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A B S T R A C T

Introduction: The field of forensic DNA analysis has undergone rapid advancements in recent decades. The 
integration of massively parallel sequencing (MPS) has notably expanded the forensic toolkit, moving beyond 
identity matching to predicting phenotypic traits and biogeographical ancestry. This shift is of particular sig-
nificance in cases where conventional DNA profiling fails to identify a single suspect. Supplementing forensic 
analyses with estimated biological age may be valuable but involves a complex and time-consuming DNA 
methylation analysis. This study explores and validates the performance of a comprehensive forensic third- 
generation sequencing assay utilizing Oxford Nanopore Technologies (ONT) in an adaptive and direct 
sequencing approach. We incorporated the most widely used forensic markers, i.e., STRs, SNPs, InDels, mito-
chondrial DNA (mtDNA), and two methylation-based clock classifiers, thereby combining forensic genetic and 
epigenetic analysis in one single workflow.
Methods and results: In our investigation, DNA from six anonymous individuals was sequenced using the ONT 
standard adaptive direct sequencing approach, reaching a mean percentage of on-target reads ranging from 
6.6 % to 7.7 % per sample. ONT data was compared to standard MPS data and Illumina EPIC DNA methylation 
profiles. Basecalling employed recommended ONT software packages. TREAT was used for ONT-based analysis of 
autosomal and Y-chromosome STRs, achieving 90–92 % correct calls depending on allelic read depth thresholds. 
InDel analyses for two lower-quality samples proved challenging due to inadequate read depth, while the 
remaining four samples significantly contributed to the observed percentage markers (60.9 %) and correct calls 
(97.8 %). SNP analysis achieved a 98 % call rate, with only two mismatches and two missed alleles. ONT- 
generated DNA methylation data demonstrated Pearson’s correlation coefficients with EPIC data ranging from 
0.67 to 0.97 for Horvath’s clock. Additional age-associated markers exhibited Pearson’s correlation coefficients 
with chronological age between 0.14 (ELOVL2) and 0.96 (FHL2) at read depths of <30 and <20, respectively. 
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Despite excluding mtDNA from our targeted sequencing approach, adaptive proof-reading fragments covered the 
complete mtDNA with an average read depth of 21–72, showing 100 % concordance with reference data.
Discussion: Our exploratory study using ONT adaptive sequencing for conventional forensic and age associated 
DNA methylation markers showed high sequencing accuracy for a significant number of markers, showcasing 
ONT as a promising (epi)genetic forensic method. Future studies must address three critical aspects: determining 
clear quantity and quality measures and detection thresholds for accuracy, optimizing input DNA quantity for 
forensic casework expectations, and addressing ethical considerations associated with phenotype and ancestry 
analysis to prevent ethnic biases.

1. Introduction

In the late 1980s, molecular analysis applications revolutionized 
forensics, introducing DNA fingerprinting and later polymerase chain 
reaction (PCR) technologies. These advancements enabled robust iden-
tity matching in crime scene investigations, as well as paternity studies 
[28]. The integration of massively parallel sequencing (MPS) in the 21st 
century contributed to the elevation of the forensic toolkit beyond 
identity resolution, incorporating tools for phenotypic characterization 
and biogeographic origin [3].

Forensic DNA phenotyping (FDP) specifically focuses on predicting 
externally visible characteristics (EVCs) to generate a phenotype profile 
from crime scene samples. This aids investigations where perpetrator 
identity remains unknown based on conventional short tandem repeat 
(STR) DNA profiling [43]. For example, FDP proves valuable in cases 
without identified suspects and no matches in databases, as well as sit-
uations involving unidentifiable victims, helping to reconstruct physical 
characteristics of decomposed bodies [18]. Phenotype profiling reduces 
the victim or suspect pool, contributing to police investigations by 
prioritizing information in cases with conflicting statements or 
numerous leads [37,57]. Therefore, FDP has a significant role in 
contemporary forensic science. Nonetheless, the implementation of FDP 
in policing also comes with important ethical and societal challenges, 
since these technologies, by definition, cluster groups of people that 
become interesting for further policing, thereby introducing the risk of 
ethnic discrimination and stigmatization [45,57,58,80].

As per Kayser et al.’s (2023) review, FDP encompasses a combined 
evaluation of DNA-based predictions of biogeographical ancestry (BGA), 
physical traits, and biological age [43]. BGA determination involves 
distinct marker sets, including Y-chromosomal markers for paternal 
ancestry, mitochondrial DNA (mtDNA) for maternal ancestry, and 
autosomal markers for general ancestry. General ancestry informative 
markers (AIMs), e.g. autosomal insertions/deletions (InDels) [63] and 
single nucleotide polymorphisms (SNPs) [64], traditionally distinguish 
five continental groups, including Sub-Saharan Africa, Europe, East 
Asia, Native America, and Oceania Kayser et al., 2023; de la Puente 
et al., [15,43]. In addition, recent advancements include additional 
markers to further differentiate sub-populations [62,89,91]. X- and 
Y-chromosome markers facilitate familial research [72] and co-ancestry 
analysis in individuals with mixed backgrounds [74], while mtDNA of-
fers insights into maternal ancestry and deconvolution of complex DNA 
mixtures [33]. Moreover, the high cellular copy number of mtDNA en-
hances the analysis of highly degraded trace samples [52]. Together, the 
three BGA components enhance BGA inferences in both females and 
males [12].

In addition to BGA, early forensic studies on physical appearance 
focused on identifying SNPs predictive for hair, eye, and skin color [11, 
83,84], resulting in the HIrisPlex-S prediction tool ($author1$ et al.,). 
However, because certain phenotypic traits (e.g., hair color) can be 
influenced by aging, it is important to complement physical appearance 
and BGA predictions with an age estimation. A common approach for 
determining biological age focuses on DNA methylation, an epigenetic 
feature where a methyl group is added to the 5′ cytosine of C-G di-
nucleotides (CpGs) [2]. Methylation levels of specific CpGs are linked to 
age [42] and can be used to train DNA methylation classifiers, known as 

epigenetic clocks, which have been extensively studied in aging research 
[25,38,39,48,53,56]. The most widely used age estimator, developed by 
Steve Horvath in 2013, incorporates 353 age-associated CpGs identified 
in 51 different tissues [38]. In addition, The VISible Attributes through 
Genomics (VISAGE) Consortium created distinct forensic tools for pre-
dicting age in blood, buccal cells, bone tissue, and semen [29,65,88]. 
Several other studies identified age-predictive markers in teeth, hair, 
and nails [7,20,22,26], however, no validated tools for these markers 
exist so far [43].

Ideally, a comprehensive forensic genetic toolkit should integrate 
genetic identification with predictions of appearance, BGA, and bio-
logical age in a single assay. To this end, several commercial [41] and 
non-commercial [8,17,79,90] FDP tools exist that combine appearance 
and BGA markers. While these analyses have a similar workflow 
involving amplification and MPS readout, age prediction stands as a 
significant exception. For all the MPS-based age estimation tools 
mentioned above, detection of DNA methylation requires a bisulfite 
conversion step, necessitating a distinct sample processing and analysis 
procedure [76]. Therefore, combining genetic and epigenetic analyses in 
a unified assay demands an alternative sequencing approach.

Recent advancements in DNA research have led to direct long-read 
sequencing techniques, introduced by Oxford Nanopore Technologies 
(ONT) [66]. ONT devices employ a membrane with protein nanopores, 
guiding and analyzing DNA molecules. Each nucleotide passing through 
the pores causes distinctive disruptions in ionic current, which are 
translated into nucleotides using machine learning-based base calling 
algorithms [86]. Interestingly, the ONT algorithm is also able to detect 
modified bases [69,77], thereby enabling combined genetic and epige-
netic analysis in a single assay. ONT sequencing can be applied to 
genomic DNA without complex processing, amplification, or bisulfite 
conversion [77]. Moreover, ONT’s recently introduced adaptive sam-
pling strategy enables real-time comparison of sequenced DNA mole-
cules to pre-selected genomic target regions. Only ‘on-target’ molecules 
are fully sequenced, while ‘off-target’ molecules are ejected from the 
nanopores. This results in highly efficient selection and sequencing of 
target molecules. ONT devices have been previously used to analyze 
various FDP and forensic DNA markers, including STRs, SNPs, mtDNA, 
and epigenetic clocks [24,27,70,93], making it a promising tool for 
comprehensive FDP and DNA identification analysis.

In this proof-of-concept study, we aim to fully explore and evaluate 
ONT sequencing capabilities in a single, direct long-read sequencing 
assay, addressing frequently utilized DNA identification and (epi)ge-
netic FDP marker sets in forensic science.

2. Methods

Sample selection and DNA extraction: We included DNA extracted from 
blood samples of six males aged 19–53 years at the time of sample 
collection. A detailed description of the sample cohort is presented in 
Table S1. Samples were anonymized and consent was obtained exclu-
sively for technical optimization and validation purposes. This study 
refrains from disclosing genotype details concerning sample anonymity, 
and neither raw nor processed data is publicly accessible. As an alter-
native, Figs. S1–4 show IGV screenshots for a number of loci for all six 
samples. DNA was isolated from whole blood (EDTA) using FlexSTAR 

D.D.S.H. de Bruin et al.                                                                                                                                                                                                                       Forensic Science International: Genetics 74 (2025) 103154 

2 



workflow (AutoGen), conform manufacturer’s protocol. DNA concen-
tration was determined using the Qubit dsDNA BR assay using the Qubit 
Fluorometer (Invitrogen) according to manufacturer’s instructions. 
Molecular weight distribution was evaluated using the Femto Pulse 
system (Agilent), following manufacturer’s instructions.

Target selection: We included the following forensic DNA markers for 
ONT adaptive sampling and validation: 28 autosomal STRs, Ameloge-
nin, 24 Y-STRs, and seven X-STRs (Verogen ForenSeq DNA Signature 
Prep Kit (Qiagen) and IDSeek OmniSTR Global Autosomal STR Profiling 
Kit (NimaGen)); 40 SNPs and 1 InDel of the HIrisPlex-S System [11,83, 
84]; 46 ancestry predictive InDels as described by Pereira et al ([63]).; 8 
DNA methylation markers previously reported by Wozniak et al ([88]). 
and 353 methylation markers previously reported by S. Horvath [38]; 
and the complete mtDNA mitogenome. A detailed overview of the 
selected markers and their genomic positions is provided in Table S2 and 
Supplementary File 1, respectively.

ONT sequencing and data-analysis procedures: All target regions, with 
exception of mtDNA, were defined in.bed files for adaptive sampling. 
Genomic positions for each marker were extended with a ~12.5 kb 
window upstream and downstream of the target locus to create the 
adaptive sampling regions, in total covering 15.7 Mb (0.49 %) of the 
human genome. DNA (150 µl, 26.6 ng/µl) was fragmented to 10 kb using 
a gTUBE (Covaris) according to manufacturer’s instructions. Frag-
mented DNA was subsequently concentrated in a SpeedVac and re- 
suspended in 48 µl water. Library preparation was performed accord-
ing to Nanopore’s genomic DNA by ligation protocol for the SQK- 
LSK114 kit. Libraries were quantified with Qubit dsDNA BR assay and 
20 fmol was loaded on a MinION platform using a R10.4 flow cell. After 
20 hours, flow cells were washed with EXP-WSH004 (ONT) and reloa-
ded with another 20 fmol library. The latter wash and reloading step 
were performed twice, resulting in a 72-hour total run for all samples. 
Raw MinION signals were basecalled with guppy (v.6.1.5) applying the 
super high accuracy algorithm for modified bases (dna_r10.4.1_-
e8.2_400bps_modbases_5mc_cg_sup) [87]. The resulting fastq and 
modified Binary Alignment Map (modBAM) outputs, containing the 
canonical and modified base calls, were used for all subsequent analyses.

STR analysis using TREAT: We evaluated the extent to which the ONT 
sequencing technology can be used for genotyping STRs commonly used 
in forensics (Supplementary File 1). Before analysis, sequencing data 
was aligned to the GRCh38 reference build using minimap2 (default 
parameters with the option map-ont) [50]. Genotyping of STRs was done 
using an adapted version of TREAT [78], a toolkit designed to genotype 
tandem repeats from long-read sequencing data. In short, this tool ex-
tracts the sequences spanning the tandem repeats of interest, and then 
identifies haplotypes based on the size of the tandem repeats using a 
clustering framework (Fig. S5). Sequences resembling each individual 
allele were then queried for the presence of forensics alleles based on the 
list of alleles in Supplementary File 2 of Hoogenboom et al ([34]).. We 
repeated the analysis using different thresholds for the minimum allelic 
coverage (3, 4, 5, and 6, respectively). We incorporated quality control 
by excluding STRs in cases of low coverage. We also excluded SE33, 
DYS522, DYS385a-b, and DYS389II from further analysis because the 
allele variants found in the MPS-based validation data (see below) were 
not present in the list of forensic alleles used for TREAT analysis, and 
TREAT therefore returned no allele call. Candidate alleles underwent 
further curation by scoring the most likely allele (based on the repeat 
number size and relative coverage), and by interrogating nearby SNPs. 
Curated alleles were validated using standard forensics procedures 
based on deep short read sequencing. Forensic STRs were regarded as 
matching only when all predicted alleles, for a given sample, matched 
the curated alleles. Finally, we evaluated the effect of GC content, STR 
size and allelic coverage on matching the curated alleles, using a linear 
mixed-effect model.

mtDNA analysis using FDSTools: FDSTools (v1.2.0) [35,36] was used 
for analysis of the complete mitogenome. Two FDSTools libraries were 
created containing the complete mitogenome in adjacent intervals of 25 

nucleotides as targets: library A starting from position 1 and library B 
starting from position 11. For each interval, a minimal and maximal 
length of 10–50 nucleotides was used to filter out the majority of 
non-mtDNA reads. A minimal of 5 reads were used for calling the major 
variant of each interval. A consensus of the results of library A and B was 
used to determine the final mitotype.

To gain insight in existing sequencing errors, minor sequence vari-
ants were also investigated for each 25nt mtDNA interval with read 
depth for the major variant of at least 40 and summarized by the type of 
sequence difference with respect to the major variant. Observed minors 
were divided in categories of >10 % and 5–10 % of the read depth of the 
major (lower percentages were not analyzed in detail as they would 
often be represented by only 1 read).

InDel analysis using FDSTools: FDSTools (v1.2.0) [35,36] was used for 
analysis of 46 ancestry informative InDels [63]. InDel ranges were 
defined spanning each InDel (of 2–23nt in length) with multiple nu-
cleotides at both sides and included in an FDSTools library. For each 
InDel, a minimum and maximum length of 10–50 nucleotides was used 
to filter out the majority of non-specific reads. Automated allele calling 
was performed using FDSTools samplestats with a 20 % min-pct-of-max 
(-m) threshold and optimized according to the evaluation of the 
following three different combinations of stringency settings, including 
the minimal number of reads per allele (-n) and the summed total allelic 
reads of a marker (-E): (i) min reads (-n) 2, min-allele-reads (-E) 6; (ii) 
min reads (-n) 3, min-allele-reads (-E) 8; (iii) min reads (-n) 4, 
min-allele-reads (-E) 10. The min-allele-reads (-E) threshold in-
corporates the summed total number of reads for each allele passing the 
criteria for the minimum number of reads, in order to minimize the 
chance of incorrectly calling a heterozygous sample as homozygous.

SNP analysis using Clair3: Reads that were fully sequenced in adaptive 
sampling were extracted with seqtk (v1.4-r122) and aligned to GRCh37 
with minimap2 (v.2.17-r941) using ONT pre-sets [50]. The aligned 
reads were used as input for clair3 (v1.0.4) to call single nucleotide 
variants (SNVs) with ONTs provided model (r1041_e82_400bps_-
sup_v420) [94].

Because of generally low read depths in the SNP dataset, we added an 
additional threshold concerning homozygote calls. We assumed an ex-
pected allele distribution of 50 %/50 % in our DNA samples. Given this 
assumption, the theoretical chance of missing one allele is reduced to 
less than 1 % for total read depths of 8 or more reads per locus (P(8 reads 
of allele 1 | 8 reads of allele 2) = 0.58 + 0.58 ≈ 0.0078). Therefore, we 
classified homozygote calls with more than 8 reads as a true homozy-
gote, and those with fewer than 8 reads as potentially missed 
heterozygotes.

DNA methylation analysis: Modified base counts (5mC) at CpG sites 
were aggregated from guppy’s modBAM into a bedMethyl file by ONT’s 
modbam2bed. From this bedMethyl file the on-target calls were 
extracted for further analyses. Reads for which ONT was unable to 
generate a modified or canonical base call were excluded, as well as 
reads not passing QC and base calls with alternative nucleotide modi-
fications. ONT methylated fraction (further referred to as ONT beta 
value) was calculated by dividing the total number of methylated cy-
tosines by the total number of methylated and unmethylated cytosines 
(which equals the read depth) for each CpG. Comparative analysis of 
Horvath CpGs (ONT beta value vs. Illumina EPIC beta value) was per-
formed applying linear regression and Pearson correlation analyses. 
VISAGE CpGs were analyzed similarly, except ONT data was compared 
to chronological age as no EPIC validation data was available.

Acquisition of validation data sets: Evaluation and validation of the 
acquired ONT sequenced dataset was based on MPS procedures imple-
mented in current forensic practice.

DNA variants were validated at the department of Biological Traces 
of the Netherlands Forensic Institute, using a multiplex PCR/MiSeq 
strategy (Illumina). Sample preparation for both the IDseek® 
OmniSTR™ Global Autosomal STR Profiling kit (Nimagen, the 
Netherlands) and the Verogen ForenSeq DNA Signature Prep Kit 
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(Qiagen, Germany) were performed according to manufacturer’s pro-
tocols using approximately 1 ng of input DNA in the PCR and using 
MiSeq FGx for sequencing. FDSTools was used for data analysis [36]. 
Note that FDSTools involves an algorithm that annotates allele names, 
which comprises a different strategy compared to STR analyses using 
TREAT (see above). DNA quantification for reference analysis and 
mtDNA sequencing of the Control Region was performed as described in 
[21] using approximately 1000 copies of mtDNA in each of the two PCRs 
per sample. Subsequent sequencing and analysis were performed on the 
MiSeq FGx using standard procedures [36]. Sample preparation and 
analysis of the 46 ancestry predictive InDels, and the HIrisPlex-S, were 
performed as previously described by Pereira et al. ([63]). and Chaita-
nya et al. [11], respectively. Briefly, 1 ng DNA was used in PCRs per 
sample, followed by SnaPshot Minisequencing analysis using an 3500xL 
Genetic Analyzer (ThermoFisher Scientific). Subsequent data analysis 
was performed using Genemarker HID v2.9.8. (Softgenetics).

DNA methylation validation profiles were performed via the 
department of Human Genetics of the Amsterdam University Medical 
Center, using the Illumina HumanMethylation Infinium Methylation 
EPIC BeadChip array conform the manufacturer’s protocol. Prior to 
hybridization, 1 µg DNA was bisulphite converted using the Zymo EZ 
DNAm™ kit (Zymo Research) conform the manufacturer’s protocol. 
Raw intensity data files (.idat) were loaded in R (v4.1.1) and subse-
quently quality control was performed using MethylAid (v1.20.0) [87]. 
Principal component analysis (PCA) was performed to examine batch 
structure and confirmation of sex. Raw methylation indices were 
normalized using the funnorm function available under the minfi 
package (v1.40.0) [50]. The following probes were eliminated: probes 
with detection p-value > 0.1, probes located on the allosomes, probes 
involving any known genetic bias and probes that cross-react with other 
genomic regions. Horvath’s clock classifier, available within the Meth-
ylclock package (v1.3.1) [78], was applied to estimate the biological age 
of the samples.

3. Results

3.1. Efficient enrichment of genomic target regions using Nanopore 
adaptive sampling

General characteristics of the six subjects, general performance of 
Illumina EPIC validation, and adaptive ONT sequencing are described in 

Table 1. All samples passed EPIC quality control analyses (detailed 
description in Table S3). Based on EPIC age-estimation, biological age 
and chronological age differences ranged between 1.3 and 7.6 years. 
Femtopulse analysis showed a mean fragment size ranging from 18 kb 
(PH3) to 36 kb (PH1), and for both PH3 and PH11 a relatively large 
coefficient of variation (ratio of standard deviation to the mean) was 
observed, 78 % and 70 % respectively. As for Nanopore flow cell char-
acteristics and sequencing, a total of 1351 (PH3) to 1567 (PH7) pores 
were available, and mean length of sequenced fragments ranged from 
5.3 (PH1) to 7.7 kb (PH7). The number of reads per pore per hour was 
highly variable between samples, ranging from 35 and 45 for PH7 and 
PH3 respectively to 114 for both PH1 and PH6. The adaptive sampling 
strategy resulted in a total of 6.6–7.4 % on-target reads, and subsequent 
total Genomic/Adaptive ratios (RatioGA) of 13.6–15.2. A detailed 
overview of the Nanopore run report is presented in Table S4.

3.2. Evaluation of Nanopore performance on forensic autosomal STRs, Y- 
STRs, X-STRs and Amelogenin

The primary forensic toolkit for identity matching comprises STR 
analysis. We evaluated the extent to which ONT technology can reliably 
genotype forensic STRs across different thresholds for allelic coverage. 
After quality control based on allelic coverage and database matching, 
51 regions and all individuals were kept for the analyses (Fig. 1). At 
allelic coverage ≥3, we found 90.3 % regions matching the validation 
data (187/207 observations across six samples). This proportion was 
90.7 % at allelic coverage ≥4 (157/173 observations across six samples), 
90.4 % at allelic coverage ≥5 (132/146 observations across five sam-
ples), and 92 % at allelic coverage ≥6 (103/112 observations across five 
samples).

A total of 20 mismatches were observed across all samples. The vast 
majority of discordant genotypes (90 %, N = 18) were the result of a loss 
of a repeat unit in the estimated allele compared to the validated allele: 
for example, the estimated genotypes reported TTTC [62] while the 
validated allele was TTTC [72] (see Fig. S6). One discordant observation 
(PH15 D3S1358) was the result of a repeat number gain in the estimated 
allele compared to validation data, and one discordant finding (PH7 
D13S317) was the result of an allele dropout, which caused a hetero-
zygous genotype to be erroneously called as homozygous. Furthermore, 
for the discordant genotypes, we checked retrospectively the presence of 
the validated allele in the data: in 20 % of the cases (N = 4 observations), 
the validated allele was not present in any of the reads, while in 80 % of 
the cases (N = 16 observations) the validated allele was present in at 
least one read, although with low frequency, causing the allele not to be 
prioritized.

Overall, we found that shorter STRs and higher allelic coverage were 
significantly associated with matching the validated allele (p =

3.65×10− 37 and p = 4.88×10− 5, respectively), while the effect of GC 
content was not significant (p = 0.41).

3.3. Non-targeted analysis of the mitochondrial control region

Information on a person’s identity, in particular the maternal line-
age, can be obtained by analysis of the mtDNA. Because of mtDNA’s 
relatively high copy number in all human cells, we omitted mtDNA as a 
target in our adaptive enrichment strategies to avoid overrepresentation 
of mtDNA in our dataset. This implied that the mtDNA readout was 
solely based on the proofreading reads (~200–400 bp) and sporadically 
observed longer reads that escaped the adaptive sampling procedure. 
Despite the absence of any enrichment, we observed a larger read depth 
in all samples compared to the autosomal, allosomal, or DNA methyl-
ation readouts. We reached mean read depths ranging between 21 (PH7) 
and 72 (PH11) reads, resulting in complete coverage (1–16,569 bp) of 
the mtDNA (Fig. 2) in all individuals.

Although data on whole mitochondrial genomes were available, we 
focused on a smaller section, namely the hypervariable region in the 

Table 1 
Sample characteristics and general ONT performance.

Sample-ID PH1 PH3 PH6 PH7 PH11 PH15

Biological sex Male Male Male Male Male Male
Age (years) 35.3 19.1 27.6 23.4 43.8 53.1
Age-est. (years) 36.6 21.6 32.7 26.7 51.4 48.1
Age-delta (years) 1.3 2.5 5.1 3.3 7.6 − 5.0
DNA input (µg) 6 1.7 2 6 6 3
Mean size (kb), (CV 
(%))

36 
(52)

18 
(78)

30 
(53)

33 
(56)

25 
(70)

35 
(58)

Library (ng/µl) 55.2 19.6 44.6 96.4 104 69.2
# pores 1546 1351 1356 1567 1523 1388
# reads per pore 
per hour

114 45 114 35 62 90

Mean (kb) ± SD 
(kb) of on-target 
reads

5.3 ±
5.3

6.5 ±
7.6

6.7 ±
4.2

7.7 ±
6.4

7.4 ±
5.4

7.2 ±
5.1

% reads on target 6.8 7.4 6.6 6.8 7.3 6.7
RatioGA 14.6 13.6 15.2 14.8 13.6 14.9

Age: chronological age at the time of sample collection. Age-est.: biological age 
estimates based on DNA methylation profiles and Horvath’s clock classifier. Age- 
delta: difference of estimated age (Horvath’s clock) minus chronological age. 
Mean size based on Femtopulse analysis, CV%: coefficient of variation (100 % 
indicates standard deviation equals the mean). % reads on target: percentage of 
total reads in adaptive sampling targets (= 1/RatioGA). RatioGA: total number 
of reads / total number of on-target reads (= 1/% reads on target).
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control region (D-loop), located at 16,009–16,569 bp and 1–589 bp. 
Both ONT and validation mtDNA data were mapped and aligned against 
the revised Cambridge reference sequence (rCRS) [4,5]. In all samples 
we observed a higher average read depth in the control region compared 
to the whole mitochondrial genomes (Table 2). All called major variants 
for each position in the control region showed a 100 % concordance 
between ONT and validation data (Table 2). The total number of 
observed differences to rCRS ranged between 4 (PH6) and 17 (PH7). 
Although both classical and ONT sequencing approaches may produce 
inaccurate calling within homopolymer repeats, our results indicated no 
adverse sequencing effects in the D-loop region (Table 2).

In addition, the high read depth mtDNA subset encouraged further 
exploration of ONT’s performance. We analyzed infrequent (minor) 
sequence variants in relation to heteroplasmy or technical variation, 
relevant within a forensic setting. In particular, we addressed infrequent 
single nucleotide substitutions, deletions, and duplications. Therefore, 

we established a ‘minor variant’ threshold, based on a total read depth of 
≥40, 25 bp intervals, and the following two categories: (i) 5–10 %, and 
(ii) >10 % contributions of minor variant (compared to sum of read 
depth of major variant, i.e., 2–4 reads and >4 reads, respectively, if 
major read depth is 40). The vast majority of the observed infrequent 
variation involved single nucleotide deletions, comprising 86 % and 
59 % of the aforementioned >10 % and 5–10 % minor variant contri-
butions, respectively. In contrast, single-base insertion and substitution 
errors were observed at a substantially lower frequency (Table 3).

3.4. Accurate detection of ancestry informative InDels

In addition to the Y-chromosome and mtDNA markers, predictive 
information related to an individual’s ancestry can be acquired using 
autosomal InDels. A total of 46 autosomal InDels, previously described 
by Pereira et al. [63], were involved in our adaptive strategy enrichment 

Fig. 1. Evaluation of ONT performance for forensic STRs: ONT and validation data comparison, including total read depth of the 1–2 reported alleles per 
locus. Overview of ONT performance on Amelogenin and 49 STRs that passed quality control, including 26 autosomal STRs, 18 Y-STRs, and five X-STRs. The four 
panels present the same results, but with increasing allelic coverage thresholds (minimal number of 3, 4, 5, or 6 reads per allele, autosomal homozygous loci require 
respectively 6, 8, 10, or 12 reads in total to reach the coverage threshold). The second row indicates sample ID (N = 6). Numbers in highlighted areas indicate total 
read depth of the 1–2 prioritized alleles per locus (one number for autosomal homozygous loci and X- and Y-chromosomal markers, and two numbers representing 
allele specific read depths for heterozygous loci). Highlight in green indicates a match between ONT and validation data. Highlight in red indicates a single repeat 
number loss, while highlight in yellow represents a single repeat number gain. Highlight in orange indicates a mismatch with validation data, for which ONT data 
reports a homozygous variant while the validation data reports a heterozygous variant. Highlight in grey represents loci for which no ONT call was reported because 
data did not meet allele calling thresholds.
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procedure and subjected to validation using the MPS-acquired dataset. 
The number of bases varied among the studied InDels, ranging between 
two and 23 base pairs. Accurately identifying InDels is often hindered by 
inconsistent mapping events, resulting in variable start or end posi-
tioning of genetic variations. To overcome this, we used the standard 
MPS mapping and calling software, FDSTools, to call InDels from our 
ONT-generated dataset. This software package can reliably align InDels, 
as mapping is performed on the (invariant) regions flanking the target.

FDSTools allele calling options include settings such as the minimal 
number of reads per allele, minimal total allelic reads, and a minimum 
percentage in relation to the allelic balance. We evaluated a total of 
three distinct settings (Table 4), indicating a minimal number of three 
reads per allele and a minimal total number of eight reads in combina-
tion with a 20 % balance threshold as the most optimal settings. Using 

these parameters, 60.9 % of the total number of markers could be 
characterized (N = 169), of which 97.8 % were called correctly. Finally, 
we observed allelic dropout occurring in 1.8 % of the total calls, and the 
ratio of the number of drop-ins compared to the total number of called 
alleles was minimized to 0.03.

Although we observed a relatively low average read depth among all 
samples, we noted no systematic drop out of InDels in our dataset 
(Fig. 3). We observed a substantial amount of missing data for the lower 
quality samples PH3 and PH7. In contrast, PH1 and PH15 showed no 
mismatches with the validation data, and only five and eight markers, 

Fig. 2. mtDNA coverage plots per sample. The x-axis represents the complete mitogenome in adjacent intervals of 25 nucleotides, the y-axis represents read depth 
per interval (coverage).

Table 2 
Average read depth per sample and total number of reported variants in D-loop compared to rCRS.

PH1 PH3 PH6 PH7 PH11 PH15
Average read depth (full mtDNA) 70 38 43 21 72 66
Average read depth (D-loop)1 75 43 47 26 74 58
Observed differences from rCRS (total) 12 9 4 17 14 7
Observed differences ChrM:16,009-16,179 0 2 0 2 2 0
Observed differences ChrM:16,180-16,193 (C-stretch) 2 0 0 0 2 0
Observed differences ChrM:16,194-16,569 + 1-589 10 7 4 15 10 7

Image 1

aGreen highlight indicates a 100 % concordance of variants found in the ONT and validation data compared to rCRS.

Table 3 
Distribution of observed errors in minor sequence variants.

Minor variant category 1 bp deletions 1 bp insertions 1 bp substitutions

5–10 % 86 % 5 % 9 %
>10 % 59 % 23 % 18 %

Table 4 
Average InDel success rates for three different allele calling settings.

Allele calling settings

Minimal reads per allele 2 3 4
Minimal total allelic reads 6 8 10
Minimal heterozygous balance 20 % 20 % 20 %
% called markers 74.6 % 60.9 % 42.8 %
% correct calls 98.4 % 97.8 % 97.8 %
% markers with allelic drop-out 1.1 % 1.8 % 1.4 %
Ratio of drop-ins / called alleles 0.11 0.03 0.03
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Fig. 3. Evaluation of ONT performance for ancestry predictive InDels: ONT and validation data comparison, including total read depth of the 1–2 reported 
alleles per locus. Overview of ONT performance on 46 ancestry predictive InDels, previously described by Pereira et al. [63]. Upper row indicates sample ID (N = 6). 
Numbers indicate total read depth of the 1–2 reported alleles per locus. Read depth per allele is not presented as this would reveal genotypes of sample donors. 
Highlight in green indicates matching ONT and validation data. Highlight in orange indicates mismatch with validation data, for which ONT data reports a ho-
mozygous variant while the validation data reports a heterozygous variant. Highlight in grey represents loci for which no ONT call was reported because data did not 
meet allele calling settings.
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respectively, were excluded because they did not meet calling criteria. 
Although PH6 included the largest number of called InDels, this sample 
showed two allelic dropouts compared to validation data. Finally, for 
PH11 we observed a total of three allelic dropouts, while ten markers did 
not meet the calling criteria.

3.5. Efficient and robust detection of SNPs predictive of hair, eye, and 
skin color

We performed adaptive sampling of the regions encompassing all 
genetic variations included in the HIrisPlex-S assay, comprising 40 SNPs 
and 1 InDel that can be used to predict hair, eye, and skin color. Our 
enrichment approach yielded read depths ranging from 4 to 40 (Fig. 4). 
Due to the absence of a phasing strategy in our SNP analysis, we were 
only able to determine the allele coverage ratio (ACR) for heterozygous 
SNPs. To protect donor privacy, we have not presented allele-specific 
read depths, as doing so could potentially disclose individual geno-
types. Instead, we used the heterozygous SNP positions to calculate the 
mean ACR and its standard deviation for each sample, varying from 0.61 
for PH15 to 1.10 for PH1 (Table 5).

Overall, 98.4 % of the targeted forensic SNPs aligned with validation 
data (240/244 observations across six samples). Notably, for PH3, seven 
targets (rs683, rs1126809, rs1800414, rs12441727, rs1129038, 
rs3212355, and rs6119471) matched the validation outcome as homo-
zygous reference variants but failed to meet our additional threshold of 
≥8 reads (Fig. 4). Excluding these observations to improve data reli-
ability resulted in an adjusted accuracy of 98.3 % (233/237 observa-
tions). A total of four discordant allele calls were observed across all 
samples, including two allelic dropouts (PH1 rs8051733 and PH3 
rs28777), and two instances where ONT reported heterozygous variants, 
while the validation indicated homozygous reference alleles (PH3 
rs1805005 and PH15 rs1805005).

3.6. Evaluation of nanopore performance on forensic age-predictive 
methylation markers

Next, we addressed the detection of DNA methylation in relation to 
biological age. A total of 353 age informative CpG targets present in the 
Horvath’s clock were successfully incorporated into our ONT adaptive 
workflow. 334 of these loci are also present in the Illumina EPIC array 
used for technical validation [55], and were incorporated in our 
comparative analysis of ONT and validation data. General data evalu-
ation showed that for a total of 39 CpGs (<12 %), no ONT data were 
generated or the data failed to pass quality control (Fig. 5). In addition, 
we observed a variable number of CpGs expressing beta values of 0 or 1 
in all samples, ranging between 46 % and 74 % with respect to the total 
number of CpGs studied in each sample (Fig. 5). Notably, the total 
number of CpGs expressing a methylation value of 0 or 1 was negatively 
associated with read depth (Table S5). Since we achieved a relatively 
low maximum read depth of 29 for Horvath and VISAGE methylation 
targets, we excluded CpGs with beta values of 0 or 1 from our dataset 
and from subsequent comparative analyses. Of the remaining targets, a 
total of 23 CpGs were present across all samples.

Contrary to STR, InDel, and SNP variants, DNA methylation is 

reported as a continuous variable. Therefore, we compared ONT 
methylation levels with those obtained from the classical Illumina EPIC 
array, using correlation analyses (Fig. 6). Correlations were presented 
according to three total read depth thresholds: (i) <10 reads, (ii) 10–19 
reads, and (iii) 20–29 reads. All samples showed positive linear corre-
lations between ONT and EPIC-generated data that generally increased 
with higher read depths, with a nominal exception for sample PH1. PH7 
reached the lowest Pearson’s correlation coefficient of 0.672 at read 
depths <10, covering a total of 78 CpG sites (Fig. 6 and Table S6). In 
contrast, the highest Pearson’s correlation was observed in PH6 (0.976), 
at a read depth varying between 19 and 29 reads, covering 25 CpGs in 
total (Fig. 6 and Table S6).

In addition to Horvath’s clock, we implemented CpGs previously 
reported by the forensic VISAGE Enhanced Tool for Age Prediction. We 
analyzed ONT-obtained beta values for six blood-specific age-predictive 
CpGs comprising the genes MIR29B2CHG, FHL2, TRIM59, ELOVL2, 
PDE4C, and KLF14. Most VISAGE targets are not included in the Illumina 
EPIC array, hampering a direct comparison between ONT and validation 
datasets. Therefore, we correlated ONT beta values to chronological age 
instead (Fig. 7). KLF14 was excluded due to a reported ONT beta value of 
0 for all samples, despite read depths varying from 5 to 17 per sample 
(data not shown). MIR29B2CHG showed an expected negative correla-
tion with age (R = − 0.92). FHL2 and TRIM59 showed a positive corre-
lation with chronological age of R = 0.96 and R = 0.75 respectively. All 
three markers included both low and medium read depths per CpG site. 
For ELOVL2, we observed a large variation in beta values and no cor-
relation (R = 0.14) between ONT generated beta values and chrono-
logical age, despite medium to high read counts per target CpG. Finally, 
PDE4C showed a correlation of R = 0.86 with chronological age, 
including an equal distribution of low and medium reads per CpG site.

4. Discussion

Summary: In this study, we explored the performance of direct and 
adaptive ONT sequencing in a forensic context. We assessed commonly 
used markers, including STRs, SNPs, InDels, mtDNA, and two DNA 
methylation-based clock classifiers for identity matching and Forensic 
DNA Phenotyping (FDP) analysis.

We observed variable performance across the samples, which was 
most likely a result of flow cell pore efficiency. Comparison of ONT data 
with validation datasets indicated overall good accuracy for all marker 
types, albeit with abundant missing data under stricter quality param-
eters, especially for STRs, InDels, and CpGs. The continuous nature of 
DNA methylation was particularly challenging due to low read depths. 
However, after extensive quality control, our ONT dataset reached high 
correlations with classical array-based DNA methylation data or chro-
nological age.

This study promotes ONT direct sequencing for future forensic ap-
plications. Further research should focus on enhancing on-target read 
depths, innovating new approaches to decrease input DNA quantity or 
even use degraded DNA, and expanding molecular classifiers, particu-
larly for phenotypic characterization.

Application of PCR-free ONT sequencing in forensics: To the best of our 
knowledge, this explorative study on Nanopore sequencing is the first in 
a forensic context to directly employ fragmented DNA for adaptive 
sampling of both forensic STRs and a comprehensive set of genetic and 
epigenetic FDP markers in an all-in-one and PCR-free approach. This 
diverges from other recent reports, all using PCR steps during sample or 
library preparation prior to ONT sequencing [10,51].

We assumed that data output quality of our approach hinges on two 
primary factors: the quality and quantity of DNA samples, and the 
technical specifications of the ONT platform and flow cells. Extensive 
DNA quality control revealed that two samples (PH3 and PH11) had 
smaller average fragment lengths and larger variations in DNA fragment 
size, indicating lower sample integrity. To correct for this, we used DNA 
fragmentation (up to 10 kb) and adjusted library concentrations to 

Table 5 
Mean ACR and standard deviation per sample for all heterozygous HIrisPlex-S 
SNP positions.

Sample Heterozygous SNPs Mean ACR ACR st.dev.

PH1 9 1.1059 0.4266
PH3 11 0.7950 0.7212
PH6 6 0.9652 0.3679
PH7 8 0.9227 0.5878
PH11 7 1.0603 0.4339
PH15 5 0.6168 0.2498

ACR: allele coverage ratio.
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ensure equal loading of molecules per sample on each flow cell, 
although low-integrity samples were likely enriched with shorter frag-
ments (<10 kb) due to additional fragmentation.

ONT’s technical factors, such as pore availability and efficiency, may 
impact data quality by affecting total coverage and read depths. In this 
study, pore availability was similar across flow cells. In contrast, pore 
efficiency, as measured by average reads per pore per hour, was notably 

low for PH3 and PH7.
Global evaluation of ONT adaptive sampling, including average read 

length, percentage of on-target reads, and enrichment value (G/A ratio), 
revealed minimal variation between samples and flow cells. However, as 
discussed in the data evaluations below, consistently low performance 
was indicated particularly in PH3 but also in PH7. This suggests that 
pore efficiency, rather than DNA integrity (as represented by fragment 

Fig. 4. Evaluation of ONT performance for HIrisPlex-S SNPs: ONT and validation data comparison, including total read depth of the 1–2 reported alleles 
per locus. Overview of ONT performance on the HIrisPlex-S panel, including 40 SNPs and 1 InDel (rs796296176). Upper row indicates sample ID (N = 6). Numbers 
indicate total read depth of the 1–2 reported alleles per locus. Read depth per allele is not presented as this would reveal genotypes of the sample donors. Highlight in 
green indicates read depth ≥8, with no mismatch according to the validation data. Highlight in orange indicates mismatch with validation data, for which ONT data 
reports a homozygous variant while the validation data reports a heterozygous variant. Highlight in purple indicates mismatch with validation data, for which ONT 
reports a heterozygous variant while the validation data reports a homozygous variant. Highlight in grey indicates no mismatch with the reported homozygous 
reference call in the validation data, but with ONT read depth <8.
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length distributions), influences sequencing output. Since we did not 
include replicates in our study, we were unable to further evaluate the 
impact of poor sample quality and variable quality of the flow cells 
separately. Nevertheless, this exclusion of the possibility that DNA 
integrity affects sequencing performance aligns with reports from 
others, which have shown that long to very long DNA fragments are 
particularly prone to clogging events, which in turn decrease pore 
sequencing efficiencies [14,46].

STRs: The analysis of 59 STRs (28 autosomal, 24 Y-chromosome, and 
seven X-chromosome) yielded >90 % matching genotypes across 51 
markers observed in at least one sample. Interestingly, we achieved this 
with as little as ≤28 reads per locus. Other studies using ONT devices for 
STR analyses report similar or slightly better results. Hall et al. [24]
reach a 100 % accuracy for autosomal STRs using STRspy as base calling 
method, while Tytgat et al. [81] report high concordance for autosomal 
STRs and a 100 % accuracy for Y-STRs using Guppy as a base caller. 
However, both studies use amplicon-based libraries, resulting in total 
read depths of >100k and >212 respectively.

Evaluation of allele-specific read depths for autosomal heterozygous 
loci showed imbalances across all samples. However, we found only one 
allele dropout event (PH7/D13S317) at the least strict allele coverage 
threshold of ≥3. These results suggest that sufficient read depths, in 
combination with a coverage threshold of at least 4 reads, mitigate the 
effects of allelic imbalances.

The observed discordances were clearly not randomly spread across 
different markers: higher allele size as well as lower coverage were 
significantly associated with discordant calls, indicating that specific 
markers are more sensitive to errors. Increasing the allelic threshold to 
≥4 removed discordant genotype calls in three markers (D13S317, 
D3S1358, DYS485). However, three other markers (FGA, D18S51, 
DYS570) consistently yielded incorrect calls across all samples, while 
five markers (D2S1338, PentaD, DYS576, DYS612, DXS10135) showed 
persistent discordances despite improved quality parameters.

The majority (90 %) of observed mismatches in our ONT STR dataset 
concerned repeat number loss of a single tandem repeat. These back-
ward (or − 1) stutter effects are often observed in forensic STR analysis, 
especially in MPS readouts, and as a result also in subsequent amplicon 
based ONT datasets [24,71]. Interestingly, we observed stutter effects 
despite omitting any amplification steps, potentially hinting at issues 
with Nanopore base calling algorithms in handling repetitive sequences. 
Alternatively, since Nanopore sequencing allows for analysis of indi-
vidual DNA molecules instead of amplicons, the observed repeat number 
loss may also reflect biological somatic variability, rather than technical 
sequencing errors.

Incorporating the highly polymorphic STR SE33 into our adaptive 
approach posed challenges due to its extreme heterozygosity. Despite 
being one of the most informative forensic markers [9], amplicon-based 
sequencing of SE33 faces many challenges such as allelic dropouts [30, 
32] and discordant genotype calls [73,85]. Nanopore could offer an 
alternative primer and amplification-free sequencing approach for this 

locus. However, in this study we were unable to analyze SE33, as well as 
DYS522, DYS385a-b, and DYS389II because a non-comprehensive list of 
markers and corresponding reference alleles was used in our TREAT 
analysis, and the alleles observed in the MPS-based validation data were 
not present in this reference list. For all other markers, all validated 
alleles were present in the aforementioned list, indicating that any 
missing markers for a particular sample can be attributed to low read 
depth. For future research, integrating the STRNaming nomenclature 
[36], which we also used for generating our MPS-based validation data, 
would allow for algorithm based allele calling, eliminating the need for a 
pre-existing list of allele variants and simplifying the comparison of ONT 
and MPS data.

For identity matching in a forensic context, the total number and 
discriminative power of reported autosomal loci determines the 
evidentiary value of DNA samples. Our study reveals that under the 
strictest criteria of ≥6 reads per allele, two samples (PH1 and PH6) 
showed accurate genotypes for 13 markers, except for FGA for PH1. 
Interestingly, lowering the threshold to ≥3 reads per allele expanded 
this number to 22 markers for PH1 (excluding mismatches for FGA and 
PentaD) and 21 markers for PH6 (excluding a mismatch for FGA), as well 
as included PH11 with 17 markers (excluding mismatches for D2S1338 
and FGA), and PH15 with 22 markers (excluding mismatches for 
D18S51, D3S1338, and FGA). Overall, with the least strict parameters 
(≥3 reads per allele) and with the exception of missing data, we 
correctly called 20 autosomal STRs across all samples. With further 
optimization to detect inaccurate variant calls, we expect that ONT 
could in the future be a viable tool for forensic identity matching.

mtDNA: In the present study, we purposefully excluded mtDNA from 
the adaptive enrichment approach, assuming that adaptive proofreads 
would provide sufficient coverage of the entire mtDNA. Our results 
showed higher read depths for mtDNA, particularly in the hypervariable 
region (D-loop), compared to autosomal markers. Importantly, no 
sequence discordances were observed, indicating the accuracy of ONT 
direct sequencing at read depths of 26–75 reads. Our results are in line 
with Zascavage et al., who reported high sequencing accuracy for 
mtDNA at an average coverage of 15–92 reads per sample using a PCR- 
free Nanopore sequencing approach [93]. Notably, despite large dif-
ferences in total read coverage, their results demonstrate comparable 
accuracy between PCR-free and PCR-enriched libraries [93], indicating 
ONT as a promising direct and low-coverage sequencing technology.

InDels: In our adaptive sampling approach, we analyzed a total of 46 
ancestry-informative autosomal InDels [63] using the FDSTools soft-
ware package designed for short read MPS data [35,36]. Among the 
60.9 % called markers, we reached 97.8 % accuracy. Here, discordant 
sequence variants with validation data were observed only in sample 
PH6 and PH11, missing two and three alleles, respectively.

We generally observed a lower read depth for InDels compared to 
SNP analysis, primarily due suboptimal alignment events. Such events 
are not only a challenge in long read sequencing but may also be 
observed in short read MPS experiments [49]. Furthermore, for InDel 
detection we utilized three distinct quality parameters. We found that 
stricter thresholds, such as increasing the minimum read per allele and 
total allelic reads, neither enhanced the accuracy of calls nor substan-
tially decreased drop-out and drop-in events. Salakhov et al. recently 
documented pathogenic variant detection using older ONT sequencing 
technology and long PCR fragments [75]. They noted decreased accu-
racy in InDel calling due to heightened deletion/insertion errors. Like-
wise, Maestri et al. demonstrated reliable and efficient calling of single 
nucleotide variants, but not InDels, using direct long read ONT 
sequencing for haplotype reconstruction [54].

To our knowledge, no specific study has assessed InDel calling per-
formance using the latest direct ONT sequencing methodology (R10.4.1. 
and software) [87]. Future experiments should explore whether alter-
native calling tools could enhance InDel detection in datasets generated 
by direct ONT sequencing. For instance, Abdelwahab et al. previously 
investigated AI-based variant callers, highlighting their variable 

Fig. 5. General data exploration of ONT DNA methylation data (Horvath’s 
clock). General presentation of missing CpGs, CpGs with beta value 0 or 1, and 
remaining CpGs, presented per sample.
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Fig. 6. Correlation plots showing linear regression between ONT and validation DNA methylation data (Horvath’s clock). The y-axis shows beta values as 
measured with ONT; the x-axis shows beta values as measured in the EPIC validation data set. Each data point represents one locus. Small black dots include all loci 
per sample. Blue star-shaped dots indicate loci with a read depth <10. Orange plus-shaped dots represent loci with a read depth of 10–19. Green triangular dots 
indicate loci with a read depth of 20–29. Dotted lines show linear regression (black = all loci, blue = read depth <10, orange = read depth 10–19, green = read depth 
20–29). R values represent Pearson’s correlation coefficient.
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accuracy across different sequencing platforms [1].
SNPs: We integrated the HIrisPlex-S panel in our forensic ONT assay, 

comprising 40 SNPs and 1 InDel predictive of hair, eye, and skin color 
[11,83,84]. Using Clair3 with default settings as variant caller, we 
achieved an overall accuracy of 98 %, which is comparable to accuracies 
observed in other studies on ONT-based SNP analyses [6,31]. Further-
more, we confirm the accuracy of Clair3 for ONT sequencing data with 
low read depth (maximum of ≤40 reads) [94].

Our SNP dataset included four discordant sequencing calls. Two 
discordances resulted from allelic dropout, while the other two involved 
rs1805005, where Clair3 reporting a heterozygous variant for ONT data 
while validation data indicated homozygous reference alleles. Our re-
sults are similar to Tytgat et al ([81])., who reached a 99 % accuracy for 
SNP genotyping of amplicon libraries using Nanopore sequencing. 
Moreover, our results were based on ≤40 reads per SNP locus, compared 
to 60,049 ± 27,124 and 50,441 ± 27,985 basecalled reads per sample as 
reported by Tytgat et al ([81])., using Guppy and Bonita as basecallers, 
respectively.

Evaluation of the ACR showed an imbalance in allele coverage, 
particularly in PH3 and PH15, likely due to the two incorrect hetero-
zygous calls in these samples. While we recommend incorporating ACR 
analysis as a standard quality control measure, our findings suggest that 

the impact of imbalanced ACR is mitigated when sufficient read depths 
are achieved.

DNA methylation: In addition to genetic markers, we incorporated 
epigenetic DNA methylation markers indicative of biological age, 
including 353 age-associated methylation markers of Horvath’s clock 
[38]. Our adaptive sampling strategy resulted in a maximum of ≤29 
reads per target. Comparison of the 334 Horvath markers present in both 
ONT and EPIC datasets showed a general increase in Pearson’s corre-
lation coefficient with rising read depths.

Additionally, we included six forensic age predictive CpGs in blood 
from the VISAGE Enhanced Tool for Age Prediction [88]. As no vali-
dation data was available, ONT data was compared to chronological age. 
Similarly to Wozniak et al., our data showed a positive correlation with 
age for FHL2, TRIM59, ELOVL2, and PDE4C and a negative correlation 
for MIR29B2CHG ([88]). Notably, ELOVL2 displayed a very low Pear-
son’s correlation coefficient. Other studies show that ELOVL2 is highly 
associated with age [59,88], and further studies are required to explain 
the deviating results for this marker in our dataset. Despite this outlier, 
all other markers exhibited relatively high correlations with chrono-
logical age.

Our study, including only four to six data points per VISAGE marker, 
demonstrates the resilience of these loci’s age correlating properties 

Fig. 7. Correlation plots showing linear regression between ONT DNA methylation data and chronological age (VISAGE Enhanced Tool for Age Predic-
tion). Each panel represents a target predictive of age in blood as reported by Wozniak et al. [88]. A detailed overview of exact genomic positions per CpG is 
presented in Supplementary File 1. KLF14 was excluded due to a reported ONT beta value of 0 for all samples. The y-axis shows beta value as measured with ONT; the 
x-axis shows chronological age. Each dot represents one sample. Colors and symbols indicate read depth (blue star = low read depth of <10, orange plus = medium 
read depth of 10–19, green triangle = high read depth of 20–29). Black dotted line shows linear regression of all loci for each target. R value represents Pearson’s 
correlation coefficient.

D.D.S.H. de Bruin et al.                                                                                                                                                                                                                       Forensic Science International: Genetics 74 (2025) 103154 

12 



even with small sample sizes. This differs from Yuen et al.’s findings, 
who used ONT direct sequencing and adaptive sampling for analyzing 
VISAGE aging markers in ten human blood samples. While they found 
similar or higher correlations between ONT data and chronological age 
for MIR29B2CHG and ELOVL2, respectively, their correlations for FHL2, 
TRIM59, KLF14, and PDE4C were <0.675 [92]. Unlike Yuen et al., we 
meticulously cleaned our DNA methylation dataset by removing loci 
reporting 0 % or 100 % methylation levels. We argue that the contin-
uous nature of DNA methylation data in combination with low read 
depth resulted in unreliable results at the methylation extremities. 
Although our cleaning step resulted in substantial data loss, our results 
suggest that increasing the read depth for DNA methylation targets 
could reduce the amount of extreme and probably inaccurate methyl-
ation observations, thus improving correlations between ONT data and 
chronological age.

Limitations: While this study presents promising findings, we 
acknowledge a number of limitations. Firstly, there was variability in 
both the quality and quantity of DNA across the samples. As previously 
noted, the absence of replicates in our study precluded a separate 
evaluation of the impact of poor sample quality versus variable flow cell 
quality. Additionally, the quantity of input DNA (1.7–6.0 µg) was far 
from realistic for forensic case studies. Exploring the use of lower input 
material in our sequencing approach is a necessary consideration for 
future experiments.

Secondly, the use of standard MinION R10.4 flow cells and their 
associated pore resolution resulted in low target read depths, despite 
employing ONT’s adaptive sampling strategy. This led to considerable 
loss of data for mainly STRs, InDels, and CpGs, especially with stricter 
quality thresholds. Optimization of calling software packages for each 
marker type is required to improve data accuracy and reliability, espe-
cially for low-coverage datasets. This is further substantiated by the 
minor variant analysis we performed on our high coverage mtDNA 
subset. Here, we observed a notable amount of single base deletions, and 
to a lesser extend single base insertions and substitutions. InDel biases 
with regard to ONT sequencing were also reported by others [16,40,44], 
underscoring the necessity for properly validated detection limits or 
threshold values before any of the described analyses can be imple-
mented in forensic practice.

Future perspectives and recommendations: Follow-up studies on direct 
and adaptive ONT sequencing within a forensic context should address 
numerous aspects, including technology performance, extension of 
marker sets, and ethical considerations.

To enhance performance, future studies could explore employing a 
larger ONT platform, such as PromethION, which offers five times the 
pore count compared to MinION. This augmentation theoretically 
translates to a fivefold increase in read depth and more accurate results 
for all marker types. In addition, PromethION’s enhanced sequencing 
efficiency and robustness, attributed to better operational control, pre-
sent a notable advantage over MinION, particularly in mitigating 
external factors like temperature variations. Moreover, addressing the 
inherent challenges of direct sequencing, such as random fragment 
generation, necessitates optimization of all data analysis components, 
including base calling, alignment, and variant identification. Developing 
or refining algorithms tailored for direct sequencing and integrating 
larger datasets are crucial avenues for improving sequencing outcomes 
and forensic applicability. Finally, adding replicates would significantly 
enhance the reproducibility of the study and allow for distinct evalua-
tion of the effects of sample and flow cell quality.

Regarding the extension of marker sets, future studies could inte-
grate numerous additional genetic and epigenetic classifiers. For 
example, hair-related traits such as shape, baldness, greying (combined 
with age), and eyebrow color can be estimated using a relatively small 
number of single nucleotide variants [13,23,61,67,68]. Additionally, 
recent studies on body fluid identification report a small number of DNA 
methylation markers useful in discerning blood from semen and saliva 
specimens [47,60]. Integrating these markers in our adaptive workflow 

is highly feasible, as adjustments in target region size allow for incor-
porating more enrichment targets. However, additional classifiers 
should be implemented with caution, as data analysis and interpretation 
tools for these markers may not yet be readily available or thoroughly 
validated for forensic applications.

Finally, the use of ONT platforms could revolutionize FDP analysis, 
accelerating the forensic process by providing investigative leads into 
the identity of unknown suspects. However, since such leads point to-
wards ethnically defined groups rather than individuals, precautionary 
steps must be taken to prevent stigmatization. The cautious conduct 
followed in the Dutch Milica van Doorn case might be instructive here 
[82]. Additionally, ethnicity is known to impact DNA methylation based 
age predictions [19], underscoring the importance of properly training 
FDP prediction tools to mitigate ethnic biases.

5. Conclusion

Our study, exploring direct ONT sequencing in the context of an 
adaptive enrichment strategy for a broad scope of forensic markers, 
indicated promising but not yet flawless results. We integrated genetic 
and epigenetic classifiers for identity matching, phenotypic traits, 
ancestry, and biological age into a single workflow, highlighting ONT’s 
potential as a rapid and efficient forensic sequencing tool. However, 
further optimizations are needed before ONT can be effectively imple-
mented and accepted within the forensic field. These include addressing 
technical challenges, such as ensuring sufficient read depths, especially 
in combination with low DNA input. Additionally, refining the perfor-
mance of variant calling algorithms is essential to enhance the accuracy 
of STRs, SNP, InDel, mtDNA, and DNA-methylation calling. Despite 
these challenges, our study presents proof-of-concept for future adap-
tation of ONT adaptive sampling as a comprehensive forensic 
sequencing assay for multiple forensic analyses.
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