
Who said that? Comparing performance of TF-IDF and fastText to identify
authorship of short sentences

Thomas van Tussenbroek1 , Tom Viering1 , Stavros Makrodimitris1 , Arman Naseri 
Jahfari1 , David Tax1 , Marco Loog1

1TU Delft

Abstract

Authorship identification is often applied to large
documents, but less so to short, everyday sen-
tences. The ability of identifying who said a
short line could provide help to chatbots or per-
sonal assistants. This research compares perfor-
mance of TF-IDF and fastText when identifying
authorship of short sentences, by applying these
feature extraction techniques to the television se-
ries Friends’ transcripts. TF-IDF outperforms fast-
Text in every measurement, but its performance is
only marginally better than randomly guessing the
original character, reaching an accuracy of 28 per-
cent when making a distinction between 6 charac-
ters. Accuracy increases linearly at the same rate
for both techniques as the minimum word count
per sentence set on the test data increases. TF-
IDF’s confidence remains constant as this limit is
set on either the test or training data, whereas fast-
Text’s confidence decreases and increases, respec-
tively. Cross-entropy loss, however, remains con-
stant for fastText and decreases for TF-IDF as the
minimum word count set on the test data increases.

1 Introduction
Authorship identification, also known as authorship attri-
bution, has been of great influence in combating phishing
(Khonji et al., 2011), fighting unrightful authorship claims
(Mosteller & Wallace, 1963), and helping to solve forensic
cases (Khan et al., 2012). To identify authorship of a docu-
ment, features are extracted from the unidentified text. They
are matched to features which have been extracted from doc-
uments the machine already knows the author of. Many re-
searchers achieved high accuracy rates when identifying au-
thorship of large text documents such as books or e-mails,
but little research has been conducted on identifying author-
ship of everyday, short sentences (Van der Knaap & Grootjen,
2007). Identification of such short, everyday sentences, how-
ever, could be beneficial in many fields. An example of this
would be online chatbots, which could provide personalized
responses based on very brief conversations. Alternatively,
this would benefit personal assistants in a family home such

as smart speakers, which could personalize actions depending
on which family member made a request.

The difficulty with identifying authorship of short sen-
tences is that they lack features in which identification mod-
els normally try to find a pattern. This is because every-
day speech introduces abbreviations, reduced grammar, and
a lack of word count per sentence (Van der Knaap & Groot-
jen, 2007). Two commonly used feature extraction techniques
are TF-IDF and fastText, a type of word embedder (Waykole
& Thakare, 2018). The first assigns each word with a score
based on how often it occurs with respect to all words in a
document, the second represents words with similar mean-
ings and context the same way by matching them to a pre-
learned dictionary. Feature vectors extracted by these tech-
niques can be matched to one another if the sentences con-
tain a variety of word choices or subjects. This is something
which is lacking in everyday speech. It is therefore important
to know which technique performs best.

This research paper compares the performance of two fea-
ture extraction techniques, TF-IDF and fastText, used to iden-
tify authorship of everyday, short sentences. In order to an-
swer which technique is best suited for short sentences, this
paper explores which mistakes are made by the model, and
whether setting a minimum sentence length has any effect
on performance. The two extraction techniques are applied
to the American sitcom television series Friends’ transcripts,
which contains a large amount of everyday conversations, al-
beit theatrical. Moreover, the dataset has a limited pool of
characters to train a classification model on, which allows for
better evaluation of results.

The remainder of this paper is structured as follows. In
section 2, we explain how TF-IDF and fastText extract fea-
tures from text, and describe their possible advantages and
disadvantages. Section 3 discusses which metrics were cho-
sen to compare the classification of the produced feature vec-
tors. Next, section 4 describes the experimental setup, the
ethical and results of which are shared in section 9. Next,
these results are discussed in section 6. Section 7 provides a
conclusion, and possible future research is recommended in
section 8. Lastly, section 9 addresses ethics and reproducibil-
ity.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



2 Feature extraction
In order to be able to identify who said a particular line, fea-
tures should be extracted from the text to create a machine
readable representation of the sentence. Feature extraction
can be either hard-crafted or learned. Hand-crafted feature
extraction represents words by how important they are with
respect to other words in the corpus. Learned feature ex-
traction matches words in text to pre-trained dictionaries by
looking at a word’s context. A classification model therefore
predicts people based on either how often they say a word, or
which subjects they talk about, respectively.

For hand-crafted feature extraction, this research uses term
frequency–inverse document frequency (TF-IDF), one of
the most popular hand-crafted feature extraction techniques
(Beel et al., 2016; Waykole & Thakare, 2018). This technique
shall be compared to fastText, which provides learned feature
extraction by means of embedding words (Bojanowski et al.,
2017), which is also frequently used in natural language pro-
cessing (Waykole & Thakare, 2018).

2.1 TF-IDF
TF-IDF consists of two parts: term frequency (TF) and
inverse document frequency (IDF) (Rajaraman & Ullman,
2011). TF is computed by taking the frequency fij of a word i
in sentence j, divided by the maximum frequency of all words
k in the same sentence, the formula of which is the following:

TFij =
fij

maxkfkj
. (1)

IDF is computed by taking the logarithm of the total amount
of sentences N divided by the amount of sentences ni con-
taining word i. This results in the following formula:

IDFi = log
N

ni
. (2)

The score of word i in sentence j is then computed by:

Score = TFij × IDFi. (3)

This scoring is applied to each sentence j in the database. The
columns of the resulting vector represent all unique words in
all sentences, where each row represents one sentence. A cell
contains the TF-IDF scoring if the a column’s corresponding
word is part of the respective sentence. The resulting matrix
is sparse, since for each row, there will only be as many cells
with a value as there are unique words in the corresponding
sentence; all other cells will contain the value zero. The total
amount of words could be in order of hundreds of thousands,
whereas each sentence might only contain ten words. Words
that appear often across all sentences, such as stopwords, will
weigh less than words that occur infrequently.

Since this technique relies on words that are saved in its
dictionary, a classification model could have problems finding
a pattern in the dataset. This could be particularly problematic
if the model tries to classify a sentence which contains none
of the words present in its dictionary.

On the other hand, this extraction technique could prove to
be successful if the model tries to classify sentences which
contain many words already present in the dictionary.

2.2 fastText
The learned feature extraction technique used in this research,
fastText, is a type of word embedder. fastText is an adap-
tation of the well-known word-embedder word2vec (Gold-
berg & Levy, 2014). Word2vec was initialy also evaluated
in this research, however, since fastText’s results were com-
parable to or slightly better than word2vec’s, only fastText’s
results were included. Word embedders represent words as
a probability distribution, where words with similar context
have a similar distribution. This probability distribution is
learned from large training datasets, in which a word embed-
ding model analyses which words often appear near one an-
other and which ones do not (McCormick, 2016). The prob-
ability distribution of ”apple” and ”banana” would therefore
be rather similar, whereas their representation would differ
greatly from that of ”castle”.

Besides analysing each word, fastText also captures a
word’s n-grams in its probability distribution. N-grams are
a word’s partial substrings of size n. If n were set to 3,
the n-grams for ”apple” would become ”app”, ”ppl”, ”ple”
(for demonstration purposes, fastText’s use of boundary sym-
bols < and > is ommitted in this example). Taking into ac-
count a word’s n-grams for embedding allows for capturing
the meaning of pre- or suffixes (Subedi, 2018). As an ex-
ample, n-grams could help create similar probability distri-
butions when extracting features from ”prehistory” and ”his-
tory”.

A classification model using fastText’s representation
should be better than TF-IDF’s at finding patterns in sen-
tences which contain words not present in the training data,
since it is able to match context.

If the context of two sentences is the same, fastText would
assign them with similar representations, even if the choice
of words is different. Using different words can be an indi-
cation of such sentences being said by different people, and
cannot be recognized, which could be a disadvantage of using
fastText.

3 Measuring performance
In order to identify authorship of sentences, a classification
model needs to be trained, for which logistic regression is
used. Logistic regression is chosen because it is computation-
ally inexpensive. K-nearest neighbor was also evaluated as a
classification model, but was not used in this research due
to its relatively worse performance and longer computation
time. We will be using cross-validation for hyper parameter
tuning and the data will be split into a train and test set to be
able to register performance of unseen data.

To decide on which feature extraction technique performs
best, there are two subquestions that need to be answered.
The subquestions are listed hereafter, together with the met-
rics that were used to find the answer:
• Which characters are often mistaken for one another

can be answered by examining the confusion matrix.
• How does performance change when there is a con-

straint on the minimum sentence length can be an-
swered by examining the model’s accuracy, confidence
in predictions, and cross-entropy loss.

2



Finding out which characters are often mistaken for
one another
In order to show which mistakes are made by the classifica-
tion model, this research used a confusion matrix. A con-
fusion matrix is a table which shows how many lines have
been correctly classified to belong to a certain character and
how many have not. Each column represents the actual char-
acter, and each row represents the character predicted by the
model. The main diagonal displays correct predictions (true
positives), and all other cells count how many classifications
were incorrectly classified (false positives). It is therefore
most favourable to have high values in the main diagonal.

The confusion matrix shows which characters are often
mistaken for one another. Therefore, it can provide insight
on whether the model thinks characters have a similar speech
pattern. By doing so, it can be determined whether there are
common speech patterns amongst the characters.

The effect of a minimum sentence length on
performance
In order to show whether setting a minimum sentence length
changes performance, three metrics are evaluated: accuracy,
the model’s confidence in its predictions, and cross-entropy
loss.

For each of these metrics, performance is measured by
specifying a range of minimum sentence lengths. This mini-
mum sentence length is applied to the train and test set sep-
arately. Therefore, when evaluating whether performance
changes when a minimum word count is set on the train data,
the test data does not change, and vice versa.
• Accuracy is the percentage of correct predictions made

by the classification model. It is a necessary measure-
ment as the model must choose one character who might
have said the line, which is either correct or incorrect.
For this research, it is also the most important perfor-
mance indicator, since we want the model to make as
many correct predictions as possible.
• Confidence in prediction is the probability assigned to

the predicted character. For every sentence, the logistic
regression model creates a probability distribution, as-
signing a probability to each of the six characters. The
higher the probability, the more likely the model thinks
the sentence belongs to that given character. The confi-
dence in the prediction is the probability assigned to the
character the model thinks most likely said the line (the
highest probability).
• Cross-entropy loss, also log loss, shows how close the

probability distribution made by the classification model
is to picking the true character (Nbro, 2019). The logis-
tic regression model used in this research minimizes the
cross-entropy loss in order to achieve the highest result,
and is therefore a good indication of performance. The
cross-entropy loss is decided by the following formula:

Cross-entropy loss =
∑
i

p(i) log q(i). (4)

Where p(i) and q(i) are the wanted and actual proba-
bility of sentence i, respectively. As follows from the

formula, a lower cross entropy loss means a better per-
formance.

With each increase of the minimum word count, the data
size decreases. Therefore, it could be that a change in perfor-
mance is due to this change of sample size rather than due to
us setting a minimum word count. In order to rule out that
this change of performance is due to the change of data size,
additional metrics shall be created for accuracy, confidence in
predictions, and cross-entropy loss. For each minimum word
count we recorded the data size, and we randomly selected a
sample with a size equal to what was recorded.

If the performance of randomly selecting samples is equal
to the performance of setting minimum word counts, we
know that the performance change is due to a decrease of the
data size, and not due to us setting a minimum word count.
The opposite holds when the performance is different from
one another.

In order to give an indication of the reliability of the ex-
periment, we have calculated the variance of the accuracy per
minimum word count. The variance was calculated by means
of the following formula:

Var[ai] =
ai(1− ai)

ni
, (5)

where ai is accuracy and ni is data size when setting mini-
mum word count i (heropup, 2014).

4 Experimental setup
In order to determine whether TF-IDF or fastText performs
best when identifying authorship of short, everyday sen-
tences, we use an experimental setup consisting of the fol-
lowing five steps:

1. Retrieving data

2. Parsing and pre-processing data

3. Extracting features

4. Classifying features

5. Evaluating metrics

These steps are described in more detail in this chapter.
When using algorithms provided by libraries, default param-
eters were used unless stated otherwise. The full list of li-
braries and a description of what they were used for, as well
as the hardware and software used, can be found appendix A.

4.1 Retrieved data
The television series Friends consists of 236 episodes, the
transcripts of which were obtained from the internet-forum
Forever Dreaming (Forever Dreaming Transcripts, 2018) in
HTML format.

4.2 Parsed and pre-processed data
Lines said by multiple characters were parsed per individual
character. The transcripts were parsed in the following order:

1. Scene directions were removed.

3



2. Contractions were expanded. Words containing an
apostrophe that were not expanded by the used package
are displayed in table 1. Since all punctuation was re-
moved in a later step, these words have been expanded
as well.

Table 1: Words that were substituted to not include apostrophes

Original Substitute

’ (U+2019) ’ (U+0027)
c’mon come on
o’clock o clock
y’know you know
‘em them

3. Lines were split on a full stop (.), question mark (?),
or explanation mark (!). This paper researches iden-
tification of authorship of individual lines, which is the
reason why multiple sentences in one line need to be
divided and treated separately. Some words which natu-
rally contain these punctuation marks have been altered
such that they are not needlessly split into separate lines.
These are displayed in table 2.

Table 2: Words that were substituted to not include a full stop

Original Substitute

c.h.e.e.s.e. cheese
t.g.i.friday’s tgifridays
dr. doctor
f.y.i. fyi
p.m. pm
a.m. am
s.a.t.s. sats

4. Punctuation was removed. One word which was sub-
stituted before removal of all punctuation was the tran-
scripts use of s*x, instead of sex. This way, this word
could be processed properly.

5. Lines consisting of one word only were removed.
Lines with one word contain too little information to
count as a proper sentence.

6. Lines said multiple times by the same person were
reduced to occur only once. Learning the pattern of
one sentence multiple times would create an unbalanced
classification model, and therefore should only be eval-
uated once.

7. Lines said by side-characters were removed. There
are many side characters in the data set, all of which say
few lines relative to the main characters. This could lead
to class imbalance problems, meaning that there is an
unequal distribution of classes. Therefore, lines said by
non-main characters are removed all-together.

8. Lines said by multiple people were removed. This re-
search focuses on finding patterns in speech unique to

one person, and therefore, if the exact same sentence is
said by multiple people, it should not be evaluated.

After parsing, the dataset consisted of 57.393 unique lines.
Pre-processing options that have been evaluated but have not
been used in this research are spell correction, stemming, and
the removal of stopwords. The use of these techniques on
their own and their combinations did not improve the accu-
racy of the model, and in some cases even worsened it.

4.3 Extracted features
Next, features were extracted from the parsed lines by means
of fastText and TF-IDF, creating a vector representation for
each sentence.

TF-IDF
Applying dimensionality reduction to reduce the width per
vector to 300 to match fastText’s output vector size by using
PCA was considered. This resulted in lower accuracy and
longer computation time, and was therefore disregarded.

fastText
Naturally, fastText is a word embedder. Since this research
classifies sentences rather than words, we applied fastText
to each word in a sentence and represented the sentence as
a mean of the embedded words (Takeshita, 2019). Words
were matched to the default fastText dataset, trained on Com-
mon Crawl and Wikipedia, with character n-grams of length
5. The output per sentence is a vector of 300 features (Bo-
janowski et al., 2017).

Note that TF-IDF’s vector representation’s size depends on
the amount of unique words in the training data, whereas fast-
Text’s vector representation is always 300. Therefore, if the
training data changes, TF-IDF’s features need to be extracted
again, which is not necessary for fastText.

4.4 Classified features
The datasets were split into a 80:20 train and test set with the
random state 1515 to allow reproducibility of the research.
The classification model was trained with the training set, and
all evaluations were done with the test set.

For parameter tuning, we used grid search. Cross-
validation was performed in 5 fold.

Parameters that were evaluated using grid search were
the inverse of reguralization C, with values [1e(-10),
1e-9, ..., 1e(9), 1e(10)] to combat overfitting,
and the maximal amount of iterations max iter, with arbi-
trary values [250,500,750,1000] to combat the inabil-
ity to converge.

4.5 Evaluated metrics
The minimum word count is a range from 2 up until 30. The
reason for the starting value of 2 is that sentences with only
one word were removed during pre-processing of data. The
latter value of 30 is an arbitrarily chosen large number. From
a minimum of 30 words, the train and test set contain less than
323 and 68 lines respectively, which is less than 1 percent
of the amount of starting data, which is 43728 and 10955
respectively. The dataset therefore becomes too unreliable to
draw conclusions from.

4



The logistic regression model required retraining every
time the minimum word count of the training dataset was
changed. This is necessary because the classification model’s
internal weights, and therefore its predictions, changes de-
pending on the training input. Following the same logic,
the classification model does not need retraining when the
test dataset changes minimum word count. TF-IDF’s fea-
tures needed to be extraction again every time the minimum
word count of the training dataset was changed as well, as
explained in subsection 4.3.

5 Results
Table 5 and 6 in appendix B show the optimal parameters
found by applying grid search to the logistic regression model
without and with minimum word count set on the training
data respectively. Appendix C shows the table with the
amount of data per minimum word count. This was used
for the metrics shown in appendix F, showing performance
when randomly selecting data equal to the size of setting a
minimum word count to either the test or training data. The
following subsections give a visualisation and explanation of
the results.

Confusion matrix
Figure 1 and 2 show the confusion matrix (CM) of the logis-
tic model applied to the data created by fastText and TF-IDF
respectively.

Figure 1: Confusion matrix when extracting features using fastText

Figure 1 shows the confusion matrix when classifying fast-
Text’s data. From this figure, we see that only three of the six
cells with the highest values are in the main diagonal. Addi-
tionally, more lines said by Monica and Phoebe are predicted
to be said by Rachel and Ross than by Monica and Phoebe
themselves. It is also notable that lines said by Joey are often
confused to have been said by Ross.

Figure 2 shows TF-IDF’s data’s confusion matrix. The six
cells with the highest values are in the main diagonal, which
indicate the true positives, and therefore shows better perfor-
mance than fastText. Lines said by Joey, Rachel, and Ross are

Figure 2: Confusion matrix when extracting features using TF-IDF

far more often correctly predicted than lines said by Chandler,
Monica, and Rachel.

From these two figures we can deduce that appplying the
classification model to TF-IDF’s data results in less confusion
between characters than when it is applied to fastText.

Accuracy
The average accuracy of the model per minimum word count
set on test and train dataset are shown in figure 3 and 7 respec-
tively, the latter of which can be found in appendix E. Ap-
pendix F shows the accuracy when randomly selecting data
in figures 9 and 10. The variance of the accuracy has been
included in appendix D. The largest variance is 2.40e− 03.

Figure 3: Average accuracy per minimum word count set on test
dataset

From figure 3, which shows the accuracy when the mini-
mum word count is set on the test data, we can see that TF-
IDF’s accuracy is continuously 5 percentage points more ac-
curate than fastText’s, up untill a minimum word count of 25.
Both TF-IDF’s and fastText’s accuracy rises almost linearly

5



up untill that point, but after a minimum word count of 25,
TF-IDF’s accuracy drops sharply, even below fastText’s.

The linear increase is not apparent in figure 9, so this in-
crease in accuracy is due to the increase of minimum word-
count. The drop and spike of TF-IDF’s and fastText’s perfor-
mance after a minimum wordcount of 25 however, is visible
in figure 9, and so this is due to the change of dataset size.

From this figure, it is clear that using TF-IDF’s data results
in higher accuracy than when fastText was used to extract
features. Moreover, increasing the minimum word count of
the test set does increase performance.

Figure 7, in which the minimum word count is set on the
training data, and 10, where data is randomly selected, follow
a similar trend to one another. This change in performance is
therefore attributed to the change of data size, and not due
to setting a minimum word count. Consequently, this result
has not been evaluated more thoroughly and can be found in
appendix E.

Confidence in prediction
Figures 4 and 5 show the confidence of the two techniques
that their predictions are the correct ones. Appendix F shows
the confidence when randomly selecting data in figures 11
and 12.

Figure 4: Average confidence in predicted character per minimum
word count set on test dataset

Figure 4 displays the confidence when the limit of word
count is set on the test data. From this illustration, we can
see that TF-IDF’s confidence starts higher than fastText’s and
remains at a constant 30%. The performance when randomly
selecting data, as can be seen in figure 11, is similar, and so
setting a minimum word count on the test set has no influence
on TF-IDF.

fastText’s confidence starts at 25%, but decreases over
time. Its confidence decreases less sharply as the minimum
word count increases, however.

Figure 5 shows the model’s confidence when the limit of
word count is set on the training data. TF-IDF’s has a higher
confidence than fastText when the minimum word count is set

Figure 5: Average confidence in predicted character per minimum
word count set on train dataset

to two. However, fastText’s confidence rises faster than TF-
IDF’s, and is more confident than TF-IDF if the minimum
word count is larger than eight. TF-IDF’s confidence only
slightly increases, then decreases as the minimum word count
increases. After a minimum word count of 15, both TF-iDF’s
and fastText’s confidence declines at the same pace. There are
two outliers for TF-IDF and one for fastText around a mini-
mum word count of 20. This figure is not similar to figure 12,
an so we can attribute this change of performance to having
set a minimum word count to the train data.

From these plots, we can say that TF-IDF’s confidence
stays almost constant when increasing the word count of the
training dataset. Combining these figures with the metrics
measuring accuracy, we can see that fastText, becomes less
confident of its choices the more accurate it becomes, and be-
comes more confident the less accurate it becomes.

Cross-entropy loss
The average cross-entropy loss per minimum word count set
on the test and the traning dataset are displayed in figure 6 and
8 respectively, the latter of which can be found in appendix
E. Appendix F shows the cross-entropy loss when randomly
selecting data in figures 13 and 14.

Figure 6 shows the cross-entropy loss when a minimum
word count is set on the test data. It is apparent that TF-IDF’s
loss is lower than fastText’s regardless of the minimum word
count. TF-IDF’s loss drops almost linearly as the test set’s
minimum word count increases. After a slight initial drop,
fastText’s loss remains almost constant.

From this measurement, we can say that TF-IDF’s cross-
entropy loss is more favourable that fastText’s. When the
minimum word count of the test data increases, TF-IDF’s loss
decreases, whereas fastTexts remains almost constant.

Aside from the outliers, the cross-entropy loss when setting
a minimum wordcount on the train data, and when randomly
selecting data, as can be seen in figure 8 and 14, follow a
trend similar to one another. This means that the change in
performance is due to a decrease of training data, and not due

6



Figure 6: Average cross-entropy loss per minimum word count set
on test dataset

to an increase of the minimum word count. This metric has
therefore not been included in the results, but can be found in
appendix E instead.

Data example
For discussion purposes, we also gathered some information
on the classified data. Table 3 shows the amount of lines per
character mentioning ”Chandler”, together with how often
these lines are predicted to have been said by the characters
and how many of those predictions are correct.

Table 3: Amount of times characters say a line containing the name
”Chandler”, along with how often the prediction models think these
lines containing ”Chandler” are said by the characters and how many
of these predictions are correct

Character Actual fastText TF-IDF
Pred. Corr. Pred. Corr.

Monica 48 62 18 64 22
Joey 30 47 11 53 17
Ross 29 7 1 6 2
Rachel 26 20 6 20 6
Phoebe 23 21 4 14 4
Chandler 8 7 0 7 2

6 Discussion
This research answers the question which feature extraction
technique, TF-IDF or fastText, performs best on authorship
identification of short, everyday sentences from the television
series Friends. This is done by looking at the performance of
a classification model applied to feature vectors created by
these techniques. A limit was put on the amount of words
per line to look at how performance changes based on the
input length, and the techniques have also been compared on
which characters are often confused for one another. TF-IDF
confuses people less often for one another than fastText does,

and in all three metrics which compare performance when
a minimum word count is set on either the test or training
data, TF-IDF also clearly performs better than fastText. The
cause of the deviations in figures 5 and 8 were not found. We
can say that for the short sentences found in the dataset, it
is apparently better to make a prediction based on how often
words occur, rather than on how frequently a subject is being
discussed.

What strikes from the results is how low the overall accu-
racy of the model is. Even though this model achieves bet-
ter results than if the character was randomly guessed, we
can only say that the model achieves 28 percent accuracy
when TF-IDF’s feature representation is used and no mini-
mum word count is set. Looking at the dataset, however, we
may be able to speculate why the model’s performance is so
limited. Many sentences which the model has to predict au-
thorship of are very common, such as ”Oh yeah sorry about
that”, ”OK I want to”, or ”Oh can I come?”. These lines could
have been said by any of the characters as they contain such
little personalized information.

Only if sentences contains words that strongly indicate that
they belong to someone, is the model capable of correctly
predicting the original author. As an example, the sentence
”Chandler’s my husband” is correctly predicted by both tech-
niques to belong to Monica, because the model knows that
Monica’s character often speaks about Chandler. However,
when other characters use Chandler’s name in a sentence, the
model also often wrongly predicts that the sentence belongs
to Monica, and example of which is the sentence ”I knew
I should have married Chandler”, which is said by Phoebe
instead of by Monica. As can see in table 3, Monica men-
tions Chandler’s name most, and is predicted to be mention-
ing Chandler more often than she actually says by both mod-
els. Moreover, even though Ross mentions Chandler’s name
almost as often as Joey, who is predicted second most by both
model’s, Ross is almost never chosen. Therefore, even though
the model does use the knowledge it has gained through train-
ing to base its predictions on, the model is not able to find a
pattern, and the predictions are therefore only slightly better
than guessing.

This could also explain why it is clear that an increase of
the minimum word count of the to be predicted lines is corre-
lated to an increase of accuracy. The increase of feature com-
plexity or variety in which the classification model can find a
pattern could aid the model into making better predictions.

Following the way cross-entropy loss is calculated, when
confidence in a prediction remains constant as accuracy in-
creases, the cross-entropy loss should decline. Alternatively,
if accuracy increases and confidence decreases, the cross-
entropy loss should remain constant. This can also be seen in
the results. When TF-IDF’s accuracy rises and its confidence
in predictions remains constant as the minimum word count
of the test set increases, it’s cross-entropy loss decreases. At
the same time, fastText’s confidence in its predictions de-
creases, but its cross-entropy loss remains constant.

With this research, we can say that feature extraction by
TF-IDF results in better authorship identification of every-
day, short sentences than if fastText were used. We have also
shown that an increase of length of the to be predicted lines

7



results in better performance of both techniques.

7 Conclusion
In this study, we compared the performance of TF-IDF and
fastText when applied to authorship identification of short,
everyday sentences. After examining accuracy, confidence,
and cross-entropy loss of the classification model, we can
conclude that TF-IDF performs better than fastText in all
categories. Moreover, we showed that features created by
TF-IDF makes the classification model less confused about
who said a line than fastText’s feature representations. Where
previous papers focused mostly on identifying authorship of
large text documents, we have shown that identifying author-
ship of everyday, short sentences using TF-IDF’s and fast-
Text’s feature representations perform better than randomly
guessing the character, albeit not with a significantly im-
proved performance. Performance does increase as the sen-
tence length of the to be identified line increases.

TF-IDF’s and fastText’s accuracy increases linearly as the
minimum word count set on the test set changes. Accuracy
decreases for both if a minimum word count is set, but this
is because the train set contains fewer data, and not due to
the word count limit. TF-IDF’s confidence in its prediction
remains constant with an increase of minimum word count,
whereas fastText’s confidence decreases and increases when
the minimum word count increases on the test and training
set, respectively. The cross-entropy loss remains constant for
fastText as the minimum word count increases, whereas it de-
clines for TF-IDF, up until a minimum of 24 words.

8 Future research
Future research could focus on distinguishing characters in
an associative manner, rather than the discriminative man-
ner as done in this research. Characters might adapt differ-
ent language treats depending on who they talk to, similar
to how someone might speak with different words depend-
ing on whether they talk with a toddler or their boss. If a
pattern could be found in someone’s speech depending who
they are speaking with, this might help achieve better perfor-
mance when identifying authorship of everyday, short sen-
tences. This research has already shown that there is potential
in distinguishing characters in an associative manner, as lines
mentioning a character’s name can give information on who
said it.

Since the classification model used in this research was not
able to find a pattern in feature vectors, the speech patterns of
the characters might be too similar. Because of this, a multi-
label classification model might be more suitable for future
research, rather than the multinomial model used in this re-
search. A multinomial classification model chooses the char-
acter it has most confidence in, whereas a multi-label classi-
fication model is able to choose multiple characters based on
whether the confidence in characters reaches above a chosen
threshold. Such a model will not provide a singular answer
to who said a line, but the chance of the correct character oc-
curring amongst the predictions will be higher. Multi-label
authorship identification has already been applied to large,
collaborative documents (Boumber et al., 2018; Dauber et

al., 2017). Experiments applying such multi-label author-
ship identification could opt to include duplicate lines or lines
said by multiple characters instead of removing them from the
dataset as done in this research.

9 Responsible research
This paper was written for the CSE3000 course provided by
the Technical University Delft. This experiment was per-
formed without funding and there was no conflict of personal
interest. The data retrieved came from an external, indepen-
dent internet forum. No data has been purposely removed
unless a justified explanation was provided, and the data has
only been handled objectively. Moreover, outliers have not
been omitted from the results.

All libraries and packages used are listed in this paper
in appendix A, to allow for reproducibility. The code
used for the research can be found on the public GitHub
repository https://github.com/thomasvant/
Character-classification. Since probability did
play a role in the experimental setup, some results might
come out slightly different when the experiment is repeated.
However, the results should not differ significantly, as can be
seen in the variance of the accuracy in appendix D. More-
over, this deviation has been limited as much as possible by
stating the parameters used. The general conclusions drawn
from results should therefore not be any different when the
research is repeated.

8

https://github.com/thomasvant/Character-classification
https://github.com/thomasvant/Character-classification


References
Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016).

Research-paper recommender systems: a literature survey.
International Journal on Digital Libraries, 17(4), 305–
338. doi: 10.1007/s00799-015-0156-0

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017).
Enriching word vectors with subword information. Trans-
actions of the Association for Computational Linguistics,
5, 135–146.

Boumber, D., Zhang, Y., & Mukherjee, A. (2018). Ex-
periments with Convolutional Neural Networks for Multi-
Label Authorship Attribution. In Proceedings of the
eleventh international conference on language resources
and evaluation (pp. 2576–2581).

Dauber, E., Overdorf, R., & Greenstadt, R. (2017). Stylo-
metric authorship attribution of collaborative documents.
In International conference on cyber security cryptogra-
phy and machine learning (pp. 115–135).

Forever Dreaming Transcripts. (2018, February).
FRIENDS Transcripts Index - Forever Dream-
ing. Retrieved April 30, 2020, from https://
transcripts.foreverdreaming.org/
viewforum.php?f=845

Goldberg, Y., & Levy, O. (2014, February). word2vec Ex-
plained: deriving Mikolov et al.’s negative-sampling word-
embedding method.

heropup. (2014, February). Variance of average of bernoulli
variables. Cross Validated. Retrieved from https://
stats.stackexchange.com/q/86425

Khan, S., Nirkhi, S., & Dharaskar, R. (2012, April). Author
Identification for E-mail Forensic. Proceedings of National
Conference On Recent Trends In Computing NCRTC, 29–
32.

Khonji, M., Iraqi, Y., & Jones, A. (2011). Mitigation of
spear phishing attacks: A Content-based Authorship Iden-
tification framework. In 2011 International Conference for
Internet Technology and Secured Transactions (pp. 416–
421).

McCormick, C. (2016, April). Word2Vec Tutorial -
The Skip-Gram Model. Retrieved May 17, 2020,
from http://mccormickml.com/2016/04/19/
word2vec-tutorial-the-skip-gram-model/

Mosteller, F., & Wallace, D. (1963). Inference in an au-
thorship problem: A comparative study of discrimination
methods applied to the authorship of the disputed Federal-
ist Papers. Journal of the American Statistical Association,
58(302), 275–309.

Nbro. (2019, March). What is cross-entropy?
Retrieved May 27, 2020, from https://
stackoverflow.com/questions/41990250/
what-is-cross-entropy

Rajaraman, A., & Ullman, J. (2011). Mining of Massive
Datasets. USA: Cambridge University Press.

Subedi, N. (2018, July). FastText: Under the
Hood - Towards Data Science. Retrieved May 17,
2020, from https://towardsdatascience.com/
fasttext-under-the-hood-11efc57b2b3

Takeshita, S. (2019, December). Super Easy
Way to Get Sentence Embedding using fast-
Text in Python. Retrieved May 25, 2020, from
https://towardsdatascience.com/super
-easy-way-to-get-sentence-embedding
-using-fasttext-in-python-a70f34ac5b7c

Van der Knaap, L., & Grootjen, F. (2007, January). Author
Identification in Chatlogs using Formal Concept Analysis.

Waykole, R., & Thakare, A. (2018, April). A Review of Fea-
ture Extraction Methods for Text Classification. Interna-
tional Journal of Advance Engineering and Research De-
velopment, 5(4), 351–354.

9

https://transcripts.foreverdreaming.org/viewforum.php?f=845
https://transcripts.foreverdreaming.org/viewforum.php?f=845
https://transcripts.foreverdreaming.org/viewforum.php?f=845
https://stats.stackexchange.com/q/86425
https://stats.stackexchange.com/q/86425
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
https://stackoverflow.com/questions/41990250/what-is-cross-entropy
https://stackoverflow.com/questions/41990250/what-is-cross-entropy
https://stackoverflow.com/questions/41990250/what-is-cross-entropy
https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3
https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3
https://towardsdatascience.com/super-easy-way-to-get-sentence-embedding-using-fasttext-in-python-a70f34ac5b7c
https://towardsdatascience.com/super-easy-way-to-get-sentence-embedding-using-fasttext-in-python-a70f34ac5b7c
https://towardsdatascience.com/super-easy-way-to-get-sentence-embedding-using-fasttext-in-python-a70f34ac5b7c


A Hardware and software used
The research was conducted on a Dell XPS 13 9350 with 8GB
of RAM and an Intel Core i5-6200U CPU running 64-bit
Windows 10 Home version 1903. The Python version used
was 3.7.0.

Table 4: Libraries used to perform this research including version
number and a description of what they were used for

Package Version Description

autocorrect 1.2.1 Autocorrection
BeautifulSoup 4.9.0 Parsing transcripts’

HTML structure
matplotlib 3.2.1 Creating plots
NLTK 3.5 Removing stopwords and

stemming
numpy 1.18.3 Numeric operations
pandas 1.0.3 Storing, retrieving infor-

mation, obtaining random
samples, and altering data

pathlib 1.0.1 File management
pycontractions 2.0.1 Expanding contracions
requests 2.23.0 Downloading transcripts
scikit-learn 0.22.2.post1 Creating TF-IDF feature

extraction, splitting train
and test data, classifi-
cation using logistic re-
gression, performing grid
search, obtaining log loss
and accuracy

seaborn 0.10.1 Creating confusion matrix
sister 0.1.7 Embedding using fastText

B Parameters used

Table 5: Result of performing grid search with no minimum word
count set on training data

Min word count fastText TF-IDF
C max iter C max iter

- 10.0 250 1.0 500

Table 6: Result of performing grid search with minimum word count
set on training data

Min word count fastText TF-IDF
C max iter C max iter

2 10.0 250 1.0 500
3 1.0 250 1.0 500
4 0.1 250 1.0 500
5 1.0 500 1.0 250
6 10.0 250 1.0 250
7 1.0 250 1.0 250
8 10.0 500 1.0 250
9 1.0 500 1.0 250

10 1.0 500 1.0 250
11 1.0 250 1.0 250
12 1.0 250 1.0 250
13 1.0 500 1.0 250
14 1.0 250 1.0 250
15 1.0 500 1.0 250
16 1.0 250 1.0 250
17 1.0 250 1.0 250
18 1.0 250 1.0 250
19 1.0 250 10.0 250
20 1.0 250 1.0 250
21 1.0 250 10.0 250
22 10.0 250 1.0 250
23 1.0 250 1.0 250
24 1.0 250 1.0 250
25 1.0 250 1.0 250
26 1.0 250 1.0 250
27 1e-05 250 1.0 250
28 1e-05 250 1e-05 250
29 1e-05 250 1.0 250

10



C Data size

Table 7: Data size when setting minimum wordcount

Min word count Data size
Test set Train set

2 10955 43728
3 10113 40453
4 8907 35629
5 7587 30348
6 6386 25439
7 5269 21143
8 4338 17500
9 3550 14556

10 2992 12103
11 2506 10075
12 2075 8407
13 1740 7002
14 1453 5856
15 1233 4939
16 1018 4128
17 852 3450
18 709 2927
19 588 2438
20 508 2049
21 417 1724
22 343 1445
23 298 1198
24 241 1019
25 200 837
26 170 681
27 130 572
28 110 476
29 86 384

D Variance

Table 8: Variance of accuracy when applying a minimum word count
to the test and train set

Min word count Var. test set Var. train set
TF-IDF fastText TF-IDF fastText

2 1.85e-05 1.65e-05 4.64e-06 4.13e-06
3 2.01e-05 1.80e-05 5.02e-06 4.46e-06
4 2.29e-05 2.03e-05 5.70e-06 5.05e-06
5 2.71e-05 2.42e-05 6.62e-06 5.96e-06
6 3.26e-05 2.92e-05 7.90e-06 7.06e-06
7 3.98e-05 3.57e-05 9.45e-06 8.50e-06
8 4.86e-05 4.33e-05 1.14e-05 1.04e-05
9 5.93e-05 5.25e-05 1.36e-05 1.24e-05

10 7.07e-05 6.31e-05 1.62e-05 1.49e-05
11 8.42e-05 7.58e-05 1.91e-05 1.78e-05
12 1.02e-04 9.31e-05 2.28e-05 2.13e-05
13 1.21e-04 1.10e-04 2.69e-05 2.50e-05
14 1.46e-04 1.31e-04 3.17e-05 3.03e-05
15 1.72e-04 1.55e-04 3.71e-05 3.58e-05
16 2.11e-04 1.90e-04 4.40e-05 4.25e-05
17 2.50e-04 2.26e-04 5.20e-05 5.03e-05
18 3.03e-04 2.75e-04 5.91e-05 5.92e-05
19 3.65e-04 3.30e-04 7.14e-05 7.18e-05
20 4.28e-04 3.87e-04 8.45e-05 8.40e-05
21 5.39e-04 4.79e-04 9.90e-05 9.80e-05
22 6.57e-04 5.85e-04 1.15e-04 1.13e-04
23 7.77e-04 7.05e-04 1.40e-04 1.37e-04
24 9.47e-04 8.63e-04 1.60e-04 1.60e-04
25 1.14e-03 1.07e-03 1.94e-04 1.93e-04
26 1.32e-03 1.26e-03 2.38e-04 2.34e-04
27 1.71e-03 1.65e-03 2.80e-04 2.56e-04
28 1.88e-03 1.91e-03 3.07e-04 3.07e-04
29 2.40e-03 2.52e-03 4.02e-04 3.81e-04

11



E Unused results
Accuracy

Figure 7: Average accuracy per minimum word count set on train
dataset

In figure 7, in which the minimum word count is set on the
training data, we can see that TF-IDF’s accuracy starts higher
than fastText’s, but also declines faster. FastText’s accuracy
remains almost constant, until around a minimum word count
of 20. After this minimum word count of 20, TF-IDF’s and
fastText’s accuracy become equal and both continue declin-
ing at the same pace. This result is similar to figure 10, where
random data is selected, and therefore, an increase of the min-
imum word count is not the cause of the change of perfor-
mance.

Cross-entropy loss

Figure 8: Average cross-entropy loss per minimum word count set
on training dataset

The cross-entropy loss when setting a minimum word
count on the train data can be seen in figure 8. FastText’s

loss starts higher than TF-IDF’s. Both fastText’s and TF-
IDF’s loss increase linearly initially, but fastText’s loss drops
slightly from 20 words and eventually has the same loss as
TF-IDF around 25 words on. There is a large negative out-
lier in fastText’s measurement, and two slight outliers in TF-
IDF’s around 20 words. This metric is similar to figure 14,
and the change in performance is therefore due to a decrease
of the training dataset.

12



F Metrics when randomly selecting data
Accuracy

Figure 9: Average accuracy per random data of equal size to mini-
mum word count set on test dataset

Figure 10: Average accuracy per random data of equal size to mini-
mum word count set on train dataset

Confidence in prediction

Figure 11: Confidence in prediction per random data of equal size
to minimum word count set on test dataset

Figure 12: Confidence in prediction per random data of equal size
to minimum word count set on train dataset

13



Cross-entropy loss

Figure 13: Cross entropy loss per random data of equal size to min-
imum word count set on test dataset

Figure 14: Cross entropy loss per random data of equal size to min-
imum word count set on train dataset

14


	Introduction
	Feature extraction
	TF-IDF
	fastText

	Measuring performance
	Experimental setup
	Retrieved data
	Parsed and pre-processed data
	Extracted features
	Classified features
	Evaluated metrics

	Results
	Discussion
	Conclusion
	Future research
	Responsible research
	Hardware and software used
	Parameters used
	Data size
	Variance
	Unused results
	Metrics when randomly selecting data

