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Executive Summary 
The Dutch banking sector is mandated to identify and report transactions that may signify money 
laundering (ML) activities. Banks have been reliant on rule-based transaction monitoring (TM) 
systems that flag transactions exceeding predefined thresholds. While such systems are 
instrumental in filtering potential ML transactions, the inherently small prevalence rate of ML 
occurring in the vast majority of financial transactions causes these systems to produce only a 
limited number of flagged transactions. Furthermore, as flagged transactions are only those 
surpassing certain rule thresholds, the alerts are biased toward presumed risk distributions. 
Consequently, this causes the performance regarding transactions that go unreviewed but should 
have been flagged, so-called false negatives, to remain unknown. This lack of understanding is a 
critical gap in the efficacy of current anti-money laundering (AML) controls and motivates the 
need for better insights into this False Negative Rate (FNR). 

Addressing this critical need for enhanced discernment of FNR, this study aims to improve this 
knowledge gap by answering the following research question: ‘To what extent could a supervised 
machine learning classifier, when trained on historical alerts, assist Dutch banks in estimating the 
False Negative Rate of rule-based transaction monitoring systems concerning unreviewed 
transactions?’. To achieve this goal, this study adopts a mixed-methods research design by 
combining a literature review with seven interviews with domain specialists to acquire insights 
into transactional ML typologies and the underlying indicators and thresholds employed in 
existing rule-based TM systems. The study further extended to the development of eight different 
types of supervised machine learning classifiers, applied both using their default settings as well 
as with balancing measures in place when possible. These classifiers were trained on two 
synthetically generated datasets of both 180 million transactions, one with a high and one with a 
low ML prevalence rate, indicating the relative frequency of ML transactions. These mirrored real 
transactional patterns in order to evaluate the feasibility of estimating the FNR pertaining to 
unreviewed transactions utilizing historical data on flagged transactions. In addition to 
establishing the effect of both different ML prevalence rates on performance, we also explored 
whether combining data from multiple financial institutions into one shared information 
perspective could be of additional value. 

The findings indicate that the classifiers struggle to accurately predict the FNR, especially in 
scenarios of low ML prevalence and without combining information from multiple institutions. 
There is a significant discrepancy between the actual (0.729 to 0.988) and predicted FNRs (0.156 
to 0.649), even in higher ML prevalence settings. The low performance, as evidenced by poor Area 
Under Precision-Recall Curve (AUPRC) and Matthews Correlation Coefficient (MCC) scores, 
highlights the challenges in using machine learning for ML transaction detection in Dutch 
banking, calling for further research and development of more advanced detection models. 

Despite the restrained success in accurately estimating FNR through supervised machine 
learning classifiers, the insights derived from this research are of considerable value. They 
prompt a critical examination of the current TM systems and suggest a pivot toward more 
sophisticated machine learning techniques for FNR estimation. The findings serve as a start for 
Dutch banks to refine their AML strategies and enhance the integrity of financial systems by 
exploring and potentially integrating more nuanced and data-driven approaches for detecting ML 
activities. 

To address limitations such as modest prediction accuracy and a significant gap between actual 
and predicted FNRs, it is essential to explore typology-specific models that are finely tuned to 
distinct ML patterns. This recommendation aligns with the key limitation of current classifiers' 
performance being intertwined with various parameters and typologies. Collaborative data 
sharing among financial institutions, underpinned by secure protocols, also emerges as a crucial 
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strategy for enhancing ML detection, overcoming the challenge of limited data 
representativeness. 

Future research should focus on developing balanced datasets with advanced sampling 
techniques to better address class imbalance, and exploring graph-based machine learning 
methods that capture complex transactional relationships. Additionally, considering the 
limitation of current datasets validated primarily against U.S. data, further research must ensure 
contextual relevance to the Dutch banking landscape. This includes the integration of external 
data sources for a broader contextual understanding and long-term data analysis for evolving ML 
tactics. 
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1. Introduction 
Money laundering (ML) is a significant global issue, and the Netherlands plays a prominent role 
on the world stage with an estimated amount of 16 billion euros being laundered annually (Baazil, 
2022; Teeffelen, 2018). To counter this, gatekeepers in the Dutch financial system, such as banks, 
are required by the Anti-Money Laundering and Anti-Terrorist Financing Act (Wwft) to adopt 
anti-money laundering (AML) measures. This means that they must assess the risks customers 
entail (Know Your Customer; KYC) and report unusual transactions to the Financial Intelligence 
Unit (FIU) (DNB, 2021; FIU-Nederland, n.d.-b). Therefore, Dutch banks conduct thorough 
Customer Due Diligence (CDD) before onboarding new clients and continue to monitor their 
customers' activities while providing services, using, among others, so-called Transaction 
Monitoring (TM) processes. Banks increasingly deploy computer systems for those TM purposes, 
which create alerts for flagged transactions deemed unusual for subsequent manual investigation 
(Chau & Nemcsik, 2020). These systems may adopt either a traditional rule-based approach - e.g., 
flagging transactions that exceed a certain threshold – or a machine learning approach, which e.g., 
operates based on identified patterns in historical data. Currently, predominantly traditional 
rule-based TM systems are in place (Gerlings & Constantiou, 2022, p. 3474). 

Interestingly enough, however, the predominant focus of academia within this domain has been 
directed towards research further enhancing and refining ML detection algorithms for TM 
purposes. Conversely, more traditional rule-based TM systems have received relatively limited 
attention for potential advancements. Thus, despite the prevalence of rule-based TM systems in 
current practice, a significant gap exists in the academic research concerning those systems in the 
context of their efficiency and potential vulnerabilities. This lack of interest persists whether the 
objective is to enhance these systems directly or to derive a more generalized understanding of 
their workings and limitations. 

This lack of academic focus leads us to an important issue. Due to the selective approach of rule-
based TM systems as well as to the inherently low prevalence rate of ML relative to total 
cashflows, TM systems within most (larger) banks only flag a relatively limited percentage of 
transactions (UNODC, n.d.-a). This limited number of alerts consists only of those transactions 
with a high deemed risk, thus exceeding preset thresholds. All alerts are then manually 
investigated after which they are reported as unusual or not. This gives banks insight into the 
unusual rate on a presumed high-risk subset of the transactions – namely those being flagged - 
but leaves a blind spot regarding the usually vast majority of transactions that never undergo 
manual investigation, creating a potential risk (Tertychnyi et al., 2020; Vassallo et al., 2021). 
Simply rephrased, banks possess awareness of the unusual rate of transactions they have 
detected but lack knowledge of the transactions they have missed. However, potentially quite a 
material share of the 'non-flagged' transactions might warrant manual review. Thus, there exists 
an urgent requirement to improve the evaluations of rates of TM models regarding transactions 
that have been inaccurately left unreviewed. This can be measured using the False Negative Rate 
(FNR), a metric that quantifies the rate at which actual unusual transactions are mistakenly not 
flagged by the system. 

To address the knowledge gap, this study aims to assess the feasibility of estimating the FNR 
pertaining to unreviewed transactions. The objective is to train models on historical typology-
specific subsets of transactional data which can then detect ML transactions for a larger unseen 
set. To this end, the methodology employs supervised machine learning classifiers as they are 
adept at learning from complex data patterns and adapting to new ML typologies, surpassing the 
limited scope of rule-based systems that rely on fixed thresholds. Due to the difficulty of obtaining 
(accurate) real-world transactional data and ensuring accurate ground-truth labeling, synthetic 
transaction datasets with labeled ML behavior replicating the complexities of real banking 
transactions were used within a clinical setting. Against this backdrop, this study sets forth the 
following research question: 
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To what extent could a supervised machine learning classifier, when trained on historical alerts, 
assist Dutch banks in estimating the False Negative Rate of rule-based transaction monitoring 

systems concerning unreviewed transactions? 

Currently, the forefront of the field suggests the theoretical possibility of statistically estimating 
the FNR pertaining to unseen transactions. However, the concept remains significantly 
underexplored to date due to academia's preoccupation with enhancing machine learning 
approaches for AML purposes, thereby creating a lack of interest in rule-based TM systems. 

However, interest regarding the feasibility of FNR estimation has increased due to multiple 
reasons. First, the New York State Department of Financial Services issued a new regulation in 
2017, which imposed measures on regulated financial institutions to test whether their AML TM 
systems are on par with the regulation and the institutions' risk assessment (NYSDFS, n.d.; 
Ortwine, 2017). As it mandates the use of technology within AML model risk management, it has 
led to an increased interest in statistical evaluations of TM systems. Due to the importance of New 
York City as a worldwide financial hub, this regulation also impacted non-US international banks 
with branches or offices in the U.S., including Dutch ones, directly and indirectly (McGettigan, 
2017). As the control over easily identifiable and observable risks continues to strengthen, 
attention is now shifting toward the identification and assessment of latent vulnerabilities within 
existing TM systems. Second, until recently, TM systems were predominantly overseen by the 
compliance departments of banks, which generally tend to consider them from a legal rather than 
a technical or statistical perspective. 

This study is structured into two research phases and four sub-questions, aiming to guide the 
inquiry and subsequently answer the overarching research question. The deliverable of the first 
phase is an overview of the most common transactional ML typologies in the Netherlands, their 
key indicators and the thresholds. This informed the development of a simulated rule-based TM 
system, providing a historical alert dataset and the actual FNR of the rule-based TM system. The 
second phase outlines which statistical methods can be used to classify unreviewed ML 
transactions based on historically reviewed transactions in order to obtain a predicted FNR. 

Phase 1 – Understanding Typologies and Rule-Based Monitoring 

- SQ1. What are the most common transactional money laundering typologies within the 
Dutch banking system? 

- SQ2. Which indicators are most predictive of common transactional money laundering 
typologies in the Dutch banking sector? 

- SQ3. What are the thresholds used for key indicators in the rule-based transaction 
monitoring systems employed by Dutch banks? 

Phase 2 – Machine Learning Classification for Transaction Analysis 

- SQ4. Which supervised machine learning classifiers, recommended by literature, 
demonstrate the highest efficacy in predicting unusual transactions indicative of money 
laundering? 

This study has been conducted in two phases. The first phase consisted of a literature review and 
seven interviews with AML specialists and entailed finding out how rule-based TM models of 
banks decide on flagging certain transactions. These qualitative methods were deliberately 
chosen for their ability to capture the nuanced perspectives and practical knowledge of 
practitioners and experts in the field. They provided valuable insights, revealing the decision-
making processes and operational challenges inherent in these systems. Additionally, this phase 
outlined what common ML typologies in the Netherlands are and how the thresholds of key 
indicators for those typologies can be assumed. Altogether, this knowledge informed the 
development of a simulated rule-based TM system, providing artificially generated (synthetic) 
datasets of bank transactions containing multiple types of ML typologies common within the 
Dutch financial banking system. 
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In the second phase, we selected supervised machine learning classifiers known for their 
effectiveness in detecting unusual transactions. These classifiers were trained using typology-
specific subsets of transactions that would have triggered real-world alerts by exceeding the 
predefined thresholds of ML indicators. By making predictions for unreviewed transactions using 
the trained classifiers, statistical evaluations of these predictions provided insights into the 
feasibility of estimating the FNR pertaining to unreviewed transactions. 

This study aims to contribute to a better understanding of the current rule-based TM system’s 
overall performance. Besides advancing academic knowledge, Dutch banks and regulatory 
authorities can leverage this information to more effectively assess risks associated with 
unreviewed transactions and to better align these risks with their risk appetites, promoting a 
more integer Dutch financial system. Moreover, the resolution of this research question holds 
significant societal implications and extends beyond the financial sector. Firstly, it aligns with 
Goal 16 of the United Nations Sustainable Development Goals, which entails the need for robust 
measures to detect and prevent ML as essential to fostering sustainable economic development 
(Canhoto, 2021; UNODC, n.d.-b). The societal significance of this issue is further underlined by 
ongoing initiatives from the European Union and the Dutch government. Both are intensifying 
their regulatory frameworks and operational efforts to counter financial crime, including ML 
(European Commission, 2021; Ministerie van Algemene Zaken, 2022). Should the outcomes 
prove promising, the concept of FNR estimation could pave the way for subsequent evaluations 
using real-world TM systems and data, employing methodologies such as above-the-line (ATL) 
testing. 

Furthermore,  this study seeks to scrutinize the possibilities of estimating the FNR of rule-based 
TM systems in identifying ML activities, specifically within large banks catering to retail 
customers. While AML is often mentioned together with Counter-Terrorist Financing (CTF) in 
legislation and public discourse, this study isolates its focus on TM designed for ML detection. 
Activities related to CTF, as well as other financial crimes such as bribery and corruption, are 
beyond the purview of this study. The rationale for emphasizing large banking institutions arises 
from their tendency to employ rule-based TM systems, owing to the sheer volume of transactions 
that exceed manual review capabilities. Smaller banks, which are generally specialized and have 
fewer transactions, thereby have less need for these automated systems and are thus excluded 
from this study. Given the diverse spectrum of banking clientele (e.g., large multinationals or 
private banking), this study narrows its focus to retail customers, which include both personal as 
well as business accounts. Rule-based TM systems are generally more effective in environments 
with high transaction volumes typically associated with retail banking. Given the significant 
divergence in ML typologies between retail and wholesale banking contexts, focusing on retail 
banking provides a more controlled environment for evaluating the efficacy of rule-based TM 
systems in estimating the FNR. Consequently, the scope of this study is confined to ‘pure payment’ 
transactions, excluding ‘non-payment’ transactions such as interest accruals or reinvestment 
activities. 

The results conclusively demonstrate that supervised machine learning classifiers, when trained 
on historical alerts, are currently inadequate for assisting Dutch banks in accurately estimating 
the FNR of rule-based TM systems with respect to unreviewed transactions. Given the additional 
findings all banks' perspective models perform better, a critical recommendation and direction 
for future research lies in facilitating data sharing while maintaining privacy safeguards. Joint 
initiatives among banks have the potential to forge more resilient and inclusive models by pooling 
collective insights, all while ensuring compliance with privacy and data protection standards. 
Such collaborative endeavors are vital for crafting a more comprehensive and effective strategy 
for ML detection.  

The remainder of this thesis is structured as follows. The following Chapter 2 provides the 
background and important related work of this study regarding ML typologies through 
transactions and how those can be detected using rule-based TM systems. In addition, statistical 
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methods for predicting ML transactions are discussed. This is followed by Chapter 3 which 
presents the methodology. Chapter 4 presents the insights gathered from the interviews, after 
which Chapter 5 outlines the creation of the used datasets and the experiments. Lastly, the results, 
discussion and conclusion are provided in Chapters 6, 7 and 8 respectively.  
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2. Background and Related Work 
This section presents an overview of the current state-of-the-art literature within the fields of 
transactional ML typologies, key ML indicators and statistical methods for ML classification 
purposes to be able to estimate the FNR. 

2.1 Money Laundering Definition 
ML is generally understood as the illicit practice of disguising the origin of funds obtained through 
illegal activities (Levi & Reuter, 2006). The primary aim of this practice is to integrate these 
unlawfully obtained funds into the formal economy by obscuring their illegal origins and 
attributing a legal source to them (FinCEN, n.d.; Reuter & M. Truman, 2005). Article 420bis 
Sections 1 and 2 of the Dutch Criminal Code offer a legalistic definition, specifying that ML 
includes actions that intentionally obscure or misrepresent the authentic origin, source, or 
ownership of funds that are known to be directly or indirectly derived from criminal activities. 
Interpol (2023) amplifies this legal framework by encompassing any actions committed with the 
intent of obscuring or distorting the identity of illicitly acquired proceeds, thereby rendering 
them ostensibly lawful in origin. The various definitions, whether legal, academic, or institutional, 
converge on the essential characteristic of ML: the intent to legitimize illicitly obtained assets 
through obfuscation (Unger & Van Waarden, 2009). Transitioning to its historical context, let's 
delve into the evolutionary trajectory of this illicit activity. 

2.2 History 
Although the first ML occurred as early as 2000 BCE, it is commonly believed that the practice of 
ML as we understand it today soared during the U.S. prohibition period in the 1920s (Jass, KYC-
Chain, 2019). This is when illegally obtained Mafia funds from alcohol imports found their way 
into the economy (UKALA, 2012). Nevertheless, the term 'money laundering' was not coined until 
much later, during the depiction of the Watergate scandal by The Guardian (Paxton, 2015; UKALA, 
2012). AML, on the other hand, originated during the prohibition era as well with the first US AML 
law being put into place but has gotten more substantial only since 1970 when the US put more 
regulations in place in the war on drugs (Kenton, 2022). Ever since IT systems became 
mainstream, banks have used traditional fixed rule-based alert systems to flag unusual 
transactions (Eddin et al., 2022; Jullum et al., 2020). Moving from historical underpinnings to 
specific methods, the next section elaborates on various typologies of ML. 

2.3 Money Laundering Typologies 
ML can occur in many different types and forms. Certain scenarios, e.g., real estate fraud, are 
highly specific with only a few transactions occurring. However, banks are usually more involved 
in such processes than a bank solely executing the transaction, making them more informed and 
capable of assessing ML risks than if they had only executed the transaction. Such transactions 
must be manually assessed by experts and therefore TM systems are of limited use. To further 
elaborate on this, we now turn to an in-depth discussion of ML typologies specifically related to 
bank transactions. 

The concept of typologies concerning ML defines how money can be laundered using bank 
transactions. Some typologies have already been around for quite some time, while new ones 
have occurred with, for example, cryptocurrencies becoming more mainstream (Elliptic, 2020). 
Table 1 below provides an overview of known transactional ML typologies. A subset of the three 
most important typologies, which have been determined by insights gained from the interviews, 
will be evaluated during the course of this study. 
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Table 1. An overview of bank transaction money laundering typologies. 

Typology Description Reference 
Low to high Accounts that initially register low transaction 

amounts that soon increase to substantial 
amounts. 

UNODC1, Wheeler 

Structuring/ 
smurfing 

Dividing large sums over multiple transactions 
to remain below reporting thresholds. This can 
be combined with almost all other typologies. 
With smurfing, usually structuring large sums 
using multiple individuals is meant.  

UNODC, FIAU2, 
bronID3, EY4, BIS5, 
Wheeler6, AMLC7 

Geographical 
structuring/fan-out 

Spread transactions through multiple offices, 
countries, or people to attract less attention or 
to make tracing harder. Combined with fan-in 
as second step this is called Scatter-Gather. 

UNODC, FIAU, bronID, 
EY, IBM8, Sun et al.9 

Bipartite Multiple originating accounts divide flows over 
multiple receiving accounts, potentially 
combined with Unrelated people. 

IBM 

Type change Change in type of usual transaction (e.g., cash or 
transfer) to receive or transfer money. 

UNODC, EY 

Cash Unusual high deposits or withdrawals 
immediately or over a brief period. Usually 
combined with another typology. 

UNODC, bronID, EY, 
BIS, Sun et al., 
Wheeler 

Inactive/dormant Accounts that have long been inactive and 
suddenly receive deposits, potentially combined 
with Cash. 

UNODC, BIS 

Wallet Accounts that only register deposits over a 
certain period, potentially combined with Cash. 

UNODC, Sun et al. 

International trade Accounts receiving from or transferring to 
countries other than the one 
importing/exporting goods or providing 
services. 

UNODC, BIS 

Money mule/fan-in Accounts in the name of multiple 
people/organizations with the same person or 
party having actual control. Combined with fan-
out as second step this is called Gather-Scatter. 

UNODC, bronID, BIS, 
IBM, Sun et al. 

Pass through/ 
funneling 

Accounts registering debit and credit 
transactions of the same or similar amounts, 
indicating a cover-up account. 

UNODC, EY, Wheeler 

Profile 
inconsistency 

Individuals or organizations having higher 
cashflows through accounts than financial or 
commercial statements can explain. 

UNODC, FIAU, bronID, 
EY, Wheeler 

Changing 
information 

People (frequently) changing personal 
information at the time of transferring. 

UNODC, EY, Wheeler 

 

1 (UNODC, 2010) 
2 (FIAU, 2021) 
3 (BroniD, 2019) 
4 (EY, 2018) 
5 (Bank for International Settlements, 2023) 
6 (Wheeler, 2021) 
7 (AMLC, 2020) 
8 (Suzumura & Kanezashi, 2018/2023) 
9 (Sun et al., 2022) 



14 
 

Unrelated people Transfer receiving from someone random who 
is not related without reasonable justification. 

UNODC, bronID 

Currency exchange Large and continuous purchase transactions for 
foreign currency or cryptocurrency. 

UNODC, bronID, EY 

High-Risk 
Jurisdictions 

Transfers to or from (parties in) tax havens or 
other high-risk countries. 

FIAU, bronID, 
Wheeler 

Circular/cycle Round-tripping transactions where funds end in 
the originating jurisdiction after being 
transferred to a foreign country, potentially 
combined with High-Risk Jurisdictions. 

FIAU, bronID, EY, 
IBM, Wheeler 

Laundromat Front companies default on fake loans, then 
authenticated to debt by corrupt judges 
allowing payment from 3rd party, potentially 
combined with High-Risk Jurisdictions. 

Harding10 

Trade-based ML 
(e.g., Black Market 
Peso Exchange) 

Trade is under-, over- or double invoiced, 
creating illicit money flows between 
organizations or jurisdictions.  

FinCEN11, FATF12, 
Cassara13 

 

2.4 Indicators of Money Laundering 
This subsection presents the indicators as set out in law and described in literature which can be 
used by Dutch banks to determine whether a transaction is unusual and must be reported. To 
unpack this topic further, let's differentiate between objective and subjective indicators. 

2.4.1 Objective and Subjective Indicators of Unusual Transactions 

Dutch banks are legally required to report unusual transactions to the Dutch FIU (Wet ter 
voorkoming van witwassen en financieren van terrorisme, n.d.). If the FIU declares a reported 
transaction suspicious, banks receive a so-called dissemination notice that only states that the 
transaction has been declared suspicious, but not why (FIU-Nederland, 2021). However, while 
this notice itself contains limited information, the fact that a reported transaction has been 
declared suspicious already provides useful information on its own. The same applies to 
information requests originating from criminal investigations by authorities. 

To determine whether a transaction is unusual or not, Dutch banks can use six indicators 
established by the legislature in the ‘Wwft Implementing Decree’  (Uitvoeringsbesluit Wwft 2018, 
n.d.). Table 2 below presents those indicators. 

Table 2. Unusual transaction indicators for Dutch banks 

Indicator Description 
Subjective01 A transaction that the institution has reason to believe may be related to ML or 

terrorist financing. 
Objective01 It stands to reason that transactions reported to the police or Public 

Prosecution Service in connection with ML or terrorist financing should also be 
reported to the Financial Intelligence Unit; after all, there is a presumption that 
these transactions may be related to ML or terrorist financing. 

Objective04 A transaction for an amount of €10,000 or more, involving cash exchange into 
another currency or from small to large denominations. 

 

10 (Harding, 2017) 
11 (FinCEN, 2010) 
12 (FATF, 2006) 
13 (Cassara, 2015) 
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Objective05 A cash deposit for an amount of €10,000 or more in favor of a credit card or a 
prepaid payment instrument (prepaid card). 

Objective06 The use of a credit card or prepaid payment instrument (prepaid card) in 
connection with a transaction for an amount of €15,000 or more. 

Objective12 A transfer of money for an amount of €2,000 or more, unless it concerns a 
transfer of money by an institution that has entrusted the settlement of the 
transfer of money to another institution that is also subject to the reporting 
obligation, as referred to in Article 16, paragraph 1, of the Act. 

 
As Table 2 above shows, all except one indicator are of an objective nature. This means that Dutch 
banks are required to report transactions that meet one or more of those objective indicators 
either way, regardless of the circumstances, or without having to investigate them for 
‘unusualness’. This implies that banks should very easily be able to avoid false negatives for those 
transactions since the objective indicators can easily be tested for. Therefore, the focus of this 
study is primarily on transactions that should have been reported based on the subjective 
indicator. 

The reports based on objective indicators are mainly used by the FIU to gain general intelligence 
but are often less indicative of actual ML occurring than reports based on subjective indicators as 
they have already been declared unusual by a bank (FIU-Nederland, 2022). The one subjective 
(Subjective01) indicator, however, is much harder to assess, as a bank has to determine for 
themselves whether they consider a particular transaction unusual. Expanding on this point, the 
following subsection presents transactional indicators banks can use within their rule-based 
transaction monitoring systems. 

2.4.2 Operational Indicators of Money Laundering Through Bank Transactions 

The primary indication of ML concerning bank transactions occurring is ‘unusual’ activity in an 
account. Having outlined the objective and subjective indicator(s), we now segue into a review of 
the existing literature on operational indicators within banks. Although distinguishing this 
uncommon behavior is not an easy task, certain attributes of accounts and transactions can 
indicate unusual transactions associated with ML. An analysis of case histories as disclosed by the 
Dutch FIU and reports as published by other authoritative bodies presents the following list of 
indicators relevant to the Dutch financial system, outlined in Table 3 below. 

Table 3. Indicators of transactional money laundering in the Netherlands 

Indicator Description Reference 
Type Type of transaction. Can be a ‘normal’ bank 

transfer, cash deposit or withdrawal or transfer 
via another payment provider. 

FIU14, EBA15, AMLC16 

Amount The amount of the transaction in relation to the 
static (e.g., student account) or dynamic 
threshold. 

FIU, EBA, AMLC, 
FATF17, DNB18 

Frequency The frequency of the transaction (potentially of 
a similar amount) in relation to the static or 
dynamic frequency threshold. 

FIU, EBA, FATF, 
FINTRAC 

Sector salaries Above average salary payments for a certain 
sector.  

FIU 

 

14 (FIU-Nederland, n.d.-a) 
15 (European Banking Authority, 2018) 
16 (AMLC, 2020) 
17 (FATF – Egmont Group, 2020) 
18 (DNB, 2020) 
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Sector high-risk Organizations active in high-risk sectors 
vulnerable to ML. Or payments to or from high-
risk sectors.  

FIU, EBA, FATF, DNB, 
FINTRAC 

Volatility Relatively large changes in the account balance 
over a brief period. 

FIU, EBA, FINTRAC 

International 
exposure 

Percentage of in or outflow in relation to static 
or dynamic thresholds. 

FIU, AMLC, FATF, 
FINTRAC 

International high-
risk 

Organizations active in high-risk countries 
vulnerable to ML. Or payments to or from high-
risk countries. 

FIU, EBA, AMLC, 
FATF, DNB, KLPD19 

Account type Personal (e.g., student or normal) or business 
account. 

FIU, FINTRAC 

Account duration Extremely high account balances on recently 
opened accounts.  

FIU, EBA, FATF, DNB 

 

2.5 Related Work 
Extensive research has been undertaken to enhance AML TM systems through the application of 
both supervised and unsupervised machine learning classifiers. Key contributions to this domain 
can be categorized into two primary advancements: graph-based machine learning and various 
other deep learning approaches. The former involves representing bank clients and their 
accounts as nodes within a graph to facilitate network structure analysis. This approach used for 
AML purposes was first described in foundational research by Weber et al. (2018). These authors 
also developed the AMLsim simulator, a multi-agent platform for generating synthetic financial 
datasets for AML research. AMLsim enables the creation of large-scale, realistic financial 
networks, simulating the real-world behavior of entities engaged in typical and ML transactions. 
It creates a detailed graph of financial interactions, with nodes representing bank accounts and 
edges symbolizing transactions. This setup allows for the exploration of typical and suspicious 
transaction patterns in a controlled, large-scale environment. 

Subsequently, Eddin et al. (2022) proposed a model to optimize the risk assessment of generated 
alerts using this graph-based method. On the other hand, the latter approach harnesses other 
deep learning methods, most notably neural networks, as evidenced by works such as Han et al. 
(2020) and Zhang & Trubey (2019). Rocha-Salazar et al. (2021) utilized this approach to develop 
a clustering model, aimed at enhancing both self-comparative and group-comparative analyses 
of clients to identify potentially suspicious ML transactions. While scholarly attention often leans 
toward minimizing false alerts, the primary emphasis tends to be on overall model accuracy, 
targeting a reduction of both false positives and false negatives (Jullum et al., 2020). Notably, 
model recall, or the focus on reducing false negatives, is less emphasized in the development of 
novel models and approaches, even when working with highly imbalanced datasets. To the best 
of our knowledge, no existing study has specifically investigated the feasibility of estimating the 
FNR in rule-based TM systems within the AML context, marking a clear gap in the academic 
literature. Therefore, our work diverges from this focus by explicitly aiming to quantify the FNR 
of rule-based TM systems. 

As the paragraph above indicates, current research within this domain has primarily been 
focused on further enhancing and refining machine learning detection algorithms for TM 
purposes. Conversely, despite the extensive use of rule-based TM systems in current practice, 
there is a lack of comprehensive research on the evaluation of those systems. The academic 
community has not adequately explored how well these rule-based systems perform, especially 
in terms of transactions that they incorrectly fail to flag for review. This lack of interest persists 
whether the objective is to enhance these systems directly or to derive a more generalized 

 

19 (KLPD - Dienst Nationale Recherche Informatie, n.d.) 
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understanding of their workings and limitations. This oversight represents a significant area for 
further investigation, as knowing the FNR in the context of existing rule-based systems is crucial 
for enhancing overall TM effectiveness in the banking sector. As such, there is a need to improve 
the evaluations of rates of rule-based TM models regarding transactions that have inaccurately 
been left unreviewed, a critical metric that has largely been overlooked up to now. 

Although the feasibility of estimating the FNR in rule-based TM systems within the AML context 
has not yet been studied, significant work has been done in other fields that grapple with false 
negative classification errors and false negative estimation in large, skewed-class datasets. This 
has primarily been the case in the field of ecological research focusing on animal populations, 
where comprehensive individual examination is often impracticable or even impossible. To 
address this issue, Petersen founded the capture-recapture method as early as 1896, initially 
aiming to estimate fish population sizes (Southwood & Henderson, 2009). This method employs 
two independent classifiers to estimate various parameters, including false negative predictions, 
of models for largely unobserved populations. Over time, the applicability of the capture-
recapture method for estimating false negatives and false negative rates has expanded, finding 
utility in diverse areas such as medical screening (Goldberg & Wittes, 1978), road traffic safety 
(Abegaz et al., 2014; Razzak & Luby, 1998) and social sciences (Brittain & Böhning, 2009). 
Building upon this, Mane et al. (2004) extended the method to create a systematic approach for 
estimating false negatives in generalized two-class classification problems, exemplifying its 
efficacy on a highly imbalanced dataset of spam emails. 

Additionally, the estimation of the FNR has also been researched using other methods. Connors 
et al. (2014) studied the frequency and magnitude and provided quantitative assessments of both 
false-positive and false-negative observation errors in the context of classifying the threat and 
recovery status of animal populations in nature. They estimated the FNR by comparing the 
predictions from both a simulation model with the actual underlying trend as well as a model 
devoid of such a trend. The authors quantified the FNR as “the proportion of simulations where 
we failed to reject the null hypothesis …, when in fact the null hypothesis was false.”. A unifying 
thread across literature employing these methods is the shared objective of estimating false 
negatives and FNRs using classifiers for predominantly unobserved populations—a challenge 
that aligns directly with the objective of this study focused on potential ML transactions in high 
volume datasets. 

In summary, existing literature provides various methodologies and models suited to estimate 
the FNR of rule-based TM systems in ML classification. Despite this, as current academic 
endeavors predominantly concentrate on enhancing TM systems through the innovation of novel 
machine learning ML detection algorithms, there exists a noticeable gap in the literature that 
directly addresses rule-based TM systems which are now primarily used within Dutch banks. 
Therefore, this study serves to bridge this significant gap in the academic landscape by 
empirically exploring the feasibility of estimating the FNR of rule-based TM systems in the context 
of high-volume ML transaction classification using machine learning classifiers. 

2.6 Statistical Methods 
In order to evaluate the suitability of historical alerts for estimating the overall FNR pertaining to 
unreviewed transactions, this study employs supervised machine learning classifiers designed to 
discern the correlation between the characteristics of historic alerts and the probability of actual 
ML involvement in those transactions. Afterward, these trained models can be used to predict 
whether unreviewed transactions constitute ML. 

2.6.1 Machine Learning Classifiers 

This subsection presents a short description for every supervised machine learning classifier 
used in this study to train and predict whether unreviewed transactions are indicative of ML. 
Since the goal of this study is not to develop new machine learning (potentially deep learning) ML 
detection algorithms which beat current benchmarks, we want our classifiers to be relatively 
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simple and computationally cheap to work with. Especially considering the size of the datasets 
used throughout this study and in practice. 

The most conventional method to predict the probability of a binary event is Maximum Likelihood 
Logistic Regression (Zhang & Trubey, 2019). Using a parametric statistical model, it predicts the 
probability of a dependent output class (ML or not) using one or multiple independent input 
variables. The output is a probability on the interval between 0 and 1 of an event (such as 
“indicative of ML) occurring. 

The second classifier are decision trees, as per Alkhalili et al. (2021). These trees are constructed 
by employing a splitting technique that determines the input attributes and progressively moves 
through the training data to achieve the desired output. Within the structure of a decision tree, 
two fundamental entities emerge: decision nodes and leaves. The decision nodes serve as points 
of data division, guiding the tree's branching based on specific criteria, while the leaves represent 
the ultimate decisions or outcomes associated with the given data configurations. The decision 
tree algorithm's ability to handle both categorical and numerical data without requiring 
preliminary transformation is advantageous, reducing data preprocessing needs. 

Third, ensembles of decision trees, as highlighted by Bhattacharyya et al. (2011) in general exhibit 
better performance compared to other techniques, capturing fraudulent cases effectively while 
minimizing false positives. To this end, we implement models of the following types: ‘standard’ 
random forest, (balanced) bagged decision trees, balanced random forest, the AdaBoost 
implementation using decision trees and RUSBoost. Furthermore, ensembles of decision trees 
inherently handle imbalanced data well, which is a common challenge in ML detection, thus 
making it a robust choice for estimating the FNR of TM systems in Dutch banks. Additionally, the 
computational efficiency and simplicity of implementation of random forests make them highly 
practical for deployment on large datasets. In addition, we have also used balancing measures 
throughout the models, as elaborated on in 3.2.2 Machine Learning Classifiers. 

2.7 Chapter Conclusions 
• The predominant focus in existing AML research centers on developing novel machine 

learning classifiers. 

• A notable research gap exists in the evaluation of rule-based TM systems, although they 

are extensively used in practice. This gap is particularly evident in the exploration of the 

FNR of these systems, an aspect often overlooked in current research. 

• Methods from other disciplines like ecology offer potential for estimating the FNR in 

imbalanced ML transaction datasets. 

• We employ Logistic Regression, Decision Trees and various ensembles of Decision Trees 

as classifiers to estimate the FNR pertaining to unreviewed transactions. 

• We use synthetic datasets with ground truth labels to enable FNR evaluation and 

performance comparison, which we evaluate primarily using the AUPRC metric 

Matthews Correlation Coefficient.  
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3. Methodology 
This chapter presents the research approach and research methods utilized for conducting the 
study. For the latter, it therefore also provides information on the statistical metrics and synthetic 
data used. 

3.1 Research Approach 
To explore the theoretical feasibility of estimating the FNR pertaining to unreviewed 
transactions, this study adopted both qualitative and quantitative methods. This combination in 
a concurrent mixed methods research approach, as endorsed by Creswell & Creswell (2017, p. 
14), offered the advantage of enabling the integration of specialist knowledge from the field with 
generalizable results from statistical tests. This methodology enabled better guidance from 
specialists which enhanced the accuracy of modeling rule-based TM systems. Additionally, this 
approach supported the triangulation of knowledge from specialists and quantitative statistical 
results, thereby augmenting the study's comprehensiveness and validity (Jick, 1979; Morse, 
1991). 

First, qualitative data were collected from literature and interviews with specialists. These 
insights provided guidance for modeling the behavior of rule-based TM systems with greater 
accuracy. Informed by these qualitative insights, the study shifted its focus to quantitative 
modeling and statistical analysis. To enable empirical calculation of the actual FNR of rule-based 
TM models, the use of synthetic data was deemed indispensable, especially given that the existing 
knowledge gap stems from the largely unknown performance of these models on real-world data. 
Consequently, with the aim of determining the theoretical feasibility of estimating the FNR 
pertaining to unreviewed transactions, multiple types of statistical models were developed. 
Subsequently, the FNR of their predictions was compared against the pre-determined actual FNR 
of the rule-based TM system, which was known in advance. In doing so, the study ascertained the 
potential for historical transaction alert data to offer a reliable estimate of the FNR related to 
unreviewed transactions. 

3.2 Research Methods 
Following the mixed method research approach, both quantitative and qualitative research 
methods were applied. Sub-questions 1, 2 and 3 involved qualitative methods such as a literature 
review and semi-structured interviews. This enabled an in-depth understanding of the current 
systems and their limitations but did not provide all the information necessary to answer the 
main research question. Therefore, to address sub-question 4, the study employed synthetic 
transactional datasets for simulating alerts and utilized supervised machine learning classifiers 
to predict for unreviewed transactions whether they were indicative of ML to enable FNR 
calculations. 

3.2.1 Interviews 

Seven interviews were conducted with specialists in the field, all following a semi-structured 
approach. This approach facilitated the collection of additional contextual information alongside 
responses to predetermined interview questions (Adams, 2015). The goal of these interviews was 
to gather insights on transactional ML typologies and the workings of rule-based TM systems. The 
set of interview questions employed is presented in Appendix B. Interview Questions. Of the 
seven interviewees, six have hands-on experience with rule-based TM systems in banks, while 
the other participant has experience working at a Dutch regulatory body. All specialists with 
expertise in rule-based TM systems at the organization of the internship position were 
interviewed. In addition to these, two specialists at other organizations, who were contacted via 
the organization of the internship position, were consulted to gain a broader perspective. Among 
the interviewees, four had either current or past employment at a bank focusing on rule-based 
TM systems. All interviews, except for one, were conducted in person. Furthermore, except for 



20 
 

two cases constrained by the limitations of the interview locations, physical interviews were 
recorded for subsequent playback and analysis. 

The interviews primarily revolved around key themes such as common transactional ML 
typologies in Dutch banking, indicators for recognizing these typologies and the implementation 
and effectiveness of threshold-based rules in TM systems. The interviewees provided insights on 
the nature of static and dynamic rules, the complexity of rule parameters and the variance in risk 
assessment methodologies employed by banks. 

3.2.2 Machine Learning Classifiers 

This methodology section outlines the key characteristics and configurations of each classifier, 
aiming to detect ML activities within bank transactions. We used eight different base classifier 
types, which selection was driven by their suitability for handling imbalanced datasets. To 
address the challenge posed by imbalanced datasets, we also implemented balancing measures 
in certain classifiers that offer this functionality to gain better performance. For these classifiers, 
we implemented them with both their default settings to create a baseline performance as well 
as with the custom balancing measures applied to determine the performance gains. The measure 
available for most models was to implement cost-sensitive learning. This penalizes 
misclassifications of the minority class much higher, therefore prioritizing the model towards 
correct classifications and detection of this class. This first measure was available for and applied 
to five out of the eight model types used in this study. The second measure available was to first 
downsample the majority class in the train dataset, in order to mitigate the class imbalance. This 
second measure was available for four out of the eight model types. The choice of these measures 
is driven by their potential to enhance model performance in scenarios typical of TM systems 
used by Dutch banks. Table 4, presented below, provides a comparative overview of all seventeen 
model configurations along with their balancing measures combinations. The balancing features 
are further discussed in detail in 5.2.5 Experimental Setup. We used a set random state 
throughout all model runs and downsampling efforts.  

Table 4. All classifier model setup combinations 

Model Default Cost-sensitive 
learning 

Downsampling 

Logistic Regression x - - 
Logistic Regression balanced - x - 
Decision Tree x - - 
Decision Tree balanced - x - 
Decision Tree bagged 10 estimators x - - 
Decision Tree bagged balanced 10 estimators x - x 
Decision Tree bagged 100 estimators x - - 
Decision Tree bagged balanced 100 estimators x - x  
Random Forest x - - 
Random Forest balanced - x - 
Random Forest balanced subsample - x  - 
Balanced Random Forest x - x 
Balanced Random Forest balanced - x x 
Balanced Random Forest balanced subsample - x x 
AdaBoost x - - 
AdaBoost with Decision Tree balanced - x - 
RUSBoost x - x 

 

Following is a detailed exploration of each base classifier type utilized in our study. This section 
will delve into the specific configurations and applications of these classifiers, highlighting their 
roles in addressing the challenge of detecting ML activities within bank transactions 
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Logistic Regression 

Logistic Regression  is a statistical model used for binary classification (Scikit-learn developers, 
n.d.-f). It predicts the probability of a binary outcome based on one or more independent 
variables. In this study, it is configured with a maximum of 2000 iterations, which has been 
proven sufficient to let the model converge for all experiments. Additionally, a balanced version 
using cost-sensitive learning is also implemented. 

Decision Tree 

The Decision Tree Classifier is a simple and effective non-parametric supervised learning method 
used for classification (Scikit-learn developers, n.d.-e). It creates a model that predicts the value 
of a target variable by learning simple decision rules inferred from the data features. A balanced 
version using cost-sensitive learning is also implemented. 

Bagging with Decision Trees 

To enhance the stability and accuracy of decision trees, the ensemble method of bagging 
(Bootstrap Aggregating) is employed (Scikit-learn developers, n.d.-c). This combines the 
predictions from multiple decision trees. This study uses two variants: one with 10 estimators 
and another with 100, aiming to capture diverse decision boundaries and reduce overfitting. A 
balanced version using a downsampling strategy is also implemented. 

Balanced Bagging with Decision Trees 

Similar to Bagging with Decision Trees, this model combinations the predictions from multiple 
decision trees (Imbalanced-learn developers, n.d.-a). However, this type also incorporates an 
additional downsampling balancing step on every training set. 

Random Forest 

This classifier is known for its robustness and ability to handle large datasets with numerous 
input variables (Scikit-learn developers, n.d.-g). Its ensemble approach is a specialized form of 
bagging with Decision Trees, aggregating multiple decision trees too. However, it introduces 
randomness in the selection of features to increase the generalizability. Additionally, a balanced 
version using cost-sensitive learning is also implemented. 

Balanced Random Forest 

To address the challenge of class imbalance, the Balanced Random Forest Classifier is deployed 
(Imbalanced-learn developers, n.d.-b). The default balanced Random Forest uses downsampling 
strategies to mitigate class imbalance. A variant which adjusts class weights as well is also 
implemented. 

AdaBoost 

AdaBoost, short for Adaptive Boosting, is an ensemble method that combines multiple weak 
learners to create a stronger model (Scikit-learn developers, n.d.-b). It is used for its ability to 
sequentially correct the mistakes of its components. Two versions are used: one is the standard 
AdaBoost Classifier, and the other employs a Decision Tree classifier with balanced class weights 
as the base estimator. 

RUSBoost 

Integrating Random Under-Sampling (RUS) with the AdaBoost algorithm, RUSBoost is 
particularly adept at handling class imbalances (Imbalanced-learn developers, n.d.-d). Its 
inclusion in this study is driven by its capability to focus on the minority class. 

This overview of the various classifiers and their configurations underscores the multifaceted 
approach we have adopted to tackle the complexities of TM. Next, we will transition to an in-depth 
discussion of the synthetic datasets used. 
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3.3 Synthetic Data 
This section explores the creation, characteristics, and role of the synthetic datasets in the 
research process. To be able to create a statistical model based on simulated alerts, a transactional 
dataset that mirrors the properties of actual bank transactions in the Netherlands was needed. 
However, due to privacy concerns, it was virtually impossible to obtain real-world transactional 
datasets from financial institutions. In addition, as the accuracy of ground-truth labeled data 
within real-world datasets concerning ML is uncertain, a synthetic dataset where those labels are 
perfectly known in advance is better suited for testing the theoretical feasibility of the concept. 

Several synthetic transactional datasets and simulators that can incorporate ML behavior were 
available for this purpose. Transactions within those datasets are dichotomous labelled as ML or 
not. This label will be assumed to correspond with the ‘unusual’ label in real-world historically 
flagged transaction alerts. Examples of already existing open-source data simulators are the 
PaySim simulator from Lopez-Rojas & Axelsson (2017/2023; 2016) and the AMLsim simulator 
from IBM (Suzumura & Kanezashi, 2018/2023). Additionally, published pre-generated datasets 
from these and other simulators are publicly accessible. Notable examples include those 
generated by J.P. Morgan (n.d.) and a more advanced version of IBM’s AMLsim simulator called 
IT-AML (Altman, 2023; Altman et al., 2023). 

After a thorough comparison, as shown in Table 4Table 5 below, the pre-existing published 
datasets generated using the IT-AML simulator were deemed most suitable to conduct further 
modelling on. The PaySim simulator proved unfit for this research as it was designed solely for 
the simulation of mobile money transfers. In addition, it focuses on generating general fraudulent 
transactions rather than those specifically indicative of ML. The transactional dataset published 
by J.P. Morgan was deemed unsuitable as well because it lacks detail concerning the typologies 
used for embedding ML behavior in transactions and incorporates only a single currency. Given 
that the study aims to assess a select subset of ML typologies, the absence of this crucial 
information disqualified the dataset. While the AMLsim simulator does include information on 
the ML typologies used in transaction generation, it presents limitations. Notably, half of these 
typologies are labeled as 'currently under construction,' with no further clarifications offered. The 
simulator further supports only a single transaction type and currency. Moreover, the open-
source version of AMLsim has languished in terms of maintenance and updates due to its 
evolution into the closed-development IT-AML simulator for a considerable duration. 

In comparison with the simulators and datasets elaborated on above, the pre-existing published 
datasets generated via the IT-AML simulator have proven to be most suited for this research since 
they contain multiple currencies and types of transactions and provide information on ML 
typologies used. In addition, they are available in three sizes with both a low and high ML 
prevalence rate and incorporate the most advanced ML behavior from available simulators and 
datasets. Therefore, we selected those datasets to conduct further modelling on. 

Table 5. Overview of comparison between various synthetic datasets and simulators 

Dataset Suitability for 
ML Modelling 

Diversity in 
Transaction 
Types & 
Currencies 

Detail in ML 
Typologies 

Maintenance & 
Updates 

IT-AML 
Simulator 

High suitability Adequate 
diversity 

High detail Well-maintained 
and updated 

PaySim 
Simulator 

Low suitability 
(focused on 
mobile money 
transfers) 

Limited (mobile 
money transfers 
only) 

Low detail 
(general 
fraudulent 
transactions) 

Not specified 



23 
 

J.P. Morgan 
Dataset 

Low suitability 
(lacks detail in 
ML typologies) 

Limited (single 
currency) 

Low detail Not specified 

AMLsim Moderate 
suitability 

Adequate 
diversity 

Moderate detail 
(half typologies 
under 
construction) 

Lacking 
(evolved into 
closed-
development IT-
AML) 

 

3.3.1 IT-AML Simulator Datasets 

The IT-AML datasets, as published by IBM in February 2023, were generated using their most 
advanced transactional simulator capable of incorporating ML behavior and are publicly 
accessible. The datasets serve as a simulated representation of a complex financial ecosystem, 
incorporating various types of accounts - namely individuals, corporate entities, and financial 
institutions. The interactions among them extend from individual-to-individual financial 
exchanges to more complex dealings between individuals and enterprises, as well as intra-
enterprise transactions. These transactions manifest in diverse forms and include activities such 
as the procurement of consumer goods and services, the issuance of industrial supply purchase 
orders, the disbursement of salaries and the fulfillment of loan repayment obligations. These 
financial activities are intermediated through banks, wherein both the transaction initiators and 
recipients maintain a variety of account types. These range from traditional checking and credit 
card accounts to more contemporary financial instruments like cryptocurrency wallets. As a 
result, the datasets present a comprehensive snapshot of a diverse financial ecosystem. 

A small proportion of the accounts, both personal and business, within the datasets participate in 
unlawful activities. The illicit funds, obtained from these illegal activities are then concealed via a 
series of financial transactions. Every transaction involved in this series therefore constitutes ML 
and is accordingly tracked and labeled within files supplied with the datasets. The generator 
simulates all three phases of the ML cycle: placement (source of illicit funds), layering (mixing 
them into the financial system) and integration (spending the funds). 

One notable advantage of utilizing synthetic data is the ability to overcome limitations inherent 
to real transactional data. In the context of banking institutions, it is important to note that these 
organizations, and therefore their models, typically have access to only a subset of transactions 
related ML, namely those involving their own institution. Transactions happening at other banks 
or between other banks are not seen. Consequently, models constructed solely based on 
transactions from a single institution possess a restricted perspective of the overall financial 
landscape. In contrast, synthetic transactions in the IT-AML datasets encompass an entire 
financial ecosystem, providing a comprehensive representation. This comprehensive nature of 
synthetic data enables exploring the potential benefits of TM systems that possess a holistic 
understanding of transactions across multiple institutions. This is especially important as Dutch 
banks are increasingly collaborating to combine transaction data in one system, called ‘Transactie 
Monitoring Nederland’ (Transactie Monitoring Nederland, n.d.). This synthetic data therefore 
enables us to already provide insights into the benefits of this collaboration. We will test for both 
the perspective of the most present bank in the data as well as all the banks combined. 

IBM has released the IT-AML dataset in the three sizes small, medium and large with a timespan 
of respectively 10, 16 and 97 days. Each size is available in a version with both a low and high ML 
prevalence rate. As an extended timespan in the dataset is beneficial for capturing a wider variety 
of transaction behaviors, which is essential for training machine learning classifiers to recognize 
subtle and complex ML patterns, datasets with a longer timespan were preferred. In addition, 
selecting same size datasets with different rates opens up possibilities for a direct comparison 
between classifiers when performing on those different prevalence rates. Therefore, the two large 
datasets with both the low and high ML prevalence rate have been selected.  
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Both datasets incorporate the same eight ML patterns, as presented in Figure 1 below (Altman et 
al., 2023). The patterns present transaction behaviors typically observed in ML scenarios. The 
Fan-Out pattern is characterized by a single source account dispersing funds to multiple 
destinations, while its counterpart, the Fan-In pattern, shows the consolidation of funds from 
various sources into one account. The Gather-Scatter pattern combines these two, illustrating 
funds being first accumulated and then distributed, whereas the Scatter-Gather pattern reverses 
this flow, depicting funds being dispersed first and then gathered. The Cycle pattern represents a 
closed loop of transactions where money returns to the originating account after passing through 
various others, embodying typical laundering schemes. In contrast, the Random pattern reflects 
a more haphazard flow, akin to a random walk, where funds do not return to the original account, 
often passing through entities like shell companies. The Bipartite pattern simplifies this, involving 
direct transfers from multiple sources to multiple destinations. Lastly, the Stack pattern adds 
complexity to this transfer model by introducing an additional layer of bipartite transfers, further 
obfuscating the fund's movement. These patterns collectively underline the sophisticated 
methods employed in ML, where entities control various accounts to manipulate transactions, 
challenging the enforcement and detection of illicit financial flows. 

 

 
Figure 1. Available money laundering typologies within the dataset and simulator as reprinted from Altman et al. (2023) 

Explorative Data Analysis and data preparation 

The IT-AML datasets provide transactions in a tabular format, as outlined in Table 6. Next to the 
datasets itself, other adjacent files present which ML transactions belong to which typology. 
Metrics like the average transaction value, frequency, or the total value within a certain period 
can be computed. Behavioral nuances can be leveraged as well, such as the variance in transaction 
amounts or the number of unique transactional entities involved with an account, hinting at 
potential ML strategies like layering. 
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Table 6. IT-AML datasets format 

Timestamp From 
bank 

Account To 
bank 

Account Amount 
received 

Receiving 
currency 

Amount 
paid 

Payment 
currency 

Payment 
format 

Is 
Laundering 

2022/09/01 
00:20 

3208 8000F4580 1 8000F5340 0,01 US Dollar 0,01 US Dollar Cheque 0 

2022/09/01 
00:26 

12 8000EC280 2439 8017BF800 7,66 US Dollar 7,66 US Dollar Credit 
Card 

0 

 

Table 7 presents an initial overview of the numerical characteristics of both the datasets. 

Table 7. IT-AML datasets key overview 

Measure High prevalence rate Low prevalence rate 
Total number of transactions 179,702,229 176,066,557 
Total number of ML 
transactions 

225,546 100,604 

Prevalence rate 0.13% (1/807) 0.06% (1/1,750) 
Days spanned 97 97 
Number of unique bank 
accounts 

2,116,000 2,064,000 

 
Since we are only interested in ‘pure payment’ transactions, all transactions of the ‘Reinvestment’ 
payment type have been excluded, removing 7,410,556 transactions from the high prevalence 
rate dataset and 7,258,238 transactions from the low prevalence rate dataset. The ‘Bitcoin’ 
payment, on the other hand, has been kept, as it will be considered a high-risk currency for the 
High-risk jurisdictions typology. 

As Figure 2 shows, the large high prevalence rate dataset spans 97 days of normal behavior. The 
remaining days from 6th of November until the 12th of January only contain a very limited number 
of transactions, namely those in a ML series that has not yet been ended. Therefore, all 
transactions from the 6th of November have been excluded. 

 
Figure 2. Timestamp visualization of the large IT-AML dataset as adapted from Altman (2023) 

As we can see in Figure 3, the amount variables contain some very large outliers. They will be 

addressed, as discussed later in 5.1.1 Data Preprocessing. 
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Figure 3. Boxplots of amount variables in both datasets before removing outliers. 

The IT-AML datasets incorporate various type of payment formats, as depicted in Figure 4. This 
is particularly relevant because certain payment formats can be indicative of ML activities, or at 
least have a certain correlation with the likelihood of such activities. Notably, the presence of ACH 
transactions in these datasets indicates the inclusion of US-based financial activities. ACH, or 
Automated Clearing House, is an electronic network for financial transactions in the United 
States, commonly used for direct deposit, payroll, and vendor payments. Its presence in the 
dataset suggests that at least US transactions are represented, highlighting the international 
scope of the data. 

 

Figure 4. Distribution of payment formats across the two datasets. 
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The following Figure 5 strengthens this idea, as it clearly shows that the predominant currency 

for both receiving and payment transaction in both datasets is the US Dollar, with the runner up 

being the Euro followed by thirteen other currencies for a total of fifteen. We can use these 

currencies as a proxy for geographical data, which enables us to do flag transactions via 

countries based on their risk level or to flag cross-border transactions. 

 

Figure 5. Distribution of currencies in both IT-AML datasets 

The following Figure 6 and Figure 7 depict how often a bank was on the receiving or sending end 
of a transaction. We can clearly see that for the sending banks, there is one highly predominant 
bank present in both the datasets. This bank will therefore also be used for conducting 
experiments later on, as further explained in 5.2.4 Experiments. For the receiving banks, the 
distribution seems far more equally spread-out over all banks. 
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Figure 6. Top 10 banks where most transactions originate from. 

 

Figure 7. The top 20 banks on the receiving end of a transaction. 

Both datasets incorporate the same eight ML patterns. Their count in both the datasets is 

presented in Table 8. Each pattern instance defines a series of ML transactions of that certain 

pattern. 

Table 8. Count of money laundering patterns in the IT-AML datasets 

ML patterns High prevalence rate Low prevalence rate 
Bipartite 2109 (13%) 274 (12%) 
Stack 2096 (13%) 259 (12%) 
Cycle 2086 (13%) 298 (13%) 
Scatter-gather 2067 (13%) 276 (12%) 
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Gather-scatter 2054 (12%) 284 (13%) 
Fan-out 2040 (12%) 274 (12%) 
Fan-in 2014 (12%) 278 (13%) 
Random 2001 (12%) 275 (12%) 

 

3.3.2 Tools 

Model development and data analysis were conducted using the open-source coding language 
Python (version 3.11) to enable interoperability and ease of reproducibility (Python Software 
Foundation, 2023). Scikit-learn and Imbalanced-learn were the primary libraries for 
preprocessing data and training models (Imbalanced-learn developers, n.d.-c; Scikit-learn 
developers, n.d.-h). The software DataSpell has primarily been used for model development and 
data analysis (JetBrains, n.d.). For training the models and making predictions, a workstation with 
an Intel Xeon E7540 and 64Gb of RAM was used. We note that some datasets had to be sampled 
down due to calculations becoming too large for the available memory size.   
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4. Interview Insights 
This chapter presents the insights obtained from the interviews conducted with seven experts 
working in the field of ML detection and prevention. To that end, it encompasses rule-based TM 
systems in general, the chosen subset of transactional ML typologies and the indicators that will 
be used to generate alerts. 

4.1 Money Laundering in General 
The first topic of exploration involves the complex and diverse characteristics of ML activities in 
Dutch society as highlighted by the interviewees. They noted that these features render 
comprehensive control exceedingly challenging (interviewee 4). Money launderers endeavor to 
simulate regular transactional behavior and illicit activities often involve smaller, less noticeable 
monetary amounts (interviewee 6). This is exemplified by the fact that an identical transaction 
could be indicative of ML for one client but entirely legitimate for another. Further complicating 
matters is that high-value transactions like mortgages or the sale of valuable assets are often 
legitimate activities (interviewee 6). These complexities are exacerbated by variations in risk 
associated with payments originating from different countries and sectors (interviewee 6). 
Consequently, banks face the formidable challenge of striking the right balance between finding 
"enough" true positives but also not generating too many false positives (interviewee 5). 

Moreover, some ML activities are relatively simple to execute, further complicating regulatory 
efforts to mitigate them (interviewee 4). They do not only include (high value) criminal 
transactions but also a range of informal economic activities, such as employment in handyman 
or cleaning services, that go unreported for tax purposes, as well as commercial establishments 
that either underreport or entirely omit their cash revenue from official financial disclosures. 
Many petty criminal activities, such as the sale of stolen bicycles, predominantly involve cash 
transactions that often circumvent formal banking systems until eventually being used or 
deposited as ostensibly legitimate funds by other individuals or commercial entities like retail 
stores. It is important to underscore that relatively modest cash sums that remain undeposited 
generate no bank transactions and are consequently imperceptible to financial institutions as 
potential ML activities (interviewee 4). The same applies to alternative financial conduits such as 
underground banking systems, as well as transactions involving the exchange of high-value assets 
like art or automobiles as a form of payment. (interviewee 4) 

Conversely, cash proceeds from more significant and severe types of crime are commonly sought 
to be laundered and deposited into bank accounts, as opposed to keeping them in cash, to 
facilitate their integration into mainstream financial activities (Interviewee 4). The Dutch 
government prioritizes the scrutiny of ML activities involving funds that originate from illicit 
criminal enterprises over those relatively small crimes, owing to the more substantial adverse 
impact such activities exert on society. For this reason, both regulatory authorities and banking 
institutions strategically concentrate their AML initiatives on transactions involving substantial 
sums that are associated with severe criminal conduct (interviewee 4). In summary, this first 
section has delineated the multifaceted nature of ML, making it clear why this area is challenging 
for financial institutions. 

4.2 Rule-based Transaction Monitoring Systems 
Building upon the challenges posed by ML, we delve into the mandated safeguards that financial 
institutions must have in place. Legislation requires these institutions to be ‘in control’ of ML 
activities as aligned with their risk appetite. Importantly, this does not automatically necessitate 
the implementation of TM systems (interviewee 5). Nevertheless, Dutch banks are obligated by 
the national regulatory authority, De Nederlandsche Bank (DNB), to formulate a Systematic 
Integrity Risk Analysis (SIRA). This comprehensive analysis is designed to identify various risks, 
including those related to ML, and prescribe corresponding mitigation measures (DNB, 2020). 
Notably, for larger retail banks, automated TM systems often serve as one such mitigation 
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strategy (interviewee 5). The SIRA is dependent on the markets in which a bank is active, the 
complexity of its products and the characteristics of its client population, and therefore differs 
per institution. There is, however, a standard set of general ML scenarios and typologies that 
banks are expected to account for in their TM systems by DNB at least. Those flag unusual 
transactions that should always be investigated, without considering the context or customer 
specifically (interviewee 5). 

Dutch financial institutions are mandated to conduct CDD reviews during the client onboarding 
process. Nevertheless, the intentions of a client are not static and may evolve over time. In 
addition, the client can be coerced into criminal activities or even be exploited as a money mule 
or ML front. Therefore, banks also have to continually monitor client behavior to ensure it aligns 
with established expectations and to detect any anomalies in transaction patterns (interviewee 
5). To do so, banks can use an Expected Transaction Profile (ETP) of clients to serve as a 
benchmark to identify potential ML deviations from (interviewees 4, 5 and 7). Factors such as the 
client’s risk classification (low, medium, high) are considered when establishing an ETP. Low-risk 
clients are allowed to be grouped in one peer group with one common ETP. As interviewees 6 and 
7 note, effectively deploying an ETP on a per-client basis presents challenges. These challenges 
arise not only because an individual's financial situation can change, as in the case of 'someone 
could also just start earning more through a promotion or another job,' but also because the ETP, 
although validated at onboarding, may be constructed based on the client's narrative. Such self-
reported narratives can be misleading or incomplete, leading to an ETP that seemingly validates 
even high-risk or dubious transactions, such as receiving funds from high-risk jurisdictions. For 
businesses, the chamber of commerce information such as activity codes, location and 
shareholders can be utilized (interviewees 2 and 6). Each risk level can have its own set of 
thresholds and unique indicators with varying absolute or relative values. While the use of ETP 
within Dutch AML efforts is increasing, interviewees highlighted that its effectively poses its own 
set of challenges and it has remained very limited within the retail domain up until now (NVB, 
2023, interviewee 4).  

Interviewees shed light on the workings of those rule-based Transaction Monitoring (TM) 
systems, highlighting that indicators in rule-based TM systems usually operate independently of 
each other (interviewees 1, 4 and 6). This is done to ensure the set lower bounds and to prevent 
indicators from cancelling out other indicators, potentially creating blind spots within the 
systems. To ensure the effective use of rule-based TM systems, tuning both static and dynamic 
thresholds used within rules is considered essential. As this tuning becomes more difficult as the 
number of parameters per rule increases, ‘OR’ statements are usually avoided in rule 
formulations (interviewees 2, 6 and 7). Alerts in rule-based TM systems are typically binary, 
activated when any indicator is triggered, and they usually do not provide further risk scores. 
There is a shared sentiment among interviewees that dynamic indicators are more effective. 

When a transaction has been flagged, a bank officer will manually investigate whether the 
transaction is a false positive (not unusual) or true positive (unusual) and consequently should 
be reported as a hit to the compliance department. The officer might inquire of the client during 
the investigation for an explanation regarding the transaction. The compliance department will 
determine whether the transaction should be reported to the FIU and whether the particular 
client should be monitored more intensively, e.g., examining all transactions above a certain 
amount or conducting more frequent CDD reviews (interviewees 1 and 5). Conclusively, the 
section emphasizes the mandated procedures and the inherent challenges of effective TM within 
Dutch financial institutions. 

4.3 Money Laundering Typologies 
Transitioning to typologies, Table 9 presents the most significant ML typologies as identified by 
the interviewees. The typologies Low to high, Geographical structuring/fan-out, Bipartite, Type 
change, Wallet, Profile inconsistency, Changing information and Circular/cycle from Table 1 were 
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not mentioned by any interviewees and are therefore not included in Table 9. The typologies 
Trade-based and Crypto have been added based on the insight gathered from the interviews. 

Table 920. Most common money laundering typologies through bank transactions as mentioned by interviewees 

Typology Description Referenced by 
interviewees 

Structuring/ 
smurfing 

Dividing large sums of money into smaller transactions to 
remain below mandatory reporting thresholds. This 
typology can be combined with almost all other typologies. 
With smurfing, usually structuring using multiple 
individuals is meant. This is a common tactic with 
individuals (money mules) where significant cashflows, 
often from activities like drug trafficking, are deposited in 
small amounts on personal accounts to avoid suspicion. 
Typically, amounts are kept under €10,000 to evade 
mandatory reporting requirements, but even transactions 
above this threshold must be consistent and justifiable. 
Funds frequently funnels through consistent accounts in a 
"pass-through" or "funneling" manner, ensuring that what 
comes in largely equals what goes out. Rapidly forwarded 
transactions and dormant accounts suddenly becoming 
active are suspicious indicators. Periodic CDD reviews are 
conducted on such accounts.  Although there is an objective 
€10,000 limit for currency exchanges, no such limit exists 
for deposits, making this tactic particularly viable. 
Therefore, transaction amounts deliberately remaining just 
below reporting thresholds should also trigger alerts, as it 
indicates a deliberate attempt to evade detection. While 
banks should ideally determine periods for structured 
transactions, the criteria are often ambiguous, leaving room 
for various interpretations. 

1, 2, 3, 5, 6, 7 

Cash Involves unusually high deposits or withdrawals, often 
executed either immediately after each other or within a 
short time frame. This typology is frequently combined 
with other ML methods, such as smurfing, particularly in 
typical scenarios involving drug dealers. In the retail sector, 
large cash transactions often hint at criminality or 
undeclared work. However, merely possessing cash is not 
inherently suspicious; it can become so when deposited or 
exchanged, as seen in drug-dealing scenarios involving 
smurfing to deposit funds. Monitoring typically involves 
comparing recent transactions to historical data. Large cash 
transactions are especially prevalent and are often linked to 
various forms of criminality. The risk associated with cash 
transactions varies by scale of criminal activity, being more 
significant for smaller-scale criminals as larger volumes 
often involve fronts for more extensive operations. 
Financial institutions may also consider regional variations 
and the scale of criminal activity when assessing risk. 
Periodic reviews are conducted to ascertain the legitimacy 

1, 2, 3, 4, 5, 6, 7 

 

20To prevent unintended adverse consequences related to money laundering from occurring, detailed 
numerical values are not published throughout this section.  
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of large cash transactions, especially in countries with open 
economies where cash plays a significant role. 

Inactive/ 
dormant 

Accounts that have been inactive for extended periods and 
then suddenly exhibit a surge in activity, frequently in the 
form of deposits, which may be combined with the Cash 
typology. Although dormant accounts are not intrinsically 
suspicious, maintaining an unused account for an extended 
duration is atypical. A sudden surge in activity, 
characterized by unusually high credit and debit 
transactions, serves as an indicator of potential ML. Such 
behavior is commonly observed in smurf accounts. 

1, 2 

International 
trade 

Accounts that engage in transactions with countries 
different from those importing/exporting goods to or from, 
or providing services in. Notable shifts in international 
trade patterns, such as a regular supplier suddenly 
engaging with a new country, are red flags that warrant 
further investigation. Key questions include the rationale 
behind the shift in business focus to the new country and 
the security and credibility of that country. 

1 

Money mule 
/fan-in 

Accounts registered under multiple individuals but 
controlled by a single party, frequently utilizing 
passthrough or funneling methods. An indicator of this 
typology is a balanced transaction flow where the volume 
of incoming funds closely aligns with outgoing funds. Rapid 
passthrough transactions are particularly suspicious. The 
activities may involve cash deposits and extend beyond 
criminal fund sourcing to include fraud or tax evasion. The 
strategy aims to obfuscate the traceability of funds, 
typically by moving funds from one account to multiple 
accounts before consolidating it back into a single account. 

1, 2, 4, 5, 7 

Pass through 
/funneling 

Accounts exhibiting debit and credit transactions of closely 
matching amounts, indicative of a cover-up account. In the 
context of ML, this technique is often employed in 
conjunction with money mules. The strategy involves the 
rapid movement of funds, with swift forwarding 
transactions raising particular suspicion. 

1, 2 

Unrelated 
accounts 

Transfers from or to unrelated accounts without reasonable 
justification. Anomalies such as a band receiving payment 
from an unexpected location following an overseas concert, 
or a student whose expenses are entirely covered by an 
unrelated third party, warrant scrutiny. This typology may 
intersect with other methods like money mules when 
structuring is executed within a network. 

1, 7 

Currency 
exchange 

Substantial and continuous purchase transactions for 
foreign currency (in cash) or cryptocurrency are deemed 
unusual, as it can often be a method to obscure the origins 
of illicit funds. 

1 

High-Risk 
Jurisdictions 

Transfers involving high-risk jurisdictions, including tax 
havens and countries frequently linked to tax evasion and 
schemes like Mexico's black market peso exchange, are 
subject to heightened scrutiny. The risk increases with 
payments facilitated through transfer services. Regulatory 
entities like the World Bank, UN, and EC provide lists of 
high-risk countries that guide both outbound and inbound 

1, 2, 3, 5, 6, 7 
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TM. CDD is typically mandated for transactions involving 
these regions. The typology is especially pertinent for retail 
customers, who typically engage in transactions within the 
Netherlands and Europe. Transactions involving high-risk 
countries outside this geographical scope are considered 
unusual unless adequately justified. The risk profile varies 
depending on the frequency and nature of transactions, 
making it crucial for financial institutions to adapt their 
monitoring strategies accordingly. 

Laundromat Involves the use of front companies that default on 
fabricated loans, which are then authenticated by corrupt 
judicial authorities, allowing for payments from third 
parties. This method is often interlinked with High-Risk 
Jurisdictions and schemes like Trade-based, particularly in 
relation to drug money. Notably, this typology has been 
observed in cases involving shells, where funds were 
funneled through intricate networks. This approach often 
employs structuring to conceal relationships, especially in 
trade-based schemes. 

1, 6, 7 

Trade-based Involves the manipulation of trade invoices—either under-
invoicing, over-invoicing, or double invoicing—to facilitate 
illicit financial flows between organizations or jurisdictions. 
From a banking standpoint, this typology is particularly 
challenging to detect and can manifest in two primary 
forms: Documentary Trade and Open Account Trade. In the 
case of Documentary Trade, banks are involved in the 
transactions providing financial instruments like 
guarantees, thereby gaining access to transaction details 
such as invoices, allowing for a more informed assessment 
of the transaction's legitimacy. Conversely, Open Account 
Trade poses a greater challenge as banks facilitate the 
payment but have limited information about the 
transaction itself. This typology is frequently used to 
convert money from one currency to another, especially 
from high-risk jurisdictions, through a series of seemingly 
plausible transactions that may involve multiple 
"intermediary" banks or countries. Each link in this 
transactional chain has the potential to act as a conduit for 
ML. Given the typology's complexity and the possibility of 
involving both legitimate and illegitimate parties, vigilant 
monitoring of both sides of a transaction becomes 
imperative for banks. Network analysis is especially 
efficacious when a financial institution serves both parties 
involved in a transaction. 

4, 6 

Crypto Involves the conversion of cryptocurrency to fiat currency, 
often through complex transactions designed to obscure 
the origin of funds. The process is a crucial point of concern 
as it presents a juncture where the traditional financial 
system intersects with decentralized cryptographic assets, 
meriting stringent regulatory and monitoring scrutiny. 
Given the obligatory involvement of banks during the 
conversion process, this typology adds a layer of complexity 
and urgency to contemporary AML efforts and transaction 
monitoring protocols. 

5 



35 
 

 

4.3.1 Selected Money Laundering Typologies 

As the information presented in Table 9 indicates, the most common transactional ML typologies 
in the Netherlands, as highlighted by the interviewees, are Cash, Structuring/smurfing and High-
Risk Jurisdictions. The focus on these three typologies is a result of their frequent mention and 
perceived prominence in the interviews, establishing their importance within the Dutch context. 

4.4 Indicators of Money Laundering Typologies 
With the typologies established, the next logical step is to discuss the indicators that can flag these 
typologies. Table 10 presents these indicators that can be used to generate alerts for the subset 
of typologies as described directly above. The indicators Sector salaries, Sector high-risk and 
Account duration from Table 3 were not mentioned by any interviewees and are therefore not 
included in Table 10. The indicators Number roundness, Transaction description, Structure of 
banknotes and Growth of company have been added based on the insight gathered from the 
interviews. 

Using predefined thresholds, financial institutions try to delineate the expected transactional 
behavior of their customers. While such thresholds are relatively straightforward for most retail 
customers, they become increasingly complex for small-scale international retailers. This 
inherent variability complicates the task of devising a universally applicable solution for TM 
across diverse customer segments (Interviewee 6). Within the framework of these indicators, 
both static and dynamic thresholds are used within rule-based TM systems at Dutch banks 
(interviewees 1 and 2). This can range from “cash deposits above amount X” to “more than X% of 
your average account amount”. The amount and type of thresholds depend on the typology and 
can differ per the anticipated risk category of a client or product (Interviewees 1, 2 and 3). In 
addition, rules can be set with conditional parameters, e.g., no alert is generated when the 
transaction amount is too small. The number of rules within an “average” TM system varies 
greatly by bank and by department, e.g., retail, wholesale or private banking (interviewees 1 and 
6). While multiple rules can be set, more rules are not always more effective, as even a single alert 
for an unusual transaction already warrants further investigation (interviewee 6). 

Table 1021. Indicators of common money laundering typologies as mentioned by interviewees 

Indicator Description Referenced by 
interviewees 

Type Type of transaction. Can be a ‘normal’ bank transfer, cash 
deposit or withdrawal, transfer via another payment 
provider, loan payment, or cheque. 

1, 2, 3, 4, 6, 7 

Amount The amount of the transaction in relation to the static (e.g., 
student account) or dynamic threshold. 

1, 2, 3, 4, 5, 7 

Frequency The frequency of the transaction (potentially of a similar 
amount) in relation to the static or dynamic frequency 
threshold. 

4, 7 

Volatility Rapid and relatively large changes in the account balance 
over a brief period, characterized by significant percentages 
of inflow or outflow. 

1, 2, 3, 4, 7 

International 
exposure 

Percentage of in or outflow to or from abroad in relation to 
static or dynamic thresholds. 

3, 6 

 

21 To prevent unintended adverse consequences related to money laundering from occurring, detailed 
numerical values are not published throughout this section. 
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International 
high-risk 

Transactions involving or originating from high-risk 
countries. 

3, 4, 5, 6, 7 

Account type Personal (e.g., student or normal) or business account. 1, 2 

Number 
roundness 

Degree to which the transaction amount is a "round" number. 1, 4 

Transaction 
description 

Relevance and patterns in the transaction's text description. 2 

Structure of 
banknotes 

Denomination and structure of cash in deposits. 4 

Growth of 
company 

Unnatural growth rates, incongruent with economic climate 
and regional trends. 

4 

 

4.4.1 Selected Indicators of Money Laundering Typologies 

It should be noted that although all indicators outlined in Table 3 could ideally be employed to 
generate alerts for the subset of typologies practical limitations exist. As outlined in Table 6, the 
IT-AML dataset does not contain any information, such as the location, sector or risk 
classification, about the account holders. This prevents the creation of ETPs, which renders the 
use of the Growth of company and Account type indicator impossible. In addition, as no transaction 
description or additional information is provided on Cash transactions, the Transaction 
description or Structure of banknotes indicators can also not be leveraged. However, the 
transaction data does contain information about the date and time, involved accounts, amounts, 
currencies and the type of transaction. This enables use of all the remaining indicators presented 
in Table 10. 

Drawing upon the insights gained from the interviews, three or two indicators were selected for 
each typology under study. Table 11 presents, per each respective typology, the indicators 
employed to formulate rules aimed at detecting instances of that particular typology. The logic of 
flagging transactions is that the indicators work independently from each other. In other words, 
a particular transaction can be flagged multiple times by different indicators independently 
within the same typology. 

Table 11. Indicators of selected money laundering typologies 

Typology Indicators Indicator 
Type 

Indicator Logic 

Cash Type Categorical Type == Cash 

Amount Static Amount ≤ value X 

Structuring/
smurfing 

Amount Static Amount ≤ value X 

Dynamic Amount ≥ more than X times average 
transaction amount for account 

Frequency Dynamic Transaction count per day ≥ X% above the 
average daily transaction count for account 

Volatility Dynamic Daily net flow ≥ more than X standard 
deviations above average net flow for account 

High-Risk 
Jurisdictions 

International 
high-risk 

Categorical Currency == high-risk currency proxy 
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International 
exposure 

Dynamic Transactions non-dominant currency ≥ more 
than X% of transactions in account's non-
dominant currency 

Amount Static Amount ≤ value X 

 

4.5 Chapter Conclusions  
• The most common transactional ML typologies in the Netherlands are Cash, 

Structuring/smurfing and High-Risk Jurisdictions. 
• There is a shared sentiment that dynamic indicators are more effective than static ones. 
• For the Cash typology, the Type and Amount indicators will be used. 
• For the Structuring/smurfing typology, the Amount, Frequency and Volatility indicators 

will be used. 
• For the High-Risk Jurisdictions typology, the International high-risk, International exposure 

and Amount indicators will be used.  
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5. Data and Experiments 
This chapter presents how the typologies and indicators as selected were handled in the data and 
provides information on the experimental setups used for training and evaluating the classifiers. 

5.1 Data 
5.1.1 Data Preprocessing 

Since large amounts are usually not indicative of ML, as discussed previously in Chapter 4, 
transactions with a top 10% amount value have been removed, leading to the distribution as 
presented in Figure 8. This caused the removal of 17.225.065 transactions from the high ML rate 
and 16.880.162 transactions from the low ML rate dataset. 

 

Figure 8. Boxplots of amount variables in both datasets after removing outliers. 

For training the models and making predictions, the Amount Received column has been removed 
to reduce multicollinearity because it was, obviously, highly correlated to the amount paid 
column. To obtain betters fitted models, categorical variables, such as bank names or currencies, 
have been transformed into numerical representations. One-hot encoding has been applied to the 
columns ‘Receiving Currency’, ‘Payment Currency’ and ‘Payment Format’. Robust scaling was 
applied to the numerical ‘Amount Paid’ column due to the positive skewness and large outliers 
(Scikit-learn developers, n.d.-d). Due to the high class imbalance in the (train) datasets, we used 
Repeated Stratified K-Fold for cross-validation to ensure that each fold adequately represents the 
minimum level of ML transactions present in the data (Brownlee, 2020a).  

5.1.2 Training and Testing Data 

The train/validate/test split has been based on time, using the “Timestamp” of each transaction 
in the dataset, as per Jullum et al. (2020). This time-based split is crucial in the context of TM, as 
it more accurately mirrors the temporal dynamics in transaction patterns. In addition, this 
facilitated an out-of-time validation of model performance, as if the model would have been 
enabled at a certain point in time (Zhang & Trubey, 2019). We used a 60%/20%/20% train, 
validate and test split as this was advised by the developers of the IT-AML datasets to be most 
beneficial (Altman, 2023). This meant that, from the 97 days of the total timespan of the datasets, 
the first 57 days were used for training, the next 20 days for validating and the last 20 days for 
testing. This is the same as Jullum et al. (2020) did, as they used two months of transaction history. 
The number of transactions in the various splits are presented in Table 12.  
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Table 12. Number of transactions and prevalence rate after the train/validate/test split 

 High prevalence rate Low prevalence rate 
Dataset # of transactions Prevalence rate # of transactions Prevalence rate 
Train 90,646,164 (58%) 0,10% 88.843.454 (58%) 0,05% 
Validate 31,850,904 (21%) 0,13% 31.202.441 (21%) 0,06% 
Test 32,528,821 (21%) 0,13% 31.875.978 (21%) 0,06% 
Total 155,025,889  151.921.873  

 

5.2 Typologies and Experiments 
As stated in 4.5 Chapter Conclusions, the Cash, Structuring/smurfing and High-Risk Jurisdictions 
have been used throughout this study. This section discusses how the indicators for the various 
typologies and indicators were handled. Once again, to prevent unintended adverse 
consequences related to ML from occurring, detailed numerical values are not published 
throughout this section. For all three typologies, all transactions below a certain minimum value 
were excluded as interviewees indicated that ML using small amounts is not considered feasible. 
For this end, all amounts were converted using the average exchange rate over the total timespan. 
All values reported for the typologies below are for the ‘all banks’ perspective. 

5.2.1 Cash Typology 

For the Cash typology, the Amount and Type indicators were employed. The Cash payment format 
type was the primary indicator used for flagging transactions. This indicator flagged 6,733,824 
transactions with a ML rate of 0.02% in the high ML rate dataset and 6,627,245 transactions with 
a ML rate of 0.02% in the low ML rate dataset. Next to that, the minimum transaction amount rule 
removed 19.505.841 transactions from the high ML rate and 19.155.000 transactions from the 
low ML rate dataset. The overall ML rate for the flagged transactions was 0.02% in the high ML 
rate cash train dataset and 0.02% in the low ML rate cash train dataset. We note that these rates 
are very limited in comparison to the rates in the train sets of the other two typologies. 

5.2.2 Structuring/smurfing Typology 

For this typology, the Amount, Frequency and Volatility indicators have been used. The Amount 
rule (both minimum transaction amount value and those exceeding thresholds) flagged 
2,931,594 transactions with a ML rate of 0.42% in the high ML rate dataset and 2,868,359 
transactions with a ML rate of 0.14% in the low ML rate dataset. The Volatility indicator was used 
by flagging instances where sudden and irregular fluctuations in transaction values deviate 
significantly from the norm, potentially indicating attempts to obscure illicit funds through rapid 
and unpredictable movements. As the account balance was not known, the volatility has been 
determined using cashflows occurring within the timespan of the dataset. This indicator flagged 
2,619,422 transactions with a ML rate of 0.53% in the high ML rate dataset and 2,588,933 
transactions with a ML rate of 0.08% in the low ML rate dataset. The Frequency indicator has 
been employed to detect ML transactions of the structuring/smurfing typology by identifying a 
high volume of small, repetitive transactions that may be indicative of an attempt to break down 
a large sum of illicit funds into smaller, less conspicuous amounts to evade detection. This 
indicator flagged 1,072,256 transactions with a ML rate of 0.40% in the high ML rate dataset and 
1,042,511 transactions with a ML rate of 0.11% in the low ML rate dataset. The overall ML rate 
for the flagged transactions was 0.46% in the high ML rate high-risk jurisdictions train dataset 
and 0.12% in the low ML rate high-risk jurisdictions train dataset. 

5.2.3 High-Risk Jurisdictions Typology 

For this typology, the Amount, International high-risk and International exposure indicators were 
used. The Amount indicator removed 19,505,841 transactions from the high ML rate and 
19,155,000 from the low ML rate dataset because they remained below the minimum transaction 
value. The currencies in the datasets have been used as proxies for which countries the money 
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would go to. The countries China, Russia, Mexico and Brazil are considered high-risk 
(International Centre for Asset Recovery (ICAR), 2022; KnowYourCountry, n.d.-c, n.d.-a, n.d.-b; 
Statista, 2023a, 2023b). The International high-risk indicator flagged 10,826,692 transactions 
with a ML rate of 0,08% in the high ML rate and 9,508,219 transactions with a ML rate of 0,06% 
in the low ML rate dataset. In addition, all transactions of the Bitcoin currency and payment 
format are assumed to be high-risk as well. Unusual transactions were also identified using the 
International exposure indicator. More specifically, a transaction was flagged if it exceeded a 
predetermined percentage of the average for transaction amounts denominated in currencies 
divergent from an account's 'standard' currency. This rule flagged 4,056,461 transactions with a 
ML rate of 0.60% in the high ML rate and 12,982,762 transactions with a ML rate of 0.10% in the 
low ML rate dataset. The overall ML rate for the flagged transactions was 0.22% in the high ML 
rate high-risk jurisdictions train dataset and 0.07% in the low ML rate high-risk jurisdictions train 
dataset. 

5.2.4 Experiments 

This section presents the various experiments conducted on the dataset. To enhance the study's 
generalizability, the FNR has been empirically calculated using ground-truth data and estimated 
using predictive models across two distinct datasets, as presented earlier in 3.3 Synthetic Data. 
As Dutch banks are increasingly collaborating to combine transaction data in one system, called 
‘Transactie Monitoring Nederland’ (Transactie Monitoring Nederland, n.d.). Therefore, we will 
conduct the experiments from both the perspective (information position) of one bank as well as 
from all banks. For the perspective of one bank, we use bank 70, as this is the most predominant 
bank in the datasets, as seen in Figures 8 and 9 in Explorative Data Analysis and data preparation. 
To this end, we will filter all transactions not originating from or going towards bank 70. Since we 
are training seventeen distinct models per scenario, the total number of combinations is 204 
(2*2*3*17). Due to computational constraints, we have randomly sampled 20% of the training 
and test dataset before fitting and predicting with every model.  

Experiment A. High ML Prevalence Rate from the All Banks Perspective 

- Cash typology on high ML prevalence rate dataset from all banks perspective.  
- Structuring/smurfing typology on high ML prevalence rate dataset from all banks 

perspective 
- High-Risk Jurisdictions typology on high ML prevalence rate dataset from all banks 

perspective 

Experiment B. High ML Prevalence Rate from the One Bank Perspective 

- Cash typology on high ML prevalence rate dataset from one bank perspective 
- Structuring/smurfing typology on high ML prevalence rate dataset from one bank 

perspective 
- High-Risk Jurisdictions typology on high ML prevalence rate dataset from one bank 

perspective 

Experiment C. Low Prevalence Rate from the All Banks Perspective 

- Cash typology on low ML prevalence rate dataset from all banks perspective 
- Structuring/smurfing typology on low ML prevalence rate dataset from all banks 

perspective 
- High-Risk Jurisdictions typology on low ML prevalence rate dataset from all banks 

perspective 

Experiment D. Low Prevalence Rate from the One Bank Perspective 

- Cash typology on low ML prevalence rate dataset from one bank perspective 
- Structuring/smurfing typology on low ML prevalence rate dataset from one bank 

perspective 
- High-Risk Jurisdictions typology on low ML prevalence rate dataset from one bank 

perspective 



41 
 

5.2.5 Experimental Setup 

As aforementioned in 3.2.2 Machine Learning Classifiers, the default implementations of the 
classifiers logistic regression, decision tree and random forest are considered as baseline models. 
Next to those, we employ a range of these and additional models with cost-sensitive learning and 
downsampling approaches to address the high class imbalance in our datasets.  

Cost-sensitive Learning 

Cost-sensitive learning helps to increase model performance by assigning a higher penalty to 
misclassifying the minority class, incentivizing the models to focus on accurately detecting ML 
instances. This approach is particularly beneficial for dealing with the low ML prevalence dataset, 
as it presents more significant predictive challenges due to less frequent ML activities, making 
the discovery of patterns more complex (Altman et al., 2023). To implement cost-sensitive 
learning, we leveraged the class weight parameter for the following models: Logistic Regression, 
Decision Tree, Random Forest, Balanced Random Forest and AdaBoost with Decision Trees. We 
used the ‘balanced’ option for these models, which adjusts weights  inversely proportional to class 
frequencies in the input data, therefore prioritizing minority class predictions in the loss function. 
As the Random Forest and Balanced Random Forest models use bootstrapping for the training of 
different trees, they also offered a ‘balanced_subsample’ option for this parameter, which we also 
implemented for a version of both models. This also adjusts weights inversely proportional to 
class frequencies, but then on a per-bootstrap sample basis. 

Downsampling 

Next to cost-sensitive learning, we also leveraged a downsampling approach to increase model 
performance, which effectively manages the significant volume disproportion between the ‘ML 
and 'non-ML’ class. These models, Balanced Random Forest and RUSBoost, are designed to 
downsample the majority class in the training dataset, thereby creating a more balanced class 
distribution. By doing so, they ensure a more equal representation of classes during the learning 
process, which is particularly crucial in our context where the ML cases are substantially less 
prevalent than non-ML transactions. The downsampling approach helps in mitigating the model's 
bias towards the majority class, enhancing its sensitivity to the minority class, and thus improving 
the detection of potential ML transactions (Hasanin & Khoshgoftaar, 2018). The specific 
downsampling strategy where implemented is ‘auto’ without replacement, a choice made to 
randomize the downsampling process and ensure equal class sizes. This entails dropping the 
majority ‘non-ML’ class until an equal split has been met, therefore completely diminishing the 
class imbalance. This 50/50 class representation makes the model less able to overfit on the 
majority class, thereby improving the detection capabilities for the minority class. To provide a 
balanced perspective, it should be noted that while this approach is effective in reducing bias, it 
may involve the loss of some informative instances from the majority class, potentially impacting 
the model's overall learning capacity. 

Metrics for Evaluation 

We need to define the metrics used to compare the predictions from the machine learning 

classifiers with the performance of the rule-based TM systems. The subject of study is 

transactions misclassified as ‘not unusual’ by rule-based TM systems—known as false negatives. 

It is worth noting that rule-based TM systems in banking institutions typically flag only a 

minimal subset of transactions for manual review. Consequently, the true class label for the vast 

majority of transactions deemed usual remains unverified, yielding a confusion matrix as 

depicted in Table 13. 

Table 13. Confusion matrix for real-world AML TM systems. 

  Actual class 

  True (unusual) False (usual) 

True (unusual) True Positive False Positive 
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Predicted 

class 

False (usual) False Negative + True Negative 

 

However, since we have access to ground-truth synthetic datasets wherein transactions are 

unambiguously labelled as instances of ML or not, we also have knowledge of the true class 

labels, as outlined in Table 14. This enables the calculation of the False Negative Rate (FNR), 

also known as the miss rate (Herzog et al., 2017). The FNR serves as an essential metric in our 

study, given our interest in identifying false negatives. It quantifies the rate at which actual 

unusual transactions are erroneously not flagged by the system. The FNR can be calculated by 

dividing the number of false negatives by the total number of actual positives: 𝐹𝑁𝑅 = 𝐹𝑁/𝑃 

(“Confusion Matrix,” 2023).  

Table 14. Confusion matrix of TM systems using synthetic datasets. 

  Actual class 

  True (unusual) False (usual) 

Predicted 

class 

True (unusual) True Positive False Positive 

False (usual) False Negative True Negative 

 

Finally, we use the Area Under the Precision-Recall Curve (AUPRC) as the primary metric to 
determine model performance and the best hyperparameter setup as this metric is specifically 
tailored towards capturing a classifiers ability to correctly predict the minority class. To calculate 
AUPRC, we plot precision (true positives divided by all positive predictions) against recall (true 
positives divided by actual positives) across various thresholds, forming a curve. The AUPRC, 
ranging from 0 to 1, represents the area under this curve, quantifying the model's overall ability 
to distinguish the minority class. A score of 1, indicating perfect precision and recall, reflects 
enhanced model performance in detecting these instances. We note that the baseline of the 
AUPRC is equal to the fraction of positives, as calculated by dividing the number of positive 
examples by the total number of examples (Saito & Rehmsmeier, 2015). For the high ML 
prevalence dataset this is 0.13% (1/807) and for the low ML prevalence dataset this is 0.06% 
(1/1,750). 

Delving into the robustness of the predictions, the Matthews Correlation Coefficient (MCC) is 
reported as the secondary metric to determine model performance in general, which is in line 
with Chicco & Jurman (2020) who advocate for the robustness of MCC in binary classification 
model evaluation. Offering a more balanced and reliable approach than straightforward accuracy 
in scenarios with imbalanced class distributions like ours, the MCC stands out by considering both 
true and false positives as well as negatives in its computation. In contexts, where false negatives 
(unidentified ML transactions) are of particular interest, the MCC's sensitivity to both types of 
classification errors becomes crucial. The MCC ranges from -1 to +1, where +1 represents a 
perfect prediction, 0 is no better than random prediction, and -1 indicates total disagreement 
between prediction and true class. 

Model Parameter Optimization 

The best performing model for every experiment/typology combination was selected for further 
optimization through hyperparameter tuning, a process where we adjust the model's parameters 
to improve its performance. To manage the computationally expensive nature of hyperparameter 
tuning, we employed random search cross-validation. This approach, while less exhaustive than 
a full grid search, has been shown to yield comparably effective results (Alice, 2016). Repeated 
Stratified K-Fold cross-validation was applied using the training set (Brownlee, 2020a). Models 
were tuned with a range of hyperparameters tailored to their specific characteristics, as 
presented in Appendix C. Hyperparameter tuning. The number of random samples for the tuning 
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ranged from 10 to 50, dictated by the model’s training time on each dataset. For final model 
evaluations, we used the set of hyperparameters that achieved the highest AUPRC score. 

Threshold Tuning 

Having retrained the best model for every experiment/typology combination using the optimal 
hyperparameter settings, we attempted to further improve the classification performance by 
applying threshold tuning (Brownlee, 2020b). This process involves adjusting the decision 
threshold, which is the point at which a model decides between different classification outcomes. 
Typically, a default threshold of 0.5 is used for binary classification, but this may not be optimal 
for all situations, especially in imbalanced datasets. To find the optimal threshold, we explored a 
range between 0 and 1, using increments of 0.05. The optimal threshold was identified by 
maximizing the MCC across these different thresholds. By fine-tuning this threshold, we aimed to 
optimize the balance between false positives and false negatives, thereby enhancing the overall 
effectiveness and precision of our models in making predictions. It is important to note that 
adjusting the threshold does not change the AUPRC because this metric evaluates the model's 
performance across all possible thresholds, making it invariant to any single threshold change. 
However, it can significantly improve the MCC, which is why we used this metric for tuning. 
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6. Results 
This chapter presents the results of the experiments. As indicated above in Metrics for Evaluation, 
the performance of the classification models is evaluated based on the Area Under the Precision-
Recall Curve (AUPRC) and Matthews Correlation Coefficient (MCC) metrics. As described above 
in Model Parameter Optimization, we have selected only the best performing model for every 
experiment/typology combination for hyperparameter and threshold tuning and making final 
predictions. 

6.1 Experiment A. High ML Prevalence Rate from the All Banks Perspective 

For the first experiment, the models were trained on a typology train set with the high ML rate 
and with the data of all banks. Figure 9 presents a comparative analysis of various machine 
learning models' performance, measured by the AUPRC. As we can see, the best-performing 
model varies across different typologies, indicating a need for a nuanced approach when selecting 
models for different ML scenarios. Ensemble methods, particularly those implementing balancing 
techniques, show substantial efficacy, suggesting that balancing strategies are beneficial in 
managing class imbalances typical in ML detection. Although the top ranking order is very similar, 
AdaBoost is a notably better performing model for the Cash typology than for high-risk 
jurisdictions and structuring typologies. Logistic Regression, both as default and balanced, 
appears to perform the worst for both high-risk jurisdictions and structuring, but not cash, 
indicating its limitations in handling complex patterns associated with ML activities within the 
former typologies. While the AUPRC scores are in a similar (already low) range for the high-risk 
jurisdictions and structuring typologies, the models seem to fail dramatically for the cash 
typology as the AUPRC reaches the ML prevalence rate, indicating performance on par with 
random guessing. 

 
Figure 9. AUPRC scores for every model per typology in experiment A 

We now compare the predictions of the best performing classifier for every typology with the 
actual ML cases present in the data. Figure 10 shows the results of the classifiers ability to detect 
and predict ML activities, depicted through the distribution of true positives, false positives and 
false negatives for each model/typology combination. For the structuring and especially the cash 
typology, the number of false positives is extremely large, indicating a very conservative 
prediction model. However, the number of true positives (the overlap), is very minimal when 
compared to the total number of positives, indicating poor model performance. This indicates 
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that while the model does predict ML instances, it does so with substantial inaccuracy, leading to 
many incorrect predictions. For the high-risk jurisdictions typology, there is a significant number 
of false positives as well. Despite this, there is a notable overlap between true and predicted cases, 
suggesting a measurable degree of accuracy in the model's predictions. In summary, across all 
typologies, the models display varying degrees of predictive capability, with none achieving high 
precision. 

 
Figure 10. True and predicted number of ML transactions for the high ML rate data and the perspective of all banks 

As we can see in Table 15, the difference between the actual and the Predicted FNR is very 
substantial for the cash and structuring typologies. However, the difference for the high-risk 
jurisdictions typology is very limited. However, the low AUPRC and MCC scores for this typology 
seem to suggest that this just is a coincidence and not an accurate correct estimation. The low 
AUPRC and MCC for the cash typology indicate that the model is not performing much better than 
random guessing. For the high-risk jurisdictions and structuring typologies, the model has 
learned to identify ML transactions somewhat better, but both metrics can still be considered low. 

Table 15. Results of the balanced bagging with Decision Trees with 100 estimators classifier for all banks on the high prevalence dataset 

 High-risk jurisdictions Cash Structuring 
Actual FNR 0.731 0.990 0.924 
Predicted FNR 0.688 0.025 0.313 
AUPRC 0.053 0.002 0.019 
MCC 0.155  0.015 0.067 

 

6.2 Experiment B. High ML Prevalence Rate from the One Bank Perspective 

Figure 11 shows a shift in classifier performance when the perspective changes to a single bank. 
The disparity in AUPRC performance between most models highly differs per typology, indicating 
that certain models excel for all typologies whereas others fail greatly depending on which 
typology its detection is aimed. The Balanced Random Forest balanced model leads, particularly 
for the high-risk jurisdictions typology, closely followed by AdaBoost. This could indicate that from 
a single bank's perspective, the class imbalance problem is less severe, or the data patterns are 
more uniform, allowing simpler models to perform relatively well. While the Balanced Random 
Forest implementations with the various balancing measures again perform well, the top 
performer from experiment A, balanced bagging with 100 decision trees, now drops in ranking 
significantly, together with the other balanced bagging models. The normal Random Forest 
models without downsampling perform poorer than their equivalent with downsampling, 
indicating that this balancing measure helps to improve model performance greatly. 
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Figure 11. AUPRC scores for every model per typology in experiment B 

The results as presented in Figure 12 paint a different, but worse, picture than those in 
experiment A. The classifiers once again perform very poorly. We can see that the number of false 
positives is very great for the high-risk jurisdictions and structuring typologies, indicating that 
the Balanced Random Forest model in those cases is once again conservative. Thus, the classifier 
has low performance although many actual ML transactions are correctly predicted, indicating 
low precision. AdaBoost for the cash typology predicts ML a relatively limited number of times 
but has almost no correct overlapping true positives. The model might not be sufficiently 
sensitive to actual ML activities, potentially leading to a high FNR in real-world applications.  

Overall, the Venn diagrams in Figure 12 underscore the challenge of achieving a balance between 
sensitivity and specificity in ML detection models. While a conservative model may minimize the 
risk of missing actual ML transactions, the high number of false positives could lead to inefficient 
allocation of investigative resources and operational inefficiencies in a real banking context. 

 
Figure 12. True and predicted number of ML transactions for the high ML rate data and the perspective of one bank 

Table 16 highlights a pronounced gap between Actual and Predicted FNR for the typologies high-
risk jurisdictions and structuring, indicating many actual ML transactions are missed. For the cash 
typology, the actual and predicted FNR are not that far off. However, just as for Experiment A, this 
seems rather a coincidence. Especially given that the low AUPRC values across the board signal 
poor model precision and recall, with the model's performance barely surpassing random chance, 
as also suggested by the near-zero MCC values. This suggests the limited effectiveness of all 
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classifiers in accurately detecting ML activities in the low rate dataset from the perspective of one 
bank. 

Table 16. Results of the Balanced Random Forest with balanced subsample classifier for one bank on the high prevalence dataset 

 High-risk jurisdictions Cash Structuring 
Actual FNR 0.892 0.908 0.959 
Predicted FNR 0.007 0.986 0.058 
AUPRC 0.001 0.001 0.001 
MCC 0.005 0.001 0.022 

 

6.3 Experiment C. Low ML Prevalence Rate from the All Banks Perspective 

In Figure 13, we observe classifier performance in a low ML rate prevalence scenario from an all 
banks perspective. As anticipated, there is a general decline in performance across all classifiers 
compared to the high ML rate prevalence of Experiment A, which is expected due to the relatively 
reduced frequency of ML cases, which inherently complicates the detection process. With the same 
models in the top 4 as for experiment A, the balanced models seem to maintain a relative 
advantage, with the bagged balancing approach using Decision Trees and the Balanced Random 
Forest classifiers appearing prominently at the top. This suggests that methods designed to 
account for class imbalance are advantageous, even when the overall prevalence rate is low. In 
addition, it shows that the same ranking of performance maintains when varying the ML rate. 
Noteworthy is the poor performance of Decision Tree and Random Forest models, which are less 
capable in this context, likely due to their inability to adequately differentiate between the 
majority class of non-ML transactions and the sparse ML cases. The uniformly lower AUPRC 
values across all typologies and models highlight the intrinsic challenges of detecting ML 
activities in a low prevalence context and underscore the necessity for employing sophisticated 
models that are resilient to such class imbalances. 

 
Figure 13. AUPRC scores for every model per typology in experiment C 

Figure 14 displays the results from a bagged decision tree classifier with 100 estimators for the 
high-risk jurisdictions and structuring typologies. The cash typology model is Logistic Regression 
with cost-sensitive learning. Similar to experiment B, the classifiers predict a high volume of false 
positives compared to true positives across all typologies, indicating an inclination towards over-
predicting non-ML transactions as ML. The small overlap between predicted and actual ML 
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transactions signifies the classifiers low precision in correctly identifying ML activities, 
suggesting a high false positive rate which could be problematic in operational banking 
applications. Together, these results confirm the difficulty of accurately detecting ML activities in 
a low prevalence environment and highlight the importance of developing classifiers that are not 
only sensitive to true ML transactions but also specific enough to avoid excessive false alarms. 

 
Figure 14. True and predicted number of ML transactions for the low ML rate data and the perspective of all banks 

The data in Table 17 show a significant disparity between the Actual and Predicted FNR for all 
ML typologies. The low AUPRC and MCC values across all typologies suggest the model's limited 
effectiveness, performing only slightly better than random chance, especially for cash and 
structuring transactions. When comparing the scores to the high ML rate as presented in Table 
15, we can clearly see that the AUPRC and MCC scores for all typologies are significantly lower, 
indicating that the classifier has more trouble differentiating between non-ML and ML 
transactions. 

Table 17. Results of the balanced bagging with Decision Trees with 100 estimators classifier for all banks on the low prevalence dataset 

 High-risk jurisdictions Cash Structuring 
Actual FNR 0.825 0.979 0.961 
Predicted FNR 0.437 0.086 0.521 
AUPRC 0.008 0.001 0.002 
MCC 0.063 0.002 0.020 

 

6.4 Experiment D. Low ML Prevalence Rate from the One Bank Perspective 

Figure 15 presents the AUPRC considering a single bank's data with a low prevalence of ML 
activities. The AUPRC values across the board are modest, reflecting the challenge of detecting 
rare events within a single institution's transactional dataset. This single-bank scenario brings a 
shift in the relative performance of the classifiers; the Logistic Regression, both as default and 
balanced, model exhibits a significant improvement in ranking compared to the other 
experiments, now performing comparably to its counterparts and even rivaling more complex 
models. Notably, the difference in performance of various classifiers is smaller than in the other 
experiments. Ensemble approaches like AdaBoost and Decision Tree bagged balanced with 100 
estimators continue to demonstrate robust performance, reinforcing the importance of adaptive 
and ensemble techniques in enhancing detection sensitivity in low prevalence environments. 
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Figure 15. AUPRC scores for every model per typology in experiment D 

Figure 16 evaluates the performance of different classifiers in a low ML prevalence rate 
environment from the perspective of a single bank. In this illustration, the Balanced Random 
Forest balanced classifier for high-risk jurisdictions, RUSboost for cash transactions, and Logistic 
Regression balanced for structuring typologies are assessed. All three models are heavily 
overpredicting the amount of ML transactions, exhibiting large amounts of false positives relative 
to true positives, indicating a strong propensity to incorrectly label non-ML transactions as ML. 
This indicates the poor performance of the classifiers and the lack of potential to be able to 
accurately estimate the FNR. This emphasizes the need for improved model specificity to 
accurately identify ML transactions in a low prevalence setting. 

 

Figure 16. True and predicted number of ML transactions for the low ML rate data and the perspective of one bank 

Table 18 displays a clear discrepancy between Actual and Predicted FNRs for the ML typologies. 
The low AUPRC values and near-zero MCC scores across all typologies reflect the model's poor 
precision and recall, performing marginally better than random guessing. This highlights the 
classifier's continued struggle in effectively identifying ML transactions. 

Table 18. Results of the balanced Logistic Regression classifier for one bank on the low prevalence dataset 

 High-risk jurisdictions Cash Structuring 
Actual FNR 0.909 0.912 0.966 
Predicted FNR 0.003 0.139 0.024 
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AUPRC 0.001 0.001 0.000 
MCC 0.002 0.002 0.001 

 

6.5 Comparison 
This section provides a comparison between the average models performance over all various 

experiments as well as a comparison between the average model performance per typology, 

rate and perspective. 

6.5.1 Model Comparison 

This section provides an evaluation of the classification models utilized in the study, leveraging a 
range of metrics to ascertain their performance. The corresponding figures, which depict the 
average scores across these metrics over all experiments, provide a comprehensive view of model 
efficacy. The AUPRC, a metric tailored towards the context of imbalanced datasets, assesses the 
model's ability to distinguish between classes—a higher score reflects a model's improved 
capability to maintain a high precision rate as recall increases. Figure 17 underscores the 
precision-recall balance achieved by the models, with those at the top demonstrating a superior 
handle on the minority class prediction, which is crucial for ML classification as its prevalence is 
extremely limited. From this figure, we clearly have four best performing models. As the balanced 
bagged decision tree classifier works very similar to a random forest, we can conclude that 
random forest approaches with balancing measures to address the dataset imbalance are most 
suitable for classifying potential ML transactions. As the scale of the AUPRC is from 0 to 1, all 
models score relatively low. However, as the average prevalence rate of ML occurring is only 
0.001 in the datasets, the score of every classifier already suggests a significant improvement in  
performance in comparison with random guessing or a naïve model that predicts the majority 
class for all instances. 

 
Figure 17. Average AUPRC score per model 

From Figure 18, we can see that the best performing models according to this metric are different 
than the ranking established above. This is due to the MCC considering all four quadrants of the 
confusion matrix (true positives, false negatives, true negatives, and false positives) with the 
same priority. Due to the high class imbalance and the MCC favoring models performing well in 
both the majority and minority class, the majority true negatives dominate the metric due to their 
substantially large number. Notice how there is a certain ‘leading’ group with very similar 
performance, which drops below the RUS boost model. 
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Figure 18. Average MCC  score per model 

6.5.2 Experiment Comparison 

In this section, we discuss model performance across the three typologies, the two ML rates and 
the two perspectives, as depicted in Figure 19. The bar charts illustrate the average AUPRC scores. 
First, we can see that model performance for the cash typology is lacking in comparison to the 
other two typologies, especially for the high rate. This might be caused by the incredible low ML 
rates in the cash training dataset, as indicated in 5.2.1 Cash Typology. This indicates that if the 
dataset may contain too few ML transactions, classifiers will have trouble being able to learn what 
differentiates them from ‘normal’ transactions. What also is interesting to note is that the 
performance for both rates is higher for the high-risk jurisdictions typology than for the 
structuring typology, even though the ML prevalence rate of the first is with 0.22% not even half 
of the 0.46% of the latter. This indicates that the classifiers might have more trouble identifying 
certain typologies over others. 

With regards to the performance across the different rates, the ‘cash’ typology, in particular, 
shows similar performance across the ‘low’ and ‘high’ rates, with AUPRC scores remaining 
comparably low. However, as discussed above, this behavior is expected as the ML rate in both 
the low and high ML rate training set has the same (low) value. On the other hand, the high-risk 
jurisdictions and structuring typologies show a marked performance variance between the two 
ML rates. The substantial difference in AUPRC scores for all three typologies indicate a sensitivity 
to illicit transaction volume, where higher rates potentially amplify the detection capabilities. 
These insights are instrumental for understanding the dynamics of model performance and the 
influence of transaction rates on model performance. 

We conclude by comparing the two perspectives across the typologies and rates. We can clearly 
see that for the high-risk jurisdiction and structuring typologies, the performance differs 
tremendously across the various perspectives. This would indicate that the potential of 
combining information across banks is very large with regards to improved model performance. 



52 
 

For the cash typology, the perspective does not change model performance, but this once again 
might be because of already poor performance. 

 
Figure 19.  Average AUPRC scores by typology, rate and perspective 

In all four experiments, the data suggest that balancing the class distribution, either through 
model adjustments or data resampling, significantly impacts the AUPRC in money laundering 
detection tasks. This highlights the need for specialized approaches in handling class imbalances 
inherent in ML datasets. Furthermore, the variability in model performance between collective 
and individual bank perspectives underscores the importance of context-specific model selection 
and training for effective ML detection. 

6.5.3 Feature Importance 

Finally, we provide insights into the workings of the models using Feature Importance. To be able 
to combine the feature importance of every type of base classifier, Permutation Feature 
Importance was used (Brownlee, 2020c; Scikit-learn developers, n.d.-a). This is a method to gauge 
the significance of features in a predictive model. It starts with training the model on the original 
dataset and noting its performance. The process involves shuffling the values of each feature, 
disrupting its relationship with the target. The model is then evaluated on this modified dataset. 
The degree to which the model's performance deteriorates indicates the importance of the 
shuffled feature. This procedure is repeated multiple times to average out random variations, 
providing a more reliable measure of feature significance. This technique is versatile, applicable 
across various models and captures feature interactions. We used the final hyperparameter tuned 
models and the validation dataset for evaluation. 

Figure 20 presents the Aggregated Feature Importance. That means that this represents the 
feature importance of all models and all categories combined into one. Note that the Receiving 
Currency feature was removed due to having the same feature importance as the Payment 
Currency feature. The Payment Format feature clearly shows the highest positive feature 
importance, indicating a substantial and direct impact on the model's predictive capabilities. 
Conversely, Amount demonstrates a negative importance, suggesting an inverse relationship 
with the likelihood of ML. Meaning that higher transaction sums are less suspicious in the context 
of ML, which is in line with the insights gathered from the interviews. Lastly, Payment Currency 
exhibits the least importance, with a slight negative impact on the model's predictions. 
Collectively, these importance values suggest that the model places significant weight on the 
payment format when discerning ML patterns, with the amount and currency of transactions 
being less indicative of potential ML activities as per the synthetic datasets. 
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Figure 20. Aggregated Feature Importance 

Figure 21 presents the feature importance of the different features individually, namely the one-
hot encoded features Payment Format and Currency, as well as the continuous Amount Received 
variable.  The features are ranked by their level of positive importance, indicated by the length 
and direction of the bars. The ‘Payment Format – Cheque’ stands out with the highest positive 
importance, suggesting it is a significant predictor of ML. Other payment formats like credit card, 
cash, and wire transfers also show a great positive feature importance, albeit to a lesser extent, 
pointing to their lesser but still relevant influence on the model's output. In addition, several 
Payment Currency categories show positive importance, such as the Euro, Shekel, and UK Pound, 
among others. This implies that transactions in these currencies are more likely to be flagged by 
the model as potential ML activities. Surprisingly, the Payment Currency Bitcoin has, although 
small, negative feature importance, which does not stroke with its image. 

The Amount Received feature shows a very slight negative importance, indicating that it has a 
minimal inverse relationship with the model's predictions, indicating that lower transaction 
values are more likely to be flagged by the model. At the bottom, the US Dollar Payment Currency 
has the biggest negative importance, signifying its large ‘non-ML’ impact on the model's 
predictive behavior. Overall, the chart suggests that the payment format, particularly cheque and 
credit card transactions, is a key factor for the model, while the role of transaction amount and 
the specific currencies involved are less critical and can either slightly increase or decrease the 
likelihood of a transaction being flagged by the model. 
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Figure 21. Feature Importance per category 
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7. Discussion 
This chapter presents the implications, limitations and recommendations for further research in 

the context of estimating the FNR of rule-based TM systems within the Dutch banking sector. 

This study’s findings have notable implications for both banks and regulators focused on 

identifying and mitigating transactional ML activities. As we have seen in the Results chapter, 

the evaluated classifiers, particularly the Balanced Random Forest variants with balancing 

measures, demonstrate a significant advancement over naive majority class prediction. This 

improvement is crucial given the extremely low prevalence rate of ML transactions in the 

datasets used. However, it is important to recognize that these classifiers, while beneficial in 

enhancing detection capabilities, show limitations in accurately estimating the FNR. The 

relatively modest AUPRC and MCC scores indicate challenges in predicting  ML activities well. 

Furthermore, the difference between the actual FNR and predicted FNR is for almost all 

experiments and typologies very substantial, reinforcing the notion that relying on these 

classifiers for precise FNR estimation may be overoptimistic. 

The study underscores the significance of certain indicators in flagging potential ML activities, 
including transaction type, payment amount, frequency, volatility, international exposure, and 

connections with high-risk jurisdictions. Next to those rule-based approaches, it is imperative to 

perceive machine learning classifiers as integral elements of a broader strategy, rather than as 

isolated tools for estimating the FNR. A notable observation is the variable performance of 

models across different ML typologies, with the structuring/smurfing and high-risk jurisdictions 

typologies demonstrating more distinct patterns that classifiers can learn from. This variability 

in performance indicates the potential advantages of adopting typology-specific approaches in 

TM systems, wherein models are tailored to each ML typology, considering its distinct 

characteristics. Additionally, the study reveals the potential benefits of collaborative approaches 

across banks. The marked performance differences across various perspectives, especially in 

the high-risk jurisdictions and structuring typologies, suggest that sharing information across 

institutions could significantly enhance the effectiveness of ML detection systems. 

In light of existing studies, particularly those focusing on pioneering machine learning 

algorithms for AML purposes, this research offers novel insights. Unlike previous works that 

predominantly emphasize enhancing TM systems through the innovation of machine learning 

detection algorithms, our study pivots towards understanding the efficacy of rule-based 

systems and their FNR. For instance, while the foundational research by Weber et al. (2018) and 

subsequent developments primarily focused on the creation of more sophisticated detection 

algorithms, our research offers a unique perspective on the performance evaluation of existing 

rule-based systems. This contrast presents a significant addition to academia, highlighting areas 

that have received less attention in earlier studies. 

This study's focus on estimating the FNR of rule-based TM systems marks a clear divergence 

from the dominant trend in AML research. We set out the need for a more thorough 

understanding of rule-based systems, which are widely utilized yet not extensively researched 

in existing literature. This approach underscores the potential and necessity for machine 

learning development to increasingly focus on models adept at handling heavy imbalanced class 

transaction datasets. The challenges met, such as class imbalance and the complexities in 

accurately estimating FNR, reinforce the necessity for future machine learning developments to 

prioritize these aspects. This shift in focus could significantly enhance the efficacy and 

deployment of  machine learning TM systems in practice, something that has been lacking until 

now. 
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For regulators, the study's findings emphasize the importance of encouraging and facilitating 

information sharing among banks and providing guidelines for effective TM system 

development. Regulators should also consider the study’s insights when updating compliance 

requirements and ML detection standards. Overall, this research offers valuable insights for 

stakeholders in the banking sector, providing a clearer understanding of the efficacy of various 

classifiers and indicators in predicting ML activities and estimating the FNR. It lays the 

groundwork for more sophisticated, data-driven approaches to rule-based TM evaluations, 

ultimately contributing to the integrity and security of the financial system. However, the study 

also indicates that reliance solely on these classifiers for estimating the FNR may be misguided, 

and a broader approach, encompassing various strategies and collaborative efforts, is essential 

for more effective evaluations of rule-based TM systems. 

7.1 Limitations 
While the study provides valuable insights, it has several limitations that must be considered. We 
will first discuss the quantitative limitations, after which the qualitative limitations will be 
presented. 

The first limitation has to do with the complexity of evaluating classifier performance, as the 
performance of classifiers is notably intertwined with various parameters. An additional concern 
arises from the observation that for some experiments/typology combinations, rule-based TM 
systems already detect almost nothing. This indicates that the 'actual' correct FNR might be 
unrealistically high, casting doubt on the applicability of these findings for real-world scenarios. 
Such a high FNR might not accurately represent the subtleties and complexities of actual 
transactional behaviors, potentially leading to overestimated risks or missed opportunities for 
detection. The classifier parameters range from the metrics that define the performance to the 
parameters of the models itself which determine the trade-off between false positives and false 
negatives. Therefore, as the FNR is a metric of a certain model instance predicting for a certain 
dataset, estimating it is not straightforward and there is a risk of local optima without recognizing 
further potential improvements. In addition, data splits and model training processes were only 
executed once with constantly maintaining the same set random seed. Further research could 
improve this by iterating steps with different random seeds while averaging the performance. All 
of the above are important to consider ensuring that the model is robust and generalizable 
beyond just the dataset or scenarios it was trained on. 

Other limitations arise from constraints of the synthetic datasets. Derived from the IT-AML 
simulator, they provided only eight ML patterns. Consequently, not all typologies mentioned by 
the interviewees were available in those datasets. While the common typologies where this study 
assessed for could all be incorporated somehow in the datasets, this lack of comprehensive one-
on-one typological mapping could potentially impact the generalizability of the findings. In 
addition, as data was available for a 97 days timespan only, the potential for use of elaborate 
historical patterns was limited. This limitation is further exacerbated by the lack of 
comprehensive customer information in the datasets. This omission is significant as real-world 
banks do possess this information and can therefore employ Expected Transaction Profiles 
(ETPs). The inability to replicate such ETPs might have influenced the accuracy and relevance of 
the study's outcomes. Another data related limitation is caused by the removal of high-value 
transactions from the data. While such transactions are not typically indicative of ML, their 
exclusion could have led to the underrepresentation of certain ML patterns involving large sums, 
impacting the generalizability of our findings. 

The study's findings' applicability to the Dutch banking landscape is a significant concern, 
particularly because the simulators and datasets were validated primarily against U.S. data, which 
might not accurately reflect the Dutch context. In addition, computational and time constraints 
limited the exploration of more advanced machine or deep learning classifiers, such as graph or 
neural network models. This limitation might have curtailed the accuracy and optimization of our 
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machine learning-based analyses. Moreover, because of computational constraints, we had to 
randomly sample 20% of the synthetic datasets before fitting and predicting with every model. 
This raises concerns about dataset representativeness, potentially omitting up to 80% of data per 
user. Such sampling may affect the model's generalizability across the full dataset.  

The study's qualitative aspects also present limitations. The selection of experts predominantly 
from banking and regulatory backgrounds might have introduced bias, lacking perspectives from 
other relevant sectors like law enforcement or international finance and skewing the insights 
towards certain viewpoints. Additionally, the focus of the interviews on specific ML typologies 
and monitoring systems might have overlooked emerging trends and technological 
advancements in ML, limiting the study’s scope in addressing evolving challenges in this field. 
Lastly, the subjective nature of qualitative data interpretation presents its own set of challenges, 
with the potential for unintentional biases or misinterpretations influencing the study’s 
conclusions. 

These interconnected limitations highlight the necessity for a nuanced, context-sensitive 
interpretation of our findings, especially in the dynamic and multifaceted arena of AML efforts 
within the Dutch banking sector. 

7.2 Further Research 
In the discussion of our research on FNR estimation using machine learning, several compelling 
paths for further investigation have emerged. These suggestions aim to build upon our current 
approach and enhance the efficacy and practicality of our models. One significant improvement 
lies in the development of a more balanced dataset with a substantially higher prevalence rate of 
ML transactions. This adjustment would enable trained models to better grasp the distinctive 
characteristics of such transactions. Moreover, reusing models pretrained and higher ML rate 
datasets can also be beneficial for performance on low ML rate datasets. Additionally, the 
incorporation of more advanced sampling techniques, such as oversampling the minority class or 
creating synthetic samples, could address class imbalance issues better and contribute to 
improved model generalization. 

Recognizing the intricate and interconnected nature of financial transactions, another promising 
direction is to explore relatively new advanced graph-based machine learning methods. These 
techniques have the potential to capture complex relationships and patterns within financial 
networks that traditional models might overlook. By doing so, we can gain a deeper 
understanding of how funds flow through the financial system, ultimately enhancing the accuracy 
of ML detection. It would be beneficial to benchmark our model performance with current 
industry standard models. 

Based on the conclusion that all banks' perspective models perform better, a pivotal area for 
future research involves working on data sharing while preserving privacy concerns. 
Collaborative efforts between banks could lead to the creation of more robust and comprehensive 
models, leveraging shared insights while adhering to privacy and data protection regulations. 
This collaboration could be crucial in developing a more effective and holistic approach to ML 
detection. Federated learning could be a suitable approach for this issue. To address the 
limitations arising from the exclusion of top 10% transaction amounts, future research should 
explore the impact of including these transactions on ML detection performance. Investigating 
the role of high-value transactions across various ML typologies can provide deeper insights and 
offer a more balanced representation of transactional data in ML detection systems. 

Furthermore, our research can be extended by incorporating information about fund recipients 
and the broader financial network surrounding each account and party, as proposed by studies 
like Savage et al. (2016) and Colladon and Remondi (2017). While these data were not available 
for our current study, future research should explore additional data sources and methodologies 
to include this network perspective, potentially improving our ability to detect complex ML 
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schemes. Finally, the integration of external data sources, such as open-source financial data, 
economic indicators, or geopolitical events, can further enrich our analysis and enhance model 
performance. These additional data sources provide a broader context for transaction 
monitoring, potentially increasing the predictive capabilities of our models. Similarly, data 
spanning a longer timespan can help to improve model performance and provide better test sets 
for validation, potentially also helping to address evolving ML tactics over time. Future research 
should, at least, have greater computational resources, aiming to prevent having to implement 
downsampling because of computational constraints, and otherwise downsample using more 
representative sampling methods. 

7.3 Recommendations 
Following this study's findings, we can make a number of recommendations to the Dutch AML 
landscape. 

Typology-Specific Models 

Financial institutions stand at the forefront of this effort. The key is not just to adopt advanced 
TM systems but to tailor these models to specific ML typologies. This approach  involves 
developing customized TM systems that are tuned for identifying the distinct patterns and 
behaviors characteristic of different ML activities, such as structuring/smurfing or transactions 
involving high-risk jurisdictions. This specialization enables a more accurate identification of 
suspicious activities, effectively narrowing down the focus to the most relevant indicators of ML. 

Collaboration 

A clear potential is the collaboration. Banks and regulators are encouraged to step, when possible, 
out the organizational boundaries and engage in proactive information sharing. This collective 
approach, underpinned by secure and compliant data exchange protocols, leverages the 
cumulative insights and data from multiple institutions, significantly amplifying the effectiveness 
of ML detection. Such collaboration not only shares the burden of detection but also enriches the 
pool of data, leading to more robust and comprehensive models. 

Regulatory Bodies 

Regulatory bodies play a dual role: firstly, by fostering an environment conducive to information 
sharing, and secondly, by revising ML detection standards and compliance requirements. This 
dual role positions regulators as both facilitators and drivers of change, pushing the sector 
towards more sophisticated, data-driven approaches in TM. 

Evolving TM System 

For TM system developers, the recommendations culminate in a call for comprehensive and 
flexible systems. These systems should not only incorporate a wide array of data, ranging from 
transaction types to customer profiles, but also be scalable and adaptable to evolving ML tactics.  
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8. Conclusion 
In a context where Dutch banks are required by the Anti-Money Laundering and Anti-Terrorist 

Financing Act to implement AML measures, their task is to identify transactions that may 

suggest ML. However, as the amount of transactions surpassing bank systems on a daily basis is 

extremely large, banks are only able to manually investigate a very limited number of 

transactions. Therefore, their information position on what potential ML transactions they 

might have missed is very limited. Currently, predominantly rule-based TM systems are used to 

create alerts for unusual transactions. These systems, while effective in flagging transactions 

that cross predefined thresholds, leave a substantial subset of transactions unreviewed, thereby 

creating a potential risk. The question arises whether we could estimate the number of 

transactions that are wrongfully not flagged and therefore go unreviewed. As currently no 

literature exists that tries to do so, this study aimed to bridge this gap by exploring the 

feasibility of estimating the FNR of rule-based TM systems through supervised machine learning 

classifiers trained on historical alerts. Seven interviews were held to gather insights from 

domain experts, after which synthetic transaction datasets with labelled ML behavior were used 

to conduct quantitative analysis. The insights both advance the academic domain and enhance 

operational efficiencies within the Dutch banking sector. Prior to answering the main research 

question, the following four sub-questions are first addressed. 

SQ1. What are the most common transactional money laundering typologies within the Dutch 
banking system? 

The study identifies Cash, Structuring/Smurfing, and High-Risk Jurisdictions as the most 
prevalent transactional ML typologies in the Dutch banking system. Each of these typologies 
presents unique challenges for financial institutions aiming to effectively monitor and prevent 
ML activities. First, the Cash typology often involves unusually high deposits or withdrawals, 
executed in close temporal proximity. It is commonly linked to various forms of criminality. 
Second, the structuring/smurfing typology involves breaking down large sums of money into 
smaller transactions to evade mandatory reporting thresholds. A typical manifestation of this 
typology includes the use of multiple individuals (money mules) to deposit significant cash 
flows from illicit activities, such as drug trafficking, in small amounts to avoid arousing 
suspicion. Third, the High-Risk Jurisdictions typology pertains to transactions involving 
countries that are considered high-risk due to their association with ML, tax evasion, or other 
illicit financial activities. These transactions are subject to heightened scrutiny. 

SQ2. Which indicators are most predictive of common transactional money laundering typologies 
in the Dutch banking sector? 

The most predictive indicators for flagging potential ML activities across common typologies in 
the Dutch banking sector, as identified from the interviews and analysis in this study, are as 
follows. For the cash typology, two indicators were identified. The first one is the type of 
transaction. This involves differentiating between various transaction payment formats like 
bank transfers, cash deposits and others. The nature of the transaction can be a strong indicator 
of potential ML activities. The second indicator is the payment amount. This indicator is related 
to the size of the transaction and its comparison to static or dynamic thresholds for an account. 
Significant transactions, particularly those that are unusually large for a certain account type, 
can be indicative of ML. Second, for the structuring/smurfing typology, the first indicator is 
again the payment amount, similar to the cash typology, the amount of the transaction is a 
critical indicator, especially when small amounts are used repeatedly to avoid detection. The 
second indicator is the frequency of similar transactions: This considers how often similar 
transactions occur. A high frequency of similar transactions can be indicative of structuring, 
where multiple small transactions are made to evade detection thresholds. Third, the volatility 
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in transactions: rapid and significant fluctuations in account cashflows can indicate structuring 
activities, as funds are moved in and out of an account quickly. Finally, for the high-risk 
jurisdictions typology, the first indicator is the involvement of high-risk international 
jurisdictions: transactions that involve countries known for higher ML risks are particularly 
scrutinized. Next to that, a large proportion of transactions involving foreign entities can be an 
indicator, especially when this is high or unusual for the account in question. Finally, again the 
transaction amount involved is a key indicator, especially in relation to international 
transactions involving high-risk jurisdictions. 

SQ3. What are the thresholds used for key indicators in the rule-based transaction monitoring 
systems employed by Dutch banks? 

Dutch banks use both static and dynamic thresholds in their rule-based TM systems, although 
dynamic indicators are generally considered more effective than static ones in capturing the 
evolving complexities of ML activities. The use of both static and dynamic thresholds within 
rule-based TM systems allows for a nuanced approach to detecting potential ML activities, 
balancing the need for comprehensive monitoring with the practicalities of handling large 
volumes of transactional data. These thresholds are tailored according to the risk category of a 
client or product, as well as the specific typology under scrutiny. For instance: 

— For the Cash typology, alerts could be generated for "cash deposits above amount X." 
— For the Structuring/Smurfing typology, alerts could be generated for "more than X% of your 

average account amount." 
— For the High-Risk Jurisdictions typology, heightened scrutiny is applied to transactions 

involving or originating from countries considered high-risk. 

The application of thresholds is complex and subject to continual tuning to maintain a balance 
between identifying true positives and minimizing false positives. Importantly, the thresholds are 
influenced by the Expected Transaction Profile (ETP) of clients and can vary significantly 
depending on the market in which a bank operates, the complexity of its products, and the 
characteristics of its client population. 

SQ4. Which supervised machine learning classifiers, recommended by literature, demonstrate the 
highest efficacy in predicting unusual transactions indicative of money laundering? 

As advancements in the field follow each other up rather quickly, many different machine 
learning classifiers are used within literature. However, the most fundamental supervised 
machine learning classifiers for predicting unusual transactions indicative of ML are found to be 
Logistic Regression, Decision Trees, and Random Forests, along with their variants that address 
class imbalance. These simple and computationally cheap classifiers often still demonstrate 
remarkably high performance, especially considering their efficiency. Logistic Regression excels 
in interpreting and predicting binary outcomes. Decision Trees are advantageous for their ability 
to handle diverse data types without extensive preprocessing and for capturing complex patterns 
in data, crucial for identifying unusual ML transactions. Random Forests and their ensemble 
counterparts, such as Balanced Random Forest and AdaBoost with decision trees, demonstrate 
superior performance. These models effectively handle imbalanced datasets, a common challenge 
in detecting ML activities. They enhance performance by incorporating downsampling and cost-
sensitive learning, focusing on the minority class and improving false negative detection. 

The main research question at hand is: 

To what extent could a supervised machine learning classifier, when trained on historical alerts, 
assist Dutch banks in estimating the False Negative Rate of rule-based transaction monitoring 

systems concerning unreviewed transactions? 

In addressing the main research question, the study demonstrates that supervised machine 
learning classifiers cannot assist Dutch banks well in estimating the FNR of rule-based transaction 
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monitoring systems for unreviewed transactions. The study's findings reveal a pronounced 
discrepancy between the actual and predicted FNRs across different experiments and typologies, 
underscoring the classifiers' generally poor performance. Notably, in high ML prevalence settings, 
even the better-performing models, such as the balanced bagging classifier or ensemble models 
with balancing measures, showed substantial gaps between actual FNR (ranging from 0.731 to 
0.990 across typologies) and predicted FNR (ranging from 0.003 to 0.986). This was further 
compounded in low prevalence scenarios and single bank perspectives, where classifiers 
predominantly over-predicted non-ML transactions, leading to high false positives and minimal 
detection of actual ML activities. The low AUPRC and MCC scores across various contexts highlight 
the significant challenges in using machine learning for effective ML transaction detection in 
Dutch banking. 
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Appendices 
Appendix A. Literature Review  
Literature review searches were performed using the Google Scholar search engine and the 
Scopus and TU Delft WorldCat databases. The following (combinations of) search queries have 
been used to conduct the literature review: 

Table 19. An overview of the search queries used to conduct the literature review. 

Primary search 
term(s) 

Additional search 
term(s) 

Number of results on 
Google Scholar Scopus WorldCat 

Money laundering typologies 19.000 51 177 
Transaction 
monitoring 

money laundering 
typologies 

10.800 2 56 

anti-money laundering 14.600 53 729 
 anti-money laundering + 

statistics 
21.500 1 196 

Synthetic data money laundering 14.100 22 36 
 money laundering + 

transaction monitoring 
18.200 1 96 

Machine learning  money laundering + 
transaction monitoring 

7.420 8 31.000 

 transaction monitoring 67.400 128 47.800 
 money laundering 17.300 1 56.500 
Statistical similarity  curve 2.430.000 1.291 100.000 
 distribution 5.710.000 6.045 284.000 
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Appendix B. Interview Questions 
1. What is your position and expertise? 
2. What are the three most common transactional money laundering typologies within the 

Dutch banking system? 
3. By which three indicators can these money laundering typologies best be recognized? 

a. Do these indicators operate individually from each other or collectively per 
scenario? 

b. Do these indicators operate based on probability or risk (probability * impact)? 
4. What type of thresholds (static, dynamic or both) and threshold values are used for 

these three indicators within rule-based transaction monitoring systems? 
a. Do static and dynamic rules work "together" in the same rules or independently 

side by side? 
b. How many such rules exist in the average system of a Dutch bank? 
c. Do these rules normally consist of a "parameter" or are there more conditions 

within a rule? E.g., conditional rules? 
d. Does a rule (or a system) give a binary "yes/no" answer or a risk score? 

5. How do you estimate the risk probability distributions of each money laundering 
typology? 

6. How much information does a bank receive after making a FIU report? 
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Appendix C. Hyperparameter tuning 
This appendix presents the parameters and ranges which have been used in the random search 
cross-validation.  

Table 20. Hyperparameter tuning setup 

Classifier Sample & Feature Parameters 
BalancedBaggingClas
sifier 

max_samples: [0.5, 0.6, 0.7, 0.8, 0.9, 1.0], max_features: [0.5, 0.75, 1.0], 
bootstrap: [True, False], max_depth: [5, 10, 20, 30, None], min_samples_split: 
[2, 4, 6, 8, 10], min_samples_leaf: [1, 2, 4, 6], criterion: ['gini', 'entropy'] 

BalancedRandomFor
estClassifier 

max_samples: [0.5, 0.6, 0.7, 0.8, 0.9, 1.0], max_features: ['sqrt', 'log2'], 
bootstrap: [True, False] 

AdaBoostClassifier max_depth: [1, 2, 5, 10, 20, 30, None], min_samples_split: [2, 4, 6, 8, 10], 
min_samples_leaf: [1, 2, 4, 6], criterion: ['gini', 'entropy'], learning_rate: 
[0.01, 0.05, 0.1, 0.2, 0.5, 1.0], algorithm: ['SAMME', 'SAMME.R'], 
max_features: ['sqrt', 'log2', None] 

RUSBoostClassifier learning_rate: [0.01, 0.05, 0.1, 0.2, 0.5, 1.0], algorithm: ['SAMME', 
'SAMME.R'], max_features: ['sqrt', 'log2', None] 

LogisticRegression solver: ['liblinear', 'lbfgs', 'newton-cg'], penalty: ['l1', 'l2'], C: 
loguniform(1e-5, 100) 

 


