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1 Abstract

In this report we will take a look at various proofs of Ramsey’s theorem, some of the
bounds that result from those proofs and applications of Ramsey’s theorem. We will
consider the proof of Ramsey himself, the proof of Skolem, the proof given by Erdős and
Szekeres and the proof of again Erdős and Rado. The best upper bound for higher order
Ramsey numbers is obtained by following the proof of Erdős and Rado and this bound
has only marginally improved since then. We will also state and prove the lower bound
given by Erdős and Hajnal. In the end we will apply Ramsey’s theorem to both the Happy
Ending problem and the monotone subsequence problem. The bounds we get for both
problems using Ramsey’s theorem, however, are quite weak compared to bounds that do
not use Ramsey’s theorem, so the theorem is more useful in proving the existence of a
certain number than it is to find strong bounds for it.
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2 Introduction

The Pigeonhole Principle is a simple statement that says that if we put a large number of
pigeons in a finite number of holes, then one of those holes is going to end up with a large
number of pigeons inside. In 1928 Frank Plumpton Ramsey published an article in which
he proved an extension of the pigeonhole Principle which is know known as Ramsey’s
theorem.

In this report we will first explain and prove Ramsey’s theorem. We will start with
the simplest form of the theorem and extend it from there.

After we have established Ramsey’s theorem we will look at various different proofs
and compare the upper bounds found by those proofs. We stop at the bound found by
Erdős and Rado because from then the upper bound has only marginally improved. We
will also prove and discuss two lower bounds.

Lastly we will look at two applications of Ramsey’s theorem, both proven by again
Erdős and Szekeres with the help of Klein. Those two applications are the monotone sub-
sequence problem, which asks for the smallest possible size of a sequence of real numbers
such that it has to contain a monotone subsequence of a certain length, and the Happy
Ending problem. This problem is about how many points we have to put in a plane to
guarantee the existence of a convex n-gon. Both problems will be solved multiple times,
at least once using Ramsey’s theorem and at least once without using Ramsey’s theorem.
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3 Ramsey’s theorem

Ramsey’s theorem exists in many variants, both finite and infinite. In this section we will
focus mostly on one of the finite variants, which we will slowly expand. The variant of
Ramsey’s theorem that we will first consider is about the coloring of a graph.

Suppose we have a complete graph G = (V,E). We are interested in specific smaller
parts of the graph, so-called subgraphs. A subgraph S ⊆ G is a graph S = (V ′, E ′) such
that V ′ ⊆ V and E ′ = {(x, y) ∈ E : x, y ∈ V ′}. In essence we take a subset of the
set of our original vertices and only consider the edges between those vertices. Now we
will color all the edges of our graph G in two colors: red and blue. While the complete
graph is arbitrarily colored, there might be specific parts of the graph that are ordered
more neatly than the complete graph. In particular, we might find a subgraph that only
contains edges of one color. We will call this monochromatic.

Right now one could ask himself how large of a monochromatic subgraph we could find
if we started with n vertices. Ramsey looked at this problem and he found the following
result:

Theorem 1. For all integers k and l there exists a least integer R(k, l) such that whenever
n ≥ R(k, l), any red-blue coloring of a complete graph on n vertices has either a blue
monochromatic subgraph A of size k or a red monochromatic subgraph B of size l.

The least integer R(k, l) is often called a Ramsey number. Only a few non-trivial
Ramsey numbers are known. Even though Ramsey proved his theorem in his original
paper himself, we will look here at the proof given by Erdős and Szekeres [2], both
because it gives better bounds for Ramsey numbers and because it is easier to follow.

Proof. We will prove the theorem by induction on k and l.
For the base case, it is not hard to see that R(2, k) = R(k, 2) = k.
So now assume that for a certain k and l both R(k−1, l) and R(k, l−1) exist. We will

show that R(k, l) ≤ R(k−1, l)+R(k, l−1). Suppose we have a complete graph G = (V,E)
with |V | = R(k−1, l)+R(k, l−1). Take any vertex x. Define S = {y ∈ V : {x, y} is blue}
and T = {y ∈ V : {x, y} is red}.

Every vertex, except for x, is now either in S or in T . This means that S and T
together have R(k − 1, l) +R(k, l − 1)− 1 vertices. Therefore, either |S| ≥ R(k − 1, l) or
|T | ≥ R(k, l − 1).

Suppose |S| ≥ R(k−1, l). We then either obtain a blue monochromatic subset A of S
of size k − 1 or a red monochromatic subset B of S of size l. In the first case we have
that x is not in A, so from the definition of our set S we see that adding x to the vertices
of A results in a blue monochromatic subgraph of size k. If we had a red monochromatic
subgraph B of size l instead we would be done immediately.

If we had |T | ≥ R(k, l − 1) instead, the same argument holds.
In both cases the inequality holds, which proves the theorem by induction.

It is not hard to show that R(k, l) ≤
(
k+l−2
k−1

)
using induction. For R(k, 2) and R(2, k)

it holds, so suppose it holds for R(k − 1, l) and R(k, l − 1). Then from the inequality of
the proof we find that

R(k, l) ≤ R(k − 1, l) +R(k, l − 1) ≤
(
k + l − 3

k − 2

)
+

(
k + l − 3

k − 1

)
=

(
k + l − 2

k − 1

)
. (3.1)
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In the theorem we only allowed two colors: red and blue. A very similar theorem exists
for an arbitrary number of colors. We will have to introduce some new notation for this.

When the number of colors matters, we will talk about an r-coloring c to indicate that
the coloring uses r colors. Furthermore, we will refer to colors as numbers from now on.
So an r-coloring assigns a natural number smaller or equal to r to every edge. In other
words, an r-coloring on a graph G = (V,E) is a function c : E → {1, . . . , r}.

Instead of talking about a red monochromatic graph if all its edges are red, we will now
talk about an i-monochromatic graph if all its edges are of color i. If we allow multiple
colors, we can restate Ramsey’s theorem as follows:

Theorem 2. For all integers r and l1, . . . , lr there exists a least integer R(l1, . . . , lr) such
that for any r-coloring c there is an i-monochromatic subgraph with li vertices for some i.

Proof. Just like the 2-color case, the proof uses induction.
For the base case, note that R(2, . . . , 2, k, 2, . . . , 2) = k, no matter where we put the k.
Now assume that for all i, R(l1, . . . , li − 1, . . . , lr) exists. We will show that

R(l1, . . . , lr) ≤ 2 +
r∑

i=1

(R(l1, . . . , li − 1, . . . , lr)− 1).

Note that in the case r = 2 this gives the same inequality as obtained before. Let
n = 2 +

∑r
i=1(R(l1, . . . , li − 1, . . . , lr)− 1).

Let c be any r-coloring on a graph G = (V,E) with n vertices and take any vertex
x ∈ V arbitrarily. If we denote the edge between two vertices x and y as {x, y} we can
define Ai = {y ∈ V : c({x, y}) = i}. We must have that |Ai| ≥ R(l1, . . . , li − 1, . . . , lr)
for some i, though this is no longer trivial.

To see this, assume the contrary, so |Ai| < R(l1, . . . , li − 1, . . . , lr) for all i. Since |Ai|
is integer, we find that |Ai| ≤ R(l1, . . . , li−1, . . . , lr)−1. Every element of V is in exactly
one Ai, except for x itself. So

r∑
i=1

|Ai| = n− 1 = 1 +
r∑

i=1

(R(l1, . . . , li − 1, . . . , lr)− 1).

However using our assumption we find

n∑
i=1

|Ai| ≤
n∑

i=1

(R(l1, . . . , li − 1, . . . , lr)− 1),

which is a contradiction.
So take one j such that |Aj| ≥ R(l1, . . . , lj−1, . . . , lr). Let S be the subgraph of G with

Aj as its vertex set. Because of the definition of the Ramsey number we either have for
some i an i-monochromatic subgraph of S of size li, 1 ≤ i 6= j ≤ r, or a j-monochromatic
subgraph T of size lj − 1.

In the first case, we are done, so assume we can find a j-monochromatic subgraph T
of size lj − 1. Just like in the 2-color case, because of how we chose Aj, adding x to T
results in a j-monochromatic subgraph of size lj. By induction the theorem follows.
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We could have proven the multicolored Ramsey theorem differently, using induction
on the number of colors. That proof however gives a much weaker bound on the Ramsey
numbers. The alternative proof is given below.

Alternative proof of Theorem 2. As stated before, we will use induction on the number of
colors.

The base case would be Ramsey’s theorem for two colors, which we proved earlier.
Now assume that for all r′ < r and all integers l1, . . . , lr′ the number R(l1, . . . , lr′)

exists. Let p1, . . . , pr be integers. We will show that R(p1, . . . , pr) exists as well. Let G
be a complete graph on R(p1, . . . , pr−2, R(pr−1, pr)) vertices. This number exists because
the Ramsey number only has r − 1 colors. Let c be any r-coloring on G.

We will define a new coloring c′ with r− 1 colors by ’merging’ the last two colors of c.
More formally, if e is an edge, c′(e) = c(e) if c(e) 6= r and c′(e) = r − 1 if c(e) = r. Now
we either have an i-monochromatic subgraph S on c′ of size pi, i ≤ r − 2 or we have a
(r− 1)-monochromatic subgraph T on c′ of size R(pr−1, pr). In the first case we are done
since on that subset c′ = c, so assume the second part holds.

All edges of T are either of color r − 1 or of color r under c, so c restricted to S
only has 2 colors. Then it follows from the definition of R(pr−1, pr) that we either have a
(r − 1)-monochromatic subset of size pr−1 or an r-monochromatic subset of size pr.

So we find that R(p1, . . . , pr) exists, which completes the induction.

We are now in a position to generalize Ramsey’s theorem even further. In essence
a coloring is a function that maps every edge, which in the case of a complete graph is
just a subset of any two vertices, to a ’color’, or in our case, a number. It would also be
possible to take subsets of more than two vertices and assign a number to those.

In this case, it makes little sense to talk about traditional graphs, since an edge is
always between two vertices. Instead, we can look at the set {1, 2, . . . , n}. A traditional
r-coloring then becomes a function that maps all subsets of 2 elements of {1, 2, . . . , n} to
{1, 2, . . . , r}. It is easy to extend this to allow an arbitrary number of elements, so we
define an r-coloring on subsets of k elements from {1, 2, . . . , n} as a function that maps
all subsets of {1, 2, . . . , n} of k elements to {1, 2, . . . , r}.

This is closely related to a hypergraph, which is a vertex set V combined with an
’edge’ set E, where every element of E is a subset of V . If we would number our vertices
between 1 and n and only take the edges with k elements we would be able to apply our
extended definition of a coloring to graphs as well, but we will not do so in this report
and we will stick to the previous notation.

We will use both the set {1, 2, . . . , n} and its subsets of k elements a lot, so we will
shorten {1, 2, . . . , n} to [n] and denote the family of all its subsets of k elements by [n]k.
For colorings, to prevent confusion we will denote with a subscript on how many elements
the coloring takes place, so ck always denotes a coloring on subsets of k elements. We
will either say that ck is a coloring of [n]k or, to emphasize the number of elements of the
coloring, we will say that ck is a coloring of [n] on k elements.

With this extended definition of a coloring we will now restate and prove Ramsey’s
theorem one last time.

Theorem 3 (Ramsey’s theorem). For all integers k, r and l1, . . . , lr there exists a least
integer Rk(l1, . . . , lr) such that, whenever n ≥ Rk(l1, . . . , lr), for any arbitrary r-coloring
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of [n] on k elements there exist an i and a set S ⊆ [n] such that S is i-monochromatic
with |S| = li.

Proof. The proof works slightly different if we allow colorings on more than 2 elements.
We will prove the theorem by using induction on the number of elements k of the coloring.

For the base case, we take k = 2, which we proved earlier.
Assume that for a certain k and for all integers r and l1, . . . , lr the number Rk(l1, . . . , lr)

exists. To show that for all r and l1, . . . , lr the number Rk+1(l1, . . . , lr) exists as well, we
will use another induction argument.

It is once again easy to see that Rk+1(k + 1, k + 1, . . . , l, . . . , k + 1) = l, no matter
where we put the l.

Now assume that, apart from the assumption made earlier, Rk+1(l1, . . . , li− 1, . . . ., lr)
exists as well for all i. We now claim that

Rk+1(l1, . . . , lr) ≤ Rk(Rk+1(l1−1, l2, . . . , lr), Rk+1(l1, l2−1, . . . , lr), . . . , Rk+1(l1, l2, . . . , lr−1))+1.

The right hand side exists because we assumed that Rk always exists. Suppose we have n
equal to the right hand side above. Let ck+1 be an arbitrary coloring of [n]k+1.

Take any element s of [n]. Define a new coloring dk by

dk(x1, . . . , xk) = ck+1(s, x1, . . . , xk).

Note that [n]\{s} has Rk(Rk+1(l1−1, l2, . . . , lr), . . . , Rk+1(l1, . . . , lr−1)) elements. So we
know that for some i there exists a subset T of [n] \ {s} such that T is i-monochromatic
on dk and |T | = Rk+1(l1, . . . , li − 1, . . . , lr).

Going back to ck+1, we know that T either has a j-monochromatic subset on ck+1 of
size lj, for some 1 ≤ j 6= i ≤ r, or an i-monochromatic subset on ck+1 of size li − 1.

In the former case we are done immediately, so assume the latter is true. Call the
subset A. Note that A ⊆ T , so we immediately find that A ∪ {s} is an i-monochromatic
subset of size li − 1 + 1 = li.

Now using the second induction, for all l1, . . . , lr we have proven that Rk+1(l1, . . . , lr)
exists.

The theorem now follows by the first induction.

It is worth noting that k = 1 can be solved directly. In this case we would be coloring
single elements. It is not hard to see then that R1(l1, . . . , lr) =

∑r
i=1(li− 1) + 1. This is a

more general form of the pigeonhole principle. Here we want to know how many pigeons
we need in order to have one of the r numbered holes contain at least a certain number
of pigeons, in this case our li. We could have taken this as our induction base as well.
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4 Bounds for Ramsey numbers

As stated before, the exact Ramsey numbers are still unknown with the exception of the
trivial cases and a handful of small numbers. In this section we will look at upper and
lower bounds for the Ramsey numbers. We have already seen an upper bound for the
Ramsey numbers for pairs in Equation 3.1.

We will look at three other proofs that each give their own bounds, namely the proof
of Ramsey himself (1928), the proof of Skolem (1933) and the proof given by Erdős and
Rado (1952). The first two proofs give upper bounds that are way larger than the bound
we already found, but they are still interesting from a historical point of view. The last
proof was found much later than all the other proofs, but it results in significantly better
upper bounds when we consider Ramsey numbers with colorings on more than 2 elements.

Lastly we will prove a lower bound to get an indication how close our upper bound is
to the actual Ramsey number.

4.1 Ramsey’s proof

Ramsey himself used a different proof than the proof of Erdős and Szekeres [4]. Although
this proof does not give the best upper bound it is still of importance because it was
the first proof of the theorem. Ramsey did not prove his theorem directly. Instead he
stated a different, equivalent problem and proved that one instead. He only considered
the symmetric case.

Theorem 4 (An equivalent Ramsey theorem). For all integers k, l and h there exists a
least integer mk(l, h) such that, whenever n ≥ mk(l, h), any arbitrary 2-coloring ck of [n]k

is such that there exist two subsets S and T with empty intersection such that |S| = l and
|T | = h and all k-element subsets of S∪T with at least one element from S have the same
color.

It is not hard to see that this is indeed equivalent to Ramsey’s theorem. We have
that mk(l, h) has to be larger than Rk(l, l), since mk(l, 0) = Rk(l, l) and it is increasing if
we would consider it as a function of h. Similarly we have that mk(l, h) < Rk(l+h, l+h),
because if we can find a subset of size l + h of which all k-element subsets are of the
same color then we can arbitrarily divide those elements over two sets S and T with the
desired cardinality. Since any k-element subset of S ∪ T is of the same color, certainly
all k-element subsets containing at least one element of S would be of the same color.
Summarized we have that

Rk(l, l) ≤ mk(l, h) ≤ Rk(l + h, l + h). (4.1)

From this equation it follows immediately that both theorems are indeed equivalent.

Proof. The proof uses an induction argument on k.
The base case is k = 1. One can easily verify that m1(l, h) = max(2l − 1, l + h).
So, assume the theorem holds up to a certain k. First, we will show that mk(1, h)

exists and after we will use induction again on l. We claim that mk(1, h) = 1+mk−1(h, 0)
works.
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Indeed, suppose n = 1+mk−1(h, 0) and let ck be a 2-coloring of [n]k. Take any element
x of [n]. Now define a new coloring c′k−1 on k − 1 subsets {i1, . . . , ik−1} of [n] \ {x by}
c′k−1(i1, . . . , ik−1) = ck(i1, . . . , ik−1, x). It follows that c′k−1 only has two colors as well.

Since [n] \ {x} has mk−1(h, 0) elements, we can find a subset A with |A| = h that is
monochromatic under c′k−1. By taking S = {x} and T = A, the claim follows.

Now assume that, still for the same k as before, the theorem holds up to a certain l,
so mk(i, h) exists for all i < l. If we now define F (x) = mk(1, x), we will prove that
mk(l, h) = mk(l − 1, F l(max(k − 1, h)) works. Here, F n(x) = F (F (F (· · · (x) · · · ), so we
apply F n times to x. In particular this means by the definition of F that any 2-coloring
on F n(x) elements has an element s and a subset T with |T | = F n−1(x) such that all
k-subsets of {s} ∪ T that contain s are monochromatic under this coloring. This turns
out to be a useful property for the proof.

Let ck be any 2-coloring of [n]k with n = mk(l − 1, F l(max(k − 1, h)). Because of
the definition of n we can find a subset S with |S| = l − 1, a subset T0 with |T0| =
F l(max(k − 1, h)) and a number z such that any k-subset of S ∪ T0 containing at least
one element of S is of color z under ck. We will assume that z = 1, though if z = 2 the
same argument holds.

Because of how F was defined we can find an element t1 of T0 and a set T1 ⊆ T0
with |T1| = F l−1(max(k − 1, h)) such that all k-subsets of {t1} ∪ T1 containing t1 are
monochromatic. If this color is 1, then we could add t1 to S to find the desired set S with
any subset of size h of T1, which is possible since |T1| is much larger than h. So assume
the color is 2.

Once again there exists an element t2 and a set T2 with |T2| = F l−2(max(k − 1, h))
such that any k-element subset of {t2} ∪ T2 is of the same color. Following the same
argumentation as before, if this color is 1, we add t2 to S and we are done in a similar
way, so the color has to be 2.

We can do this l times in total to obtain elements t1, . . . , tl and sets T1, . . . , Tl with
|Tl| = max(h, k−1) such that for all 1 ≤ i ≤ l, we must have that all k-subsets of {ti}∪Ti
that contain ti are of color 2. |Tl| ≥ h, so let T be any h-element subset of Tl. We claim
that S = {t1, . . . , tl} and T are such that all k-subsets of S ∪ T containing at least one
elements of S are of color 2.

Indeed, let x1, . . . , xk be any k-subset of S ∪ T containing at least one ti for some i.
Let j be the smallest integer such that tj = xp for some 1 ≤ p ≤ k. Now all the other
elements of x1, . . . , xk must be in Tj, since if xi was from S, it would be equal to tv for
some v > j and thus be in Tv−1 ⊆ Tj.

If instead xi was from T , xi is in Tl and since Tl ⊆ Tj we can conclude that xi ∈ Tj.
Now from the definition of Tj we immediately find that x1, . . . , xk, which contains tj, is
of color 2.

The theorem now follows by induction.

The upper bounds from this proof are very large. Note that

Rk(l, l) = mk(l, 0) = mk(l − 1, 1) = · · · = mk(l − k + 1, l − 1),

since all k-subsets automatically include an element from the first set, since the second
set has less than k elements. The proof gives the best bound for ml(l−k+ 1, l−1). From
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the proof we have that

Rk(l, l) = mk(l − k + 1, k − 1) ≤ mk(l − 1, F l(k − 1)). (4.2)

It is not hard to see from the definition of F that F (x) > x, so we can conclude that
F l(k − 1) > k − 1. By applying equation 4.2 l − 1 times we now find

Rk(l, l) ≤ mk(1, F l+l−1+l−2+···+2(k − 1)) = FC(k − 1),

With C = (l−k+2)(l−k+1)
2

. We can quickly find for k = 2 that

F (x) = 1 +m1(x, 0) = 1 + 2x− 1 = 2x.

This gives that F l(x) = 2l · x. So we see that

R2(l, l) = m2(l − 1, 1) ≤ F
(l−1)l

2 (1) = 2
(l−1)l

2 . (4.3)

Ramsey stated a better bound immediately after in the same paper: He found that

m2(l, h) ≤ h · (l + 1)! (4.4)

also holds, which gives
R2(l, l) = m2(l − 1, 1) ≤ l!.

To prove equation 4.4, we use induction on l.
For l = 1, suppose we have 2h elements. If c is a coloring of those elements and we

take any element x, it follows that there are at least h of the 2h− 1 elements that are of
the same color when combined with x, which proves the base case.

Now suppose it holds for l − 1. We will show it also hold for l. Let n = h · (l + 1)! =
h(l+ 1) · l! and c be any coloring of [n]2. Then since it holds for l we can find a set S and
a set T with |S| = l− 1 and |T | = h(l+ 1) such that all pairs containing an element from
S are of the same color, say 1. We will now consider two cases.

First, suppose there is an x in T such that there are at least h elements of T that are
of color 1 together with x. In this case, we are done when we add x to S and take those
h elements as our new T .

Suppose now instead that this x does not exist. This means that all elements in
T have at most h − 1 other elements that are of color 1 with this element. Take x1
from T . Then we can find a set T1 from T that are all of color 2 together with x with
|T1| ≥ h(l + 1)− 1− (h− 1) = hl. Now take an element x2 from T1. We once again find
a set T2 such that all elements of T2 with x2 are of color 2 with |T2| ≥ (l− 1)h. Continue
this to find elements x1, . . . , xl and a set Tl with |Tl| ≥ h. Then taking S = {x1, . . . , xl}
and T = Tl we indeed find the right monochromatic set, which proves the bound.

If we allow multiple colors we can use induction on the number of colors, just like in
the alternate proof of the multicolored Ramsey theorem with k = 2, that

R2(l, . . . , l) ≤ l! . . .!, (4.5)

where we have r colors and r − 1 factorials.We just proved this for r = 2.
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Now suppose it holds up to some r. Then let n = l! . . .! with r − 1 factorials and
let c be any r-coloring of [n]2. Then if we let c′ be c with the last two colors ’merged’,
just like before, then we find by the induction hypothesis a monochromatic subset of c′

of size n!. If this monochromatic subset is not of the last color, we immediately find a
monochromatic subset of c.

If it were the last color, we find from the base case that we have a monochromatic
subset of size n of one of those two colors we merged, so the bound indeed holds.

It is evident that this bound grows incredibly quickly, especially if we allow multiple
colors.

4.2 Skolem’s proof

In 1933 Skolem found a different proof for Ramsey’s theorem that provided better upper
bounds than Ramsey’s proof [6]. His proof is interesting because he did not try to find
Rk(n, n), the smallest integer that always allows a monochromatic subset of size n. Instead
he started with [m] and tried to find the largest monochromatic subset of [m] that was
guaranteed to exist. The proof of Erdős and Rado, which we will consider after this one,
also uses this principle. He proved the following theorem:

Theorem 5 (Skolem’s variant of Ramsey). Suppose we have a set [m] and let k and r
be integers. Let ck be any r-coloring of [m]k. Then there exists a monochromatic subset
under ck of size at least f(k, r,m).

How large this f(k, r,m) can be will follow from the proof. We will first state the
proof and then derive a condition for f .

Skolem’s proof of Ramsey’s theorem. Skolem also used an induction argument on the
number of elements in the coloring k.

The base case is k = 1. It is easy to verify that f(1, r,m) =
⌈
m
r

⌉
.

So suppose the theorem holds up to a certain k, so for all r-colorings ck−1 of [m]k−1 we
can find a monochromatic subset of size at least f(k−1, r,m). Suppose ck is an r-coloring
on k elements of [m]k. We will give a procedure to obtain a set that is monochromatic
under ck.

Start by taking any element a1 from [m]. Define a new coloring c1k−1 on [[m]\{a1}]k−1
by c1k−1(x1, . . . , xk−1) = ck(x1, . . . , xk−1, a1). By the induction hypothesis we can find a
monochromatic subset S1 of size m1 = f(k − 1, r,m− 1) of color r1.

From S1, pick a new element a2 and define a coloring c2k−1 by c2k−1(x1, . . . , xk−1) =
ck(x1, . . . , xk−1, a2). Once again we obtain a monochromatic subset S2 under c2k−1 of size
f(k − 1, r,m1 − 1) and color r2.

Continue this until we find a1, . . . , at and S1, . . . , St with t = r · (f(k, r,m)− 1) + 1
for which all subsets of k elements from {ai} ∪ Si containing ai are of color ri. Those
exist as long as all the Si are nonempty. The ri only take r values so there must exist
rj1 , rj2 , . . . , rjf(k,r,m)

such that all rj are the same. We claim that {aj1 , aj2 , . . . , ajf(k,r,m)
} is

monochromatic.
Indeed, take any k-element subset {ax1 , . . . , axk

} where we can assume the elements
are in increasing order. Now we must have that ax2 , . . . , axk

are all in Sx1 . Because of
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how we chose Sx1 it now immediately follows that c(ax1 , . . . , axk
) = rxk

, so the theorem
holds.

The proof works as long as all the Si are nonempty. So if we define

g(0, k, r,m) = m,

g(z, k, r,m) = f(k, r, g(z − 1, k, r,m)− 1),

Then g(z, k, r,m) is the size of set Sz following the procedure above. Now we define
f(k, r,m) for k > 1 to be the largest integer such that

g(r(f(k, r,m)− 1) + 1, k − 1, r,m) ≥ 1.

This exists, because g is decreasing in its first argument. This is the same as requiring
Sr(f(k,r,m)−1)+1 to be nonempty.

Skolem provided an explicit bound in the case k = 2. Finding an upper bound
for R2(l, . . . , l) with r colors is equivalent to finding a lower bound for m such that
f(2, r,m) ≥ l, since this m would be an upper bound for R2(l, . . . , l). We will show that

m =
rrl−r+2 − 1

r − 1

will give that f(2, r,m) ≥ l.
Note that f(2, r,m) ≥ l is the same as requiring g(r(l − 1) + 1, 1, r,m) ≥ 1. We

will show that g(z, 1, r,m) ≥ rrl−r+2−z−1
r−1 using induction.

For z = 0, this is trivial from the definition of m.
So suppose it holds up to a certain z. We then have that

g(z, 1, r,m) = f(1, r, g(z − 1, 1, r,m)− 1). (4.6)

From how we defined f we get that

f(1, r, g(z − 1, 1, r,m)− 1) =

⌈
g(z − 1, 1, r,m)− 1

r

⌉
≥ g(z − 1, 1, r,m)− 1

r
.

Using the induction hypothesis we thus find

g(z, 1, r,m) ≥
rrl−r+3−z−1

r−1 − 1

r
=
rrl−r+3−z − 1− r + 1

r(r − 1)
=
rrl−r+2−z − 1

r − 1
, (4.7)

as required. We thus find that

g(r(l − 1) + 1, 1, r,m) ≥ rrl−r+2−(rl−r+1) − 1

r − 1
=
r − 1

r − 1
= 1. (4.8)

So this m is indeed an upper bound for R2(l, . . . , l) with r colors. We see that this bound
is a lot smaller than the one Ramsey found. Even for r = 2 we find R2(l, l) ≤ 22l − 1
which is considerably better than l!.

If we take k > 2, finding a bound for g(z, k − 1, r,m) becomes more difficult and the
bounds become less precise, since we would have to estimate f(k − 1, r,m) as well.
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4.3 Proof by Erdős and Rado

A nice bound on the Ramsey numbers was found by Erdős and Rado in 1952 [1]. It uses
a different proof of Ramsey’s theorem than the one mentioned earlier. The proof goes as
follows:

Proof. We will once again use induction on the number of elements in the coloring k.
Our base case remains k = 2.
So, assume that for a certain k we have that Rk−1(l1− 1, l2− 1, . . . , lr − 1) exists. We

want to show that Rk(l1, l2, . . . , lr) exists as well. We will first explain the procedure to
find a monochromatic set of sufficient size, which can be carried out if we start with a
large enough starting set, and then derive an upper bound for the size of this starting set.

So, assume n is large enough, and ck is an r-coloring of [n]k. First, take k− 2 distinct
elements a1, a2, . . . , ak−2. Let Sk−1 be the set [n] \ {a1, . . . , ak−2}.

Take any arbitrary element ak−1 of Sk−1. We color the elements of Sk−1 \ {ak−1} by a
new coloring (on one element) which we call ck−11 as follows:

ck−11 (x) = ck(a1, . . . , ak−1, x).

We now define Sk as the largest monochromatic subset of Sk−1 under ck−11 . Note that ck−11

has at most r colors, so we know that |Sk| ≥ |Sk−1|−1
r

.
We take ak from Sk arbitrary, and define a new coloring ck1 on 1-elements of Sk \ {ak}

by the elements a1, . . . , ak, by coloring two elements x, y in the same color if for all k− 2-
subsets ai1 , . . . , aik−2

of a1, . . . , ak−1 we have that

ck(ai1 , . . . , aik−2
, ak, x) = ck(ai1 , . . . , aik−2

, ak, y).

One possibility for such a coloring would be

ck1(x) = ck(a1, . . . , ak−2, ak, x) + rck(a1, . . . , ak−3, ak−1, ak, x) + · · ·+ rk−1ck(a2, . . . , ak, x).

It is not important for the proof to have an explicit formula for ck1, the formula just shows
that such a coloring indeed exists.

There are k − 1 possible subsets of k − 2 elements of a1, . . . , ak−1, so ck1 has at most
rk−1 colors. We set Sk+1 as the largest monochromatic subset of Sk \{ak} under ck1. Since

we took the largest subset, we know that |Sk+1| ≥ |Sk|−1
rk−1 .

In general, suppose we have defined (a1, . . . , aj) and a subset Sj+1. Take aj+1 from
Sj+1 arbitrarily and define cj+1

1 the same as ck1: Two elements x, y are of the same color
under cj+1

1 if for all (k − 2)-subsets{ai1 , . . . , aik−2
} of {a1, . . . , aj−1} we have that

ck(ai1 , . . . , aik−2
, aj, x) = ck(ai1 , . . . , aik−2

, aj, y).

Define Sj+2 as the largest monochromatic subset of Sj+1 \ {aj+1} under cj+1
1 . There are

at most r(
j

k−2) different colors, so we have that

|Sj+2| ≥
|Sj+1| − 1

r(
j

k−2)
.
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Continue this procedure until we reach at, t = Rk(l1 − 1, l2 − 1, . . . , lr − 1) + 1. We
now define a last coloring dk−1 on k − 1 elements of {a1, . . . , at−1} by

dk−1(ai1 , . . . , aik−1
) = ck(ai1 , . . . , aik−1

, at).

Because of how we chose t we know that for some i there exists an i-monochromatic set
of size li − 1, say B = {b1, . . . , bli−1}. We claim that B ∪ {at} is also i-monochromatic
under ck.

For that, suppose bj1 , . . . , bjk ∈ B. We can assume that (j1, j2, . . . , jk) is increasing.
If bjk = at, we immediately find c(bj1 , . . . , bjk) = i. So, assume bjk 6= at. Then, because
both bjk and at are in Sjk−1

, we know that ck(bj1 , . . . , bjk−1
, bjk) = ck(bj1 , . . . , bjk−1

, at).
Since dk−1(bj1 , . . . , bjk−1

) = i, we find by our definition of dk−1 that ck(bj1 , . . . , bjk−1
, at) = i

as well, so ck(bj1 , . . . , bjk) = i as requested. So B is indeed i-monochromatic under ck,
which proves the theorem by induction.

We assumed at the start that we had a ’large enough’ set. By specifying how large
’large enough’ is, we find an upper bound for the Ramsey numbers. Our proof holds as
long as we can keep finding ai from the set Si, up to at. In other words, all the Si need to
be nonempty. Since those sets are decreasing, this reduces to St needs to be nonempty.
We have already derived recurrence relations for the cardinalities of our sets Si in our
proof. If we set si = |Si|, we find:

sk =
n− k + 1

r
(4.9)

si+1 ≥
si − 1

r(
i−1
k−2)

, i = k, . . . , r. (4.10)

We now want to find n in such a way that st > 0. For ease of notation we define

mi = r−( i
k−2). By using our recurrence relation 4.10 repeatedly, we get

st ≥ st−1mt−2 −mt−2 (4.11)

st ≥ st−2mt−2mt−3 −mt−2mt−3 −mt−2 (4.12)

... (4.13)

st ≥ skmk−1mk . . .mt−2 −mk−1mk . . .mt−2 −mkmk+1 . . .mt−2 − . . .−mt−2 (4.14)

st ≥ (n− k + 1)mk−2mk−1 . . .mt−2 −mk−1mk . . .mt−2 −mkmk+1 . . .mt−2 − . . .−mt−2.
(4.15)

For the last inequality we used that mk−2 = 1
r
. We now require the right-hand side of

equation 4.15 to be positive to find

(n− k + 1)mk−2mk−1 . . .mt−2 −mk−1mk . . .mt−2 −mkmk+1 . . .mt−2 − . . .−mt−2 > 0

(4.16)

n > k − 1 +
1

mk−2
+

1

mk−2mk−1
+ . . .+

1

mk−2mk−1 · · ·mt−3
(4.17)

n ≥ k + r(
k−2
k−2) + r(

k−1
k−2)+(k−2

k−2) + . . .+ r(
t−3
k−2)+(t−2

k−2)+...+(k−2
k−2). (4.18)
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We now claim that
∑n

k=r

(
k
r

)
=
(
n+1
r+1

)
. This follows immediately by induction on n. The

base case n = 0 is trivial, so assume it holds for n. Then

n+1∑
k=r

(
k

r

)
=

(
n+ 1

r

)
+

(
n

r + 1

)
=

(
n+ 1

r + 1

)
.

So equation 4.18 reduces to

n ≥ k +
t−2∑

j=k−1

r(
j

k−1). (4.19)

Since n is an upper bound for Rk(l1, . . . , lr), we want n to be as small as possible, so we
choose n equal to the right-hand side. Equation 4.19 is not yet an explicit upper bound
since the bound depends on t, which we defined as Rk−1(l1− 1, l2− 1, . . . , lr − 1) + 1. We
will first estimate the binomial coefficient to obtain

k +
t−2∑

j=k−1

r(
j

k−1) ≤ k +
t−2∑

j=k−1

r(j
k−1). (4.20)

Powers of powers can get a bit cumbersome to work with. Instead we shall use k ↑ n to
denote kn following Knuth’s up-arrow notation. Then we can define

k ↑ ↑ n = k ↑ (k ↑ (. . . ↑ k) . . . ), (4.21)

where we have n− 1 arrows. This needs to be resolved from right to left, since otherwise
we would just be multiplying the powers and k ↑↑ n would just be k(k

n−1). We could
continue this procedure, but this is not necessary for this report.

We would like to get rid of the sum in Equation 4.20. To do this we use that for r and
k greater than 2

r ↑ (j + 1) ↑ (k − 1) ≥ (r ↑ j ↑ (k − 1)) · (r ↑ 1 ↑ (k − 1)) ≥ (r ↑ j ↑ (k − 1)) · 2.

This gives that

(r ↑ j ↑ (k − 1)) ≤ (r ↑ (j + 1) ↑ (k − 1))− (r ↑ j ↑ (k − 1)).

If we use this in equation 4.20 we obtain

k +
t−2∑

j=k−1

r ↑ j ↑ (k − 1) ≤ k +
t−2∑

j=k−1

((r ↑ (j + 1) ↑ (k − 1))− (r ↑ j ↑ (k − 1)))

= k + (r ↑ (t− 1) ↑ (k − 1))− (r ↑ (k − 1) ↑ (k − 1)).

Since r ↑ (k − 1) ↑ (k − 1) is larger than k, this results to

k + (r ↑ (t− 1) ↑ (k − 1))− r ↑ (k − 1) ↑ (k − 1)) ≤ r ↑ (t− 1) ↑ (k − 1)

= r ↑Rk−1(l1 − 1, l2 − 1, . . . , lr − 1) ↑ (k − 1).
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As a result we find

Rk(l1, l2, . . . , lr) ≤ r ↑Rk−1(l1 − 1, l2 − 1, . . . , lr − 1) ↑ (k − 1). (4.22)

We can write equation 4.22 in a way that is a little easier to apply continuously:

Rk(l1, l2, . . . , lr) ↑ k ≤ (r ↑ k) ↑Rk−1(l1 − 1, l2 − 1, . . . , lr − 1) ↑ (k − 1). (4.23)

Note the brackets around r ↑ k. By continually applying equation 4.23 we obtain

Rk(l1, . . . , lr) ≤ (r ↑ k) ↑ (r ↑ (k − 1)) ↑ . . . ↑ (r ↑ 2) ↑R1(l1 − k + 1, . . . , lr − k + 1).

If we set C =
∑r

i=1 li − k + 1, then we get the following final explicit bound:

Rk(l1, . . . , lr) ≤ (r ↑ k) ↑ (r ↑ (k − 1)) ↑ . . . ↑ (r ↑ 2) ↑ (C − r + 1). (4.24)

So we approximately find for r colors that Rk(l, . . . , l) ≤ (r↑↑k)C
′l, where C ′ is a constant

depending on r and k.
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5 Lower bounds

So far we have seen various proofs of Ramsey’s theorem, all of which give their own upper
bound. In this section we will look at a lower bound given by Erdős and Hajnal. We
will closely follow the proof given in [3]. We will restrict ourselves to the symmetric
case with two colors. The proof does not construct a coloring that is such that there
is no monochromatic coloring of a certain size, as one might initially expect. Instead it
merely shows the existence of such a coloring using a probabilistic argument. As such it
is sometimes also called an existence argument.

Theorem 6. If
(
n
l

)
21−( l

k) < 1, then we have that Rk(l, l) > n.

Proof. Suppose
(
n
l

)
21−( l

k) < 1. Now create a random coloring c of [n]k by setting for all
distinct elements x1, . . . , xk,

P (c(x1, . . . , xk) = 1) = P (c(x1, . . . , xk) = 2) =
1

2
.

We color all different subsets independently. Now we define for all subsets S of [n] with
|S| = l the event AS to be the event that S is monochromatic. Then

P (AS) = P (S is 1-monochromatic) + P (S is 2-monochromatic) = 2 · 2−( l
k) = 21−( l

k).

Now if we look at the event B of some subset of l elements to be monochromatic we see
that

P (B) ≤
∑
|S|=l

P (AS) =

(
n

l

)
21−( l

k) < 1. (5.1)

Since P (B) < 1 there must exist a coloring without a monochromatic subset of l elements.

We see that all that is left is finding an upper bound for n such that equation 5.1
holds. We can bound the first binomial by(

n

l

)
< nl,

as long as l ≥ 2 this inequality is strict (we will see that n is much larger than l). Similarly(
l
k

)
≥ (l−k+1)k+1

k!
as long as l 6= k, which was the trivial case. So if we take

n ≤ 2
1
k!
·(l−k+1)(k−1)

, (5.2)

we see that

2

(
n

l

)
< 2nl ≤ 2

1
k!
l(l−k+1)k−1+1 ≤ 2

l
k( l−1

k−1) = 2( l
k). (5.3)

For this n we thus found that 2
(
n
l

)
< 2( l

k), which is exactly the same as equation 5.1.
The right hand side of equation 5.2 is thus a lower bound for Rk(l, l). This lower bound
does not grow nearly as fast as the upper bound. From k = 3, however, there is a way to
obtain a much better lower bound from Rk(l, l) for Rk+1(l, l).
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Lemma 1 (Stepping-up lemma). If k ≥ 3 and Rk(l, l) > n then we must have that
Rk+1(2l + k − 4, 2l + k − 4) > 2n.

Proof. Suppose k ≥ 3 and let n be as above. Then there exists a coloring ck on [n]k that
does not contain a monochromatic subset of size l. We will construct a new coloring c′k+1

on [2n]k+1 that does not contain a monochromatic subset of size 2l + k − 4, effectively
’stepping up’ the bound from k to k + 1.

Instead of considering [2n] we will consider a set S = {(a1, a2, . . . , an) : ai ∈ {0, 1}}.
If the context is not clear we will denote elements of S with a superscript and elements
of an element of S, like the ai in the previous sentence, with a subscript. It is evident
that S has 2n elements.

Now we will order two elements x = (a1, . . . , an) and x′ = (a′1, . . . , a
′
n) of S by looking

at the last different element of x and x′. Suppose that for some i we have that ai 6= a′i
and for j > i we have that aj = a′j. We then say that x > x′ if ai > a′i and similarly
x < x′ if ai < a′i. Since all the ai are either zero or one, this reduces to x > x′ if ai = 1
and a′i = 0 and x < x′ if ai = 0 and a′i = 1 with i the same as before. Furthermore we
then define δ(x, x′) = i. Note that δ then takes values in [n].

This is a proper ordering, since it coincides with the regular ordering of natural num-
bers if we consider members of S as binary numbers with x =

∑n
i=1 ai2

i−1. Take any
(k + 1)-subset {x1 < · · · < xk+1} of S. Define yi = δ(xi, xi+1). Note that yi 6= yi+1, since
if this were the case, xi < xi+1 would give xi+1

yi
= 1 while xi+1 < xi would give xi+1

yi
= 0,

which is obviously a contradiction. Furthermore we have that

δ(x1, xk+1) = max
1≤i≤k

δ(xi, xi+1). (5.4)

To see this, let z = max
1≤i≤k

δ(xi, xi+1). Then for some j we have that δ(xj, xj+1) = z.

Now xjz = 0 and we claim that x1z = 0 as well. This is not hard to see, since if x1z = 1 it
has to change from 1 to 0 in some other xi with i < j. Then since z has to be the last
number that is different we obtain xi−1 > xi which is a contradiction. Similarly we have
that xk+1

z = 1. Now for every p > z we have that x1p = xk+1
p , since otherwise we get a

contradiction with z being the maximum, so equation 5.4 indeed holds.
Now we color the subsets of T as follows.
First, if y1 < · · · < yn or y1 > · · · > yn we set c′k+1(x

1, . . . , xk+1) = ck(y1, . . . , yn). This
is well defined since yi = δ(xi, xi+1) takes values in [n] and all the yi are different from
the assumption.

Next, if we have that y1 < y2 > y3, we set c′k+1(x
1, . . . , xk+1) = 1. If instead we had

y1 > y2 < y3, then we define c′k+1(x
1, . . . , xk+1) = 2. All the other subsets are colored

arbitrary.
Now take any subset T = {x1, . . . , x2l+k−4} of S with |T | = 2l+k−4. We will assume

that T is 1-monochromatic and derive a contradiction.
We once again define yi = δ(xi, xi+1). We claim that we can always find a monotonic

subsequence of the form yi, yi+1, . . . , yi+l−1, so either yi < · · · < yi+l−1 or yi > · · · > yi+l−1.
Now for i ≤ 2l− 3 we can not have that yi−1 > yi < yi+1, since in that case we have that
c(xi−1, xi, . . . , xi+k−1) = 2. Note that this is the part we had to assume k ≥ 3 for. This
means that if we look at y1, . . . , y2l−3 we have at most one j for which yj−1 < yj > yj+1.
If this j does not exist or j ≥ l then y1, . . . , yl suffices.
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If instead j ≤ l − 1 then j + l − 1 ≤ 2l − 2 and thus yj, . . . , yj+l−1 is of the desired
form, so we can always find a monotonic subsequence yi, . . . , yi+l−1.

Now since we have l elements of [n] there must be by assumption k of them, say
yj1 , . . . , yjk , for which ck(yj1 , . . . , yjk) = 2. We will assume j1 < · · · < jk. If yi > · · · >
yi+l−1 we claim that c′k+1(x

j1 , . . . , xjk , xjk+1) = 2. From the monotonicity and equation
5.4 it follows that

δ(xji , xji+1) = δ(xji , xji+1) = yji .

It is also clear that δ(xjk , xjk+1) = yjk . Since the yji are monotonic we immediately find
that c′k+1(x

j1 , . . . , xjk , xjk+1) = 2 since they are colored in the first way described.
If we had yi < · · · < yi+l−1 instead then we would obtain c′k+1(x

j1 , xj1+1, . . . , xjk+1) = 2
instead.

So we see that T is not 1-monochromatic. If we assumed that T was 2-monochromatic
the same argument would hold.

From the first proof we found R3(l, l) > 2cl2 . The lemma gives us a way better lower
bound for k ≥ 4. In general we can prove using induction that for k ≥ 3,

Rk(l, l) > (2 ↑ ↑(k − 2))c(k)l
2

. (5.5)

Here c(k) denotes a constant that depends on k. For k = 3 this is clear, so suppose it
holds up to a certain k. Then from the lemma we find

Rk+1(l, l) > 2 ↑Rk(

⌊
2l − 4 + k

2

⌋
,

⌊
2l − 4 + k

2

⌋
) > (2 ↑ 2 ↑ ↑k − 2)cb

2l−4+k
2 c

2

>

(2 ↑ ↑k − 1)c
′(k)l2 .

If we compare this lower bound with the upper bound found by Erdős and Rado,
we see that the lower bound is one exponent lower than the upper bound. If we had
(R3(l, l) > 2 ↑ ↑2)cl

2
instead or if we could somehow improve the lemma to also work for

the case k = 2 we would have a lower bound of the same ’size’ as the upper bound. This
is however still an open problem.
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6 Applications of Ramsey’s theorem

It should come as no surprise that a theorem as broadly useable as Ramsey’s theorem has
many applications. In this section we will look at two applications of Ramsey’s theorem,
namely the Happy Ending problem and the monotone subsequence problem[2].

6.1 Monotone subsequence problem

The monotone subsequence problem is quite simple in nature. Suppose we have a finite
subsequence x1, . . . , xn of real numbers. Now we want to know how large of a monotone
subsequence we are guaranteed to get. This problem was solved by Erdős and Szekeres
in 1935, but the proof we will look at is given much later, in 1959, by Seidenberg [5].

Theorem 7 (Monotone subsequence problem). Let n and m be integers. Suppose we have
a sequence a1, . . . , a(n−1)(m−1)+1 of real numbers. Then we must either have a increasing
subsequence of length n or a decreasing subsequence of length m.

In this case we will also call a sequence monotonic of it remains constant somewhere.
So for a sequence a1, . . . , an monotonically decreasing means that for i < j we have that
ai ≤ aj and monotonically increasing means that for i < j we must have ai ≥ aj.

Proof. Suppose a1, . . . , a(n−1)(m−1)+1 is a sequence of real numbers and suppose there is
no decreasing subsequence of length m. To every number ai of our sequence we assign
a pair (xi, yi) such that xi is the maximum length of an increasing subsequence starting
from ai and similarly yi is the maximum length of a decreasing subsequence starting at
ai. Now for i < j we claim that we can not assign the same pair to both ai and aj, so
either xi 6= xj or yi 6= yj.

Indeed, if ai ≤ aj then we can add ai to the maximum increasing subsequence starting
from aj of length xj to find that xi ≥ xj + 1. Following the same argument, if ai > aj
we see that yi ≥ yj + 1. We can always find a monotone subsequence of length 1 from ai
by taking the subsequence containing only ai, so we must have that xi ≥ 1 and yi ≥ 1.
Furthermore, from the assumption it follows that yi ≤ m− 1 for all i.

Now since 1 ≤ yi ≤ m − 1 we see that yi only takes m − 1 values. Since we have
(n − 1)(m − 1) + 1 pairs, there must be at least one y0 assigned to n numbers, so we
have ai1 , ai2 , . . . , ain with yij = y0. Now we must have that ai1 , ai2 , . . . , ain is an increasing
subsequence. Remember that we derived earlier for i < j that if ai > aj then we had that
yi ≥ yj + 1, which clearly does not hold here, so the subsequence is indeed increasing.

It is easy to see that (n − 1)(m − 1) + 1 is indeed the minimum size of the sequence
for which we are guaranteed to find a monotone subsequence of the desired size. If we
have (n − 1)(m − 1) real numbers as follows: x1 = m − 1, x2 = m − 2, . . . , xm − 1 =
1, xm = 2(m− 1), xm+1 = 2(m− 1)− 1 . . . and so on, so we have n− 1 times a decreasing
subsequence of size m − 1. The reader can verify that this does indeed not contain an
increasing subsequence of size n nor a decreasing subsequence of size m.

It is also possible to prove the monotone subsequence problem using Ramsey’s theorem.

Theorem 8. If x1, . . . , xR(m,n) is a sequence of real numbers then we must either have an
increasing subsequence of length m or a decreasing subsequence of length n.
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Proof. The proof is very straightforward. Suppose x1, . . . , xR(m,n) is a sequence of real
numbers. Now we define a coloring on subsets of those numbers as follows:

For i < j we let c({xi, xj}) = 1 if xi ≤ xj and c({xi, xj}) = 2 if xi > xj.
Now under this coloring we are guaranteed to find either m numbers that are 1-

monochromatic or n numbers that are 2-monochromatic. In the first case thosem numbers
are a monotonically increasing subsequence and in the second case the n numbers are a
monotonically decreasing subsequence.

Certainly R2(n,m) is much larger than (n − 1)(m − 1) + 1. We found as an upper
bound R2(n,m) ≤

(
n+m−2
n−1

)
and even the lower bound we considered for the symmetric

case was still exponential. So this proof certainly gives numbers that are far larger than
the actual solution. Part of that is due to the fact that the Ramsey numbers need to be
estimated themselves, but even the actual Ramsey numbers would likely give bounds far
larger than the solution.

6.2 Happy Ending problem

Just like the monotone subsequence problem the Happy Ending problem was formulated
by Erdős and Szekeres in 1935. It was named the Happy Ending problem because two of
the mathematicians that worked on the problem, George Szekeres and Esther Klein, later
became married. They found that as long as you put enough points in a finite plane you
can always find a convex n-gon. This is an extension to the problem solved by Klein, who
found that from five points in the plane there are always four that form a convex 4-gon.
The exact number of points you need is to this date still unknown, but just as with the
Ramsey numbers upper bounds are known.

The Happy Ending problem is very similar to Ramsey’s theorem: We start with a
very large number of points of which we know rather little, in Ramsey’s case an arbitrary
coloring and here arbitrarily placed points in a plane, and go back to a smaller subset of
which we know a lot more. In Ramsey’s theorem this was a monochromatic subset, in
the Happy Ending problem it is a convex n-gon.

We will first state some definitions about convexity, making what we said before more
precise.

Definition 1 (Convex combination). If we have n points x1, . . . , xn in the plane then a
convex combination of those n points is a point y =

∑n
i=1 λixi, with

∑n
i=1 λi = 1 with

λi ≥ 0 for all i.

The set of all convex combinations of a set of points is called the convex hull of those
points. For two points, the convex hull is just the line segment between the points. For
three points we obtain two cases. If the three points lie on the same line then the convex
hull is the line segment from the first endpoint to the last (with one point somewhere
in between). If the three points are not on the same line then the convex hull is the
triangle and its interior formed by those three points. We see that we obtain different
cases, depending on if the three points lie on the same line or not. In the case all the
points lie on the same line one of the three points is a convex combination of the others,
in the other case this does not hold. This motivates the following definition.

21



Figure 1: The proof of Esther Klein that any five points in the plane with no three on
one line contain four points that form a convex 4-gon. With five points, the convex hull
has either four, five or three corners. In the first case (left), the corners of the convex hull
form a convex 4-gon. In the second case (middle), the points form a convex 5-gon and
any four points will do. In the last case(right) the two points in the interior combined
with the two points on the right of the dotted line form a convex 4-gon.

Definition 2. We call a set of n points a convex n-gon if none of the n points is a convex
combination of the other points.

This definition is the same as one would intuitively expect a convex n-gon to be.
We will now formally state the Happy Ending problem.

Theorem 9 (Happy Ending problem). For every integer n there exists a larger integer
N such that, whenever there are at least N points placed in the 2d plane in such a way,
that no three points lie on the same line, then n of those points form a convex n-gon.

There are two proofs of the theorem using Ramsey Numbers. The original one uses
Ramsey numbers with a 2-coloring on subsets of four elements, while a newer proof uses
a 2-coloring on subsets of three elements, but with higher Ramsey numbers.

Proof using R4(n, 5). We will show that R4(n, 5) is an upper bound for the number of
points needed to guarantee a convex n-gon. So assume we have N = R4(n, 5) points placed
in the plane. Now color the subsets of four elements of [N ] as follows: c(x1, x2, x3, x4) = 1
if x1, x2, x3, x4 form a convex 4-gon and c(x1, x2, x3, x4) = 2 otherwise. We will show two
things:

1. Of five points in a plane we can always find a subset of four points that are convex
(the result that Klein proved). Since this makes it impossible to find 5 points of which
all 4-subsets are not convex, this guarantees that if we put R4(n, 5) points in a plane we
can find n points for which all its 4-subsets are convex.

2. if all its 4-subsets are convex, those n points form a convex n-gon, proving the
theorem. The second statement actually goes both ways, but we only need the forward
direction for this proof.

To prove (1), assume we have five points in a plane, with no three on one line. The
convex hull of those five points has either five, four or three corners. In the first two
cases, we are done, so assume the latter is true. Call the three points which form the
corners of the convex hull a, b and c. The remaining two points, say d and e, lie inside
the triangle because we assumed that no three points lie on the same line. Draw a line
through d and e. This line splits the triangle in two, so on one side of the line, there must
be two points. We can safely assume those points are a and b. Now it is easy to see that
(a, b, d, e) is a convex 4-gon, see also Figure 1. So we find that (1) is indeed true.
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To prove (2), we will show its contrapositive is true, so whenever n points do not form
a convex n-gon then four of those points do not form a convex 4-gon. Assume we have n
points that are not convex. Then one of those points, say y, lies in the interior of the convex
hull of the other points which we will call x1, . . . , xn−1. For simplicity we will assume that
x1 is next to x2 and xn−1, x2 is next to x1 and x3 and so on. We can now redivide the
convex hull in triangles, T1 = (x1, x2, x3), T2 = (x1, x3, x4), . . . , Tk−3 = (x1, xn−2, xn−1).
Since the triangles subdivide the convex hull, there is a triangle that has y in its interior,
say (x1, xi, xi+1). Recall that we assumed no three points lie on one line, so it is not
possible for y to lie on the boundary of a triangle. Then (x1, y, xi, xi+1) is a subset of four
points that is not convex. This proves (2), which also proves the theorem.

A different proof was found later. This was found by Micheal Tarsy. He took a course
on combinatorics where he was asked to prove this theorem on a exam. The theorem was
proven during class, but he could not attend that class, and thus came up with a different
proof himself.

Proof using R3(n, n). We will show that R3(n, n) is an upper bound as well.
To see this, suppose we have R3(n, n) points in a plane. First order these points

by assigning them a number from 1 to R3(n, n). Throughout the proof, whenever we
talk about points x1, x2, . . . , xn or points y1, y2, . . . , yn then the indices will indicate the
ordering, so x1 < x2 < x3 and so on.

Now define a coloring c as follows: c(x1, x2, x3) = 1 if going from x1 to x2 to x3
goes in clockwise direction and c(x1, x2, x3) = 2 if it goes counter-clockwise. Because
of the definition of R3(n, n), we know that we can find n points such that either all
subsets of three points travel clockwise or all travel counter-clockwise. Assume we have
n numbered points x1, . . . , xn for which any ordered subset of three elements is travelled
in the clockwise direction. We claim that those n points are convex.

To prove this, assume the contrary. Then there is a point xi that is in the interior
of the convex hull of x1, . . . , xi−1, xi+1, . . . , xn. To simplify the proof we will rename all
points of x1, . . . , xi−1, xi+1, . . . , xn. For j < i we set yj = xj and for j > i we set yj = xj+1.

Now subdivide the convex hull in triangles in the same way as in the previous proof,
so with triangles T1 = (y1, y2, y3), T2 = (y1, y3, y4) and so on. Then xi is in the interior of
one of those triangles, say (y1, yj, yj+1).

We know from the assumption that these three points are ordered clockwise. From
(y1, xi, yj+1) it follows that xi is in between y1 and yj+1. From (y1, yj, xi) we find that x
is either lower than y1 (not possible from the first requirement) or higher than yj, so xi
is in between yj and yj+1. This gives a contradiction, since then (yj, x, yj+1) is ordered
counter-clockwise. See also Figure 2.

There is another proof of the Happy Ending problem, one that does not use Ramsey’s
theorem.

Happy Ending problem. Suppose we have N points in a plane with no three points on
one line. First, note that there is a line such that no line between two of those points
is parallel or perpendicular to this line. This is easy to see, since there are only a finite
number of lines between two of those N points. Now we rotate all the points until this line
lies parallel to the x-axis. Now we order the points by their x coordinate. Since no two
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yj+1

y1

yj

xi

Figure 2: The triangle with xi in its interior. From the assumption all triplets are ordered
clockwise, so y1, yj and yj+1 have to be as above (up to a rotation). No matter the value
of xi we can find a triplet that is ordered counterclockwise, which is a contradiction.

points lie perpendicular to the line we found, no two points have the same x coordinate
and this is well defined.

Now suppose we take k points x1 < · · · < xk. If we look at the gradient of the line
from x1 to x2 and compare it to the gradient of the line going from x2 to x3, we either
have that the second gradient is larger than the first or the second gradient is smaller
than the first. Equal is not possible, since we would obtain three points on one line.

We will call those k points ordered convexly if their subsequent gradients decrease
monotonically and ordered concavely if they increase monotonically. We call the least
number of points such that we can find either k points that are ordered convexly or l
points that are ordered concavely f(k, l). We claim now that

f(k, l) ≥ f(k − 1, l) + f(k, l − 1)− 1. (6.1)

So suppose we have f(k− 1, l) + f(k, l− 1)− 1 points in the plane. Order them as above.
Now for the first f(k− 1, l) points we either have l that are ordered concavely or k− 1

that are ordered convexly. In the first case we are done, so assume we have k−1 convexly
ordered points. Call the last point a1 and take the next point with all previous points
excluding a1.

We once again have f(k − 1, l) points, so we find l concavely ordered points or k − 1
convexly ordered points. Once again assume we have k− 1 convexly ordered points. Call
the last point a2 and continue this until we have af(k,l−1). It follows quickly that all ai are
distinct points. Now from those points that are the endpoint of k − 1 convexly ordered
points, we have either k convexly ordered points or l − 1 concavely ordered points.

In the first case we are done, so assume the second part holds. Call the concavely
ordered points b1, b2, . . . , bl−1. b1 is the endpoint of k−1 convexly ordered points, so there
exist c1, . . . , ck−2, b1 that are convexly ordered. Now if the gradient of ak−2b1 is smaller
than the gradient of b1b2 then a1, b1, b2, . . . , bl−1 are l points that are concavely ordered.
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If instead the gradient of ak−2b1 is larger than the gradient of b1b2 then we find that
a1, . . . , ak−2, b1, b2 are k convexly orderde points, so the theorem holds.

We will prove that f(n, n) points is enough to guarantee a convex n-gon. We can first
rotate the points such that no two points have the same x coordinate. It is easy to see
that if we find a convex n-gon after the rotation, rotating the points back will still result
in a convex n-gon.

From the definition of f(n, n) we find either n convexly ordered points or n concavely
ordered points. We will show that those n points form a convex n-gon.

To prove this, we use the contrapositive. So if from N points we can not find a convex
n-gon, then we can not find n points that are ordered convexly or concavely.

Take any arbitrary n points. Since they do not form a convex n-gon, one of the points
is a convex combination of the other points, say y. By using the triangle procedure again
we find a triangle (x1, xj.xj+1) that has y in its interior. We will have four different cases,
depending on if the gradient of x1xj is larger than the gradient of xjxj+1 and if y is to
the right of xj or to the left.

All cases are shown in Figure 3 on the next page. The red dashed line is the ordering.
We always find both two subsequent gradients that are increasing and two subsequent
gradients that are decreasing.

From Equation 6.1 it is possible to derive an explicit upper bound. We claim that

f(k, l) ≤
(
k + l − 4

k − 2

)
+ 1, (6.2)

which we will prove by induction.
For the base case we have that

f(3, k) = f(k, 3) = k =

(
k − 1

k − 2

)
+ 1.

Now suppose it holds for f(k − 1, l) and f(k, l − 1). Then we obtain that

f(k, l) ≤ f(k−1, l)+f(k, l−1) ≤
(
k + l − 3

k − 3

)
+1+

(
k + l − 3

k − 2

)
+1−1 =

(
k + l − 4

k − 2

)
+1.

So we find that f(n, n) ≤
(
2n−4
n−2

)
+ 1, which was an upper bound to guarantee a convex

n-gon.
From the proof using Ramsey’s theorem we found that R3(n, n) and R4(n, 5) are upper

bounds as well. From Equation (xxx) we find that

R3(n, n) ≤ (23)
(22)

2n−1

and similarly

R4(n, 5) ≤ (24)(2
3)

(22)
n−2

.

Our upper bound for R3(n, n) is better than the bound for R4(n, 5), but this is still
much larger than

(
2n−4
n−2

)
+1. So we see that in this case our proofs using Ramsey’s theorem

give way larger upper bounds than the proof that did not use Ramsey’s theorem.
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x1

xj

xj+1

y

(a) y < xj and the gradient of x1xj is larger
than the gradient of xjxj+1.

x1

xj

xj+1

y

(b) y > xj and the gradient of x1xj is larger
than the gradient of xjxj+1.

x1

xj xj+1

y

(c) y < xj and the gradient of x1xj is smaller
than the gradient of xjxj+1.

x1

xj xj+1

y

(d) y > xj and the gradient of x1xj is smaller
than the gradient of xjxj+1.

Figure 3: The four possibilities for the position of y. The dashed red lines are the ordering
of the numbers. In every case we have both an increasing gradient and a decreasing
gradient. Note that even though x1 does not have to directly precede y or xj it still makes
it impossible for the n points to all be ordered convexly or concavely.
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7 Conclusion

In this report we have seen various proofs of Ramsey’s theorem which all gave their own
upper bound. We have also seen two applications of Ramsey’s theorem.

In both cases, however, the proof using Ramsey’s theorem gives way larger upper
bounds than the proof that did not use Ramsey’s theorem.

For the monotone subsequence problem, the minimum size of a sequence such that we
either have a subsequence of size m that is monotonically increasing or a subsequence of
size n that is monotonically decreasing is (n − 1)(m − 1) + 1. Ramsey’s proof however
gave R2(n,m) as upper bound. Even the lower bound of R2(n,m) grows exponentially,
while the actual solution only grows quadratically.

For the Happy Ending problem we found that
(
2n−4
n−2

)
+ 1 is an upper bound for the

number of points we need in a plane to guarantee a convex n-gon. This solution grows
about as fast as the upper bound for R2(n, n), but both proofs using Ramsey’s theorem
needed higher order Ramsey numbers. It is evident that the bounds for the higher order
Ramsey numbers far exceed our binomial coefficient.

Erdős and Szekeres conjectured that you would need a minimum of 2n−2+1 is the least
number of points you need to guarantee a convex n-gon. They conjectured this based on
the minimum number of points needed for convex 3-gons (3), 4-gons (5) and 5-gons (9).
Very recently, in 2006, it was found that you need 17 points in the plane to always obtain
a convex 6-gon, which is still in line with the conjecture.

In both problems, the fact that Ramsey’s theorem is so broadly applicable is both a
blessing and a curse. The theorem is incredibly useful in proving that certain things exist,
in the case of the monotone subsequence problem the length of the sequence such that we
would always find a monotone subsequence of the desired length and in the case of the
Happy Ending problem a number of points in the plane such that we can always find a
convex n-gon.

However, because the theorem can be applied in all sorts of situations, many specific
parts of the two different problems are simply not used when we use Ramsey’s theorem.
This in turn gives very weak bounds, which only become weaker when we also have to
estimate the Ramsey numbers.

Lastly it is not very likely that we will ever find an explicit formulae for the Ramsey
numbers. The bound from Erdős and Rado, which was found in 1952, roughly 25 years
after Ramsey published his paper has only very slightly improved in the 68 years after
that. To paraphrase a statement made by Erdős:

If a vastly more powerful alien force comes to earth and demands the value of R2(5, 5)
or else they destroy the planet, it would be wise to use every mathematician and computer
available to find it. If they instead want to know R2(6, 6), it is probably easier to try to
destroy the aliens.
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