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Range Migrating Target Detection
in Correlated Compound-Gaussian Clutter

Nikita Petrov, François Le Chevalier, Nikola Bogdanović and Alexander Yarovoy
Microwave Sensing, Signals and Systems (MS3)
Delft University of Technology, the Netherlands

Email: n.petrov@tudelft.nl

Abstract—The problem of range-migrating target de-
tection in a compound-Gaussian clutter is studied here.
We assume a target to have a range-walk of a few
range cells during the coherent processing interval, when
observed by wideband radar with high range resolution.
Two CFAR detectors are proposed assuming different
correlation properties of clutter over range. The detec-
tors’ performance is studied via numerical simulations
and a significant improvement over existing techniques
is demonstrated.

I. INTRODUCTION

Modern wideband radars have enabled a sub-meter
range resolution, thus providing additional possibilities
for target detection and classification [1], [2]. However,
the target detection in high resolution mode has a few
differences w.r.t. the detection in low range resolution
mode. Namely, clutter becomes non-Gaussian, targets
become range extended and also, fast-moving targets
appear to have a range-walk (also called range migra-
tion) during the coherent processing interval (CPI).

The modern trend is to model the non-Gaussian
clutter as a compound-Gaussian (CG) process, which
allows to separate slow-time correlation characteristics
of clutter from its PDF [2], and provides a mathemati-
cally tractable tool to derive detectors. Radar detection
of point and extended targets has been extensively
studied during the last decades, resulting in a number
of handful detectors for the aforementioned scenarios
[2]. Algorithms for covariance matrix (CM) estimation
from the reference CG data complement the aforemen-
tioned detectors and make them adaptive [2], [3]. On
the other hand, the target range-walk is generally not
considered for target detection. For fast moving targets,
which are of interest for radar, ignoring the range-walk
results in the smearing of the target response in range
and velocity [4]. Consequently, signal to clutter ratio
(SCR) degrades, as well as the detection performance.

The aim of this paper is to derive CFAR detector
for a range migrating target in a CG clutter. To do
this, we develop two detectors considering, firstly, an
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independent and, secondly, a dependent interference
model of the CG clutter, defined according to [5].

This paper is organized as follows. In Section II,
we revise the target model and provide the problem
formulation. Next, in Section III we derive a detector
for the independent interference model (IIM), and then,
in Section IV we consider the case of dependent
interference model (DIM). The performance of the
proposed techniques is evaluated in Section V and
conclusions are given in Section VI.

II. DATA MODEL

A. Target model

Assume a wideband radar to coherently transmit
M wideband pulses. The signature of a point target,
observed by the radar in a block of K adjacent range
cells, can be expressed by K ×M matrix A [4]:

Ak,m = ejfDTrm · up
(
k −

(
k0 −

v0Tr
δR

m

))
, (1)

where m = 0 . . .M −1 is the pulse (slow-time) index,
k = 0 . . .K − 1 is the range cell (fast-time) index, k0
stands for the initial range cell of the target, moving
with the constant radial velocity v0, fD = 4πv0fc/c
is the Doppler frequency of the target at the lower
frequency of the band (transmitted signal occupies
frequencies from fc to fc + B), Tr is the pulse repe-
tition interval (PRI), δR = c/(2B) is the radar range
resolution, B is the bandwidth of the transmitted signal
and up(x) denotes the pulse response of the transmitted
waveform. Herein we assume a waveform with a flat
spectrum over the band, so up(x) = sinc (πx).

Because of the migration effect, the target ampli-
tude estimation and, therefore, the detection should
be performed over the low range resolution segment
(LRRS) containing K adjacent range cells, such that
the condition on maximal target velocity (Vmax) holds:

K ≥ [vmaxMTr/δR] + ∆E , (2)

where [·] stands for the rounding towards integer
operation and ∆E defines the extent of the target in
range cells. In this paper, the problem of extended
target detection is not considered, thus ∆E = 1.



B. Notations and definitions

In this paper we use lowercase boldface letters
for vectors and boldface uppercase letters for ma-
trices, the scalars are denoted by non-bold letters.
Most vectors have the size of the vectorized LRRS,
so KM × 1. Thus, for example, vectorized received
data in the LRRS are denoted by y, which is given
element-wise by y = [y0, y1 . . . yKM−1]T . Here-
inafter we also refer to the block of data, corre-
sponding to the k-th range cell by the sub-vector of
length M : yk = [ykM , . . . , y(k+1)M−1]T , so y =
[yT

0 ,y
T
1 , . . . ,y

T
K−1]T . Similar notation holds for other

KM × 1 vectors.
Some variables are briefly described here:
• a - vectorized known steering vector of the target

in the LRRS: a = vec(AT );
• c - vectorized response of CG clutter in the LRRS;
• g - vectorized response of speckle component in

the LRRS;
• σ2

k - clutter texture (local power) in the k-th range
cell;

• α - constant amplitude of a target in the LRRS
under hypothesis of its presence (H1);

• M - KM×KM CM of CG clutter in the LRRS.

C. Problem formulation

The detection problem can be formulated as:

yk =

{
H0 : ck

H1 : αak + ck
k = 0 . . .K − 1. (3)

The clutter in each range cell is modeled as a CG
random vector, i.e. a product of two independent
random variables [2]: ck = σkgk. A priori knowledge
about the distribution of texture σ2

k has been shown
to provide a detection improvement for small M ,
but results in equivalent performance for M > 16
[6]. Moreover, the target range-walk can be observed
only for large M , therefore, we consider σ2

k to be an
unknown constant. The texture σ2

k is considered to be
constant along slow-time, but different from one range
cell to another. The speckle component g is modeled
by KM × 1 zero mean complex Gaussian vector.

In the following two section, we develop two detec-
tors by considering the IIM and DIM of CG clutter.

III. MIGRATING TARGET DETECTION IN CG
CLUTTER - INDEPENDENT INTERFERENCE MODEL

A. Clutter model

According to the IIM, the clutter is considered to
be uncorrelated over range. The speckle component
in each range cell k is modeled as an indepen-
dent M -dimensional complex Gaussian vector with
zero mean and known CM: gk ∼ CN(0,Mv), so
E{gkg

H
i }|k 6=i = 0M and E{ckcHi }|k 6=i = 0M . The

clutter CM in every range cells is then given by

E{ckcHk } = σ2
kMv; and the CM of clutter in a LRRS

has block-diagonal structure:

M =


σ2
0Mv 0M · · · 0M
0M σ2

1Mv · · · 0M
...

...
. . .

...
0M 0M · · · σ2

K−1Mv

 . (4)

B. Generalized likelihood ratio test (GLRT)

In order to derive the detector we perform the GLRT.
Under both hypotheses, the clutter local powers σ2

K,
where K : k = 0 . . .K−1, are unknown; under H1, α
is also unknown. The likelihood function of the LRRS
under H1 has a form:

f1(y;α, σ2
K) =

exp
(
−
∑K−1
k=0 σ−2k (yk − αak)

H
M−1v (yk − αak)

)
πKM |Mv|K

∏K−1
k=0 σ2M

k

,

(5)

and its counterpart under H0 can be obtained from
f0(y;σ2

K) = f1(y;α, σ2
K)|α=0. Constructing GLRT:

Λ(y) =
f1(y;α, σ2

K)

f0(y;σ2
K)

(6)

and maximizing it over all the unknown parameters we
can find the estimation of clutter powers under H0:(

σ̂
(0)
k

)2
=

yH
k M−1v yk

M
, ∀k ∈ K (7)

and under H1:
α̂ =

∑K−1
k=0

(
σ̂
(1)
k

)−2
aH
k M−1

v yk∑K−1
k=0

(
σ̂
(1)
k

)−2
aH
k M−1

v ak

,(
σ̂
(1)
k

)2
=

(yk−α̂ak)
HM−1

v (yk−α̂ak)
M , ∀k.

(8)

The solution under H1 has to be found iteratively by
the fixed point iteration for α or σ2

K. The resulting
detector has a form:

Λ(y) =

K−1∏
k=0

(
σ̂
(0)
k

)2
(
σ̂
(1)
k

)2

M

H1

R
H0

P
− M

M−1

FA , (9)

which insures CFAR property w.r.t. CM structure Mv

and clutter powers σ2
K, given the iterative estimation (8)

has converged. The detection threshold can be easily
checked by considering the particular case for v0 = 0,
when the detector can be written explicitly.

IV. MIGRATING TARGET DETECTION IN CG
CLUTTER - DEPENDENT INTERFERENCE MODEL

A. Clutter model

In the case of DIM, the clutter is correlated along
range, thus E{ckcHi }|k 6=i 6= 0M . The CG model,
being a product of two random variables, gives three
ways to model such a behavior: considering either



the speckle component or texture to be correlated
over range, or both of them. Herein we assume the
clutter speckle to be correlated over range, while the
texture to be independent from one range cell to
another. This modeling is different from the approach
used in [7], [2]. The reason to follow this approach
is the following: when considering Gaussian clutter
as a particular case of the CG clutter, the adaptive
CFAR detector of a range-migrating target requires the
estimation of Q = E{ggH } - the KM × KM CM
of the speckle component of clutter in the LRRS [8]
(in case of Gaussian clutter, speckle CM is equal to
clutter CM). This Q cannot be obtained from the CM
in one range cell only, i.e. Mv. Ignoring the cross-
correlation between the range cells (by using Mv)
leads to the non-CFAR behavior, if the diagonal blocks
are substituted with their estimations [9].

Thus, we assume the clutter textures to be different
unknowns (as realizations of random variables), but the
speckle component to be correlated along range. As
a result, covariance and cross-covariance matrices of
clutter in the range cells of the LRRS can be expressed:

E{cicHj } = σiσjE{gig
H
j } = σiσjQi,j, (10)

where Qi,j denotes M ×M block of the speckle CM
Q, such that Qi,j = QiM...(i+1)M−1,jM...(j+1)M−1.
Every M ×M block Qi,j describes the correlation of
the speckle component between the range cells i and
j. According to these assumptions, the clutter CM in
the LRRS has the following structure:

M =

 σ2
0Q0,0 · · · σ0σK−1Q0,K−1

...
. . .

...
σK−1σ0QK−1,0 · · · σ2

K−1QK−1,K−1

 .
(11)

Herein we assume Q to be a known Hermitian positive
definite matrix and we derive a detector in terms of the
GLRT. To simplify the further derivation, we introduce:

W =


σ0IM 0M · · · 0M
0M σ1IM · · · 0M

...
...

. . .
...

0M 0M · · · σK−1IM

 . (12)

Then, according to (11) we can write: M = WQW.
Moreover, M−1 = W−1Q−1W−1, or the same can
be written block-wise, similar to (11) with ith, jth block
of inverted CM being defined by M−1i,j = σ−1i σ−1j Q−1i,j

(Remark: notation Q−1i,j stands for the ith, jth block of
Q−1). Similarly, the determinant of M can be given
via the determinant of Q as: |M| = |W| |Q| |W| =
|Q|

∏K−1
k=0 σ2M

k .

B. Generalized likelihood ratio test

The detection problem is the same as before, see (3),
and we perform the GLRT in order to find a detector.

The likelihood function of the LRRS under H1 is:

f1(y;α, σK) =
exp

(
−(y − αa)

H
M−1 (y − αa)

)
πKM |Q|

∏K−1
k=0 σ2M

k
(13)

and similarly f0(y;σK) = f1(y;α, σK)|α=0. The log-
arithm of the likelihood function is:

ln (f1(y;α, σK)) = −KM lnπ − ln

(
|Q|

K−1∏
k=0

σ2M
k

)
−(y − αa)

H
M−1 (y − αa),

(14)

where the quadratic form in the last term depends on
the unknown parameters.

Denote µk,j = (yk − αak)
H
M−1k,j (yj − αaj), then

(y − αa)
H
M−1 (y − αa) = µk,k

+2<

 K−1∑
j=0,j 6=k

µk,j

+

K−1∑
i=0,i6=k

K−1∑
j=0,j 6=k

µi,j ,
(15)

where notation <(·) stands for the real part of a
complex number. The same can be written in terms
of the speckle CM Q using the notations qk,j =

σkσjµk,j = (yk − αak)
H
Q−1k,j (yj − αaj):

(y − αa)
H
M−1 (y − αa) =

qk,k
σ2
k

+2<

 K−1∑
j=0,j 6=k

qk,j
σkσj

+

K−1∑
i=0,i6=k

K−1∑
j=0,j 6=k

qi,j
σiσj

.
(16)

Note that qk,j is independent of σK; and that the last
item in (16) represents terms independent of the data
in the k-th range cell.

In order to find σk we take the derivative of (14)
w.r.t. σk using (16) and set it to zero. The estimation of
σk can be obtained by solving the quadratic equation:

σ2
k − σk

<
(∑K−1

j=0,j 6=k σ
−1
j qk,j

)
M

− qk,k
M

= 0, (17)

which is dependent on σj 6=k and it also de-
pends on α under H1. By denoting: b =

−<
(∑K−1

j=0,j 6=k σ
−1
j qk,j

)
/M and c = −qk,k/M , we

can see that each of K equations always has two
real roots (under both hypotheses), as b2 − 4c >
0. Moreover, from Vieta’s formula for second order
polynomial, it follows that the roots of (17) satisfies
σ
[1]
k σ

[2]
k = c < 0, so only one root is positive, which is

the one of interest. Then each σk has a unique solution,
which can be obtained via the function of all the other
local powers σj |j=0...K−1,j 6=k:

σ̂
(0)
k =

−b(0) +
√

(b(0))2 − 4c(0)

2

= f
(
σ
(0)
j=0...K−1,j 6=k

)
.

(18)



Under H0 we have K equations, which form a system
with K unknowns, so they have a unique solution,
which can be found iteratively by the fixed point
iteration for system of equations.

Under H1, we have K equations for σk:

σ̂
(1)
k =

−b(1) +
√

(b(1))2 − 4c(1)

2

= f
(
α, σ

(1)
j=0...K−1,j 6=k

)
,

(19)

which depend on K+1 unknowns: σK and α. In order
to obtain a unique solution, we need to add the equation
for α, which can be obtained from the GLRT:

α̂ =
aH
(
M̂(1)

)−1
y

aH
(
M̂(1)

)−1
a
, (20)

where M̂(1) is defined according to (11) with σ̂
(1)
k

substituted for σk. The solution is thus calculated
similarly to that under H0.

In order to perform detection, the estimations
σ̂
(0)
k , σ̂

(1)
k and α̂ should be substituted into the GLRT

(6). Some simplifications of the GLRT can be done.
First, note that equation (17) can be rewritten in terms
of µk,j as:

K−1∑
j=0,j 6=k

< (µ̂kj) + µ̂kk = M. (21)

Further, we write the quadratic form of (15) via the
sums over rows as:

(y − α̂a)
H
(
M̂(1)

)−1
(y − α̂a)

=

K−1∑
k=0

µ̂kk +

K−1∑
j=0,j 6=k

µ̂kj

 = KM,
(22)

where the second equality holds because of (21) and
Hermitian structure of clutter CM. Similarly, under H0:

yH
(
M̂(0)

)−1
y = KM . Consequently, the exponen-

tial term of the likelihood functions (13) does not affect
the detection. The GLRT has a form:

Λ =

K−1∏
k=0

(
σ̂
(0)
k

σ̂
(1)
k

)2M
H1

R
H0

λ, (23)

which is similar to the test in the case of IIM clutter
(see (9)). However, the estimators involved in these
detectors are generally different. If the clutter is un-
correlated over range, (9) and (23) are identical.

The advantage of the DIM detector (23) over the IIM
algorithm (9) is that the former does not require the
block-diagonal structure of the clutter CM. Therefore,
an adaptive detector can be obtained from the DIM
detector by substitution of the known speckle CM with
its estimation. However, the statistical analysis of an

5 10 15 20 25 30

10−15

10−10

10−5

100

Nimber of iterations

C
(i)

 =
 ||

W
i+

1 −
 W

i|| 2 / 
||W

i|| 2

γ = 1, hypothesis H0

γ = 1, hypothesis H1

γ = 10, hypothesis H0

γ = 10, hypothesis H1

Figure 1. Convergence of iterative estimation in K-distributed
clutter ν = 0.5: γ = 1 corresponds to strongly correlated over
range clutter; γ = 10 to clutter slightly correlated over range

adaptive detector, which exploits LRRS speckle CM
estimated from the reference data, is out of the scope
of this paper.

V. SIMULATIONS

In this section the performance of the proposed
algorithms is assessed by numerical simulations. The
parameters of the radar are fixed to: fc = 10 GHz,
B = 1 GHz, Tr = 1 ms, M = 32; the maximum
expected velocity of a target is: |v0| ≤ va = c/(2fcTr),
so we set K = 5 to satisfy (2). In all the simulations,
the clutter follows K-distribution, a special case of
CG, with shape parameter µ = 1 and scale parameter
ν = 0.5.

A. Convergence analysis

We analyze the convergence by evaluating the
widely used criterion

C(i) =
||Ŵ(h)

i+1 − Ŵ
(h)
i ||2

||Ŵ(h)
i ||2

(24)

by numerical simulations. Herein we denote by Ŵ
(h)
i

the estimation of the matrix W (12) at i-th iteration
under hypothesis h. The known speckle CM has the
structure Q = R⊗IM (⊗ denotes Kronecker product),
so the clutter is uncorrelated over slow time, but cor-
related over range. R is K ×K symmetrical Toeplitz
matrix defined by its first column rk = exp(−γk) and
describes the correlation of clutter speckle over range.
Fig. 1 shows the convergence of the estimators (18),
(19) for the case of range-correlated speckle: γ = 1;
and almost uncorrelated over range speckle: γ = 10.
Note that in both cases the convergence is linear and
it is more rapid for weakly correlated clutter; in the
limiting case (γ → +∞) the estimate under H0 can
be found explicitly (7).

B. False alarm regulation

Herein we check the CFAR properties of the pro-
posed algorithms in a correlated CG clutter. We con-
sider a scenario similar to the previous simulation with



102 103 104
10−4

10−3

10−2

10−1

Detection threshold (λ)

P FA

PFA = λ−(M−1)/M

Known clutter powers
NMF−LRR
DIM−LRT
IIM−LRT

Figure 2. False alarm regulation in clutter strongly correlated over
range γ = 1; K-distributed clutter ν = 0.5

γ = 1 and we run 20 iterations of the estimators. We
performed 103 of Monte-Carlo trials of 2KM different
range-velocity cells. The PFA regulation of four algo-
rithms, namely IIM-LRT (9), DIM-LRT (23), NMF-
LRT (normalized matched filter applied to the LLRS
and using the speckle CM Q) and the clairvoyant
detector, assuming the known CM M, are shown in
Fig. 2. The line corresponding to

λ = P
− M

M−1

FA , (25)

is also plotted. This line represents the threshold of
IIM-LRT in IIM clutter (9). Fig. 2 shows that IIM-
LRT and NMF-LRT are generally not CFAR in range
correlated CG clutter, while DIM-LRT ensures CFAR
property with the threshold defined by (25).

C. ROC curves

Similarly to a range-extended target detection in a
CG clutter [2], the detection performance of range-
migrating target will be dependent on the spread of the
target response over range (hence for an extended tar-
get, non-coherent integration over range is performed,
while for range migrating target, this integration is
coherent). Thus, the performance of the proposed al-
gorithms will be velocity-dependent. Due to the lack
of space we omit this analysis here. However, in Fig. 3
we compare the performance of all the aforementioned
detectors in terms of ROC curves for a target at
velocity v0 = va, SCR=0 dB after coherent integration
and correlated clutter with γ = 1. A detector with
the narrow-band target signature, ignoring migration
term in (1) is also added for comparison (NB NMF).
The results show that ignoring of target range-walk
or clutter variation along range-walk results in severe
degradation of the performance. The DIM detector
achieves the performance of the detector with the
clairvoyant CM, and the IIM detector have slightly
worse performance than the DIM detector due to the
ignorance of clutter range correlation.

10−4 10−3 10−2 10−1
0

0.2

0.4

0.6

0.8

1

PFA

P D

ROC curve, SNR=0dB, v0=Va, K−distributed clutter with ν=0.5

LRR NMF
NB NMF
LRT with known CM M
DIM−LRT
IIM−LRT

Figure 3. ROC curves for migrating target v = va, SCR=0 dB in
K-distributed clutter ν = 0.5, strongly correlated over range γ = 1

VI. CONCLUSION

In this paper we have proposed two CFAR detectors
of range-migrating target in a compound-Gaussian
clutter. These algorithms involve iterative estimations
of clutter local power, which have to be carried
out numerically. The resulting detectors are functions
of the received data and covariance matrix of the
clutter speckle component only. The proposed detec-
tors provide significant improvements over existing
techniques in terms of ROC curves. Moreover, the
proposed approach for dependent interference clutter
model provides a way to develop an adaptive detector
of range-migrating targets in a compound-Gaussian
clutter, which is of practical interest.
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