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A B S T R A C T

Accurately evaluating battery degradation is not only crucial for ensuring the safe and reliable operation of
electric vehicles (EVs) but also fundamental for their intelligent management and maximum utilization. How-
ever, the non-linearity, non-measurability, and multi-stress coupled operating conditions have posed significant
challenges for battery health prediction. This paper proposes a battery capacity estimation framework based
on real-world operating data. Firstly, a comprehensive feature pool is constructed from the direct external
features extracted during multi-step fast charging processes and the quantitative representation of operating
conditions. Subsequently, a two-step feature engineering is introduced to select the most relevant features and
eliminate the interference components. The battery capacity estimation framework is then implemented using
machine learning methods. Validation results demonstrate that the proposed framework achieves superior
estimation accuracy with lower computational expense compared to the modelling process without feature
engineering. The MAPE and RMSE reach 1.18% and 1.98 Ah, respectively, representing reductions in errors
of up to 8.53% and 11.21%. Collectively, the proposed framework paves the foundation for online health
prognostics of batteries under practical operating conditions.
1. Introduction

Developing electric vehicles (EVs) has been reckoned as the in-
evitable path towards achieving the green and low-carbon transfor-
mation of the global automotive industry and the essential means
to fulfilling a carbon-neutral vision of the road transport sector [1].
Lithium-ion batteries (LIBs) have emerged as the dominant energy
storage device in EV applications due to their high energy density,
reasonable cycle life, and environmental friendliness [2]. However, as
is the case with machines, the LIB components, such as electrodes and
separators, experience varying levels of degradation during cycling,
leading to the irreversible decline of capacity and power. To ensure
the safe, reliable, and efficient use of LIBs, obtaining an accurate
indicator of battery health, namely, the State of health (SOH), is of vital
importance.

Battery SOH can be defined in various forms. It can be defined by
the service time, increased internal resistance, and loss of capacity [3].
Among these measurable variables, accurately determining capacity
loss is more significant to other battery management tasks, such as
driving range estimation and life prediction. Thus, defining the SOH
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as the ratio between the present and initial capacity has drawn broad
attention [4]. However, the capacity measurement requires completely
charging or discharging the batteries with the specific protocols, which
is challenging for batteries in practical use. This motivates the SOH
estimation from daily operation data.

Extensive efforts have been devoted to extracting features cor-
related with battery degradation mechanisms and constructing the
relationships between these features and SOH. The related studies
are commonly categorized into model-based and data-driven meth-
ods. The model-based approach relies on the empirical model or the
physics-based modelling of the degradation behaviour to describe the
declining trajectory of the battery. The empirical/semi-empirical model
ignores the internal reaction mechanism of the batteries and fits the
degradation curve using a predefined parametric function, exhibiting
remarkable performance for laboratory data generated under well-
controlled conditions. However, the extrapolation ability of such mod-
els is limited in changeable working conditions. Thus, this method is
frequently combined with the filtering algorithm to update the model
parameters with the latest available data [5,6]. The electrochemical
vailable online 22 February 2024
360-5442/© 2024 Elsevier Ltd. All rights reserved.
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and equivalent circuit models (ECM) are two commonly used bat-
tery models for the physics-based modelling approach. The former
simulates the whole reaction process inside the batteries under given
operating conditions based on serials of complicated, mutually coupled
partial differential equations [7]. Although the electrochemical model
can accurately simulate the reaction process inside the battery, the
high modelling complexity and computational burden have restrained
its wide applications in embedded battery management systems. The
ECM is more concise than the electrochemical model and is ubiqui-
tously combined with adaptive filters, like Kalman [8,9] and particle
filters [10], to realize accurate states estimation. Though the physics-
based model achieves excellent progress in capturing battery dynamics,
some common obstacles restrict their online application. First, as de-
picted in [11], battery degradation results from diverse, interlaced,
non-linear degradation mechanisms. No single physics-based model can
describe all the mechanisms comprehensively, nor can an effective
approach quantify them separately. Second, the modelling process of
physics-based models involves plenty of electrochemical states and
state-dependent parameters. These states and parameters are unob-
servable and challenging to calibrate by existing in-vehicle sensing
technology [12].

With the staggering progress of big data techniques and the unprece-
dented penetration of artificial intelligence in the battery community,
data-driven methods have attracted tremendous attention for battery
health prognostics. Unlike the model-based methods, the data-driven
approach can map the relationship between several features and bat-
tery health indicators without precisely knowing the mechanisms and
propagation, avoiding the complex modelling process. Moreover, the
data-driven model is more flexible when applied to different systems
and is more feasible in real-world applications [13,14]. Among existing
data-driven techniques, it has been proven that extracting features from
voltage curves can achieve effective SOH estimation. For instance, in-
cremental capacity analysis (ICA) [15,16], differential voltage analysis
(DVA) [17] and differential thermal voltammetry (DTV) [18,19] have
been extensively explored for battery health prognostics. However,
these models are all conducted at repeatable and well-controlled oper-
ating profiles, like constant charging current and ambient temperatures,
which are impractical to achieve in many real-world applications. In
addition, thanks to the significant advantages of fast charging tech-
nology in terms of energy replenishment efficiency, the multi-step fast
charging technique has been gradually adopted by most EV manufac-
turers [20,21]. The higher rate and non-constant current have proposed
inevitable challenges for traditional data-driven techniques. To address
this problem, Hu et al. focused on the peculiarities of the multi-step fast
charging process. They extracted twelve features strongly correlated
with battery degradation mechanisms from the voltage curve. Using
these features as the model inputs, a dual GPR model was constructed to
realize effective battery health prognostics [22]. Although the develop-
ment of the digital twin technique, the cloud system’s high computation
capability and enormous storage space make it possible to imple-
ment advanced high-performance algorithms online for smart battery
usage and health prognostic. It is foreseeable that with the gradual
growth of new energy vehicle ownership, the transmission, storage,
and processing of high-dimensional features will also be expensive
and energy-consuming. Thus, eliminating the redundant features and
extracting effective information before data analysis and developing es-
timation models can help reduce the computation burden and enhance
the model performance [23,24]. Zhang et al. proposed a feature depen-
dence check-and-control scheme incorporating a series of correlation
analyses to select the most relevant and independent features from the
constructed feature pool. Based on the features selected by this scheme,
a highly accurate and robust SOH prediction model was constructed
at a reasonable computation expense [11]. Furthermore, signal de-
composition methods, like empirical mode decomposition (EMD) [25]
and seasonal-trend decomposition based on loess (STL) [26], have
2

attracted tremendous attention in battery health prognostics and fault
diagnosis due to their strong adaptation to abnormal values and broad
adaptability.

Indeed, most existing battery SOH estimation schemes are devel-
oped at the cell or module level, with the data samples for training∕
testing procedures obtained at preset loading profiles and well-
controlled conditions. That means once extrapolating these models to
the system-level assessment tasks under practical operating conditions,
the estimation accuracy and robustness will be inevitably curtailed by
the varying operating temperatures and stochastic usage behaviours.
Besides, although fast charging technology, as a critical enabler of
mainstream EV adoption, has been gradually adopted by manufac-
turers, relatively few studies are designed based on multi-step fast
charging mode, particularly when considering the impact of actual
sampling frequency and driving behaviour simultaneously. Therefore,
it is necessary to establish a battery capacity estimation framework
specific to the realistic operating conditions of EVs.

To overcome these gaps, this paper proposes a systematic battery
capacity estimation framework for EVs, which fully considers the in-
fluence of operating conditions on battery degradation. The exclusive
contributions of this study are summarized as follows:

1. Leveraging the partial multi-step fast charging processes ob-
tained from real-world EVs to directly extract health features that
strongly correlate with battery capacity degradation.

2. Constructing a comprehensive feature pool from extensive EV
operating data, incorporating both direct external features and
quantitative representations of operating conditions, ensures a
realistic reflection of EVs’ practical characteristics.

3. A two-step feature engineering is designed to select the most
relevant features and eliminate interference components from the
constructed feature pool. This enhances the accuracy and reduces
the computational burden of the proposed estimation framework,
even in the presence of diverse degradation patterns.

An overview of the proposed framework is demonstrated in Fig. 1.
The remainder of this study is organized as follows. The detailed
descriptions of the dataset used in this research and the data prepro-
cessing are described in Section 2. After that, the comprehensive feature
pool is then constructed in Section 3. Section 4 elaborates on details
of the proposed feature engineering scheme and the selected machine
learning methods. The systematical analysis and comparison for the
proposed estimation framework is presented in Section 5.

2. Dataset description and data preprocessing

2.1. Description of dataset

The dataset used in this manuscript was directly collected from the
National Big Data Alliance for New Energy Vehicles (NDANEV) (see
Fig. 2), which contains the operational data and other information of
eighty EVs with the exact specifications. All these vehicles are operated
in Guangzhou city (southern China), each with a cumulative mileage of
over 20,000 km and an operation duration of over two years. The de-
tailed static information of studied EVs is listed in Table 1. An example
of the analysed real-world operation dataset is shown in Table 2. Here,
the timestamp represents the moment the data is transmitted to the
cloud platform, and the sampling frequency is set as 0.1 Hz. The voltage
and current of the battery pack are recorded as the total voltage and
current, and the charge current is defined as negative. The highest cell
voltage is the maximum value among the cell voltage list. Moreover,
the battery cell temperature list presents the temperatures measured by
thirty-four probes installed at specific positions inside the pack, and the

average of all probes is denoted as the average charging temperature.
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Fig. 1. The overall flowchart of the proposed battery capacity estimation framework.
Fig. 2. The overall framework of NDANEV open lab.

Fig. 3. Detailed description of the fast charging process.
3

Table 1
The detailed information of the studied electric vehicles.

Parameter Value (Units)

Curb weight 1570 (kg)
Battery type Ternary lithium battery
Battery capacity 153 (Ah)
Battery nominal voltage 346 (V)
Connection method 1P95S
Cell voltage range 2.8 (V)∼4.3 (V)

2.2. Dataset processing

Through observing the charging data and analysing charging pro-
tocols of all eighty EVs, the minimum charging current and mean
charging rate within the interval of 30%∼80% SOC are utilized as
criteria (the minimum charging current lower than -120 A and the
mean charging rate higher than 0.75C) for fast charging segments
identification. Eight vehicles with a high fast charging frequency and
usage are selected from the operation dataset, and each covers the
time duration from May 2019 to April 2022, with mileage ranging
from 40,000 km to 400,000 km. The battery data extracted from the
operation dataset is categorized into charging-related data and driving-
related data. Acknowledging the stochastic nature of driving-related
data and its potential to introduce more uncertainty to battery health
estimation, this study employs charging-related data to calculate the
system output. Consequently, 300∼400 fast charging segments are
extracted from the history of charging processes for each vehicle, and
the detailed description of the extracted fast charging segment is shown
in Fig. 3. Each segment covers the 30%∼90% SOC interval, coinciding
with the high-frequency charging interval of EVs [27].

Labelling the system output before constructing the estimation
model is essential for supervised learning-based battery health prog-
nosis studies. The definition of system output should also be adapted
to the dataset’s source. In well-controlled laboratory environments, the
labelled capacity can be obtained by discharging the battery from the
upper to lower cutoff voltage. However, this method is not applicable
to practically operated EVs, as they are rarely fully cycled, and the
discharge current is highly random. Moreover, the step-wise change
and high charging current rate in the multi-step fast charging process
have also restricted the application of ICA and DVA-based methods. To
effectively indicate battery health in limited data conditions, we calcu-
late the system output based on the deviation of the SOC formula [28],
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Table 2
The example of the studied real-world operation dataset.

Mileage (km) Timestamp Velocity
(km/h)

Total voltage (V) Total current (A) SOC (%) Highest cell
voltage (V)

Cell voltage list (V) Cell temperature
list (◦C)

65 058 2019-6-10
10:55:19

0 354.60 −129.80 40 3.762 3.729_3.733_3.732_... 39_38_38_...

65 058 2019-6-10
10:55:29

0 354.90 −128.80 40 3.766 3.732_3.737_3.736_... 39_39_38_...

65 058 2019-6-10
10:55:39

0 355.20 −129.00 40 3.769 3.734_3.739_3.739_... 39_39_38_...

65 058 2019-6-10
10:55:49

0 355.50 −128.40 40 3.771 3.737_3.741_3.741_... 40_39_39_...
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deduced as Eq. (1).

𝐶𝑎 =
− ∫ 𝑡2

𝑡1
𝐼(𝑡)𝛥𝑡

𝑆𝑂𝐶𝑡2 − 𝑆𝑂𝐶𝑡1

(1)

where 𝑡1 and 𝑡2 are the start and end moments of each charging
segment, 𝐼(𝑡) is the charging current at the moment 𝑡, and 𝛥𝑡 is the fixed
sample interval. The derived capacity values of the sample vehicle are
depicted in Fig. 4(a), revealing a visible declining trend with increasing
mileage. However, non-negligible outliers are also present, primarily
arising from data transmission errors and biases introduced by in-
vehicle SOC estimation methods. To address this issue, we employ
a combination of the moving window and interquartile range (IQR)
methods [29] to eliminate outliers while preserving the evolving nature
of capacity over time. Firstly, the moving window method divides the
battery’s lifespan into individual intervals. Subsequently, the capacity
values within each interval are sorted, and the quartiles, including Q1
(the first quartile), Q2 (the median quartile), and Q3 (the third quar-
tile), are calculated. Then, the upper and lower bounds are established
through the computation of IQR, which are derived as Eq. (2). Points
that exceed the upper or lower bounds are identified as outliers and
removed from this interval, and the filtered capacity values are shown
in Fig. 4(b). In this research, the window size, representing the length
of each data interval, is set to 2 × 104 km, while the moving step size,
indicating the distance between the start points of two neighbouring in-
tervals, is chosen as 1×104 km. The selection of appropriate window size
and moving step size is crucial. The window size should be wide enough
to characterize the capacity distribution within the mileage interval
while remaining small enough to demonstrate significant degradation.
Regarding the moving step size, it is implemented to generate more
data samples based on insufficient datasets while complying with the
progressive nature of the capacity decline.

⎧

⎪

⎨

⎪

⎩

𝐼𝑄𝑅 = 𝑄3 −𝑄1
𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄1 − (1.5 ∗ 𝐼𝑄𝑅)
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 𝑄3 + (1.5 ∗ 𝐼𝑄𝑅)

(2)

Moreover, the capacity calculation results at different mileage in-
tervals for all studied vehicles are delineated through a box plot in
Fig. 4(c). Notably, the mean capacity within each interval exhibits a
decline commensurate with the increasing mileage, with the decline
rate significantly accelerating once the capacity degrades to 80% of
its initial value. This observation further verifies the rationale for
establishing the retirement criteria of EV power batteries at 80% of
their initial capacity. The longitudinal length of the box is positively
correlated with the discrete degree of capacity. Consequently, even
with the same mileage, the degradation status of capacity varies from
vehicle to vehicle, thereby emphasizing the considerable impact of
driving behaviours and external environments on capacity degradation.

3. Feature pool construction

Throughout the life cycle of the LIBs, irreversible internal struc-
ture and composition variations directly lead to their performance
4

degradation. Simultaneously, the intricate operating conditions and s
diverse driving behaviours further influence its degradation rate, thus
contributing to significant differences in degradation trajectory from
vehicle to vehicle. Moreover, the direct external features extracted from
the charge or discharge curve have exhibited excellent performance
and application prospects in battery health prognosis due to their
easier accessibility and strong correlations with the battery degradation
mechanism [30,31]. Given these considerations, the comprehensive
construction of the data feature, incorporating compelling external
direct features and operating condition-related features, is essential for
achieving precise assessments of battery health status. In this section,
we will first extract the direct external and operating condition-related
features from massive real-world operation data and then comprehen-
sively analyse these features to form the feature pool required for health
estimation.

3.1. Direct external features extraction

Voltage-related features. According to the protocol of the multi-
tep fast charging, the charging current for each step is constant and
ill switch to other rates when the maximum cell voltage reaches the

hreshold of this step. During this switching process, the current will
rop rapidly and then rise to the preset value of the next step in a
ew sampling intervals. Along with this current-switching process, the
oltage will respond to the change simultaneously. Moreover, the side
eactions such as the growth and decomposition of solid electrolyte in-
erface (SEI), electrolyte decomposition, and lithium plating will lead to
he irreversible consumption of Li-ions, the increase of impedance, and
he loss of active material (LAM), which further aggravate the change of
oltage [32]. Hence, the voltage sections around the current switching
oints are generally selected to derivate voltage-related features, such
s the peak voltage (𝑃𝑖), valley voltage (𝑉𝑖), voltage drop (𝑑𝑈 𝑖) and
he slope of the voltage curve (𝐾𝑖). These features are validated to
ave strong correlations with the decline of the battery [22]. Fig. 5
nd Table 3 illustrate the detailed extraction methods for voltage-
elated features. It should be noted that the sampling interval (10 s)
nd measurement precision (one decimal place) of the system voltage
ignal in EVs are both significantly inferior to laboratory conditions
which are typically 0.1 s and three decimal places, respectively), thus
nfluencing the reliability of both voltage drop and curve slope features.
onsequently, considering the long duration of the first two charging
teps, only the peak and valley voltage features of these two steps
re extracted. Their evolution trends with accumulative mileage are
hown in Figs. 5(b) and 5(c), from which we can conclude that both the
eak and drop voltage exhibit a gradual ascending trend as the battery
eclines. This phenomenon has been proven to be associated with two
attery degradation modes directly, the increase of internal resistance
nd the irreversible loss of lithium inventory (LLI) [33,34]. Besides, it
lso can be seen that both peak and valley voltage exhibit slight local
luctuations with the variation of average charging temperature, mainly
ttributed to the fact that the increased temperature accelerates the
rowth rates of the SEI layer, thus resulting in faster LLI and resistance
ncrease [5].
Capacity-related features. Along with the increasing internal re-

istance during the degradation of the battery, the voltage will reach
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Fig. 4. The calculated system output. (a) The illustration of the filtering method for system output. (b) The smoothed system output. (c) The evolution trend of system output at
different mileage for the studied vehicles. Mileage is divided at 20,000 km intervals, and each box reflects the degree of discretization of the capacity between different vehicles
at the current mileage.
Table 3
The description of the voltage-related-features.

Feature Description

𝑃𝑖 The peak voltage at the current switching point.
Footnote 𝑖 represents the charging step index, same below.

𝑉𝑖 The valley voltage at the current switching point.

𝑑𝑈 𝑖 The difference between the peak and valley voltage.
The definition is: 𝑑𝑈 𝑖 = 𝑃𝑖 − 𝑉𝑖

𝐾𝑖 Slope of the charging voltage curve.
The feature can be calculated as: 𝐾 = 𝑈𝑖−1−𝑈𝑖−6

5
, where

𝑈𝑖−1 and 𝑈𝑖−6 are the voltage values at point 1 and 6 before
the peak voltage, respectively.

the threshold sooner during charging, thus leading to a decrease in
charging capacity. Ref. [35] has also indicated that regional charge
capacity loss is the most critical factor affecting battery ageing. Taking
the extracted peak voltage as the boundary, the charging capacity
of the second charging step (noted as 𝐶𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙) can also calculated
by the Ampere integral formula. It can be captured from Fig. 5(d)
that the calculated capacity monotonically decreases with increasing
mileage. Additionally, the colour intensity of each point reflects its
average charging temperature, from which we can discover that the
regional capacity did not display noticeable temperature-dependent
variation. This is because the intervals of the selected voltage section
are not fixed, which takes into account the impact of temperature on
5

the peak voltage. Moreover, it further demonstrates that the influence
of temperature on this feature is relatively insignificant compared to
mileage.

3.2. Quantitative representation of operating conditions

As known, lithium-ion batteries’ degradation results from a complex
interplay of multiple internal and external stress factors. The deviations
in the ageing trends and rates are mainly attributed to the following
reasons: (1) The inevitable variations caused by the manufacturing
and assembly process, the electrode thickness and density deviations
play an essential role in the initial capacity, and the rate of capacity
fade [36]. (2) The different operational environments and driving
behaviours, such as the DOD, current rate and temperature, consider-
ably complicate the ageing process and further aggravate the battery
deviations. With the continuous progress in battery manufacturing and
assembly technology, the initial differences in internal parameters are
gradually narrowing. Consequently, accurately capturing the variations
in the operating environment and driving behaviour has progressively
become a necessary procedure to predict battery health status for real-
world vehicles precisely. In view of this, the influence of operating
conditions on battery decline is investigated in this subsection based
on the massive real-world operation dataset.

Temperature-related features. As verified in many accelerated
ageing tests and studies, the temperature accounts for the most signif-
icant impact on battery capacity degradation [37]. High temperatures
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Fig. 5. Visualization of direct external features. (a) The illustration of feature extraction. (b) The evolution trend of 𝑃1. (c) The evolution trend of 𝑉1. (d) The evolution trend of
𝐶𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 .
(above 25 ◦C) would remarkably accelerate the growth of SEI film,
degradation of the cathode and electrolyte decomposition, and the
decline rates of battery increase with rising temperature [38]. On the
contrary, the irreversible consumption of active lithium ions caused by
lithium plating at the anode is the primary concern of low temperatures
(below 25 ◦C), and the ageing rates of battery increase as the temper-
ature decreases. In this study, three temperature-related features are
extracted, including the average charging temperature of the current
fast charging segment (noted as 𝑇𝑐,𝑠𝑒𝑔𝑚𝑒𝑛𝑡), the average charging and
discharging temperature for the interval between two adjacent fast
charging segments (noted as 𝑇𝑐,𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 and 𝑇𝑑,𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙). It can be seen
from Figs. 5(b) and 5(c) that the local fluctuations of voltage-related
features have an unignorable dependency on 𝑇𝑐,𝑠𝑒𝑔𝑚𝑒𝑛𝑡, thus introducing
the 𝑇𝑐,𝑠𝑒𝑔𝑚𝑒𝑛𝑡 could eliminate the influence of temperature on these
features. For the 𝑇𝑐,𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, which can reflect the charging tempera-
ture of each period more reasonably, its influence on the capacity is
demonstrated in Fig. 6(a). As shown, there is an approximately linear
decrease in capacity as 𝑇𝑐,𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 increases, with the linear correlation
coefficient exceeding 0.7, indicating a significant negative influence of
temperature on battery capacity. Besides, the colour intensity of each
point reflects its current mileage status, from which we can discover
that the capacity of high mileage status is significantly lower than that
in high temperatures, proving that the impact of mileage on battery
degradation is more noticeable than the temperature for studied EVs.

Current-related features. The deposition of metallic lithium on the
anode graphite surface reduces the battery life drastically and limits the
fasting-charging capability. In severe cases, the lithium dendrite formed
by lithium plating will penetrate the separator and cause internal
short [39]. Hence, significant research efforts have been devoted to
understanding the lithium plating mechanisms, and the high charging
rate is regarded as one of the three primary factors affecting lithium
plating. Considering this, the average charging and discharging rate
for the interval between two adjacent fast charging segments (noted as
𝐼𝑐ℎ𝑎 and noted as 𝐼𝑑𝑖𝑠) are extracted to comprehensively describe the
common charging and driving behaviours of the studied vehicles. The
impact of the charging rate on capacity is illustrated in Fig. 6(b). It
is evident that as the charging rate increases, the capacity decreases,
6

with a linear correlation coefficient exceeding 0.8. This observation
indicates that a higher charging rate has a detrimental effect on battery
degradation. Similarly, the colour intensity of each scatter reflects its
mileage status. From this, we can discover that under the effects of
both mileage and charging rate, the vehicle with a higher charging rate
in high mileage status exhibits a more noticeable decline trend. This
phenomenon further proves that operating conditions indeed influence
the degradation trend of battery health.

SOC-related features. When the battery is discharged at low SOC,
the abnormal increase of anode potential will lead to the anodic disso-
lution of the copper (Cu) current collector and the formation of 𝐶𝑢2+

ions. The reverse reaction can form copper dendrites upon recharg-
ing, possibly leading to an internal short circuit. Moreover, it has
also been verified that the width of the discharge interval accelerates
degradation rather than the upper and lower boundary of DOD [40].
The average DOD of the driving segments between two adjacent fast-
charging processes is calculated to describe the daily driving distance.
Note that during the division of driving segments, the discharging data
between two neighbouring and valid charging sequences is considered
one complete driving segment so that the practical driving habits of the
vehicle can be reproduced as accurately as possible. The influence of
DOD on capacity is shown in Fig. 6(c). It can be seen that the capacity
decreases with the increasing DOD, indicating that the high DOD would
exacerbate battery degradation. In addition, from the accumulative
mileage distribution, the driving sequences with DOD above 40% are
mainly concentrated after 250,000 km, which may also be regarded as
one of the primary reasons for the rapid decline of capacity in the later
stage (as shown in Fig. 4(c)).

The above feature pool construction scheme systematically extracts
the direct external features strongly correlated to battery degrada-
tion mechanisms and quantitatively represents the effects of operating
conditions on the capacity decline. Based on that, a comprehensive
feature pool (noted as 𝐹𝐴𝑙𝑙) specific to real-world electric vehicle ca-
pacity estimation demands is preliminarily constructed, which provides
the foundation for subsequent feature selection and estimation model
development.
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Fig. 6. The quantitative representation of operating conditions. (a) The influence of charging temperature on the capacity decline. (b) The effect of charging rate on the capacity
decline. (c) The influence of DOD on the capacity decline.
4. Feature engineering and model development

4.1. Feature engineering

Based on the constructed feature pool, the principle of feature
engineering is to process and select features to retain sufficient infor-
mation, improving the accuracy and robustness of associated methods
at the expense of acceptable computation. To achieve this, a series of
correlation analyses between each feature and the system output is
first conducted to select the most relevant features and avoid selecting
strongly interdependent features. Following that, a time series decom-
position method is employed to remove the seasonal fluctuations and
outliers of the selected features.

Feature dimensionality reduction. As mentioned, the constructed
data feature should render the associated methods highly accurate
and robust at the expense of reasonable computation. To achieve
this purpose, a series of correlation analyses are conducted, includ-
ing the feature-to-feature and the feature-to-system output, paving
the way for determining the most relevant features while avoiding
selecting strongly interdependent components [11]. When selecting
the correlation analysis method, Spearman, as a non-parametric test,
does not necessitate specific assumptions about data distribution and
remains insensitive to outliers [41–43]. Consequently, it serves as the
primary method for correlation analysis in numerous battery health
management studies based on real-world datasets [43]. Leveraging
these advantages, Spearman correlation analysis is employed here to
quantify the strength and direction of the monotonic association be-
tween two variables, which is computed as Eq. (3). Firstly, based on
the absolute value of their relational coefficients measured by Spear-
man, the correlation between each feature 𝑥𝑖 and capacity change
𝑦 is assigned the score 𝐶𝑥 𝑖−𝑦 (a value between 0 and 1). Then, the
features with scores below the preset threshold will be eliminated.
Based on preliminary correlation analysis, a feature dependence check-
and-control scheme based on Spearman correlation analysis is again
introduced to identify and discard the strongly related features. The
detailed procedures are described in Table 4.

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 =
∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)
√

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥)2(𝑦𝑖 − 𝑦)2

(3)

where 𝑥 and 𝑦 represents the reference and comparative sequence sepa-
rately, 𝑛 means the length of the sequence. In this research, the capacity
and the features in the constructed feature pool are successively defined
as the reference sequence.

In statistical terms, a strong correlation between variables is deemed
to exist when the absolute value of the correlation coefficient ex-
ceeds 0.75. Conversely, a correlation between variables is considered
weak when the absolute value of the correlation coefficient is below
0.25 [44]. Thus, the 𝐶𝑙𝑜𝑤 and 𝐶ℎ𝑖𝑔ℎ in this study are set as 0.20 and
0.80 separately. The averaged correlation matrices for the constructed
feature pool and the selected features are presented in Fig. 7. In
7

Table 4
The detailed procedure of feature dependence check-and-control scheme.
Step 1 Reference feature selection.

The feature with the highest score relative to the capacity
change is selected from the remaining features and denoted
as the 𝑥𝑖 (start with 𝑖 = 1);

Step 2 Correlation score calculation.
Employee the Spearman correlation analysis to calculate the
correlation scores of all other features 𝑥𝑗 (𝑗 > 𝑖) relative to 𝑥𝑖
and denote them as 𝐶𝑥𝑗−𝑥𝑖 ;

Step 3 Cross-correlation analysis.
Compare the calculated correlation scores with the preset
threshold 𝐶ℎ𝑖𝑔ℎ and the feature 𝑥𝑖 will be removed whenever
𝐶𝑥𝑗−𝑥𝑖 > 𝐶ℎ𝑖𝑔ℎ.

Step 4 Increase the index from 𝑖 to 𝑖 + 1 and repeat from step 1
again.

comparing the two correlation matrices, the interdependence between
the 𝑉𝑖 of each charging step and the corresponding 𝑃𝑖 is evident, as
indicated by the high correlation coefficient denoted by the green
square. However, the 𝑉𝑖 of each charging step shows a lower correlation
with capacity than the 𝑃𝑖, so we have decided to remove it from the
feature pool. In addition, features like 𝐼𝑑𝑖𝑠, 𝑇𝑐,𝑠𝑒𝑔𝑚𝑒𝑛𝑡 and 𝑇𝑑,𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, with
low correlation to capacity, are also eliminated from the feature pool.
The performance of this feature dimensionality reduction technique in
capacity estimation will be discussed in Section 5.

Seasonal fluctuation decoupling. As demonstrated in Fig. 5(b),
the peak voltage exhibits periodic fluctuations due to the change of
seasons. To eliminate the influence of seasonality, we introduce the
seasonal-trend decomposition based on the loess (STL) method to de-
compose the original data into additive variation components (as de-
duced by Eq. (4)), including seasonality, trend and remainder. Then,
the 𝑃𝑖 in data feature after dimensionality reduction (as shown in
Fig. 7(b)) is replaced with its trend component, and the obtained data
feature is denoted as 𝐹𝑆𝑇𝐿. Additionally, to verify the effectiveness of
the STL approach, we refer to the decoupling philosophy of conven-
tional machine learning techniques, adding the 𝑇𝑐,𝑠𝑒𝑔𝑚𝑒𝑛𝑡 to the data
feature presented in Fig. 7(b) instead of decomposing the 𝑃𝑖 and noting
the constructed data feature as 𝐹𝑇 𝑒𝑚. The complete feature lists for 𝐹𝐴𝑙𝑙,
𝐹𝑆𝑇𝐿 and 𝐹𝑇 𝑒𝑚 are provided in Supplementary materials.

Compared to other decomposition techniques, the significant ad-
vantages of STL lie in its robust adaptation to outliers of raw data
and application for large amounts of time series data without any
mathematical modelling [26,45]. Generally, the iteration mechanism
of STL consists of two recursive procedures, the inner and outer loops.
During each inner loop iteration, the seasonal and trend components
are updated by the seasonal and trend smoothing. When each inner
loop is completed, the remainder component is calculated based on the
updated seasonal and trend components. Then, based on the calculated
remainder components, the robust weights are further computed to
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Fig. 7. The feature dimensionality reduction results and corresponding Spearman correlation matrix. (a) The correlation matrix for the constructed feature pool. (b) The correlation
matrix for the selected features.
reduce the interference of outliers to the subsequent inner loop.

𝑋𝑡=𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡 (4)

where 𝑋𝑡 is the original time series data, 𝑇𝑡, 𝑆𝑡, and 𝑅𝑡 represent
the trend component, the seasonal component, and the remainder
component after decomposition, respectively. The detailed procedures
of the inner loop are described as follows:

Step 1: Detrending. Remove the trend component from the
original time series data. For the (𝑘 + 1)th iteration of the inner
loop, the trend component of 𝑘th iteration 𝑇𝑡𝑘 is removed from
𝑋𝑡, i.e. 𝑋𝑑𝑒𝑡𝑟𝑒𝑛𝑑

𝑡 ← 𝑋𝑡 − 𝑇 𝑘
𝑡 .

Step 2: Seasonal smoothing. Taking advantage of Loess
smoother, the cycle-subseries 𝑋𝑑𝑒𝑡𝑟𝑒𝑛𝑑

𝑡 obtained from 𝑆𝑡𝑒𝑝 1 is
smoothed to obtain a preliminary seasonal component 𝑆𝑘+1

𝑡 .

Step 3: Low-pass filtering of the smoothed seasonality. The
𝑆𝑘+1
𝑡 obtained in 𝑆𝑡𝑒𝑝 2 is first processed using a low-pass filter,

which is comprised of three procedures: the first step is a moving
average of length 𝑛, 𝑛 is the number of samples in a period.
Following that, a moving average of length 𝑛 is implemented
again, and the third step is a moving average of length 3. Then,
the loess regression is applied to identify any remaining trend
𝑇 𝑘+1
𝑡 .

Step 4: Detrending of smoothed seasonality. The additive sea-
sonal component 𝑆𝑘+1

𝑡 is computed as the difference between
the low-pass values and the preliminary seasonal component,
i.e., 𝑆𝑘+1

𝑡 = 𝑆𝑘+1
𝑡 − 𝑇 𝑘+1

𝑡

Step 5: Deseasonalizing. Reduce the seasonal component 𝑆𝑘+1
𝑡

from the original series 𝑋𝑡 to obtain a seasonally adjusted series,
i.e. 𝑋𝑑𝑒𝑠𝑒𝑎𝑠𝑜𝑛

𝑡 = 𝑋𝑡 − 𝑆𝑘+1
𝑡

Step 6: Trend smoothing. The seasonally adjusted
series 𝑋𝑑𝑒𝑠𝑒𝑎𝑠𝑜𝑛

𝑡 obtained in 𝑆𝑡𝑒𝑝 5 is smoothed by a Loess
smoother to obtain the trend component 𝑇 𝑘+1

𝑡 .

Upon the accomplishment of the inner loop, the obtained trend and
seasonal components are used to compute the remaining component
𝑅𝑘+1
𝑡 = 𝑋𝑡 − 𝑆𝑘+1

𝑡 − 𝑇 𝑘+1
𝑡 . Additionally, any large values in 𝑅𝑡 are

regarded as outliers, whose weights are calculated in the previous
iteration of the outer loop and further used to reduce the effects of
outliers in the following inner loop. The original time series data is
decomposed into seasonal, trend, and remainder components through
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the above procedures. Generally, the decomposition window of STL
should be an integer multiple of the data period to reflect the original
data’s trend accurately. However, for the real-world dataset used in
this research, due to the differences in vehicle usage behaviour and
fast charging frequency, the number of effective charging segments
that can be extracted from different vehicles and their time duration
also varies. However, it is unable to adjust adaptively. In view of this,
the decomposition window for each vehicle is adjusted to the average
number of fast charging segments extracted from its operation data
per year. In addition, we also adapt the decomposition window to the
average number of fast charging segments extracted from its operation
data per season and smooth the peak voltage signals with support
vector regression (SVR). The decomposed and smoothed results are
shown in Fig. 8. It can be seen that both the smoothed voltage signals
with SVR and the trend component decomposed with the seasonal
benchmark still reveal significant seasonal fluctuations. In contrast,
adapting the decomposition window with a yearly benchmark can
effectively remove the seasonal components. In the validation section,
the differences in SOH estimation performance caused by different
decomposition windows will be discussed in detail.

4.2. Estimation model development

The task of battery health estimation can be formulated as a re-
gression problem within the supervised learning framework. Among
an extensive toolbox of machine learning methods for the non-linear
model regression, GPR [46], random forest regression (RFR) [47], and
eXtreme gradient boosting (XGBoost) [48] are very powerful and have
been widely applicated in various scenarios. Although these meth-
ods may have disadvantages, they also have advantages and can be
considered promising candidates for battery health prognosis. During
the training of the estimation models, the constructed data features
𝐹𝐴𝑙𝑙, 𝐹𝑆𝑇𝐿, and 𝐹𝑇 𝑒𝑚 are defined as the model input, respectively.
The calculated capacity is used as the model output. Taking advantage
of the powerful integration of the scikit-learn library, the machine
learning methods employed in this framework can be easily obtained,
and their detailed descriptions are provided in Supplementary Material.
During the model training process, the grid research technique is used
for hyperparameter tuning, with which the optimal hyperparameter
combinations for each model are identified separately. The detailed
hyperparameter values of grid research used for different machine
learning methods are provided in Table 5. Additionally, all the present
procedures and results were accomplished using publicly available
libraries integrated in Python (version 3.8.8) with an Intel i7 CUP and
32 GB RAM.



Energy 294 (2024) 130773D. Zhang et al.
Fig. 8. Decomposing the seasonal components from the peak voltage. (a) The decomposition result of 𝑃1. (b) The decomposition result of 𝑃2.
Fig. 9. The summarization of all required modules and their connections.
The required modules and their connections to establishing the
framework are summarized in Fig. 9, demonstrating the offline devel-
opment path based on historical data and the online application path
with streaming data. In the offline development stage of the proposed
capacity estimation framework, the historical operating data of EVs
with the same type is used for feature pool construction, feature dimen-
sionality reduction and decoupling, and the training of the estimation
model. The historical dataset is sufficiently labelled while covering long
time and mileage duration, which ensures the estimation model can
be well-trained. Once the developed model is embedded into the cloud
platform, it can accurately reconstruct the capacity degradation process
for the same type of vehicles using the data feature 𝐹𝑆𝑇𝐿 constructed
from streaming data as input. Compared to the historical data, stream-
ing data covers a relatively short time span and is inadequately labelled,
which could be obtained from BMS or cloud platforms during regular
maintenance.

5. Results and discussion

The battery capacity estimation framework specific to real-world
EVs is developed with the foundational works introduced in the pre-
vious section. Based on that, a systematical analysis and comparison
will be conducted in this section. Here, the operation data of five
9

Table 5
The detailed hyperparameter values of grid research used for different machine learning
methods.

Model Hyperparameter

GPR Kernel function: RBF kernel, 2/5 Matérn Kernel, 2/3
Matérn Kernel

RFR Number of trees: [100, 200, 500]
Maximum tree depth: [8, 9, 10]

XGBoost Number of trees: [100, 200, 500]
Maximum tree depth: [2, 3, 5]

electric passenger vehicles in the selected dataset are considered the
training sample, while the rest are labelled as the test sample. The mean
absolute percentage error (MAPE) and root mean squared error (RMSE)
are leveraged to gauge the estimation performance of the proposed
method.

5.1. Results of battery capacity estimation

In this subsection, the performance of 𝐹𝑆𝑇𝐿 in battery health assess-
ment is analysed using the excellent non-linear regression capability of
the machine learning methods. The estimated battery capacity, utilizing
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Fig. 10. Battery capacity estimation results based on the proposed framework. (a)–(c) exhibit the estimated capacity values of test vehicles, respectively. The orange dotted lines
are the bounds of ±2.5% estimation error.
Table 6
The battery capacity estimation results of the proposed framework.

Decomposition window Test vehicle GPR RFR XGBoost

RMSE (Ah) MAPE (%) RMSE (Ah) MAPE (%) RMSE (Ah) MAPE (%)

Seasonal benchmark

Vehicle No. 1 3.85 2.28 1.81 1.09 3.78 2.37
Vehicle No. 2 2.74 1.61 1.75 1.03 2.87 1.75
Vehicle No. 3 3.35 2.02 2.57 1.58 3.27 2.02
Average 3.32 1.97 2.04 1.23 3.27 2.02

Yearly benchmark

Vehicle No. 1 3.26 1.96 1.74 1.02 3.12 1.88
Vehicle No. 1 2.43 1.43 1.60 0.94 2.30 1.31
Vehicle No. 1 3.66 2.18 2.61 1.59 3.61 0.27
Average 3.11 1.86 1.98 1.18 3.01 1.92
the yearly benchmark with RFR as an example, is illustrated in Fig. 10.
It can be observed that the vast majority of the estimated capacity
values for all test vehicles fall within ±2.5% error bounds, indicating
that the constructed estimation model can accurately capture the de-
cline trajectories of each vehicle, even in the presence of significant
variations in degradation patterns among different vehicles. To further
clarify the effect of the decomposition window selection on model per-
formance, numerical accuracy for both seasonal and yearly benchmarks
is summarized in Table 6. Notably, the results indicate that decom-
posing the voltage signals with the yearly benchmark yields higher
estimation accuracy when compared with the seasonal benchmark,
both from the individual performance and the global perspective. This
is attributed to the fact that, for the operation data used in this study,
the alternation of seasons plays a more significant role in the evolution
of features. In contrast, changes in ambient temperature within a single
season may have less impact on the monotonicity of features, as shown
in Fig. 8. For the results obtained from the yearly benchmark, the
RMSE and MAPE of different machine learning methods are below
3.20 Ah and 2.00% separately, which satisfies the requirements of
many industrial applications that typically demand an error of fewer
than 5.00% [49]. Among all selected machine learning methods, RFR
outperforms all its alternatives with the MAPE of 1.18% and the RMSE
of 1.98 Ah, respectively. These results further corroborate the feasibility
of the proposed framework for real-world battery health prognosis.

5.2. Effectiveness verification

As detailed in Section 4.1, in addition to removing the seasonal
component from the peak voltage using the STL method, we decouple
the temperature and voltage signal by incorporating 𝑇𝑐,𝑠𝑒𝑔𝑚𝑒𝑛𝑡 to the
reduced-dimensional data feature. To further substantiate the effective-
ness of 𝐹𝑆𝑇𝐿, we also perform the battery capacity estimation case with
the constructed feature pool 𝐹𝐴𝑙𝑙. Subsequently, the performance of all
data features regarding estimation accuracy and efficiency is compared.
The distributions of capacity error with 𝐹𝑆𝑇𝐿, 𝐹𝑇 𝑒𝑚 and 𝐹𝐴𝑙𝑙, utilizing
RFR as the estimation model, are depicted in Fig. 11. The numerical
accuracy for the estimation cases based on different data features is
summarized in Table 7. From a global perspective, the MAPE for all
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Table 7
The numerical accuracy and computational cost of the degradation trajectory prediction
based on each data feature.

Data feature RMSE (Ah) MAPE (%) Computational time (s)

Training Testing

𝐹𝑆𝑇𝐿 1.98 1.18 81.43 0.05
𝐹𝑇 𝑒𝑚 2.13 1.24 84.42 0.05
𝐹𝐴𝑙𝑙 2.23 1.29 105.92 0.07

three data features is below 1.30%, and the RMSE is less than 2.30 Ah.
Notably, 𝐹𝑆𝑇𝐿 exhibits the most favourable performance, achieving an
RMSE of 1.98 Ah and a MAPE of 1.18%. It is closely trailed by 𝐹𝑇 𝑒𝑚
with an RMSE of 2.13 Ah and a MAPE of 1.24%. In comparison, 𝐹𝐴𝑙𝑙
displays the highest estimation error among the three. The enhance-
ment for 𝐹𝑆𝑇𝐿 compared to 𝐹𝐴𝑙𝑙 amounts to 11.21% and 8.53% in
terms of RMSE and MAPE, separately. When looking into the details,
𝐹𝑆𝑇𝐿 performs optimally in the vast majority, both in the maximum and
mean of capacity error. Furthermore, when considering computational
cost, it can be observed that the estimation models relying on 𝐹𝑆𝑇𝐿
and 𝐹𝑇 𝑒𝑚 necessitate less training and testing time in comparison to the
model that is reliant on 𝐹𝐴𝑙𝑙. This reduction in training time amounts to
23.12%. Although the reduction in testing time is not noticeable with
the current data scale, this strength will be more pronounced as the
size of the operation dataset grows. The comparisons above illustrate
that the feature dimensionality reduction significantly enhances com-
putational efficiency by eliminating irrelevant and redundant features.
Simultaneously, it optimizes model prediction accuracy to some extent.
Building upon this foundation, the STL method can further enhance
model estimation accuracy with superior trend component capturing
and outlier elimination capabilities. Consequently, combining the di-
mensionality reduction technique and the STL method enhances the
model estimation accuracy while reducing the computational cost.

Although the constructed feature pool and proposed feature engi-
neering method are all conducted with the ternary lithium-ion battery,
it can be confirmed that this estimation framework is also suitable
for other types of lithium-ion batteries. This can be claimed as the
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Fig. 11. The distributions of percentage error with 𝐹𝑆𝑇𝐿, 𝐹𝑇 𝑒𝑚 and 𝐹𝐴𝑙𝑙 .

similar degradation mechanisms among the commonly used lithium-
ion batteries [50] and the excellent generalization of current change
point-based features [22,51].

6. Conclusion

Data-driven modelling has demonstrated impressive potential in
battery health prognostics. Still, most existing models are commonly
developed at specific testing profiles, which may not fully capture the
realistic operating characteristics of EVs. This limitation can lead to
deficiencies when these models are directly migrated to real-world
scenarios. To address these challenges, we propose a battery capacity
estimation framework applicable to real-world EVs under multi-step
fast charging scenarios. By exploring the intrinsic ageing information
from the partial voltage curve, multiple health features that are strongly
correlated with battery capacity are derived. Then, by integrating these
direct features with quantitative representations of operating condi-
tions, a comprehensive data feature pool is constructed to effectively
reflect the ageing trajectory of the battery capacity and accurately
quantify the influence of operating conditions on degradation. Ad-
ditionally, a two-step feature engineering is designed to remove the
irrelevant features and eliminate the interference components from the
feature pool. The obtained results showcase the effectiveness of our
proposed framework in achieving impressive estimation accuracy and
computational efficiency, even in the presence of dramatic differences
in vehicles’ degradation patterns. With a MAPE of 1.18% and an RMSE
of 1.98 Ah, the proposed framework effectively satisfies the safety
management requirements of electric vehicles in real-world environ-
ments. Notably, this represents a relative error reduction of more than
11.21% and 8.53% compared to the traditional modelling approaches.
Furthermore, there is a significant relative enhancement in both train-
ing and testing times, reaching 23.12% and 28.57%, respectively. This
advantage is expected to become even more substantial as the dataset
size continues to expand.

Overall, this framework paves the foundation for online health
prognostics of batteries under practical operating conditions. In future
work, the stability and reliability of the proposed framework need to
be further verified with different usage scenarios, such as different
operating areas and purposes. Besides, the adaptive modification for the
decomposition window and the transfer optimization of the estimation
model will also be an interesting and significant research focus.
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