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Abstract

Airbus Defence and Space is seeking to replace aluminum with Carbon Fiber Reinforced
Plastic (CFRP) for the second stage Engine Thrust Frame (ETF) of the Ariane 6 rocket,
currently under development. The envisioned CFRP structure forms the interface between the
cryogenic fuel tank and the rocket engine. The absence of a reliable predictive failure method
for composites under cryogenic conditions has inhibited development of such a structure in the
past. This project was developed and carried out in an effort to provide new insights into the
field of composite fracture mechanics under cryogenic conditions, with a goal of developing a
progressive failure model for cryogenic applications of composites.
A multiscale framework was developed to accommodate the micro-mechanics of (cryogenic)
fracture in composites. The multiscale framework uses information on the microscopic scale,
obtained by numerical fracture simulations on a Representative Volume Element (RVE) con-
taining single or multiple fibers, to find effective macroscopic behavior by computational
homogenization. The fracture is modeled using Cohesive Element Modeling (CEM) with
embedded zero-thickness cohesive elements.
The RVEs were created using a newly developed python framework with a gmsh produced
mesh. The framework is able to produce RVEs with a random fiber structure and a low-aspect-
ratio triangular element mesh. The cohesive elements are added to the mesh by a python
function. Periodic boundary conditions are applied to the edges of the RVE by coupling
equations on selected nodes. The python framework automatically writes the microscale
model to an Abaqus® input file, which is executed on the Delft University of Technology
computational cluster.
The multiscale fracture framework was verified at room temperature by establishing a RVE.
The RVE was found through a size convergence scheme. In this scheme, a mesh convergence
study was performed for three load cases applied to five increasing Microstructural Volume
Element (MVE) sizes. For each MVE size, five random realizations were created to find an
average fracture response and to determine a measure of the spread. The results of converged
meshes were used to compare the effective fracture response for each of the MVE sizes and
to establish the RVE for each load case individually. A RVE of 75× 75 µm was discovered as
representative for all three load cases. This RVE size was found for a fiber volume fraction
of 50% with a weak fiber-matrix interface.
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After a working room-temperature multiscale fracture framework was established, the cryo-
genic conditions were added to the model. The cryogenic conditions were simulated using a
temperature step, in which the temperature was reduced from 298 K to 77 K. During the
temperature step the RVE was allowed to contract freely. The difference in Coefficient of
Thermal Expansion (CTE) between the carbon fibers (HexTow® IM7) and epoxy (CYCOM®

5230-1) matrix resulted in thermal stresses up to 50 MPa.

The presence of the thermal stresses was observed to have a limited influence on the effective
macroscopic fracture behavior. The mode I fracture strength increased at the cryogenic
operating temperature. The restricted matrix contraction resulted in high pre-compression
of the weak fiber-matrix interface, which added resistance to mode I opening. Conversely,
the mode II fracture strength was affected adversely by the cryogenic conditions, but the
reduction in strength was small compared to the standard deviation.
.
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Chapter 1

Introduction

In recent years, the demand for an affordable launch vehicle service to deliver payloads to
Earth orbits has dramatically increased due to growth in the satellite and space industries. To
meet consumer demands, the next generation of launch vehicles need to cost less to produce
and launch. One option to reduce cost, is to reduce the weight of the launch vehicle structure,
thus cutting down on material and fuel costs. Alternatively, a reduction in structural weight
allows for an increase in payload capacity weight, keeping the total launch cost the same as
it would be with the original structure/weight. The opportunity to reduce launch cost makes
exploration into structural weight savings a worthwhile venture.

Due to high specific strength and stiffness attributes, composites in the Carbon Fiber Rein-
forced Plastic (CFRP)-family can play an important role in saving weight and offer candidate
materials for highly loaded structures such as cryogenic fuel tanks and thrust frames. However
attractive, the application of CFRP for spacecraft or launcher structures has not been with-
out set-backs - most notably the premature failure of a large-scale LH2 tank during testing
of NASAs Single Stage To Orbit (SSTO) concept (X-33, technological demonstrator), which
left the program without further options for development and funding, ultimately resulting
in cancellation. For this particular program, the failure was attributed to microcracking as
a result of thermal stresses for which a reliable failure prediction method had not yet been
developed [46].

A composite consists of two or more materials which, in combination, exploit the strong-points
of each constituent. For Carbon/Epoxy composites the carbon fibers provide formidable
strength and stiffness, while the epoxy provides toughness, support and protection against
the environment. Fracture in composites is the result of several different failure mechanisms
within the constituents and at the interfaces. Global failure of the composite structure oc-
curs when the damage within the plies (microcracking, fiber/matrix-interface failure, etc.)
and inter-ply failure (delamiantion) has accumulated to the point that the residual strength
is no longer sufficient to carry the load; Therefore, the notion that you cannot accurately
predict failure in composites without making a distinction between the diverse constituents,
is fundamental and valid.
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Given the necessary computational power one could model the entire composite structure in
detail, with the fibers and matrix separately included, and use Cohesive Element Modeling
(CEM) or the eXtended Finite Element Method (XFEM) to model fracture. Unfortunately,
one would need to repeat this process to investigate a sufficient amount of fiber distributions,
out of an infinite number of possibilities, to determine average strength. At this time, it is
difficult to imagine analyzing anything larger than small tensile specimen with this approach.
The multiscale concept, shown schematically in Figure 1.1, couples multiscale (microscopic
and macroscopic) perspectives by homogenizing and collapsing the results of the microscale
analyses to an effective behavior that can be used macroscopically.

Figure 1.1: The multiscale concept [43]

The concept of multiscale modeling is powerful since it provides a way to develop a failure
prediction method rooted in micromechanics and the physics of fracture. This thesis project
will apply multiscale modeling to develop a failure method for cryogenic applications of CFRP.
The objective is formulated as follows:

The research objective of the MSc. Thesis is to develop a damage onset and growth model
for transverse fracture inside Unidirectional (UD) CFRP plies under combined thermal and
mechanical loading and under cryogenic conditions, by using advanced numerical methods
on the microscopic scale coupled with the macroscale by computational homogenization, a
technique known as multiscale modeling.

The thesis objective requires a multiscale framework for transverse fracture to be developed
and verified. The multiscale framework will use the Cohesive Zone Model (CZM) with em-
bedded zero-thickness cohesive elements on the microscopic scale, similar to what was done
by [73], to find the effective constitutive fracture behavior to be used at the macroscopic scale.
The macroscale analysis itself is left out of the scope of the thesis project. The microscopic
analysis is performed on a Representative Volume Element (RVE), which is a Microstructural
Volume Element (MVE) that is large enough to be constitutively valid. Establishing the RVE
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is critical to the validity of the multiscale method. The thesis work can be divided into three
sub-objectives:

• Develop a method to automatically create MVEs capturing the composite microstruc-
ture in the transverse plane.

• Obtain a RVE by a size convergence study and find effective fracture behavior at room
temperature.

• Find the effective fracture behavior at cryogenic temperature and isolate the effect of
the thermal load.

The structure of the report is as follows; Chapter 2 presents a comprehensive overview of the
theory relevant to the project and summarizes the literature study [78] performed in support
of the thesis project. The theory of the multiscale fracture framework and the homogeniza-
tion to effective thermal and cohesive constitutive behavior is discussed in Chapter 3. The
computational implementation of the theory is included in Chapter 4. The multiscale frame-
work will be applied to obtain room temperature effective fracture behavior in the form of
an Effective Traction Separation Law (ETSL) for three different load cases. The effective
fracture behavior will be used to establish the RVE size in Chapter 5. The room temperature
results are used as a baseline to study the effect of the cryogenic thermal load. The results of
the cryogenic simulations and the effective macroscale model are given in Chapter 6. Lastly,
the conclusions and recommendations are included in Chapter 7.
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Chapter 2

Literature Review

Chapter 2 contains an overview of the literature study completed prior to beginning the thesis.
In this chapter, the foundation for fracture mechanics is laid out in Section 2.1, followed by
an explanation of Cohesive Element Modeling (CEM) in Section 2.2.2. Chapter 2 concludes
with discussing a multiscale approach to fracture.

2.1 Fracture Mechanics: A Review

This section explores the history and theory behind fracture mechanics leading up to mod-
ern day. Section 2.1.1 discusses the classical approach to fracture, known as Linear Elas-
tic Fracture Mechanics (LEFM), and explains the various fracture modes. In Section 2.1.2
Elastic-Plastic Fracture Mechanics (EPFM) is explained as an extension to LEFM. Failure
in reinforced plastics is included in Section 2.1.3.

2.1.1 Linear Elastic Fracture Mechanics

The work done in fracture mechanics prior to the 1960’s focused on materials that obey
Hooke’s law, with corrections for small-scale plasticity from 1948 onward. This type of fracture
analysis is only applicable to structures whose global behavior is linear elastic. In more recent
history, theories have been developed for various types of non-linear material behavior, such
as (visco)plasticity, as well as dynamic effects. These developments can be seen as extensions
to LEFM, which will be discussed later in this section.

Fracture occurs when the stresses and work applied to a material are sufficient to break the
bonds between the atoms within the material [5]. The bond strength is generated by the
forces between the atoms. In Figure 2.1 the potential energy and force is represented as a
function of atomic distance. The equilibrium distance (x0) occurs when the potential energy
is at a minimum. In order to increase the spacing between atoms, a tensile force must be
applied.
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The bond energy is obtained by integrating the force over the atomic distance. The limit of
this integral is, in theory, the equilibrium distance to infinity [5]:

Eb =
∫ ∞
x0

Pdx (2.1)

The force is typically approximated as a half period of a sine function, with period 2λ. By
assuming λ = x0, the cohesive stress σc can be approximated by equation Eq. (2.2) [5].

σc ≈
E

π
(2.2)

Figure 2.1: Potential Energy and force as a function of atomic separation. At the equilibrium
separation (x0), the potential energy is minimized and the attractive and repelling forces are
balanced. [5]
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Experimentally determined fracture strengths diverge from the theoretical strength values,
E/π, typically by three or four orders of magnitude. The notion that flaws in a material
determine the fracture strength was introduced as early as the late 15th century. Leonardo da
Vinci measured the strength of iron wires and found that it varied inversely with wire length.
His finding implied that flaws in a material controlled the strength since a longer wire had a
higher probability of containing a region with a flaw.

Inglis [38] was the first to analyze stress concentrations caused by elliptical holes in plates.
For an infinite plate under far field uniaxial stress σ with an elliptical hole with semi-axes a
and b, with axis a perpendicular to the far filed stress direction, the stress at the tip of axis
a is given by Eq. (2.3).

σmax = σ

(
1 + 2a

b

)
(2.3)

Inglis [38] preferred to express this relation in terms of radius of curvature ρ = b2/a.

σmax = σ

(
1 + 2

√
a

ρ

)
(2.4)

The ratio σmax/σ is known as the stress concentration factor (Kt). For a circular hole the
stress concentration is Kt = 3. Although the continuum assumptions made for this relation
cannot be used to compute the fracture stress at the atomic scale, it supports the idea that
flaws have an effect on the fracture stress [5].

For a sharp crack ρ → 0 the stress at the tip of the flaw/crack will go to infinity; therefore,
theoretically, a material containing a sharp crack will fracture under an infinitesimally small
stress. This paradox motivated Griffith [30] to develop a fracture theory based on energy
instead of local stress [5].

The First Law of Thermodynamics encompasses several principles, perhaps most importantly
the conservation of energy and the concept of internal energy. The First Law also states that
when a system goes from a non-equilibrium state to equilibrium, there must be a net decrease
in energy. In other words, energy is minimized for an equilibrium. Griffith [30] applied this
idea to the analysis of a crack of length 2a in the 1920’s.

According to Griffith [30], when a crack is extended by an incremental energy dA, the total
energy E equilibrium condition can be expressed as:

dE
dA = dΠ

dA + dWs

dA = 0 (2.5)

And therefore:
−dΠ

dA = dWs

dA
where Π is the potential energy (internal strain energy + external work) and Ws is the work
required to create new surfaces. Since the formation of a crack simultaneously creates two
surfaces (As), Ws can be expressed by Eq. (2.6):

Ws = 2Asγs = 4atγs (2.6)

Where γs is the surface energy density. Using this approach, Griffith [30] found that the
fracture stress can be expressed as Eq. (2.7) for plane stress. Equation (2.7) is known as the
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Griffith’s failure criterion [30].

σf =

√
2Eγs
πa

(2.7)

Parallel to the energy approach proposed by Griffith [30], a stress-based approach to fracture
was developed in the late 1930’s. For linear elastic isotropic material behavior, it is possible to
derive closed form solutions for the stresses in the neighborhood of a crack tip. Westergaard
[79] was the first to publish such a solution, followed by Sneddon [64], Irwin [39] and Williams
[80].

A crack can be loaded in three different modes and combinations thereof. For Mode I loading
the principle load is applied normal to the crack plane, which is referred to as the opening
mode. Mode II loading occurs when the crack faces slide in opposite directions with respect
to each other, corresponding to in-plane shear loading. Mode III is the out-of-plane shear
mode, sometimes also referred to as the tearing mode [5]. The three modes are rendered in
Figure 2.2.

Figure 2.2: The three modes of loading that can be applied to a crack [5]

The Stress Intensity Factor (SIF), denoted K, defines the amplitude of the crack tip stress
singularity - meaning the stresses near the crack tip increase proportional to K. The SIF is
not a material property, rather it is a function of crack geometry and remote stress with units
of stress ·

√
length. The SIF is different for each loading mode and therefore KI, KII and KIII
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are distinguished. The stress field ahead of a crack tip can be written as:

σI
ij = KI√

2πr
f(θ) (2.8a)

σII
ij = KII√

2πr
f(θ) (2.8b)

σIII
ij = KIII√

2πr
f(θ) (2.8c)

Superposition of the stresses can be used for mixed mode problems:

σij = σI
ij + σII

ij + σIII
ij

The SIF can be compared to material property critical values (Kc
I , Kc

II and Kc
III) to model

crack growth. It has been proven that the energy release rate and the stress intensity factor are
related. For a mixed mode crack loading, the strain energy release rate is given by Eq. (2.9):

G = K2
I

E′
+ K2

II
E′

+ K2
III

2µ (2.9)

where E′ is either the plane stress (E′ = E) or plane strain (E′ = E/(1 + ν2)) longitudinal
modulus and µ is the shear modulus.

2.1.2 Elastic Plastic Fracture Mechanics

LEFM is limited to materials that have global linear elastic behavior. Small scale non-linear
behavior can be compensated, but must be confined to a minuscule region surrounding the
crack tip [5]. For tougher materials it is impossible to accurately model fracture using LEFM.
EPFM can be used for materials that exhibit time-independent, non-linear behavior, such as
plastic deformation. In this section two common approaches will be discussed, namely the
Crack Tip Opening Displacement (CTOD) and the J contour integral.

While studying the fracture behavior of high-toughness steels, Wells [77] discovered that crack
faces opened prior to fracture by plastic deformation, blunting an initially sharp crack. The
measure of crack tip blunting increased proportionally to the toughness of the material. Wells
[77] proposed to use the opening of the crack tip as a fracture toughness parameter, which
became known as the CTOD.

Irwin [40] further developed the theory of Wells [77] and related the CTOD to the SIF, given
by Eq. (2.10).

δ = 4
π

K2
I

EσY S
(2.10)

Where σY S is the yield stress. The CTOD can also be related to the energy release rate by
Eq. (2.11).

δ = 4
π

G

σY S
(2.11)

Rice [60] presented a path-independent contour integral for the analysis of cracks, known as
the J Contour Integral. By idealizing elastic-plastic behavior as nonlinear elastic, Rice [60]
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revolutionized the field of fracture mechanics and opened up possibilities well beyond the
applicability of LEFM.

The difference between a non-linear elastic and elastic-plastic material lies in the unloading
behavior. A non-linear elastic material simply unloads along the same path it was loaded,
while an elastic-plastic material will unload linearly, with the slope of the path equal to the
Young’s modulus, and dissipate energy. Provided that no unloading occurs, the idealization
to a non-linear elastic material is valid.

The nonlinear energy release rate J is given by Eq. (2.12).

J = −dΠ
dA (2.12)

Rice [60] proved that the value of a contour integral on an arbitrary counter-clockwise path
around the tip of a crack, as illustrated in Figure 2.3, is independent of the path and equals
the non-linear energy release rate Eq. (2.13).

J =
∫

Γ

(
w dy − Ti

∂ui
∂x

ds
)

(2.13)

The strain energy is defined by Eq. (2.14).

w =
∫ εij

0
σij dεij (2.14)

The traction vector Ti is given by Eq. (2.15).

Ti = σijnj (2.15)

Figure 2.3: Arbitrary contour around the tip of a crack [5]

The non-linear energy release rate and the CTOD are related through Eq. (2.16):

J = mσY Sδ (2.16)

where m is a dimensionless parameter determined by the stress state and material properties.
Equation (2.16) applies to fracture processes well beyond the validity limits of LEFM [5].
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2.1.3 Failure in Fiber Reinforced Plastics

Predicting failure in Fiber Reinforced Plastic (FRP) is quite complex when compared to
predicting failure in homogeneous isotropic materials. One of the challenging aspects of com-
puting the strength of a composite, is the multitude of differing failure mechanisms simultane-
ously at work. In Figure 2.4 some of the failure mechanisms that can occur in fiber-reinforced
composites are illustrated.

(a) In-plane damage (b) Delamination

(c) Microbuckling (d) Buckling delamination

Figure 2.4: Examples of damage and fracture mechanisms in fiber-composites [5]
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Global failure of lamina is often the result of damage coalescence and interaction of multiple
mechanisms. Analytical methods have been developed to compute the strength allowables
inside a ply for each of the failure modes shown in Figure 2.4. The allowables computed using
these analytical criteria are directional and do not allow for any failure-mode interaction.
Phenomenological failure criteria descended from the desire to have a strength allowable for a
lamina in any arbitrary direction, based on a number of basic and experimentally obtainable
strength parameters. Common lamina failure theories can be classified in three distinctive
groups [17]:

• Limit or noninteractive theories (e.g. Maximum Stress/Maximum Strain)

• Interactive theories (e.g. Tsai-Hill [67], Tsai-Wu [68])

• Partially interactive failure-mode-based theories (e.g. Hashin-Rotem [33], Puck [58])

According to the maximum stress and strain theories, failure occurs when respectively prin-
cipal stresses or strains exceed the corresponding ultimate values in that direction. The
maximum strain theory allows for some interaction of stress components caused by Poisson’s
ratio effects [17].

Hill [35] proposed a modification to the Von Mises yield criterion for anisotropic metals, given
by Eq. (2.17):

Aσ2
11 +Bσ2

22 + Cσ11σ22 +Dτ2
66 = 1 (2.17)

where A, B, C and D are material parameters corresponding to the anisotropy. Tsai [67]
used this as a basis to come up with a failure criterion for composites, knows as the Tsai-Hill
failure criterion, which is given by Eq. (2.18).

σ2
11
F 2

11
+ σ2

22
F 2

22
− σ11σ22

F 2
11

+ τ2
66
F 2

66
= 1 (2.18)

Tsai and Wu [68] developed a modified polynomial tensor theory with linear terms to allow for
a distinction between tensile and compressive strengths. For a two-dimensional stress state
the Tsai-Wu failure criterion is given by Eq. (2.19).

1
F11,tF11,c

σ2
11 + 1

F22,tF22,c
σ2

22 +
(

1
F11,t

− 1
F11,c

)
σ11 +

(
1

F22,t
− 1
F22,c

)
σ22

+ 1
F 2

66
τ66 −

√
1

F11,tF11,c

1
F22,tF22,c

σ11σ22 = 1
(2.19)

Hashin and Rotem [33] proposed using two failure criteria in parallel, one for the fiber failure
and one for inter-fiber failure.

|σ11|
F11

= 1 (2.20a)(
σ22
F22

)2
+
(
τ66
F66

)2
= 1 (2.20b)

In these equations the normal strengths (F11 and F22) are equal to the tensile or compressive
value depending to the state of stress.
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The Puck failure criterion [58] also distinguishes between fiber and interfiber failures and
allows for non-linear stress strain relationships. The need for extra material parameters
make the Puck approach less attractive than the Hashin-Rotem failure theory for practical
applications.

2.2 Cohesive Element Modeling

This section deals with the implementation of the Cohesive Zone Model (CZM) in the Finite
Element Method (FEM), with the purpose of modeling fracture. The CZM was proposed to
handle non-linear fracture behavior and is an idealization of damage processes in front of the
crack-tip. The CZM will be discussed in detail in Section 2.2.1.

CZMs have been implemented in the FEM by cohesive elements. Cohesive elements were
primarily developed for analyzing finite-thickness cohesive interfaces, such as bond-lines, but
found their way into computational fracture modeling in the form of zero-thickness cohesive
elements. The cohesive elements are introduced at the boundaries of continuum elements.
Examples of the usage of cohesive elements for computational fracture analysis can be found in
references [2, 4, 73]. The element formulation of zero-thickness cohesive elements is included
in Section 2.2.2.

A distinction can be made between intrinsic and extrinsic methods. Intrinsic methods have
the cohesive elements included in the mesh prior to the loading whereas extrinsic methods
add cohesive elements to the mesh during the simulated crack growth. Both methods have
consequential advantages and disadvantages, which will be discussed in Section 2.2.3.

2.2.1 Cohesive Zone Models

For typical materials some sort of non-linear behavior is to be expected at the crack-tip, caused
by yielding, micro-cracking and void nucleation, growth and coalescence. When modeling
fracture using LEFM, the assumption is made that the non-linear behavior at the crack-tip is
sufficiently small compared to the structural dimensions. In a CZM the softening mechanisms
in front of the crack are lumped into a discrete line/plane and models separation by a stress-
displacement relationship [18]. According to Xie and Waas [82], if the length scale l∗ is larger
than any of the characteristic dimensions in the problem, LEFM is no longer valid and CZMs
are required Eq. (2.21).

l∗ = EΓ
σ2
c

(2.21)

Pioneering work for a CZM in elastic-plastic materials was performed by the the Russian
mathematician Barenblatt during his time at the Academy of Sciences, Moscow, U.S.S.R.
The original article (1961) was translated to English a year later [6]. Dugdale [21] came up
with a relation for the extent of plastic yielding at the tip of a slit in a steel sheet, using stress
functions proposed in Soviet-Georgian mathematician Muskhelishvili’s book [47]. The first
work for quasi-brittle materials was done by Hillerborg et al. [37].

The CZM idealizes the contribution of the various types of damage, which form in front of the
crack-tip, as a loss in stiffness. Material at the crack-tip is assumed to open up according to
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a cohesive constitutive relation, which is also referred to as Traction-Separation Law (TSL).
CZMs have been implemented in the FEM, by allowing elements to split at the element
boundaries, with load being transferred by interface elements through cohesive tractions as
shown in Figure 2.5. The interface elements are always one dimension smaller than the
elements they connect.

The rightmost section in Figure 2.5 depicts examples of two cohesive laws, one for ductile
fracture (top) and one for brittle fracture (bottom). The failure process of an interface element
is completed when the element can no longer support any traction (in the figure: δ/δ0 = 1).
When considering brittle decohesion relations, the shape of the TSL can play a large role and
can, in some cases, be more important than the ultimate traction strength [18] - therefore a
review of different kinds of TSLs is necessary.

Figure 2.5: Representation of the ductile failure process by the CZM [15]

Cohesive constitutive relationships have some general required characteristics, which were
summarized by Park and Paulino [55]:

• The traction separation relationship is independent of any superposed rigid body mo-
tion.

• The work to create a new surface is finite, and it’s value corresponds to the fracture
energy, i.e. area under the traction-separation curve.

• The mode I fracture energy is usually different from the mode II fracture energy.

• A finite characteristic length scale exists, which leads to a complete failure condition,
i.e. no load-bearing capacity.

• The cohesive traction across the fracture surface generally decreases to zero while the
separation increases under the softening condition, which results in negative stiffness.



2.2 Cohesive Element Modeling 15

• A potential for the cohesive constitutive relationship may exist, and thus the energy
dissipation associated with unloading/reloading is independent of a potential.

TSLs can be classified as either non-potential based or potential based models. Non-potential
based methods are relatively simple and take the form of one-dimensional effective displace-
ment relations. The potential based methods use a potential function to obtain traction-
separation relationships. The first derivative provides the traction over the fracture surface,
while the second derivative provides the constitutive relationship [55].

• Non-potential or one-dimensional effective displacement TSLs:

– Cubic polynomial [70]
– Trapezoidal [71]
– Smoothed trapezoidal [63]
– Exponential [53]
– Linear softening [10, 27, 23]
– Bi-linear softening [57, 81]

• General potential-based TSLs:

– Polynomial [48, 26]
– Based on universal binding energy [62, 49, 83, 7]
– Park-Paulino-Roesler (PPR) unified potential-based [56]

There have been a number of cohesive constitutive relationships developed using an effective
displacement (∆̄) and an effective Traction (T̄ ), which are listed above. Tvergaard [70] related
the effective components (T̄ , ∆̄) to the normal and tangential components given respectively
by Eq. (2.22) and Eq. (2.23).

Tn = T̄ (∆̄)
∆̄

∆n

δn
(2.22)

Tt = T̄ (∆̄)
∆̄

αe
∆t

δt
(2.23)

In these relations the subscripts n and t are used to denote normal and tangential components,
i.e. Tn and Tt are the tractions and ∆n and ∆t are the displacements in normal and tangential
directions respectively. The normal and tangential characteristic lengths associated with the
fracture energy and the cohesive strengths are δn and δt. The non-dimensional constant αe
gives the mode-mixity (Mode I & II).

Tvergaard [70] then introduced the non-dimensional effective displacement Eq. (2.24), using
the Pythagorean Theorem. Tvergaard [70] defined effective traction as a cubic function of the
effective displacement Eq. (2.25), which provides the shape of the TSL (Figure 2.6a).

∆̄ =

√(∆n

δn

)2
+
(∆t

δt

)2
(2.24)

T̄ = 27
4 σmax∆̄(1− 2∆̄ + ∆̄2) (2.25)
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Tvergaard and Hutchinson [71] extended the use of Eq. (2.22) and Eq. (2.23) by modifying
the effective traction relationship and using the mode-mixity, given by Eq. (2.26), resulting
from a one-dimensional potential based model described in the same paper [71].

αe = δn
δt

(2.26)

Resulting in a symmetric system, i.e.

∂Tn
∂∆t

= ∂Tt
∂∆n

A model like this is not suitable when fracture energies along normal and tangential directions
are different, which is generally the case as previously mentioned.
Tvergaard and Hutchinson [71] used trapezoidal shape models (Figure 2.6b), in combina-
tion with their one-dimensional potential based method, to describe fracture in elasto-plastic
materials.

(a) Cubic (b) Trapezoidal (c) Modified Trapezoidal

(d) Exponential (e) Linear Softening (f) Bilinear Softening

Figure 2.6: One-Dimensional Effective Displacement TSLs [55]

The linear softening model by Geubelle and Baylor [27] makes use of an internal residual
strength variable (Ds), which is defined by Eq. (2.27).

Ds = min(Dmin,max(0, 1− ∆̄)) (2.27)

The normal and tangential tractions are given by:

Tn = σmax
Ds

1−Ds

∆n

δn
(2.28)
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Tt = τmax
Ds

1−Ds

∆t

δt
(2.29)

The parameter Dmin is related to the effective displacement for which the maximum cohesive
traction is reached, i.e. the cohesive strength. When the effective displacement is smaller
than (1−Dmin), the cohesive traction increases with the effective displacement, following the
artificial initial elastic range, visible in Figure 2.6e. After the cohesive strength is reached,
the softening condition starts and the cohesive traction can be expressed as:

Tn = σmax
1−∆

∆
∆n

δn
(2.30)

Tt = τmax
1−∆

∆
∆t

δt
(2.31)

which is a special case of Eq. (2.22) and Eq. (2.23) respectively, with αe = τmax/σmax and

T̄ = σmax(1− ∆̄)

This type of cohesive constitutive law has been used to model fracture in polycrystalline
brittle materials by Espinosa and Zavattieri [23].

2.2.2 Cohesive Element Formulation

The governing equations of a cracked solid include the equilibrium equation, the natural and
essential boundary conditions and traction continuity on the cracked surface [50]:

∇ · σ + b = 0 x ∈ Ω (2.32a)
n · σ = t̄ x ∈ Γt (2.32b)
u = ū x ∈ Γu (2.32c)

n+
d · σ = t+c ; n−d · σ = t−c ; t+c = −tc = −t−c x ∈ Γd (2.32d)

where σ is the Cauchy stress tensor, b the body force vector and u the displacement field.
The applied tractions and displacements on the boundaries are denoted t̄ and ū respectively.
The cohesive traction on the crack boundary Γd is tc, with normal vector nd as shown in
Figure 2.7.
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Figure 2.7: A two-dimensional solid containing a cohesive crack [50]

The weak form of the governing equation was derived in [8] and is given by:

δW ext = δW int + δW coh (2.33)

with:

δW ext =
∫

Ω
δu · b dΩ +

∫
Γt
δu · tdΓt (2.34a)

δW int =
∫

Ω
∇sδu : σ dΩ (2.34b)

δW coh =
∫

Γd
δJuK · tc dΓd (2.34c)

where JuK is the displacement jump over the crack. The solid is discretized by standard
continuum elements, whereas the crack is discretized using zero-thickness interface elements
as shown in Figure 2.8. In the figure the continuum elements are two-dimensional quads,
whereas the zero-thickness interface elements are one-dimensional.



2.2 Cohesive Element Modeling 19

Figure 2.8: Discretization of the solid into continuum elements and zero-thickness interface
elements [50]

The nodal displacements on the upper and lower faces of the interface element are given by
Eq. (2.35). To make a distinction "+" denotes upper and the "-" denotes lower, as these ele-
ments are zero-thickness and the distance between the upper and lower faces is infinitesimally
small for a closed interface element.

u+ = N intu+ (2.35a)
u− = N intu− (2.35b)

Where N int is the matrix of shape functions:

N int =
[
N1 0 N2 0
0 N1 0 N2

]
(2.36)

with N1 and N2 being the two-node line element shape functions N1(ξ) and N2(ξ).
Using the displacement on the upper and lower crack faces, the displacement jump can be
written as:

JuK = u+ − u− = N int(u+ − u−) (2.37)

The displacement of the continuum elements and the virtual displacements are given by
Eq. (2.38).

u = Nu (2.38a)
δu = Nδu (2.38b)

Substituting Eq. (2.35) and Eq. (2.38) into the weak formulation Eq. (2.33) provides:

f ext = f int + f coh (2.39)
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Where f ext, f int and f coh are the external, internal and cohesive forces.
The internal and external force vectors are computed from elemental contributions as is done
with standard FEM:

f int
e =

∫
Ωe
BTσ dΩe (2.40)

f ext
e =

∫
Ωe
NTb dΩe +

∫
Γet
NT t dΓet (2.41)

The cohesive force vector is assembled from all the contributions of interface elements. For
an arbitrary interface element (subscript ie), the cohesive force vector is given by Eq. (2.42).

f coh
ie,+ =

∫
Γd

(
N int)T tc dΓd (2.42a)

f coh
ie,− = −

∫
Γd

(
N int)T tc dΓd (2.42b)

The nonlinear behavior is assumed to be limited to the cohesive crack interface, i.e. the
continuum elements have simple linear elastic material behavior. The behavior of the interface
elements is modeled with a TSL. The constitutive equations in rate form are then given by
Eq. (2.43) and Eq. (2.44).

σ̇ = Dε̇ (2.43)
ṫc = T Ju̇K (2.44)

Where D is the bulk tangent matrix or stiffness matrix and T is the cohesive tangent matrix
whose form is determined by the TSL.
For the continuum elements the standard material tangent stiffness matrix is obtained by
linearization of the internal force vector and is given by:

Ke =
∫

Ω
BT
e DBe dΩ (2.45)

Substituting Eq. (2.37) in Eq. (2.44) yields:

ṫc = TN int(u̇+ − u̇−) (2.46)

Transformation to the global coordinate system is performed using rotation matrix Q.

ṫc = QTQTN int(u̇+ − u̇−) (2.47)

Where Q is given by:
Q =

[
n s t

]
(2.48)

with n, s and t the unit normal vector and the two unit tangential vectors of the interface
element respectively.
The linearization of the cohesive force vector requires differentiating the forces with respect
to the the nodal displacements (u+ and u−):∂fcohie,+

∂u
∂fcohie,−
∂u

 =

∂fcohie,+
∂u+

∂fcohie,+
∂u−

∂fcohie,−
∂u+

∂fcohie,−
∂u−

[δu+

δu−

]
(2.49)
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The resulting cohesive element tangent stiffness matrix is given by Eq. (2.50).

Kcoh
ie =

[ ∫
ΓdN

TQTQTN dΓd −
∫

ΓdN
TQTQTN dΓd

−
∫
ΓdN

TQTQTN dΓd
∫

ΓdN
TQTQTN dΓd

]
(2.50)

2.2.3 Intrinsic and Extrinsic Methods

All the TSLs /constitutive relationships that have been discussed until now have been in-
trinsic methods [48, 70, 71, 27, 83]. In intrinsic methods the TSL includes an initial elastic
deformation for which the element opens up, i.e. the TSL starts in the origin with a hard-
ening portion. When a certain separation is reached, the cohesive traction will equal the
maximum cohesive strength of the material. The TSL then follows a weakening/softening,
which is associated with the failure process. The softening process continues until the traction
has completely vanished, at which point the critical separation (δc) has been reached. The
traction-free surface that is created during this process, is the crack surface [41].
The most consequential disadvantage of the intrinsic approach is that the initial elastic slope
in the constitutive relation can result in an artificial compliance [51, 86, 61]. Moreover, the
elastic portion of the TSL affects the propagation of elastic stress-waves in the continuum,
resulting in a crack-tip speed divergent from the Rayleigh Wave speed [51]. One possible
solution to minimize artificial compliance and improve the wave-speed approximation, is to
increase the "dummy" stiffness of the initial elastic behavior. Unfortunately for dynamic
problems, increasing the dummy stiffness will result in severe stable-time-step restrictions.
The extrinsic approach models the softening/failure portion of the TSL only. In such a model
the cohesive traction equals the material strength. A number of models have been proposed to
represent the damage dependence of cohesive strength. Initially Dugdale [21] and Barenblatt
[6] assumed a constant cohesive strength up to the displacement jump, where the traction is
suddenly reduced to zero. Yoshiaki and Aki [85] modified this constitutive relation by adding
a softening portion to the TSL, where the traction is linearly reduced to zero. However,
the most common model of the extrinsic type used in fracture problems is the linear model
[41]. In this model the traction is linearly reduced from the ultimate strength value for a
completely closed cohesive element, to zero traction at the critical separation.
Extrinsic cohesive fracture simulations require cohesive elements to be adaptively inserted into
the mesh as the crack propagates. There are no issues with artificial compliance for extrinsic
cohesive element models, as the extrinsic cohesive elements are absent in the uncracked solid.
The absence of embedded cohesive elements makes this type of modeling more suitable for
explicit dynamic analysis, where larger time-steps can save a lot of computational time.
Nguyen [51] used a hybrid discontinuous Galerkin and an extrinsic cohesive zone model and
applied it to microcracking in fiber-reinforced composite materials.
Although compliance and stability is improved, extrinsic methods come at a cost in paral-
lelization. Current massively parallel environments are based on so-called distributed memory
architectures [25], i.e. each processor of a computing node has its own allocated region of the
global system memory. Processors on different nodes communicate over a network, by sending
messages to receive data. In the scope of a FEM, the model/mesh is divided into a number
of regions, which are distributed over the available processors. Obviously, adaptations to the
mesh in an extrinsic cohesive fracture simulation would need to be communicated between
the processors, making it computationally expensive.
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2.2.4 Mesh dependency

When compared to the eXtended Finite Element Method (XFEM) or meshless methods,
cohesive element fracture modeling presents a disadvantage when it comes to mesh depen-
dency. Cohesive elements are inserted on the boundaries of continuum elements and as such,
the crack can only propagate by following element boundaries. The advantage of knowing
the preferred crack path or direction is that intrinsic cohesive elements can be placed only
where needed, minimizing the risk of artificial compliance. Examples of this advantage in
action include glued interfaces under a peel tress or a crack propagation problem for a simple
pre-cracked specimen, as was done in sources [84, 53].
In problems where the crack path is unknown, the orientation of the mesh becomes an im-
portant factor. This is illustrated in Figure 2.9, where the shortest distance between two
points is compared to the shortest distance over the mesh. Even from a LEFM point of view,
it is clear that forcing a crack to follow a longer path due to the discretization of the con-
tinuum, will in general require more energy per unit crack extension when compared to the
original continuum. The introduction of a discrete mesh necessarily leads to a larger energy
dissipation of the discrete model when compared to the continuum. This effect is known as
mesh-induced toughness [61].

Figure 2.9: Shortest Euclidean distance and shortest path over the mesh between two random
points [61]

In structured meshes the error is minimized for a preferred crack-direction aligned with the
mesh. Conversely, the error will be maximized for a preferred crack-direction exactly in-
between element boundary directions. The effect of a structured mesh on the error is known
as mesh-induced anisotropy [61].



2.3 Multiscale Approach to Fracture 23

Rimoli and Rojas [61] constructed an improved meshing strategy by applying a barycentric
subdivision to a K-means mesh. The obtained mesh is referred to as a conjugate-directions
mesh. With this meshing strategy, the mesh-induced anisotropy is completely removed and
the mesh-induced toughness is approximately halved when compared to a random mesh.

2.3 Multiscale Approach to Fracture

This section deals with the multiscale method used for spatial scale coupling in this thesis
project. First, the different multiscale concepts will be explained briefly in Section 2.3.1. The
fundamentals of computational homogenization will be given in Section 2.3.2. The existence
and size of a Representative Volume Element (RVE) will be discussed in Section 2.3.3, followed
by periodicity of boundary conditions in Section 2.3.4. In the last section, some concluding
remarks regarding the method of choice will be presented.

2.3.1 Multiscale Concepts

The mesoscopic failure response of fiber-reinforced plastics is characterized by coalescing
failure events at the microscopic level, including fiber debonding, matrix cracking and fiber
pull-out. The optimization of the design and manufacturing of fiber-reinforced composites
requires a detailed understanding of these failure modes [4]. One approach to incorporate
microscopic failure modes is to model the heterogeneities of the microscopic scale explicitly
in the macroscopic sale, an approach referred to as Direct Numerical Simulation (DNS) or
brute-force fullscale simulation [52]. Even with the current capabilities of supercomputers,
the DNS is rarely an option due to the cost of memory and computational time [43], allowing
the concept of a multiscale to come into play.

As previously mentioned, failure in fiber-reinforced plastics spans multiple spatial scales and
can be classified as a multi-scale phenomenon. A multiscale model is a numerical tool that
can handle problems spanning multiple scales, both spatial and temporal [43]. In a multiscale
analysis only part of the microscale complexity is carried over to the macroscale [75]. The
analysis assumes the existence of a RVE, that is much smaller than the structure and simulta-
neously large enough to be constitutively valid, in which the microstructure is incorporated.
Computational analysis performed on this RVE can be used to describe macroscopic behavior,
such as constitutive relations for cohesive fracture (see Figure 2.10) [29].

In a multiscale model, information must be exchanged between the length scales. Homoge-
nization is one of the techniques to create coupling and dates back to the rules of mixtures
developed by Voigt [76] (1889) and Reuss [59] (1929) to find effective macroscale properties. In
more recent history, unit cell methods have been developed that employ numerical solutions
at the microscale to determine effective material properties and homogenized constitutive
laws. A major disadvantage of the unit cell method is the necessity to make assumptions
regarding the form of the macroscopic constitutive behavior, making it less appropriate for
non-linear problems [75].
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Figure 2.10: The multiscale cohesive scheme: The left half shows the macroscopic modeling,
whereas the right half depicts microscopic modeling details in the RVE [43]

Computational homogenization on a microstructural volume element can overcome the afore-
mentioned limitations of unit cell methods and will be discussed in more detail in the next
section.

2.3.2 Computational Homogenization of Fracture Processes

Quasi-static equilibrium of body ΩM , with internal boundary ΓMd representing a cohesive
crack, boundary conditions on ΓMū and applied traction on ΓM

t̄
is given by Eq. (2.51) [75].

The body is portrayed in Figure 2.11.

div (σM ) = bM xM ∈ ΩM (2.51a)
σM · nM = tM (ũM ) xM ∈ ΓMd (2.51b)
σM · nM = t̄M xM ∈ ΓMt̄ (2.51c)

uM = ūM xM ∈ ΓMū (2.51d)

The (cohesive) traction on ΓMd is a function of the displacement jump ũM .
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Figure 2.11: Schematic representation of the macroscale model. The internal boundary ΓM
d

represents the cohesive crack [75]

The microscale model incorporates failure models with a localized damage zone and is con-
sistent with the macroscale formulation, i.e. the microscale model must to show softening
behavior. This microscale model will be referred to as the RVE and is shown schematically
in the leftmost portion of Figure 2.12. Defining the size of the RVE is not straightforward
and as such, the method for doing so will be discussed in detail in Section 2.3.3.

Quasi-static equilibrium of the microscale model or RVE is given by Eq. (2.52) [75].

div (σm) = bm xm ∈ Ωm (2.52a)
σm · nm = tm(ũm) xm ∈ Γmd (2.52b)

um = ūm xm ∈ Γmū (2.52c)

These relations resemble the macroscale equilibrium equations, with the lowercase m de-
noting microscale (M : macroscale). The microscale is fundamentally different in that the
microscale Cauchy stress σm and traction tm are analytically derived (averaged) quantities.
The multiscale framework solely uses displacement boundary conditions (including periodic)
and introduces stress by prescribed displacements at the corner nodes of the RVE [75].

Figure 2.12: Schematic representation of the homogenization of bulk material properties [75]
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The bulk constitutive behavior of the RVE is shown in Figure 2.12. Although the figure only
shows one cohesive crack, the approach is not limited to a single discontinuity. For periodic
geometry and periodic boundary conditions, which will be discussed in Section 2.3.4, the
homogenized engineering strain 〈εm〉Ωm is defined as the volume average of the corresponding
microscopic fields. In this equation the divergence theorem is used to rewrite the volume
integral as a boundary integral. Since the periodic boundary conditions will integrate to zero,
the homogenized strain can be expressed as a function of the nodal displacement of the corner
nodes [75]:

〈εm〉Ωm = 1
wmhm

∫
Ωm
εm dΩm = 1

wm
amII ⊗s nM + 1

hm
amIV ⊗s sM (2.53)

where aMII and aMIV are the displacements of the finite element nodes at points II and IV, with
numbering given by Figure 2.12. The vectors nM and sM are the macroscopic normal and
orthogonal shear vectors and ⊗s is the symmetric dyadic product.

The homogenized Cauchy stress is derived using the Hill-Mandel energy condition [36]. To
formulate the reduced expression given by Eq. (2.54), the divergence theorem and microscale
equilibrium were used to rewrite the volume integral along with the anti-periodicity of the
traction following from the periodic boundary conditions [75].

〈σm〉Ωm = 1
wmhm

∫
Ωm
σm dΩm = 1

wm
fmB ⊗ nM + 1

hm
fmC ⊗ sM (2.54)

Figure 2.13 depicts the "homogenization" scheme used to derive the macroscopic TSL of the
cohesive crack. The traction is defined as the macroscopic Cauchy stress projected on the
macroscopic crack plane, as given by Eq. (2.55) [75].

tM = σM · nM = 1
hm
fmB (2.55)

Figure 2.13: Schematic representation of homogenization of cohesive fracture [75]

The macroscopic crack opening ũM can be equated to the displacement at the microscale
using Eq. (2.56) [75].

ũM = umII = amII (2.56)
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Turteltaub et al. [69] have proposed a new method for computational homogenization of
fracture processes on a microscopic scale. The method uses a novel crack-based averaging
technique. This thesis will make use of the homogenization scheme described in [69], which
will be discussed in more detail in Chapter 3.

2.3.3 Representative Volume Element

Academic consensus over what sample size makes an element representative is far from being
established, which might be best illustrated by the multitude of definitions for a RVE used
in literature. Gitman et al. [29] summarized the following existing definitions of the RVE in
their paper:

• The RVE is a sample that (a) is structurally entirely typical of the whole mixture on
average, and (b) contains a sufficient number of inclusions for the apparent moduli to
be effectively independent of the surface values of traction and displacement, as long as
these values are macroscopically uniform [36].

• An RVE is the minimal material volume, which contains statistically enough mechanisms
of deformation processes. The increasing of this volume should not lead to changes of
evolution equations for field-values, describing these mechanisms [66].

• The RVE must be chosen sufficiently large compared to the microstructural size for the
approach to be valid, and it is the smallest material volume element of the composite for
which usual spatially constant overall modulus macroscopic constitutive representation
is a sufficiently accurate model to represent the mean constitutive response [19].

• The RVE is a model of the material to be used to determine the corresponding effective
properties for the homogenized macroscopic model. The RVE should be large enough
to contain sufficient information about the microstructure in order to be representative,
however it should be much smaller than the macroscopic body (Micro-Meso-Macro
pinciple) [32].

• The RVE is defined as the minimum volume of laboratory scale specimen, such that
the results obtained from this specimen can still be regarded as representative for a
continuum [74].

• The size of the RVE should be large enough with respect to the individual grain size in
order to define overall quantities such as stress and strain, but this size should also be
small enough in order not to hide macroscopic heterogeneity [24].

The definitions above show a trade-off in size, where the RVE should simultaneously be much
smaller than the macroscopic structure but still large enough to be constitutively valid, an
idea known as the separation of scales. Ostoja-Starzewski [54] formulated a more elaborate
definition of the RVE and how the size is determined:

• The RVE is very clearly defined in two situations only: (i) For a unit cell in a periodic
microstructure, and (ii) For a volume containing a very large (mathematically infinite)
set of microscale elements (e.g. grains, fibers), possessing statistically homogeneous and
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erodic properties. In other words, in order to determine a RVE it is necessary to have
(a) statistical homogeneity and ergodicity of the material; these two properties assure
the RVE to be statistically representative of the macro response, and (b) some scale L
of the material domain, sufficiently large relative to the microscale d (inclusion size) so
as to ensure independence of boundary conditions [54].

Gitman et al. [29] propose the block scheme shown in Figure 2.14 as a suitable technique to
determine the size of an existing RVE.

FE, statisti-
cal AnalysisProduce realizations

Fix: Inclusion size,
Initial VE size,
Volume fraction

Accuracy
within bounds? Increase VE size

Produce new
realizations

RVE size

no

yes

Figure 2.14: RVE size determination procedure [29]

2.3.4 Periodicity

The use of Periodic Boundary Conditions (PBC) was mentioned in Section 2.3.2. In this
section, this type of boundary condition and its applicability will be explored. Periodicity in
a material guarantees more-or-less identical stiffness on opposite sides.

The RVE is assumed to be part of a much larger sample (theoretically infinite) and the
boundaries of the RVE are in reality, not boundaries. Displacement boundary conditions
are used to impose deformations on the RVE, however the boundary conditions should also
assimilate the presence of "surrounding material" and reduce the effects of the non-physical
RVE-edges [13] as much as possible. Miehe [45] mentioned the following boundary conditions
as those commonly applied for RVEs:

• Linear Displacement Boundary Conditions

• Periodic Boundary Conditions

• Minimal kinematical Boundary Conditions (equivalent to uniform traction)

Linear Displacement Boundary Conditions force the boundaries of the RVE to remain straight
and are known to overestimate the stiffness (upper bound). Uniform traction appears in the
lower bound for the stiffness, since it imposes macroscopic deformation in the weakest sense.



2.3 Multiscale Approach to Fracture 29

Periodic Boundary Conditions are have been shown to provide a more accurate apparent
stiffness for both periodic and random microstructures [14, 45].

PBCs are applied between the control (corner) nodes to arrive at an effective stress-strain
relationship [14]. PBC kinematically ties material points located on opposite boundaries
together. This requires a specific mesh construction where nodes on the borders identically
repeat before (and after) the deformation is applied. This means that for a square l×l RVE on
the top and bottom, the x-coordinates of opposing nodes are identical and the y-coordinates
differ by l and vice versa for the left and right borders. In Figure 2.15 the deformation of a
square, to which periodic boundary conditions were applied, is pictured.

(a) Undeformed (b) Deformed

Figure 2.15: Periodic Boundary Conditions [29]

Periodic Boundary Conditions are applied in almost every multiscale method [2, 4, 29, 42,
43, 44, 75]. Anti-periodicity of the tractions was used in [52]. Coenen et al. [13] developed an
alternative to PBCs referred to as percolation path aligned boundary conditions. For this type
of boundary condition, nodes are still tied together, but now according to the direction of the
(developing) strain localization bands instead of by a rectangular geometry-based coupling.
In conclusion, in all consulted literature some sort of periodicity was applied.

Periodicity of boundary conditions normally requires periodicity of material to ensure equal
stiffness and node locations on opposing sides. Gitman et al. [29] define periodicity of material
as a material experiencing no wall-effects, where wall-effects are defined as the inability of
inclusions to penetrate boundaries. They avoid wall-effects by allowing inclusions to penetrate
through the borders, making them reappear on the opposite edge, as shown in Figure 2.16a.
This same approach was taken in references [2, 4, 29, 52, 75].

Material periodicity for a RVE containing multiple inclusions is shown in Figure 2.16b. Inclu-
sion penetrating the boundary reappear, but the rest of the inclusion distribution is random.
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(a) Reappearing inclusions (b) Material Periodicity

Figure 2.16: Avoiding wall effects by material periodicity [29]

2.4 Conclusion

In this chapter, the history of fracture mechanics analysis beginning from pre-1960s to modern
day was discussed in detail. Original research was only applicable to linear elastic behavior
whereas modern techniques allow for non-linear, multiscale analysis.

Beginning work led to the development of LEFM which applies to materials whose global
behavior is linear elastic. With this method, there are three modes in which a crack can be
loaded (independently or in combination), namely: opening, in-plane shear, and out-of-plane
shear. In order to solve mixed mode problems, the SIF for each loading mode can be used to
calculate the stress field ahead of a crack and then by tabulating the individual stresses, the
overall stress may be calculated.

Evolving from LEFM, EPFM was developed for more broad, time-independent non-linear
behavior in materials. EPFM differs from LEFM in the method of unloading. Although
EPFM was more accurate for a wider range of analysis, the introduction of FRPs prompted a
need for fracture mechanics which would take a large amount of different failure mechanisms
(at once) into account, thus lamina failure theories were developed.

Further study of FRP failure led to development of CZMs, which lump softening mechanisms
in front of a crack into a discrete line or plane. Through the use of CZMs, separation by a
stress-displacement relationship can be modeled and the various types of damage are idealized
as a loss in stiffness.

In conclusion, the legacy methods for analyzing and modeling fracture mechanics fell short
in various regards, thus leading to the development of multiscale modeling using CZMs. This
thesis will aim to employ multiscale modeling techniques through the use of CZMs with
embedded intrinsic zero-thickness cohesive elements.



Chapter 3

Methodology

Chapter 3 describes the methodology and approach taken to develop a multiscale model. In
Section 3.1, the multiscale implementation is discussed in detail, followed by information on
the creation of the Microstructural Volume Element (MVE) in Section 3.2. Chapter 3 culmi-
nates in an explanation of the steps taken to produce effective properties by homogenization.

3.1 Multiscale Implementation

The multiscale method was discussed in Section 2.3. It was decided to use the eXtended
Finite Element Method (XFEM) on the macroscale and Cohesive Element Modeling (CEM)
on the microscale. For XFEM two distinct types of damage modeling are implemented in
Abaqus® [20]:

• Linear Elastic Fracture Mechanics (LEFM) approach (Classic XFEM)

• Cohesive Segment Approach (phantom-node method)

The cohesive segment approach or phantom-node method was conceptualized by Hansbo
and Hansbo [31]. The method allows cracks to propagate through bulk elements, with the
crack-opening governed by a cohesive law. Instead of adding extra degrees of freedom via
enrichment, as is done in the classical XFEM, the phantom-node method duplicates homol-
ogous nodes to construct overlapping elements capable of representing the kinematics of a
crack (see Figure 3.1).

Figure 3.1: Phantom nodes and phantom domains for a cracked element [11]
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The cohesive constitutive behavior on the macroscale can be obtained using the results of
microscale simulations. For the microscale simulations, cohesive constitutive behavior, in
the form of a bilinear Traction-Separation Law (TSL), will be defined for every constituent
as an input. The results of the miscoscale simulations will describe an effective cohesive
fracture process for the composite. This makes the cohesive segment approach ideal for the
macroscopic portion of the multiscale analysis.
The microscale analysis is performed on a microstructural model with embedded zero-thickness
cohesive elements. The cohesive elements are inserted at the element boundaries of contin-
uum elements, corresponding to the intrinsic cohesive element modeling approach to fracture
discussed in Section 2.2. The composite is a combination of two materials, i.e. fiber and ma-
trix; however three different cohesive constitutive relationships are needed to describe fiber,
matrix and interface behavior. While for all three a bilinear shaped (brittle fracture) TSL
will used, the values of the ultimate traction, fracture energy and critical opening will vary
per phase.
A bilinear TSL has an initial (unphysical) linear hardening portion and a linear softening
portion, as shown in Figure 3.2. The initial elastic opening (K) is artificial and should mimic
a rigid connection between the two bulk elements, corresponding to an uncracked solid. As
was mentioned in Section 2.2.3, artificial compliance can occur when the initial elastic slope
is not high enough.

δ

t

K

(1− ω)K

Gc

δfδ0

Cohesive zone

tult

Figure 3.2: A bilinear traction-separation relation that describes the fracture behavior

The cohesive element will open elastically until the ultimate traction is reached. At this
moment the cohesive element will have opened by δ0. Any opening beyond this separation
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is damage. The damage process is represented by a linear softening relation. The cohesive
element is failed once the traction (t) reaches zero. The corresponding failure opening is
denoted δf .

The fracture energy (G) required to complete the damage process is given by the area under
the TSL. For an undamaged element the fracture energy is given by Eq. (3.1).

G = 1
2δf tult (3.1)

If a cohesive element is unloaded before the damage process is completed it will follow a linear
path back to the origin, with slope:

K ′ = (1− ω)K

Upon reloading the same slope is followed until the softening portion is reached. If not
unloaded again, the softening slope is then followed until the damage process is completed.
The remaining fracture energy at separation δ is bound by the softening and the unloading
slope as can be seen in Figure 3.2 and is given by Eq. (3.2).

Gc = 1
2(1− w)Kδ δf (3.2)

The parameter ω is a measure of the stiffness degradation and is bound between 0 (un-
damaged) and 1 (fully damaged). The stiffness degradation factor can be used as a history
parameter, although for high initial elastic slopes a fine very resolution might be required, as
can be seen in Figure 3.3. Instead of using ω, the history parameter κ is introduced, which
stores the maximum separation that has occurred during damage process.
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K= 10000000.0 N/mm
K= 100000000.0 N/mm

Figure 3.3: Stiffness degradation (tult = 100 N/mm2, df = 0.001 mm)



34 Methodology

3.2 Modeling: The Microstructural Volume Element

The notion of a Representative Volume Element (RVE) was discussed in Section 2.3.3. In ab-
sence of a straightforward definition, regarding the size of a RVE, a size-convergence scheme
was proposed by Gitman et al. [29] as a suitable method to determine the geometric prop-
erties of the RVE. In this thesis a model on the microscopic scale, that is not necessarily
representative, will be referred to as a MVE. In other words, the RVE is a MVE for which
increasing the size does not change the results.

The MVE should capture the microstructure of the composite material. In Figure 3.4
Scanning Electron Microscope (SEM) images of a Fiber Reinforced Plastic (FRP) plies are
given. Although the fiber dimensions differ by approximately one order of magnitude, the
Glass Fiber Reinforced Plastic (GFRP) and Carbon Fiber Reinforced Plastic (CFRP) mi-
crostructures are very similar; circular fibers distributed randomly. The carbon fiber rein-
forced epoxy (Figure 3.4b) appears more structured, but this can be attributed to the higher
fiber volume fraction. In conclusion, the modeling technique should be able to produce MVEs
containing randomly distributed circular fibers.

(a) Glass Fiber Reinforced Epoxy [9] (b) Carbon Fiber Reinforced Epoxy [65]

Figure 3.4: SEM micrograph of Fiber Reinforced Epoxy

As was discussed in Section 2.3.3, imposing Periodic Boundary Conditions (PBC) on the
boundaries of the MVE results in the most accurate apparent stiffness compared to other types
of boundary conditions. Moreover the PBC are sufficient to satisfy the global Hill-Mandel
condition, i.e. conservation of energy for the bulk and crack combined, as was discussed in
Section 2.3.2.

In a Finite Element Method (FEM) the application of PBC can be done by tying nodes on
opposing edges, meaning that the displacement of opposing nodes is coupled via a constraint.
This coupling requires equal node locations on either side of the MVE. Material periodicity
ensures equal stiffness at opposing edges and is achieved by letting inclusions, that penetrate
boundaries, reappear on the other side. In Figure 3.5 a periodic MVE is shown.
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ε̄12h

ε̄22h

Figure 3.5: Microstructural Volume Element

The load application is done via control nodes in the for corners of the MVE. Instead of forces,
the MVE is loaded via prescribed displacements, since in the multiscale method the displace-
ment and displacement increment are inputs for the microscale analysis (see: Section 2.3.2).
Moreover the softening occurring during the fracture process makes a displacement controlled
method preferable over load controlled.

A strain tensor ε̄ acting on a w × h MVE can be translated to applied displacements with
respect to an arbitrary position. The choice was made to pick the lower left corner, which
will be referred to as corner 1, as the static node, meaning that all degrees of freedom will
be constrained for this node. The position vectors of the remaining corners with respect to
corner 1 are given below:

x2 − x1 =
[
w
0

]
x3 − x1 =

[
w
h

]
x4 − x1 =

[
0
h

]

With corner 1 fixed, the applied displacement to corner 2 as a result of ε̄ can be computed to
be: [

ε̄11 ε̄12
ε̄21 ε̄22

] [
w
0

]
=
[
ε̄11w
ε̄21w

]
The applied displacement vectors of the other two corners can be computed similarly. The
boundary conditions applied to all corners are included in Figure 3.5.

3.3 Homogenization

In a multiscale framework the homogenization process is the coupling between the length
scales. The information of the microscale is condensed to macroscopic constitutive behavior.
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Homogenization techniques include elementary procedures such as Rule of Mixtures (RoM),
analytical or numerical unit cell methods an computational homogenization on RVEs as
was discussed in Section 2.3.2. This section will discuss two computational homogenization
schemes; First a bulk homogenization process to obtain the effective Coefficient of Thermal
Expansion (CTE) of the composite is discussed in Section 3.3.1. Subsequently, in Section 3.3.2,
the fracture homogenization process used in this project is included. Lastly, the decomposi-
tion technique into mode-dependent fracture properties to be used at the macroscopic scale
is explained in Section 3.3.3.

3.3.1 Bulk Homogenization

The bulk homogenization process refers to homogenization done prior to the onset fracture.
The process uses the volume averaged stress and strain tensors and can be used to determine
bulk constitutive behavior such as the effective longitudinal and shear stiffness. The volume-
averaged stress is given by Eq. (3.3)

〈σ〉Ω = 1
|Ω|

∫
Ω
σ dv (3.3)

And the volume averaged strain is given by Eq. (3.4).

〈ε〉Ω = 1
|Ω|

∫
Ω
ε dv (3.4)

The volume averaged stress and strain are related through the effective stiffness tensor as
given by Eq. (3.5). The components of the effective stiffness tensor (C) can be obtained using
the results of multiple load cases.

〈σ〉Ω = C〈ε〉Ω (3.5)
For a full multiscale implementation of a composite model, the pre-fracture constitutive be-
havior would be obtained in this manner. For the purpose of this thesis, the computation of
the effective stiffness tensor is left out of the scope. Bulk homogenization is, however, used
to compute the effective CTE of the composite.
By applying a thermal load to the RVE and using boundary conditions corresponding to free
contraction, the effective thermal strain is obtained as a function of applied temperature.
The effective CTE of the composite is then obtained as the gradient of the thermal strain
evolution. The CTE in 1-direction is given by Eq. (3.6).

α11 = d〈ε11〉Ω
dT (3.6)

And, similarly, the CTE in 2-direction is evaluated computed using Eq. (3.7).

α22 = d〈ε22〉Ω
dT (3.7)

FRPs are transversely isotropic. The transverse isotropy extends to the thermal behavior and
the CTE in any direction inside the transverse plane is equal:

α11 ≈ α22

The MVE should therefore show transversely isotropic thermal expansion to be considered
constitutively valid and representative of macroscopic composite behavior..
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3.3.2 Effective Fracture Properties

The effective fracture properties that can be used on the macroscpoic scale are obtained by
homogenization. Turteltaub et al. [69] have proposed a new method of homogenizing the
microscopic fracture process. The motive for developing this method was to overcome issues
caused by periodic cracks, that can form as a result of the periodic boundary conditions.
The microscale Boundary Value Problem (BVP) of a quasi-static fracture process is given by
Eq. (3.8) [69].

divσ(x, t) = 0 x in Ω \ Γ (3.8a)
t+(x+, t) = −t−(x−, t) x on Γ (3.8b)
u(x+ we1, t)− u(x, t) = wε̄(t)e1
t(x+ we1, t) = −t(x, t) x on ∂Ω3 \ Γ (3.8c)

u(x+ he2, t)− u(x, t) = hε̄(t)e2
t(x+ he2, t) = −t(x, t) x on ∂Ω4 \ Γ (3.8d)

u±(x± + we1, t)− u±(x±, t) = wε̄(t)e1
t±(x± + we1, t) = −t±(x±, t) x on ∂Ω3 ∩ Γ (3.8e)

u±(x± + he2, t)− u±(x±, t) = hε̄(t)e2
t±(x± + he2, t) = −t±(x±, t) x on ∂Ω4 ∩ Γ (3.8f)

In the absence of body forces, the local balance of linear momentum is given by Eq. (3.8a).
The traction-continuity on the crack surface is given by Eq. (3.8b). The periodic boundary
conditions are given by Eq. (3.8c)-(3.8f). For completion the relation between the strain and
displacement fields is given below.

ε = 1
2
(
∇u+∇uT

)
x ∈ Ω \ Γ (3.9)

Note that Eq. (3.9) is only valid for material points x that are not on the crack. The relation
between the applied strain ε̄, the average strain 〈ε〉Ω in the bulk material and the fracture
strain εf is given by Eq. (3.10) [69].

ε̄ = 〈ε〉Ω + εf (3.10)
where the notation 〈·〉Ω = (1/|Ω|)

∫
Ω(·) dv, representing volume averaged quantities, is intro-

duced for convenience. The fracture strain is defined by Eq. (3.11).

εf := 1
|Ω|

∫
Γ

[JuK⊗m]sym ds (3.11)

Rather than satisfying the Hill-Mandel energy condition a priori, e.g. through boundary con-
ditions as discussed in Section 2.3.2, Turteltaub et al. [69] chose to approximately enforce the
macrohomogeneity condition a posteriori through the definition of the effective macroscopic
quantities. The macrohomogeneity condition for the crack is given by Eq. (3.12) [69].〈

(〈σ〉Ω − σ) · [Ju̇K⊗m]sym

〉
Γ

= 0 (3.12)
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The crack average on Γ contains all crack segments, i.e. including bifurcations and isolated
parts. The relation given by Eq. (3.12) states that the volume-averaged stress acting on the
local crack normal m and working on the crack opening rate Ju̇K has to, on average, equal
the work done by the local crack surface traction t = σm [69].

Equation (3.13) gives the relation between the macroscopic crack normal mf, macroscopic
crack length Γf and macroscopic crack opening rate Ju̇Kf, and there microscopic counterparts.

|Γf|Ju̇Kf ⊗mf :≈ |Γ| 〈Ju̇K⊗m〉Γ (3.13)

where the notation 〈·〉Γ = (1/|Γ|)
∫
Γ(·) ds, representing crack averaged quantities, is intro-

duced for convenience. The equation is approximate as the tensor 〈Ju̇K⊗m〉Γ, on the right
hand side of Eq. (3.13), is generally not rank-one, as opposed to the macroscopic kinematical
description of the crack.

Γ

m
JuK

t

t
m

JuK
t m

JuK

t

t

t

m

m

m

JuK

JuK

JuK

(a) Microscale description of crack

Γf

tfmf

JuKf

(b) Equivalent macroscale crack

Figure 3.6: Hill-Mandel requirement for an equivalent crack. The figure also illustrates the
complication caused by the arbitrary orientation of the cohesive elements.

The micro- and macroscale kinetics of the crack are shown in Figure 3.6. A relation between
the openings is either scale has already been established, be it in rate form, in Eq. (3.13).
Equation (3.14) defines the crack averaged macroscopic traction (tfΓ).

|Γf|tfΓ ⊗mf := |Γ|〈t⊗m〉Γ (3.14)

The right side of Eq. (3.14) represents the integral of the cohesive stress over the crack surface.
Although it is only defined using a single plane, it can be seen as a stress by recognizing that
the local crack normal coincides with the cohesive element normal. By integrating the cohesive
stress instead of directly integrating the traction, the practical issues caused by the arbitrary
definition of the element normals is overcome.

The equivalent macroscopic crack length Γf can be computed using the MVE geometry and
the effective normal. Recognizing that the periodic boundaries will force cracks to reappear
on either side, Eq. (3.15) was formulated. In this equation the length Γ0 is the longest straight
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line with normalmf passing once through the MVE domain. The length Γ0 is computed using
Eq. (3.16).

|Γf| =
{
|Γ0| if r > rmax

r|Γ0| otherwise
(3.15)

|Γ0| = min
(

w∣∣n2 ·mf
∣∣ , h∣∣n1 ·mf

∣∣
)

(3.16)

The factor r gives the number of times a straight crack of length Γ0 and normal mf can
pass through the domain, starting from one corner and reappearing periodically as shown in
Figure 3.7.

mf

rΓ0

Γ0

Γf

n1

n2

w

h

Figure 3.7: Macroscopic crack length

For a perfectly horizontal or vertical crack the factor r → ∞. In Eq. (3.15) this is handled
by specifying a condition for the maximum value of r. When r is above this maximum value
(rmax) the crack is assumed to be approximately vertical or horizontal with length Γ0. The
factor r can be computed using Eq. (3.17).

r = 1
|Γ0|

max
(

w∣∣n2 ·mf
∣∣ , h∣∣n1 ·mf

∣∣
)

(3.17)

The Hill-Mandel condition for the crack is given by Eq. (3.18) [69].

|Γf|tf · Ju̇Kf ≈ |Γ| 〈t · Ju̇K〉Γ (3.18a)

|Γf|tf · Ju̇Kf ≈ |Γ| 〈〈σ〉Ωm · Ju̇K〉 = 〈σ〉Ω · |Γ|
〈

[Ju̇K⊗m]sym

〉
(3.18b)
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The power-requirements formulated in Eq. (3.18) motivated the definition of tf given by
Eq. (3.19) [69].

tf = αtfΓ + (1− α)tfΩ (3.19)

Where tfΩ is the volume-averaged stress acting on the crack surface as given by Eq. (3.20).

tfΩ = 〈σ〉Ωmf (3.20)

The Hill-Mandel conditions for the crack is approximately enforced by selecting an appropriate
value for α. The Hill-Mandel condition given by Eq. (3.18a) can be combined with Eq. (3.19)
to arrive at:

α|Γf|tfΓ · Ju̇Kf + (1− α)|Γf|tfΩ · Ju̇Kf ≈ |Γ| 〈t · Ju̇K〉Γ
Which is equal to:

α|Γf|tfΓ · Ju̇Kf + (1− α)|Γf|tfΩ · Ju̇Kf ≈
∫

Γ
t · JuK dΓ

Both sides are subsequently divided by the volume to obtain volume-averaged powers:

α
1
Ω |Γ

f|tfΓ · Ju̇Kf + (1− α) 1
Ω |Γ

f|tfΩ · Ju̇Kf ≈ 1
Ω

∫
Γ
t · Ju̇K dΓ

Which can be rewritten to:
αP f

Γ + (1− α)P f
Ω ≈ P f (3.21)

Where the three volume average crack power terms are given by Eq. (3.22).

P f
Γ = 1

Ω |Γ
f|tfΓ · Ju̇Kf (3.22a)

P f
Ω = 1

Ω |Γ
f|tfΩ · Ju̇Kf (3.22b)

P f = 1
Ω

∫
Γ
t · Ju̇K dΓ (3.22c)

Similarly, instead of a rate form, a work version of Eq. (3.21) can be formulated.

αW f
Γ + (1− α)W f

Ω = W f (3.23)

Where the three volume average crack work terms are given by Eq. (3.24).

W f
Γ = 1

Ω |Γ
f|tfΓ · JuKf (3.24a)

W f
Ω = 1

Ω |Γ
f|tfΩ · JuKf (3.24b)

W f = 1
Ω

∫
Γ
t · JuK dΓ (3.24c)

The macroscopic crack opening JuKf is defined by Eq. (3.25), which is similar to the rate form
given by Eq. (3.13).

|Γf|JuKf ⊗mf :≈ |Γ|〈JuK⊗m〉Γ (3.25)
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The exact value of α needs to be determined by inspection and may vary per MVE size or
load case. With α known, the macroscopic traction vector can be determined and related to
the macroscopic crack opening. The resulting relation is the homogenized traction-separation
relation, also known as the Effective Traction Separation Law (ETSL), which is the result of
interest:

tf = tf(JuKf)

All the ingredients for the complete cohesive fracture homogenization process have been de-
scribed above. The sequential steps of the cohesive fracture homogenization process are as
follows; First the fully-failed state, corresponding to the last frame in the simulation, is used
to compute the geometrical characteristics of the macroscopic crack, followed by the time-
incremental post-processing of the results of interest. Lastly the Hill-Mandel condition is
approximated resulting in the weighting parameter α and the ETSL. The algorithm is as
follows:

1. Macroscopic crack normal mf and nominal crack length |Γf|:

1.1 Determine the set of failed (cohesive) elements that form the crack surface Γ and
compute the tensor 〈JuK ⊗m〉Γ at t = tF (fully-failed state); typically the last
state in an incrementally loaded simulation.

1.2 Compute the vector |Γf|JuKf and equivalent crack normal mf using the Eckart-
Young theorem, with the requirement that |mf| = 1. Singular Value Decomposition
(SVD) of the right side of Eq. (3.25)

|Γf|JuKf ⊗mf ≈ |Γ|〈JuK⊗m〉Γ at t = tF

results in mf and the product |Γf|JuKf. At this point |Γf| and JuKf are not known
individually.

1.3 Use mf and the MVE dimensions to compute |Γf| from Eq. (3.15).
1.4 Use |Γf| and the product |Γf|JuKf to compute the effective macroscopic crack open-

ing JuKf.

2. Time-incremental post-processing at time step tn:

2.1 Compute volume averaged stress 〈σn〉Ω.
2.2 Use the Eckart-Young theorem to compute the effective macroscopic crack opening

vector JuKf
n at time tn as

|Γf|JuKf
n ⊗mf ≈ |Γ|〈JuKn ⊗m〉Γ at t = tn

with mf, |Γ| and |Γf| computed for t = tF .
2.3 Compute the effective traction acting on the crack surface (tn)f

Γ at time t = tn
using Eq. (3.14):

|Γf|(tn)f
Γ ⊗mf = |Γ|〈tn ⊗m〉Γ at t = tn

3. Approximate the Hill-Mandel Condition
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3.1 Determine the α weighting factor as the best fit for the crack-based Hill-Mandel
condition on the rate of work (power).

3.2 Compute the effective macroscopic traction at time t = tn as a weighed average of
the crack-averaged and volume averaged traction acting on the crack surface using
Eq. (3.19):

tfn = α(tn)f
Γ + (1− α)〈σn〉Ωmf at t = tn

3.3.3 Mode mixity

The effective macroscopic traction vector and the effective macroscopic opening vector were
determined using the approach described in Section 3.3.2. The simulations at the macroscopic
scale use the cohesive segment approach, as was discussed in Section 3.1. The crack-opening
at the macroscopic scale is governed by a mode-dependent cohesive law. The final step in
implementing the multiscale is therefore the decomposition of the effective vectors in modal
components. To this end the mode-mixity parameter (β) is introduced. The mode-mixity is
defined as the opening angle as given by Eq. (3.26).

β = tan−1
(
δf
II

δf
I

)
(3.26)

The definition of the mode I and mode II opening is illustrated in Figure 3.8.

JuKf

δf
I

δf
II

β

Figure 3.8: Mode mixity parameter β

The effective macroscopic opening vector is decomposed using the dot product with the
macroscopic crack normal, as given by Eq. (3.27).

δf
I = JuKf ·mf (3.27a)
δf
II =

∣∣∣JuKf − δf
Im

f
∣∣∣ (3.27b)
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The effective macroscopic traction vector is decomposed using the same approach, as given
by Eq. (3.28).

tfI = tf ·mf (3.28a)
tfII =

∣∣∣tf − tfImf
∣∣∣ (3.28b)

As a result of the modal decomposition two scalar traction-separation laws are obtained (see
Eq. (3.29)). These ETSLs define the mode-dependent macroscopic cohesive laws.

tfI = tfI(δf
I) (3.29a)

tfII = tfII(δf
II) (3.29b)
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Chapter 4

Numerical Experimental Setup

Chapter 4 communicates the numerical experimental setup. First, in Section 4.1, the back-
ground behind the model generation is discussed, including the definition of input variables,
geometry, mesh, boundary conditions, and the generation of the Abaqus input file. Section 4.2
covers the settings that influence the analysis and convergence of the Abaqus solver. Chap-
ter 4 concludes with Section 4.3, which illuminates the postprocessing methods, including
data extraction, processing, and multiscale coupling.

4.1 Preprocessing: Model generation

During the preprocessing a Finite Element (FE) model is generated from the input variables.
The preprocessing occurs entirely in python scrips, with the exception of the bulk mesh
generation. The latter is done using gmsh, a finite element mesh generator with built-in pre-
and postprocessing facilities distributed under the terms of the GNU General Public License.
The preprocessing framework is shown schematically in Figure 4.1.

Define input
Reuse model (yes/no)

Create
random fiber
distribution

Create
geometry
file for gmsh

Generate
bulk mesh

Insert cohesive
elements

Write Abaqus
input file
(mesh)

Finelize
Abaqus
input file

Submit job

fiber_origins.py mesh_gen.py gmsh.exe create_input_file.py h

00_submit_jobs.py

no

yes

.geo .msh

.inp

.inp

Figure 4.1: Schematic representation of the preprocessing computational framework

In reality only is single python script (00_submit_jobs.py) is executed and all other python
files contain functions that are imported at the start of this script. The final result of the



46 Numerical Experimental Setup

preprocessing is an Abaqus® input file (.inp). The input file is uploaded to the computational
cluster1 of Delft University of Technology (TU Delft) and executed with Abaqus®.

Each of the steps will be addressed in more detail in the remainder of this section, starting
with a discussion of the input variables in Section 4.1.1. Thereafter, in Section 4.1.2, the
periodic geometry definition of the Microstructural Volume Element (MVE) and the method
for finding random fiber distributions is explained. The mesh generation approach using a
combination of gmsh and python is included in Section 4.1.3, followed by the computational
formulation of the boundary conditions in Section 4.1.4. The section is concluded with the
Abaqus® input file generation.

4.1.1 Input variables

The input specification is done at the start of the computational framework. The geometry of
the MVE is specified by four dimensions and a (target) fiber volume fraction (see: Table 4.1).
For a unit cell generation, the volume fraction is unused and a single fiber (with semi-axes
dimensions a, b) is placed at the center of the w × h mm MVE.

Variable Description Symbol Units
w Width w mm
h Height h mm
a Semi-axis (x) a mm
b Semi-axis (y) b mm
V_f Fiber volume fraction Vf [-]

Table 4.1: Input parameters: Geometry

In-line with the project objective, the framework requires an initial and operating temperature
to be specified. The simulation will include a temperature step, in which the temperature can
be increased or reduced to the operating temperature, which will be discussed in more detail
in Section 4.1.4. Besides the thermal loading, the applied strain is specified as an input. The
applied strain will be used to compute the prescribed displacements for the corners of the
MVE (see: Section 4.1.4). Table 4.2 lists the input parameters that stipulate the loading of
the MVE with the corresponding symbol and units.

Variable Description Symbol Units
T_0 Initial Temperature 2 T0 K
T_1 Operating Temperature T1 K
load_cases Applied strain ε̄ [-]

Table 4.2: Input parameters: Loading

The thermal/mechanical nature of the problem requires the specification of quite a lot of
material properties of the fiber and matrix. The density (ρ) and elastic properties (E and ν)

1hpc12.tudelft.net
2The initial temperature is also the residual stress-free temperature of the composite
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along with the coefficient of thermal expansion (α), the specific heat (Cp) and the thermal
conductivity (κ) need to be specified for both the fiber and the matrix. Moreover the fracture
properties, in the form of an ultimate strength value and either the fracture toughness or
failure opening, is required input for the fiber, the matrix as well as the fiber-matrix interface.

Some of the material properties may vary with temperature. During the literature study [78]
it became apparent that while the fiber properties can be assumed temperature-independent,
the matrix stiffness, strength, toughness and expansion coefficient are definitely not. The
computational framework allows these properties to be specified as a linear function of tem-
perature, which is in-line with temperature-dependent material behavior obtained for epoxy
from physical experiments. A list of the material input is included in Table 4.3.

Variable Description Symbol Units
p_F Fiber Density ρF kg/mm3

E_Ft Fiber Transverse Elastic Modulus EF,t MPa
nu_F Fiber Poisson’s ratio νF [-]
a_Ft Fiber Transverse Coefficient of Thermal Expansion αF,t K−1

Cp_F Fiber Specific Heat CpF mJ/(kg K)
k_F Fiber Thermal Conductivity κF mW/(mm K)
p_M Matrix Density ρF kg/mm3

E_M Matrix Elastic Modulus EM MPa
nu_M Matrix Poisson’s ratio νM [-]
a_M Matrix Coefficient of Thermal Expansion αM K−1

Cp_M Matrix Specific Heat CpM mJ/(kg K)
k_M Matrix Thermal Conductivity κM mW/(mm K)
E_COH Initial Elastic Stiffness K MPa
t_ult[’CF’] Fiber Ultimate Traction

tult MPat_ult[’CM’] Matrix Ultimate Traction
t_ult[’CI’] Interface Ultimate Traction
d_f[’CF’] Fiber Failure Opening

δf mmd_f[’CM’] Matrix Failure Opening
d_f[’CI’] Interface Failure Opening
G_f[’CF’] Fiber Fracture Energy

Gf N/mmG_f[’CM’] Matrix Fracture Energy
G_f[’CI’] Interface Fracture Energy

Table 4.3: Input parameters: Material Properties

There is a large number of other input variables, including mesh density, number of real-
izations, solver settings, output requests, preferences, etc., which will not be discussed in
detail.

4.1.2 Geometry

The geometry of the MVE has been discussed in Section 3.2. The automatic creation of
MVEs of different sizes, fiber volume fractions and fiber geometries is done at the start of
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the computational framework. The important considerations regarding the geometry of the
MVE are repeated below:

• Needs to be large enough to be constitutively valid

• The distribution of inclusions has to be random

• Inclusions that cross boundaries need to reappear on the opposite side

A python function (fiber_origins.py) was created to pick the random locations of the
fibers. The fiber volume fraction specified as an input is used to compute how many fibers
should be placed in the MVE. The specified fiber volume fraction can only be used as a target,
since all other dimensions are fixed and fibers can only be discretely added. The program
computes the maximum amount of fibers that results in a fiber volume fraction still below
the target fiber volume fraction. The computed number of fibers Nf is subsequently used to
compute the real fiber volume fraction, as shown below:

N_f = np.floor(V_ftarget*w*h/(np.pi*a*b)).astype('int')
V_f = N_f*np.pi*a*b/(w*h)

Now that the number of fibers that need to be distributed over the MVE is known, an equal
amount of random fiber origins has to be picked. A fiber origin is the x- and y-coordinate of
the center the fiber. In order to do so, first a regular fine mesh grid is created in the empty
MVE, i.e. the MVE without fibers. Using a random integer generator from numpy, an index is
generated and used to select a node from the mesh grid as the first fiber origin. The elliptical
definition of the fiber is used to exclude all mesh grid nodes that are too close to the selected
node, as shown in Figure 4.2. Thereafter the mesh grid is updated, by removing the picked
origin and the excluded origins from the array. This process is repeated (a new random index
is generated, the second fiber origin is picked, the mesh grid is updated) until the all fibers
are placed.

Fiber
Excluded Region

Legend
2b

2a
Excluded Origins
Remaining Origins

Picked Origin

Figure 4.2: Method for picking fiber origins

The exclusion process of mesh grid nodes was made such that fibers crossing borders can
reappear on the other side without collision. When an origin is picked within 2a from a
vertical border, or 2b from a horizontal border, mesh grid points on the opposing edge are
also removed.
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For higher volume fractions and larger MVEs, the method described above can run out of
possible fiber origins (mesh grid nodes) before all fibers are placed. Mesh grid nodes are
removed each time a fiber is placed, which can therefore only be repeated a limited amount
of times until the mesh grid array is empty. Since it is a random process the amount of fibers
that can be placed before the mesh grid is empty is not constant. The program handles this
issue by starting from scratch when it runs out of mesh grid nodes before all fiber origins are
picked; the original mesh grid is regenerated; picked fiber origins are deleted and the process
restarts. The process is very slow when larger MVEs with high fiber volume fractions are
considered. The maximum MVE with Vf = 50% and circular inclusions of r = 5µm created
during testing was 100× 100 µm. Using the same inclusion size and Vf = 60% the maximum
MVE obtained was 75× 75 µm.

In Figure 4.3b, the geometry of an MVE created with the method outlined above is given
as an example. Note that a fiber crossing one of the corners reappears in the three other
corners. When compared to a Scanning Electron Microscope (SEM) image of an actual Fiber
Reinforced Plastic (FRP), as shown in Figure 4.3a, it can be concluded that the methodology
is able to mimic the random microstructure seen in reality very well.

(a) Glass Fiber Reinforced Epoxy [9] (b) MVE geometry (Vf = 60%)

Figure 4.3: Microstructure comparison: SEM and MVE

4.1.3 Mesh

The MVE is meshed using gmsh, an open-source finite element mesh generator. Creating
random meshes of low-aspect ratio elements is very straightforward in gmsh. Moreover the
program allows input specification via ASCII text files in a gmsh-specific program language.
This input-file provides the geometry to the mesher and is referred to as the geometry file,
with the file-extension .geo. The standard mesh output file (.msh) of gmsh is also an ASCII
text file.

The interaction between python and gmsh takes place via the .geo and .msh files. A python
function (mesh_gen.py) was created to write .geo files using the MVE and fiber dimensions,
as well as the randomly-picked fiber origin coordinates. The target node spacing, or grid size,
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is also an input for mesh_gen.py and is passed on directly to gmsh. The remaining inputs
are the installation folder of gmsh, the name of the temporary file folder where the .geo and
.msh files are (over)written and the input and output file names. The usage of mesh_gen.py
is shown below:

from mesh_gen import MeshGen
...
MeshGen(gmsh_bin,temp_folder,gmsh_input,gmsh_output,w,h,a,b,fiber_origins,

grid_size)

When MeshGen is called a .geo file is written and stored in the temporary file folder. Thereafter
the .geo file is executed in gmsh through a shell:

# Run GMSH
command = (gmsh_bin_windows,
mesh_input,
"−2", #Output model, then exit
)

subprocess.call(command, shell=True, stderr=subprocess.STDOUT, )

The mesh generation by gmsh follows a bottom-up approach; lines are discretized first us-
ing the specified target node spacing. The target node spacing is defined at points in the
geometry and is not necessarily equal; therefore allowing for biasing/refinement. The 1D-
elements created on every line are subsequently used to mesh the surfaces. This means faces of
2D-elements coinciding with internal/external boundaries share nodes with the 1D-elements
used to discretize these lines. A number of meshing strategies are included in gmsh. The
Delaunay-algorithm (gmsh: Mesh.Algorithm=5) was used, since it creates a random mesh of
only triangular elements [28].

The output file (.msh) contains the mesh , i.e. nodes (node index and location) and elements
(element index and connectivity). This includes the (unwanted) 1D-elements formed at the
internal/external boundaries, which are disregarded when reading the mesh file in python.
The mesh created using gmsh does not yet have embedded zero-thickness cohesive elements as
this is not among the capabilities of the program. The 2D triangular mesh without cohesive
elements will be referred to as the bulk-mesh.

The implementation of Periodic Boundary Conditions (PBC) requires opposing nodes on the
MVE-boundaries, as will be discussed in more detail in Section 4.1.4. In practice this means
every node on the left boundary needs to have a pairing-node on the right boundary with the
same y-coordinate. Similarly node-pairs with the same x-coordinate are located on the top
and bottom boundaries. The bulk-mesh created by gmsh needs to have the same mesh on
opposing MVE-boundaries.

In gmsh there is an option that allows to specify lines that require opposing nodes. After lines
have been defined in the .geo file, periodic lines can be defined as follows:

Periodic Line { expression−list } = { expression−list } ;
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The mesh on the lines on the left-hand side (slaves) is forced to match the mesh create on the
lines on the right-hand side (masters). The expression-list consists of line-numbers. Figure 4.4
shows two examples of bulk-meshes created via the python-gmsh framework explained above.
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(a) Example 1
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(b) Example 2

Figure 4.4: Two MVE meshes created using gmsh (Vf = 0.5, w = h = 5e−2 mm, a = b = 5e−3
mm )

The mesh file created by gmsh is stored in the temporary file folder, where it is read by
create_input_file.py. The usage of the function is shown below:

from create_input_file import CreateInputFile
...
CreateInputFile(V_f,fiber_origins,input_folder,input_file,output_folder,

output_file)

The input_folder and input_file provide the location and name of the .msh file written
by gmsh. The bulk-mesh of nodes and triangular elements is read stored into separate python
arrays, i.e. one array with node indeces and coordinates and one array with element indeces
and connectivity. Subsequently a loop over all elements is done to find all common faces,
these are the element boundaries that are shared with other elements, i.e. all element faces
except the faces that make up the boundary of the MVE. The common faces are the locations
of the embedded cohesive elements.

In a number of subsequent loops, the nodes on the common faces are copied, the bulk element
connectivity is updated and cohesive elements are inserted in the mesh. Three new arrays
contain the information of old and new node indeces and coordinates, the updated bulk
element connectivity and the cohesive element connectivity. By looping over the data, the
mesh is written to the Abaqus® input file as will be discussed in more detail Section 4.1.5.
The computational implementation of the boundary conditions will be discussed first in the
following section.
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4.1.4 Thermal/Mechanical Boundary Conditions

The theoretical implementation of PBC is given by Eq. (3.8c)-(3.8f). The condition on the
displacement states that the deformation field on opposing edges should be equal, making the
deformed MVE repeatable through space.

In the Finite Element Method (FEM) the displacement field is solved at the node locations.
The FE implementation of the PBC is therefore achieved by coupling the displacements of
node-pairs located on opposite boundaries. The node-pairs on the left and right boundary
are found by identifying which nodes have the same y-coordinate. Similarly the x-coordinate
is used to find node-pairs on the top and bottom edges. The meshing method discussed in
Section 4.1.3 ensures that these node-pairs exist.

The displacement conditions given by Eq. (3.8c) and Eq. (3.8e) result in coupling equation
Eq. (4.1) for nodes located on the right (R) and left (L) boundary with the same y-coordinate.

u
(R)
1 − u(L)

1 = ε̄11w (4.1a)
u

(R)
2 − u(L)

2 = ε̄21w (4.1b)

Similarly Eq. (3.8d) and Eq. (3.8f) result in the coupling given by Eq. (4.2).

u
(T )
1 − u(B)

1 = ε̄12h (4.2a)
u

(T )
2 − u(B)

2 = ε̄22h (4.2b)

In Abaqus® coupling equations can be written for nodal displacements. The right side of
equations (4.1) and (4.2), the applied displacements, was imposed on two dummy nodes as
shown in Figure 4.5. Equation (4.1) can now be rewritten to Eq. (4.3), a format convenient
for implementation in Abaqus®.

u
(R)
1 − u(L)

1 − u(D-LR)
1 = 0 (4.3a)

u
(R)
2 − u(L)

2 − u(D-LR)
2 = 0 (4.3b)

Similarly equation (4.2) can be rewritten to Eq. (4.4).

u
(T)
1 − u(B)

1 − u(D-TB)
1 = 0 (4.4a)

u
(T)
2 − u(B)

2 − u(D-TB)
2 = 0 (4.4b)

The coupling equations are written to the Abaqus® input file by CreateInputFile, which
will be discussed in Section 4.1.5.
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Figure 4.5: Definition of boundary conditions to the MVE

As discussed in Section 4.1.3, special care was taken, while creating the bulk-mesh in gmsh, to
have a matching mesh on opposing sides of the MVE. The introduction of cohesive elements,
however, complicates the formation of node-pairs for the periodicity equations. Wile, in the
base-mesh, a node on one side of the MVE always has a paring node on the other boundary,
these two nodes are not necessarily part of the same number of elements. For example, a node
on the bottom boundary might be the vertex of three elements, whereas the pairing-node on
the top boundary, i.e. the node with the same x-coordinate, is the vertex of four elements.
The introduction of cohesive elements will then duplicate the node on the bottom boundary
two times, and the node on the top boundary three times, complicating the formation of
node-pairs.

Figure 4.6: Method for defining the node pairs used for the periodic boundary conditions in a
mesh with embedded cohesive elements
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A method for implementing PBC in a MVE with embedded cohesive elements was proposed
by van Hoorn [73]. The method implements coupling equations only to nodes belonging to
elements that have two nodes on the boundary as shown in Figure 4.6.

The objective of the thesis, developing a macroscopic progressive failure criterion for Carbon
Fiber Reinforced Plastic (CFRP) at cryogenic temperatures, requires a simulated temperature
reduction to compute thermal residual stresses. The thermal/mechanical loads applied to the
MVEs are based on the proposed application of CFRP in an Engine Thrust Frame (ETF).
The ETF is a conical structure that introduces the thrust from the rocket engine into the load
carrying shell of the fuel tank above. When the fuel tank is filled with Liquid Oxigen (LOX)
and Liquid Hydrogen (LH2), the temperature at the fuel tank-ETF interface is reduced to
as low as 77 K. Figure 4.7 shows the ETF connecting the upper stage of the Ariane 6 to the
Vinci rocket engine, currently under development at Airbus Safran Launchers.

Figure 4.7: Initial temperature distribution (above) and temperature distribution after cooling
down (below) [72]

All mechanical loads applied to the ETF before launch are negligible when compared to the
forces and bending moments occurring after firing the rocket engine. The most accurate
representation of the thermal/mechanical loading applied to a composite ply located close
to the fuel tank-ETF interface is temperature reduction followed by mechanical loading. In
the simulation this can be done by including two separate steps; a thermal load step and a
mechanical load step.

The division of the problem history into steps is a basic concept in Abaqus®. A step is
any convenient phase of the history; a thermal transient, a creep hold, a dynamic transient,
etc. The thermal load step is simulated using a coupled-temperature displacement step in
Abaqus®. The temperature field inside the MVE is assumed uniform through space, since
the temperature gradient is not on the scale of the MVE. Like all degrees of freedom in a FE
simulation, the temperature field is solved or specified at the node locations. The thermal
load will be applied as a constant temperature imposed on all the nodes.

The displacement boundary conditions during the temperature step simulate free thermal
expansion/contraction. The periodic boundary conditions are applied, but the dummy nodes
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are left free to translate. Every constraint equation involves a displacement of one of the
dummy nodes. By leaving the dummy nodes free, the displacement of these nodes will be
equal to the displacement as a result of the average thermal strain. The periodicity is retained
and the MVE remains repeatable through space. The displacement boundary conditions for
the thermal load step are shown schematically in Figure 4.8a. Figure 4.8b shows the boundary
conditions for a mechanical load step (uniaxial extension). The boundary conditions shown
in Figure 4.8b are obtained by setting ε11 6= 0, ε12 = ε21 = ε22 = 0 in Figure 4.5
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Figure 4.8: Boundary conditions applied in either load step

4.1.5 Abaqus input file

As was mentioned the microscale simulations are done using the Abaqus® solver. Normally
the Abaqus® Graphical User Interface (GUI) is used to define the geometry, create the
mesh and apply the loads and boundary conditions, as well as altering options and settings
related to the analysis method, convergence, assumptions, etc. When the job is submitted
for analysis, an Abaqus® input file (.inp) is written which is passed on to the solver. A
job is terminology for a single Finite Element Analysis (FEA) to be performed by Abaqus®.
Multiple jobs can be created for the same model, which is often done when different load
cases, meshes or analysis types are investigated. For every job a separate input file is written
containing only the necessary information for that specific analysis.

The (parametrically-defined) geometry is not part of the input file, leaving the mesh as the
only spatial information of the model included in the input file. The input file is an ASCII
text file and is written in an Abaqus® specific format. The computational framework writes
the input file line by line using python, therefore completely bypassing the Abaqus® GUI.
The first few lines of the input file contain the header. As an example the header of the
second realization of a 62.5× 62.5 µm MVE is given below.

*Heading
** Job name: Vf50_w62um_h62um_R2 Model name: Vf50_w62um_h62um_R2
** Generated by: Abaqus/CAE 6.14−2
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*Preprint, echo=NO, model=NO, history=NO, contact=NO
**

The header is followed by the Part definition. A total of three parts are defined; The MVE
part followed by the two dummy nodes, each in there own part definition. A part definition
contains the mesh (nodes, elements), and the section assignment. The nodes are defined
by a node label and two coordinates (2D). Elements are defined by the element label and
the connectivity. The connectivity are the node labels of the nodes that are vertices of the
element. The bulk elements are 3-Node (triangular) full-integration plane strain elements with
an extra Degree of Freedom (DOF) for the temperature (CPE3T). For the embedded cohesive
elements a 4-Node cohesive element with two integration points is used (COH2D4). The node
labels have to be ordered counter-clockwise for both element types, as shown in Figure 4.9.
The embedded cohesive elements are zero-thickness, i.e. node 1 coincides with node 4 and
node 2 coincides with node 3 in Figure 4.9b, making the counter-clockwise specification more
cumbersome to enact.

(a) CPE3T (b) COH2D4

Figure 4.9: Element Definition: Counter-Clockwise node numbering [1]

Subsequently all elements are divided into element sets, which are used later to assign con-
stitutive behavior, which means a total of 5 element sets are required, namely:

• FIBER_ELEMENTS: Bulk elements belonging to a fiber

• MATRIX_ELEMENTS: Bulk elements belonging to the matrix

• FIBER_COH_ELEMENTS: Cohesive elements embedded between two fiber bulk elements

• MATRIX_COH_ELEMENTS: Cohesive elements embedded between two matrix bulk elements

• INTERFACE_COH_ELEMENTS: Cohesive elements embedded between a fiber and a matrix
bulk element

An extra two element sets are defined for output requests; a set containing all bulk elements
and a set made up of all cohesive elements. After the sets are defined the section assignment is
written to the input file. In the section assignment the material and element controls (element
deletion, viscosity) are specified using the element sets. An overview of the part definition of
all three parts is included below.
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** PARTS
**
*Part, name= EXAMPLE_PART
**
*Node
1, X−COORD, Y−COORD
...
**
*Element, type=CPE3T
EL_ID, N_ID, N_ID, N_ID
...
**
*Element, type=COH2D4
EL_ID, N_ID, N_ID, N_ID, N_ID
...
**
*Elset, elset=EXAMPLE_SOLID_ELEMENTS
EL_ID, EL_ID, EL_ID, EL_ID,...
...
**
*Elset, elset=EXAMPLE_COHESIVE_ELEMENTS
EL_ID, EL_ID, EL_ID, EL_ID,...
...
**
** SECTION ASSIGNMENTS
**
** Section: EXAMPLE_SOLID_SECTION
*Solid Section, elset=EXAMPLE_SOLID_ELEMENTS, controls=EC−2, material=

SOLID_MATERIAL
,

** Section: EXAMPLE_COHESIVE_SECTION
*Cohesive Section, elset=EXAMPLE_COHESIVE_ELEMENTS, controls=EC−2, material=

COHESIVE_MATERIAL, response=TRACTION SEPARATION
,
...
**
*End Part
**
*Part, name=DUMMY_LR
*Node
DLR_ID, X−COORD , 0,

*End Part
**
*Part, name=DUMMY_TB
*Node
DTB_ID, 0, Y−COORD,
*End Part
**

The next section written to the input file is the Assembly. The assembly contains all part
instances, node sets and constraint equations. The periodic boundary conditions are imple-
mented by coupling equations for a subset of boundary nodes as was discussed in detail in
Section 4.1.4. In Abaqus®, coupling equations can only be applied to node sets. Therefore
a node set is printed for every boundary node, that is to be coupled to a pairing node on
the opposite boundary. After all the node sets are created, the constraint equations (see:
Eq. (4.3) and Eq. (4.4)) are written. For every boundary-node-pair two constraint equations
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are printed; one for x- and one for y-displacement coupling. The outline of the Assembly
section is included below.

** ASSEMBLY
**
*Assembly, name=Assembly
**
*Instance, name=EXAMPLE_INSTANCE, part=EXAMPLE_PART
*End Instance
**
*Instance, name=DUMMY_LR−1, part=DUMMY_LR
*End Instance
**
*Instance, name=DUMMY_TB−1, part=DUMMY_TB
*End Instance
**
*Nset, nset=DUMMY_LR, instance = DUMMY_LR−1
DLR_ID
...
*Nset, nset=LEFT_NODE_N_ID, instance = EXAMPLE_INSTANCE
N_ID
*Nset, nset=RIGHT_NODE_N_ID, instance = EXAMPLE_INSTANCE
N_ID
...
** Left−Right PBC equations
*Equation
3
RIGHT_NODE_ID,1,1,LEFT_NODE_ID,1,−1,DUMMY_LR,1,−1
...
** Top−Botttom PBC equations
...
*End Assembly
**

At this point the input file is closed and stored in a designated storage folder. The input file
is then copied to the output folder and reopened to add element controls, material properties
and load steps. This framework allows for straightforward reuse of the model with different
material properties and/or under altered thermal/mechanical loading. The section controls
are printed directly after the assembly.

** ELEMENT CONTROLS
**
*Section Controls, name=EC−1, ELEMENT DELETION=NO
1., 1., 1.
*Section Controls, name=EC−2, ELEMENT DELETION=NO, VISCOSITY=0.0001
1., 1., 1.
*Section Controls, name=EC−3, ELEMENT DELETION=YES, VISCOSITY=0.0001
1., 1., 1.
**

Although all element controls have been investigated during testing, EC-2, i.e. no element
deletion and with viscosity, has been used for most simulations. Element deletion is only
applicable to the cohesive elements and when turned on (EC-3) it will remove fully damaged
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cohesive elements in real time. The viscosity is used to specify the viscous coefficient in the
viscous regularization scheme. The viscous regularization helps the simulation cope with a
sudden change in stiffness, such as the peak in a bilinear cohesive zone material law.

The next section printed to the input file contains the material definition. The material
properties are python variables, defined at the start of 00_submit_jobs.py, and are for the
most part directly printed to the input file. The exception is the Coefficient of Thermal Ex-
pansion (CTE). Abaqus® can handle temperature-dependent thermal expansion coefficients,
but only in so-called total form [1]. Experimental data on CTEs are usually presented as
a current or tangent thermal expansion coefficient, because in contrast to a total thermal
expansion coefficient the current thermal expansion coefficient does not require a reference
temperature (θ0). The input specification at the start of the preprocessing script requires the
CTE to be given as a current value. The CTE therefore needs to be converted to the total
format before it can be printed to the Abaqus® input file. The difference between total and
tangent CTEs is illustrated in Figure 4.10.

Figure 4.10: Definition of the thermal expansion coefficient (tangent: α′, total: α) [1]

The material properties are printed to the Abaqus® input file as follows:

** MATERIALS
**
*Material, name=SOLID_MATERIAL
*Conductivity
κ

*Density
ρ

*Elastic
E, ν, θ1
E, ν, θ2

*Expansion, ZERO=300.0
α, θ1
α, θ2
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*Specific Heat
Cp

*Material, name=COHESIVE_MATERIAL
*Damage Initiation, criterion=MAXS
tult, tult, tult, θ1
tult, tult, tult, θ2

*Damage Evolution, type=ENERGY
Gf, θ1
Gf, θ2

*Elastic, type=TRACTION
K, K, K

**

The (thermal) loads and boundary conditions have been discussed in Section 4.1.4. The
thermal and mechanical loads are introduced through prescribed uniform temperature and
displacements at the control nodes respectively in two consecutive steps. The computational
framework allows to control the order, i.e. thermal load followed by mechanical load or vice
versa. The former is in keeping with the sequence seen in the launcher thrust frame of a
cryogenic second stage, as discussed in Section 4.1.4. Moreover the framework can leave
out either step entirely. The remainder of this section will focus on the case of interest; A
reduction of temperature to cryogenic conditions followed by a mechanical load.

There is only one boundary condition constant regardless of the analysis, namely the pinned
condition of the lower left corner (Corner 1), as shown in Figure 4.5. The node(s) located in
this corner are fixed in both translational degrees of freedom, which is communicated to the
Abaqus® solver by:

** BOUNDARY CONDITIONS
**
** Name: BC_NODE_C1 Type: Displacement/Rotation
*Boundary
NODE_C1, 1, 1
NODE_C1, 2, 2

The initial temperature has to be specified for every simulation, even when the thermal load
step is omitted, since some material properties are given as a function of temperature. The
initial temperature is defined as a uniform predefined field, which shows up in the Abaqus®

input file as follows:

**PREDEFINED FIELDS
**
** Name: INITIAL_TEMP Type: Temperature
*Initial Conditions, type=TEMPERATURE
ALL_NODES, T0

The thermal load is applied through a boundary condition in a load step. This thermal
boundary condition remains active throughout the rest of the simulation, i.e. also during
the subsequent mechanical load step. During the thermal load step Corner 2 is constraint in
y-direction, while Corner 4 is restricted to translate in x-direction as shown in Figure 4.8a.
The boundary conditions applied in the thermal load step are included in the Abaqus® input
file as follows:
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** BOUNDARY CONDITIONS
**
** Name: BC_NODE_C2 Type: Displacement/Rotation
*Boundary
NODE_C2, 2, 2

** Name: BC_NODE_C3 Type: Displacement/Rotation
*Boundary
NODE_C4, 1, 1

** Name: BC_TEMP Type: Temperature
*Boundary
ALL_NODES, 11, 11, 77

In the consecutive mechanical load step, some of the boundary conditions have to be updated
or removed and new prescribed displacements are added. In Abaqus® the keyword op=NEW
is used to respecify a boundary condition. For a uniaxial extension step (see Figure 4.8b) the
following boundary conditions are specified for Corner 3, which had been left completely free
during the thermal load step.

** Name: BC_NODE_C3−1 Type: Displacement/Rotation
*Boundary, op=NEW
NODE_C3, 1, 1, ε11w

** Name: BC_NODE_C3−2 Type: Displacement/Rotation
*Boundary, op=NEW, fixed
NODE_C3, 2, 2, 0.0

4.2 Solver: Settings and convergence

The Abaqus® solver has a large number of settings influencing the convergence of the solution.
As was mentioned before, the sudden change in stiffness after localization of the crack has
a detrimental effect on the solution convergence. The *Controls keyword allows to reset
solution controls in the input file. For standard Abaqus® analyses, it is not recommended to
change time increment parameters. The complexity and nonlinearity of the problem at hand,
however, require to give the solver more means and time to converge. Therefore three time
increment parameters are modified and are specified as inputs:

*Controls, parameters=time incrementation
I0, IR, , , , , , IA, , ,

The definition of the time increment parameters as listed in the Abaqus® user guide [1] is
included in Table 4.4.

Variable Description Symbol

n_eqm_res
Number of equilibrium iterations after which the check is made
whether the residuals are increasing in two consecutive iterations I0

n_eqm_log
Number of consecutive equilibrium iterations at which
logarithmic rate of convergence check begins IR

n_attempts Maximum number of cutbacks allowed for an increment IA

Table 4.4: Input parameters: Solver Settings [1]
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For severely discontinuous behavior, Abaqus® recommends increasing the I0 and IR param-
eters from there default values of 4 and 8 respectively to I0 = 8 and IR = 10 [1]. The
maximum number of cutbacks was increased from 5 to 50. A cutback is a new attempt to
converge by reducing the time increment in the load step by a factor 4 (default). This is
necessary to handle the sharp transition from the hardening portion, where relatively large
time increments are possible, to the softening portion of the simulation.

The maximum number of increments is specified as a procedure definition option of the
*Step. The thermal load step is analyzed as a *Coupled Temperature-Displacement, which
is used when a simultaneous solution of temperature and displacement fields is necessary.
The mechanical load step is analyzed as a *Static, a static stress/displacement analysis.
The macroscopic fracture process occurs during the mechanical load step. The automatic
stabilization option (stabilize) is activated, allowing Abaqus® to viscously dissipate energy
to cope with local instabilities. The maximum allowable ratio of the stabilization energy to
the total strain energy is kept at the default value of 5% (allsdtol=0.05).

In Figure 4.11, the energy evolution in a typical microscale fracture simulation is included.
The energy dissipated by the automatic stabilization algorithm (cyan) does exceed the 5%
threshold towards the end of the simulation (t > 0.6 s). The Abaqus® solver will attempt to
keep the automatic stabilization energy below 5% of the total strain energy, but it is not a
hard requirement and the simulation will not be aborted.
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Figure 4.11: Energy evolution in a typical simulation

4.3 Postprocessing

The output files of a FE simulation are typically very large contain a range of nodal and
elemental results for every node/element at every time step. The result files contain all
the information, but are impossible to comprehend as a whole. The process with the goal
of obtaining an understandable (graphical) representation of the results is referred to as
postprocessing.
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4.3.1 Data extraction and processing

The standard output file of an Abaqus® simulation is the output database (.odb), a binary
output file that can be read by Abaqus® to view results. The output database cannot be
opened directly in python. The postprocessing framework, however, will be python based to
facilitate the extensive result analysis needed to achieve the project goal, including:

1. Graphical (a posteriori) approximation of the Hill-Mandel Condition

2. Averaging of constitutive (fracture) behavior of multiple realizations

3. Convergence checks on mesh and MVE size

4. Plotting and comparing results of interest for different load cases

Abaqus® has to be incorporated in the postprocessing framework to handle the output file
format. The Abaqus Scripting Interface (ASI) is an Application Programming Interface (API)
that allows access to the model and data used by Abaqus®. The ASI can, among other
things, be used to read and write to an output database. ASI scripts are written in the
python programming language (.py).

The postprocessing framework writes ASI scripts that are executed with Abaqus® on the
computational cluster, which is also where the output database files are stored after the
simulation is completed. Besides reading the data from the output database, the ASI script
performs the bulk and crack averaging operations discussed in Section 3.3 and computes a
number of integrals to check the Hill-Mandel condition. The python object structures that
contain the results of interest are serialized using the pickle module and written to a file.
The pickle file is subsequently downloaded from the cluster and can be reopened in other
python scripts.

The ASI script is created by modification of a base file. The base file is a python script that
contains all operations. By inserting model-specific data (file name, geometrical data) to the
input section of the base file, an Abaqus® runnable ASI script is created. The activities in
the postprocessing framework are shown schematically in Figure 4.12.

Modify
base file

extract_base.py

Extract and
process results

output_file.odb

Approximate
Hill-Mandel

(Determine α)
Averaging over
Realizations

Abaqus/CAE01_extract_to_pickle.py 03_post_processing.py

.py pickle

Figure 4.12: Schematic representation of the postprocessing framework

The rest of the section focuses on the extraction and data processing using the ASI script.
The output database can be opened using openOdb imported from the odbAccess module:

odb_file = openOdb(os.sep.join([output_path,model_name + '.odb']),readOnly=True)
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The homogenization method was discussed in detail in Section 3.3. The algorithm included
at the end of Section 3.3 contains the sequentiality of the theoretical method. The practical
implementation follows the same logic, but the first two steps, consisting of the processing of
the final state and the time incremental postprocessing, are combined in a single backwards
running loop over the time steps.

Inside the loop over the time steps are two nested loops; one over the bulk elements and one
over all cohesive elements. These loops extract data for each element and perform the volume
and crack integration procedures.

As part of the time incremental postprocessing, the volume averaged stress tensor is computed
at every time step. The volume integral is approximated as the discrete sum given by Eq. (4.5).

〈σ〉Ω = 1
wh

Nbulk∑
j=1

σjA
e
j (4.5)

where Aej is the area of the jth element in the undeformed state. The volume averaged strain
tensor is computed in a similar manner and is given by Eq. (4.6).

〈ε〉Ω = 1
wh

Nbulk∑
j=1

εjA
e
j (4.6)

The Hill-Mandel condition on the energy requires that the work performed in the macroscale
equals the work performed in the microscale. The aforementioned condition translates to "the
product of the averages equals the average of the products". The Hill-Mandel condition in
the bulk is given by Eq. (4.7).

〈σ〉Ω · 〈ε〉Ω = 〈σ · ε〉Ω (4.7)

The choice in boundary conditions (periodic) should ensure the bulk Hill-Mandel condition
is satisfied a priori. It is, however, still useful to check as there is an expected influence of
numerics, such as discretization and viscous regularization. The right-hand side of Eq. (4.7),
referred to as the volume averaged stress work, is computed using Eq. (4.8).

〈σ · ε〉Ω = 1
wh

Nbulk∑
j=1

σj · εjAej (4.8)

As was discussed in Section 3.3, the Hill-Mandel condition in rate-form is used to determine
the effective traction vector that is used to formulate the Effective Traction Separation Law
(ETSL). The bulk stress power is computed as the inner product of the stress tensor with
the strain rate tensor. The strain rate is obtained using a forward finite difference scheme, as
given by Eq. (4.9).

ε̇n = εn+1 − εn
tn+1 − tn

(4.9)

The volume averaged strain rate tensor is computed by a summation, similar to Eq. (4.6) and
the volume averaged stress power is computed by the rate equivalent of Eq. (4.8).

After the bulk integration completed, the crack averaged quantities are computed. Crack
based integrals are computed numerically by summation over the subset of cohesive elements
containing the cohesive elements that have failed. The first step is therefore to determine the
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elements that belong to this subset. The final state of the simulation is used to determine
whether a cohesive element has failed or not.

As was discussed in Section 3.1, the history parameter κ keeps track of the maximum separa-
tion that has occurred during the damage process. When the history parameter exceeds the
failure opening of the Traction-Separation Law (TSL) the element is fully failed. Abaqus®

does not use the maximum separation to track the point on the TSL, but instead uses the
stiffness degradation parameter ω (see Figure 3.2). The stiffness degradation parameter is
bound between 0 (completely intact) and 1 (fully failed) and is directly related to the history
parameter in the interval δ0 ≤ κ ≤ δf .

The stiffness degradation parameter is requested as a field output for every cohesive element.
The stiffness degradation parameter of the element is taken as the average of the (two)
integration points, as shown in the python code included below.

SDEG = 0
for k in range(0,n_int_points):

SDEG += np.array(odb_file.steps[load_step_name].frames[ind_frame]
.fieldOutputs['SDEG'].values[coh_value_idx+k].data)

SDEG = SDEG/n_int_points

Instead of only including cohesive elements for which the stiffness degradation is equal to 1,
corresponding to fully failed, a cut-off value is specified based on the residual strength. When
the maximum traction that can still be carried by the cohesive element is below a predefined
percentage of the undamaged ultimate traction, the element is assumed to be failed. For
most simulations a cut-off value of 20% of the undamaged strength was used. For all failed
element the element index is stored to verify whether the method for selecting failed elements
corresponds to the crack geometry visible in the deformation plot.
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Figure 4.13: Deformation and maximum in-plane principal stress at the final state of the simu-
lation (Failed cohesive elements: )

With the set of failed elements known it is possible to compute the microscopic crack length
|Γ| by a simple addition of all the cohesive element lengths Γe of the elements that have failed,



66 Numerical Experimental Setup

as given by Eq. (4.10).

|Γ| =
NΓ
coh∑
j=1

Γej at t = tF (4.10)

As was discussed in Section 3.3, the product of the effective macroscopic crack, length, opening
and normal form the best rank one approximation to the right hand side of Eq. (3.25). The
right hand side is the integral of the tensor product of the local opening and the local crack
normal over the crack, and is approximated as the discrete sum given by Eq. (4.11).

|Γ|〈JuK⊗m〉Γ =
NΓ
coh∑
j=1

JuKj ⊗mjΓej (4.11)

The local opening vector is not directly available from the simulation and is computed using
the displacements of the four corner nodes, as illustrated in Figure 4.14.

JuK = u4 + u3 − u2 − u1 (4.12)
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Figure 4.14: Cohesive element: Initial and deformed/opened state

Singular Value Decomposition (SVD) of a m× n tensor M is a factorization of the form:

M = UΣV T

Where U is an m×m unitary matrix, Σ a m×n diagonal matrix and V is an n×n unitary
matrix. The diagonal entries of Σ, denoted σi are the singular values. The Eckart-Young
theorem states that the best rank k approximation, in terms of both the spectral as well as
the Frobenius norm, to M is given by Eq. (4.13) [22].

Mk =
k∑
i=1

σiuiv
T
i (4.13)
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where ui and vi are the ith columns of U and V respectively. Using SVD the best rank one
approximation to second order tensor computed using Eq. (4.11) can be computed. The effec-
tive macroscopic crack normal can then be extracted using the condition that the normal is of
unit length as discussed in Section 3.3. In python the SVD is included in the numpy.linalg
package:

U,S,V = np.linalg.svd(temp_E_int)
m_f = V[0,:].T

The effective macroscopic crack normal is used to compute the equivalent macroscopic crack
length |Γ|f, using Eq. (3.15). Subsequently the effective macroscopic crack opening can be
computed for every time step.

JuKf
n = |Γ|〈JuKn ⊗m〉Γ

|Γ|f mf at t = tn

Combining the effective macroscopic crack opening vector and the effective macroscopic trac-
tion vector history results in the ETSL. The effective macroscopic traction vector is computed
as a weighted average of the volume-averaged stress acting on the crack surface and the crack
averaged traction. The former is computed by multiplication of the volume-averaged stress
with the effective macroscopic crack normal, as given by Eq. (3.20). The crack averaged
traction is computed using the definition given by Eq. (3.19) and is evaluated for every time
step.

(tn)f
Γ = |Γ|〈tn ⊗m〉Γ

|Γ|f mf at t = tn

The integral term in de numerator is computed as a sum over all failed cohesive elements as
given by Eq. (4.14).

|Γ|〈t⊗m〉Γ =
NΓ
coh∑
j=1

tj ⊗mjΓej (4.14)

The traction of the jth element at time step t = tn is field output of the simulation and can
be accessed as follows:

t = odb_file.steps[load_step_name].frames[ind_frame].fieldOutputs['S'].values[
tot_value_idx].data

The traction is given per integration point and in the cohesive element coordinate system.
The traction of the cohesive element is taken as the average of the traction vectors at the
two integration points. The traction can be transformed to the global basis using the element
normal and tangent vectors as shown in Figure 4.14.

tll+ tmm

Which is equivalent to the following rotation:

t = QT t′ (4.15)
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with t′ as the traction vector in the cohesive element basis:

t′ =
[
tl
tm

]
(4.16)

and rotation matrix Q given by Eq. (4.17).

Q =
[
lT

mT

]
(4.17)

4.3.2 Multiscale coupling: Hill-Mandel

The multiscale coupling is achieved through satisfying the Hill-Mandel condition. The peri-
odic boundary conditions are sufficient to satisfy the global Hill-Mandel condition [69]. The
scale transition of the crack is, however, not satisfied a priori.
In Section 3.3 the effective macroscopic traction vector tf has been defined as a linear combi-
nation of the volume- and crack-averaged tractions acting on the crack surface:

tfn = α(tn)f
Γ + (1− α)(tn)f

Ω

The weighting factor α is determined as the best approximation of the crack power in the
microscale. All relevant power terms are computed for every time step. In Figure 4.15 the
power evolution over a typical (uniaxial extension) simulation is included.
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Figure 4.15: Power evolution for a typical uniaxial extension simulation (75× 75 µm MVE)
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The definition of the power terms plotted in Figure 4.15 are included in Eq. (4.18). The rate
terms (ε̇, Ju̇K) are computed by a forward difference scheme.

P ext(σ, t, ε̇, Ju̇K) =P b + P f + P¬f (4.18a)
P ext

Ω (〈σ〉Ω, ˙̄ε) =〈σ〉Ω · ˙̄ε (4.18b)

P b(σ, ε̇) = 1
Ω

∫
Ω
σ · ε̇dΩ (4.18c)

P bΩ(〈σ〉Ω, 〈ε̇〉Ω) =〈σ〉Ω · 〈ε̇〉Ω (4.18d)

P f(t, Ju̇K) = 1
Ω

∫
Γ
t · Ju̇K dΓ (4.18e)

P f
Ω(〈σ〉Ω, Ju̇Kf) = 1

Ω |Γ
f|〈σ〉Ωmf · Ju̇Kf (4.18f)

P f
Γ(tfΓ, Ju̇Kf) = 1

Ω |Γ
f|tfΓ · Ju̇Kf (4.18g)

P f(tf, Ju̇Kf) = 1
Ω |Γ

f|tf · Ju̇Kf (4.18h)

P¬f(t, Ju̇K) = 1
Ω

∫
¬Γ
t · Ju̇K dΓ (4.18i)

The relation given by Eq. (4.18i) computes the power of the "not crack". There is no physical
interpretation to this power as it relates to a purely numerical effect. The model has cohesive
elements embedded between all bulk elements and not solely at the crack location, as the
crack geometry is not known a priori. When the failed elements are identified at the end of
the simulation, the majority of cohesive elements are excluded from the failed set. The initial
elastic opening and limited damage in these not-failed cohesive elements, combined with the
size of the not-failed element set, makes that the work rate in these elements is not negligible.
The power of the not-failed cohesive elements also amounts to a significant portion of the
total external power in the microscale, computed using Eq. (4.18a). The stress power integral
performed for the failed elements is therefore also computed for the not-failed elements.
Figure 4.15 is used to verify all three Hill-Mandel conditions; the global, bulk and crack based
scale transitions:

Global: P ext
Ω (〈σ〉Ω, ˙̄ε) ≈ P ext(σ, t, ε̇, Ju̇K) ≈

Bulk: P bΩ(〈σ〉Ω, 〈ε̇〉Ω) ≈ P b(σ, ε̇) ≈
Crack: P f(tf, Ju̇Kf) ≈ P f(t, Ju̇K) ≈

As expected the global Hill-Mandel condition is satisfied (see black solid and yellow dashed
lines). The discrepancy in the curves belonging to the bulk material is noticeable, but still
within reasonable a margin. Most important to the present analysis is the separate scale
transition relation of the crack. By combining the stress power relations resulting from the
volume-averaged and crack-averaged traction acting on the crack surface, the best match to
the microscopic stress power of the crack was found for α = 0.4. This value of α is subse-
quently used to compute the compute the effective macroscopic traction vector. Combining
the effective macroscopic traction vector with the effective macroscopic crack opening vector
the Mode I and Mode II ETSLs can be constructed. The Mode I ETSL of the example
uniaxial extension simulation is included in Figure 4.16.
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Figure 4.16: ETLS for Mode I obtained for α = 0.4



Chapter 5

Multiscale Traction-Separation Laws
at Room Temperature

The computational framework discussed in Chapter 4 is able to create and analyze Microstruc-
tural Volume Elements of different sizes and process the results. Next to the outer dimensions,
the fiber radii (elliptical definition) and volume fraction can be controlled. Before the ho-
mogenized microscale results can be used at the macroscopic scale convergence has to be
established.

Two types of convergence are distinguished; namely mesh convergence and size convergence.
Mesh convergence simply means that refining the mesh does not change the results. A common
method of establishing mesh convergence requires data points of a critical result parameter
and the corresponding mesh density. Typically the curve, obtained by connecting these
data points, asymptotically approaches the unknown converged result. A minimum of three
convergence runs, of different mesh densities, will therefore be required to plot a curve that
can indicate whether convergence is achieved, an even finer mesh is required or the result is
diverging.

The notion of size convergence refers to establishing the Representative Volume Element
(RVE) size. As was discussed in Section 3.2, the RVE is a Microstructural Volume Element
(MVE) for which increasing the size does not alter the results of interest, in this case the
fracture behavior. The lack of a straightforward RVE size definition for softening behavior,
such as cohesive fracture, motivated Gitman et al. [29] to propose a convergence study as the
most suitable technique to determine the RVE size (see: Figure 2.14). For this thesis the same
approach was followed. The smallest MVE tested is a square unit cell as shown in Figure 5.1.
A unit cell, when repeated through space, results in a very ordered/regular microstructure.
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Figure 5.1: Unit cell (12.5× 12.5 µm)

The random fiber distribution, that exists in real lamina, is captured by the larger MVEs
shown in Figure 5.2. The largest MVE tested in the size convergence study is 75 × 75 µm.
Obviously there is an infinite number of possibilities to position the randomly distributed
fibers and Figure 5.2 presents just one possibility per size. Since the fiber distribution has
an effect on the results, five realizations are created for each of the considered dimensions to
obtain a measure of the spread.
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Figure 5.2: MVE sizes tested in the convergence study

The unit cell and the larger MVEs were obtained using a target fiber volume fraction of
Vf = 50%. Since the outer and inclusion dimensions are fixed/input, the real fiber volume
fraction differs slightly from this target. In Table 5.1 the number of fibers (Nf ) and real fiber
volume fraction (Vf ) of the five different MVE sizes used in the convergence study is given.
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w × h [µm] Nf [-] Vf [%]
12.5× 12.5 1 50.3
37.5× 37.5 8 44.7
50× 50 15 47.1
62.5× 62.5 24 48.3
75× 75 35 48.9

Table 5.1: Real fiber volume fraction for the considered MVE sizes (Fiber radius: r = 5 µm)

Any convergence study inherently has a limited validity; e.g. a mesh that is converged for one
set of material properties is not necessarily converged for a different combination. Ideally, the
convergence study is repeated every time the input is altered. In practice (computational)
resources often limit the number of performed convergence studies. The following input
parameters are expected to have an effect on the RVE size:

• Combination of material properties

• Volume fraction

• Mode-mixity (load-cases)

The decision was made to limit the convergence study to three different load-cases, keeping all
other parameters constant. This decision was motivated by the project goal (see: Chapter 1).
The constituent fracture behavior is specified using bilinear Traction-Separation Laws, as
was discussed in Chapter 3. The fracture behavior of the constituents is assumed to be mode
independent. The matrix strength was taken as 50 MPa and a weak interface was assumed
with half the matrix strength (25 MPa). The fiber (transverse) strength was taken as 100
MPa, which is high enough to exclude fiber fracture. Increasing the fiber strength further
therefore does not alter the results. The failure opening was assumed the same for all materials
at 2.0 µm. The input cohesive constitutive behavior is included in Figure 5.3.
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Figure 5.3: Cohesive material properties used in the convergence study
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The applied deformations for the three convergence study load-cases are shown in Figure 5.4.

In the size convergence study, results of different sizes of MVEs are compared. In the proposed
multiscale framework, the goal of the microscale analysis is to determine effective cohesive
constitutive behavior in the form of an Effective Traction Separation Law (ETSL), that is
to be used at the macroscopic scale. Convergence will therefore be checked by comparing
ETSLs.
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Figure 5.4: Deformations applied for the convergence study

The size convergence can only be studied when the results were obtained for converged meshes.
Therefore a mesh convergence study is performed first for all MVE sizes and load cases. The
results of the mesh convergence study are discussed in Section 5.1. The results of the size
convergence study are given in Section 5.2.

5.1 Mesh Convergence

As mentioned before a mesh convergence study is performed for each of the considered MVE
sizes and under three different loadings. The results of the mesh convergence study for
the uniaxial extension load case (Figure 5.4a) are presented in Section 5.1.1, followed by
the Biaxial Extension-Compression load case (Figure 5.4b) in Section 5.1.2. The section is
concluded with the mesh convergence study for the mixed mode load case (Figure 5.4c).

Four mesh densities were considered for the unit cell, with the coarsest grid size of 2 µm
halved three subsequent times to arrive at the finest 0.25 µm mesh. The grid size refers to
the target node spacing used during the meshing of the MVE (see: Section 4.1.3). The mesh
refinement was done by complete re-meshing, rather than splitting/bisecting original elements,
to minimize mesh-dependent behavior. The unit cell meshes are shown in Figure 5.5.

The 37.5× 37.5 µm MVE is meshed using three grid sizes, equal to the node spacing used for
the unit cell. Computational cost excluded the 0.25 µm grid size. Since in principal three data
points are sufficient to check (rate of) convergence, this should not pose any problems. The
50×50 µm MVE was meshed using the same target node spacings used for the 37.5×37.5 µm
MVE. The three mesh sizes applied to a single 50×50 µm realization are shown in Figure 5.6.

For the 62.5×62.5 µm MVE the computational cost excluded the finest (0.5 µm) node spacing
used on the 50× 50 µm MVE. To obtain a third mesh density for the study the decision was
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made to use 3 µm, rather than doubling the 2 µm grid size. The 75× 75 µm MVE is meshed
using the same node spacing as the 62.5× 62.5 µm MVE; 3 µm, 2 µm and 1 µm. The 3 µm
mesh can still reasonably approximate the circular (5 µm radius) shape of the inclusions, as
can be seen in Figure 5.7a. The 2 µm and 1 µm node spacings are shown in Figure 5.7b and
Figure 5.7c respectively.

0.006 0.004 0.002 0.000 0.002 0.004 0.006
0.006

0.004

0.002

0.000

0.002

0.004

0.006

(a) grid size = 2 µm
−0.006 −0.004 −0.002 0.000 0.002 0.004 0.006

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

(b) grid size = 1 µm
−0.006 −0.004 −0.002 0.000 0.002 0.004 0.006

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

(c) grid size = 0.5 µm
−0.006 −0.004 −0.002 0.000 0.002 0.004 0.006

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

(d) grid size = 0.25 µm

Figure 5.5: 12.5× 12.5 µm (Unit cell)
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Figure 5.6: 50× 50 µm
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Figure 5.7: 75× 75 µm
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5.1.1 Uniaxial Extension

The uniaxial extension load case was shown schematically in Figure 5.4a. The principal strain
is in the global 1-direction, i.e. equal to the only non-zero strain tensor term ε11. The Poisson
contraction of the transversely isotropic material is restricted resulting in biaxial tension in
the MVE, with the maximum tensile stress in the principal strain direction.
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Figure 5.8: Uniaxial Extension

Under the applied deformation a vertical crack is expected. In Figure 5.9 the deformation at
the final state of the simulation is shown for the unit cell. The maximum in-plane principal
stress is included in the plots.

It can be seen that localization occurs left of center for the 2 µm (Figure 5.9b) and 0.5 µm
(Figure 5.9c) meshes and right of center for the 1 µm (Figure 5.9a) and 0.25 µm (Figure 5.9d)
meshes. The symmetric geometry and the absence of flaws result in a system that in should
have no preference regarding the side at which localization occurs under this loading, leaving
the mesh as the only factor influencing the location of the crack. The results in Figure 5.9,
therefore, show the effect of the mesh on the crack geometry. Comparing the two finest meshes
it can be concluded that, although mirrored with respect to the y-axis, the shape of the crack
converges.
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Figure 5.9: Mesh Convergence: Deformation (Uniaxial Extension, Unit Cell: 12.5× 12.5 µm)

The ETSL in mode I and II are included in Figure 5.10. The uniaxial extension applied to
the unit cell results in pure mode I opening, for which the ETSL is given in Figure 5.10a. The
mode II ETSL shown in Figure 5.10b has no real value, with the tangential opening below 2
picometer. Focusing on the mode I ETSL it can be concluded that the cohesive constitutive
behavior converges for a mesh size of 0.5 µm. With a converged effective ultimate strength
of 39 MPa and a failure opening of 2.0 µm, the ETSL is in-between the matrix and interface
behavior.
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Figure 5.10: Mesh Convergence: ETSL (Uniaxial Extension, Unit Cell: 12.5× 12.5 µm)

Figure 5.11 illustrates the mesh convergence of crack properties. Note that the x-axis values
are absolute mesh sizes and therefore increase from fine to coarse. Both the crack length
(Figure 5.11a), as well as the material content (Figure 5.11b) converge for a mesh size of 0.5
µm, equal to the value observed for the ETSL.
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Figure 5.11: Mesh Convergence: Crack Configuration (Uniaxial Extension, Unit Cell: 12.5×12.5
µm)

Three mesh sizes were investigated for the 37.5× 37.5 MVE as discussed at the beginning of
this section. For each of those mesh sizes, five different realizations were analyzed to obtain
a measure for the spread. Figure 5.13a presents the average mode I ETSL for each mesh
size. The average ETSL is obtained by combining the results of all five realizations of the
same mesh density. For the finest mesh, the 1σ-bounds (standard deviation) are included by
shading. The thin portion of the ETSL indicates where the viscous automatic stabilization
energy (see: Section 4.2) of at least one realization exceeded 5% of the total strain energy,
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which adversely effects the accuracy of the simulation.

The viscous automatic stabilization helps the simulation to converge. Viscosity adds rate
dependent traction to limit the opening rate and increase the stable time step, as was men-
tioned in Section 4.2. The last part of the ETSL includes the added rate-dependent traction
as shown in Figure 5.12. This section of te curve is thus less reliable and should not be given
as much weight in determining convergence of the fracture behavior.

t

δ

Viscous

Unviscous

Figure 5.12: The effect of viscous stresses on the ETSL

Examining Figure 5.13a and Figure 5.13b it can be concluded that the a mesh size of 1 µm
is sufficiently small for the 37.5× 37.5 µm MVE.
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Figure 5.13: Mesh Convergence: Uniaxial Extension, 37.5× 37.5 µm

The mode I ETSL and the material composition of the crack for three different mesh densities
applied to the 50 × 50 µm MVE is included in Figure 5.14. As can be seen in Figure 5.14a,
the effective fracture behavior converges for a mesh density of 1 µm, i.e. the same as for the
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smaller 37.5 × 37.5 µm MVE. The material composition of the crack also converges for a
mesh density of 1 µm.
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Figure 5.14: Mesh Convergence: Uniaxial Extension, 50× 50 µm

The uniaxial extension mesh convergence study of the 62.5 × 62.5 MVE is included in Fig-
ure 5.15. The finest mesh size that was considered for this MVE size is 1 µm. The mode
I ETSL converges for a mesh size of 2 µm. The material composition of the crack is equal
for the coarser meshes, but significantly changes for the finest mesh size. Examination of the
deformation results showed that one of the realizations of the 1 µm simulations had extensive
crack branching along the interface on both sides of the same fiber. The type of branching
has an impact on the material composition, but not on the effective fracture behavior. The
effective fracture behavior of the 62.5× 62.5 MVE converges for a mesh size of 2 µm.
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Figure 5.15: Mesh Convergence: Uniaxial Extension, 62.5× 62.5 µm

The mesh convergence study for the largest of the considered MVE sizes is shown in Fig-
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ure 5.16. Both the mode I ETSL, as well as the material composition of the crack, converge
for a mesh size of 2 µm.
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Figure 5.16: Mesh Convergence: Uniaxial Extension, 75× 75 µm

5.1.2 Biaxial Extension-Compression

The biaxial extension-compression was shown schematically in Figure 5.4b. The principal
strain directions are aligned with the global coordinate system. The applied deformation is a
pure shear deformation under 45◦ as shown in Figure 5.17. The principal stresses are directed
along the principal strain direction, with tension in the 1-direction and compression in the
2-direction. The maximum shear stress occurs under ±45◦.
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Figure 5.17: Biaxial Extension-Compression

The deformation at the last frame of the fracture simulation for the unit cell for all four
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considered mesh sizes is shown in Figure 5.18. With the exception of the coarsest mesh
(Figure 5.18a), the unit cell fails in the shear mode, with pure mode II opening. Sliding over
a rough and curved crack surface results in high compressive stresses, up to 260 MPa as shown
in Figure 5.18b. Since the shear stress in ±45◦ is equal, mode II fracture occurs along both
directions.
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Figure 5.18: Mesh Convergence: Deformation (Biaxial Extension-Compression, Unit Cell: 12.5×
12.5 µm)

The mode I and mode II ETSLs of the unit cell loaded with biaxial extension-compression
are shown in Figure 5.19. The unit cell with the coarsest mesh, included in Figure 5.18a,
fractures partially in mode I. The mode I ETSL of this simulation is the the only one with
substantial positive traction as can be seen in Figure 5.19a. The mesh convergence for this
load case is done based upon the mode II fracture behavior shown in Figure 5.19b. The mode
II ETSL for the unit cell under biaxial extension-compression converges for a mesh size of 0.5
µm, which is the same for the uniaxial extension load case.
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Figure 5.19: Mesh Convergence: ETSL (Biaxial Extension-Compression, Unit Cell: 12.5× 12.5
µm)

The crack configuration of the unit cell is studied in Figure 5.20. The fraction of the micro-
scopic to the effective macroscopic crack length is shown in Figure 5.20a. For the 1 µm mesh
density the fraction is below one, which is an impossibility. The simulation was aborted due
to convergence issues before the load step was completed and not all cohesive elements along
the crack path failed (see: Figure 5.18b). The micro-macro crack length fraction converges
for a grid size of 0.5 µm. The material composition of the crack is shown in Figure 5.20b.
The material content of the crack has also converged for a mesh density of 0.5 µm.
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Figure 5.20: Mesh Convergence: Crack Configuration (Biaxial Extension-Compression, Unit cell:
12.5× 12.5 µm)

The mode II ETSL and the the material composition of the 37.5 × 37.5 µm MVE loaded
under biaxial extension-compression is shown in Figure 5.21. The simulation with the finest
mesh (0.5 µm) considered for this MVE size was unable to complete the load step. Mesh
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convergence can, therefore, not be established. The crack contains, unlike the results of the
unit cell, more matrix than interface.
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Figure 5.21: Mesh Convergence: Biaxial Extension-Compression, 37.5× 37.5 µm

The mesh convergence study of the 50 × 50 MVE is also limited to just two mesh densities.
The simulations using the finest mesh size of 0.5 µm were not able to fully fail the MVE and
were aborted when the stable time step was lower than the floating point accuracy. The mode
II ETSL shown in Figure 5.22a shows the ultimate strength converged within the standard
deviation.
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Figure 5.22: Mesh Convergence: Biaxial Extension-Compression, 50× 50 µm

For the 62.5 × 62.5 µm MVE, the finest mesh size considered was 1 µm. The simulations
with this mesh size were, however, not able to complete the load step. It is not possible to
determine whether the mode II ETSL has converged for this MVE size by examination of
Figure 5.23.
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Figure 5.23: Mesh Convergence: Biaxial Extension-Compression, 62.5× 62.5 µm

The mesh convergence of the 75× 75 MVE is shown in Figure 5.24. Unfortunately the finest
mesh size of 1 µm did not complete the fracture simulation, as in the case of the 62.5× 62.5
MVE. The material content of the crack is stable at around 45% interface and 55% matrix.
It is not possible to determine whether the mode II ETSL has converged for the 2 µm mesh
density.
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Figure 5.24: Mesh Convergence: Biaxial Extension-Compression, 75× 75 µm

For all the MVEs, with the exception of the unit cell, the mesh convergence study of the frac-
ture behavior was limited to two mesh sizes. The biaxial extension-compression simulations
turned out to be incredibly challenging. The mesh-dependency of the cohesive zone method
with embedded cohesive elements makes it not very well suited to simulate pure mode II
fracture, since it can never produce a smooth sliding surface. For the size convergence study
the finest possible mesh size will be used.
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5.1.3 Mixed Mode

The mixed load case is a combination of uniaxial extension and simple shear, as shown in
Figure 5.4c. The load case was designed to produce mixed mode fracture, with substantial
opening and traction in both crack opening modes. The deformation at the final state of the
simulation for the unit cell is shown in Figure 5.25. Comparing Figure 5.25c and Figure 5.25d
it can be concluded that the crack geometry converges for a mesh size of 0.5 µm.

−0.010 −0.005 0.000 0.005 0.010 0.015 0.020
−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

−6

0

6

12

18

24

30

36

42

M
P

a

S, Max In-Plane Principal

(a) grid size = 2 µm

−0.010 −0.005 0.000 0.005 0.010 0.015 0.020
−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

0

20

40

60

80

100

120

140

M
P

a

S, Max In-Plane Principal

(b) grid size = 1 µm

−0.010 −0.005 0.000 0.005 0.010 0.015 0.020
−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

−10

0

10

20

30

40

50

60

M
P

a

S, Max In-Plane Principal

(c) grid size = 0.5 µm
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Figure 5.25: Mesh Convergence: Deformation (Mixed, Unit Cell: 12.5× 12.5 µm)

The ETSLs in both modes are included in Figure 5.26. The mode I ETSL converges for a
mesh density of 0.5 µm as can be seen in Figure 5.26a. The mode II ETSLs of the two finest
mesh sizes are not so close together. The initial fracture occurs in mode I, as evidenced by
the height of the traction peak. The mode I ETSL was, therefore, given more importance in
determining convergence.
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Figure 5.26: Mesh Convergence: ETSL (Mixed, Unit Cell: 12.5× 12.5 µm)

Analysis of the crack configuration supports the mesh convergence at 0.5 µm. The ratio of the
microscopic to effective macroscopic crack length already converged for a mesh size of 1µm.
The material composition of the crack converges for 0.5 µm to approximately 75% interface
and 25% matrix.
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Figure 5.27: Mesh Convergence: Crack Configuration (Mixed, Unit cell: 12.5× 12.5 µm)

The mesh convergence study of the 37.5 × 37.5 µm MVE is included in Figure 5.28. The
mode I ETSL converges within the standard deviation for a mesh size of 1 µm, which is the
same size as was found for the uniaxial extension load case. The material content of the crack
is similar for the two coarsest mesh sizes. The finest mesh size, however, was found to have
significantly more cracking along the interface. Examination of the results showed that two
realizations of the finest mesh density had isolated interface crack segments that were not
part of the main crack. The fracture behavior of the 37.5 × 37.5 µm MVE converged for a
mesh density of 1 µm.
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Figure 5.28: Mesh Convergence: Mixed, 37.5× 37.5 µm

For the 50× 50 µm MVE the mode I fracture converges perfectly for the 1 µm mesh density,
as shown in Figure 5.29a. The mode I ETSL belonging to the coarsest mesh also converged
within the standard deviation of the finest mesh simulations, which is relatively large. The
material composition of the crack is stable at approximately 75% interface and 25% matrix.
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Figure 5.29: Mesh Convergence: Mixed, 50× 50 µm

The mesh convergence for the second largest MVE is shown in Figure 5.30a. The mode I
ETSL, included in Figure 5.30a, already converged for the coarsest mesh size of 3 µm. The
material content of the crack is also relatively stable for the three different mesh sizes.
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Figure 5.30: Mesh Convergence: Mixed, 62.5× 62.5 µm

For the largest MVE the mixed mode fracture converges for a mesh size of 2 µm. The mode
I ETSLs of the three considered mesh densities are shown in Figure 5.31a. The ETSLs of the
two finest meshes are on top of each other up to the viscous portion of the simulation. The
material composition of the crack differs significantly for the finest mesh. This is caused by
crack branching and isolated crack segments in two of the five realizations.
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Figure 5.31: Mesh Convergence: Mixed, 75× 75 µm

5.2 Micro-structural Volume Element size: RVE

In the previous section the converged mesh was established for 5 different sizes of MVEs under
3 different external loads. The results of converged meshes will be compared to establish the
RVE size. The RVE size is determined per load case and the largest of the three is adopted
as the overall RVE. First the results of the uniaxial extension load case will be discussed in
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Section 5.2.1, followed by the biaxial extension-compression load case in Section 5.2.2. Finally
the RVE convergence study of the mixed load case is included in Section 5.2.3.

5.2.1 Uniaxial Extension

The uniaxial extension load case (see: Figure 5.4a) resulted in pure mode I cracking (β ≈ 0)
in all simulations. The converged mesh size for this load case was established in Section 5.1.1
for all considered MVE sizes. The mode I ETSLs for the converged meshes are included in
Figure 5.32.
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Figure 5.32: RVE convergence: ETSL Mode I, Uniaxial Extension

The mode I effective fracture behavior converges for an MVE size of 50 × 50 µm, which lies
underneath the curves belonging to the 62.5 × 62.5 and 75 × 75 µm ETSL for most of the
fracture process. Interestingly, the ETSL of the 12.5 × 12.5 µm unit cell is not far off from
the converged fracture behavior.

The convergence of the crack length and material composition is included in Figure 5.33. The
fraction of the interface, which is the weaker than both the fiber and the matrix, increases for
larger MVE sizes. The larger the MVE size, the more potential high-interface-content crack
paths will exist. As a result the interface fraction increases from approximately 60% for the
unit cell to 75% for the largest MVE.

A relation between the interface fraction and the ultimate strength can be identified, by
comparing Figure 5.32 and Figure 5.33. The unit cell, which has the lowest interface fraction
is the strongest, whereas the 75 × 75 µm has the highest interface fraction and the lowest
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ultimate strength. For an interface that is stronger than or equal to the matrix, the RVE size
is expected to be smaller. The volume fraction is also expected to have an influence on the
RVE size for mode I fracture.
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Figure 5.33: RVE Convergence: Crack Material Content, Uniaxial Extension

5.2.2 Biaxial Extension-Compression

The biaxial extension-compression load case (see: Figure 5.4b) resulted in pure mode II
cracking (β ≈ π/2) for almost all simulations, the exception being the unit cell with the
coarsest mesh density (see: Figure 5.18a). The mode II ETSLs for the considered MVE sizes
are included in Figure 5.34. The material composition of the crack is included in Figure 5.35.

The convergence of the ETSL is not as clear as for the mode I crack. When the crack opens
in mode II, the two crack surfaces slide over each-other. The sliding mechanism needs a crack
surface that is as flat as possible. Since the crack has to follow element boundaries, it is
impossible to obtain a completely smooth surface. The presence of the stronger fibers add an
extra layer of difficulty for forming a flat crack surface.

The material composition of the crack oscillates around a 50-50% distribution. Judging by
Figure 5.34 the crack material seems to have converged for the largest MVE size. The ETSL
also seems to have settled with the 62.5× 62.5 µm curve within the standard deviation of the
75× 75 µm MVE. The RVE size for mode II cracking is 75× 75 µm.
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Figure 5.34: RVE Convergence: ETSL Mode II, Biaxial Extension-Compression
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Figure 5.35: RVE Convergence: Crack Material Content, Biaxial Extension-Compression
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5.2.3 Mixed Mode

The mixed load case (see: Figure 5.4c) resulted in combined mode I and mode II opening,
with the mode mixity parameter in the 0.6-0.7 range. A convergence study of the mode I
ETSL is included in Figure 5.36. The mode II ETSLs are plotted in Figure 5.37. For all
considered MVE sizes the initial fracture occurs in mode I, and as a result the peaks of the
mode I ETSLs are higher than that of their mode II companions.

Judging by Figure 5.36, the ultimate strength seems to converge rapidly to around 35 MPa.
The softening portion of the ETSL, however, has a lot of spread and the difference between
the realizations was observed to be high, resulting in large standard deviations.

For mode II the situation is different. The peak mode II traction settles at approximately 7
MPa for the larger MVE sizes. The mode II opening is mostly in the viscous portion of the
analysis. The mode-mixity is not constant throughout the simulation, with initial opening
in mode I and increasing mode II opening towards the end of the simulation. To obtain
the mode I and mode II behavior the mode-mixity at the end of the simulation is used to
separate the vectors into their normal and tangential component; Therefore, comparing the
modes separately may not be the best method to determine the RVE size.

The absolute traction is plotted against the absolute opening in Figure 5.38. The effective
fracture behavior, for this load case, converges for an RVE size of 50× 50 µm. The material
content of the crack is given in Figure 5.39. The material composition is quite stable and
settles at 70% interface and 30% matrix.
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Figure 5.36: RVE Convergence: ETSL Mode I, Mixed
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Figure 5.37: RVE Convergence: ETSL Mode II, Mixed
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Figure 5.38: RVE Convergence: ETSL absolute, Mixed
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Figure 5.39: RVE Convergence: Crack Material Content, Mixed

The RVE size for both the uniaxial extension as well as the mixed load case was found to be
50 × 50 µm. To obtain representative mode II fracture behavior, a larger MVE is required.
The RVE size for mode II was determined to be 75×75 µm. Representative fracture behavior
for the considered material properties and volume fraction can be found in all modes with an
RVE of 75× 75 µm.
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Chapter 6

Simulations at Cryogenic Temperature

The Representative Volume Element (RVE) size was established in Chapter 5. The size
convergence study was performed at room temperature. The RVE size was determined to be
75 × 75 µm for a weak interface and a fiber volume fraction of 50%. The RVE geometry is
included in Table 6.1.

Description Value
Width 75 µm
Height 75 µm
Fiber radius 5 µm
Fiber volume fraction 50%

Table 6.1: RVE geometry

With an established RVE, a working multiscale analysis tool for fracture in composites was
complete in construction. At this point, the tool could be applied to study cryogenic fracture
behavior, by including a thermal step prior to the mechanical load step, as discussed in
Chapter 4. The size convergence study was not repeated for the cryogenic load case. Instead
the room temperature RVE was assumed to remain representative for the fracture behavior
at cryogenic conditions. This is a safe assumption as long as the fracture mechanism does
not change significantly.

The thermal and mechanical properties of the fiber and matrix are given in Table 6.2. The
envisioned application of Carbon Fiber Reinforced Plastic (CFRP) to an Engine Thrust
Frame (ETF) by Airbus Defence and Space will use HexTow® IM7 fibers combined with
CYCOM® 5230-1 epoxy. The material properties were based upon material data sheets of
the pure constituents. The transverse elastic modulus of the carbon fiber and the temper-
ature dependent Coefficient of Thermal Expansion (CTE) of the epoxy were obtained from
reference [12].
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Property Fiber Matrix Units
50 K 300 K

Density 1.8 · 10−6 1.31 · 10−6 kg/mm3

Elastic Modulus 19000 6540 3520 MPa
Poisson’s ratio 0.23 0.35 [-]
Coefficient of Thermal Expansion 7 · 10−6 1.4 · 10−5 5.6 · 10−5 K−1

Specific Heat 0.879 1.0 mJ/(kg K)
Thermal Conductivity 5.4 0.35 mW/(mm K)

Table 6.2: Bulk Material Properties [12, 16, 34]

The strength of the constituents was kept the same as in the convergence study and is included
in Table 6.3. The properties assume a weak interface and strong fibers with respect to the
matrix. The cohesive material properties were based on references [3, 73].

Property Fiber Matrix Interface Units
50 K 300 K 50 K 300 K 50 K 300 K

Ultimate Traction1 100 100 50 50 25 25 MPa
Fracture Energy 0.1 0.1 0.05 0.05 0.025 0.025 N/mm
Failure Opening 2.0 2.0 2.0 2.0 2.0 2.0 µm

Table 6.3: Cohesive Material Properties

The remainder of this chapter will discuss the results found for composites under cryogenic
loading. The thermal analysis results are discussed in Section 6.1. The results of the cryogenic
fracture simulations are included in Section 6.2. This section also includes a comparison with
room temperature results to isolate the effect of the thermal load. The mode-dependency of
the fracture behavior is studied in Section 6.3. Concluding remarks regarding the multiscale
method applied to study cryogenic fracture of composites are presented in Section 6.5.

6.1 Thermal Analysis Results

The results of the thermal load step, which occurs prior to the mechanical load step, were
used to study the thermal behavior of the composite. The effective CTE of the composite was
determined and compared to an approximation obtained using the Rule of Mixtures (RoM).
The results of this CTE study are included in Section 6.1.1. Field data of the last thermal
load increment was used to investigate the thermal stress field in the composites. Section 6.1.2
contains an overview and a quantitative discussion of the thermal stress results.

6.1.1 Effective Coefficient of Thermal Expansion

The time incremental strain results of the thermal load step are used to compute an effec-
tive CTE of the composite. The volume-averaged strain is computed for every time step

1Mode independent
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using Eq. (4.6). The volume-averaged strain tensor is a symmetric tensor with the following
components:

〈ε〉Ω =
[
〈ε11〉Ω 〈ε12〉Ω
〈ε12〉Ω 〈ε22〉Ω

]

The thermal contraction as a result of cooling is represented by the diagonal terms of the
volume-averaged strain tensor. The off-diagonal entries represent the shear strain resulting
from the thermal loading. Figure 6.1 shows the evolution of the strain components as the
temperature is reduced from T0 = 298 K to the cryogenic temperature T1 = 77 K.
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Figure 6.1: Thermal Strain Evolution

The analysis on the RVE shows the composite is transversely isotropic, with:

〈ε11〉Ω ≈ 〈ε22〉Ω
〈ε12〉Ω = 0

Like the corresponding thermal strain tensor components, the CTEs in 1- and 2-directions
are approximately equal. The effective CTE of the composite is computed as the average of
α11 and α22 and is plotted in Figure 6.2. The constituent input is also included in Figure 6.2.
The effective CTE is in between the fiber and matrix behavior, but clearly more influenced
by the matrix.
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Figure 6.2: Effective CTE of the Composite

Figure 6.2 includes a RoM solution for the CTE obtained using Eq. (6.1)

α22 = (1 + ν23f )α22fVf + (1 + νm)αmVm + α11ν12 (6.1)

and α33 = α22. The axis system used in Eq. (6.1) corresponds to the fiber reference system
prevalent in associated literature; 1-axis in fiber direction, 2-axis in transverse direction and
the 3-axis is the out-of-plane (thickness) direction. In contrast, all analysis in this thesis has
the 1,2-plane as the transverse plane, to accommodate the plane-strain definition in Abaqus®.
In order to evaluate Eq. (6.1), the longitudinal CTE of the composite must be obtained first
by using Eq. (6.2).

α11 = 1
E11

(α11fE11fVf − αmEmVm) (6.2)

Longitudinal properties of composite lamina are dominated by the fiber properties, as they are
usually orders of magnitude stiffer as well as stronger and more brittle. Assuming a perfect
bond between the fibers and the matrix, a parallel (Voigt) model for the longitudinal modulus
can be used to compute the longitudinal stiffness. The Young’s modulus of the lamina in fiber
direction can be found with the rule of mixtures as given by Eq. (6.3).

E11 = VfE11f + VmEm (6.3)

The same assumptions lead to a similar relation for the major (longitudinal) Poisson’s ratio
of the lamina:

ν12 = ν13 = νfVf + νmVm (6.4)
Where νf = ν12f = ν13f .
Figure 6.2 shows the computationally computed effective CTE and the analytical solution are
similar. The computational results are based on less assumptions and include more details -
such as the distribution of the fibers and the fiber-matrix bond - than the analytical solution.
The fact that the analytically obtained solution is close to the Finite Element Analysis (FEA)
results does inspire confidence in the simulation and verifies the computational method.
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6.1.2 Thermal Stress

While the effective CTE of the composite is an interesting result, the thermal residual stress
at cryogenic temperature is of direct interest to Airbus DS and was formulated as a project
goal in Chapter 1.

The last frame of the thermal load step is the equilibrium state at cryogenic temperature (77
K). The complete stress tensor for each bulk element in the RVE is exported to python. The
stress tensor is symmetric and of the following form:

σ =
[
σ11 σ12
σ12 σ22

]

The tensor components are used to compute the in-plane principal stresses (σ1, σ2) using
Eq. (6.5).

σ1,2 = σ11 + σ22
2 ±

√(
σ11 + σ22

2

)2
+ σ2

12 (6.5)

The maximum in-plane principal stress is given by the "+"-solution of Eq. (6.5). A positive
maximum principal stress indicates the value of the maximum tensile stress at the material
point, while a negative maximum principal stress corresponds to the minimum compressive
stress at a material point under biaxial compression. The "-"-solution gives the minimum
principal stress, corresponding to the maximum compression or the lowest tensile stress for a
biaxial tensile stress state.

Compressive stresses do not directly drive fracture as they are a closing force. The maximum
principal stress, when positive, is an opening force on a crack and therefore, for the purpose
of the project, deemed the most useful representation of the stress state in the RVE. The
in-plane maximum principal stress at 77 K for all five realizations are presented in Figure 6.3.
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(a) Realization 1
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(b) Realization 2
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(c) Realization 3
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(d) Realization 4
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(e) Realization 5

Figure 6.3: Thermal Stress at T = 77 K

The maximum tension occurring anywhere in the five realizations is around 56 MPa (see:
Figure 6.3e). This stress occurs at the edge of the RVE (x, y = 10, -37.5 µm) and is influenced
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by boundary effects. The maximum tensile stresses towards the center of the RVE are around
50 MPa and occur in the matrix along the fiber-matrix interface.

The thermal stresses arise as a result of the mismatch in CTE between the matrix and the
fiber. The mechanism is shown schematically in Figure 6.4.

298 K 77 K

σθ

Free matrix contraction

σθ

σθ

σθ

Thermal contraction

Figure 6.4: Thermal tensile stress in the matrix developing radially around fibers

Using the material properties listed in Table 6.2, the matrix stiffness and CTE at 77 K and
the CTE at 298 K were computed as:

EM,77K = 6214 MPa
αM,77K = 1.85 · 10−5 K−1

αM,298K = 5.57 · 10−5 K−1

The average CTE in the T ∈ [0, 298] K range equals:

αM,avg = 3.71 · 10−5 K−1

The free thermal strain in the matrix at 77 K equals:

εM,free = 3.71 · 10−5 · (77− 298) = −0.0082

Whereas the free thermal strain in the fiber is:

εM,free = 7 · 10−6 · (77− 298) = −0.0015
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To simplify the analysis, it is assumed that the matrix must conform to the fiber deformation,
since this is the stiffest constituent. Moreover, this assumption will result in the "worst-case"
scenario, i.e. the highest thermal stresses. The tangential mechanical stress in the matrix as
a result of complying to the fiber deformation equals:

σθ = 41.6 MPa

This analytically obtained number is 16.8% lower than the maximum in-plane principal stress
obtained from the simulation; However, the calculation did not include the effect of two fibers
close to each other and should only be used to compare the order of magnitude.

It can be concluded that the performed thermal FEA on the RVE is an effective method to
compute the thermal residual stresses arising from the mismatch in CTE of the fiber and
the matrix. The analysis was performed using material properties typical to intermediate
modulus carbon fiber (HexTow® IM7) and epoxy (CYCOM® 5230-1). The maximum tensile
stress occurring in the composite as a result of free contraction under the cryogenic loading
is approximately 50 MPa.

6.2 Fracture

The thesis objective is to determine the effect of the cryogenic environment on the progressive
failure of the composite. The constitutive relationship, or Effective Traction Separation Law
(ETSL) describing the progressive failure of the composite, is the result of microscale fracture
simulations on RVEs. The ETSL is the outcome of averaging the results obtained for five
realizations of the same RVE size, but with different random fiber distributions.

The microscale analysis was performed on 75× 75 µm RVEs for which convergence in three
different fracture modes was established in Chapter 5. The five realizations used in the
analysis are shown in Figure 6.5.
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Figure 6.5: Five Realizations of the 75× 75 µm RVE (Vf = 50%)

6.2.1 Uniaxial extension

The ETSLs for the uniaxial extension simulations for both temperatures are plotted in Fig-
ure 6.6. The power plots used to verify the Hill-Mandel condition on the crack are included
in the appendix (see: Figure A.1 and Figure A.2). The results show that the effect of the
cryogenic temperature and the resulting thermal residual stresses on the effective fracture
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behavior is negligible. The cryogenic ETSL has an effective ultimate traction slightly above
that of the room temperature ETSL.
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Figure 6.6: Uniaxial Extension (Mode I)

The limited effect of the temperature reduction can be explained by examining the content of
the crack. Shown in Figure 6.7, the crack follows the fiber-matrix interface for approximately
75% of its total length, for both the room temperature as well as the cryogenic simulation.
The restricted thermal contraction of the matrix loads the interface under radial compression.
The first portion of the load step is used to alleviate the pre-compression on the interface. As
a result, the effective ultimate traction is higher for the cryogenic case.
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Figure 6.7: Crack Material Content: Uniaxial Extension

Following crack initiation the thermal stresses in the neighborhood of the crack are partially
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removed, since there is less surrounding material preventing free thermal contraction. As a
result, the cryogenic ETSL and its Room Temperature (RT) counterpart are almost equal
throughout most of the fracture process.

6.2.2 Biaxial extension-compression

The biaxial extension-compression loading equals pure-shear under 45◦, resulting in a mode
II crack in the maximum shear direction. The mode II ETSLs obtained from the RT and
cryogenic simulations are shown in Figure 6.8. The curves used to verify the Hill-Mandel
condition on the crack are included in Figure A.3 and Figure A.4. Unlike the uniaxial exten-
sion load case, the cryogenic ETSL is entirely under the room temperature ETSL. It should
be noted that the standard deviation of the cryogenic ETSL is very large, corresponding to
a large spread of results for the different realizations. Moreover, the viscous portion of the
ETSL (dashed) is entered early-on for both simulations.
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Figure 6.8: Biaxial Extension-Compression (Mode II)

The material content of the crack is shown in Figure 6.9. The temperature has no measurable
effect on the make-up of the crack, with 45% matrix and 55% interface for both temperatures.
With the crack opening in mode II, the pre-compression of the interface has no beneficial effect
on the effective ultimate strength. The high thermal residual stress in the matrix combined
with the larger matrix fraction of the crack, has a negative effect on both the effective ultimate
strength as well as the fracture energy at cryogenic temperature.
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Figure 6.9: Crack Material Content: Biaxial Extension-Compression

6.2.3 Mixed Mode

The mixed mode load case is a combination of shear and extension, resulting in both nor-
mal and tangential crack opening. The ETSL for mode I is included in Figure 6.10. The
Hill-Mandel power plots of the mixed mode simulations are included in Figure A.5 and Fig-
ure A.6. Figure 6.10 shows that the effective ultimate strength averaged over the realizations
is approximately equal between the two temperatures. For both temperatures the spread in
the results of the different realizations is high, resulting in a large standard deviation.
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Figure 6.10: Mixed (Mode I)

The mode II ETSL is included in Figure 6.11. The mode II opening occurs after initial
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fracture in mode I. The maximum tangential traction is, as a result of this chronology, lower.
The tangential opening occurs almost exclusively in the viscous portion of the simulation,
limiting the confidence in the result. Moreover, the standard deviation is large as seen from
the shaded areas.
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Figure 6.11: Mixed (Mode II)

The composition of the crack is presented in Figure 6.12. The temperature has no effect on
the material fractions, with the matrix at 25% and the interface at 75% of the total crack
length for both room and cryogenic temperature.
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Figure 6.12: Crack Material Content: Mixed
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6.3 Mode mixity

The absolute value of the ultimate traction at 298 K and 77 K is plotted against the mode
mixity in Figure 6.13. For both temperatures the line is almost horizontal corresponding to
mode-independent fracture initiation behavior. The relative difference between the RT and
cryogenic strength is within 5%.
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Figure 6.13: Ultimate traction as a function of mode mixity

The fracture energy as a function of mode-mixity is given in Figure 6.14. The fracture energy
was determined as the area underneath the absolute traction-separation relation, up to the
common failure opening of δf = 2 µm (see: Table 6.3).

Gf
f =

∫ tF

0
tf · JuKf dt

The effective fracture energy in the mixed mode and mode II is higher than that of mode
I fracture. The mixed mode and mode II simulations were, however, harder to converge
with more viscous energy dissipation as a result. The mode II absolute traction includes
a substantial compressive normal traction component as a result of sliding over an uneven
surface. The fracture energy outcome is less reliable as a result.
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Figure 6.14: Fracture Energy as a Function of Mode Mixity

The results shown in Figure 6.13 Figure 6.14, with combined transverse isotropy of the com-
posite structure and mode-independent constituent properties, point to a mode-independent
ETSL. Upon closer examination, however, it becomes apparent that the mode I and mode
II fracture mechanisms differ on some critical points. Firstly, the material content is signifi-
cantly different with 75-25% interface-matrix for the pure mode I crack (see: Figure 6.7) and
a more equal distribution of 55-45% for the mode II crack (see: Figure 6.9).
The crack morphology of a typical uniaxial extension and biaxial extension-compression case
is included in Figure 6.15. While the mode I crack winds through the composite, following
the interface as much as possible, the mode II crack is more straight. The kinematics of a
mode II crack require a flat sliding surface, giving the crack less room to follow weak links in
the structure. As a result, the ratio between the microscopic crack length and the effective
macroscopic crack length is closer to 1 compared to the mode I crack.

−60 −40 −20 0 20 40 60

x [µm]

−40

−20

0

20

40

y
[µ

m
]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
P

a

S, Max In-Plane Principal

(a) Uniaxial extension ( Γ
Γf = 1.179)

−40 −20 0 20 40

x [µm]

−50

−40

−30

−20

−10

0

10

20

30

40

y
[µ

m
]

−150

−100

−50

0

50

100

150

200

250

M
P

a

S, Max In-Plane Principal

(b) Biaxial extension-compression( Γ
Γf = 1.043)

Figure 6.15: Typical Mode I and II Crack Morphologies
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Using a RoM solution for the effective strength corrected with the crack length ratio, the
mode I and mode II ultimate strengths indeed come out to be similar:

Mode I: (0.75 · 25 + 0.25 · 50) · 1.18 ≈ 36.9 MPa
Mode II: (0.55 · 25 + 0.45 · 50) · 1.04 ≈ 37.7 MPa

The similarity is caused by the combination of material properties and crack morphology and
not by actual mode-independence. The RoM solution is reasonably accurate when compared
to the analysis results and can be used to come within 10% of the simulation result for both
mode I and mode II, as shown in Table 6.4. It should be noted that the fractions used to
compute the RoM solution were obtained using the simulation and would not be available
otherwise.

Ultimate strength [MPa] Difference [%]
298 K RoM

Mode I 34.89 36.9 5.8
Mode II 34.95 37.7 7.9

Table 6.4: Comparison between RoM and Simulation Results

6.4 Initiation criterion

The macroscale implementation using the cohesive segment approach (see: Section 3.1), re-
quires, besides the effective fracture behavior, a criterion for the crack extension direction.
In van Hoorn [73], it was found that a maximum principal strain criterion can be used to
determine the crack extension direction on the macroscopic scale. The maximum principal
strain direction can be computed using the applied deformation gradient. The principal strain
direction was computed for the three considered load cases and included in Table 6.5. The
angles are with respect to the horizontal axis (1-direction).

Deformation Gradient Strain Principal Strain Direction

UE
[
γ 0
0 0

] [
γ 0
0 0

] [
γ 0
0 0

]
0◦

BEC
[
γ 0
0 −γ

] [
γ 0
0 −γ

] [
γ 0
0 −γ

]
0◦

MM
[
γ γ
0 0

] [
γ γ/2
γ/2 0

] [
(1 +

√
2)γ/2 0

0 (1−
√

2)γ/2

]
22.5◦

Table 6.5: Principal strain direction for all three load cases

The crack orientations obtained in the simulation are included in Table 6.6. For the uniaxial
extension load case the obtained results coincide the principal strain direction. This cannot
be said for the other two load cases. The biaxial extension-compression results consistently
showed mode II cracks under ±45◦, i.e. in the maximum shear strain direction (see: Fig-
ure 5.17). The mixed mode load case did not crack in the direction of the principal strain
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either. Rather than pure mode I opening on a slanted 22.5◦ crack, a vertical crack is formed
which opens laterally.

Simulation Max Principal Strain
R1 R2 R3 R4 R5

UE 0.000320◦ −0.0489◦ −0.0318◦ −5.29◦ −4.99◦ 0◦
BEC −43.7◦ −42.2◦ 43.7◦ −44.9◦ 43.9◦ 0◦
MM 0.688◦ 0.435◦ 0.490◦ 0.708◦ 1.40◦ 22.5◦

Table 6.6: Crack orientation observed in the simulation (RT) compared to the principal strain
direction

Amaximum principal strain criterion is therefore not suitable to determine the crack extension
direction. A maximum stress criterion might be better suited to compute the crack extension
direction. The stress is, however, unlike the strain, not known a priori. The applied stress
tensor can be obtained with the applied strain and a macroscopic constitutive law, obtained
through volume averaging of the RVE. This is, however, outside of the scope of this thesis
project.

6.5 Conclusion

Thermal analysis on the RVE was used to compute the CTE of the composite though strain
homogenization. The effective CTE in 1- and 2-direction are equal and there was no average
shear deformation as a result of the thermal load. The results were consistent with transversely
isotropic material behavior. A RoM solution was used to verify the method.

The thermal stresses at cryogenic temperature were computed for five realizations of the RVE.
The maximum tensile stress in the composite at 77 K was found to be approximately 50 MPa
for intermediate modulus carbon fiber (HexTow® IM7) and epoxy (CYCOM® 5230-1).

Multiscale ETSLs for fracture of the composite at cryogenic temperature were compared to
their RT counterparts. The ultimate strength in mode I fracture was found to be higher
at cryogenic temperature, although the difference was not significant. The ultimate shear
strength (mode II) was impacted negatively by cooling. The mixed mode fracture was left
unaffected. It can be concluded that the composite strength at ply level is not impacted
significantly by reducing the temperature to 77 K.

For the material properties considered, a mode-independent macroscopic fracture model is
reasonable. It was found that the material composition and the crack morphology were de-
pendent on the fracture mode. Therefore, it should not be expected that a mode-independent
model works well for every combination of material properties. In general the fracture process
is influenced by the opening mode.



Chapter 7

Conclusions and Recommendations

7.1 Conclusions

Airbus Defence and Space is seeking to replace aluminum by Carbon Fiber Reinforced Plastic
(CFRP) for an Engine Thrust Frame (ETF) that connects a cryogenic second stage tank
to the rocket engine. The absence of a reliable predictive failure method for composites
under cryogenic conditions has inhibited development of such a structure in the past. This
project was developed and carried out in an effort to provide new insights into the field
of composite fracture mechanics under cryogenic conditions. The conclusions drawn from
this study are relevant to companies such as Airbus, where weight savings produced from
replacing traditional materials with composites, grant a lucrative and thus, competitive design
advantage for space structures.

The technical objective of the project is repeated below:

The research objective of the MSc. Thesis is to develop a damage onset and growth model
for transverse fracture inside Unidirectional (UD) CFRP plies under combined thermal and
mechanical loading and under cryogenic conditions, by using advanced numerical methods
on the microscopic scale coupled with the macroscale by computational homogenization, a
technique known as multiscale modeling.

Due to limited academic precedence for multiscale modeling of fracture, the project required
initial effort to be focused on the model development phase. The multiscale fracture frame-
work must be verified by demonstrating scale coupling; Scale coupling is achieved through sat-
isfying the Hill-Mandel condition and by identifying a Representative Volume Element (RVE).
Only after the multiscale fracture model was implemented and verified, could it be used to
study cryogenic fracture behavior.

Fracture of composites is characterized by a multitude of failure mechanisms at various spatial
scales. The multiscale method captures the combined effect of several failure mechanisms,
at the composite ply-level, into a homogenized macroscale fracture model. A new technique
for homogenizing fracture properties was proposed by Turteltaub et al. [69]. The proposed
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technique was applied in this thesis to study transverse fracture behavior, as discussed in
Chapter 3.

The multiscale framework was implemented in python, with the mesh-generation performed
by gmsh and the analysis in Abaqus®, as detailed in Chapter 4. The computational framework
is able to produce the Microstructural Volume Element (MVE) geometry, which captures the
random fiber distribution seen in composite plies. The meshed geometry, combined with ma-
terial properties and thermal/mechanical loading, was written to an input file for Abaqus®.
After Abaqus® performed the fracture simulation, results were extracted and used to com-
pute the homogenized fracture response, which was then scrutinized for its representation of
micro-scale behavior.

To find a RVE, a mesh and size convergence study was carried out for three different load
cases and corresponding fracture modes. The size convergence study followed the approach
of Gitman et al. [29], using only mechanical loading and increasing the volume element size
until the effective fracture behavior converged (i.e. micro-scale behavior was accurately repre-
sented). With this method, it was determined that reasonable effective constitutive fracture
behavior for a mode I crack could already be obtained with a unit cell. Convergence of
the mode I fracture behavior was achieved with a 50 × 50 µm MVE, whereas for mode II a
minimum RVE size of 75 × 75 µm was deemed appropriate. The multiscale fracture model,
proposed by Turteltaub et al. [69], was implemented successfully and a RVE was established.
The model is successful in conserving the rate of work between the micro- and macroscopic
scales, which is paramount to the validity of the multiscale method.

With the fracture model implemented and the RVE size determined, the cryogenic conditions
were added to arrive at a cryogenic fracture model. The literature study [78] done in prepa-
ration of the thesis project concluded that the mismatch of Coefficient of Thermal Expan-
sion (CTE) between the constituents drives the microcracking in composites under cryogenic
conditions. The ETF application excludes the effect of fuel intrusion from consideration and
instead, the cryogenic conditions were implemented by applying a constant temperature field
(77 K) to the RVE in a thermal load step, which occurs prior to the application of mechanical
load. Constituent material properties of intermediate modulus carbon fiber (HexTow® IM7)
and epoxy (CYCOM® 5230-1) were used in all analyses. Besides fracture, the microscale
simulations were used to find the effective CTE of the composite and to solve the transverse
thermal stress field at the cryogenic operating temperature of 77 K.

The results produced by the thermal load step were used to find the effective CTE and
the thermal stresses present in the composite, which derive from the mismatch in CTE of
the constituents. The resulting effective CTE of the composite was observed to be close to
the solution obtained with Rule of Mixtures (RoM). The microscale simulation was based
on less assumptions than the RoM and is believed to be a more realistic method to obtain
effective transverse thermal properties using constituent behavior. The thermal stress field
in the composite microstructure at cryogenic temperature was solved for five realizations of
the 75× 75 µm RVE. High tension was found in tangential direction around the fibers in the
matrix. The maximum thermal tensile stress was approximately 50 MPa.

The multiscale fracture framework was used to compare each mode at both room and cryo-
genic temperatures. A comparison and discussion of the results are included in Chapter 6. Al-
though the cryogenic temperature resulted in high thermal stresses, the effect on the fracture
(strength, energy) was small compared to the standard deviation. The thermal contraction,
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as a result of cooling, was found to increase mode I fracture strength while overall mode II
fracture properties became weaker due to cryogenic loading.
The mode-dependency of the fracture behavior for room and cryogenic temperatures is in-
cluded in Chapter 6. The ultimate strength was found to be mode-independent for the
set of material properties considered. The fracture energy in mode II was observed to be
higher than that of mode I. Higher fracture energy in mode II may be attributed to increased
viscosity along with the high normal compressive stresses which result from sliding. A mode-
independent macroscopic model is reasonably accurate at both temperatures; however, it was
discovered that the opening mode clearly impacts the microscopic length and the material
composition of the crack. Therefore, it is concluded that a mode-independent macroscopic
fracture model cannot be used for all material combinations.

7.2 Recommendations

The overall thesis objective has been achieved, however, the author would like to make the
following recommendations which might benefit extensions of this research which seek to
improve upon the method developed herein:

• The effective traction was defined using a best-fit to the Hill-Mandel condition by as-
signing a single fitting parameter constant over the simulation time. As a result, the
Hill-Mandel condition is never exactly satisfied over the length of the simulation. Future
research should look into a more flexible method for combining the volume- and crack-
averaged traction vector, that is able to perfectly match the Hill-Mandel condition on
the crack.

• The method used to integrate the traction over the crack face uses a rank-one definition
of the stress tensor. There is no possibility to determine the full state of stress using
only information of the cohesive elements. Future research could include an integration
over the bulk elements adjacent to the crack to obtain the full state of stress at the
crack face.

• The viscous energy added by the automatic stabilization algorithm of Abaqus® ex-
ceeded the predefined threshold of 5% of the total strain energy in most simulations.
Deactivation of the automatic stabilization algorithm had detrimental effects on the sta-
bility of the simulations, i.e. divergence. A better understanding of the inner-workings
of the automatic stabilization algorithm or a manually defined replacement can give the
user better control over the viscosity and potentially help isolate the viscous traction
from the results. Reduced viscosity will, however, lead to smaller stable time steps and
a higher computational cost.

• There were no imperfections, such as voids or imperfect fiber-matrix bonds, included
in the geometry of the MVE. The cryogenic loading of the RVE was shown to result
in high thermal stresses, but no microcracking was observed. The overall compressive
strain does not allow for any significant crack opening to occur. By including material
imperfections, which are present in any real composite, it is believed that an accurate
model for microcracking due to thermal loading can be obtained. The material im-
perfections will act as microcrack initiation sites and provide the room for microcrack
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opening. Future research into (cryogenic) fracture of composites through multiscale
modeling should include realistic material imperfections at the microscale.

The research done in this thesis also lead to some new ideas for future research in the broader
area of fracture mechanics of composites:

• Experimental data on fiber-matrix bond strength, required for the interface properties,
is difficult to obtain. One outcome of the research was that a RoM solution, using matrix
and interface fractions of the total crack length, can be used to compute the transverse
strength to within 10% of the multiscale results. This knowledge can contribute to the
design of new experiments created to determine fiber-matrix bond strengths.

• The microscale model showed mode II fracture when biaxial extension-compression was
applied to the MVE. Instead of mode I fracture in the principal strain direction, the
microscale model consistently preferred mode II along the maximum shear direction.
An interesting extension of this research could include an eXtended Finite Element
Method (XFEM) simulation on the microscale to verify this finding.

• The effective fracture behavior was found to be mode-independent for the considered
material properties. A parameter study can be performed to explore the extend of
material combinations, to which a mode-independent model is reasonable. A mode-
independent multiscale model would reduce the number of microscale simulations to
the number of realizations.
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Appendix A

Power Plots

This appendix includes the power plots used to satisfy the Hill-Mandel condition a posteriori.
The procedure was discussed in Section 4.3.2. Figure A.1 shows the rate of work when forming
a mode I crack at cryogenic temperature. The power required to create a mode I crack at
room temperature is included in Figure A.2. In Figure A.3 and Figure A.4 the power as a
function of step time is given for a mode II crack formed at cryogenic and room temperature
respectively. Lastly the power plots for a mixed mode crack at cryogenic temperature is
shown in Figure A.5 and at room temperature in Figure A.6.
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Figure A.1: Power Plot: Uniaxial Extension, 75× 75 µm MVE, T = 77 K
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Figure A.2: Power Plot: Uniaxial Extension, 75× 75 µm MVE, T = 298 K
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Figure A.3: Power Plot: Biaxial Extension-Compression, 75× 75 µm MVE, T = 77 K
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Figure A.4: Power Plot: Biaxial Extension-Compression, 75× 75 µm MVE, T = 298 K
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Figure A.5: Power Plot: Mixed Mode, 75× 75 µm MVE, T = 77 K
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Figure A.6: Power Plot: Mixed Mode, 75× 75 µm MVE, T = 298 K
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