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ABSTRACT

Gap vortex streets characterise many industrial applications involving rod bundle flows, such as heat exchangers
and nuclear reactors. These structures, known as gap vortex streets, may excite the structural components of the
bundle to resonance, leading to fretting and fatigue. This work aims to measure these coherent structures and the
resulting displacement and oscillation frequency of the neighbouring rod, to provide unique data for fluid-
structure interaction studies and to develop a general correlation for estimating the coherent structure’s wa-
velength. A water loop was built to host a hexagonal rod bundle. Fluorinated Ethylene Prophylene (FEP), a
refractive index matching (RIM) material, was used to have undisturbed optical access in the area around the
central rod. The flow was measured with Laser Doppler Anemometry (LDA) to detect coherent structures, while
the vibrations were measured with a high speed camera. A new correlation for estimating the wavelength of the
coherent structures is derived with dimensional analysis based on experimental evidence. The correlation is
tested on different geometries: rectangular channels with single or half-rods, and two rod bundles, within the
pitch-to-diameter ratio (P/D) range 1.02-1.2. Moreover fluctuations in the flow, given by the detected coherent
structures, govern the structural response of the rod. The rod is excited to resonance if these fluctuations match
twice the natural frequency of the rod.

Nomenclature
Latin symbol Description Dimension
A Flow area m?
Cm Added mass coefficient -
Cx Lateral drag force coefficient -
Cr Longitudinal viscous force coefficient -
Cy Viscous damping coefficient -
Cf’/r’ Cf’I‘.cv Cf’I‘,e Coefficient for pressure drops -
D Rod diameter m
Dy, D{¥, Dpc, Dhe Gap hydraulic diameter m
D, Equivalent diameter m
Dgini Inner silicone rod diameter m
E Young modulus Pa
fer Frequency of the coherent structures Hz
Swanl Frequency of vibration of the silicone rod edge Hz
bid Non dimensional frequency -

Abbreviations: CMOS, Complementary Metal-Oxide Semiconductor; fps, Frames per second; FEP, Fluorinated Ethylene Propylene; FIV, Flow-Induced Vibration; FFT,
Fast Fourier Transform; FSI, Fluid-Structure Interaction; PMMA, Polymethyl Methacrylate; LDA, Laser Doppler Anemometry; MP, Mega pixel; NRMSE, Normalised
r.m.s. Error; RIM, Refractive Index Matching; 2D, 3D, Two/Three dimensional; Subscript, Description; c, Pertaining to the central sub-channel; e, Pertaining to the
edge sub-channel; gap, Pertaining to the gap region; wall, Pertaining to the rod’s vibrations; str, Pertaining to the coherent structures; in, Stream-wise velocity profile
inflection point; min, Lower limit of flow structure lengths; Max, Upper limit of flow structure lengths
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fe, fe Friction factor -

1 Moment of inertia of the silicone rod m*
Lgev Development length m

Lg Flexible (silicone) rod length m

1 Rod length m

m Mass flow rate kgs™!
m Rod mass kgm™!
m, Added mass kgm™!
N Number of recorded positions of the silicone rod edge -

N Number of fitted points of the spectrum -

n Friction factor coefficient -

P/D Pitch-to-diameter ratio -

P Random pressure field Pa

S Strain rate tensor s

S Frequency spectrum s

t Time s

trep FEP wall thickness m

il Silicone thickness m

U Mean streamwise velocity near the silicone rod ms!
v Stream-wise velocity component ms~!
Vgap Mean velocity in the gap region ms—!
Vin Inflection point’s velocity ms~!
v* Non dimensional velocity -
W/D Wall-to-rod ratio -

X, Z Span-wise and stream-wise coordinates m
X Xs Fitted and measured value of the spectrum s
Non dimensional number Description

Re, Regap, Re., Re. Reynolds number

Greek symbol Description Dimension
a Flow conveyer’s divergence angle

B &y Coefficients -

A Flow structure length m

SA Wavelength uncertainty m
Ap, Apgap Pressure drop Pa
Ape, Ape Pressure drop Pa

H Vibration amplitude m
Erms Vibration amplitude r.m.s. m

u Dynamic viscosity Pas~!
p Density kgm™ 3
(4 Okubo-Weiss criterion’s parameter s
Q, Non dimensional silicone rod natural frequency -

® Vorticity g1
%, K Constant -

1. Introduction

Rod bundle flows are common in industrial applications, such as
heat exchangers or conventional and next generation nuclear reactors.
The core of a nuclear power plant consists of slender pins hosting the
nuclear fuel, which are clustered together in a lattice defined by the
pitch-to-diameter ratio (P/D), and by the arrangement, either hex-
agonal or squared. The coupling of such geometries with an axial flow
of coolant to remove the generated heat constitutes a rod bundle flow.
The presence of an axial flow of fluid through a rod bundle leads to
velocity differences between the low-speed region of the gap between
two rods, and the high-speed region of the main sub-channels. This
velocity difference produces a shear layer between the two flow re-
gions, leading to streaks of vortices carried by the current. Generally
those vortices (or flow structures) occur on both sides of the gap en-
closed by two adjacent rods, identifying the so-called gapvortex streets
(Tavoularis, 2011), or large coherent structures.

The formation mechanism of the gap vortex streets is akin to the
Kelvin-Helmholtz instability arising between two parallel layers of fluid
moving with different speeds (Meyer, 2010). An inflection point in the
stream-wise velocity profile is a necessary condition (though not suf-
ficient) to have these coherent structures, as predicted by the Rayleigh’s

instability criterion (Rayleigh, 1879). Unlike free mixing layers, vortex
streets are stable along the flow, hence the adjective coherent. Fur-
thermore, a lateral (span-wise) flow across the gap between the rods
may also occur (cross-flow). In a nuclear reactor, cross-flow enhances
lateral mixing between subchannels. The fuel temperature decreases
accordingly, improving the safety performance of the reactor.

Fluid-structure interaction (FSI) between these coherent structures
and the rods causes flow-induced vibrations (FIV) on the structural
components, leading to damage by fretting (Paidoussis, 1981). If co-
herent structures have a length comparable in magnitude with the axial
dimension of the rod assembly, they may cause resonance in the first
and most energetic mode. Conversely, the presence of multiple, shorter
coherent structures on either side of the rod would diminish their effect
on the most energetic mode and may cause oscillations at higher, less
energetic modes. However, coherent structures shorter than the rod
might still cause oscillations at higher modes.

Research has widely covered the topic of coherent structures in rod
bundles, both experimentally and numerically. Rowe measured coherent
flow structures through a gap where the P/D was adjustable to 1.125 and to
1.250 (Rowe et al., 1974). Rehme proposed a static pressure instability
mechanism to account for the formation of coherent structures
(Rehme, 1987). Moller adopted the term metastableequilibrium to picture the
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instantaneous difference in velocity and vorticity near the gap
(Moller, 1991). Gosset and Tavoularis (2006) and Piot and
Tavoularis (2011) investigated the lateral mass transfer across an eccentric
annular gap with flow visualization techniques. Mahmood studied coherent
structures in a square rod bundle over a range of Reynolds number
(Mahmood, 2011). Later, Choueiri and Tavoularis studied the flow in-
stability through the gap in the same geometry (Choueiri and Tavoularis,
2014; 2015). They found that the velocity fluctuations along the span-wise
direction in the centre of the gap, compared to those in the axial direction,
were varying in time with a rate twice as slow. This was consistent with the
model previously proposed by Meyer and Rehme (1994). Chang and
Tavoularis (2005), and Merzari conducted numerical studies on the same
geometry (Merzari and Ninokata, 2011). Baratto investigated the air flow
inside a 5-rods model of a CANDU fuel bundle (Baratto et al., 2006). FIV
have also been thoroughly studied (Paidoussis, 1966; 1974). Recently Pai-
doussis enriched the literature on the subject with a two-volumes handbook
(Paidoussis, 2014; 2016), collecting together most of the knowledge. Al-
though there is abundance of FSI studies on both solitary cylinders or cluster
of rods in axial flows, an experimental study of the role that coherent
structures play in FSI inside rod bundles is missing. Furthermore, a tool for
estimating the length of the coherent structures applicable to different
geometries would contribute to designing safer components not subject to
resonance. The approach is twofold: providing a new general correlation to
estimate the size of the structures in different channel geometries and
characterising the response frequency of the vibrating rod as a function of
the rate of passage of the coherent structures. The measurement systems
that are employed are Laser Doppler Anemometry (LDA) and a high-speed
camera. The experimental setup consists of a 7-rods hexagonal bundle
where part of the central rod consists of flexible silicone, which has pre-
viously been employed for other FIV studies (Modarres-Sadeghi et al.,
2008). Optical access to the measurement region without light distortion is
achieved through the refractive index matching technique (RIM). This has
become a widely used solution for performing optical measurements in rod
bundles. Dominguez followed such a method for his measurements inside a
3 x 3 and 5 X 5 square rod bundle (Dominguez-Ontiveros and Hassan,
2009; Dominguez-Ontiveros and Hassin, 2014). More recently experiments
performed at Texas University made use of the RIM technique with a larger
61-pins hexagonal bundle (Nguyen et al., 2017; Nguyen and Hassan, 2017).
In this work, part of the outer rods of the assembly are made of Fluorinated
Ethylene Propylene (FEP), which matches the refractive index of water
(Mahmood, 2011). FEP is one of the refractive-index matching materials,
together with Mexflon-DC employed by Sato et al. (2009), commonly used
for this kind of applications (Hosokawa et al., 2012; Bertocchi et al., 2018).
LDA measurements of the flow field are done to characterise the vortex
streets in the considered geometry, followed by a measurement campaign
with the high-speed camera to detect flow-induced vibration of the rod. The
small size of this work’s bundle allows for an easier optical access around
the central rod, which is crucial for measuring vibrations.

2. Theory
2.1. Natural frequency of a rod

Estimating the natural frequency of the silicone rod is required to
interpret the results of the FSI measurement campaign. The
Euler-Bernoulli beam theory for a single cylinder clamped at both ends,
immersed in a steady, axial flow, and surrounded by an outer channel,
gives the equation derived by Paidoussis (1966):

8% 3%k

) 1o mal? (1 Yo% o
+ )_zCTD(zl Z)azz+2maU +

EIZX 4 m, (U222
az4 a 872 a2 370t

1 myU ox 23 ox 3% _

o (un+ ) o +m =0 m
where E is Young’s modulus of the silicone (typically 1 MPa), I is the
moment of inertia of the silicone rod evaluated as
I= %(D2 /4 — Dygii,i2/4), being Dg; ; the inner diameter of the silicone rod.

International Journal of Heat and Fluid Flow 79 (2019) 108443

(@ (b)

©) (d

< \\_// \ m /) "\
(e) ®

Fig. 1. Definition of the hydraulic diameters of the gap region for the bundle
geometries considered to test the correlation. (a) Adopted from
Mahmood (2011). (b) Adopted from Bertocchi et al. (2018). (c) Adopted from
Guellouz and Tavoularis (2000). (d) Adopted from Don and Tavoularis (2018).
(e-f) This work. Horizontal hatching: gap region. Vertical hatching: main
subchannel. For clarity, the main subchannel and the gap region are drawn as
two separate regions whereas, in the reality, they partly overlap.

x is the rod radial displacement, z is the axial coordinate along the rod,
m, is the added mass accounting for the additional force exerted by the
fluid on the rod while it moves, U is the mean axial flow velocity, Cr is
the longitudinal viscous force coefficient whose definition is given in
Hoerner (1965), D is the rod diameter, l is the rod length, Cy = Cr is the
lateral drag force coefficient, Cy is the viscous damping coefficient
(Sinyavskii et al., 1980), and m is the rod mass. The added mass m,
deserves a more detailed treatment since it accounts for the confine-
ment effect given by the proximity of other bodies (i.e. walls, rods)
around the silicone rod. The added mass is defined as

2

o = Cao @
where the C,, is the added mass coefficient which multiplies the weight
of the fluid displaced by the rod in the flow. It represents the confine-
ment effect of an outer channel surrounding a single rod (Sinyavskii
et al., 1980; Paidoussis, 2014; Pettigrew and Taylor, 1994). Although
Cp, is a function of the outer channel diameter D, the central rod of the
bundle is actually surrounded by multiple rods, and not by a larger
concentric tube. Therefore, D, must be adapted to the rod bundle case
by defining an equivalent hydraulic diameter given by the flow area of
the surrounding six subchannels. The natural frequency Q, of the
central silicone rod is obtained with the procedure described in
Paidoussis (2014) and Chen (1985), where the equation is first non-
dimensionalised and then solved by the Galerkin method.
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2.2. Empirical correlation for the length of coherent structures in bundle
geometries

Estimating the wavelength of coherent structures is important for
designing experiments that aim at studying specific sizes of the struc-
tures in rod bundles. The needed expression should be applicable to
different geometries of the subchannels of a rod bundle. Therefore, an
empirical correlation for estimating the wavelength A of the structures
is derived based on dimensional analysis. The wavelength A is assumed
to depend on the local channel geometry (hydraulic diameter of the
main subchannel and of the gap region) and fluid properties. The flow
velocity in the gap and in the main subchannel are also considered as

parameters that determine the length of the structures
(Mahmood, 2011). In mathematical terms,
A= W.(D;)a.pc.ﬂd.ve.vg/z‘ip.Dhg’ (3)

where K is an arbitrary constant, Dy is the hydraulic diameter of the
gap region (defined in Fig. 1), p is the fluid density, p is the dynamic
viscosity, and v is the fluid velocity in the main subchannel, vg,;, is the
fluid velocity in the gap region, and Dy, is the hydraulic diameter of the
main subchannel.

From dimensional analysis, it follows that

A = r}((D_ﬁk)ﬂ Re® (@)f.
Dh Dh v (4)
At high Reynolds numbers it is reasonable to assume that the

pressure drops across the gap region Apg,, and across the main sub-
channel Ap, over a length L, are the same:

P, L p oL
A = —v;, —f(Re, = Ap = —v>*—f1(Re),
Py = 5%y f(Reg) = 8p = S2 (k) ©
where f(Re) = CiRe™™ and f(Regap) = CzReg;%Z (Todreas and

Kazimi, 1990). The ratio vg,p/v is then expressed by

Veap _ [f(Regap) Dy ]1/2

v f(Re) Dy, 6)
Substituting Eq. (6) into Eq. (4) leads to
! . Dif )5
— = K | = | Re“f(Re)f(Regap).
D} (Dh . @)

Experimental evidence has shown that the wavelength is in-
dependent on the Reynolds number of the main subchannel Re
(Bertocchi et al.,, 2018; Mahmood, 2011; Guellouz and Tavoularis,
2000; Meyer and Rehme, 1995), so

A = W/(D—:)ERN .
D Dy) ¥ ®
The correlation will be tested against the experiments performed in
simple geometries such as rectangular channels hosting respectively
one or two half-rods (Mahmood, 2011; Bertocchi et al., 2018), and an
eccentric rod hosted in a rectangular channel (Guellouz and
Tavoularis, 2000). Furthermore, two rod bundle geometries are con-
sidered: the hexagonal bundle of this work and a sector of a circular
bundle (Don and Tavoularis, 2018). The results of the validation with
the experiments is discussed in Section 5.2.1.

2.3. Oscillating pressure field

The Weiss—Okubo criterion (Weiss, 1991; Okubo, 1970) states that
coherent structures occur in vorticity-dominant regions of the flow in
which o® < 0, being

02 = tr§? — w?, 9

where trS? is the trace of the strain rate tensor $2, and  is the vorticity.
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Table 1

Bundle’s main dimensions. D: outer rod diameter, P/D: pitch-to-rod
diameter ratio, W/D: wall-to-rod diameter ratio, tg;: wall thickness of
the silicone rubber tube, a: half-aperture angle of the flow distributor,
Lgev: development length upstream of the optical window, tggp: FEP
wall thickness, Lg: silicone rubber tube length (including sections slid
over the rods).

Bundle geometry Design parameters

D = 30mm tsi = 1.5mm
P/D=1.11 a= 4
W/D=1.11 Ldey = 1500mm
trep = 0.25mm
Lp = 100mm + 2 X 45mm
Moreover, considering a pressure field P, the relation
(Larchevéque, 1993)
1
V2P = ——¢?
2 (10)

indicates that coherent structures occur where V2P > 0, that is a low-
pressure region of the flow dominated by vorticity (Métais and
Lesieur, 1992). Hence, coherent structures moving along the rod result
in an oscillating pressure field moving with the flow that imposes a
fluctuating force on the wall.

3. Experimental setup
3.1. Test loop

The experimental apparatus consists of a water loop with a 7-rods
hexagonal bundle, where the central rod has a section made of flexible
silicone rubber. The rod bundle is enclosed inside an outer hexagonal
encasing of transparent polymethyl methacrylate (PMMA). The water
flows top-down by gravity from an upper vessel through the bundle and
is collected in a lower tank, where it is recirculated by a centrifugal
pump towards the upper vessel. A valve with a linear response is lo-
cated in the downcomer pipe to control the flow rate, which is mon-
itored by a magnetic flow meter (ABB - type HA3).

3.2. Bundle geometry

In order to have vibrations induced by coherent structures, the si-
licone rod length must be comparable to the size of the expected co-
herent structures. If the rod is too long compared to the size of the
coherent structures, the effects of the structures would cancel out and
no flow-induced oscillation would be measurable. A study from Gent
University (Ridder et al., 2016), done with the same P/D ratio, showed
that coherent structures were expected to have a length of 7 cm. The
length of the silicone section is set to 10 cm accordingly. The main
parameters of the hexagonal lattice and of the test section are listed in
Table 1.

The sketch of the optical window, of the inlet flow distributor, and
of the whole test section are provided in Fig. 2. The flow enters from the
top and the water is distributed over the 18 subchannels via the flow
distributor (Fig. 2b); after a development length Lge, of 1.5m, the flow
reaches the location of the measurement section (Fig. 2c, detail B). The
internal structure of the flow distributor disrupts the large eddies that
may be present in the stream, and it redistributes the flow uniformly
among the subchannels of the bundle. Flow detachment from its walls is
avoided by adopting a divergent angle of 4° (Idel’chik, 1966).

Optical access for the measurement systems around the central rod
is achieved by partially replacing the stainless steel of the front rods
with FEP, heat-shrunk around the body (Figs. 3a, b). The total length of
the FEP tube is 190mm, of which 100mm provide the transparent
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(a) (b)

(a)
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Fig. 2. (a) Sketch of the bare rod bundle with enlarged
measurement section where the FEP rods are visible.
The flow direction is from top to bottom. (b) The inlet
flow distributor has an internal structure of fins to
break the large eddies in the flow. (c¢) Rod bundle test
section enclosed inside the hexagonal casing; (detail
A) transparent measurement section, (detail B) inlet
flow conveyer.

(c)

(b)

Fig. 3. (a) FIV tracking system for recording the position of one border of the rod. (b) Top view of half of the hexagonal bundle geometry. The dashed profile on the
rods represents the FEP replacing the steel; the straight hatched line A represents the LDA measurements positions. The rods are filled with water to avoid image
distortion through FEP. Horizontal hatching: central subchannel. Diagonal hatching: edge subchannel.

window for the measurements. The FEP tube is shrunk around the steel
rod for a length of 45mm at both the extremities. The outer radius of the
metal rod is reduced by the FEP wall thickness (tpgp = 0.25mm), hence
there is no step in the transition between stainless steel and FEP that
might affect the flow.

4. Measurement apparatus
4.1. LDA system

The first measurement system to be used is a 2-component LDA
system (DANTEC, Denmark) with a maximum power of 300mW. The

measurement settings are adjusted via the BSA Flow Software
(DANTEC, Denmark). The flow is seeded with particles to scatter the

light once they travel through the sensitive region of the laser beam
pair. This is an ellipsoidal probe of 0.02mm?® (dx=dy=79u m;
dz=790u m). Borosilicate glass hollow spheres (LaVision, Germany)
with an average density of 1.1gcm™ and a diameter of 9-12p m are
used. The LDA is moved in position with a traverse system.

4.2. LDA measurements

The Reynolds number of the subchannel, the wavelength of the
coherent structures and the frequency of their passage are based on the
measurements carried out with the LDA system. LDA measurements are
conducted in the middle of the hexagonal transparent section, moving
the laser probe from a position close to the outer wall towards the
central rod, as shown in Fig. 3b. The 95% confidence level is evaluated
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Fig. 4. Stream-wise velocity profile (a) and root mean square (b) measured with
LDA through the gap between two front rods. The abscissa is the distance from
the gap centre, normalized to the rod diameter.

for the mean stream-wise velocity: it is as low as 0.5% for all the
measurement cases. A stopping criterion ends the measurements once
100000 samples are collected at each location. The flow rate is set
within the range 1.05-4.80 kgs™!. Two additional measurements close
to the beginning and end of the transparent section help to check
whether the flow structures are fully developed over its entire length.
Fig. 4 shows the LDA measurement along the straight line throughout
the gap between two front rods, with Re. = 30540 (Re. = 22940). The
normalised stream-wise velocity component is reported in Fig. 4a. The
velocity root mean square is shown in Fig. 4b, which features two
maxima located at the outer wall and at close to the central rod, where
turbulence increases due to the shear produced by the viscous sublayer,
similarly to common wall-bounded flows (Pope, 2000). The relative
maxima closer to the centre gap are due to the shear between the high-
velocity region in the bulk and the low-velocity fluid inside the narrow
gap (Bertocchi et al., 2018).

4.2.1. The slotting technique

The velocity samples measured by the LDA system are not evenly
spaced in time, therefore a common Fast Fourier Transform (FFT) is not
recommended. The spectra are, thus, evaluated by means of the slotting
technique (Mayo, 1974; Tummers and Passchier, 2001; 1996), where
sample pairs detected within a certain time interval (lag time) are al-
located into the same slot. The product of the velocities of each sample
pair (cross-product) is calculated and the average is taken within each
slot. The slotting technique omits the cross-products with zero lag time
(self-products), reducing the uncorrelated noise. The amount of parti-
cles crossing the probe volume is higher for high speed, biasing the
spectrum at high frequencies (Adrian and Yao, 1986). Consequently,
their contribution to the spectrum will be higher than the real one.
Therefore, the transit time weighting algorithm is applied to the slotting
technique to reduce this effect (Nobach, 2002). Once all the samples are
allocated inside the slots, the autocorrelation coefficient is computed
for each slot, and then the frequency spectrum is estimated. Periodical
fluctuations of the fluid velocity given by coherent structures appear as
a peak in the frequency spectrum.

4.2.2. Edge subchannel Reynolds number

The results of this work are collected with measurements performed
inside the central subchannel and inside the edge subchannel.
Therefore, it is more accurate to use the Reynolds of the edge and of the
central subchannel, rather than estimating the Reynolds based on the
total bundle flow area. The Reynolds number of the edge subchannel,
Re,, is estimated as follows:
Re, = p'Ve'the,

U an

where p and p are the density and dynamic viscosity of water,
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Table 2
Mass flow rate corresponding to the measured edge Reynolds number Re, and
to the estimated central subchannel’s Reynolds number Re. (Eq. (16)).

m [kgs™1] Re Re.
4.78 48 360 36 530
3.48 30 540 22 940
3.28 28 200 21 180
2.92 26 240 19 700
2.68 25130 18 880
2.42 22 660 17 000
2.13 20 310 15 260
1.94 16 620 12 490
1.59 14 950 11 230
1.31 12 730 9 560
1.05 10 100 7 580

respectively; Dy, . is the hydraulic diameter of the edge subchannel (44/
P,), and v, is the average stream-wise velocity inside the edge sub-
channel. The latter is evaluated by measuring the velocity over the flow
area A in the edge subchannel (Fig. 3b), and calculating the average
according to

Ve = % D D, vxi, )0Ay,
T, 12)

where §A;; differs per position.

4.2.3. Central subchannel Reynolds number

The Reynolds number of the central subchannel, Re., is determined
based on Re.. Re. requires the values of the average stream-wise velo-
city v. in the central subchannel. The pressure drops along all sub-
channels may be considered to be the same, as in Todreas and
Kazimi (1990), i.e. Ap, = Ap,. The velocity v, can be obtained by using
the Darcy-Weisbach equation (White, 2016):
f.ov? _ f.ov2

Dh,c Dh,e ’ (1 3)

where Dy, . is the hydraulic diameter of the central subchannel, f. and f.
are the friction factors of central and edge subchannels, respectively.
For a bare rod bundle (no spacers) in turbulent regime, f. and f. can be
expressed as (Todreas and Kazimi, 1990)

f= Cn

" Ret’ a4
where n = 0.18, and Cy; is a coefficient depending on the hexagonal
lattice. This correlation is valid for bare rod bundles within the pin

number range of 7-217. Its mean error has been showed to be as low as
9 % (Chen et al., 2018). From Egs. (13) and (14) it follows that

1
N Cff,eDh,c (Dh,c )n "
e Cf'r’th,e Dye 15)

Re,. is finally evaluated as

— P’vc‘Dh,c
u (16)

The values of Re. and Re. at which the LDA measurements are done,
are reported in Table 2.

Re.

4.3. FIV tracking system

The equipment to measure flow-induced vibrations of the silicone
rod consists of a Complementary Metal-Oxide Semiconductor (CMOS)
camera Imager MX 4M (LaVision, Germany) capable of recording at
180 fps with full resolution (4 MP), and at 300 fps with a smaller field
of view. The FIV tracking system cannot have both borders of the rod in
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Fig. 5. (a) Example of frequency spectrum for the vibration of the silicone rod wall (Re.= 23 660); the peak is located at 3.9Hz. (b) Gaussian fitting (circle) of the
spectral peak (continuous line); (c) FFT frequency spectrum of the vibrating silicone rod.

focus with sufficient resolution because the camera should be moved
too far from the target. Therefore the camera is focused on one border
and records 15 000 images at 300 fps in each measurement. The
Nyquist frequency, being the highest frequency of a signal that can be
captured with a given sampling rate, is 150 fps. The frequency of the
vibrating silicone rod is expected to be of the same order of the co-
herent structures’ frequency, which is = 10Hz based on preliminary
LDA measurements. Hence, a recording rate of 300 fps is considered
high enough to measure vibrations induced on the silicone rod. The
contrast between the white silicone and the dark background is im-
proved using a flash light to illuminate the target area, and by keeping
the setup in the dark. A binary filter converts the intensity values of the
light in the image into ones or zeros, according to the threshold level
determined with the Otsu algorithm (Otsu, 1979). The location of the
vertical border between the two regions of the filter represents the
position of the silicone rod in the image. Each pair of consecutive sili-
cone rod’s positions is used to obtain the instantaneous displacement on
the plane orthogonal to the line of sight of the camera (Fig. 3a). The
series of instantaneous displacements gives the average displacement £,
and the average root mean square &, (being dispersion of the dis-
placement values around the mean, analogous to the standard devia-
tion), which are calculated with Eq. (17).

|1 N-1 _

Erms = \}N 1 Zi:l (Ei - S)Zs an
where N is the number of recorded images and ¢; is the i-th displace-
ment value. The frequency spectrum of the silicone rod’s displacement
is estimated in two ways: by means of the Fast Fourier Transform (FFT)
of whom an example is shown in Fig. 5c, and by evaluating the auto-
correlation function of (t) (Fig. 5a). The frequency at which periodical
oscillation of the rod occurred is revealed by a peak. The Bartlett’s
method is applied to reduce the noise in the spectra (Monson, 1996).
The peak in the spectrum obtained evaluating the autocorrelation
function is fitted with a Gaussian bell to obtain a mean value of the
frequency (Fig. 5b). The fitting error is calculated as the Normalised
Root Mean Square Error (NRMSE):

Vi 2 Gene = x)?

NRMSE = ,
X 18)

where N; is the number of fitted points of the peak, and xg, and x; are
the fitted and the measured value of the spectrum, respectively. The
frequency interval where fitting the spectral peak is chosen based on
where the peak’s first derivative nullifies. The accuracy with which the
average frequency is determined is lower than 2%. For each flow rate &,
&ms, and the corresponding frequency of vibration are calculated. The
noise in the signal, estimated through a no-flow recording, corresponds
to an equivalent displacement of 3u m (the minimum measurable
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Fig. 6. (a) Frequency spectrum calculated at the centre of the gap. (b) S() - >3
(blue square), S(f)-f* (red triangle). Re.= 12 730. The black line highlights a
plateau, indicating 3-dimensional turbulence. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 7. (a) Frequency spectrum calculated at the centre of the gap. (b) S() - >3
(blue square), S(f)-f° (red triangle). Re.=14 950. The black line highlights a
plateau, indicating 3-dimensional turbulence. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

displacement is 9u m). The time signal of the displacement is finally
filtered with a Henderson’s 23 points moving average to reduce such a
noise (Cioncolini et al., 2018).
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Fig. 8. (a) Frequency spectrum calculated at the centre of the gap. (b) S(f)-f*/3
(blue square), S(f)-f* (red triangle). Re, = 48 630. The black line highlights a
plateau, indicating 3-dimensional turbulence. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

5. Results and discussion

This section presents the results of the measurements: the first part
characterises the coherent structures occurring in the flow and presents
the new empirical correlation to estimate their wavelength. The second
part reports the results of the measurements with the high-speed
camera of fluid-structure interactions, focusing on the influence of co-
herent structures on the oscillation of the rod wall.

5.1. Coherent structures

Spectral analysis is performed on the stream-wise velocity compo-
nent measured with the help of LDA. The turbulence inside the gap
between the two front rods is examined based on the corresponding
turbulence spectrum. This analysis is based on the slope of the spec-
trum: it helps to assess whether turbulence is two-dimensional or three-
dimensional (2D, 3D for short) within the inertial subrange of the
spectrum. Then this section will focus on the wavelength and the fre-
quency of the coherent structures. The wavelength is used to validate an
empirical correlation as proposed in Section 5.2.1, while the measured
frequency of passage of the coherent structures is compared with the
structural response frequency of vibration of the rod wall, as discussed
in Section 5.3.

5.1.1. Characterising turbulence

The analysis of the frequency spectrum of the velocity helps to
characterise turbulence by looking at whether the turbulence is 2D or
3D. For a 3D homogeneous turbulent flow, only the energy
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conservation equation applies and the inertial subrange of the turbulent
spectrum usually shows the well-known slope of —5/3. In 2D turbu-
lence the vortex-stretching effect is absent (Batchelor, 1969), hence the
general vorticity equation for incompressible and inviscid fluid takes
the form

Dw

== =0,
Dt

19
where % is the lagrangian (or substantial) derivative. Eq. (19) expresses
the conservation of vorticity. This is a second conservation equation
that changes the slope of the spectrum from —5/3 to —3, within the
inertial subrange. The energy cascade moves towards larger scales
(lower wavenumber), and vorticity transfers to the smallest scales in the
viscous subrange, contrary to 3D turbulent flows (Kraichnan, 1967).
The slope of the inertial subrange gives, thus, an indication of the type
of turbulence. The frequency spectrum of the stream-wise velocity is
evaluated in the middle of the gap between the edge and central sub-
channel. The frequency spectrum is multiplied by f° (or f*): the re-
sulting function S(f)-f° (or S(f) - f*/*) should have, thus, a flat plateau
within the frequency range where turbulence is 2D (or 3D)
(Romano, 1995).

The plots of Fig. 6 refer to Re.= 12 730 (Re.= 9 560). Fig. 6a shows
the frequency spectrum S(f) and Fig. 6b shows both S(f)- 2 and S(f) - f*/
3, A low-frequency peak is found, which is characteristic of coherent
structures that affect periodically the velocity field while moving with
the mean flow. Although the spectrum exhibits a -3 slope over a short
frequency decade, the overall slope appears to close to -5/3, as shown
by the almost flat plateau of the S(f)- >’ plot.

Fig. 7 reports the case with Re,=14 950 (Re.= 11 230), where the
peak in the spectrum is at 5.3Hz. The slope of the spectrum is close to
-5/3, as shown by the constant trend of S(f) - f*’° in the same frequency
range.

Fig. 8 refers to the case with Re,= 48 630 (Re. = 36 530), where
coherent structures occur at a higher frequency, being 17Hz (Fig. 8a).
The corresponding plots of S(f) -2 and S(f) - f*/3 are shown in Fig. 8b.
The spectrum at this Reynolds number has a slope between —3 and
—5/3, meaning that the turbulent behaviour of the flow is intermediate
between 2D and 3D: the flow is more anisotropic in the sense that two
components are dominant over the third, contrarily to three-dimen-
sional turbulence, where all the components are equally important.

5.2. Wavelength

For each flow rate, the turbulent spectra are evaluated along the
path going from the edge to the central subchannel (Fig. 3b). The peaks
found in the spectra reveal periodicities and the associated frequency
fste ascribed to structures occurring in the flow. The quantities in the
following plots are rendered non dimensional. In particular, non di-
mensional frequencies f* and non dimensional velocity v* are defined as
(Paidoussis, 2014):
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Fig. 9. Average frequency of passage of the coherent structures f, against the non dimensional velocity v*, measured (a) between the edge subchannel and the gap,

and (b) between the gap and the central subchannel.
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Fig. 10. Average non dimensional wavelength of the coherent structures A/Dy} depending on the non dimensional velocity v*, measured (a) between the edge
subchannel and the gap, and (b) between the gap and the central subchannel, where D{* is defined as in Fig. 1. (¢): Wavelength calculated using the empirical
correlation for the convection speed of the structres provided in Guellouz and Tavoularis (2000).
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Fig. 11. Normalised structure wavelength A/D{ against Di;/Dy. The Reynolds
numbers in the legend are based on the total flow area of the test section. o: this
work; X : data from Bertocchi et al. (2018); [J: data from Mahmood (2011); o:
data from Guellouz and Tavoularis (2000); /\: data from Don and
Tavoularis (2018); V: data from Choueiri and Tavoularis (2014); * data from
Lexmond et al. (2005).

4

Fig. 12. Plot of f./2 (red circle), estimated natural frequency of the central
silicone rod Q, (blue), and frequecy of vibration of the silicone rod wall f,.n
(black square) measured with the high-speed camera. Frequencies are ex-
pressed as non-dimensional values. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this

article.)
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An average frequency of the structures is calculated based on the values
given by the single peaks (Figs. 6-8). The plots of Fig. 9 report the
average frequency fs, in both the edge and the central subchannel. The
peaks in the frequency spectra show a bell-shaped distribution of fre-
quencies. Namely, every peak is fitted with a Gaussian bell to obtain the
corresponding standard deviation oy, around the mean. This gives a
frequency interval fi, * 0, which, in turn, provide a minimum and a
maximum wavelength of the structures, as shown in Fig. 10. The
NRMSE resulting from the fitting (Eq. (18)) is lower than 5% for all the

. S [m+m, .
=1 [HZ]\/ TR (20)

considered cases. Taylor’s hypothesis (coherent structures in the flow
are regarded as frozen entities moving with the stream at velocity v;,) is
adopted to obtain the wavelength of the structures. The velocity v;, is
the stream-wise velocity measured at the inflection point of the profile
between the gap and the subchannels (Mahmood, 2011). The average
wavelength and its minimum and maximum values are

Vin

3
f;tr — Ofit

Max —
B AMax
f;tr

The uncertainty on the wavelength A is estimated from the uncertainty
propagation formula as

2 2
a1 a1 an v
= || —d + Aviy | ml——df, | = 1-2df,,, |,
\/( afstr Slr) ( vin vm) afstr félr sztr fStf

where the approximation is possible because the error on vj, is negli-
gible compared to the uncertainty on f,. The frequency at which the
flow structures pass through the measurement region scales almost
linearly with the flow velocity, suggesting that these keep a constant
length independent of the Reynolds number. Fig. 10confirms that, at
high Re., the average wavelength is independent of the Reynolds
number, as shown by previous results (Bertocchi et al., 2018; Meyer and
Rehme, 1995; Guellouz and Tavoularis, 2000; Mahmood, 2011).

The object of the next section will be the influence of the geometry
of the channel over the structure’s wavelength.

Vin

A= _—
f;tr + Ofit

Amin =

2D

(22)

5.2.1. Empirical correlation validation

The normalised wavelength of the structures 1/D{ is evaluated for
different geometries, and the results are reported in Fig. 11 against the
normalised hydraulic diameter of the gap region D;/Dy. The figure
suggests that 1/Dy is constant and approximately equal to

A

— ~ 13,
Dy

(23)
The wavelength of the structures scales linearly with the hydraulic
diameter of the gap region Dy. If 1/D; is constant, the coefficients
&=y =0 in Eq. (8). If one imagines to increase indefinitely the hy-
draulic diameter of the main subchannel Dy, while keeping the gap re-
gion the same (Dy; and Rey,,), the wavelength of the structures is not
expected to change much. This means that at some point 1/D;¢ will not

depend on (Dj¥/Dy)¢, so it is reasonable to assume that

*
E=0 for Dy S 1.

Dy 249
We see that the correlation is valid even for Dyf/Dy, = 1.15, which is
the case of the near wall subchannel of the hexagonal bundle of this
work (Fig. 1f). For a bundle, D;’/Dy, < 1 means that the rod are moved
farther. For the hexagonal bundle this ratio has a non-zero upper limit
that is reached when the rods are in contact with each other (P/D=1):
Dyf/Dy, is 2.7 and 1.6 for the central and the edge subchannel, respec-
tively. Obviously, this case falls out of the scope of this work as the
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Fig. 13. (a) Non dimensional response frequency of the rod, depending on the non dimensional velocity v*. (b) Gap vortex streets moving with the axial flow along a
gap, identified by the dashed borders; originally proposed by Meyer and Rehme (1994).
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Fig. 14. Average displacements of the silicone rod border (a) and displacement root mean square (b) depending on the Reynolds. A clear peak in both plots, once
compared with the measured response frequency, indicates synchronisation between the rod and the flow structures.

contact between the rods would damage the fuel elements of a nuclear
reactor. The experiment performed with an eccentric rod inside a cir-
cular channel (Choueiri and Tavoularis, 2014) are also included in the
plot (\V/ in Fig. 11). Nevertheless, it deserves special care due to the
much different geometry than a bundle since the borders of the gap
region are not clearly identifiable.

5.2.2. Concluding remarks on coherent structures

Coherent structures are detected inside edge and central sub-
channels, as well as inside the interconnecting gap. Their frequency
scales linearly with the flow rate, and the wavelength is not dependent
on the Reynolds number. The wavelength of the coherent structures
appears to scale linearly with the hydraulic diameter of the gap region
of the channel as 1 ~ 13 Dy,

5.3. Fluid-structure interaction

This section discusses the results of the fluid-structure interaction
measurements. The average frequency of vibration of the silicone rod’s
wall, fuan, the average displacement &, and the &.,s are obtained with
ten series of measurements for each value of the flow rate (see
Section 4.3 for details). The stream-wise rate of passage of the coherent
structures, measured with LDA in the central subchannel (Fig. 9b), is
also used for the analysis. The natural frequency of the silicone rod is
estimated depending on the local velocity around the central flexible

10

rod (see Section 2.1 for details). The three series, made non dimen-
sional, are plotted in Fig. 12.

The trend of f, increases linearly, as discussed in Section 5.2. The
natural frequency Q, decreases with the velocity of the surrounding
fluid: as the flow increases, the damping action of the term 1Cy™2Y
grows under the action of the flow confinement (Paidoussis, 1974),
especially with highly confined flows with low P/D ratios. f,y.; shows a
nearly constant frequency for Re. = 29 000, and drops for higher Re.
numbers (Fig. 12 and more in detail in Fig. 13a). Fig. 12 shows that the
frequency of the structures f, approaches twice the natural frequency
of the rod 2Q,,, and that the measured frequency of oscillation of the rod
wall f,,an matches €2,,. Both trends of the mean displacement of the wall,
g, and its root mean square, &, (Fig. 14) display a clear peak in the
Reynolds number range where f,. = 2Q, (Fig. 12). Fig. 12 can have the
following interpretation. Choueiri and Tavoularis (2014) found that the
lateral velocity component of the vortex street oscillated with half the
rate of passage of the coherent structures in the axial direction fy./2.
This was consistent with Meyer and Rehme’s model (sketched in
Fig. 13b), and with the experiments reported in Paidoussis et al. (1980)
for a pulsating flow. According to the model, the counter-rotating large
coherent structures produce a fluctuating velocity field. Decomposing
such a field along the span-wise and stream-wise directions x and z,
gives a velocity that fluctuates twice as fast along the stream-wise di-
rection (V, in Fig. 13b). Conversely, the span-wise component (U, in
Fig. 13b) would oscillate twice as slow around the zero. This fluctuation
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of the lateral velocity component would lead to an external force im-
posed on the rod, fluctuating in time with f,/2. When such force os-
cillates with f,./2 = Q, (shown in Fig. 12), the rod and the vortex street
are synchronized with each other and the magnitude of the oscillations
increases (Williamson and Govardhan, 2004), as shown in Fig. 14.

6. Conclusions

This work aimed at studying the structural response of the central
rod to large coherent structures occurring in the flow through a hex-
agonal bundle of rod tightly clustered (P/D=1.11). The flow was stu-
died with LDA while the flow-induced vibrations on the rod were re-
corded with a high-speed camera. The optical accessibility to the
measurement region was achieved by means of the RIM technique. The
measurements of the frequency and the displacement showed the syn-
chronization between the rod and the structures when these move with
twice the natural frequency of the rod. This condition is characterised
by the increased magnitude of the oscillations and by a response near to
the natural frequency of the rod. A new correlation for estimating the
wavelength of the structures is derived based on dimensional analysis
and experiments, resulting in a wavelength that scales linearly with the
hydraulic diameter of the gap region. The correlation is valid for dif-
ferent geometries, involving channels with single rods or more complex
rod bundles with P/D (or W/D) ranging from 1.02 to 1.20. The findings
of this work contribute to explain further the physics of the flow-in-
duced vibrations of coherent structures arising in axial rod bundle
flows, typical of industrial applications. Furthermore, the correlation
that we propose may be helpful in designing industrial components that
are not prone to resonance phenomena and, thus, mechanical fatigue.
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