) have not progressed similarly due to inherent complexities. Unlike static images,
videos feature temporal dynamics and synchronous audio streams, significantly enhancing their informa-
tion content. This combination complicates extracting and interpreting meaningful patterns, increasing data
complexity and creating unique computational challenges.

Although the introduction of LLMs benefits video understanding and its downstream tasks like video cap-
tioning, the primary difficulty in video understanding still lies in managing temporal dynamics—recognizing
visual patterns, adapting to changes over time, and correlating these with audio inputs. These challenges
hinder accurate future predictions and comprehension of complex scenarios, such as interactions among
multiple entities.

Moreover, current Video-LLMs are limited in their ability to process temporal dynamics effectively, failing
to leverage the available information across frames, which impedes accurate event predictions. They of-
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ten overlook audio integration, a crucial source of contextual cues for comprehensive scene understanding.
These shortcomings underscore the need for more advanced video LLMs capable of addressing the complex-
ities of multimodal video data while preserving processing efficiency and contextual integrity.

9.3. What I will do if I start the thesis nowadays
Based on the literature review and the target audience’s needs, I will propose a new method and cite the
related work below.

• Live streaming framework. we will adopt the Learning-In-Video-Stream (LIVE) framework [14] for the
video streaming and captioning. This novel approach facilitates temporally aligned long-context and
real-time dialogue within continuous video streams. It encompasses a variety of comprehensive strate-
gies to enable dialogue in video streaming, including a training objective tailored for language model-
ing with continuous streaming inputs and an optimized inference pipeline aimed at enhancing model
response times in real-world video environments.

• Live streaming model: A live streaming model is built upon the live streaming framework. It consists of
three components: an image encoder, a connector, and a LLM as a decoder.
1) Image encoder: CLIP-ViT-L/14[118] encoder (pre-trained) is used for image encoding. The base
model CLIP incorporates a ViT-L/14 Transformer architecture as the image encoder alongside a masked
self-attention Transformer functioning as the text encoder. These encoders are trained to enhance the
similarity between (image, text) pairs by applying a contrastive loss function.
2) We utilize the Spatial-Temporal Convolution (STC) connection proposed in [22] as a Connector. Ini-
tially, video frames are encoded into feature representations on a frame-by-frame basis. These encoded
features are then processed through the STC connector, comprising two spatial interaction modules
and one spatial-temporal aggregation module. The STC connector ensures that the spatial-temporal
order of the output visual tokens is preserved, which is essential because large language models (LLMs)
depend on consistent token order during training and inference. Furthermore, the RegStage block is
employed prior to and following spatial-temporal down-sampling to reduce information loss through-
out the process.
3) The recently released Llama 3.1-Minitron-4B[102], a pruned and distilled version of Llama 3.1 [36]
developed by researchers at NVIDIA, is employed as the decoder. By using structured weight pruning
alongside knowledge distillation, Minitron achieves a 1.8x reduction in compute costs for training the
full model family (15B, 8B, and 4B) while performing comparably to other community models, such as
Llama-3 8B, and surpassing the state-of-the-art compression techniques documented in the literature.

• Offline model: Current SOTA models generally operate on a fixed number of down-sampled frames,
producing a single prediction only after processing the entire video. In order to compare the perfor-
mance, an offline model is built with a video encoder in addition to the live streaming model. InternVideo2[164]
is employed as the video encoder for extracting the temporal information.

• Audio: Audio is still not considered in our work. While including audio information may intuitively en-
hance video understanding, our target users are more likely to utilize this model in noisy environments
to obtain contextual information. Background noise could interfere with the model’s video compre-
hension in such settings. Furthermore, integrating an audio module would increase the overall model
size and computational resource requirements, leading to increased latency.

• Dataset: Many literature[174] [103][16] reported that better-annotated datasets lead to better perfor-
mance on the video captioning task. We will utilize the recently introduced MultiSource Video Caption
(MSVC) benchmark as presented in [22]. This dataset comprises 500 videos with human-annotated
captions drawn from MSVD, MSR-VTT, and VATEX, ensuring a diverse range of scenarios and domains.

• Evaluation: Traditional evaluation metrics predominantly focus on exact match statistics between gen-
erated and ground truth captions, which often fail to encapsulate the complexity and richness of video
content fully. To address this limitation, we integrate a ChatGPT-assisted evaluation approach, similar
to the methodology outlined in [94]. This complementary evaluation strategy will allow for a more nu-
anced assessment of generated captions, considering contextual relevance, coherence, and the overall
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quality of the descriptions. By combining traditional metrics(including readability metrics) and large
language model evaluations, we aim to understand captioning performance in the context of video
content comprehensively.

• Latency: There are some techniques that can be used in the model to reduce the latency. Maintaining
a continuous key-value cache as the input progresses allows the inference to be sped up Since the de-
coding process of language models is time-consuming. Parallelizing the fast video frame encoder and
the slower language model can avoid the bottleneck in the latter.

Conclusion
Due to significant advancements in the field of artificial intelligence over the past few years, particularly with
the emergence of transformers and large language models(LLMs), there has been a marked development in
the area of video understanding. Suppose I start my thesis today and design a video captioning model for
the visually impaired. In that case, I will use the pre-trained transformer-based visual encoder to extract
video features and employ powerful pre-trained LLM to generate captions. Using the recently proposed live-
streaming video dialogue framework as a reference, we can design a live-streaming video captioning model.
Further, an offline model will also be built to compete with the SOTA model since most existing models only
provide captions after processing the entire video. An extra video encoder is added to the offline model to
help the understanding of the video dynamics.

Tailor to the requirements of the visually impaired, the MultiSource Video Caption dataset is selected,
which is collected based on the MSR-VTT dataset(we previously used) and two other datasets. In addition to
the evaluation metrics we employed before(captioning and readability metrics), a ChatGPT-assisted evalua-
tion will be introduced to understand captioning performance comprehensively.

As we expect to build a real-time captioning model for people with vision challenges, the latency is still
a vital problem. Several possible ways can be used to avoid high latency: 1) choosing pruned and distilled
LLM for caption generation, 2) maintaining a key-value cache to reduce inference time, mitigating potential
bottlenecks in the processing pipeline by parallelizing visual encoder and the language decoder.
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