

Delft University of Technology

Extended Kalman Filtering with Low-Rank Tensor Networks for MIMO Volterra System
Identification

Batselier, Kim; Ko, Ching Yun; Wong, Ngai

DOI
10.1109/CDC40024.2019.9028895
Publication date
2019
Document Version
Final published version
Published in
Proceedings of the IEEE 58th Conference on Decision and Control, CDC 2019

Citation (APA)
Batselier, K., Ko, C. Y., & Wong, N. (2019). Extended Kalman Filtering with Low-Rank Tensor Networks for
MIMO Volterra System Identification. In Proceedings of the IEEE 58th Conference on Decision and Control,
CDC 2019 (pp. 7148-7153). IEEE. https://doi.org/10.1109/CDC40024.2019.9028895

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CDC40024.2019.9028895
https://doi.org/10.1109/CDC40024.2019.9028895

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Extended Kalman Filtering with Low-Rank Tensor Networks for
MIMO Volterra System Identification

Kim Batselier, Ching-Yun Ko and Ngai Wong

Abstract— This article reformulates the multiple-input-
multiple-output Volterra system identification problem as an
extended Kalman filtering problem. This reformulation has
two advantages. First, it results in a simplification of the
solution compared to the Tensor Network Kalman filter as no
tensor filtering equations are required anymore. The second
advantage is that the reformulation allows to model correla-
tions between the parameters of different multiple-input-single-
output Volterra systems, which can lead to better accuracy. The
curse of dimensionality in the exponentially large parameter
vector and covariance matrix is lifted through the use of low-
rank tensor networks. The computational complexity of our
tensor network implementation is compared to the conventional
implementation and numerical experiments demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

Tensor decompositions were shown in [1]–[6] to be
a useful paradigm to lift the curse of dimensionality in
the identification of nonlinear Volterra models. The need
to estimate an exponential number of model parameters is
circumvented by representing these parameters as a particular
tensor decomposition. Furthermore, the low-rank assumption
in these tensor decompositions induces an implicit regu-
larization on the model complexity. In both [5] and [6],
the identification of a discrete-time multiple-input-multiple-
output (MIMO) Volterra system was described and solved
as a filtering problem. Indeed, a time-varying discrete-time
p-input-l-output Volterra system of degree d and memory M
is described by the following state space model

X(t+ 1) = A(t)X(t) +W (t),

y(t) = ut
d© X(t) + r(t), (1)

where X(t) ∈ RNd×l is an exponentially large matrix
containing the Volterra parameters of each of the l outputs,
y(t) ∈ R1×l is a row vector of l scalar measurements,
A(t) ∈ RNd×Nd

is a transition matrix that partly determines
the time-varying character of the Volterra parameters and
W (t) ∈ RNd×l, r(t) ∈ R1×l denote zero-mean independent
Gaussian process and measurement noise, respectively. The
row vector

ut :=
(
1 uT (t) · · · uT (t−M + 1)

)
∈ R1×(pM+1)

K. Batselier is with the Delft Center for Systems and
Control, Delft University of Technology, The Netherlands
k.batselier@tudelft.nl

C.-Y Ko is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02142,
USA

N. Wong is with the Department of Electrical and Electronic Engineering
at The University of Hong Kong, Hong Kong, China

contains all p input values at times t down to t−M +1 and
ut

d© is defined as the d-times repeated Kronecker product

ut
d© :=

d︷ ︸︸ ︷
ut ⊗ ut ⊗ · · · ⊗ ut ∈ R1×(pM+1)d . (2)

In the remainder of the text we will use N := (pM + 1)
for notational convenience. Unlike the conventional Kalman
filter with a single state vector, (1) represents a more general
setting by concatenating l state vectors into a matrix X(t)
and l scalar outputs into a row vector y(t). These l state
space models are “coupled” by a common state transition
matrix A(t) and time-varying output model vector ut

d©.
Estimating the states X(t) through a Kalman filter then
requires rewriting the Kalman filter equations into tensor
equations [5], [6]. The assumption is hereby made that all
estimated Volterra kernels over the l outputs are uncorrelated.
These tensor equations were implemented using low-rank
tensor networks in order to lift the curse of dimensionality
associated with the state vectors in X(t) having exponen-
tially large dimensions.

This article represents an alternative representation of the
discrete-time MIMO Volterra system. The key contribution
is that all unknown Volterra kernels are described by one
single unknown vector θ(t) ∈ RlNd

in the following state
space model

θ(t+ 1) = θ(t) +w(t),

y(t) = h (ut , θ(t)) + e(t), (3)

where y(t) is a column vector and the smooth vector function
h : RN × RlNd → Rl maps all time-delayed input signals
in ut to the output vector y(t). Both the process noise w(t)
and measurement noise e(t) are assumed to be stationary
Gaussian white noise processes

E

((
w(t)

e(t)

)(
w(s)T e(s)T

))
=

(
Rw 0
0 Re

)
δts.

Furthermore, we assume that p, l � Nd. The concatenation
of all l MISO Volterra system parameters into one vector
θ(t) implies that one covariance matrix suffices, which opens
up the possibility of modeling correlations between the pa-
rameters of different MISO Volterra systems. An additional
benefit of this reformulation is that in contrast to the Kalman
filter solutions in [5], [6] no tensor equations are required to
formulate the Kalman filter, simplifying their implementation
significantly. In this article an extended Kalman filter (EKF)
will be developed to estimate the state vector θ(t) from (3). A
low-rank tensor network representation for both the estimate

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 7148

Authorized licensed use limited to: TU Delft Library. Downloaded on March 17,2022 at 08:14:31 UTC from IEEE Xplore. Restrictions apply.

of θ(t) and its covariance matrix P will be employed in our
implementation to lift the curse of dimensionality.

II. NOTATION AND TENSOR NETWORK PRELIMINARIES

Tensors in this article are multi-dimensional arrays
that generalize the notions of vectors and matrices to
higher orders. A d-way or dth-order tensor is denoted
A ∈ RN1×N2×···×Nd and hence each of its entries
A(n1, n2, . . . , nd) is determined by d indices. We use the
MATLAB array index and colon notation to denote entries
of tensors. The numbers N1, N2, . . . , Nd are called the
dimensions of the tensor. For practical purposes, only real
tensors are considered. We use boldface capital calligraphic
letters A,B, . . . to denote tensors, boldface capital let-
ters A,B, . . . to denote matrices, boldface letters a, b, . . . to
denote vectors, and Roman letters a, b, . . . to denote scalars.
The transpose of a matrix A or vector a are denoted by
AT and aT , respectively. The unit matrix of order n is
denoted In and 1n denotes the vector of ones of length n.
The Kronecker product will play an important role in the
construction of tensor networks and is denoted by ⊗. Before
we can give the definitions of the tensor network structures
used in this article, we first need to define how a single index
can be expressed in terms of multiple indices. In general,
the conversion of a given set of indices n1, n2, . . . , nd with
1 ≤ nk ≤ Nk (k = 1, . . . , d) into a corresponding single
index 1 ≤ [n1n2 · · ·nd] ≤

∏d
k=1Nk is defined by

[n1n2 · · ·nd] := n1 +

d∑
k=2

(nk − 1)

k−1∏
l=1

Nl. (4)

Equation (4) allows us to rewrite the entries a(n) of a vector
a ∈ RNd

with 1 ≤ n ≤ Nd as a([n1n2 · · ·nd]) with
1 ≤ nk ≤ N for all k = 1, . . . , d. This rewriting enables us
to use tensor networks for representing vectors and matrices
of exponential size in an efficient manner. In this article,
vectors will be represented by Matrix Product States (MPS,
also called Tensor Trains [7]) and matrices by Matrix Prod-
uct Operators (MPO, also called Tensor Train Matrix [8]).
Without loss of generality, we provide the definition of an
MPS for a vector of length Nd.

Definition 2.1: ([7, p. 2296]) For a vector a ∈ RNd

we define its MPS as the set of 3-way tensors A(k) ∈
RRk×N×Rk+1 for all k = 1, . . . , d such that the entry
a([n1n2 · · ·nd]) equals
R2,...,Rd∑
r2,...,rd=1

A(1)(1, n1, r2)A(2)(r2, n2, r3) · · ·A(d)(rd, nd, 1).

The dimensions R2, R3, . . . , Rd are called the MPS-ranks.
We have per definition that R1 = Rd+1 = 1.
Storage of the MPS requires the storage of each of the
3-way tensors, which leads to a storage complexity of
approximately dNR2 assuming all MPS-ranks are equal to
R. In this way the curse of dimensionality associated with the
storage of a vector of exponential length is lifted for small
MPS-ranks R. A visual representation of an MPS is shown in
Figure 1. Each node in the figure represents one of the tensors

A(1) A(2) A(d)

N N N

R2 R3 Rd

Fig. 1. Graphical representation of the MPS that represents a vector a ∈
RNd

with all dimensions labelled.

A(k) (k = 1, . . . , d) in the MPS and the summations over
the indices r2, . . . , rd are visualized by connecting edges
between the nodes. The idea of an MPS can be extended to
represent matrices. Analogous to Definition 2.1, the MPO of
a matrix A ∈ RNd×Md

is defined as the set of 4-way tensors
A(k) ∈ RRk×N×M×Rk+1 for all k = 1, . . . , d such that the
matrix entry A([n1n2 · · ·nd], [m1m2 · · ·md]) is represented
by a summation of the MPO-tensors A(k)(rk, nk,mk, rk+1)
over the indices r1, . . . , rd. Again, we have that per definition
R1 = Rd+1 = 1. The following important theorem relates
how a Kronecker product of matrices can be represented by
a MPO with all unit MPO-ranks.

Theorem 2.1: ([9, p. 1225]) A matrix A ∈ RNd×Md

that
satisfies

A = A(d) ⊗ · · · ⊗A(2) ⊗A(1)

has an MPO representation where the kth MPO-tensor is
A(k) ∈ R1×N×M×1 (k = 1, . . . , d) with unit MPO-ranks.

It is important to note that the order of the MPO-tensors
is reversed with respect to the order of the factor matrices in
the Kronecker product. This means that the last factor matrix
A(1) in the Kronecker product of Theorem 2.1 is the first
tensor in the corresponding MPO representation.

III. EXTENDED KALMAN FILTER EQUATIONS

The main idea of an EKF is to approximate the fil-
tering density p(θ(t)|y1:t) with a Gaussian, characterized
by a mean vector m(t) ∈ RlNd

and covariance matrix
P (t) ∈ RlNd×lNd

[10]. The prediction step of an EKF for
the state space model (3) is

m(t)− =m(t− 1),

P (t)− = P (t− 1) +Rw. (5)

The corresponding update step is

v(t) = y(t)− h
(
ut , m(t)−

)
,

S(t) = C P (t)−CT +Re,

K(t) = P (t)−CT S(t)−1,

m(t) =m(t)− + K(t)v(t),

P (t) = P (t)− − K(t)S(t)K(T)T , (6)

with

C :=
dh (ut , θ(t))

dθ(t)

∣∣∣∣
θ(t)=m(t)−

∈ Rl×lNd

. (7)

7149

Authorized licensed use limited to: TU Delft Library. Downloaded on March 17,2022 at 08:14:31 UTC from IEEE Xplore. Restrictions apply.

The exponential dimensions ofm(t), P (t),K(t) and C will
be resolved in the next section through the use of low-rank
tensor network representations. Before proving the particular
structure of the C matrix in (7) for the MIMO Volterra
model, we first define the structure of the θ(t) vector.

Definition 3.1: Let θk(t) ∈ RNd

denote the vector con-
taining the Volterra parameters such that

yk(t) = ut
d© θk(t) (1 ≤ k ≤ l),

where yk(t) denotes the kth output. Then we define

θ(t) :=

θ1(t)
θ2(t)

...
θl(t)

 ∈ RlNd

. (8)

With the definition of the θ(t) vector in place, we can now
prove the particular structure of the C matrix (7) in the EKF.

Theorem 3.1: For the time-varying MIMO Volterra state
space model (3) and θ(t) vector (8) we have that

C :=
dh (ut , θ(t))

dθ(t)

∣∣∣∣
θ(t)=m(t)−

=
(
Il ⊗ ut

d©) .
Proof: From Definition 3.1 it follows that the kth output

can be rewritten in terms of the whole θ(t) vector as

yk(t) = hk(ut,θ(t)) =
(
eTk ⊗ ut

d©) θ(t),
where ek ∈ Rl denotes the kth canonical basis vector in Rl.
We can therefore write

dhk(ut,θ(t))

dθ(t)
=
(
eTk ⊗ ut

d©) (1 ≤ k ≤ l),

such that

C =
dh (ut , θ(t))

dθ(t)

∣∣∣∣
θ(t)=m(t)−

=

eT1 ⊗ ut

d©

eT2 ⊗ ut
d©

...
eTl ⊗ ut

d©

 . (9)

The right-hand side of equation (9) can be written as
l∑

k=1

ek ⊗ eTk ⊗ ut
d© =

(
l∑

k=1

ek ⊗ eTk

)
⊗ ut

d©

= Il ⊗ ut
d©,

which concludes the proof.
The significance of Theorem 3.1 is that it implies through
Theorem 2.1 that the C matrix in (7) is exactly represented
by the rank-1 tensor network structure shown in Figure 2.
As the C matrix does not depend on θ, the filtering density
p(θ(t)|y1:t) is exactly Gaussian and using an EKF will
therefore not introduce any approximation errors.

IV. TENSOR NETWORK IMPLEMENTATION OF THE EKF

The EKF equations in (5) and (6) require the manipulation
of vectors and matrices of exponential dimensions. The
explicit computation of these filter equations is therefore
limited to small values of lNd. For this reason all vector
and matrix quantities will be represented by a low-rank MPS

ut ut ut Il
1 1 1 1

N N N

l

l

Fig. 2. Graphical representation of the C matrix as a rank-1 MPO with
all dimensions labelled.

and MPO, respectively. The following lemmas explain how
the initial mean vector m(0) ∈ RlNd

and initial covariance
matrix P (0) ∈ RlNd×lNd

can be directly initialized in their
corresponding MPS/MPO formats. The assumption is hereby
made that all entries of the initial mean m(0) are identical.

Lemma 1: Suppose we have a vector m(0) = m1lNd

where m ∈ R. The corresponding MPS is unit-rank and
consists of the following tensors

M(1) = 1N ∈ R1×N×1,

M(2) = 1N ∈ R1×N×1,

...

M(d) = 1N ∈ R1×N×1,

M(d+1) = m1l ∈ R1×l×1.
Lemma 1 follows directly from applying Theorem 2.1 to

m(0) = m1l ⊗ 1N
d©.

The scalar m can be moved to any of the d+1 MPS tensors.
The total storage cost of m(0) is through Lemma 1 reduced
from lNd to l+N as the vector 1N needs to be stored only
once. For the initial covariance matrix P (0) we can assume
that it is a diagonal matrix with a uniform diagonal.

Lemma 2: Suppose we have a matrix P (0) = p IlNd

where p > 0 is a real scalar. The corresponding MPO is
unit-rank and consists of the following tensors

P(1) = IN ∈ R1×N×N×1,

P(2) = IN ∈ R1×N×N×1,

...

P(d) = IN ∈ R1×N×N×1,

P(d+1) = pIl ∈ R1×l×l×1.
Lemma 2 follows directly from applying Theorem 2.1 to

P (0) = p Il ⊗ IN
d©,

where the scalar p can also be moved to any of the d + 1
MPO tensors. The total storage cost of P (0) is through
Lemma 2 reduced from l2N2d to l2+N2. A diagonal covari-
ance matrix, however, does not model possible correlations
between the parameters θ1, . . . ,θl of the l MISO Volterra
models. Suppose, for example, that l = 2 and that we want
to model that the coefficients of the matrix (θ1(0) θ2(0)) are
row-wise correlated. This implies that the initial covariance
matrix P (0) has the following structure

P (0) =

(
P11 P12

P12 P22

)
(10)

7150

Authorized licensed use limited to: TU Delft Library. Downloaded on March 17,2022 at 08:14:31 UTC from IEEE Xplore. Restrictions apply.

where each of the P11,P22,P12 ∈ RNd

matrices are
diagonal. The construction of this P (0) in an MPO-form
is given by the following lemma.

Lemma 3: The matrix as described in (10) can be con-
structed as a rank-4 MPO through

P (0) =e1 ⊗ eT1 ⊗ P11 + e1 ⊗ eT2 ⊗ P12 + e2 ⊗ eT1 ⊗ P12

+ e2 ⊗ eT2 ⊗ P22.

where e1, e2 are the canonical basis vectors in R2,
P11,P22,P12 are rank-1 MPOs according to Lemma 2 and
the addition of the four MPOs can be computed through
Theorem 4.1.
It is possible to generate a rank-1 MPO for this specific
case. By redefining θ as the columnwise-vectorization of
(θ1 · · · θl)T , one can show that P (0) has the following
rank-1 MPO

P (0) = IN
d© ⊗

p11 · · · p1l
...

. . .
...

p1l · · · pll

 ,

where pij denotes the covariance of all coefficients between
Volterra models i and j. This redefinition of θ also implies
that C := ut

d© ⊗ Il.
With the initial mean vector and covariance matrix initial-

ized as tensor networks, we can now explain how each of
the EKF equations can be implemented directly in the tensor
network format. Two major operations play an important role
in each of the Kalman filter equations in (5) and (6): matrix
addition and multiplication. We will explain how the results
of each of these operations can be computed directly in tensor
network form.

Theorem 4.1: ([7, p. 2308] Addition of two MPS) Let
A(1), . . . ,A(d) be the MPS of a vector a ∈ RNd

with
uniform MPS-ranks RA and likewise for a vector b. Then
the MPS of c = a+ b consists of the tensors

C(1)(1, n1, :) =
(
A(1)(1, n1, :) B(1)(1, n1, :)

)
,

C(d)(:, nd, 1) =

(
A(d)(:, nd, 1)

B(d)(:, nd, 1)

)
,

and

C(k)(:, nk, :) =

(
A(k)(:, nk, :) 0

0 B(k)(:, nk, :)

)
,

when k = 2, . . . , d− 1. The MPS-ranks of c are RA +RB .
The extension of Theorem 4.1 to the MPO-case involves the
concatenation of both a row index nk and column index mk

into one multi-index [nkmk] and applying Theorem 4.1. The
second important operation in the Kalman filter equations is
matrix multiplication. We will work out this operation with
tensor networks for the matrix vector case. The extension to
matrix matrix multiplication involves the addition of an extra
(column) index.

Theorem 4.2: (Matrix vector multiplication in MPS form)
Let A(1), . . . ,A(d) be the MPO of a matrix A ∈ RNd×Nd

and X (1), . . . ,X (d) the MPS for a vector x ∈ RNd

. Then the

A(k) X (k)

SA SX

RA RX

N N
B(k)

SASX

RARX

N

Fig. 3. The computation of the kth MPS tensor of b = Ax with all
dimensions labelled.

entries B(k)([rArX], nk, [sAsX]) of the MPS that represents
b = Ax are computed as

N∑
mk=1

A(k)(rA, nk,mk, sA)X (k)(rX ,mk, sX) (11)

for all k = 1, . . . , d. The MPS-ranks of b are the product of
the MPO-ranks of A with the corresponding MPS-ranks of
x.
The summation (11) is graphically represented in Figure 3
by the connected edge between the A(k) and X (k) nodes.
With the initialization of m(0) and P (0) as described in
Lemmas 1, 2, and 3, together with the two major operations
in Theorems 4.1 and 4.2 one can implement all EKF equa-
tions directly in the MPS/MPO format. In the next section
we investigate the benefit of using tensor networks by doing
a detailed analysis of the computational complexity.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section a comparison is made of the computational
complexity of the tensor network EKF implementation pro-
posed in this article with the conventional implementation.
It will be shown that using tensor networks for the implicit
representation of all vectors and matrices lifts the curse
of dimensionality and enables the identification of highly
nonlinear systems. We assume that the MPO-ranks of the
covariance matrix P (t) are all identical and denoted by RP .
The MPO that represents the Kalman gain K is obtained
through the multiplication of P (t)− with CT . Since all
MPO-ranks of C are equal to one, this implies that the
MPO-ranks of K will be identical to RP . The computational
complexity of the conventional EKF and tensor network-
implementation are shown for the various filter equations in
Table I. Similar to the tensor network Kalman filter described
in [5], [6], the exponential complexity of the conventional
implementation is also here completely lifted through the
use of tensor networks. The MPO-rank of the covariance
matrix P (t) is the only MPO-rank that appears in Table I
and is therefore the determining factor for the tensor network
computational complexity. Theorems 4.1 and 4.2 tell us how
the implementation of each filter equation will invariably lead
to increased MPS-ranks of m(t) and MPO-ranks of P (t),
resulting in the following lemma.

Lemma 4: For the MIMO Volterra system identification
problem in (3) we have that any MPS-rank RM (t) of m(t)
and any MPO-rank RP (t) of P (t) follows the recursion

7151

Authorized licensed use limited to: TU Delft Library. Downloaded on March 17,2022 at 08:14:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPUTATIONAL COMPLEXITY (FLOPS) OF CONVENTIONAL AND

TENSOR NETWORK EFK.

conventional EKF tensor network EKF

S O(l3N2d) O(dR2
PN2)

K O(l3 + l3N2d) O(l3 + dR2
PN2)

m O(l2Nd) O(l2RP)

P O(l3N2d) O(l3 + (d− 1)R4
PN2 +R2

PN2)

TABLE II
IMPROVEMENTS OF TNEKF OVER TNKALMAN IN TERMS OF RELATIVE

VALIDATION ERRORS IN 25 TRIALS.

SNR (dB) Improvement (×)
max 11.5036 4.3496
mean 9.6660 3.0735
min 8.0624 2.2850

equations

RM (t+ 1) = RM (t) +RP (t),

RP (t+ 1) = RP (t) +RP (t)
2 for all t ≥ 0.

The linear growth of RM (t) is due to the update step
m(t)−+Kv as the MPS-rank of the Kalman gain K is RP .
Similarly, the quadratic growth of RP results from the prod-
uct KSKT in the update of the covariance matrix. A round-
ing step [7, p. 2305] is required to truncate RM (t), RP (t)
through successive singular value decompositions on each
of the MPS/MPO-tensors. This rounding step has a total
computational complexity of O(dNR3).

VI. EXPERIMENT

In this section, we investigate two particular issues
through numerical experiments. First, we illustrate the ad-
vantage of the proposed tensor network extended Kalman
filter (TNEKF) in modeling correlations between the
model parameters over the tensor network Kalman filter
(TNKalman) 1. In a second series of experiments we inves-
tigate the effect of the maximal MPO-rank of the covariance
matrix P (t) on both the convergence of the EKF filter
and its total runtime. For each of the experiments the state
space model (3) was used. As described in detail in [11],
[12], when using Kalman filtering for parameter estimation
one can choose the covariance matrix of the system noise
as Rw(t) := (λ−1 − 1)P (t) with a forgetting factor λ = 1,
which implies that all past data is given equal weight. All
algorithms were implemented in MATLAB and ran on a
desktop computer with 4 cores running at 2.7 GHz and 8
GB RAM. A MATLAB implementation of the proposed
TNEKF can be downloaded from https://github.
com/IRENEKO/TNEKF.

A. TNEKF vs. TNKalman for correlated model parameters

In contrast to the existing TNKalman, the proposed
TNEKF is capable of modeling correlations of different

1A MATLAB implementation is freely available at https://github.
com/kbatseli/TNKalman

Fig. 4. Average relative validation errors of TNEKF and TNKalman over
100 trials.

Volterra models through its initial covariance matrix P (0).
To evaluate the advantage of the proposed TNEKF over
the existing TNKalman, we consider a single-input-single-
output (SISO) Volterra system of degree 3 and memory
6. The model parameters were sampled from a standard
normal distribution. We generate 10 output signals using
an identical white noise standard normal input signal of
600 samples and different realizations of the measurement
noise, which is Gaussian distributed with zero mean and a
variance of 103. These 10 output signals are then combined
and used in both the TNEKF and TNKalman filter to estimate
the 3430 parameters of 10 SISO Volterra systems. The
rounding tolerance used for truncating the MPO-ranks of the
covariance matrices was set to 10−10. With the TNKalman
filter it is not possible to model the correlation between
these 10 identical models and all covariance matrices are
therefore diagonal matrices with a variance of 10. The initial
covariance matrix of the TNEKF is constructed as described
in Lemma 3 with all covariances set to 10. At each iteration
of the TNEKF and TNKalman filters, we take the current
estimate of the model parameters and use these estimates to
run a simulation with a validation signal that consists again
of a white noise input signal of 600 samples. The relative
validation error is then defined as√∑599

t=0 ||y(t)− ŷ(t)||2√∑599
t=0 ||y(t)||2

, (12)

where y(t) contains the 10 output signals uncorrupted
by measurement noise and ŷ(t) are the simulated out-
puts from the current model parameter estimates. We de-
fine the improvement of the relative validation error as
eTNKalman/eTNEKF. A Monte-Carlo simulation of 100 runs was
performed. The average runtime per iteration for TNEKF and
TNKalman were 0.0190 and 0.0253 seconds, respectively.
Detailed information on the signal-to-noise (SNR) ratios and
relative validation error improvements are shown in Table II.
The SNR is defined as

20 log10

(
Ah

Ae

)
,

where Ah is the root mean square amplitude of h (ut , θ(t))
and Ae is the root mean square amplitude of the mea-
surement noise e(t). The average SNR over the 100 runs

7152

Authorized licensed use limited to: TU Delft Library. Downloaded on March 17,2022 at 08:14:31 UTC from IEEE Xplore. Restrictions apply.

TABLE III
TOTAL RUNTIME AND AVERAGE RUNTIME PER ITERATION OF TNEKF

FOR DIFFERENT MAXIMAL COVARIANCE MPO-RANKS.

MPO-rank Total runtime (s) Average runtime per iteration (s)
1 72 0.0072
2 109 0.0109
6 311 0.0311
10 1475 0.1475

Fig. 5. Relative validation error as a function of the runtime for different
maximal values of the MPO-ranks RP .

is about 9.7 dB, while the relative validation error of the
proposed TNEKF is on average 3 times smaller than that
of TNKalman. In Figure 4, we plot the average relative
validation errors of TNEKF and TNKalman as a function
of the number of iterations. The ability of the TNEKF
to model correlations between the models results in better
accuracy. After 600 iterations, TNKalman converges to a
relative validation error that can be reached by the TNEKF
in about 100 iterations.

B. Effect of covariance MPO-ranks on convergence/runtime

In this experiment we investigate the effect of the MPO-
rank RP on both the total runtime and relative valida-
tion error of the proposed EKF. A single-input-two-output
Volterra system of degree 4 and memory 9 was constructed,
where all 20000 parameters were sampled from a standard
normal distribution. A white noise input of 104 samples
was used to generate the output signals, corrupted by a
measurement noise with variance 10−2 resulting in a SNR
of 66 dB. The rounding algorithm was adapted such that
it truncates all MPO-ranks to a fixed given value in each
of the experiments. Experiments were then run for fixed
maximal covariance MPO-ranks RP = {1, 2, 6, 10}. The
relative validation error was computed according to (12) on
a validation signal of 1000 samples. The relative validation
errors as a function of the runtime for each of the fixed
MPO-ranks are shown in Figure 5. A first observation is
that all four filters converge to a relative validation error of
about 10−2 after 104 iterations, irrespective of their MPO-
ranks. As expected by the computational complexity analysis
in Table I, both the total runtime and average runtime per
iteration grow with an increasing maximal MPO-rank, as
shown in Table III. A 10-fold increase of the maximal MPO-
rank results in a 20 times higher runtime, which implies that
there is no benefit in choosing an MPO-rank other than 1 if

the maximal allowable rank is 10.

VII. CONCLUSION

A reformulation of the MIMO Volterra system identifica-
tion problem as an extended Kalman filtering problem was
presented. This reformulation lead to a simplification of the
filter equations, together with the newly added capability of
modeling correlations between different models. The curse
of dimensionality associated with the number of model
parameters that need to be identified has been lifted through
the use of low-rank tensor networks. Numerical experiments
have demonstrated the advantage of being able to model
correlated models compared to the Tensor Network Kalman
filter, together with the practical need for low-rank MPO
representations of the covariance matrix.

REFERENCES

[1] R. Nowak and B. Van Veen, “Tensor product basis approximations
for Volterra filters,” IEEE Transactions on Signal Processing, vol. 44,
no. 1, pp. 36–50, JAN 1996.

[2] G. Favier and T. Bouilloc, “Parametric complexity reduction of
Volterra models using tensor decompositions,” in 17th European
Signal Processing Conference (EUSIPCO), Aug 2009.

[3] G. Favier, A. Y. Kibangou, and T. Bouilloc, “Nonlinear system
modeling and identification using Volterra-PARAFAC models,” Int.
J. Adapt. Control Signal Process, vol. 26, no. 1, pp. 30–53, Jan. 2012.

[4] K. Batselier, Z. M. Chen, and N. Wong, “Tensor Network alternating
linear scheme for MIMO Volterra system identification,” Automatica,
vol. 84, pp. 26–35, 2017.

[5] ——, “A Tensor Network Kalman filter with an application in recur-
sive MIMO Volterra system identification,” Automatica, vol. 84, pp.
17–25, 2017.

[6] K. Batselier and N. Wong, “Matrix output extension of the tensor
network Kalman filter with an application in MIMO Volterra system
identification,” Automatica, vol. 95, pp. 413–418, 2018.

[7] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, 2011.

[8] ——, “Approximation of 2d × 2d matrices using tensor decomposi-
tion,” SIAM J. Matrix Anal. Appl., vol. 31, no. 4, pp. 2130–2145, Jun.
2010.

[9] K. Batselier and N. Wong, “Computing low-rank approximations of
large-scale matrices with the Tensor Network randomized SVD,” SIAM
J. Matrix Anal. Appl., vol. 39, pp. 1221–1244, 2018.

[10] S. Särkkä, Bayesian Filtering and Smoothing. New York, NY, USA:
Cambridge University Press, 2013.

[11] A. T. Nelson, “Nonlinear estimation and modeling of noisy time-
series by dual Kalman filtering methods,” Doctor of Philosopy, Oregon
Graduate Institute of Science and Technology, 2000.

[12] S. Haykin, Kalman filtering and neural networks. John Wiley &
Sons, 2004, vol. 47.

7153

Authorized licensed use limited to: TU Delft Library. Downloaded on March 17,2022 at 08:14:31 UTC from IEEE Xplore. Restrictions apply.

