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Abstract

When objects are imaged, often aberrations slip into the captured images. Many techniques
exist to remove part of those aberrations using hardware, software or a combination of those.
This research will focus on Phase Diversity for Blind Multi-Frame Deconvolution. In Blind
Multi-Frame Deconvolution both the object and the aberrations are estimated from multi-
ple images of the same object. Previous research has shown, Phase Diversity can be used
to improve the quality of the reconstructed object in combination with Blind Multi-Frame
Deconvolution. Using Defocus Phase Diversity is currently mainly used in literature.

In this research new Phase Diversity methods are proposed. When there is no knowledge on
the object or aberrations, Phase Diversities are proposed to improve the object reconstruction
compared to Defocus Phase Diversity.

We also propose a new method to optimize the Phase Diversity for the N + 1th image, when
already N images have been taken. This method first determines the low values in the fre-
quency spectra of the images. Next it estimates a Phase Diversity that results in a Modulation
Transfer Function to enhances those frequencies. This method leads to an improved restora-
tion quality in terms of Structural Similarity and Peak Signal to Noise Ratio when there is
Gaussian noise or Poisson noise with a higher Signal to Noise Ratio. Recommendations are
done to improve the method for lower Signal to Noise Ratios.

Master of Science Thesis Dominique Vrijburg



ii

Dominique Vrijburg Master of Science Thesis



Table of Contents

Acknowledgements ix

1 Introduction 1

2 Image formation. 5
2-1 Image of a point source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2-1-1 Pupil function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2-1-2 Distorted wavefront . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2-1-3 Amount of wavefront error . . . . . . . . . . . . . . . . . . . . . . . . . 7
2-1-4 Point Spread Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2-2 Image of an extended object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Deconvolution methods in imaging 9
3-1 Deconvolution with a known Point Spread Function (PSF) . . . . . . . . . . . . 9

3-1-1 Inverse Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3-1-2 Wiener Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3-1-3 Tikhonov Miller filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3-1-4 Comparison of the Inverse, Modified Wiener and Tikhonov Miller filter . . 11

3-2 Estimating the wavefront from the PSF . . . . . . . . . . . . . . . . . . . . . . 11
3-3 Blind multi-frame deconvolution for extended objects using Phase Diversity . . . 11

3-3-1 Blind Multi-frame Deconvolution using knowledge on Phase Diversity . . 13
3-3-2 Tangential Iterative Projection algorithm . . . . . . . . . . . . . . . . . . 13

3-4 Quality of the restored object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3-4-1 Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR) . . . 15
3-4-2 Structural Similarity (SSIM) . . . . . . . . . . . . . . . . . . . . . . . . 15
3-4-3 Sharpness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3-4-4 Comparison of the metrics . . . . . . . . . . . . . . . . . . . . . . . . . 16

Master of Science Thesis Dominique Vrijburg



iv Table of Contents

4 Diversity Methods in Literature. 19
4-1 Purpose of Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4-2 Examples of Diversity in Literature. . . . . . . . . . . . . . . . . . . . . . . . . . 20

4-2-1 Amplitude Diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4-2-2 Phase Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4-2-3 Wavelength diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4-3 Determining diversity based on aberrations . . . . . . . . . . . . . . . . . . . . . 24
4-3-1 Optimizing the channel capacity . . . . . . . . . . . . . . . . . . . . . . 24
4-3-2 Optimizing Phase Diversity for a neural network . . . . . . . . . . . . . . 24

4-4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Predefined Phase Diversity for Blind Deconvolution 27
5-1 New Phase Diversity Shapes based on Shapes in Literature . . . . . . . . . . . . 27

5-1-1 Rotating phase Phase Diversity . . . . . . . . . . . . . . . . . . . . . . . 27
5-1-2 Rotating half phase Phase Diversity . . . . . . . . . . . . . . . . . . . . 28
5-1-3 Spiral Phase Diversity with TIP . . . . . . . . . . . . . . . . . . . . . . . 29

5-2 Optimization based phase diversities . . . . . . . . . . . . . . . . . . . . . . . . 29
5-2-1 Optimizing Modulation Transfer Functions in terms of PSNR . . . . . . . 30
5-2-2 Optimizing Modulation Transfer Functions in terms of SSIM . . . . . . . 31
5-2-3 Optimizing Modulation Transfer Functions in terms of Miyamura’s metric. 31

5-3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5-4 Results of the simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5-4-1 Rotating phase and rotating half phase . . . . . . . . . . . . . . . . . . . 34
5-4-2 Spiral Phase Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5-4-3 Optimized Phase Diversities . . . . . . . . . . . . . . . . . . . . . . . . 36
5-4-4 Conclusions on the proposed predefined Phase diversities. . . . . . . . . . 37

6 Phase Diversity Dependent on Previous Images 43
6-1 Finding the decreased frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . 43
6-2 Designing the Phase Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6-3 Results of method for defining the Phase Diversity for the N+1th image . . . . . 46

6-3-1 Gaussian noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6-3-2 Poisson noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6-3-3 Optimized Phase Diversities . . . . . . . . . . . . . . . . . . . . . . . . 48
6-3-4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Conclusions and Recommendations 55

A Zernike Polynomials at Nolls order 57

Bibliography 59

Glossary 63
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Dominique Vrijburg Master of Science Thesis



List of Figures

2-1 Example of a) a Lower order, b) Kolmogorov and c) sparse aberrated wavefront. 6
2-2 Image formation with isoplanatic aberrations . . . . . . . . . . . . . . . . . . . . 8

3-1 An example of object restoration with different deconvolution methods. . . . . . 12
3-2 A visualisation of the steps in the Tangential Iterative Projection (TIP) algorithm

[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3-3 Different deteriorated images to compare quality metrics. . . . . . . . . . . . . . 18

4-1 Amplitude diversity mask with the rotating disk and its corresponding PSF . . . 20
4-2 The spiral phase mask from Sharma et al . . . . . . . . . . . . . . . . . . . . . 22
4-3 An approximation of the optimally informative saddle point phase pattern from

Shechtman with in and out of focus PSFs. . . . . . . . . . . . . . . . . . . . . . 23
4-4 The cubic phase mask from Dowski and its corresponding PSF . . . . . . . . . . 23

5-1 Rotating phase Phase Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5-2 PSFs of the rotating amplitude disk form literature and the proposed rotating phase

Phase Diversity (PD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5-3 Rotating half phase Phase Diversity . . . . . . . . . . . . . . . . . . . . . . . . 29
5-4 Phase of the spiral phase mask applied to four images. . . . . . . . . . . . . . . 29
5-5 Phase diversity obtained by optimizing the PSNR . . . . . . . . . . . . . . . . . 30
5-6 Phase diversity obtained by optimizing the SSIM . . . . . . . . . . . . . . . . . 31
5-7 Phase diversity obtained by optimizing Miyamuras metric . . . . . . . . . . . . . 32
5-8 Objects used in simulations and the corresponding Fourier transforms . . . . . . 34
5-9 Quality of object reconstruction using rotating phase PD with sparse wavefront

with P-V error=-4/7 π and Poisson noise. . . . . . . . . . . . . . . . . . . . . . 35
5-10 Quality object reconstructions for the rotating phase PD and rotating half phase

PD, for lower order wavefronts with Gaussian noise σ = 0.005. . . . . . . . . . . 36

Master of Science Thesis Dominique Vrijburg



vi List of Figures

5-11 Quality object reconstructions for the rotating phase PD and rotating half phase
PD, for Kolmogorov phase screens with Gaussian noise σ = 0.005. . . . . . . . . 37

5-12 Quality of object reconstruction using rotating phase PD with lower order wavefront
with RMS=1 and Poisson noise. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5-13 Visual example of object reconstruction for proposed diversities when Poisson noise
is present in the image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5-14 Quality of object reconstruction using rotating phase PD and spiral PD with lower
order wavefront with RMS=1 and Poisson noise. . . . . . . . . . . . . . . . . . 40

5-15 Quality of object reconstructions using the MTF optimized phase diversities, Kol-
mogorov wavefronts and Gaussian noise with σ = 0.01 are used. . . . . . . . . . 41

5-16 Quality of object reconstructions using the MTF optimized phase diversities, Pois-
son noise and lower order wavefronts with a RMS wavefront error is 1 are used. . 41

6-1 On the left the Siemens star, in the middle a variation where the highest 50% of
the frequencies have been removed and on the right a version where the lowest 2%
of the frequencies have been removed. . . . . . . . . . . . . . . . . . . . . . . . 44

6-2 An visual example of the method used to determine the PD for the N+1th image. 45
6-3 Quality of object reconstruction using the proposed PD method with Lower order

wavefront and gaussian noise σ = 0.005. . . . . . . . . . . . . . . . . . . . . . . 47
6-4 Quality of object reconstruction using the proposed PD method with Kolmogorov

wavefront and gaussian noise σ = 0.005. . . . . . . . . . . . . . . . . . . . . . . 48
6-5 This example shows object 1: the tiger, and the restorations of it for using no PD,

Defocus PD and the optimized PD. Below the restorations the PSNR and SSIM
are given. Here a lower order wavefront with a Root Mean Square (RMS) of 0.75
was used as the aberration and the Gaussion noise has a standard deviation of
σ = 0.005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6-6 Quality of object reconstruction using the proposed PD method with lower order
wavefront and Poisson noise σ = 0.005. . . . . . . . . . . . . . . . . . . . . . . 50

6-7 This example shows object 1: the tiger, one image without diversity applied and
the restorations of it for using no PD, Defocus PD and the optimized PD. Below
the restorations the PSNR and SSIM are given. Here a lower order wavefront with
a RMS of 1 was used as the aberration and the Poisson noise has a SNR of 28 dB. 51

6-8 This example shows object 1: the tiger, one image without diversity applied and the
restorations of it for using no PD, Defocus PD and the optimized PD. Below the
restorations the PSNR and SSIM are given. Here the same lower order wavefront
with a RMS of 1 was used as in Figure 6-7, this time Poisson noise has a SNR of
52 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6-9 A visual example of a created weighting mask W , the corresponding optimized
Modulation Transfer Function (MTF) and PD and the object reconstruction with
and without this PD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6-10 The amplitude of the Zernike polynomials in the optimized PDs for all parameters
in Table 5-1. It has been split up in lower order and Kolmogorov wavefronts and
in Gaussian and Poisson noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A-1 Zernike polynomials at Nolls order . . . . . . . . . . . . . . . . . . . . . . . . . 58

Dominique Vrijburg Master of Science Thesis



List of Tables

3-1 Comparing the quality metrics Peak Signal to Noise Ratio, SSIM and Sharpness . 16

5-1 Parameters used in simulations, the objects can be found in Figure 5-8. . . . . . 33

Master of Science Thesis Dominique Vrijburg



viii List of Tables

Dominique Vrijburg Master of Science Thesis



Acknowledgements

This report is part of my Master of Science graduation thesis for the Master Systems and
Control. When I started my masters I was planning on combining it with Biomechanical
Design and had not expected to graduate on a topic related to imaging. However after some
some courses, I felt that combining Biomechanical Design with Systems and Control was not
the topic for me. Then I remembered I really enjoyed the filtering and identification course
that Professor Verhaegen thought, so I made an appointment with him and he introduced
me to some topics, including this one. That is how I arrived at the topic Phase Diversity for
Blind Multi-Frame Deconvolution for my Master thesis.

I would like to thank my supervisor Prof.dr.ir M Verhaegen for introducing me to this topic,
the notes and advise on my writing and the insightful questions during the group meetings. I
would also like to thank my daily supervisor Dr. O.A. Soloviev, for motivating me during the
thesis, for always responding fast to my questions, introducing me to interesting literature
and reading the very early drafts of my thesis. I’ve laughed as at the start, when the group
meetings were offline, he opened the group meetings with "Goodmorning Dominique and
gentlemen". I got great motivation from those group meetings. It was nice to get and give
feedback from/to fellow students graduating on similar topics and advising each other on
interesting papers. Next I would like to thank Dr. N.J. Myers for being the third corrector
on my graduation committee, while he is abroad.

Finally I would like to thank my cat Vlodewijk for teaching me to regularly make back-ups
by crashing my computer, twice.

Delft, University of Technology Dominique Vrijburg
June 29, 2021

Master of Science Thesis Dominique Vrijburg



x Acknowledgements

Dominique Vrijburg Master of Science Thesis



Chapter 1

Introduction

When objects are imaged, often aberrations slip into the captured images. These aberrations
can for example be introduced by the imaging system, turbulence in the atmosphere or by
the measured sample [2, 3]. The aberrations can be modeled as a phase distortion at the
aperture of the imaging system. The distortions can be removed with (additional) hardware,
software or a combination of them. Using hardware, to remove the distortions induced by the
imaging system, you can buy a "better", probably more expensive, lens. And to compensate
for the turbulence or sample induced distortions an adaptive optical system can be added,
with for example a deformable mirror. To control this mirror the incoming phase distortion
has to be measured or predicted. Measuring can be done with a Shack-Hartman Sensor and
for the prediction multiple algorithms exist. However including an adaptive optical system
increases the costs and decreases the simplicity [4].

Another way to reduce the distortions in images is by post-processing them. If the aberrations
and the object are both unknown, retrieving the aberrations and removing them from the
image is called blind deconvolution [5]. Estimating both the object and the aberration from
an image is an ill posed problem and is therefor dependant on a priori knowledge. To increase
the information for blind deconvolution, multiple images can be used, this is also known as
Blind Multi-frame Deconvolution.

Diversity imaging is a technique for Blind Multi-frame Deconvolution (BMFD). In diversity
imaging a known perturbation is added from image to image. This diversity can be a per-
turbation in terms of amplitude (amplitude diversity), phase (phase diversity) or a different
wavelength can be imaged (wavelength diversity) [6].

Wilding et al. [4] have shown that introducing phase diversity for BMFD can be used to im-
prove the object reconstruction from the deteriorated images. To extract the object they used
the Tangential Iterative Projection (TIP) algorithm [1] and they added the phase diversity
with a deformable mirror. It sounds counter-intuitive to add even more aberrations to filter
out other aberrations, but in their case it leads to a less distorted image after processing the
images with TIP. The Phase Diversity (PD) can also be introduced with a different tool and
reconstructed with a complimentary algorithm.

Master of Science Thesis Dominique Vrijburg



2 Introduction

In literature mainly the phase aberration defocus is used as diversity [7, 8, 9]. One of the
reasons for this is that it is easy to implement.
According to Smith [10] Defocus PD works for retrieving even-ordered aberrations such as
astigmatism, but fails to retrieve odd-ordered aberrations as coma. This is because it is rota-
tionally symmetric with respect to the optical axis. Smith looks into the channel capacity of
the Modulation Transfer Function (MTF) of an imaging system in combination with a certain
aberration. The goal was to use phase diversity, given this specific aberrations, to produce
the best possible composite MTF. In terms of channel capacity of the MTF Smith concludes
the optimal phase diversity is different, if a different aberrations is present. This optimal
PD for a certain aberration has some utility, but more can be gained from compensating the
known aberration directly.

Goal of this Research

In BMFD multiple types of diversities have been applied, like amplitude, phase and wave-
length diversity [6]. This research will focus on Phase Diversity (PD). The focus on PD has
been made, because PD has the advantage that no photons are blocked. This makes it more
widely applicable, because it can be used in situations where few photons are present. In
that case we expect it to outperform Amplitude diversity, as in [3]. In literature in general
Defocus PD is applied in combination with BMFD.
As is mentioned in [10], if the MTF goes to zero or has a very low value at a certain fre-
quency in the frequency spectra of all images, this frequency will not be represented in the
images. Therefore it will not be possible to retrieve the information at that frequency. In
this research we will try to design a PD that makes sure the low MTF frequencies are differ-
ent for the different diversity images. Smith [10] looked into finding an optimal PD when a
certain aberration was present based on the MTF. In this research we want create a PD that
outperforms Defocus PD for all unknown aberrations, instead of finding the optimal one for
a certain aberration.
Many algorithms for BMFD have constraints regarding the used diversity, information on
the aberration or the aperture. The TIP algorithm [1] does not use knowledge about the
aberrations as a constraint. Also this algorithm performs good with low Signal to Noise
Ratio (SNR). Therefore in this research we will try to find a PD that improves the object
reconstruction using TIP compared to Defocus PD. The quality of the reconstructions will be
measured with two metrics, the Peak Signal to Noise Ratio (PSNR) and Structural Similarity
(SSIM).
This problem has been split into two parts. In the first part we look into defining the PD
before we even take any image. In the second part we already have some images and try
to find a PD to add to next image that will be taken. This leads to the following research
question: Research whether there is a phase diversity that leads to a reconstruction of the
object using the TIP algorithm, with a higher PSNR or SSIM than Defocus PD. Two cases
are considered, first the case where no information about the object or aberrations is present
and no images have been taken yet, the PD is predefined. In the second case already some
images have been taken and we look for the PD to add to the next image.
In the first part, where we predefine the PD before taking any images, two approaches will
be used: some PD proposals will be inspired on (phase) diversities found in literature, others
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will be based on the MTFs of an imaging system in combination with a certain PD.

In the second part, where already some images have been taken, in the frequency spectra of
the collected images the frequencies that are poorly presented will be identified. With this
information a MTF will be searched that enhances those frequencies.

Outline of the Thesis

In chapter 2 the basics of image formation and deterioration are explained. In chapter 3
(blind) deconvolution methods with a focus on the TIP algorithm will be explained. In
chapter 4 existing (phase) diversities from literature will be discussed.

Next suggestions on new PD methods for Blind Multi-frame Deconvolution will be done. In
chapter 5 we will propose PDs for the first case, where no images have been taken yet. In
chapter 6 a method will be proposed for the second case, to determine what PD to add to the
N+1th image when already N images have been taken. The proposals in both these chapters
will be tested in simulations. In chapter 7 the results will be discussed and recommendations
for future research will be done.

This Master thesis project is performed for the master Systems and Control. The project is
performed at the Delft Center for Systems and Control (DCSC), Delft University of Technol-
ogy (TU Delft).

Notation

In this paper the following notation will be used in parameters and equations. Capital letters
denote the 2D Fourier transform of the corresponding small letters, so H is the Fourier
transform of h. A ∗ denotes convolution and ◦ pointwise multiplication. Ĥ denotes it is an
estimate of H and H∗ denotes it is the complex conjugate. In an image the pixel coordinates
will be noted as [x,y] and in the frequency domain as [u,v]. In images of the frequency domain
the absolute value will be displayed. The frequency displayed in the center is zero and the
higher frequencies are displayed at the edges.

Master of Science Thesis Dominique Vrijburg
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Chapter 2

Image formation.

An object emits or reflects light that can be captured with for example a Charge Coupled
Device (CCD) [11]. The light from the object will be modulated by the imaging system before
it reaches the CCD. In this chapter will be explained how images are created and deteriorated
mathematically. In the first section we will explain optical concepts to create an image of a
point source. In the second section this will be expanded to imaging extended objects. In
this chapter only monochromatic light will be considered.

2-1 Image of a point source

A point source emits light uniformly in all directions and is of negligible size. When the
light emitted by a point source is captured, it will not be displayed as a perfect point in the
image. The causes are the wavelike nature of light and deteriorations added mainly by the
turbulence in the atmosphere, by the sample or by perturbations in the imaging system or
[1, 2]. The waves of light emitted by the source can be described as wavefronts. The effects
of deterioration can be modeled by a phase distortion φ(x) in this wavefront at the aperture.
The description of the wavefront at the aperture is called the pupil function [1].

2-1-1 Pupil function

The pupil function P (x, y) in Equation 2-1 describes the wavefront entering the aperture
of the imaging system. It consists of the amplitude function A(x, y) and the phase of the
incoming wavefront φ(x, y) at the aperture. The amplitude function is usually binary function
corresponding to the aperture and is 1 inside the aperture and 0 outside. The phase is
proportional to the aberrated wavefront across the aperture.

P (x, y) = A(x, y)eiφ(x,y) (2-1)

Master of Science Thesis Dominique Vrijburg



6 Image formation.

The unknown phase-aberration function φ(x, y) can be described for every pixel, but it can
also be parameterized. Often this is convenient because it reduces the amount of unknown
parameters.

Zernike Polynomials

One way to describe the phase of a wavefront is as a weighted sum of Zernike Polynomials.
Zernike Polynomials are predefined polynomials and are particularly of interest when defining
an arbitrary wavefront over a circular aperture. Noll [12] ordered the polynomials with a single
index and that order is used in this paper. The first 15 Zernike Polynomials are described
in Appendix A. In this appendix the ordering, name, formula and shape of the polynomials
can be found. Equation 2-2 gives the relation between the wavefront aberrations φ and the
Zernike polynomials.

φ(x, y) =
∑
i

aiZi (x, y) (2-2)

Where x and y are the aperture coordinates normalized from -1 to 1 inside the aperture of
radius R. Zi is the Zernike Polynomial of Nolls order i. The coefficient ai determines the
amplitude of Zernike polynomial i in the wavefront.

2-1-2 Distorted wavefront

The phase φ in the pupil function describes the distorted wavefront. In this thesis three types
of aberrated wavefronts will be considered. These three aberration types are lower order
aberrations, Kolmogorov phase screens and sparse phase aberrations.

Figure 2-1 a) shows a lower order phase aberration. In this research these are constructed from
the first 15 Zernike Polynomials. The expressions for the Zernike polynomials can be found in
Appendix A. The first 15 polynomials use expressions up until the fourth order. Figure 2-1 b)
shows a Kolmogorov phase screen, these are used to model atmospheric wavefront distortions.
More information on Kolmogorov phase screen can be found in [13].

Figure 2-1: Example of a) a Lower order, b) Kolmogorov and c) sparse aberrated wavefront.

In Figure 2-1 c) a sparse wavefront is shown. Like a sparse matrix it has mostly zero entries.

Dominique Vrijburg Master of Science Thesis



2-2 Image of an extended object 7

2-1-3 Amount of wavefront error

In this research to indicate how big the aberrations in the wavefront are, the Root Mean
Square (RMS) and the Peak-to-Valley wavefront error are used. The RMS wavefront error is
calculated as the standard deviation of the wavefront φ in the pupil function. It is expressed
in units wavelength λ. The Peak to Valley wavefront error is the maximum error between the
wavefront φ and a flat wavefront [14].

2-1-4 Point Spread Function

The observable of a point source is called the Point Spread Function (PSF)[15]. Because the
deflection of the light by an ideal lens can be described with the Fourier transform, the Fourier
transform is performed to get from the wavefront at the aperture to the image plane [15]. The
imaging system captures the intensity of the field distribution and not the phase. Therefor
the relation between the pupil function P (x, y) and the PSF h(x, y) is given by Equation 2-3.

h(x, y) = c · |F (P (x, y))|2 = c ·
∣∣∣F (A(x, y)eiφ(x,y)

)∣∣∣2 (2-3)

Here F denotes the 2-Dimensional discrete Fourier Transform. The constant c normalizes the
PSF such that the sum of all pixels is one. This is done because the intensity of the point
source is in a way spread out over multiple pixels and all together they should sum up to
the original value. The PSFs of an aperture with as aberration one of the first 15 Zernike
Polynomials, can be found in Appendix A. The shape and size of the aperture influence the
shape of the PSF. When there are no phase aberrations present, the PSF and image are called
diffraction limited. The diffraction limited image is however not equal to the object and the
PSF is not a single pixel.

2-2 Image of an extended object

An extended object can be seen as a combination of point sources with different intensities.
The object is split into N by M pixels, that are treated as point source with different in-
tensities. When the illumination is incoherent, the contribution of each point source can be
linear superpositioned to form the image [16]. When the wavefront emitted by every point
source is deteriorated in the same way when it arrives at the aperture, the image contains
isoplanatic aberrations. This is explained is the next subsection. When the deteriorations for
the different "point sources" differ, the object has anisoplanatic aberrations. The focus in this
paper is on isoplanatic aberrations.

For isoplanatic aberrations the PSF can be seen as the impulse response function of one point
source [15]. To create the image of an extended object we convolve the object with the PSF.
The noise in the image is added as ε(x, y). The convolution is described by Equation 2-4.

i(x, y) =
∑
p

∑
q

o(x, y)h(p− x+ 1, q − y + 1) + e(x, y)

i(x, y) = o(x, y) ∗ h(x, y) + e(x, y)
(2-4)
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8 Image formation.

In this equation [p,q] are the pixels in the PSF, ∗ denotes convolution and e(x, y) is the noise
in pixel [x,y]. An example of the convolution and noise addition with an object is shown in
Figure 2-2.

Figure 2-2: Image formation with an isoplanatic aberration. The object, PSF and noise leading
to the image displayed on the right are displayed. The noise is gaussian with σ = 0.01 and
normalized from 0 to one in the image. The PSF is zoomed with factor 12 and also normalized
in this figure.

Frequency domain

Convolution in the spatial domain is equal to pointwise multiplication in the frequency do-
main. Therefor the Fourier transform of the object, PSF, noise and image are taken. The
Fourier transforms are denoted with capital letters. The formation of the image in the fre-
quency domain is described in Equation 2-5.

I(u, v) = O(u, v) ◦H(u, v) + E(u, v) (2-5)

Here ◦ denotes pointwise multiplication. In the frequency domain, the high frequencies are
given towards the edges of the transformed image and the low frequencies at the center. When
the Fourier transform of the PSF, the Optical Transfer Function (OTF) H(u, v), is zero at a
certain frequency (u,v), this frequency will also not be present in the image of the object.
In the next chapter multiple methods to reconstruct the original object from the captured
images are discussed.
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Chapter 3

Deconvolution methods in imaging

The formation of an image by convolving the object with the Point Spread Function (PSF)
and adding the noise was described in the previous chapter (Equation 2-4). In this chapter
several methods will be explained to restore the object from one or multiple images. First
deconvolution methods with a known PSF are discussed. When the PSF is unknown, blind
deconvolution is used, this is an ill-posed problem because it has no unique solution, so it
is dependent on the a priori knowledge. To obtain more information for blind deconvolu-
tion, multiple images can be used, this is called Blind Multi-frame Deconvolution (BMFD).
Algorithms to perform Blind (Multi-Frame) Deconvolution are explained at the end of this
chapter.

3-1 Deconvolution with a known PSF

In this section, three deconvolution filters will be introduced to restore the object with a
known PSF. We will start with the inverse filter [17]. Next the Wiener filter [18], based on
the minimizing the mean square error, and the Tikhonov Miller filter [16], using regulariza-
tion, will be introduced to restore the object.

3-1-1 Inverse Filtering

A naive way to restore the object from the image is dividing the Fourier transform of the
image by the PSFs. This is called inverse filtering and is given in Equation 3-1[17].

ô = F−1
{

I

Ĥ + ε

}
= F−1

{
O ◦H +N

H + ε

}
(3-1)

In this equation ε is a small constant that prevents division by zero. As can be seen from the
equation, when H goes to zero at frequency (u,v), the noise will be amplified with a factor 1

ε .
An example of the restoration of an object with this inverse filter with ε = 0.01 can be seen
in Figure 3-1 for both an image without (3-1 d.) and with (3-1 g.) addded gaussian noise.
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10 Deconvolution methods in imaging

3-1-2 Wiener Filter

To estimate the object with the smallest Mean Squared Error (MSE) the Wiener Filter is
used. The MSE is explained in section 3-4.

When the noise is signal independent, to estimate the object with a linear filter, minimizing
the MSE leads to the Wiener filter given in Equation 3-2 [18].

Wwiener = H∗

H∗H + Snn
Sjj

(3-2)

In this equation Snn and Sjj represent respectively the noise and object power spectra. The
object estimation using the wiener filter is given by.

ô = F−1 (WwienerI) = F−1

 H∗I

H∗H + Snn
Sjj

 (3-3)

At the frequencies where H is zero, Ô will also be zero. Therefore a linear Wiener filter can
only restore the image within the frequency range of the PSF [18]. When the power spectra
are unknown, the modified wiener filter substitutes Snn

Sjj
by a small constant ε. An example of

the restoration of an object with this wiener filter with ε = 0.0025 can be seen in Figure 3-1
from an image without (e.) and with noise (h.).

3-1-3 Tikhonov Miller filter

Another filter for image restoration is based on the least squares solution. The least squares
error is given below. ∣∣∣∣∣∣H ◦ Ô − I∣∣∣∣∣∣2 (3-4)

In this equation || · || denotes the euclidean norm. Directly minimizing this equation does not
find the correct object, since the (higher order) frequencies that are not present in the PSF
will also be filtered out of the solution. Therefor this is known as an ill-posed problem.

To find a better estimate of ô, Tikhonov regularization can be applied. [16, 19, 18].

Φ(ô) =
∣∣∣∣∣∣H ◦ Ô − I∣∣∣∣∣∣2 + λ||Cô||2 (3-5)

In this equation λ and C are the regularization parameter matrix. The first part of the
function is a MSE fit and the second part is a regularization based on an energy bound [18].
This results in the Tikhonov Miller solution (TM).

WTM = H∗

H∗H + λC∗C
(3-6)

This solution is equal to the Wiener filter in Equation 3-2 for λC∗C = Snn/Sff . An example
of the restoration of an object with this Tikhonov Miller filter for an image with and without
noise can be seen in Figure 3-1. The regularization parameter is set to the generalized cross
validation [20] which is in this example 7 ·10−4 for the noise free image and 0.02 for the image
with noise.
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3-2 Estimating the wavefront from the PSF 11

3-1-4 Comparison of the Inverse, Modified Wiener and Tikhonov Miller filter

In Figure 3-1 the we can see the effect of the different deconvolution methods on two example
images. Both example images have been created convolving the same object (Figure 3-1a) and
same PSF (3-1b), only to the second image noise with σ = 0.01 is added. This second image is
shown in Figure 3-1c. In the second row in this figure (3-1 d, e, f) we see the noise-free image
deconvolved with respectively the Inverse, Wiener and Tikhonov-Miller filter. In the third
row (3-1 g, h, i) we see the deconvolutions of the image with noise. For the six estimations
of the object, the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) are
given. These error metrics will be explained in section 3-4. For both metric applies, a higher
value means the restoration is more equal to the object.

For both the image with and without noise, the inverse filter has the lowest PSNR and
SSIM. Especially when there is noise (3-1 g) we see amplification of it, which decreases the
error metrics a lot. The modified Wiener and TM filter, have a much higher PSNR ans SSIM.
They both improve in the similarity of the reconstruction in comparison to the constructed
image. The differences between those filters are determined by the choice of ε for the modified
Wiener filter and the regularization parameters in the Tikhonov-Miller filter.

3-2 Estimating the wavefront from the PSF

From a PSF the wavefront can be estimated, this is called phase retrieval. The Gerchberg
Saxton algorithm is a phase retrieval algorithm that lies on the basis of many Blind (Multi-
Frame) Deconvolution algorithms [7]. The algorithm estimates the wavefront at the aperture
from a PSF measurement and the known aperture of the lens [8]. It is an iterative algorithm
that iterates between the measured PSF and the Optical Transfer Function (OTF).

As described in subsection 2-1-1 the phase φ of the wavefront can be parameterized with
for example Zernike polynomials. Gonsalves [2] used the minimum square error between the
measured PSF and the constructed PSF from the estimated phase θ̂, as a metric to minimize.
The metric is minimized over the coefficients ai of the parameterization. Details on this al-
gorithm can be found in Ref. [21]. Given that the detector noise is Gaussian, the estimated
phase is a maximum likelihood estimation of the real phase.

3-3 Blind multi-frame deconvolution for extended objects using
Phase Diversity

When the PSF is unknown, both the object and PSF need to be estimated. Deconvolving two
unknown signals is called blind deconvolution [5]. This is an highly undetermined problem
and optimization algorithms can often get trapped in local minima. It may be necessary to
include constraints from a priori knowledge, to get to an unique solution [19]. By taking
multiple images, more information on the object can be gained. Using this is called Blind
Multi-frame Deconvolution (BMFD). A technique in BMFD is Phase Diversity.
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12 Deconvolution methods in imaging

Figure 3-1: An example of object restoration with different deconvolution methods. In (a.) we
see the original object. (b.) shows the PSF used to create the image. In (c.) the image were noise
with σ = 0.01 was added is shown. In (d,e,f) we see the estimated object after deconvolution of
the noise free image with respectively the inverse, modified wiener and Tikhonov Miller filter. In
image (g,h,i) deconvolution with the same filters was performed on the image with noise. The
PSNR and SSIM of images (c-i) with respect to the original object in (a.) is given below each
image.
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3-3 Blind multi-frame deconvolution for extended objects using Phase Diversity 13

3-3-1 Blind Multi-frame Deconvolution using knowledge on Phase Diversity

The joint estimation of object and phase aberration is done by Gonsalves using two images
of the same object. For the second image, a known phase θ is added to the pupil function
Equation 2-1. This leads to a description of the two PSFs as follows:

h1(x, y) = c ·
∣∣∣F (A(x, y)eiφ(x,y)

)∣∣∣2
h2(x, y) = c ·

∣∣∣F (A(x, y)eiφ(x,y)+iθ(x,y)
)∣∣∣2 (3-7)

Adding phase to create differences between multiple images is called Phase Diversity (PD) [6].
Gonsalves used Defocus PD, in chapter 4 different diversities will be discussed. To optimize
the reconstruction of the object, Gonsalves uses the following error metric in his optimization
[2]:

E =
∫ [

I1 − Ô ◦ Ĥ1
]2
dx+

∫ [
I2 − Ô ◦ Ĥ2

]2
df (3-8)

In which I1,2 and Ô are the fourier transfomrs of the two acquired images and the estimated
object, Ĥ1,2 the estimated OTFs. When minimizing the error E in the frequency domain,
using Parseval’s theorem Gonsalves got the next expression for his estimated Fourier Trans-
formed object:

Ô = Ĥ∗
1I1 + Ĥ∗

2I2

|Ĥ1|2 + |Ĥ2|2
(3-9)

The ∗ denotes the complex conjugate and theˆdenotes that it is an estimate. The expression
for Ô is substituted into the error metric, which then is only dependend on the OTFs.

Paxman, Schultz and Fienup look into the PD technique using maximum likelihood estima-
tion. For additive Gaussian noise, their objective function is a generalization of Gonsalves’
objective function. However when Poisson noise is present, no closed form expression for the
object could be found. More information on their algorithm can be found in [7].

3-3-2 Tangential Iterative Projection algorithm

In many BMFD algorithms, the differences between the images taken were only caused by the
known phase difference in the pupil function, leading to two different PSFs as in Equation 3-7.
Also this knowledge on the diversity was used to reconstruct the object and wavefront. A
different BMFD algorithm is the Tangential Iterative Projection (TIP) algorithm [1]. Mul-
tiple images of the same object with different (temporal) aberrations are taken, so now the
differences in phase from image to image are unknown. From the acquired images it retrieves
the unknown object and the PSFs. So in contrary to the previously explained algorithms it
does not retrieve the wavefront. The goal of the algorithm is to derive a minimum for the
least squares problem in Equation 3-10.

{Ĥn, Ô} = arg min
Hn,O

N∑
n=1
||In −O ◦Hn||2

s.t. O ∈ O
H ∈ H

(3-10)
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14 Deconvolution methods in imaging

This algorithm does not optimize the minimization problem, it modifies this problem to get
an estimate of the object with simple operations and little a priori knowledge.

As a priori knowledge a feasible set for the object o and the PSFs hn are set. Both are
non-negative. The object pixels range from 0 to 1 and the PSF sums to one. For the PSF a
maximum size is set. The feasible sets are denoted as respectively O and H.

At the start of the algorithm the PSFs hn are set to an initial value. In the iterative process
first the linear multi-frame deconvolution filter in Equation 3-11 estimates the object. This
estimation is equal to the one from Paxman et al. in [7] with the addition of ε in the
denominator to prevent division by zero.

ô = F−1
{∑N

n=1(Hn)∗ ◦ In∑N
n=1 |Hn|2 + ε

}
(3-11)

The subscripts n denote a parameter corresponds to the nth diversity image. Next, the
estimated object is projected on the feasible set O. Using the Fourier transform of the feasible
object, now single-frame linear deconvolution is used to update the estimates Hn. The linear
deconvolution is shown in Equation 3-12. It is similar to the inverse filter in Equation 3-1.

ĥn = F−1
{

In

Ô + ε

}
(3-12)

The estimated PSFs ĥn are projected on the feasible set H.The next iteration now starts from
the first step where the object is estimated. The number of iterations is set beforehand. A
visualisation of the steps in the algorithm is displayed in Figure 3-2.

Figure 3-2: A visualisation of the steps in the TIP algorithm [1].

Single frame TIP

The authors of the TIP algorithms also modified it to make it applicable to single frame blind
deconvolution [22].

.
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3-4 Quality of the restored object 15

3-4 Quality of the restored object

To compare the performance of the different object reconstruction methods, different metrics
can be used. There are metrics that look pixel by pixel at the error between the object and
reconstruction, like the PSNR. Other metrics calculate a value that resembles the visual
perception of the human, like the SSIM. In this section we will explain some metrics that are
used in imaging.

3-4-1 MSE and PSNR

The Mean Square Error (MSE) is a metric that calculates the difference between the two
images for every pixel, the difference between the pixels is squared and then summed up. The
equation is shown in 3-13 [23].

MSE(i1, i2) = 1
NM

N∑
x=1

N∑
y=1

[i1(x, y)− i2(x, y)]2 (3-13)

In this equation i1 and i2 are the two images to compare, both containing M x N pixels.
The MSE has simple, not heavy, calculations. A high value for the MSE means that the
error is bigger, so for a better resemblance between the object and restoration a lower MSE
is necessary.

The PSNR is closely related to the MSE and is shown in Equation 3-14. There are three
differences. Firstly, the unit is dB. Secondly, the PSNR includes the dynamic range L of the
images. So the dynamic range does not influence the quality metric. Thirdly, it is inverse so
a higher PSNR means a better resemblance between object and reconstruction[23].

PSNR(i1, i2) = 20 log10

(
L2

MSE

)
= 20 log10

(
L2MN∑N

x=1
∑N
y=1 [i1(x, y)− i2(x, y)]2

)
(3-14)

Both the MSE and PSNR are simple and have a clear physical meaning, but they do not
resemble the visual perception of the human.

3-4-2 SSIM

The structural similarity (SSIM) is a metric based on the visual perception of the human and
is shown in Equation 3-15 [23, 24].

SSIM(i1, i2) = (2µ1µ2 + c1)(2σ12 + c2)
(µ2

1 + µ2
2 + c1)(σ2

1 + σ2
2 + c2)

(3-15)

Where µ1,2 are the local means of respectively image 1 and 2, these are used to compare the
luminance of the images. The standard deviations σ2

1,2 are used to compare the contrast. The
structure is compared using σ12, the co-variance. c1 and c2 are constants depending on the
dynamic range. A higher value for the SSIM means a better reconstruction of the object for
this metric.
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16 Deconvolution methods in imaging

3-4-3 Sharpness

The sharpness is a metric that does not depend on an reference object. It indicates the amount
of small detail that can be seen in the image. There are multiple equations for sharpness, in
Equation 3-16 a simple formula depending on the gradient is shown [25].

Sharpness(i1) =
N∑
x=2

M∑
y=2

√
(i(x, y)− i(x− 1, y))2 + (i(x, y)− i(x, y − 1))2

N − 1 (3-16)

The magnitude in both x and y direction is summed over all pixels to derive the sharpness.
A higher value indicates a sharper image.

3-4-4 Comparison of the metrics

In Figure 3-3 examples of an object with different deteriorations are shown. The PSNR and
SSIM with respect to the object are calculated and the sharpness of the images is calculated.
The corresponding metric values can be found in Table 3-1. The Gaussian noise in Figure 3-3
b) and i) have a standard deviation of σ = 0.1. In the contrast in Figure 3-3 d) mostly the
medium bright pixels are darkened. In 3-3 e) each pixel value of the object is replaced by its
square root, this makes mostly the medium bright values brighter.

image PSNR 10· SSIM 10·Sharpness

a) Obj – – 0.74
b) Gaussian noise 20.60 5.21 1.17
c) Salt&Pepper 17.64 5.38 1.11
d) Contrast top 15.08 6.36 0.53

e) Contrast bottom 13.73 7.39 0.74
f) Defocus small 19.32 5.63 0.21
g) Defocus big 16.09 3.32 0.09
h) Random PSF 16.64 3.71 0.11

i) Random PSF+noise 16.64 0.88 0.90

Table 3-1: Different quality metrics for the images in Figure 3-3. The green values represent the
best value for a certain metric and the red value the worst.

For the different metrics in Table 3-1, the highest and lowest value for that metric have been
highlighted respectively green and red. A few values catch the eye. The image with adjusted
contrast in Figure 3-3 e) is the "worst" image according to the PSNR and the "best" when
looking at the SSIM. The other image with adjusted contrast (3-3 d)) has similar values.
This can be explained by the fact that the SSIM looks locally at the image and the PSNR at
the entire image at once.

For the sharpness a thing to notice is that some deteriorated version of the object have a
higher sharpness than the object itself. This are the images where noise is added (3-3 b, c, i).
The noise here increases the gradient from pixel to pixel. Because noise being present in the
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image leads to a higher Sharpness, this metric will not be used to compare the reconstructions
in the following chapters.
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18 Deconvolution methods in imaging

Figure 3-3: The object at the top with several deteriorated versions below. The PSNR, SSIM
and Sharpness of the different images can be found in Table 3-1.
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Chapter 4

Diversity Methods in Literature.

In the previous chapter different Blind Multi-frame Deconvolution (BMFD) algorithms were
discussed. For this multiple images are necessary, with different aberrations present. For some
algorithms the difference between the aberrations have to be known ([7, 2]), while for other
algorithms they do not [1]. When the aberrations in the wavefront are time-variant, one can
take multiple images over time to capture images with different PSFs. When the aberrations
do not change over time, the wavefront has to be adjusted from one image to another. This
change in aberrations is called diversity. Paxman [6] mentions multiple forms of diversity,
phase, wavelenght and translation diversity. Wilding et al [3] use amplitude diversity. In
this chapter both diversity shapes used in BMFD, as pupil design used in other imaging
applications are described. First some different purposes of diversity will be mentioned and
next examples of diversity shapes will be explained.

4-1 Purpose of Diversity

Diversity is applied in various fields. For a three-dimensional fluorescent microscope, Wilding
et al. [3] were able to retrieve certain frequencies by adding diversity, that they did not
retrieve without the diversity. Gonsalves [8] and Paxman [7] already mentioned adding a
known amount of defocus to create two different images because Defocus Phase Diversity (PD)
is easy to implement. Dean and Bowers [9] also use Defocus PD, but they want to recover
the dominant spatial frequency component in the wavefront for a point source. Sharma et
al. [26] want to be able to recover (pure phase) extended objects from two images, and
propose spiral phase diversity for that. Smith [10] and Miyamura [27] tried to optimize phase
diversity for BMFD. Shechtman et al. [28] did not perform (blind) deconvolution but want
to find the location of a 3D positron emitter and design a phase mask for that. Another
purpose of adapting the Point Spread Function (PSF) is to create an extended depth of field
for deconvolution [29]. Previous examples all focused on monochromatic light. Yang et al.
made use of the different wavelengths in poly-chromatic light to improve the image quality.
Depending on their purpose, they all designed different adaptations of the pupil function in
Equation 2-1. In this chapter we will give examples of those different diversities.
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20 Diversity Methods in Literature.

4-2 Examples of Diversity in Literature.

In this section multiple examples of diversity methods found in literature are discussed. First
amplitude diversity is discussed. Amplitude diversity is very easy to implement since part
of the aperture can just be blocked. However blocking light is undesirable when the signal
is already weak compared to the noise, because even less photons can be caught with the
imaging system. Therefor next, Phase Diversity (PD) is discussed because there no photons
are lost. However it is often more difficult to add a mask that adds the desired phase addition
than an amplitude mask. In the final section wavelength diversity will shortly be mentioned.

4-2-1 Amplitude Diversity.

For amplitude diversity, in the pupil function Equation 2-1 the amplitude function A(x, y) is
adjusted by adding a mask. In practice this means light passing through part of the aperture
is blocked.

Amplitude Diversity with a Rotating Disk

Wilding et al. [3] increase the resolution of a three-dimensional fluorescent microscope by
using amplitude diversity. The binary amplitude mask is created by a rotating disk. The disk
can be seen at two different angles in Figure 4-1. The PSFs corresponding to the aperture
amplitude functions are given in the same figure, there are no phase aberrations present in
this example.

Figure 4-1: On the left the Amplitude mask of the Rotating Disk at two different angles, on the
right the corresponding PSF when there are no phase aberrations present. For the PSF the 7%
lowest frequencies are shown.

As can be seen, the PSF rotates with the same angle as the disk.
Wilding et al. used eight images to reconstruct the object. For every image the disk was
rotated π

4 radians. The object was reconstructed using a recursive version of the Tangential
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Iterative Projection (TIP) algorithm explained in subsection 3-3-2, more information on this
algorithm can be found in [3]. With this amplitude diversity they could restore lost spatial
frequencies.

4-2-2 Phase Diversity

Now different shapes of PD will be discussed. For PD we add a phase θ to the unknown phase
φ of the wavefront in the pupil function. Changing the phase can be done using a deformable
mirror or for example by inserting a transparent mask with a different refractive index. The
advantage of phase diversity is that no photons are lost, which does happen when blocking
the light with amplitude diversity. This advantage is especially important when the Signal
to Noise Ratio (SNR) is low. For the different PDs we will start with Defocus PD which is
most found in literature because it is easy to obtain. Next the addition of a spiral and saddle
point phase patterns are discussed. Then the Cubic phase pattern that is used to create an
extended depth of field is explained.

Defocus Phase Diversity

Defocus is a quadratic phase error that can be added, and is mainly used as PD in litera-
ture. Introducing Defocus PD is simple because it only needs a translation of the detector
along the optical axis. One can take multiple images sequentially at different distances when
the aberrations are time invariant, or use a beam splitter with a second detector. Paxman et
al. [7] mentioned defocus as an example of PD for a BMFD algorithm in the previous chapter.

B.H. Dean and C.W. Bowers [9] predicted optimal diversity values for Defocus PD. To re-
trieve the aberration around a certain frequency, Dean tried to create maximum contrast in
the PSF. Dean described the PSF of a point source when the wavefront has a sinusoidal
phase aberration and defocus with amplitude a.

To obtain maximal contrast in the intensity measurements of the PSF, the theoretically
optimal amount of Defocus PD is given by amax in Equation 4-1 for the dominant spatial
frequency v0. The amount of Defocus PD for minimal contrast is given by amin

amax = ± λv2
0

(2k ∓ 1)

amin = ±λv
2
0

2k

k = 0, 1, 2, . . . (4-1)

In general aberrations do not consist of only one frequency, for the optimal amount of De-
focus PD the dominant spatial frequency v0 is used in the calculation. Dean determined
the dominant spatial frequencies for the different Zernike modes. For lower dominant spatial
frequencies, lower amounts of defocus should be used.
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22 Diversity Methods in Literature.

Spiral Phase Diversity

Sharma et. al. [26] used spiral phase diversity to reconstruct (pure phase) objects from two
images. In this research the unknown aberrations φ stayed constant and for the second image
a known spiral phase θ was added as PD, the PD θ can be seen in Figure 4-2.

Figure 4-2: The spiral phase mask from Sharma[26].

Using a modified version of the Gergberg Saxton algorithm Sharma tried to reconstruct the
complex amplitudes of the object from the two intensity measurements. The aperture of the
imaging system was known and used as a constraint.

Using the spiral phase diversity and this algorithm, both objects of amplitude and phase could
be reconstructed using 200 iterations. The spiral PD had a lower L2 error norm than when
Defocus PD was used with this modified Gergberg Saxton algorithm.

Saddle Point Phase Diversity

Shechtman et al. [28] researched PSF design to find the maximal physical information about
the 3D position of an emitter. To find this optimally informative PSF the mean of the

√
CRLB

over x-, y- and (in a limited range) z-position is minimized. The phase of the pupil function
that lead to the optimally informative PSF was considered a free design parameter consisting
of the first 55 Zernike polynomials.No unknown aberrations were present.

When the z position range was limited from -1.5 to 1.5 µm this resulted in a so called saddle
point phase pattern as optimally informative. An approximation of this phase pattern and
its PSF is displayed in Figure 4-3. For the estimation of the x and y position they look at the
Center of Mass of the PSF. As can be seen in Figure 4-3, the PSF changes in shape when it
is out of focus differently at both sides of the focal plane.

When the z range was 6 µm, the optimized phase pattern was called the ’cat mask’, it can
be found in the supplemental material of [28].

Cubic Phase Diversity

In [29] Dowski proposed a cubic phase mask to create an extended depth of field. An extended
depth of field is wanted when all aberrations except for the amount of defocus are known. A
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Figure 4-3: An approximation of the optimally informative saddle point phase pattern with in
and out of focus PSFs. In a) the approximation of the phase pattern is given as a combination
of the 5th and 12th Zernike polynomial. In c) the PSF of the phase pattern in focus is . Images
b) and d) represent the PSF with defocus on either side of the focal plane.

cubic PD had an ambiguity function that was not depending on the amount of defocus. The
derivation of the cubic phase can be found in [29]. From a single image, using a simple digital
inverse filter the object can be reconstructed without having to know the amount of defocus.
The cubic phase mask can be found in Figure 4-4 with its corresponding PSF independent of
a large range of defocus.

Figure 4-4: On the left the cubic phase mask from [29]. And on the right the corresponding
PSF.

In 2007 Yang et al. [30] proposed an exponential phase mask for the same purpose. The
advantage of their mask is that it has two free variables to construct the mask, which makes
it more variable.

4-2-3 Wavelength diversity

So far we looked at monochromatic light. When poly-chromatic light is used, wavelength
diversity is also an option [31, 6]. In [31] Yang et al. split the incoming light in two wavelength
diversity channels with respectively wavelength λ1 and λ2. Because both images are taken at
the same time instance, the aberrations can be related as follows: φ1 = φ/λ1, φ2 = φ/λ2. The
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phase aberration φ is parameterized with Zernike polynomials as described in Equation 2-
2. In reconstructions the Tikonov regularized least squares problem with two wavelengths
is minimized, like in subsection 3-1-3. Using one image and splitting it in two wavelength
diversity channels improved the image resolution.

4-3 Determining diversity based on aberrations

At the moment in literature mainly Defocus PD is used in BMFD. M. Smith [10] and
Miyamura [27] look into using different Zernike based Phase Diversities.

4-3-1 Optimizing the channel capacity

M. Smith [10] stated that since Defocus PD is rotationally symmetric, Defocus PD is effective
in restoring even-order aberrations but will not work on odd-order ones, such as coma. In
[10] quadratic and non rotationally symmetric PDs in comparison to using Defocus PD is
researched. Smith looked into the channel capacity of the Modulation Transfer Function
(MTF) of an imaging system in combination with a certain aberration. The goal was to
find a phase diversity, given this specific aberrations, to produce the best possible composite
MTFs. In this research the aberrations consist of a single Zernike mode. The phase diversity
was made up of a single Zernike mode as well. Two sets of possible Zernike modes were looked
at, lower order (4, 5, 6, 9, and 10) and higher order (14, 15, 20, 21, 27, and 28) Zernike modes.
In terms of channel capacity of the MTF Smith concluded in general the lower order modes
outperformed the higher order modes. Also the optimal phase diversity is different, when
a different aberration was present. There is some utility in using this phase diversity when
the aberration is known, but more can be gained from compensating the known diversities
directly. However this research did not consider combinations of Zernike modes for either
the aberration nor the PD. Furthermore it concluded the optimal PD was different when a
different aberration is present, but it did not check whether there was a PD that outperformed
Defocus PD for all aberrations without being optimal.

4-3-2 Optimizing Phase Diversity for a neural network

Miyamura [27] wanted to use a neural network to estimate a wavefront from multiple images of
an extended object. The wavefront φ consists of certain known Zernike polynomials, but the
amplitude of each polynomial is unknown. The metric in Equation 4-2 is used to determine
which diversity images are necessary to retrieve the amount of those Zernike modes in his
aberration.

Mn(u, v) = |I0(u, v)|2 − |In(u, v)|2

|I0(u, v)|2 + |In(u, v)|2 = |H0(u, v)|2 − |Hn(u, v)|2

|H0(u, v)|2 + |Hn(u, v)|2 (4-2)

In this equation I0, H0 correspond to the Fourier transform of the image and Optical Transfer
Function (OTF) without diversity and In, Hn to the one of the nth diversity image. When
one of the amplitudes ai of a Zernike polynomial in the unknown phase φ changes, the metric
should change with it. When this did not happen for a certain Zernike polynomial, an
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additional diversity image was added for which it did change.Like Smith Miyamura assumed
to have certain knowledge about the aberrations and only looked into using a single Zernike
mode as PD instead of combining them.

4-4 Conclusions

When comparing amplitude diversity to Phase Diversity (PD), PD has the advantage that
no photons are blocked. This makes it more widely applicable, because it can be used in
situations where few photons are present. In that case we expect it to outperform amplitude
diversity, like in section 4-2-1. In the following chapters monochromatic light will be assumed
so wavelength diversity will not be an option.

In literature in general Defocus PD is applied in combination with BMFD [8, 7, 9]. Smith
[10] looked into the channel capacity of the MTF of an imaging system in combination with
a certain aberration. The goal was to use phase diversity, given this specific aberrations,
to produce the best possible composite MTF. Smith concluded the optimal phase diversity
is different, when a different aberration is present. However Smith did not check whether
certain PDs did outperform Defocus PD without being optimal for that aberration. Also
Smith did not consider combinations of PDs or other wavefront errors, only aberration and
PDs consisting of a single Zernike mode were investigated. So in the following chapter new PD
shapes are proposed. Part of them are inspired on shapes found in literature. Part of them are
PDs that are based on the MTF, but now they will not be designed for a specific aberration
but we will check whether there is one that outperforms Defocus PD for all aberrations.
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Chapter 5

Predefined Phase Diversity for Blind
Deconvolution

In the previous chapter we discussed some existing examples of (phase) diversity. In this
chapter new Phase Diversity (PD) combinations are proposed. In this chapter we determine
the PD before any images are captured.

In the first section three new PD shapes that are inspired on shapes found in literature
are proposed. This are the rotating phase PD, the rotating half phase PD and the spiral
PD. In the next section new PDs that are based on optimizing the Modulation Transfer
Function (MTF) over the PD are proposed and explained. They will not be designed for
a specific aberration as in section 4-3, but we will investigate whether there is one that
outperforms defocus for all aberrations.

5-1 New Phase Diversity Shapes based on Shapes in Literature

In this section three PDs are proposed that are inspired on diversities found in literature. In
section 4-2-1 the amplitude diversity with the rotating disk was discussed. Here a rotating
phase PD is proposed as first new PD. Also inspired on this diversity, we propose the rotating
half phase PD. In section 4-2-2 a spiral phase mask was proposed in combination with
an image without additional phase. They combined this with a modified Gergberg Saxton
algorithm. We propose ta combination of rotated spiral phases as PD and investigate if it
leads to an increased reconstructions quality with the Tangential Iterative Projection (TIP)
algorithm.

5-1-1 Rotating phase Phase Diversity

The rotating phase is a PD based on the amplitude diversity in section 4-2-1. For the rotating
phase PD, at the aperture a phase θ is added at the same locations as where the rotating disk
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blocked the amplitude in section 4-2-1. A visualization of this is shown in Figure 5-1. Where
the image is black, the amplitude is zero. Where the image is white or blue, the amplitude
is one. At the blue wedges, a phase θ is added to the wavefront at the aperture. For every
image taken the phase mask is rotated by 45 degrees. This diversity is proposed because

Figure 5-1: Rotating Phase PD: The black locations are outside the aperture so the amplitude
is zero. The white and blue is inside the aperture so the amplitude is one. At the blue wedges a
phase θ is added to the incoming wavefront.

using the rotating amplitude mask, the creators were able to reconstruct details in the image
that they could not retrieve without it. When using the proposed rotating PD similar shapes
of PSFs are created as when using the amplitude mask from literature. Those can be seen in
Figure 5-2. Depending on the amount of phase θ in the phase diversity, the Optical Transfer
Function (OTF) also obtains similar shapes.

PSF rotating amplitude disk, different angles

PSF rotating phase PD, different angles

Figure 5-2: PSFs of the rotating amplitude disk form literature and the proposed rotating phase
PD.

5-1-2 Rotating half phase Phase Diversity

Inspired on the proposed rotating phase PD in the previous section, the rotating half phase
PD is proposed. This PD can be seen in Figure 5-3. Now at half the aperture a phase θ is
added as PD. This PD is rotated 90 degrees from one image to another.
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Figure 5-3: Rotating half phase PD: The black locations are outside the aperture so the amplitude
is zero. The white and blue is inside the aperture, the amplitude is one. At the blue half of the
aperture a phase θ is added to the incoming wavefront.

5-1-3 Spiral Phase Diversity with TIP

In section 4-2-2 a spiral phase mask was shown, previously it was used in combination with a
modified version of the Gergberg Saxton algorithm. They used 2 images, one with the spiral
mask and one without. In this thesis we will test the spiral phase mask in combination with
the TIP algorithm. The applied spiral phase masks for the 4 different images is shown in
Figure 5-4, for every image the phase diversity is rotated 90 degrees.

Figure 5-4: Phase of the spiral phase mask applied to four images.

5-2 Optimization based phase diversities

As mentioned in section 2-2, if the frequency spectrum of the PSF, the OTF, goes to zero or
decreases a lot, it will also not be represented in the image so you will not be able to retrieve
it, or when there is noise present this will be enlarged. In this section we try to find a PD
that leads to a combination of MTFs that do not all decrease at the same frequencies. The
equation for the MTFs for the N phase diversities is given in Equation 5-1.

|Hn| = |F{hn}| = |F{|F{Ai(φ+θn)}|2}| n = 1..N
θ =

∑
i

αiZi
(5-1)

Here n denotes the nth diversity image. In this section we will work with N = 4 diversity
images. The Point Spread Function (PSF) corresponding to the pupil function Aei(φ+θn),
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is called hn. The PD θ will be expressed in terms of Zernike polynomials, as explained in
section 2-1-1. Zi denotes the ith Zernike Polynomial and αi its amplitude.

To generate this replacement of the decreased frequencies, in the following sections we try to
find a PD that leads to MTFs that are "as different as possible" in terms of different met-
rics. Those metrics are the Peak Signal to Noise Ratio (PSNR) in Equation 3-14, Structural
Similarity (SSIM) from Equation 3-15 and the metric proposed by Miyamura from Equa-
tion 4-2. These optimizations are performed without any knowledge on the aberrations, so in
the optimization we put the aberration φ to zero.

5-2-1 Optimizing Modulation Transfer Functions in terms of PSNR

In the first optimization, four phase diversities are searched to apply to four images. We try
to obtain phase diversities θ that have MTFs as different as possible in terms of PSNR, when
there is no unknown aberration φ present (φ = 0). So the cost function M in Equation 5-2 is
minimized over the Zernike polynomials in the phase diversity θ in Equation 5-1. The 4th till
15th Zernike polynomial are used. The amplitude of those Zernike polynomials αi i = 4...15
is the decision variable.

M = psnr(|H1|, |H2|) + psnr(|H1|, |H3|) + psnr(|H1|, |H4|)...
...+ psnr(|H2|, |H3|) + psnr(|H2|, |H4|) + psnr(|H3|, |H4|)

(5-2)

The function for the PSNR can be found in subsection 3-4-1. The equation for the MTF |H|
is given in Equation 5-1. To minimize this cost function a multistart alterior point algorithm
is used in MatLab, a bound was defined for the amplitude αi of the Zernike Polynomials.

The four phase diversities coming from this optimization are shown in the bottom row of
Figure 5-5. The size of the phases in this PD is large, so it is wrapped in the image from -π
to π. The large amount of phase diversity deteriorates the images too much to improve the

Figure 5-5: The phase diversity shapes obtained by minimizing the PSNR are shown in the
bottom row, the scaled and used version of the phase is shown in the top row.

reconstructions, compared to images without this diversity. Therefor the amplitude of the
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PD is scaled, so the largest Root Mean Square (RMS) error of these four phase diversities,
is equal to the maximum RMS error of the Defocus PD it is compared to. The scaled, used
versions are shown in the top row of Figure 5-5. These we call the Optimized PSNR PD.
In the simulations described in section 5-3, we test whether they improve the reconstruction
compared to Defocus PD.

5-2-2 Optimizing Modulation Transfer Functions in terms of SSIM

Here the same procedure is used to obtain the PD as in the previous section. This time the
used metric is the SSIM. So the cost function to minimize this time is given in Equation 5-3.

M = ssim(|H1|, |H2|) + ssim(|H1|, |H3|) + ssim(|H1|, |H4|)...
...+ ssim(|H2|, |H3|) + ssim(|H2|, |H4|) + ssim(|H3|, |H4|)

(5-3)

The function for the SSIM can be found in subsection 3-4-2. The equation for the MTFs |H|
can be found in Equation 5-1. The decision variable is again the amplitude of the Zernike
polynomials αi i = 4...15.
To minimize this metric again a multistart alterior point algorithm is used in MatLab and
the same bound was defined for the amplitude of the Zernike Polynomials ai. The phase
diversities that came from this optimization can be seen in the bottom row of Figure 5-6.
The phases are scaled in the same way as subsection 5-2-1. The scaled, used version is shown
in the top row. This we call the Optimized SSIM PD. This PD will also be tested with the
simulations explained in section 5-3.

Figure 5-6: The phase diversity shapes obtained by minimizing the SSIM are shown in the bottom
row, a version with fewer a scaled down version of the phase is shown in the top row.

5-2-3 Optimizing Modulation Transfer Functions in terms of Miyamura’s metric.

In this optimization, again four phase diversities are searched to apply to four images. The
metric used this time is the metric from Miyamura in Equation 4-2, otherwise the procedure is
equal to the one performed in subsection 5-2-1.. The cost function M is given in Equation 5-4.
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M =
∑
u

∑
v

∣∣∣∣∣ |H1|2 − |H2|2

|H1|2 + |H2|2
+ |H1|2 − |H3|2

|H1|2 + |H3|2
+ |H1|2 − |H4|2

|H1|2 + |H4|2
...

...+ |H3|2 − |H2|2

|H3|2 + |H2|2
|H4|2 − |H2|2

|H4|2 + |H2|2
+ |H3|2 − |H4|2

|H3|2 + |H4|2

(5-4)

The equation for the MTFs |H| can be found in Equation 5-1. The decision variable is
again the amplitude of the Zernike polynomials αi i = 4...15. To maximize this metric a
multistart alterior point algorithm is used in MatLab, a bound was defined for the amplitude
of the Zernike Polynomials αi. The phase diversity that came from this optimization can be
seen in the bottom row of Figure 5-7. Again the phases are quite large so they will be scaled
again equally to the previous sections. The scaled, used version is shown in the top row. We
call this the Optimized Miyamura PD.

Figure 5-7: The phase diversities obtained by minimizing the Metric from Miyamura are shown
in the bottom row, the scaled and used version of the phase is shown in the top row.

5-3 Simulations

To test the effect of the different proposed Phase Diversities, simulations are performed. In
the simulations the formation and deterioration of images is simulated for several objects,
with different incoming wavefront and noise characteristics. The simulated objects can be
seen in Figure 5-8. For each combination of characteristics and objects, at least 10 simu-
lations are performed. The parameters that are changed can be found in Table 5-1. The
reconstructions that were made with TIP are compared to the ground truth of the image
because in these simulations this is known. This comparison is done in terms of PSNR and
SSIM. These metrics are discussed in section 3-4. When experiments would be performed, a
different metric has to be chosen, for example the one used in section 4-2-1.

In the following section some examples will be given to illustrate the results and the results
will be discussed. In this discussion we will compare the results of the proposed PDs to not
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parameter inputs
object 1: Tiger

object object 2: Cow
object 3: Giraffe

Zernike Polynomial based lower order wavefront
incoming wavefront Kolmogorov phasescreens

Sparse
0.2
0.4
0.6

RMS wavefront error 0.8
1.0
1.2
1.4

0 20 dB
standard deviation 0.001 28 dB

additive gaussian noise 0.005 36 dB
or SNR poisson noise 0.01 44 dB

0.02 52 dB

Table 5-1: Parameters used in simulations, the objects can be found in Figure 5-8.

using PD, to using Defocus PD and in some cases an existing diversity method. Those are
all simulated in the same manner.

5-4 Results of the simulations

In this section we will discuss the results of the simulations for the different wavefronts and
types of noise. We will compare the proposed PDs to Defocus PD or using no PD at all. In
discussing the results some visual examples of reconstruction will be used and some plots of
the PSNR and SSIM metric for the reconstructed object. For more data regarding the results,
contact the author.

The results of the lower order and Kolmogorov wavefronts were quite similar and will be
discussed in the upcoming sections. For the simulated sparse wavefronts the mean results in
terms of PSNR and SSIM are similar as well. However the standard deviation of the results
is very large, especially when the Peak to Valley wavefront error gets closer to ±π. Figure 5-9
shows this for a Peak to Valley wavefront error of -4/7 π. An explanation for these standard
deviations for sparse wavefronts can be, that the characteristics of the different used sparse
wavefronts are very different and deteriorate the images in largely varying amounts. Because
of these high deviations, the results coming from the sparse wavefronts will not be discussed
in the following sections.
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Figure 5-8: The three objects used in simulations in the top row and the absolute value the
corresponding Fourier transforms in the bottom row.

5-4-1 Rotating phase and rotating half phase

First we will discuss the results of the used rotating phase PD and rotating half phase PD
explained in section 5-1. Because they are inspired on the rotating amplitude disk in sec-
tion 4-2-1, this amplitude diversity was also simulated to be able to compare the performance
of the new phase diversities to the original amplitude diversity. For all parameter combina-
tions from Table 5-1 at least 10 simulations have been performed.

The results of the object reconstructions with Kolmogorov phase screens and the lower order
wavefronts are quite similar when there is Gaussian noise present in terms of PSNR and
SSIM. The mean PSNR and SSIM of the object reconstructions in the simulations are plotted
in Figure 5-10 for lower order wavefronts. In Figure 5-11 these results are displayed for
Kolmogorov phase screens.

Comparing the PSNR for Gaussian noise

The highest PSNR is achieved using Defocus PD when there is Gaussian noise in the images.
For all parameters in Table 5-1, Defocus PD outperforms the other phase and amplitude
diversities in this section, except when there is no noise present. In practice having zero noise
is not a realistic situation. When comparing the proposed rotating phase, rotating half phase
and amplitude diversity, in terms of PSNR the amplitude diversity outperforms the PDs for
lower additive Gaussian noise. When the additive Gaussian noise gets big, the rotating half
phase starts to achieve the same PSNR as the amplitude diversity.

Comparing the SSIM with gaussian noise

When a high RMS wavefront error is present, the differences between the different simulations
are very small in terms of SSIM. At lower RMS wavefront errors, Defocus PD gets outper-
formed by the rotating amplitude and phase diversities except for the second object. This
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Figure 5-9: Quality object reconstructions for the rotating phase PD and rotating half PD, for
poisson noise and sparse wavefronts with a Peak to Valley wavefront error of -4/7 π. The quality
is measured in PSNR and SSIM of the reconstruction of the object. The mean is given by the line
and the error bars denote the standard deviation. When sparse wavefronts are used, the standard
deviation of the results is very high.

might be because the second object consists of large areas, and less small details, therefor still
having some defocus in a reconstruction might influence it less.

Poisson Noise

When Poisson noise is present the results are different. In Figure 5-12 we see the PSNR and
SSIM for different SNRs when the RMS wavefront error is 1. In the top row the results are
shown for the PSNR metric, the rotating phase PD and rotating half PD performs best. From
the results for the SSIM metric, we can conclude that using no PD or the rotating phase PD
perform best. Only if the RMS wavefront error becomes very small, the Defocus PD performs
better.

The fact that the rotating phase PD and rotating half PD outperform the rotating amplitude
disk when Poisson noise is present can be explained by the fact that the Signal to Noise
Ratio (SNR) for the amplitude diversity decreases because part of the light is blocked. A
visual example is shown in Figure 5-13. This example shows the object and an aberrated
image without PD applied. An image without the Poisson noise shows the effect of it. In this
example object reconstruction using no PD, Defocus PD and the PDs based on literature are
given.

5-4-2 Spiral Phase Diversity

The performance in terms of PSNR and SSIM of both the spiral and rotating phase PD is
shown in Figure 5-14 for Poisson noise and lower order wavefronts with a RMS wavefront

Master of Science Thesis Dominique Vrijburg



36 Predefined Phase Diversity for Blind Deconvolution

0 0.5 1 1.5 2

RMS wf error

15

16

17

18

19

20

21

22

P
S

N
R

object 1

0 0.5 1 1.5 2

RMS wf error

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
S

IM

0 0.5 1 1.5 2

RMS wf error

14

16

18

20

22

24

26

28

30

Quality restoration object, gaussian noise =0.005

object 2

0 0.5 1 1.5 2

RMS wf error

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.5 1 1.5 2

RMS wf error

10

15

20

25

30
object 3

0 0.5 1 1.5 2

RMS wf error

0.4

0.5

0.6

0.7

0.8

0.9

no PD

defocus PD

amplitude disk

rotating phase PD

rotating half PD

Figure 5-10: Quality object reconstructions for the rotating phase PD and rotating half phase
PD, for lower order wavefronts with Gaussian noise σ = 0.005. From 30 simulations the mean
and standard deviation of the PSNR and SSIM are displayed. For comparison the result of using
no PD and the amplitude disk it was inspired on are also given.

error of 1. For both metrics the result of the Spiral PD is similar to the rotating phase PD.
An example of a restoration with Poisson noise is given in Figure 5-13.

When the images contain Gaussian noise, again for both metrics the results are similar.
Except when the standard deviation of the Gaussian noise becomes σ = 0.02 the spiral PD
outperforms the rotating phase PD.

5-4-3 Optimized Phase Diversities

In this section we will compare the three optimized diversities to using Defocus PD and using
no PD. The three diversities are the PSNR optimized, the SSIM optimized and the Miyamura
optimized. First we discuss the results when there is Gaussian noise and continue with the
ones including Poisson noise.

Optimized PDs with Gaussian noise

When Gaussian noise is present, for the PSNR metric the Miyamura optimized PD performs
better than the PSNR and SSIM optimized PDs. For the SSIM metric the three optimized
PDs perform quite similar. This can be seen in Figure 5-15. The Defocus PD achieves better
results in terms of the PSNR metric but not in terms of the SSIM. This is equal to the results
with Gausian noise in the previous section.
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Figure 5-11: Quality object reconstructions for the rotating phase PD and rotating half phase
PD, for Kolmogorov phase screens with Gaussian noise σ = 0.005. From 30 simulations the mean
and standard deviation of the PSNR and SSIM is displayed. For comparison the result of using
no PD and the amplitude disk it was inspired on are also given.

Optimized PDs with Poisson noise

When Poisson noise is present, the results of the PSNR metric in Figure 5-16 show, the
Miyamura optimized PD outperforms the others in most cases. The result for the SSIM
when poisson noise is present shows, using no PD performs best and the PSNR optimized PD
performs second. Both in terms of PSNR and SSIM the miyamura optimized PD outperforms
Defocus PD.

5-4-4 Conclusions on the proposed predefined Phase diversities.

In this chapter new Phase Diversity shapes were proposed. From the proposed PDs that
were inspired on literature, in certain circumstances the rotating phase PD performed very
good and it others the rotating half PD. The rotating phase and rotating half are quite sim-
ilar. They only have a different angle of the aperture where they add phase to the unknown
wavefront, respectively 45 and 180 degrees. Future research could look into the optimal angle
of the wedges in the PD in Figure 5-1 and the optimal amplitude of this phase. For future
research the optimal angle of rotation could be interesting. The spiral PD performed similar
to the rotating phase PD.

From the proposed Phase Diversity shapes based on optimizing the MTF, the best results
were obtained using the Miyamura optimized PD. WHen Gaussian noise was present this PD
performed equally good or better than the others for both the PSNR metric and the SSIM
metric. When Poisson noise was present the Miyamura optimized PD performed better in
terms of PSNR. The results of the SSIM metric were better for the PSNR optimized PD
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Figure 5-12: Quality object reconstructions for the rotating phase PD and rotating half PD,
for poisson noise and lower order wavefronts with a RMS wavefront error of 1. The quality is
measured in PSNR and SSIM of the reconstruction of the object. The mean is given by the line
and the error bars denote the standard deviation. The results in terms of PSNR in the top row,
show the rotating phase PD and rotating half PD both outperform using no PD, Defocus PD
or the rotating amplitude disk. From the SSIM metric, we conclude that using no PD and the
rotating phase PD perform best.
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Figure 5-13: Example of reconstructions with different diversities with Poisson noise present. In
the top row we see the object, an image where only the aberrated wavefront is present and the
noise is not yet added. The wavefront is a lower order wavefront with RMS=1. Besides that we
see an image where only the poisson noise is added. In the top right we see one of the images
without PD added. In the second and third row we see the different reconstructions with their
PSNR ans SSIM. The rotating half PD leads to the highest PSNR and the rotating phase PD
leads to the highest SSIM.
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Figure 5-14: The mean and standard deviation of the PSNR and SSIM of the reconstructions
for a lower order wavefront, the RMS wavefront error is 1 and the objects and wavefront errors
from Table 5-1. The mean is given by the line and the errorbars denote the standard deviation.
Here we compare the rotating spiral PD to the rotating phase PD

when Poisson noise was present.

When there is gaussian noise present, the rotating phase/ rotating half and the Miyamura
optimized PD, all outperformed Defocus PD in terms of SSIM. In terms of SSIM, when
the Gaussian noise is low to medium, the Miyamura optimized PD performed best. If the
Gaussian noise became higher, the rotating half PD performed best. To maximize the PSNR,
Defocus PD should be used. In terms of PSNR the results of the Miyamura optimized PD
outperforms the rotating phase and rotating half.

When Poisson noise is present, these three PDs outperform Defocus PD in terms of PSNR
and SSIM. For lower RMS wavefront errors, the Miyamura PD produces a higher PSNR
and the rotating phase PD produces a higher SSIM. For higher RMS wavefront errors, the
rotating phase PD performs better both in terms of PSNR as SSIM. However for the higher
RMS wavefront errors, using no PD at all performs best in combination with Poisson noise.

To validate the results from the simulation, the rotating phase PD and Miyamura optimized
PD can be tested empirically in future research.
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Figure 5-15: The mean and standard deviation of the PSNR and SSIM of the reconstructions for
a Kolmogorov wavefront, the Gaussian noise has σ = 0.01 and the objects and wavefront errors
from Table 5-1. The mean is given by the line and the errorbars denote the standard deviation.
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Figure 5-16: The mean and standard deviation of the PSNR and SSIM of the reconstructions
for Poisson noise and lower order wavefronts with RMS wavefront error 1. The mean is given by
the line and the errorbars denote the standard deviation. The results of the PSNR metric show
the Miyamura optimized PD performs best. The results of the SSIM metric show the PSNR
optimized PD performs best except for using no PD at all.
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Chapter 6

Phase Diversity Dependent on
Previous Images

In this chapter we will look into the second case, the case where we already have N images
and search for the Phase Diversity (PD) θ to add at the aperture for the next image so we
can improve the reconstruction of the original object. Like we did in the previous chapter
where we predefined the PD, we again want to design our PD such that the low values in
the frequency spectra of the N images are moved to a different location. Because as men-
tioned before, if the Optical Transfer Function (OTF) goes to zero at a certain frequency,
this frequency will also not be represented in the image. Therefore it will not be possible to
retrieve the information at that frequency, or when there is noise present it can blow up. The
equation leading to this blowing up of the noise can is Equation 6-1

I = H ◦O +N O = I +N

H
= 0 +N

0 (6-1)

Therefor we will first design a weighting mask that shows where the decreased frequencies of
the images are. Next we design a PD that makes sure those frequencies are not decreased in
the N + 1th image.

6-1 Finding the decreased frequencies.

In Figure 6-2 a) to f) a visual example is shown of how the decreased frequencies are found.
First we calculate the absolute value of the frequency spectra of all N images taken so far,
as in Equation 6-2. For the N images in Figure 6-2 a) these frequency spectra are displayed
below the corresponding images.

|In(u, v)| = |F {in(x, y)}| for n = 1...N (6-2)
We are interested in the frequencies that are decreased in all images, because they are the
ones that cannot be retrieved from the N images for the object reconstruction. To see which
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frequencies are not represented or very small in any of the N images, we take the maximum
value of the Fourier transform of the images at each frequency point (u,v). This is represented
in Figure 6-2 c) and Equation 6-3.

Imax(u, v) = max
n
|In(u, v)| (6-3)

Since we want to increase the frequencies that were decreased in the N images, we take the
inverse of this maximum in 6-2 d) as a weighting mask W. Now a higher value in W for a
certain frequency means a value that frequency was less represented in the images. A few
adjustments are made to the weighting mask: first we remove the high frequencies (Figure 6-
2 e.) and second apodization is added with a Gaussian filter(6-2 f.). Both steps are taken
because these lower frequencies are considered very important to be captured. An example to
illustrate this can be seen in Figure 6-1. The third adaptation of the weighting mask is that
all values below 1 are set to 0. This is done because the Modulation Transfer Function (MTF)
is large at these frequencies and does not need a boost. The weighting mask W is given as
an equation in 6-4.

W (u, v) =
{
wg(u, v) · 1

Imax(u,v) ∀ u2 + v2 < fcut

0 ∀ u2 + v2 > fcut

if W (u, v) < 1→W (u, v) = 0
(6-4)

In this equation wg is the Gaussian apodization filter, fcut the frequency above which we say
the frequencies are not important to reconstruct. Now the higher values in our weighting
mask W are the frequency we most want to be present in the MTF of our N + 1th image.

Figure 6-1: On the left the Siemens star, in the middle a variation where the highest 50% of the
frequencies have been removed and on the right a version where the lowest 2% of the frequencies
have been removed.

6-2 Designing the Phase Diversity

To design the PD, we want the values of the MTF corresponding to the PD to be highest at
the frequencies with the higher values in the weighing mask W . To achieve this the metric
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Figure 6-2: An example method used to determine the PD that will be added to the N + 1th

image. a) The top row shows the N (=3) images that have been taken. On these images Defocus
PD was already applied. The absolute value of the corresponding frequency spectra is calculated
and displayed in the second row on logarithmic scale. In image c.) max(MTF), at each frequency
point the maximum value of the N frequency spectra is taken as in Equation 6-3. In image d.)
at each frequency point we divide 1 by maximum value. Next in e.) the high frequencies are
removed and in f. apodization is added. Now all points less than 1, are set to zero. This is now
our weighting mask W for the optimization as in Equation 6-4. In the optimization we try to find
a new MTF (in this case g.) that when it is pointwise multiplied by the mask f.), as can be seen
in h.) the sum over all pixels reaches the highest value.
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M in Equation 6-5 is minimized over the amplitude of the Zernike polynomials ai.

M = −
∑
u,v

W (u, v) ◦ |H(u, v)| = −
∑
u,v

W (u, v) ◦
∣∣∣∣F{∣∣∣F{A(x, y) · expiθ(x,y)

}∣∣∣2}∣∣∣∣
θ =

∑
i

aiZi i = 4...15
(6-5)

In which W is the weighting mask described in Equation 6-4. The weighting mask is point-
wise multiplied with the MTF. The MTF is created with the simulated lens when the only
aberration is the PD θ is present and the formula was previously explained in Equation 5-1.
This PD θ is constructed from the 4th till 15th Zernike polynomial. The first three Zernike
polynomials have been discarded because they don’t change the shape of the Point Spread
Function (PSF), only lower order Zernike polynomials have been used because as in the re-
search from Smith in section 4-3 using Lower order polynomials outperformed using higher
order ones. An example of the optimized MTF and the multiplied version are described in
respectively Figure 6-2 g.) and h.). The metric value is calculated by summing all pixels from
this multiplied version.

For the optimization a multi-start interior point algorithm is used. The decision variable
ai, i=4...15 is bounded from 0 to 0.25 for the optimization. These bounds have been chosen,
because when a larger amount of phase is added as PD, it deteriorates the image too much
to get a good reconstruction from it, as was the case with the large PDs in subsection 5-2-1.

In the simulations we assume we have N = 3 images and we search the optimal PD for the
N + 1th = 4th image. The N=3 images are the same as the first three for Defocus PD case.
For the 4th image we add the optimized PD θ to the unknown aberration φ.

6-3 Results of method for defining the Phase Diversity for the
N+1th image

To determine whether the method proposed for finding a PD for the N+1th image in the
previous sections improves the reconstructions, simulations were performed. The simulations
had the same properties as the ones in section 5-3. In the simulations we set N = 3 and try
to find the optimal PD for the 4th image. In this chapter we will discuss the results of these
simulations for the different types of wavefronts and noise as given in Table 5-1.

6-3-1 Gaussian noise

When Gaussian noise is present, as was seen in the previous chapter, using Defocus PD out-
performs using no PD in terms of Peak Signal to Noise Ratio (PSNR), but performs worse
in terms of Structural Similarity (SSIM). In the situation of Gaussian noise the new method
performs equal or better than the Defocus PD, both in terms of SSIM and PSNR. This
can be seen for a lower order wavefront in Figure 6-3 and for a kolmogorov phasescreen in
Figure 6-4. However in terms of SSIM the new method often still gets outperformed by using
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Figure 6-3: The mean and standard deviation of the PSNR and SSIM of the reconstructions for
a Lower Order wavefront, gaussian noise with σ = 0.005 and the objects and wavefront errors
from Table 5-1. The mean is given by the line and the errorbars denote the standard deviation.

no PD at all. The fact that it has comparable results to the Defocus PD can be explained by
the fact that the first three images are equal. The author expects the method to exceed the
results of Defocus PD even more, when the PD is optimized for more images (N+2th, N+3th).

A visual example of the reconstructions with gaussian noise can be seen in Figure 6-5. This
example shows object 1: the tiger, and the restorations of it for using no PD, Defocus PD
and the optimized PD. The Root Mean Square (RMS) wavefront error is 0.75 and the noise
has standard deviation σ = 0.005. Below each reconstruction the PSNR and SSIM are given.

6-3-2 Poisson noise

When poisson noise is present the method does not perform well. The mean PSNR and SSIM
for lower order wavefronts with a RMS wavefront error of 0.75 are given in Figure 6-6.

For a low Signal to Noise Ratio (SNR), the optimized PD method performs worse than
Defocus PD and using no PD at all. When the SNR is higher the new method starts to
outperform Defocus PD again, just like the Gaussian noise result. Visual examples with the
same unknown wavefront error but a different amount of Poisson noise are shown in Figure 6-
7 and Figure 6-8 here the SNRs are respectively 28 dB and 52 dB. These examples visually
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Figure 6-4: The mean and standard deviation of the PSNR and SSIM of the reconstructions for
a Kolmogorov wavefront, gaussian noise with σ = 0.005 and the objects and wavefront errors
from Table 5-1. The mean is given by the line and the errorbars denote the standard deviation.

show that the proposed method performs worse than Defocus PD when the SNR is low (28
dB) and better than Defocus PD when the SNR is higher (52 dB).

From the data and examples we can conclude that when the SNR is very low, it is neither
good to use the new method nor to use Defocus PD. Because the poisson noise is the main
distortion in the image and it is image dependent, if the image is deteriorated extra by the PD
this also influences the noise. This might explain why the PD does not improve the quality
of the reconstruction at lower SNRs.

6-3-3 Optimized Phase Diversities

In this section we will inspect the different phase diversities that came from the optimizations.
A visual example of a created weighting mask W , the corresponding optimized MTF and PD
and the object reconstruction with and without this PD are shown in Figure 6-9.

The amplitude of the Zernike polynomials for three iterations of all parameters in Table 5-1
can be seen in Figure 6-10. When there is Gaussian noise present, almost none of the PDs
utilize the 7th till 10th Zernike polynomial. However when Poisson noise is present the 8th
Zernike polynomial, coma, does appear in many cases. This coma is mostly added when the
SNR is lower. When the SNR is low, the method also performs badly, for future research it
might be interesting to see if the method performs better when the amplitude of the 8th Zernike
polynomial is set to zero. The author already briefly tried this and it seemed promising.
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Figure 6-5: This example shows object 1: the tiger, and the restorations of it for using no PD,
Defocus PD and the optimized PD. Below the restorations the PSNR and SSIM are given. Here
a lower order wavefront with a RMS of 0.75 was used as the aberration and the Gaussion noise
has a standard deviation of σ = 0.005.

Optimizing the PD using this method in these simulations took about 2 minutes. There are
some ways to speed this up. Knowledge on the optimized PDs can be used. It might be
interesting to test if leaving out the 7th till 10th Zernike polynomial leads to similar results
while speeding up the optimization. Another way to improve the optimization speed is by
optimizing the PD and MTF over less pixels. Than the weighting mask has to be resized as
well, this will cause some information loss. However the MTFs created by the lower order
Zernike polynomials, do not amplify a certain frequency but a range of frequencies, so the
author does not expect this to be a problem.

6-3-4 Conclusion

Using this new method when there is Gaussian noise, in all simulated situations it performs
better or as good as using Defocus PD in terms of both SSIM and PSNR. However in terms of
SSIM it often still gets outperformed by using no PD at all, just like Defocus PD. The results
being comparable to the Defocus PD can be explained by the fact that in the performed sim-
ulations the first three images are equal. The author expects the method to exceed the results
of Defocus PD even more, when the PD is optimized for more images (N+2th, N+3th). This
might be interesting for future research.

When there is Poisson noise present, at lower SNRs using the optimized PD is outperformed
by using no PD at all and using Defocus PD. This could be because the poisson noise is
the main distortion in the image and related to the image intensity values. If the image is
deteriorated extra by the Defocus PD or optimized PD, this also influences the Poisson noise.
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Figure 6-6: The mean and standard deviation of the PSNR and SSIM of the reconstructions for
a lower order wavefront, the RMS wavefront error is 0.75 and the objects and wavefront errors
from Table 5-1. From 10 iterations the mean is given by the line and the errorbars denote the
standard deviation.

This might explain why the PDs do not improve the quality of the reconstruction at lower
SNRs.

Another explanation could be that when the SNR is lower, the 8th Zernike polynomial (coma)
often is used as part of the optimized PD, this might influence these results. This effect may
be explored in future research.
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Figure 6-7: This example shows object 1: the tiger, one image without diversity applied and the
restorations of it for using no PD, Defocus PD and the optimized PD. Below the restorations
the PSNR and SSIM are given. Here a lower order wavefront with a RMS of 1 was used as the
aberration and the Poisson noise has a SNR of 28 dB.

Figure 6-8: This example shows object 1: the tiger, one image without diversity applied and the
restorations of it for using no PD, Defocus PD and the optimized PD. Below the restorations the
PSNR and SSIM are given. Here the same lower order wavefront with a RMS of 1 was used as
in Figure 6-7, this time Poisson noise has a SNR of 52 dB.
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Weighting mask Optimized MTF Optimized PD

MTF Optim. PD+wavefront Optim. PD+wavefront

no PD

17.89

0.59

Defocus PD

18.63

0.49

Optimized PD

18.64

0.5

Object

PSNR

SSIM

Figure 6-9: In the top row a visual example of a created weighting mask W , the corresponding
optimized MTF and PD are shown. In the second row the optimized PD is added to the wavefront
φ and the resulting MTF is given. In the bottom row object reconstructions with and without
this optimized PD are shown.
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Figure 6-10: The amplitude of the Zernike polynomials in the optimized PDs for all parameters
in Table 5-1. It has been split up in lower order and Kolmogorov wavefronts and in Gaussian and
Poisson noise.
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Chapter 7

Conclusions and Recommendations

The goal of this thesis was to research whether there is a phase diversity that leads to a
reconstruction of the object using the TIP algorithm, with a higher Peak Signal to Noise
Ratio (PSNR) or Structural Similarity (SSIM) then defocus as phase diversity. Two cases are
considered, first the case where no information about the object or aberrations is present and
no images have been taken yet, the Phase Diversity (PD) is predefined. In the second case
already some images have been taken and we look for the PD to add to the next image that
improves the PSNR or SSIM as well.

In chapter 5 the first case, where the PD was predefined is researched. Several new PD
shapes were proposed. Some interesting results will be highlighter here. When Gaussian
noise is present from the results in terms of the PSNR metric can be concluded that Defocus
PD performs best. The results in terms of the SSIM metric however are worst for the Defocus
PD. The proposed Miyamura optimized PD resulted in the highest SSIM when small amounts
of Gaussian noise are present. When higher amounts of Gaussian noise are present using the
rotating half PD resulted in the highest SSIM.

If the images contain Poisson noise the results for using the rotating phase PD are best in
terms of PSNR and SSIM. The Miyamura PD also outperforms Defocus PD. However when
the Root Mean Square (RMS) wavefront error becomes larger, using no PD at all performs
best when Poisson noise is present.

The rotating phase and rotating half are quite similar in shape. Future research could look
into the optimal angle of the wedges in the PD in Figure 5-1 and the amount of phase that
should be added there. It is also recommended to look into the optimal angle of rotation.

To validate the results from the simulation, the rotating phase PD and Miyamura optimized
PD can be tested empirically in future research. Also simulating or testing these PDs with
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temporal aberrations could be interesting for future research.

In chapter 6 the second case of the research question, where already some images are taken
is researched. This method first locates the frequencies that are poorly presented in the
already taken images. Next it optimized a PD corresponding to a Modulation Transfer
Function (MTF) that enhances those frequencies. When there is Gaussian noise, the new
method performs better or as good as using Defocus PD in terms of SSIM and PSNR. However
in terms of SSIM it often still gets outperformed by using no PD at all. The fact that it has
comparable results to the Defocus PD can be explained by the fact that in the performed
simulations the first three images are equal. The author expects the method to exceed the
results of Defocus PD even more, when the PD is optimized for multiple images (N+2th, N+
3th). This is recommended for future research.
At lower Signal to Noise Ratios using the optimized PSNR is outperformed by using no PD
at all and using Defocus PD. This could be because the Poisson noise is the main distortion
in the image and it is image dependent, if the image is deteriorated extra by the PD this
also influences this present noise. The fact that when the SNR is lower, the 8th Zernike
polynomial (coma) often is used as part of the optimized PD, might also have influence on
these results. Future research can be done on this.
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Appendix A

Zernike Polynomials at Nolls order

Figure A-1: The Zernike polynomials at Nolls order. On the right the Point Spread Functions
of the different polynomials are given. Retrieved from [15].
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List of Acronyms

BMFD Blind Multi-frame Deconvolution
CCD Charge Coupled Device
CoM Center of Mass
DCSC Delft Center for Systems and Control
MSE Mean Squared Error
MTF Modulation Transfer Function
OTF Optical Transfer Function
PD Phase Diversity
PSF Point Spread Function
PSNR Peak Signal to Noise Ratio
RMS Root Mean Square
SNR Signal to Noise Ratio
SSIM Structural Similarity
TIP Tangential Iterative Projection
TU Delft Delft University of Technology
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