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Abstract

Wrong-way risk (WWR), which is the dependence between the probability of default (PD) and the expo-
sure at default of a counterparty, is an aspect of credit risk that can lead to high losses. This thesis aims firstly
to quantify WWR in interest rate swaps (IRSs) using a copula model, where a copula is used to couple the
PD implied by credit default swap (CDS) spreads and the 10 year swap rates. Specific attention is given to
choosing and fitting a copula. For datasets obtained from periods of regular economic conditions and peri-
ods of financial crisis, the t copula is found to be the best fit. In general, negative dependence between the
log-returns of the implied PDs and the log-returns of the swap rates is observed, especially in the tails of high
PD log-returns and low swap rate log-returns during regular periods. This means that the general demand for
loans is lower during a worsening economy. During crisis periods however, the dependence is weaker than in
regular periods; implying that loans are in higher demand in these times, e.g. because companies need loans
to survive.

The second purpose of this thesis is the introduction of a novel product aimed at hedging WWR in IRSs.
This product, named an IRS partial insurance contract (IPI), introduces an upper bound to the credit losses
on an IRS. If this bound is exceeded, the amount by which the losses exceed the bound is paid out by the IPI
seller to the IPI buyer. An analytical expression for the no-arbitrage price of an IPI is obtained, using a copula
model for WWR. This expression shows that an IPI can be replicated by a portfolio of swaptions and CDSs.
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1
Introduction

The concept of credit risk, which deals with the risk of the counterparty of a financial transaction not being

able to pay the due amounts fully and in a timely manner,1 is often associated with mortgages and other fixed
income products. But credit risk is also present for derivative products, of which many exist in the current
financial landscape. For these products, the concept of wrong-way risk (WWR) may arise: positive depen-
dence between the exposure of a financial product to one counterparty and the probability of default (PD) of

the other counterparty. The case of negative dependence is known as right-way risk.2

Within the class of derivatives, WWR and credit risk in general are most meaningful for over-the-counter
(OTC) traded, unsecured products. The interest rate swap (IRS) market is by far the largest of the global OTC
derivatives markets; according to the Bank for International Settlements (2019), the global notional amount
outstanding for IRSs at the end of June 2019 was $368 trillion, accounting for 58% of the OTC derivatives mar-
kets. Furthermore, IRSs are mainly used for hedging and similar purposes, such as changing the duration of
a fixed income portfolio. Any form of risk, including WWR, is generally less desirable for products used for
hedging than for those used for speculation. Mainly for these two reasons, this thesis focuses on WWR for
IRSs. This also provides an easy extension to other interest rate contracts; the notional amount outstanding
for all interest rate derivativew was $524 trillion, or 82% of the OTC derivatives markets.

Research on WWR has been performed since 2003 (Cherubini and Luciano; 2003), but advanced mod-
elling of WWR has not yet fully found its way into the Basel framework by the Basel Committee on Banking
Supervision (2019), the worlds leading capital standards setter. The Basel IV standards state that banks need
to identify cases of high exposures to WWR. For products that depend on a single third-party company, such
as options and credit default swaps, banks are required to make changes to their calculations. The exposure
at default (EAD) needs to be calculated conditional on default of the counterparty, since the EAD and the
default are no longer independent, and an assumption must be made that the LGD is equal to 1. The as-
sumption of LGD = 1 typically means that the product gets the treatment of an unsecured exposure, even if
the product is secured. For products such as IRSs however, there are no such clear rules. The only directives
for all exposures subject to large amounts of WWR are that they must be taken out of any potential netting
sets, and that regulators may require banks to increase a factor in the calculation of the EAD. The question
of whether this factor is increased, and by how much, is left up to the individual market regulators, such as
central banks and national market authorities. This lack of a centralised directive shows that there is no clear
consensus on how to deal with WWR in regulations; more research into WWR can help a best practice for the
modelling of it to emerge.

Therefore, the first of the two main goals of this thesis is the quantification of WWR in interest rate swaps.
The quantification is done through a copula approach. Research on copula models for IRSs has been per-
formed by e.g. Cherubini (2013) and Černý and Witzany (2018), giving useful results for the CVA of in-
terest rate swaps. The issue of path inconsistency, and possible solutions, are pointed out by Böcker and

1Among other types of risk.
2Although this thesis focuses on wrong-way risk, the case of right-way risk is analogous and can be analysed in mostly the same way.
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2 1. Introduction

Brunnbauer (2014). Calibration is performed by e.g. Hofer (2016), Pan (2018) and Rosen and Saunders (2012),
although they all only use a Gaussian copula; the choice of which copula to use is not considered. These pa-
pers find that the receiver position in an IRS is subject to WWR; this observation is expected to be confirmed
by the results in this thesis. Incorporating WWR in other quantities than CVA is also explored little throughout
the literature. The quantification performed in this study contributes to the existing literature by consider-
ing the choice of copula by means of a quantitative goodness of fit comparison. Hence, a sub-goal to aid in
quantifying WWR is finding the optimal copula to describe a dataset of PDs and swap rates. Another sub-
goal is assessing the impact of different economic conditions on WWR. The hypothesis is that the behaviour
during crisis periods is similar to the lower (with respect to PD) tail behaviour in regular periods. This tail is
expected to contain strong WWR, since when many defaults occur, all movements on financial markets tend
to be driven in a specific direction (downward for most variables).

Besides regulatory relevance, the quantification of WWR is also useful for institutions exposed to it, giving
them greater insight into expected or potential future cash flows. After quantifying WWR, an institution may
decide to simply accept the risk, but many institutions prefer to hedge their risks. As there are currently few
methods to mitigate WWR, research into reducing one’s exposure to it is relevant.

Furthermore, if hedging products for WWR are developed, regulators can incentivise institutions to cover
their WWR by allowing them to hold less capital if their positions subject to WWR are hedged. The Basel IV
framework currently does not allow this, which may be partly due to the lack of available hedging methods
for WWR. However, new regulations could allow newly developed hedging products to be used as credit risk

mitigants (CRMs).3 This would also help regulators achieve their goal of financial stability, especially since
WWR manifests itself mostly during downturn periods, as shown in this thesis.

The two points above show the relevance of the second main goal of this thesis: developing a new finan-
cial product for hedging WWR in IRSs. The expectation is that this product will be a (partial) hedge for credit
risk in general, since isolating WWR for the purposes of determining the cash flows of a product requires the
two counterparties to agree on one model for WWR. A product with such a requirement seems unlikely to be
traded in practice. A sub-goal of developing the novel product is determining its no-arbitrage price in terms
of the no-arbitrage values of other financial products. This allows the price of an IPI to be calculated easily if
pricing methods for these other financial products are in place.

The thesis develops as follows. In Chapter 2, the concept of WWR is described in detail and the benefits
and drawbacks of the main classes of existing models are explored, being the copula approach, a functional
relationship, and correlated dynamics. Then the methodology of choosing and calibrating copula is detailed
in Chapter 3. The approach employs copulas to couple the counterparty’s PD and the swap rate. This method-
ology is tested on artificial data. The real-world data from regular economic situations and from periods of
financial downturn is described in Chapter 4; data for the counterparty’s PD is implied from CDS spreads.
The dependence between the counterparty’s PD and the swap rate is analysed using the copula model and
several other methods. In Chapter 5, the new product (i.e. the IPI) is introduced and its cash flows are de-
fined. A different copula model for WWR is used in this part, since the model coupling the counterparty’s
PD and the swap rate cannot describe a default event effectively. Therefore the copula model described by
Cherubini (2013) and Černý and Witzany (2018) is used in this chapter, which couples the time of default and
the swap rate. An analytical expression for the no-arbitrage price of an IPI is determined using this model.
Finally, Chapter 6 concludes and gives potential subjects for future research.

3The capital requirements for a certain exposure are lowered if an institution also has positions in credit risk mitigants for that exposure.



2
Fundamentals of Wrong-Way Risk

Modelling

The expected loss on a credit exposure is commonly calculated by multiplying three variables: the probabil-
ity of default (PD), the loss given default (LGD) and the exposure at default (EAD). The product of these three
variables equals the expected loss (EL) of a certain exposure. Regulators require banks to calculate these three
variables, either through models provided by the regulator (standardised approach, SA) or by letting banks
build their own models (internal rating-based approach, IRB). Banks are required to hold provisions for ex-
pected losses and capital reserves for unexpected losses due to defaults of their counterparties. While the
PD, LGD and EAD are often modelled separately, independence between them cannot be assumed in gen-
eral. Since the capital reserves held depend on the result of the IRB models, errors in these models may result
in banks holding too little capital, and as a consequence banks are less resilient in times of crisis. Research
into dependence between PD and LGD has been performed by e.g. Cheng and Cirillo (2019) and Fischer
et al. (2016). This thesis focuses on dependence between PD and EAD; although the term wrong-way risk
is sometimes interpreted as dependence between PD and either EAD or LGD, in this thesis it refers only to
dependence between PD and EAD.

In this chapter, the notion of wrong-way risk (WWR) is clarified first in Section 2.1. Several situations
where WWR appears are described, among others interest rate swaps, the main product in this thesis. Then
the existing literature for modelling WWR is highlighted in Section 2.2. The copula approach is described first,
being the main methodology used in this thesis; then the other approaches for WWR models are sketched to
give the reader a complete overview of the current state of the art. Finally, the benefits and drawbacks for
each of the approaches are given in Section 2.3.

2.1. Basic principles of wrong-way risk
WWR is the positive dependence between the PD and the EAD of a given counterparty. To illustrate the
concept, first consider the following example.

Example 2.1 (Line of Credit). A line of credit is a loan-related product, also known as a revolving credit facility
for consumers and SME or a committed credit line for large corporates. Banks sometimes extend lines of
credit to borrowers, where borrowers initially only borrow a small sum or nothing at all, but can borrow more
(up to a cap) as they need it. Suppose bank A extends a line of credit to borrower B. When B is in financial
distress, its PD rises and it may need more funds to fulfill its financial obligations. Therefore B is more likely
to draw extra loans from the line of credit than it is to pay back (part of) its loan. This raises the exposure for
A, while the full borrowed amount is less likely to be paid back. It is clear that this increase in exposure and
the increase in PD are dependent; this is WWR. One occurrence of this is Shell taking out large sums of cash
out of committed credit lines during the 2020 corona crisis, which hit the oil and gas sector particularly hard
(van Dijk; 2020).

In general, say counterparty A has an exposure to counterparty B. Suppose there is one case where the
credit quality of B worsens during the next year, and one case where it stays the same; the exposure of A to B

3



4 2. Fundamentals of Wrong-Way Risk Modelling

Default protection 
buyer A

Default protection 
seller B

Default protection 
seller B

Default protection 
buyer A

𝑠𝑁

𝜏𝑠𝑁

1 − 𝑅 𝑁

Annual cash flows until default of C or until end of contract

Cash flows in case of default of C

Figure 2.1: Schematic overview of the cash flows in a CDS contract. s os the CDS spread as a percentage of the notional amount, N is the
notional amount, τ is the time that has passed since the last payment date as a fraction of one year, and R is the recovery rate (i.e. (1−R)
is the loss given default). Note that contracts where payments are made more often than once a year are also possible.

in one year has a tendency to be higher in the first case. As PD and EAD both increase, the EL of A to coun-
terparty B increases compared to circumstances at origination. Whenever B defaults, there is a tendency for
the exposure to have increased, meaning a larger loss for A than in the case of no WWR. This increases credit
risk for A with respect to the case of independence between the PD of B and the EAD, which implies that any
credit risk model that assumes independence between PD and EAD likely underestimates credit risk. The
opposite of WWR is right-way risk: the tendency for the exposure of A to B to be low whenever B defaults,
meaning lower credit risk for A than in the case of independence (Hull and White; 2012).

WWR is an aspect of credit risk leading to potentially high losses. Whenever WWR is present, the default
event is exacerbated with higher losses. But even when there is no default, but only the counterparty’s credit
rating deteriorating, WWR may negatively affect an investor. When the counterparty’s credit rating deteri-
orates, the probability of the default-free value of the portfolio rising increases. With the increased PD and
EAD of the counterparty, the Basel framework requires more capital to be held. Furthermore, market partici-
pants are hesitant to bear the increased credit risk, which negatively affects the market value of the portfolio.
As with all forms of credit risk, WWR is most relevant for uncollateralised financial products that are traded
over-the-counter, without losses being mitigated due to clearing houses.

As one might expect, the presence and severity of WWR depends on the portfolio and on the counterparty.
A certain portfolio P with exposure to counterparty A may be subject to WWR, while a different portfolio Q
with exposure to counterparty A, or the same portfolio P with exposure to a different counterparty B , may
constitute right-way risk. Below two more examples are given to help one’s understanding of WWR.

Example 2.2 (Credit Default Swap). A derivative that can contain WWR is a CDS (Credit Default Swap). The
point of view of protection buyer A is taken, who enters into a CDS with protection seller B on reference entity
C. Recall that a CDS works as follows (see also Figure 2.1): A pays B a periodic payment, and if a predetermined

credit event1 occurs, B pays A a predefined amount called the notional amount, multiplied by one minus the
recovery rate. At the same time, a final periodic payment from A to B is made and the swap is terminated.
WWR for A occurs when the default events of B and C are positively dependent; and this is often the case, since

1Usually defined as the default of C, or another event involving the credit quality of C.
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Fixed rate receiverFixed rate payer

𝑠𝑁

𝑟𝑡𝑁

Annual cash flows

Figure 2.2: A schematic overview of the cash flows of an interest rate swaps. s is the fixed swap rate, rt is the floating rate, and N is the
notional amount. Contracts with payments more than once a year are also possible.

both companies are affected by macroeconomic variables.2 The dependence is even stronger if B and C are
in the same industry. (This could happen in the financial industry, since protection seller B is usually a bank
or an insurance company.) To see why this implies WWR, consider the event that both B and C default. In this
case, A should receive a large payment from B through the CDS. However, this amount is largely lost, since
B has defaulted. WWR manifests itself throughout the whole lifetime of the swap through the probability of
this double default. If the PD of C increases, the exposure of A to B increases: this exposure is equal to the
present value of expected payments, including the payment made by B to A in case C defaults. But if the PD
of C increases, the PD of B is likely to increase as well. So the exposure and the counterparty’s PD increase
together, i.e. there is WWR.

Example 2.3 (WWR in interest rate swaps). WWR in interest rate swaps is the focal point for this thesis. Pos-
sible WWR in fixed-for-floating interest rate swaps can be caused by dependence between the counterparty’s
PD and the floating rate, which is usually a benchmark interest rate such as the 6 month LIBOR rate. See Fig-
ure 2.2 for an overview of the cash flows in an interest rate swap. If there is positive dependence, an increase
in the counterparty’s PD would mean a higher floating rate and thus an increase in value of the swap for the
payer position. This means WWR for the swap payer, since their exposure rises along with the counterparty’s
PD. But negative dependence between the counterparty’s PD and the floating rate also constitutes WWR, this
time for the swap receiver. For the receiver, a decreasing floating rate increases the value of the swap and
with that his exposure to the counterparty, whose PD increases at the same time in the negative dependence
case. Historical market data provides evidence of negative dependence between interest rates and default
rates of financial companies (see for example Ben-Abdallah et al.; 2019). Similar results are found by Harris
et al. (2015) for financials as well as for a small portfolio of non-financials. This shows WWR in interest rate
swaps is indeed present in reality for the fixed rate receiver.

2.2. Models for WWR
The modelling of WWR is a specific kind of dependence modelling, for which there are several different sta-
tistical tools available. Most methodologies in the current literature can be divided into three main schools of
thought. As mentioned, the focus in this thesis is on the copula approach (number 1 below). The reasoning
behind choosing this approach over the other approaches is explained in Section 2.3. The three schools of
thought are as follows.

1. Using copulas is the most explored approach. Cherubini (2013) was one of the first to use this approach,
employing it to obtain analytic expressions for the CVA of both interest rate swaps and credit default
swaps. Many other scholars have also provided valuable insights, such as Böcker and Brunnbauer
(2014), who brought the issue of path inconsistency to attention.

2. Another approach is defining a functional relationship between the portfolio value and a variable indi-
cating counterparty credit quality. This was the subject of one of the first papers on WWR, written by
Hull and White (2012). A more general version of this approach was chosen as the most preferable out
of several methods by Ruiz et al. (2015).

2Not always; the default of one of the two companies might happen because of non-macroeconomic reasons, such as the loss of a large
client or a natural disaster. The PD of the other company may not be affected in this case.
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3. WWR can also be modelled by means of stochastic processes for the relevant variables, e.g. the interest
rate and the hazard rate when considering interest rate swaps. Dependence between these variables is
introduced by correlating the Brownian motions underlying these variables. Ben-Abdallah et al. (2019)
are among those who explored this approach for interest rate swaps and swaptions.

These approaches and their uses in the literature are discussed below.

2.2.1. First school of thought: Copula models
Before describing the existing copula models for WWR, the definition of copulas and some fundamental the-
ory are given. For more information on copulas, see Appendix A or Nelsen (2006).

A vector of random variables is defined by its joint distribution, while the individual random variables can
be considered by looking at their marginals. An intuitive point of view is that the copula of a random vector

is the function that remains when the effect the marginals have on the joint distribution is removed.3 The
formal definition of a copula is given below.

Definition 2.4. A d-dimensional copula C (⋅) is a distribution function on [0, 1]d with standard uniform marginals.

While copulas can be defined for any dimension d ≥ 2, d ∈N, this thesis only considers two-dimensional
copulas. This is because there are two random variables of interest, i.e. the probability of default and the
interest rate.

The intuitive interpretation above is confirmed by Sklar’s theorem (Sklar; 1959). This important theorem
shows that a copula can be obtained from all multivariate distribution functions, and that copulas can be
used together with univariate CDFs to construct multivariate CDFs.

Theorem 2.5 (Sklar 1959). Let F be a bivariate joint distribution with marginals F1, F2. Then there exists a
copula C ∶ [0, 1]× [0, 1]→ [0, 1] such that, for all x1, x2 ∈ R = [−∞,∞],

F (x1, x2) =C (F1 (x1) , F2 (x2)) . (2.1)

If the marginals are continuous, then C (⋅, ⋅) is unique; otherwise C (⋅, ⋅) is uniquely determined on Ran F1 ×
Ran F2, where Ran Fi = Fi (R) denotes the range of Fi (⋅) for i = 1, 2. Conversely, if C (⋅, ⋅) is a copula and F1(⋅)
and F2(⋅) are univariate distribution functions, then the function F (⋅) defined in (2.1) is a joint distribution
function with marginals F1(⋅) and F2(⋅).
Proof. See Schweizer and Sklar (1983).

Corollary 2.6. The copula C (⋅, ⋅) can be obtained from the multivariate CDF and the marginals as

C (u1, u2) = F (F←1 (u1), F
←
2 (u2)), u1, u2 ∈ [0, 1], (2.2)

where F←1 (⋅) and F←2 (⋅) denote the generalised inverses of F1(⋅) and F2(⋅) respectively.

In the above framework, C (⋅, ⋅) may be referred to as the copula of F , or as the copula of X if X is a bivariate
random variable with multivariate CDF F (⋅, ⋅) and marginals F1(⋅), F2(⋅).

One common type of copula that is considered in this thesis is the class of elliptical copulas. These are the
copulas of elliptical distributions, such as the normal distribution and the t distribution. Both of these are
copulas that are implied by a multivariate distribution. This means the copula is defined as the copula of the
corresponding multivariate distribution through (2.2). As such, there is no closed form expression for these
copulas.

The other main copula class considered in this thesis is that of Archimedean copulas. An Archimedean
copula is of the form

C (u1, u2) = φ[−1](φ(u1)+φ(u2)), u1, u2 ∈ [0, 1], (2.3)

3There has been discussion about the question of whether the copula completely describes the dependence structure of a multivariate
distribution. This has largely to do with one’s interpretation of the term ’dependence structure’. There are many, such as Genest and
Rémillard (2006), who define a dependence structure as a margin-free concept. However, some dependence concepts from extreme
value theory require marginals to be known, as described in section 8.2 of the paper by Mikosch (2006). See also Section 2.3.
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where φ ∶ [0, 1] → [0,∞] is a convex, continuous, strictly decreasing function with φ(1) = 0 and φ(0) ⩽ ∞,

known as the generator of the copula, and φ[−1](⋅) is the pseudo-inverse of φ(⋅), defined as

φ
[−1](t ) = { φ

−1(t ), 0 ⩽ t ⩽ φ(0),
0, φ(0) < t ⩽∞.

(2.4)

The pseudo-inverse φ[−1](⋅) has domain [0,∞]. The definitions of the specific copulas mentioned in this the-
sis can be found in Appendix A.

Umberto Cherubini was one of the first to use copulas to model WWR in credit default swaps, writing
about this in 2003 (Cherubini and Luciano; 2003), before the term wrong-way risk was in use. Additionally,

the first version of his 2013 paper (Cherubini; 2013) was already written in 2004.4 In both papers, the focus
is on rewriting CVA in terms of prices of other financial products, which are assumed to be known. The early
paper (Cherubini and Luciano; 2003) describes the price of a bivariate digital put option, which pays out if
the stock values of two different companies are below two respective strike prices. The price D of this option
is given by

D (S A < K A , SZ < KZ )
B

=C (D̈ A , D̈Z ) , (2.5)

where S A ≥ 0 and SZ ≥ 0 are the stock values of companies A and Z respectively, K A ≥ 0 and KZ ≥ 0 are the
respective strike prices, B > 0 is the value of a risk-free asset, C is the copula of the two stock values, and D̈ A

and D̈Z are the discounted values of single digital put options on S A and SZ with strike prices K A and KZ

respectively.

Using a structural model of default (i.e. a company goes into default if its stock value is below its debt at
some time T > 0, which is usually the maturity of a product), a double default scenario can be described by
the above formula. The payoffs of two kinds of credit derivatives are then described, considering each sce-
nario of a combination of default and no default of two companies. Combining the payoff in each scenario
with the probability of that scenario occurring then yields general copula-based formulas for the price of a
defaultable CDS and the price of a two-name credit switch. A credit switch is a multi-name credit derivative
closely related to a multi-name CDS. The Fréchet bound copulas are used in the obtained formula as well as
a mixture copula linearly interpolating between the perfect positive dependence, independence and perfect
negative dependence cases. A closed-form expression is obtained for the price of both products in all of these
dependence cases.

In the later paper by Cherubini (2013), a similar approach is taken for CVA for interest rate swaps. The
copula model used is

Q (sr (t j , tn) > u, t j−1 ≤ τ ≤ t j ) = C̃ (1−G(u), S (t j−1)−S (t j )) , (2.6)

where Q is the risk-neutral probability measure, 0 ≤ t j−1 < t j < tn are points in time, sr (t j , tn) ∈ R is the swap
rate at time t j for an IRS with maturity tn , τ ≥ 0 is the time of default of the counterparty, C̃ is the copula

of sr (t j , tn) and τ, which is assumed to be constant over time, G is the CDF of sr (t j , tn) and S is the survival
function the counterparty. Note that default is no longer modelled by structural models (as it was in Cheru-
bini and Luciano; 2003), but instead as the time of default being before maturity of the contract. This allows
taking into account the timing of the default event and the level of the swap rate at the time of default.

A general formula for CVA for interest rate swaps is developed using the above formula. The comono-
tonicity and countermonotonicity copulas are used in the formula, which constitute WWR for the payer and
receiver positions respectively. An extension is provided by the mixture copula interpolating linearly between
the independence and comonotonicity copulas. It is shown that in all cases, the CVA formula can be written
as a linear combination of CDS positions and positions in a default-free swaptions. Numerical simulations
are used to show the impact of WWR on the CVA of an IRS.

4There are no differences in content between the 2004 and 2013 versions; the only updates were to the terminology.
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A modified version of the approach by Cherubini (2013) for interest rate swaps is given by Černý and
Witzany (2018). They point out a flaw in (2.6), noting that according to the copula definition,

Q (sr (ti+1, tn) > u,τ ⩽ t ) = C̃ (1−G(u), S(t )) (2.7)

for all t , and so

Q (sr (ti+1, tn) > u, ti ≤ τ ≤ ti+1) = C̃ (1−G(u), S(ti ))− C̃ (1−G(u), S(ti+1)). (2.8)

Using this modified copula model, and the same mixture copula as Cherubini (2013), new expressions for
the CVA for interest rate swaps in terms of swaptions and credit default swaps are found. Finally, IRS prices
including CVA are calculated for several WWR models and different levels of WWR.

A copula approach for portfolios in general is given by Böcker and Brunnbauer (2014). Here the copula
model is as follows:

Q(Ṽ (s) ⩽ ṽ ,τ ⩽ t ) =Cs (Gs (ṽ), F (t )) ṽ ∈ R, t > 0, (2.9)

where Ṽ (s) is the discounted portfolio value at time s > 0 with CDF Gs (⋅), F (⋅) is the CDF of τ, and Cs is
the copula of Ṽ (s) and τ. Now let Ω be the path space of market variables. The paper then considers the
cumulated default probability over the interval [0, T ] along a path t ↦ Ṽ (t ,ω),ω ∈ Ω, of the portfolio value,
which is given by:

Q(τ(ω) ⩽ T ) = ∫
T

0
φt (Gt (Ṽ (t ,ω)), F (t )) f (t )dt (2.10)

where φt is the copula density of Ct and in the discrete-time setting Gt (Ṽ (t ,ω)) can be estimated by the rel-
ative rank of the portfolio value of path ω at time t . Since this rank is in general not independent from t , the
integral in (2.10) does not calculate to 1 when T →∞, leading to an inconsistent pathwise default probability.
This is a consequence of modelling dependence between a spatial variable (portfolio value) and a temporal
value (time of default) using a copula. Another consequence of this is that tail dependence works differently
than expected, since the portfolio value around the time of default is not affected by tail dependence if the
time of default is not in the tail of its distribution. A solution for the path inconsistency is proposed by not
using the portfolio value at the current point in time in the copula, but a time-independent variable such as
the portfolio value at a fixed point in time or the average portfolio value up to a fixed point in time.

Another combination of copulas and structural models of default is explored by Hofer (2016). He uses the
structural approach of assuming that a counterparty defaults when its equity drops below a certain barrier
level. Then the distribution of the counterparty’s equity value is coupled with the portfolio value through

Q(Vt j
≤ v, St j

≤ s) =C j (Gt j
(v), FSt j

(s)) , (2.11)

where Vt j
∈ R is the portfolio value at time t j > 0 with CDF Gt j

(⋅), St j
∈ R is the counterparty’s equity value

at time t j with CDF FSt j
(⋅), and C j is their copula. The calculations are done in a discretised, path-wise fash-

ion, making the approach path-consistent in terms of Böcker and Brunnbauer (2014). An advantage of this
approach is that calibration of the copula can be done using past data for the portfolio constituents and the
equity of the counterparty.

A similar approach is given by Pan (2018), who analyzes CVA for commodity futures using a Gaussian
copula one-factor model. Here the counterparty asset value is described by

At = βY +
√

1−β2εt , (2.12)

where Y > 0 is a systemic factor called the credit deterioration indicator, β < 0 is the correlation coefficient
between the asset value At and the risk factor Y , and εt ∈ R is an idiosyncratic factor. Default of the counter-
party before time t is modelled as the event At <Ct , where Ct is a credit criterion given by

Ct = φ
−1 (PDt ) , (2.13)
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with φ
−1(⋅) denoting the inverse of the standard normal CDF and PDt being obtained from transition prob-

abilities published by rating agencies such as S&P. The commodity price is given by a formula containing a
standard normally distributed market factor X , which is related to credit factor Y through

X = ρY +
√

1−ρ2ω, (2.14)

where ρ ∈ [−1, 1] is the Pearson correlation coefficient between the market factor and the credit factor, andω
is a standard normally distributed random variable independent from Y . This is used to obtain an analytical
expression for CVA on commodity futures.

Similarly, Rosen and Saunders (2012) also use a credit risk factor and a market factor. The credit risk factor
Z is a standard normally distributed variable given by

Z = βY +
√

1−β2ε, (2.15)

where Y and ε are both standard normally distributed variables representing systemic and idiosyncratic risk
respectively. This is similar to (2.12), with the difference being that here the credit risk factor does not change
over time and it is a latent, standard normally distributed random variable rather than representing asset
value. Default occurs when

Z = φ
−1 (F (t )) , (2.16)

where φ−1(⋅) is the inverse of the standard normal CDF and F (⋅) is the CDF of the default time of the coun-
terparty. For the exposure modelling, it is assumed that there are M ∈ N possible scenarios simulated using
Monte Carlo. These scenarios are denoted with ωm , with m = 1, . . . , M . The exposure scenario that is realised
is called ω, and is determined as follows:

ω =ωm ⇔Cm−1 < X ≤Cm , m = 1, . . . , M , (2.17)

where X is a standard normally distributed market factor, and the thresholds Cm are given by

Cm =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∞ m = 0,

φ
−1 (Qm) m = 1, . . . , M −1,
∞ m = M ,

(2.18)

with

Qm =

m

∑
j=1

qm , m = 1, . . . , M , (2.19)

and where
qm = P (ω =ωm), m = 1, . . . , M (2.20)

is the probability of the exposure scenario ωm being attained. A bivariate normal distribution is used for the
systemic credit factor Y and the market factor X . This naturally implies that a Gaussian copula connects the
two factors, as in Pan (2018).

2.2.2. Second school of thought: Functional relationship
A famous paper that is often cited in other research into WWR (by e.g. Ben-Abdallah et al.; 2019; Černý and
Witzany; 2018) is due to Hull and White (2012). Their approach is to model a relationship between the coun-
terparty’s hazard rate h and the portfolio value w . This relationship is given by the function

h(t ) = exp[a(t )+bw(t )+σε], (2.21)

where a ∶ [0,∞) → R is a function of time, b ∈ R is a constant measuring the amount of right or wrong-way
risk, σ > 0 is a constant measuring the amount of noise in the relationship, and ε is a random variable with a
standard normal distribution. However, the noise term is neglected based on its low impact on the results in
practice. Hence, the model becomes

h(t ) = exp[a(t )+bw(t )], (2.22)



10 2. Fundamentals of Wrong-Way Risk Modelling

implying that some shift in the hazard rate corresponds deterministically to a shift in the portfolio value, and
vice versa. For this reason the model has been regarded as non-probabilistic (Böcker and Brunnbauer; 2014).

A modified version of this approach is given by Ruiz et al. (2015). Rather than the full portfolio value, a
single market variable x is used which is related to PD rather than hazard rate. The market variable x can be
e.g. the equity price for corporates or the FX rate of the currency for sovereigns. The relation is described as

PD = g (x)+σε, (2.23)

where g ∶ R → R is the function describing the dependence structure, σ > 0 is a constant measuring the
amount of noise in the relationship, and ε is a random variable with a standard normal distribution. Four
different forms for g are tested against market data to see which performs best in terms of best fit and smallest
noise. These forms are power, exponential, logarithmic and linear:

g1 = A1xB1 ,

g2 = A2eB2x ,
g3 = A3 +B3 ln(x),
g4 = A4 +B4x.

(2.24)

The best performance is found for the power function, while the exponential function, which is the function
also used by Hull and White (2012), works second best.

2.2.3. Third school of thought: Correlated dynamics
This is the approach considered by e.g. Ben-Abdallah et al. (2019). Interest rate is described by a CCG model
(Casassus et al.; 2005), which assumes stochastic interest rates as well as stochastic interest rate volatility. The
CCG model is given by

drt = ξr (θr t − rt )d t +
√

Vt d Z1t ,

dθr t = (γ(t )−2ξrθr t +
Vt

ξr
)d t ,

dVt = ξV (θV −Vt )d t +νV

√
Vt (ρr V d Z1t +

√
1−ρ2

r V d Z2t ) ,

(2.25)

where the instantaneous spot rate rt , the long-run interest rate θr t and the interest rate variance Vt are
stochastic processes. The spot rate follows a mean-reverting process with speed of adjustment ξr > 0. The
variance process is a square root process with speed of adjustment ξV > 0, long-run variance level θV and
volatility of variance parameter νV . γ(t ) is a deterministic function of time, and Z1t and Z2t are two indepen-
dent standard Brownian motions. The parameter ρr V ∈ [−1, 1] is the Pearson correlation coefficient between
the Brownian components of rt and Vt .

For the default intensity λt a CIR model (Cox et al.; 1985) is used, given by

dλt = ξλ (θλ −λt )d t +νλ
√
λt

⎛
⎜
⎝
ρrλd Z1t +

ρV λ −ρr V ρrλ√
1−ρ2

r V

d Z2t +

√
√√√√√⎷1−ρ2

rλ
−

(ρV λ −ρr V ρrλ)2

1−ρ2
r V

d Z3t

⎞
⎟
⎠

, (2.26)

where λt is a mean-reverting stochastic process with speed of adjustment ξλ > 0, long-run default intensity
θλ, and volatility νλ. Z3t is a standard Brownian motion independent of Z1t and Z2t , ρrλ ∈ [−1, 1] is the Pear-
son correlation coefficient between the Brownian components of rt and λt , and ρV λ ∈ [−1, 1] is the Pearson
correlation coefficient between the Brownian components of Vt and λt . This expression can be used to cal-
culate the probability of a company defaulting between two points in time, by which the time of default can
be simulated. The parameters are estimated using historical market data, and the impact of WWR on CVA for
interest rate swaps and interest rate swaptions is assessed. This is done by comparing the cases of different
combinations of zero and nonzero ρrλ and ρV λ. The findings are that the calibrated negative values of ρrλ

have the expected effect of WWR for receiver positions, while the effect of nonzero ρV λ is minimal for the CVA
of both swaps and swaptions.
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Harris et al. (2015) use a very similar method. Their model for the instantaneous forward rate f (t , T ) is
given by

d ft ,T = µ
f
t ,T d t +

N

∑
i=1

σ
f ,i
t ,T

√
v i

t d Z i
1t

d v i
t = k i (θi − v i

t )d t +σi
√

v i
t (ρ

i d Z i
1t +

√
1−ρi 2d Z i

2t ) , i = 1, . . . , N ,

(2.27)

where ft ,T is a stochastic process describing the instantaneous forward rate observed at time t ≥ 0 for the rate

taking effect at time T ≥ t , and v i
t is a CIR-process describing the variance of the i -th random driver of ft ,T .

µ
f
t ,T and σ

f ,i
t ,T are deterministic functions mapping from [0, T ]×R to R. k i

> 0 denotes the speed of adjust-

ment of v i
t , θi

> 0 denotes the long-run variance and σ
i denotes the volatility of variance. Z i

1t and Z i
2t are

independent standard Brownian motions with respect to the risk-neutral measure. ρi
∈ [−1, 1] is the Pear-

son correlation coefficient between the i -th Brownian component of ft ,T and the Brownian component of v i
t .

The hazard rate λt is also given by a CIR process:

dλt = ξλ (θλ −λt )d t +νλ
√
λt dWt , (2.28)

where the parameters are as in (2.26) and Wt is a standard Brownian motion correlated with the Brownian

components of the v i
t . Default between times t and t +d t is modelled by the event

ω ≤ λt d t , (2.29)

where ω is a standard uniform random variable and λt d t is the probability of default between times t and
t + d t conditional on no earlier default. The model is calibrated and numerical results are obtained on the
impact of correlation between the hazard rate and the interest rate variance on the credit risk of collateralised
interest rate derivatives.

The approaches by Ben-Abdallah et al. (2019) and Harris et al. (2015) correspond roughly to using a Gaus-
sian copula, since increments of standard Brownian motions are normally distributed and the dependence is
modelled through a single correlation parameter.

A somewhat different approach, but one that is also based on correlated dynamics, is given by Brigo et al.
(2018). They consider CVA for options, hence dynamics for the default intensity and the option prices are
given. The option prices are based on the underlying stock St following a geometric Brownian motion, i.e.
under the risk-neutral measure,

dSt = r St d t +σSt dW
S
t , (2.30)

where r ∈ R is the risk-free rate, σ > 0 is the volatility of the stock, and W S
t is a standard Brownian motion.

Once again, default intensity is modelled through a CIR process, given by

dλt = ξλ (θλ −λt )d t +νλ
√
λt dW

λ
t , (2.31)

with parameters as in (2.26) and W λ
t a standard Brownian motion with correlation ρ ∈ [−1, 1] with W S

t . A
change of measure is applied to account for WWR. For two proxies of the change of measure, analytic expres-
sions are obtained for expected positive exposure and CVA.

2.3. Benefits and drawbacks of the models
As mentioned before, copulas are the approach to modelling WWR in this thesis. To substantiate the choice
for this methodology, the benefits and drawbacks of all three models are explored here. A critical view on
copulas as a statistical tool is given by Mikosch (2006), as a response to the surge in popularity of copulas in
the early 2000s. Although his paper was itself criticised by Genest and Rémillard (2006), he describes several
points which are good to take into account when using copulas. Below, the main benefits of copulas are de-
tailed, after which the three main points of attention are described. Then the benefits and drawbacks of the
functional relationship and correlated dynamics are given, as well as the reasoning for not using these models.
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First of all, a great benefit of copulas is their flexibility. A large amount of copula families are explored
in the literature, and mixtures or other adaptations of copulas can be created as well. Many different com-
binations of tail dependence, radial symmetry, exchangeability, positive or negative dependence and other
properties can be found in existing copulas.

Furthermore, the splitting of a multivariate distribution into marginals and a copula allows for specifying
a copula independently from the marginals. For example, a multivariate distribution with normal marginals
and a t copula may be created. This also provides a way to specify a dependence structure between two ran-
dom variables with different marginals. These two points are an advantage over using a standard multivariate
distribution such as the multivariate beta distribution, while all standard multivariate distributions can also
be constructed using marginals and a copula.

Another benefit is that copulas can be extracted from any multivariate distribution through Theorem 2.5.
In this way, a copula can be created corresponding to any dependence structure described by a multivariate
distribution function. In addition, since researchers have been studying copulas for a long time (see for ex-
ample Sklar; 1959), much is known about copulas and there is a lot of literature available. Finally, copulas are
intuitive objects in statistics, since they are themselves multivariate distribution functions.

The first point of attention for copulas is that the marginals must not be disregarded when a complete
view of dependence is to be obtained. While copulas give a lot of useful information on the dependence
structure, there are dependence measures which cannot be calculated with only the information the copula
gives. When one is only interested in information that is contained in the copula, such as the ordering of
data, the marginals do not need to be taken into account. Otherwise, the copula can be used together with
the marginals, which together completely define the multivariate distribution through Theorem 2.5. This is
an avoidable pitfall rather than a drawback, however.

Another point of attention is fitting copulas to data. When fitting a multivariate distribution to multivari-
ate data, observations directly from the copula itself are generally not available. This means one first needs
to fit marginals to the data, after which the data can be transformed to virtual data points to which a copula
can be fitted. This process is described in detail in Section 3.1 (see also McNeil et al.; 2005). Since two fitting
processes are carried out, one needs to keep in mind that the fit could be worse than if a multivariate distri-
bution would have been directly fitted.

Finally, a general point on mathematical tools is that they are intended for specific uses, and they perform
worse when used for other purposes. This point also applies to copulas. They work best when modelling
dependence between two spatial variables, and there might be issues when one tries to model space-time
dependence with them. Some of these issues are described by Böcker and Brunnbauer (2014).

The main benefits of the functional relationship approach are described by Ruiz et al. (2015), being the
simplicity of the mathematical framework and the robustness of its calibration to empirical data. However,
the model has been regarded as non-probabilistic (Böcker and Brunnbauer; 2014). Indeed, the only stochas-
tic part is a noise term in the otherwise deterministic function describing the dependence structure. This is
the main reason this approach is not used in this thesis.

A key advantage of the correlated dynamics approach is that numerical tools are well-suited to model
stochastic processes such as forward dynamics. Introducing the dependence through correlation in the un-
derlying Brownian motion maintains simplicity. The reason this model is not used, however, is that it is
restricted to a single type of dependence structure. For example, it cannot be altered to account for more
upper tail dependence while keeping the same level of lower tail dependence, or to account for the presence
or absence of radial symmetry.

In conclusion, the copula approach is used mainly because of its flexibility and because it allows for any
combination of copula and marginals. There are several pitfalls, being that marginals must not be disre-
garded, the indirect fitting process may affect the quality of the fit, and issues may arise when attempting to
model space-time dependence with copulas. Although these pitfalls are important to keep in mind, they can
be navigated around by using copulas with care.



3
Modelling dependence between

probability of default and interest rate

As described in Section 2.3, copulas are useful tools for dependence modelling, but they are not without their
complications. One of the pitfalls in the use of copulas is fitting them to data. As true observations from a
copula are generally not available, an estimate of the marginals is required to be able to estimate the copula
corresponding to the distribution generating the data. This estimate for the marginals introduces more inac-
curacy in the resulting estimate. Furthermore, as different copulas can give comparable results, such as the t
and Gaussian copulas, it may be difficult to distinguish which copula underlies the data. A careful approach
to copula fitting is therefore required.

One methodology of checking the robustness of a fitting method is to use a dataset where the underlying
distribution is known. For a copula approach, this implies knowing both the marginals and the copula of
the dataset. To that end, a dataset of probabilities of default and interest rates is simulated in this chapter.
Fitting estimates for the marginals as well as an estimate for the copula to this known dataset yields valuable
insights with regard to the performance of the fitting process. Furthermore, useful information is obtained
about which copulas show similar results when fitting them to data and which copulas show different results.

The chapter starts by detailing a modified version of maximum likelihood estimation to be applied to
copulas in Section 3.1. Next, the methodology is applied to artificial data: the process of generating the
dataset of artificial data is described in Section 3.2.1; then in Section 3.2.2, the fitting process is applied to the
generated dataset. The chapter concludes by analysing these results and drawing conclusions from them.

3.1. Copula fitting method
The method used to fit copulas to the data is maximum likelihood estimation (MLE). Fitting a copula to a
dataset with MLE is not as straightforward as fitting a multivariate distribution, however; the dataset can
be viewed as a set of observations from a multivariate distribution, while direct observations from the copula
are generally unavailable. However, the copula and the multivariate distribution are related through Theorem
2.5. This theorem shows that the marginals F1 and F2 are needed to move from the multivariate distribution
to the copula; similarly, the marginals can be used to transform the dataset into a so-called pseudo-sample
of observations from the copula. The empirical marginals F̂1 and F̂2 are used as estimates for the marginals.
The pseudo-sample then consists of the vectors Û1, . . . , Ûn given by

Ûi = (Ûi ,1, Ûi ,2) = (F̂−1
1 (Xi ,1), F̂

−1
2 (Xi ,2)), i = 1, . . . , n, (3.1)

where (Xi ,1, Xi ,2), i = 1, . . . , n are the original observations and F̂−1
1 and F̂−1

2 denote the inverses of F̂1 and F̂2.
Then this pseudo-sample is used as if it were a sample from the copula and use MLE to estimate the copula
parameters. This means

ln L (θ; Û1, . . . , Ûn) =
n

∑
i=1

ln cθ (Ûi ) (3.2)

13
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is maximised with respect to parameter θ, where cθ is the copula density as in (A.22) of a parametric copula
Cθ. Copula parameters can be estimated in several ways (Nelsen; 2006). In this thesis MLE is mainly used,
because of its immediate use and the attractive properties, such as asymptotic consistency and efficiency
(Newey and McFadden; 1994). Furthermore, several goodness-of-fit test statistics, such as the Akaike Infor-
mation Criterion (AIC), take the (log-)likelihood as an input, so it is a small step to calculate these statistics
after performing MLE.

3.2. Application to artificial data
Before looking at real-world data, a model to simulate artificial data is built. This artificial data aids in under-
standing the process of fitting a copula to market data. It is used to see if the fitting model returns the same
copula used to simulate the artificial data. Additionally, the differences between fitting different copulas can
be observed.

Daily data is simulated for instantaneous interest rates and hazard rates; these instantaneous interest
rates are used to calculate implied swap rates. As is common practice in the field of finance, the log-returns
of the data are considered. The benefit of using log-returns or returns over raw data is normalisation; while
the data may originate from different price levels, the (log-)returns are comparable. As daily data is simu-
lated, the returns are small, which means the approximation log(1+r ) ≈ r, ∣r ∣≪ 1 can be used, ensuring that
log-returns are close to actual returns. The main benefit of using log-returns over returns is time-additivity;
the log-return over n ∈ N days can be described by the sum of single-day log-returns, while the raw return
over n days equals the product of single-day returns.

For this simulation, the marginals for instantaneous interest rates and hazard rates need to be defined, as
well as a copula. The copula choice is left open for now, to allow for checking the effects of using different
copulas.

3.2.1. Generating artificial data
For the marginal of instantaneous interest rates rt ∈ R, t ≥ 0, it is assumed that rt follows a Cox-Ingersoll-Ross
(CIR) process (Cox et al.; 1985). This is a mean-reverting process given by

drt = a (b − rt )d t +σr
√

rt dW
r
t , (3.3)

where W r
t is a standard Brownian motion, b ∈ R is the mean, a > 0 is the speed of mean reversion and σ ≥ 0

is the volatility. This process is well-known to be a good model for instantaneous interest rates, although it
only models positive rates. To estimate the parameters of the process, the formula for the T -year swap rate
srT ∶ [0,∞)→ R at time t is used, given by

srT (t ) = 1
T
∫

t+T

t
r (s)d s, T > 0. (3.4)

Using the fundamental theorem of calculus, this can be rewritten to

d
d t

srT (t ) = r (t +T )− r (t )
T

. (3.5)

For T → 0, the right side is equivalent to the definition of the derivative of r (t ), meaning that srT approxi-
mates r for T small enough. Therefore, the overnight London Interbank Offered Rate (LIBOR) is used as an

approximation for realised instantaneous interest rate.1 The CIR process can be discretised as

rt+∆t − rt√
r t

=
ab∆t√

r t

− a
√

r t∆t +σ
√
∆tεt , (3.6)

where the εt are i.i.d. standard normally distributed random variables. Through this equation, ordinary least
squares (OLS) and overnight LIBOR data obtained from Quandl are used to estimate the parameters of the
CIR process. rt is calculated as a percentage, i.e. rt = 1 means the overnight rate is 1%. This scaling has no

1The LIBOR is chosen because it is a benchmark interest rate frequently used as a basis for the floating leg of an interest rate swap. Even
though LIBOR is not a swap rate, the approximation in (3.5) still holds.
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r0 0.4345
a 0.7199
b 0.2136
σr 0.3377

λ0 0.0152
α 1.6085
β 0.0269
σλ 0.1799

Table 3.1: Parameters for the CIR processes detailing the marginals of the instantaneous interest rate (parameters on the left) and the
hazard rate (right). r0 is the USD overnight LIBOR on November 7, 2016. rt is calculated as a percentage, i.e. rt = 1 means the overnight
rate is 1%.

effect on the log-returns.

For the marginal of hazard rates λt ≥ 0, the approach by Ben-Abdallah et al. (2019) is followed for the
purposes of generating artificial data. This means the hazard rates follow a CIR process as well:

dλt = α (β−λt )d t +σλ
√
λt dW

λ
t , (3.7)

with standard Brownian motion W λ
t , mean b ∈ R, speed of mean reversion a > 0 and volatility σ ≥ 0. As the

purpose of this process is only to generate realistic data, the parameters used are those found for JP Morgan
in the calibration by Ben-Abdallah et al. (2019). The parameters for the marginals of both the instantaneous
interest rate and the hazard rate are shown in Table 3.1. Note that the calibration method uses data from
during the 2008 credit crisis, so hazard rate levels and volatility are higher compared to stable periods.

The method used to obtain a sample from the copula is as follows. The goal is to obtain a sample of swap
rate log-returns and hazard rate log-returns with marginals F1, F2 such that the swap rate and the hazard rate
both follow a CIR process. Then if some copula C is the copula underlying the sample, C (F1(x1), F2(x2)) is the
joint distribution function underlying the sample due to Theorem 2.5 (Sklar).

The first step is to obtain a sample from the copula itself, i.e. from the joint distribution with CDF C . For
copulas derived from well-known distributions such as the t and Gaussian copulas, obtaining such a sample
is simple; for other copulas such as Archimedean copulas, this is slightly more involved. The sampling pro-
cesses for the t , Gaussian and Clayton copulas are shown in the examples below.

Example 3.1 (Sampling from a Gaussian or t copula). Suppose F ∶ R2
→ [0, 1] is the bivariate normal dis-

tribution for some set of parameters and F1, F2 ∶ R → [0, 1] are its marginals. If X = (X1, X2) is a realisation
from F , then one simply needs to transform each component with its marginal to obtain U = (U1,U2) =
(F1(X1), F2(X2)), which has the Gaussian copula as its joint distribution function. If instead F is the bivari-
ate t distribution with marginals F1 and F2, the above method yields a realisation from the t copula.

Example 3.2 (Sampling from a Clayton copula). Suppose V̂ is a realisation of the gamma distributed random

variable V ∼ Ga(1/θ, 1) with θ > 0. The CDF of V has Laplace-Stieltjes transform2 Ĝ(t ) = (1+ t )−1/θ , with

inverse Ĝ−1(t ) = t−θ − 1. Note that Ĝ−1(t ) is equal to the generator (t−θ −1)/θ of the Clayton copula up to

the constant 1/θ. Now if X̂1, X̂2 are two independent realisations from a standard uniform distribution, then
Û = (Ĝ (− ln(X̂1)/V ) ,Ĝ (− ln(X̂2)/V )) has the Clayton copula as its joint distribution function. Samples from
other Archimedean copulas can be obtained in a similar way, obtaining realisations from a random variable
V such that the Laplace-Stieltjes transform of the CDF of V is the inverse of the generator of the copula.

Suppose Û1, . . . , Ûn = (Û1,1,Û1,2), . . . , ( ˆUn,1, ˆUn,2) is a sample of the desired copula. Now the quantile trans-
formation can be used to obtain X̂1, . . . , X̂n , where

X̂i = (X̂i ,1, X̂i ,2) = (F−1
1 (Û1,i ), F

−1
2 (Û2,i )), i = 1, . . . , n. (3.8)

Then X̂1, . . . , X̂n is a sample from a multivariate distribution with the desired marginals F1 and F2 and the
desired joint distribution function C (F1(x1), F2(x2)). The marginals are such that the swap rate and the haz-
ard rate follow a CIR process; these marginals, however, cannot be obtained explicitly in a straightforward

2The Laplace-Stieltjes transform of a CDF G ∶ [0,∞)→ [0, 1] is

Ĝ(t ) = ∫
∞

0
e
−t x

dG(x), t ⩾ 0.
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manner. Therefore, the CIR processes for the swap rate and hazard rate as defined earlier in this section are
simulated, and log-returns are calculated from the results. The empirical distributions F̂1 and F̂2 based on
these results for the log-returns are used as estimates for the marginals F1 and F2 in (3.8) to obtain the desired
sample.

3.2.2. Fitting copulas to artificial data
The procedure described in Section 3.1 is now used to fit several different copulas to the artificial data. The
t , Gaussian, Frank, Clayton, Gumbel and Joecopulas are considered. The reason for this choice is that these
copulas are most likely to be a good fit to the data, as described in Section 4.6.

All of these copulas are first used in the simulation for artificial data. All copula parameters are chosen
such that the Kendall’s τ correlation is equal to 0.4, in order to have comparable results. The t copula used
for the simulation has 4 degrees of freedom. All of the copulas which exhibit tail dependence in one of the
two tails do so in the upper tail, except for the Clayton copula. Therefore, the rotated Clayton copula is used;
this is the copula of the bivariate random variable U when the copula of 1−U is the Clayton copula, i.e. the
rotated Clayton copula is the survival copula of the Clayton copula.

Several different copulas are now fitted to the artificial data. The results are shown in Table 3.2. The

goodness-of-fit test based on the test statistic S
(B )
N as described by Genest et al. (2009) is performed. The null

hypothesis is H0 ∶ C ∈ C0, where C is the copula associated with the bivariate distribution underlying the
data, and C0 is a certain parametric family of copulas. The test statistic is defined as

S
(B )
n = n∫

[0,1]2
{Dn(u)−C⊥(u)}2

du, (3.9)

where n ∈N is the size of the dataset, C⊥ is the independence copula, u = (u1, u2) ∈ [0, 1]2, and

Dn(u) = 1
n

n

∑
i=1

1{Ûi ≤ u} (3.10)

is the empirical distribution associated with pseudo-observations Ûi ∈ [0, 1]2, with indicator function 1{⋅} .

There is no explicit expression for the distribution of S
(B )
N , so the standard deviation of the test statistic cannot

be obtained. The p-values, however, are obtained by means of a bootstrap procedure.

The results in Table 3.2 show that for most sets of data, the best fitting copula is the true copula used to
generate the data. For the data generated by the t , Frank, rotated Clayton and Gumbel copulas, the lowest
AIC and highest p-value are found for the true copula. For data generated by the t and Frank copulas, there is
no other copula that fits the data well. In addition, the contour plots of copula densities in Figure 3.1 match
well with the superimposed scatterplots of the pseudo-observations of the data generated by the true copulas.

According to the test, the t copula is a better fit for the data generated by the Gaussian copula than the
Gaussian copula itself. This is as expected, since the t copula approaches the Gaussian copula as the amount
of degrees of freedom tends to infinity. The number of fitted degrees of freedom for the t copula is indeed
large (6175.64). Since the t copula has an extra parameter, the Gaussian copula does perform better in terms
of the AIC. The data generated by the Gaussian copula is also described moderately well by the Frank and
Gumbel copulas.

A remarkable observation is that according to the test, the rotated Clayton copula is a better fit for the
data generated by the Joe copula than the Joe copula itself, reporting a significantly higher p-value. The AIC
for this dataset is lower (implying a better fit) for the Joe copula, but only slightly. Similarly, for the dataset
generated by the rotated Clayton copula, the Joe copula has a lower AIC than the rotated Clayton copula, but
the rotated Clayton copula has a slightly higher p-value. For each of the other fitted copulas, the results for
the rotated Clayton and Joe copulas as true copulas are close to each other. This indicates that the pseudo-
observations of the data generated by these two copulas are very similar. The contour plots in Figure 3.1 show
that the densities of these two copulas are indeed very similar. Conversely, note the fitting results of the ro-
tated Clayton and Joe copulas for data generated by the other copulas. For every single dataset, the rotated
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Clayton copula is a better fit than the Joe copula.

Something that stands out in the contour plots is that the copula density has peaks in the extreme tails,
in the corners of the graphs. This is because most copula densities contain terms which diverge as their ar-

guments tend to 0 or 1, such as the inverses t−1(⋅) and Φ−1(⋅) of the univariate t and Gaussian distributions
respectively for the t and Gaussian copulas. This phenomenon is mostly present in those tails where there is
tail dependence, although not exclusively. It is also observed for the Gaussian copula, but for the copulas with
tail dependence in only one tail, i.e. the Gumbel, Joe and rotated Clayton copulas, this phenomenon is barely
present in the tails where these copulas do not have tail dependence. Also note that these density peaks in
the extreme tails are far higher than the the highest boundary in the contour plots, but scaling is such that the
main parts of the plots are most informative. Therefore some information about the extremal behaviour of
the copula densities, in the plot areas within the highest contour lines (darkest red part), is not visible in the
contour plots.

In conclusion, the goodness-of-fit test combined with the AIC can generally identify the true copula as-
sociated with the data. This provides evidence for good discriminatory power of the fitting process. Several
useful observations can be made, such as the datasets generated by the rotated Clayton and Joe copulas being
similar, while the rotated Clayton copula is a better fit than the Joe copula for all datasets not generated by
the rotated Clayton or Joe copulas. These observations are good to take into account when fitting copulas to
real-world data.
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True Fitted copula

copula C t C Ga C Fr C R−Cl C Gu C Joe

C t Parameter(s) 0.63, 2.88 0.63 4.67 1.14 1.75 1.98
LL 114.58 100.25 89.50 84.23 102.49 82.21

S
(B )
N 0.041 0.053 0.048 0.098 0.064 0.171

p-value 0.355 0.109 0.107 0.040 0.028 0.000
AIC -225.16 -198.50 -176.99 -166.47 -202.97 -162.42

C Ga Parameter(s) 0.65, 6175.64 0.65 4.86 1.06 1.70 1.92
LL 105.64 105.64 100.97 81.11 94.55 74.60

S
(B )
N 0.034 0.034 0.038 0.088 0.043 0.215

p-value 0.420 0.412 0.293 0.071 0.228 0.000
AIC -207.28 -209.28 -199.95 -160.21 -187.10 -147.21

C Fr Parameter(s) 0.53, 22418.48 0.53 3.88 0.67 1.47 1.57
LL 63.33 63.33 68.60 39.76 49.84 32.67

S
(B )
N 0.050 0.050 0.017 0.132 0.097 0.295

p-value 0.087 0.114 0.963 0.010 0.000 0.000
AIC -122.67 -124.67 -135.20 -77.53 -97.69 -63.33

C R−Cl Parameter(s) 0.61, 3.96 0.59 4.48 1.57 1.81 2.38
LL 96.30 83.89 84.38 127.98 118.16 129.04

S
(B )
N 0.103 0.069 0.081 0.028 0.050 0.024

p-value 0.004 0.022 0.006 0.850 0.130 0.757
AIC -188.60 -165.78 -166.76 -253.96 -234.33 -256.08

C Gu Parameter(s) 0.62, 10.64 0.62 4.62 1.17 1.72 2.02
LL 94.77 93.20 90.19 88.80 98.05 86.28

S
(B )
N 0.049 0.048 0.051 0.053 0.035 0.111

p-value 0.134 0.138 0.086 0.321 0.356 0.001
AIC -185.55 -184.41 -178.38 -175.60 -194.10 -170.55

C Joe Parameter(s) 0.61, 5.38 0.61 4.50 1.49 1.80 2.30
LL 94.57 89.97 85.85 120.72 115.31 120.83

S
(B )
N 0.096 0.073 0.084 0.023 0.049 0.035

p-value 0.008 0.014 0.003 0.939 0.134 0.346
AIC -185.13 -177.93 -169.69 -239.44 -228.63 -239.65

Table 3.2: Results of fitting the t , Gaussian, Frank, rotated Clayton, Gumbel and Joe copulas to artificial data generated by these copulas.
‘Parameter(s)’ denotes the fitted estimates of ρ and the degrees of freedom respectively for the t copula, ρ for the Gaussian copula, and
θ for the Frank, rotated Clayton, Gumbel and Joe copulas. The t , Gaussian, Frank and Gumbel copulas are recognised as the true copula
by the fitting process, while the goodness of fit statistics do not distinguish well between the rotated Clayton and Joe copulas. For a
description of the test and further interpretation see Section 3.2.2.
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Contour plots
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(a) t copula
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(b) Gaussian copula
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(c) Frank copula
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(d) Rotated Clayton copula
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(e) Gumbel copula
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(f) Joe copula

Figure 3.1: Contour plots of the densities of the t , Gaussian, Frank, rotated Clayton, Gumbel and Joe copulas, superimposed with scat-
terplots of the pseudo-observations of the artificial data generated by these respective copulas. Note that the scales for the contour plots
are different for each copula. The scatterplots and the contour plots fit each other well, while the similarity between the densities of the
rotated Clayton and Joe copulas is clear.





4
Data & Results

When dealing with defaults, an issue is often the lack of historical data or the poor quality of the data. Espe-
cially for companies with a high credit rating, very few similar companies have defaulted in the past. Further-
more, past defaults have usually occurred in periods of economic downturn. This gives rise to another issue
when dependence between defaults and market conditions such as interest rates is considered; it is especially
difficult to obtain enough meaningful data on defaults for periods with few defaults and on their behaviour
with respect to interest rates. As is further discussed in this chapter, a solution for this is to use market-
implied PDs rather than historical default data. These implied PDs can be recovered from CDS spread data,
since these spreads depend on the PD of the reference entity.

First, Section 4.1 details this method of extracting implied PD data from observed CDS spread data. The
data on CDS spreads and swap rates is then discussed in Section 4.2 and Section 4.3 respectively. The depen-
dence between swap rates and implied PDs is explored in Section 4.4. The collection and the analysis of data
from downturn periods is described in Section 4.5. Finally, several copulas are fit to both the non-downturn
data and the downturn data in Section 4.6 and the results are discussed. More summary statistics describing
the data are provided in Appendix C.

4.1. Market-implied PD
The product under consideration is a fixed for floating interest rate swap, where on a predefined set of pay-
ment dates, the fixed rate payer pays fixed rate s times an agreed upon notional amount N to the fixed rate
receiver. In return, the receiver pays floating rate rt times the notional amount N to the payer, where rt

changes over time. Usually, rt is a benchmark interest rate such as the 6 month LIBOR. The relevant PD is
the probability that a company defaults on its interest rate swaps, i.e. the IRS PD. It would be safe to assume
that when a company goes into default, it defaults on its interest rate swaps as well. However, as described
at the beginning of this chapter, historical data on defaults is unavailable in large enough quantities and in a
sufficient number of different market conditions. A more widely available alternative is data on CDS spreads.
Recall that in a CDS, counterparty A pays counterparty B a fixed spread, and in return B pays A a fixed amount
when the reference entity goes into default. The default event in a CDS is generally defined as the reference
entity being unable to repay its debt. The assumption is made that the PD on debt, i.e. the CDS-implied
PD, is equal to the IRS PD. This is a conservative choice, since the CDS-implied PD is a probability under the
risk-neutral measure, since it is used for pricing. This risk-neutral PD is lower than the real world PD, which
is estimated in this chapter.

The assumption that the CDS-implied PD is equal to the IRS PD is motivated as follows. The assumption
is that a company defaults when it cannot fulfill at least one of its financial obligations; this event is equivalent
to both defaulting on bonds and defaulting on IRS, when the NPV (net present value) of the IRS is negative
for the company going into default. The amount lost due to default can be different for the two instruments,

depending on the seniority of the instruments, i.e. the order in which creditors are paid back1. It is also pos-

1Derivatives such as interest rate swaps generally have higher seniority than debt instruments (bonds), so the LGD is higher for bonds
(Bolton and Oehmke; 2014).
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Time Default Survival Expected Discount PV of expected
(years) probability probability payment factor payment

1 λ 1−λ s(1−λ) e−r1 s(1−λ)e−r1

2 λ(1−λ) (1−λ)2 s(1−λ)2 e−2r2 s(1−λ)2e−2r2

3 λ(1−λ)2 (1−λ)3 s(1−λ)3 e−3r3 s(1−λ)3e−3r3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

9 λ(1−λ)8 (1−λ)9 s(1−λ)9 e−9r9 s(1−λ)9e−9r9

10 λ(1−λ)9 (1−λ)10 s(1−λ)10 e−10r10 s(1−λ)10e−10r10

Total s
10

∑
i=1

(1−λ)i e−i ri

Table 4.1: Calculation of the present value of expected payments. s > 0 is the CDS spread as a percentage of the notional amount,
λ ∈ [0, 1] is the one-year probability of default conditional on no earlier default, and ri ∈ R is the discount rate for cash flows taking place
in i years from the current time. The notional amount is 1.

Time Default Expected Expected Discount PV of expected PV of expected
(years) probability accrual payment payoff factor accrual payment payoff

0.5 λ 0.5sλ (1 - RR) λ e−0.5r0.5 0.5sλe−0.5r0.5 (1 - RR) λe−0.5r0.5

1.5 λ(1−λ) 0.5sλ(1−λ) (1 - RR) λ(1−λ) e−1.5r1.5 0.5sλ(1−λ)e−1.5r1.5 (1 - RR) λ(1−λ)e−1.5r1.5

2.5 λ(1−λ)2 0.5sλ(1−λ)2 (1 - RR) λ(1−λ)2 e−2.5r2.5 0.5sλ(1−λ)2e−2.5r2.5 (1 - RR) λ(1−λ)2e−2.5r2.5

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

8.5 λ(1−λ)8 0.5sλ(1−λ)8 (1 - RR) λ(1−λ)8 e−8.5r8.5 0.5sλ(1−λ)8e−8.5r8.5 (1 - RR) λ(1−λ)8e−8.5r8.5

9.5 λ(1−λ)9 0.5sλ(1−λ)9 (1 - RR) λ(1−λ)9 e−9.5r9.5 0.5sλ(1−λ)9e−9.5r9.5 (1 - RR) λ(1−λ)9e−9.5r9.5

Total 0.5sλ
10

∑
i=1

(1−λ)i−1e−(i−0.5)ri−0.5 (1 - RR) λ
10

∑
i=1

(1−λ)i−1e−(i−0.5)ri−0.5

Table 4.2: Calculation of the expected present value of the accrual payment and the CDS payoff in case of default of the reference entity.
λ ∈ [0, 1] is the default probability in one year conditional on no earlier default, s > 0 is the CDS spread as a percentage of the notional
amount, RR ∈ [0, 1] is the recovery rate, and ri ∈ R is the discount rate for cash flows taking place in i years. The notional amount is 1.

sible for one of the two instruments to be paid back in full. This is a difference in the LGDs, whereas the PDs
are equal if there is only one type of default event. The modelling of LGD is outside the scope of this thesis.

Having determined that the bond PD is used, the method of obtaining it from CDS spreads is now de-
tailed. Let s > 0 be the CDS spread as a percentage of the notional amount; this is the amount that is paid
annually from the protection buyer to the protection seller. Let λ ∈ [0, 1] be the default probability during

one year conditional on no earlier default.2 The discount rate at time t > 0 is denoted by rt ∈ R. It is assumed
that payments are made annually in arrears and that default can only occur halfway through a year. When
a default occurs, an accrual payment is made by the protection buyer to the protection seller to reflect the
periodic payment over the half year between the last periodic payment and the moment of default. Then
the contract is terminated, i.e. no more periodic payments take place. The tenor is 10 years, since the data
consists of 10-year CDS spreads.

Unconditional default probabilities and survival probabilities are calculated and used to compute the ex-
pected present value of the periodic spread payments in Table 4.1. Note that the payment occurs only if the
reference entity survives until the payment date. If the reference entity defaults between two payment dates,
an accrual payment is made. The expected present value of this accrual payment is calculated in Table 4.2.
In the same table, the default probabilities are used to calculate the expected present value of payoff due to
default of the reference entity. The expected payoff is equal to the default probability multiplied by the LGD
(which is equal to 1−RR) and the notional amount, but since the notional amount is assumed to be equal to
1, the expected payoff is equal to the default probability multiplied by the LGD in this case.

2The assumption is that this probability is the same for every year within the CDS tenor (‘running period’ of the CDS), since a single CDS
spread does not give information on how the default probability is distributed over the years. It would be possible to obtain part of this
information by considering CDSs with different tenors. However, this would add too much complexity to be used for converting all of
the CDS spread data to PD data.
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The no-arbitrage CDS spread is obtained by equating the net present value of the CDS to zero. The peri-
odic and accrual payments are paid by the protection buyer to the protection seller, while the payoff in case
of default is paid by the seller to the buyer. This yields the equation

s
10

∑
i=1

(1−λ)i
e
−i ri +0.5sλ

10

∑
i=1

(1−λ)i−1
e
−(i−0.5)ri−0.5

= (1−RR)λ
10

∑
i=1

(1−λ)i−1
e
−(i−0.5)ri−0.5 , (4.1)

from which one can obtain the closed-form expression

s =

(1−RR)λ
10

∑
i=1

(1−λ)i−1e−(i−0.5)ri−0.5

10

∑
i=1

(1−λ)i e−i ri +0.5λ
10

∑
i=1

(1−λ)i−1e−(i−0.5)ri−0.5

(4.2)

for the no-arbitrage CDS spread s in terms of the discount rates rt , t = 0.5, 1, . . . , 10 and the conditional default
probability λ. Under the simplifying assumption that −(i − 0.5)ri−0.5 = −(i ri − 0.5r0.5), the above expression
can be simplified to

s =
(1−RR)λe0.5r0.5

1−λ+0.5λe0.5r0.5
, (4.3)

or rewritten to
λ =

s

(1−0.5e0.5r0.5 )s + (1−RR)e0.5r0.5
(4.4)

as a closed-form expression for λ in terms of the CDS spread s. Since s ≪ 1, the term (1 − 0.5e0.5r0.5 )s is
relatively small compared to the term (1−RR)e0.5r0.5 . This means that λ is approximately equal to s up to a
multiplicative term depending on RR and r0.5:

λ ≈
s

(1−RR)e0.5r0.5
. (4.5)

If a different assumption would be made for possible moments a company can default, the above approxi-
mation would correspond to the common approximation

λ ≈
s

(1−RR) . (4.6)

However, for the remainder of this thesis, the expression in (4.4) is used.

The only discount rate used in the calculations is the 6 month discount rate r0.5, which is specified as the
yield on 6 month US treasury bonds. For each observation date of a CDS spread, the observed yield at that

date is used. Yield data is obtained from the US department of the treasury. 3

4.2. CDS sector curve data
The sources for market data do not offer historical data for single-name CDS spreads. Instead, the CDS sector
curves from Bloomberg are used. A CDS sector curve is obtained using five factors: region, industry, debt type,

rating (high yield or investment grade) and tenor.4 The exact methodology used to calculate the sector curves
is property of Bloomberg and is therefore not publicly available. The method for obtaining market-implied
PD described in Section 4.1 cannot be applied directly to a sector curve to obtain information about the PD of
a single company in that sector. Instead, i is assumed that there are fictitious companies whose CDS spreads
are given by the sector curves. Then the market-implied PDs for these companies can be extracted from the
CDS sector curves.

Since the sector curves are calculated using the CDS spreads of all companies in the sector, the CDS spread
levels of the fictitious companies are realistic. However, the volatilities and other statistical properties of the

3https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=
yieldAll, accessed on 17 May 2020.

4Going forward, a ‘sector’ in the context of sector curves or CDS spreads refers to a combination of these five factors.

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldAll
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/TextView.aspx?data=yieldAll
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Reference company Region Industry Debt type Rating Tenor
Alibaba Asia ex-Japan Consumer discretionary Senior IG 10 years
American Airlines America Consumer discretionary Senior HY 10 years
Apple America Technology Senior IG 10 years
AT&T America Communications Senior IG 10 years
Barrick Gold America Materials Senior IG 10 years
Coca Cola America Consumer staples Senior IG 10 years
Diamond Offshore Drilling America Energy Senior HY 10 years
Boeing America Industrials Senior IG 10 years
Exxon Mobil America Energy Senior IG 10 years
Ford America Consumer discretionary Senior IG 10 years
JP Morgan senior America Financials Senior IG 10 years
JP Morgan subordinate America Financials Subordinate IG 10 years
Volkswagen Europe Consumer discretionary Senior IG 10 years

Table 4.3: Specification of the sectors for which CDS sector curve data has been obtained from Bloomberg. The sector curves are mostly
from 10 year senior CDSs in America, from a variety of industries. Under Rating, IG stands for investment grade and HY for high yield.
The ratings are those observed on March 2, 2020, which is the day the data was collected.

time series of CDS spreads are different from those properties for CDS spreads of real companies in the cor-
responding sectors. Specifically, each of the fictitious companies has less volatile CDS spreads, since these
spreads are averages. However, this effect is reduced by the high correlation between CDS spreads of com-
panies in the same sector. Economically, this can be interpreted as a fictitious company being immune to
events that would only affect that company, such as a public scandal. The fictitious company is still affected
by macroeconomic events that impact the entire sector, e.g. a change in the oil price for the energy sector.

Daily data on CDS sector curves between September 18, 2018 and February 28, 2020 are obtained from
Bloomberg. The sectors are specified in Table 4.3; the reference companies are used to refer to their respec-
tive sectors going forward. In Figure 4.1a, implied PDs conditional on no earlier default are shown. The first
observation that stands out is that the Diamond Offshore Drilling and American Airlines sectors are consid-
ered significantly more risky by the market. Additionally, the Diamond Offshore Drilling sector is extremely
volatile compared to the other sectors. To give a clearer view of the remaining companies’ implied PDs, the
same data for all companies except Diamond Offshore Drilling and American Airlines is shown in Figure 4.1b.
The safest sectors are those of Alibaba and Boeing. The general movement of all sectors is similar, although
the movement is larger for some sectors, such as Exxon Mobil, than for others. Especially the steep rises and
falls can be seen across all sectors. From the start of the dataset until January 2019, PDs are increasing, while
they are decreasing from January until May 2019. A short but steep rise in PDs is seen between May and June
2019, after which the long-term movement of PDs becomes quite stable, albeit with some spikes and drops
in between. In the last six days of the data, peaks in all implied PDs can be seen. This is due to the economic
consequences of the outbreak of the corona virus. These last six days are disregarded in the analyses, in order
to obtain the best possible view on normal market conditions. The data from during the corona crisis and
other downturn periods is analysed in Section 4.5. A numerical description of the dataset can be found in
Appendix C.

4.3. Interest rate data
For the interest rate data, 10 year interest rate swap data is used. One of the reasons to consider 10 year swaps
is that they are very liquid products, which means their market price accurately reflects the true value of the
swaps. Additionally, the 10 year swap rate has always been well above zero, while swap rates for lower ma-
turities are closer to zero. This allows one to make the assumption that the 10 year swap rate continues to
remain strictly positive, which simplifies the modelling. Daily data until January 3, 2020 is used, obtained
from Bloomberg. The dataset goes back to 2007, but since the focus of this thesis is on the joint behaviour
of PDs and swap rates, only the dataset starting on September 18, 2018 is considered, containing 317 obser-
vations. The time series of swap rate data is shown in Figure 4.2. The swap rate can be seen to fall for the
first two thirds of the duration, before slightly increasing again in the last part of the dataset. To draw more
meaningful conclusions from this data, it is compared to the implied PD data in the next section.
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Figure 4.1: PDs conditional on no earlier default as implied by CDS sector curves for the listed companies. Senior CDS sector curves are
used for all non-financial sectors. The peak during the final 5 days is due to the start of the corona crisis. Two of the main observations
are that the sectors of Diamond Offshore Drilling and American Airlines have significantly higher spreads than the other sectors and that
the spreads tend to move in the same direction.
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Figure 4.2: The evolution of the 10 year interest rate swap fixed rate in the dataset. A steady decline in interest rates is visible. This decline
started in 2014 and caused the current low interest rate environment.

4.4. Dependence analysis
In this section, several methods are applied to the data to quantify and analyse the dependence between the
swap rate log-returns and the implied PD log-returns. First, the observations of the time series plots of the
swap rate and the implied PDs are mentioned. Then, scatterplots are shown to visualise the dependence, after
which rank correlations are shown and tests for the statistical significance of the correlations are performed.
Next, tail dependence is explored through joint quantile exceedances, and the presence of correlation in the
main body of the data is tested. Finally, tests for exchangeability and radial symmetry are performed. Results
useful for the fitting of copulas are reported throughout.

A comparison can be made between the swap rate in Figure 4.2 and the implied PDs in Figure 4.1. The
expectation is that implied PDs rise when the swap rate falls, as a negative historical correlation between the
two variables has been shown to exist by Ben-Abdallah et al. (2019) and Harris et al. (2015). This joint move-
ment is seen when the swap rate and the implied PDs move heavily, while there does not seem to be much
dependence in more stable times. Between September 2018 and November 2018, the interest rate is stable,
while PDs increase slightly. However, as the swap rate declines rapidly between November 2018 and January
2019, the implied PDs can be seen to rise. The same phenomenon occurs between May 2019 and June 2019.
A short drop of swap rates in April 2019, followed by a quick rise, corresponds to a rise and then a drop of PDs.
A similar situation can be seen in September 2019. Furthermore, the rapid decline of the swap rate in August
2019 is mirrored by an upward jump in implied PDs. In the stable periods, e.g. between November 2019 and
January 2020, there does not seem to be any meaningful dependence between the swap rate and the implied
PDs.

From this point forward, only the CDS spread data until January 3, 2020 is considered, so that for every
day in the dataset there are observations of both the swap rate and the CDS spreads. Log-returns are used for
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Figure 4.3: Scatterplot of the log-returns on implied PDs of Ford and Boeing against the log-returns on 10 year swap rates. 0.1 and 0.9
quantiles of both datasets are shown by the blue lines. The plots show some degree of negative dependence, as well as tail dependence
in the top left and bottom right corners through the joint quantile exceedances.

normalisation and time-additivity reasons, as described in Section 3.2. The log-returns on implied PDs and
swap rates are given by

log (λti+1

λti
) and log ( srti+1

srti
) (4.7)

respectively, where λti
is the implied PD on day i ∈N and srti

is the swap rate on day i . The size of the dataset
on log-returns is 316 observations.

The dependence structure observed in the time series plots is also visible in scatterplots of the log-returns
on the implied PDs and the log-returns on the swap rates. The scatterplots for Ford and Boeing are shown in
Figure 4.3, more scatterplots are shown in Figure C.1 in the appendix. These scatterplots also show that the
dependence is mostly present in the tails, since the outlying points are mostly to the top left and bottom right
of the main cluster in both scatterplots. The main body of the datapoints shows little dependence; the main
clusters only slightly exhibit the ellipse shape that is typical for correlated random variables. The shapes of
these clusters are closer to circles, which indicate independence.

A numerical description of dependence between the swap rate log-returns and the implied PD log-returns
for different sectors is given by Kendall’s τ correlation ρτ ∈ [−1, 1] and Spearman’s ρ correlation ρS ∈ [−1, 1].
For random variables X1 and X2, Kendall’s τ is defined as

ρτ (X1, X2) = E [sign ((X1 − X̃1) (X2 − X̃2))] , (4.8)

where (X̃1, X̃2) is an independent copy of (X1, X2). It can be estimated by Kendall’s rank correlation coefficient
of a sample (X1,1, X1,2), . . . , (Xn,1, Xn,2), given by

( n
2

)
−1

∑
1⩽t<s⩽n

sign ((X t ,1 − Xs,1) (X t ,2 − Xs,2)) . (4.9)



28 4. Data & Results

Kendall’s τ Spearman’s ρ
Sector Sample value p-value Std. dev. Sample value p-value Std. dev.
Alibaba -0.15 0.0001 0.038 -0.21 0.0002 0.056
American Airlines -0.23 0.0000 0.038 -0.34 0.0000 0.056
Apple -0.12 0.0010 0.038 -0.18 0.0010 0.056
AT&T -0.18 0.0000 0.038 -0.26 0.0000 0.056
Barrick Gold -0.28 0.0000 0.038 -0.41 0.0000 0.056
Coca Cola -0.23 0.0000 0.038 -0.34 0.0000 0.056
Diamond Offshore Drilling -0.09 0.0172 0.038 -0.13 0.0198 0.056
Boeing -0.23 0.0000 0.038 -0.33 0.0000 0.056
Exxon Mobil -0.19 0.0000 0.038 -0.28 0.0000 0.056
Ford -0.30 0.0000 0.038 -0.43 0.0000 0.056
JP Morgan senior -0.30 0.0000 0.038 -0.43 0.0000 0.056
JP Morgan subordinate -0.00 0.9088 0.038 -0.01 0.9226 0.056
Volkswagen -0.24 0.0000 0.038 -0.36 0.0000 0.056

Table 4.4: Sample values of Kendall’s τ correlation and Spearman’s ρ correlation between implied PDs and swap rates, along with upper
tail p-values of the hypothesis test between the null hypothesis of independence (zero correlation) and the alternative hypothesis of
non-zero correlation. Finally, standard deviations of the sampling distribution under the null hypothesis are shown. Most companies
show statistically significant negative correlation, implying negative dependence.

Spearman’s ρ is defined as
ρS (X1, X2) = ρ (F1 (X1) , F2 (X2)) , (4.10)

where F1 and F2 are the marginals of X1 and X2 respectively, andρ denotes Pearson’s linear correlation. Spear-
man’s ρ can be estimated by Spearman’s rank correlation coefficient of a sample (X1,1, X1,2), . . . , (Xn,1, Xn,2):

12

n (n2 −1)

n

∑
i=1

(rank (Xi ,1)−
1
2
(n +1)) (rank (Xi ,2)−

1
2
(n +1)) , (4.11)

where rank(Xi , j ) denotes the position of Xi , j in the ordered sample of the random variable X j . Both esti-
mators are measures of rank correlation, which makes them distribution-free. This is an attractive property,
since the (joint and marginal) distributions of the PD log-returns and the swap rate log-returns are not yet
known. This makes them preferable over Pearson’s correlation, which is less meaningful for distributions
other than a multivariate normal distribution. In addition, both rank correlations depend only on the copula
of a bivariate distribution, while linear correlation depends on both the copula and the marginals (McNeil
et al.; 2005). Of the two rank correlations, Kendall’s τ is preferred here because of its smaller standard devi-
ation. It is more time-consuming to compute for large samples, because in both sets of observations, every
single pair of observations must be considered; for this dataset however, computations are still fast. An ad-
ditional benefit of Kendall’s τ is that confidence intervals for it are more reliable than those for Spearman’s ρ
(Newson; 2002).

Sample values of both rank correlation coefficients are shown in Table 4.4. Both Kendall’s τ and Spear-
man’s ρ indicate statistically significant dependence5 between the swap rate log-returns and the implied PD
log-returns for almost all sectors, since the p-values do not exceed 0.001. The only exceptions are Diamond
Offshore Drilling, for which there may or may not be statistically significant dependence, depending on the
level of significance chosen, and JP Morgan subordinate, for which the null hypothesis cannot be rejected. All
correlation values are below zero, indicating negative dependence between the implied PD log-returns and
the swap rate log-returns. Note that the standard deviations for both correlation measures are constant over
the different sector curves; both standard deviations depend only on the size of the dataset.

In the scatterplots in Figure 4.3, there seems to be dependence in the tails. Tail dependence between two
datasets can be measured by the amount of joint quantile exceedances. Since the implied PDs exhibit nega-
tive dependence with the swap rates, an analysis is performed on joint exceedances of the lower quantile of

5For most levels of significance. ‘Statistically significant dependence’ here means that the null hypothesis of no correlation can be
rejected; non-zero correlation implies dependence between two random variables.
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the implied PDs and the upper quantile of the swap rates (which are called type 1 exceedances going forward),
as well as exceedances of the upper quantile of the implied PDs and the lower quantile of the swap rates (type
2 exceedances). The 0.1 and 0.9 quantiles are used in order to obtain a sizeable number of observations ex-
ceeding the quantiles, which allows more meaningful conclusions to be drawn, while still making sure the tail
behaviour is isolated. The amount of joint tail exceedances for both types is shown in Table 4.5. A hypoth-
esis test is performed for tail dependence of both types in the data. The test for type 1 tail dependence uses
the null hypothesis of independence between the implied PD exceeding its lower quantile and the swap rate
exceeding its upper quantile, and an alternative hypothesis of no independence:

H0 ∶ log ( λti

λti−1
) ≤Qλ(0.1) ⫫ log ( srti

srti−1
) ≥Qsr(0.9),

H1 ∶ log ( λti

λti−1
) ≤Qλ(0.1) ⫫/ log ( srti

srti−1
) ≥Qsr(0.9),

(4.12)

where Qλ ∶ [0, 1]→ R and Qsr ∶ [0, 1]→ R are the quantile functions of the log-returns of the implied PD λ and
the swap rate sr respectively. The test for dependence of type 2 is similar:

H0 ∶ log ( λti

λti−1
) ≥Qλ(0.9) ⫫ log ( srti

srti−1
) ≤Qsr(0.1),

H1 ∶ log ( λti

λti−1
) ≥Qλ(0.9) ⫫/ log ( srti

srti−1
) ≤Qsr(0.1).

(4.13)

The test statistic S j for dependence of type j is the number of joint quantile exceedances, given by

S j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

#{i ∶ log ( λti

λti−1
) ≤Qλ(0.1), log ( srti

srti−1
) ≥Qsr(0.9)} , for j = 1,

#{i ∶ log ( λti

λti−1
) ≥Qλ(0.9), log ( srti

srti−1
) ≤Qsr(0.1)} , for j = 2.

(4.14)

Under the null hypothesis, S j , j = 1, 2 is binomially distributed with size variable n = 316 equal to the number
of observations and success chance p = 0.01, the product of the individual events of the variables exceeding
their 0.1 or 0.9 quantile. For a significance level of α = 0.02, the critical value c is obtained as

c = min{c ∶ P (S j ≥ c∣H0) ≤ 0.02} =Qbinom(0.98)+1 = 8, j = 1, 2, (4.15)

where Qbinom ∶ [0, 1] → N is the quantile function of the binomial distribution with n = 316 and p = 0.01.
Whenever the sample value of S j is greater than or equal to c, H0 can be rejected. A lower critical value is
given by

c
∗
∶= max{c

∗
∶ P (S j ≤ c

∗∣H0) ≤ 0.02} =Qbinom(0.02) = 0, j = 1, 2. (4.16)

This means that H0 is also rejected whenever S j = 0; this corresponds to statistically significant negative de-
pendence between the two events in (4.12) for type 1 and in (4.13) for type 2. This does not occur in the
dataset, however. The distribution of S j is used to obtain upper tail p-values and the standard deviation
of the test statistic under the null hypothesis, which is the same for both tails. Under the null hypothesis,
E[S j ] = 3.16, j = 1, 2. The sample values of S1 and S2 are shown for each sector in Table 4.5, along with the
p-values and the standard deviation.

One observes that for each sector, most joint exceedances are of type 2 rather than type 1. This is also re-
flected in the p-values, which are lower for type 2 than for type 1. The p-values for type 2 exceedances indicate
that the tail dependence in this tail is statistically significant for most sectors. Instead, the tail dependence
corresponding to type 1 cannot be claimed to be statistically significant, except for Boeing and Ford. Note
that since the test is quantile-based, the results also apply to the pseudo-observations obtained from the
data. Therefore conclusions for the copula fitting can be drawn from this test. The results in Table 4.5 imply
that the copula with the best fit should have tail dependence in the tail of type 2; while independence in the
type 1 tail cannot be rejected, it is not confirmed either.

The tail dependence is visualised in the scatterplots in Figure 4.3; the observations jointly exceeding the
quantiles are those in the top left (type 1) and bottom right (type 2) areas. Note that there are virtually no
observations in the top right and bottom left areas, i.e. observations jointly exceeding both upper quantiles
or both lower quantiles. This is also indicative of negative tail dependence.
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Lower quantile PDs,
upper quantile swap rate

(type 1)

Upper quantile PDs,
lower quantile swap rate

(type 2)
Sector S1 p-value Test result S2 p-value Test result Std. dev.
Alibaba 3 0.6129 H0 not rejected 10 0.0015 H0 rejected 1.7687
American Airlines 3 0.6129 H0 not rejected 9 0.0050 H0 rejected 1.7687
Apple 6 0.0999 H0 not rejected 8 0.0152 H0 rejected 1.7687
AT&T 7 0.0414 H0 not rejected 10 0.0015 H0 rejected 1.7687
Barrick Gold 5 0.2116 H0 not rejected 9 0.0050 H0 rejected 1.7687
Coca Cola 6 0.0999 H0 not rejected 8 0.0152 H0 rejected 1.7687
Diamond Offshore Drilling 4 0.3887 H0 not rejected 4 0.3887 H0 not rejected 1.7687
Boeing 8 0.0152 H0 rejected 12 0.0001 H0 rejected 1.7687
Exxon Mobil 4 0.3887 H0 not rejected 7 0.0414 H0 not rejected 1.7687
Ford 11 0.0004 H0 rejected 12 0.0001 H0 rejected 1.7687
JP Morgan senior 6 0.0999 H0 not rejected 11 0.0004 H0 rejected 1.7687
JP Morgan subordinate 6 0.0999 H0 not rejected 7 0.0414 H0 not rejected 1.7687
Volkswagen 4 0.3887 H0 not rejected 10 0.0015 H0 rejected 1.7687

Table 4.5: Joint quantile exceedance ratios of the log-returns on the swap rate and the log-returns on the implied PDs for different
sectors. Lower and upper quantile indicate the 0.1 and 0.9 quantile respectively. A joint quantile exceedance means the implied PD
return is below (above) the lower (upper) quantile on the same day the swap rate return is above (below) the upper (lower) quantile. A
null hypothesis of independence in the tails is tested, for which the p-values are shown. The significance level is α = 0.02. The standard
deviation of the joint quantile exceedance ratios under the null hypothesis is the same for both tails. For most companies, independence
in the tail can be rejected only for type 2 tail dependence.

After looking at tail dependence, a logical next step is to look at dependence in the main body of the
dataset, i.e. the dataset that remains if the tails are removed. To construct the main body, one starts with
the thirteen pairs of datasets of one of the sectors’ PD log-returns data and the swap rate log-returns data.
From each of these pairs, all observations are excluded for which either the swap rate log-return or the PD
log-return (or both) are below the respective 0.1 quantile or above the 0.9 quantile. The resulting set of ob-
servations is referred to as the main body of the dataset of swap rate log-returns and PD log-returns of that
particular sector. The sample rank correlation of the main body for each sector is shown in Table 4.6. The
p-values of both correlation values are much higher than those for the entire dataset (see Table 4.4), meaning
the correlation is statistically much less significant, and in many cases (for many levels of significance) the
null hypothesis of no correlation cannot be rejected. And even where the correlation is statistically signifi-
cant, it is in every case absolutely lower than the correlation when considering the full dataset. This confirms
that most of the dependence in the dataset is accounted for by the tail dependence.

Two final properties of the data that may help in choosing which copula to fit are exchangeability and
radial symmetry. Hypothesis tests are performed for the presence of these properties in the dataset of pseudo-
observations, as these represent the dataset without any influence from the marginals, which is the dataset to
which the copula is fitted. For both tests, the null hypothesis is the presence of the property (exchangeability
or radial symmetry), while the alternative hypothesis is the absence of the property. In mathematical terms,
the null and alternative hypotheses are given by

H0 ∶ ∀(u1, u2) ∈ [0, 1]2 ∶ C (u1, u2) =C (u2, u1),
H1 ∶ ∃(u1, u2) ∈ [0, 1]2 ∶ C (u1, u2) ≠C (u2, u1),

(4.17)

for the test for exchangeability, where C is the copula underlying the data, and by

H0 ∶ ∀(u1, u2) ∈ [0, 1]2 ∶ C (u1, u2) = Ĉ (u1, u2),
H1 ∶ ∃(u1, u2) ∈ [0, 1]2 ∶ C (u1, u2) ≠ Ĉ (u1, u2),

(4.18)

for the test for radial symmetry, where Ĉ denotes the survival copula of C .6

6The tests provided by the ‘copula’ package in R are used; in the package documentation (https://cran.r-project.org/web/
packages/copula/copula.pdf), it is mentioned that the test statistics calculated are based on those by Genest et al. (2011) for ex-
changeability, and those by Genest and Nešlehová (2014) for radial symmetry. However, manually calculating the test statistics de-
scribed in these papers yields different results than those in Table 4.7. It follows that unspecified adjustments are made by the ‘copula’
package when calculating the test statistics, therefore the expressions for the test statistics cannot be provided.

https://cran.r-project.org/web/packages/copula/copula.pdf
https://cran.r-project.org/web/packages/copula/copula.pdf
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Kendall’s τ Spearman’s ρ
Sector #obs. Sample value p-value Std. dev. Sample value p-value Std. dev.
Alibaba 206 -0.0826 0.0779 0.0468 -0.1190 0.0885 0.0697
American Airlines 200 -0.0837 0.0785 0.0476 -0.1259 0.0756 0.0707
Apple 207 -0.0413 0.3771 0.0467 -0.0684 0.3269 0.0695
AT&T 209 -0.0747 0.1083 0.0465 -0.1122 0.1057 0.0692
Barrick Gold 204 -0.1627 0.0006 0.0471 -0.2433 0.0005 0.0700
Coca Cola 205 -0.1363 0.0037 0.0470 -0.1999 0.0041 0.0698
Diamond Offshore Drilling 204 -0.0392 0.4054 0.0471 -0.0575 0.4137 0.0700
Boeing 210 -0.1741 0.0002 0.0464 -0.2604 0.0001 0.0690
Exxon 203 -0.0663 0.1605 0.0472 -0.1040 0.1398 0.0702
Ford 214 -0.1886 0.0000 0.0459 -0.2728 0.0001 0.0684
JP Morgan senior 207 -0.1635 0.0005 0.0467 -0.2423 0.0005 0.0695
JP Morgan subordinate 208 -0.0245 0.5995 0.0466 -0.0344 0.6217 0.0693
Volkswagen 206 -0.1256 0.0074 0.0468 -0.1849 0.0079 0.0697

Table 4.6: Sample correlation values for the observations in the main body of the dataset. The main body for each sector consists only
of those observations where neither the swap rate log-returns nor the implied PD log-returns are below the 0.1 quantile or above the
0.9 quantile. #obs. indicates the number of observations in the main body. Upper tail p-values are shown for the hypothesis test with
the null hypothesis of independence (zero correlation) in the main body. Standard deviations of the sampling distribution under the
null hypothesis are shown. The correlation is weaker than in the full dataset, indicating that the correlation in the full dataset is mostly
caused by tail dependence.

The test statistics for exchangeability (Genest et al.; 2011) and radial symmetry (Genest and Nešlehová;
2014) do not have known distributions, since these depend on the underlying copulas, which are not yet
known. Therefore, the standard deviations of the test statistics are not reported. However, p-values can be
computed using bootstrap replicates of the test statistics. The results are shown in Table 4.7. The p-values
indicate that the pseudo-observations of almost all sectors’ implied PD log-returns combined with the swap
rate log-return data are exchangeable and radially symmetric. The only exceptions are American Airlines
for exchangeability and Apple for radial symmetry, with p-values of 0.048 and 0.040 respectively. Depending
on the significance level one chooses for the tests, these p-values may be low enough to reject the null hy-
potheses (such as the common significance levelα = 0.05). Besides these two exceptions, the similarity in the
results for all sectors is according to expectations, because the datasets for log-returns of implied PDs have a
very similar structure (see Figure 4.1).

On first sight, these results may seem to contradict tail dependence in only one tail, which is observed
for several sectors in Table 4.5. However, one must keep in mind that a failure to reject the null hypothesis
generally does not allow one to accept the null hypothesis. The results of the test for radial symmetry only
tell us that radial symmetry cannot be disproved; the alternative hypothesis might still be true, even though
there is insufficient evidence to reject the null hypothesis based on this data. For e.g. the Alibaba sector, the
p-value is equal to 0.962, which means that if H0 were true, then

P (Tn ≥ T̂n) = 0.962, (4.19)

where Tn is the test statistic and T̂n is its sample value. However, this does not give any information about the
value of P (Tn ≥ T̂n) in the case where H0 does not hold. The results for the tests for tail dependence should be
interpreted similarly. For many sectors, the results could reject H0 (independence in the tail) for type 2 tails,
but not for type 1 tails. If H0 were false for type 1 tails as well, radial symmetry would not imply a contradic-
tion. In conclusion: for the sectors where independence in the type 2 tail was rejected based on the test, but
independence in the type 1 tail and radial symmetry were not, one or both of the latter two properties must
not hold, since a contradiction would arise otherwise. This is visualised in Figure 4.4.

4.5. Downturn analysis
In Section 4.4 it became clear that the dependence between PDs and swap rates is mostly present in the tails
(i.e. there is significant tail dependence while the correlation in the main body is weaker); especially in the
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Radial symmetry Not rejected

Independence in tail 1 Not rejected

Independence in tail 2 Rejected

Radial symmetry Not specified

Independence in tail 1 Rejected

Independence in tail 2 Rejected

Radial symmetry Rejected

Independence in tail 1 Confirmed

Independence in tail 2 Rejected

Hypothesis test results

Possible combinations

Figure 4.4: Visualisation of the results of the hypothesis tests for radial symmetry and independence in the tails. These results were found
for most companies. ‘Tail 1’ and ‘Tail 2’ indicate the tails of types 1 and 2. If the data is independent in tail 1, the data cannot be radially
symmetric. Otherwise, the data may or may not be radially symmetric.

Exchangeability Radial symmetry
Sector Test statistic p-value Test statistic p-value
Alibaba 0.032 0.513 0.020 0.962
American Airlines 0.087 0.041 0.027 0.765
Apple 0.049 0.207 0.085 0.049
AT&T 0.019 0.911 0.043 0.372
Barrick Gold 0.021 0.789 0.030 0.653
Coca Cola 0.024 0.751 0.035 0.533
Diamond Offshore Drilling 0.018 0.941 0.023 0.929
Boeing 0.027 0.686 0.023 0.891
Exxon Mobil 0.022 0.790 0.031 0.634
Ford 0.015 0.968 0.032 0.607
JP Morgan senior 0.026 0.661 0.040 0.402
JP Morgan subordinate 0.017 0.944 0.033 0.660
Volkswagen 0.019 0.888 0.025 0.811

Table 4.7: Test statistics for tests of the null hypotheses of exchangeability and radial symmetry in the dataset of pseudo-observations,
against the alternative hypotheses of the absence of these properties. The p-values are calculated from bootstrap replicates of the test
statistics. The results indicate that the null hypotheses of exchangeability and radial symmetry cannot be rejected.
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tail of high PD log-returns and low swap rate log-returns. This corresponds to rising PDs and declining inter-
est rates. This section analyses and quantifies the dependence during times of economic stress. One would
expect that the dependence observed in the previous section is even more present in these periods, when
defaults are generally more common.

This section starts by detailing the choice of which data is used and why in Section 4.5.1. Then an analysis
of the dependence in the data is given in Section 4.5.2. Quantitative results are given for the dependence in
the full dataset, as well as tail dependence and dependence in the main body, along with results of hypothesis
tests to determine whether the dependence is statistically significant. The results are analysed and compared
to the results in Section 4.4, obtained using data from regular market conditions.

4.5.1. Choice of data
Several choices must be made on which data is used. The period to be observed, the companies on which the
CDSs are written, the CDS tenor, the interest rate swap maturity and the floating rate are all among variables
to be set before the collection of data can take place. These choices and the reasoning behind them are ex-
plained in this section.

The data to be analysed is obtained from multiple downturn periods. The first is from August 28, 2008
until June 4, 2009, a period which is part of the credit crisis of 2008, one of the most impactful periods of eco-
nomic stress in recent history. The downturn period from April 2, 2010 until December 17, 2010, during the
economic crisis following the credit crisis, is considered as well. Finally, data from during the crisis caused
by the outbreak of the coronavirus in 2020 is used, during the period from February 20, 2020 until April 15,
2020. The consequences of the outbreak are still ongoing at the time of writing and therefore only data from
the first part of the crisis is available. These periods are visualised for the swap rate in Figure 4.5.

The periods would ideally be as long as possible to maximise the size of the dataset. However, since this
section concerns an analysis of markets under economic stress, the influence of data from stable periods on
the results is undesirable. Therefore the dates are chosen such that the entire downturn periods are con-
tained, but no data from outside the downturn periods is used.

There are two main advantages to considering multiple downturn periods. First of all, more data is avail-
able this way, which reduces the impact of outliers on the results. This means there is less variance in the re-
sults and more meaningful conclusions can be drawn. Secondly, by using data from multiple periods, the ef-
fect of the characteristics of a single downturn period is reduced. There are many possible causes for periods
of economic stress, and the impact on financial markets may be different for different downturn periods as a
result of this. For example, the 2008 credit crisis and the 2020 corona crisis have vastly different causes and
the PDs, the interest rates and the dependence between them may react differently to these causes. Futher-
more, some sectors are hit harder than others depending on the nature of the crisis, which is reflected in the
PDs. Observing multiple downturn periods generalises the conclusions to apply better to other periods of
economic stress. It should be noted that the inherent differences between economic crises also mean that
the behaviour of financial markets will always vary (at least slightly) from the results obtained in this chapter.
All models are approximations of reality, but the approximation is less accurate for periods that are as inher-
ently volatile as economic crises.

The data used in this section is obtained through Datastream. The swap data concerns 10 year United
States dollar interest rate swaps with the 3 month LIBOR as the floating rate. Data on 10 year CDS spreads
is obtained for 7 large US-based, but globally operating corporates, among which are three banks, one air-
line, one manufacturer, one telecom and IT provider and one retailer. Senior CDS spreads are obtained for
JP Morgan, Goldman Sachs, Citigroup, Southwest airlines, Ford, AT&T and Walmart, while for JP Morgan
and Goldman Sachs, data on subordinate CDS spreads is obtained as well. These companies are among the
biggest in their respective sectors and their stocks are all included in the S&P500 index. They are chosen be-
cause they are representative for their respective industries.

The liquidity of a CDS is an important aspect of the product. If a CDS is not traded for an entire day, the re-
ported CDS spread in the dataset is the same for two consecutive days, corresponding to a log-return of zero.
In a statistical analysis, many occurrences of zero implies a low volatility in the dataset. In reality however,
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Figure 4.5: Daily values of the 10 year swap rate during the downturn periods in blue. The vertical black lines represent the start and end
dates of the downturn periods.
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One day Two days One week
Company Amount Ratio Amount Ratio Amount Ratio
JP Morgan senior 72 0.17 13 0.06 0 0.00
JP Morgan subordinate 68 0.16 14 0.07 0 0.00
Southwest airlines 77 0.18 14 0.07 1 0.01
Ford 39 0.09 7 0.03 1 0.01
AT&T 86 0.20 23 0.11 4 0.05
Walmart 90 0.21 18 0.09 3 0.04
Goldman Sachs senior 51 0.12 7 0.03 0 0.00
Goldman Sachs subordinate 63 0.15 12 0.06 0 0.00
Citigroup 50 0.12 6 0.03 0 0.00
Total observations 424 211 82

Table 4.8: Occurrences of log-returns equal to zero in the CDS spreads for different companies and different periods over which log-
returns are calculated. Both flat amounts and ratios with respect to the total number of observations of log-returns are shown. The
log-returns over one day are illiquid, but the dataset of log-returns over one week is small; the log-returns over two days provide a good
middle ground.

illiquid products may also be highly volatile, especially during downturn periods. Therefore, the occurrence
of days when the CDS is not traded at all distorts the results. Hence, data from liquid CDSs is preferable.

For several companies, the obtained CDS spread data contains log-returns equal to zero, implying illiq-
uidity. This is quantified in Table 4.8. The ratio of zero log-returns is lower for longer periods over which
returns are calculated, since a log-return over two days (one week) is zero only if a CDS is not traded for two
(five) consecutive days. However, taking log-returns over a longer period also reduces the sample size, so a
trade-off has to be made. Unfortunately, there is no quantitative method for making this trade-off, since the
impact of illiquidity on the results cannot be assessed without knowing the intrinsic values that would be
observed in the case of perfect liquidity. The impact of the sample size on the variance of many of the results
can be quantified, but it cannot be quantitatively compared to the effect of illiquidity. Therefore, the choice
of over which period to take returns has to be made based on a qualitative assessment of the information in
Table 4.8.

The daily log-returns have too many occurrences of zero log-returns; the ratio of zero log-returns against
total log-returns is above 0.10 for all companies except one. On the other hand, while there are virtually no
weekly log-returns equal to zero, there are only 82 observations of weekly log-returns in total. This is too few
to obtain meaningful results, especially for a volatile dataset. The dataset of log-returns over two days has few
zero log-returns, while the size of the dataset is large enough to perform a good analysis. This is the dataset
that is used for the downturn analysis.

For the discount rate, the yield on 6 month US treasury bonds is used in this section. This is the same
as in the earlier parts of this chapter. After removing days without data on this yield from the dataset, the
remaining dataset consists of 204 observations.

4.5.2. Dependence analysis
In this section, an analysis is performed similar to the analysis in Section 4.4 of the data from periods of regu-
lar market conditions. The differences and similarities between the results for downturn and non-downturn
data are explored.

A first impression is obtained from visualisation of the data through scatterplots of the log-returns on the
implied PDs of a certain company against the log-returns on the swap rates. Scatterplots for Ford and AT&T
are shown in Figure 4.6, more scatterplots are shown in Figure C.2 in Appendix C. In the main body, the log-
returns of the implied PDs seem to be mostly independent from the log-returns of the swap rates. This was
also observed under regular market conditions in Figure 4.3. However, the negative tail dependence that was
seen for regular market conditions appears to be weaker during the downturn periods.
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Figure 4.6: Scatterplot of the log-returns on implied PDs of Ford and AT&T against the log-returns on 10 year swap rates during the
downturn periods. 0.1 and 0.9 quantiles of both datasets are shown by the blue lines. The plots show weaker dependence than those for
the non-downturn data.

The dependence is again quantified using rank correlation coefficients. The sample values of Kendall’s τ
correlation and Spearman’s ρ correlation are shown in Table 4.9; they are in the same range as those for the
dataset during regular market conditions. On the basis of the p-values reported in the table, the null hypothe-
sis of zero correlation can be rejected for virtually any confidence level for each company, with the exception
of AT&T and Walmart. The standard deviations of both rank correlations is slightly higher than for the dataset
of regular market conditions, since the size of the downturn dataset is smaller.

To analyse the tail dependence, the joint quantile exceedances are again considered. The observed amounts
of joint quantile exceedances of the 0.1 quantile of implied PD log-returns and the 0.9 quantile of swap rate
log-returns (type 1), as well as the number of joint exceedances of the 0.9 quantile of implied PD log-returns
and the 0.1 quantile of swap rate log-returns (type 2) are shown in Table 4.10. Recall that a joint quantile
exceedance is a day where both the log-return of the implied PD and the log-return of the swap rate exceed
their corresponding quantiles. The test for tail dependence as detailed in Section 4.4 is performed and the
results are shown in the table.

The null hypothesis of independence in the tail and the alternative hypothesis of no independence are
as defined in (4.12) and (4.13) for type 1 and type 2 tail dependence respectively. The upper critical value for
both types is

c = min{c ∶ P (S j ≥ c∣H0) ≤ 0.02} =Qbinom(0.98)+1 = 6, j = 1, 2, (4.20)

where Qbinom ∶ [0, 1]→N is the quantile function of the binomial distribution with n = 204 and p = 0.01. The
lower critical value is given by

c
∗
∶= max{c

∗
∶ P (S j ≤ c

∗∣H0) ≤ 0.02} =Qbinom(0.02) = 0, j = 1, 2. (4.21)

The lower critical value is not attained, hence only the upper p-values are shown.

The null hypothesis of independence in the tails can only be rejected for four companies for both types
of tail dependence. Therefore it cannot be reliably claimed that there is a tendency for tail dependence to be
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Kendall’s τ Spearman’s ρ
Company Sample value p-value Std. dev. Sample value p-value Std. dev.
JP Morgan senior -0.23 0.0000 0.047 -0.34 0.0000 0.070
JP Morgan subordinate -0.22 0.0000 0.047 -0.33 0.0000 0.070
Southwest airlines -0.18 0.0001 0.047 -0.25 0.0003 0.070
Ford -0.18 0.0001 0.047 -0.26 0.0002 0.070
AT&T -0.08 0.0813 0.047 -0.12 0.0802 0.070
Walmart -0.08 0.1095 0.047 -0.11 0.1329 0.070
Goldman Sachs senior -0.22 0.0000 0.047 -0.32 0.0000 0.070
Goldman Sachs subordinate -0.20 0.0000 0.047 -0.29 0.0000 0.070
Citigroup -0.21 0.0000 0.047 -0.32 0.0000 0.070

Table 4.9: Sample values of Kendall’s τ correlation and Spearman’s ρ correlation between log-returns of implied PDs and log-returns of
swap rates during the downturn periods, along with upper tail p-values of the hypothesis test for the null hypothesis of zero correlation.
Standard deviations of the sampling distribution under the null hypothesis are shown; these are equal for all companies, since they only
depend on the sample size. Significant negative dependence is present, although the correlation is weaker than for the non-downturn
dataset.

Lower quantile PDs,
upper quantile swap rate

(type 1)

Upper quantile PDs,
lower quantile swap rate

(type 2)
Sector S1 p-value Test result S2 p-value Test result Std. dev.
JP Morgan senior 3 0.3342 H0 not rejected 5 0.0554 H0 not rejected 1.4211
JP Morgan subordinate 4 0.1493 H0 not rejected 7 0.0048 H0 rejected 1.4211
Southwest airlines 5 0.0554 H0 not rejected 6 0.0175 H0 rejected 1.4211
Ford 3 0.3342 H0 not rejected 4 0.1493 H0 not rejected 1.4211
AT&T 7 0.0048 H0 rejected 7 0.0048 H0 rejected 1.4211
Walmart 3 0.3342 H0 not rejected 4 0.1493 H0 not rejected 1.4211
Goldman Sachs senior 6 0.0175 H0 rejected 4 0.1493 H0 not rejected 1.4211
Goldman Sachs subordinate 7 0.0048 H0 rejected 5 0.0554 H0 not rejected 1.4211
Citigroup 6 0.0175 H0 rejected 6 0.0175 H0 rejected 1.4211

Table 4.10: Amounts of joint quantile exceedances of the log-returns on the swap rate and the log-returns on the implied PDs during the
downturn periods. ‘Lower quantile’ and ‘upper quantile’ indicate the 0.1 and 0.9 quantile respectively. A joint quantile exceedance means
the implied PD log-return is below (above) the lower (upper) quantile on the same day the swap rate log-return is above (below) the upper
(lower) quantile. A null hypothesis of independence in the tails is tested, for which the upper p-values are shown. The significance level
is α = 0.02. The standard deviation of the joint quantile exceedance ratios under the null hypothesis is the same for both tails. Tail
dependence seems to be weaker than for the non-downturn dataset.

present between the log-returns of PDs and the log-returns of swap rates in times of economic crisis. This is
in contrast to the results for regular market conditions, where tail dependence of type 2 is present for most
sectors.

This is not surprising, however, since the cases in the tails under regular market conditions are regular
cases in the volatile crisis conditions. In that regard, it would make more sense to compare the presence of
tail dependence under regular market conditions to the presence of dependence in the entire dataset in eco-
nomic stress. This dependence is indeed present for most companies as shown by the p-values in Table 4.9
(recall that nonzero correlation implies nonzero dependence). However, the correlation is absolutely lower
than the correlation in the non-downturn data, even though it was shown that most of the correlation in the
non-downturn data was due to tail dependence. This goes against the expectation that the dependence in
the full datasets of downturn data should be in line with the tail dependence in the non-downturn data. This
is discussed further in Section 4.7.

When removing the tails from the dataset, the dependence in the main body may be observed. The main
body of the dataset is constructed as described in Section 4.4. The rank correlation values are shown in Table
4.11, as well as the standard deviations and the p-values for the test of the null hypothesis of zero correlation
against the alternative hypothesis of nonzero correlation.
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Kendall’s τ Spearman’s ρ
Company #obs. Sample value p-value Std. dev. Sample value p-value Std. dev.
JP Morgan senior 131 -0.10 0.1049 0.0590 -0.15 0.0848 0.0874
JP Morgan subordinate 134 -0.04 0.4899 0.0583 -0.07 0.4243 0.0864
Southwest airlines 135 -0.13 0.0309 0.0581 -0.18 0.0319 0.0861
Ford 135 -0.24 0.0000 0.0581 -0.34 0.0000 0.0861
AT&T 140 0.03 0.5852 0.0571 0.04 0.6266 0.0845
Walmart 132 -0.01 0.9138 0.0588 -0.01 0.9516 0.0870
Goldman Sachs senior 132 -0.15 0.0089 0.0588 -0.23 0.0088 0.0870
Goldman Sachs subordinate 134 -0.11 0.0721 0.0583 -0.16 0.0639 0.0864
Citigroup 134 -0.16 0.0048 0.0583 -0.26 0.0024 0.0864

Table 4.11: Sample correlation values for the observations in the main body of the dataset. The main body for each company consists
only of those observations where neither the swap rate log-returns nor the implied PD log-returns are below the 0.1 quantile or above
the 0.9 quantile. #obs. indicates the number of observations in the main body. Upper tail p-values are shown for the hypothesis test of
the null hypothesis of independence (zero correlation) in the main body. Standard deviations of the sampling distribution under the null
hypothesis are shown. As for the non-downturn dataset, the correlation in the main body is weaker than in the full dataset, although the
difference is smaller here.

Exchangeability Radial symmetry
Company Test statistic p-value Test statistic p-value
JP Morgan senior 0.033 0.542 0.040 0.509
JP Morgan subordinate 0.044 0.267 0.042 0.456
Southwest airlines 0.013 0.999 0.026 0.849
Ford 0.024 0.793 0.030 0.784
AT&T 0.044 0.279 0.054 0.312
Walmart 0.029 0.617 0.032 0.725
Goldman Sachs senior 0.073 0.071 0.059 0.209
Goldman Sachs subordinate 0.056 0.179 0.043 0.457
Citigroup 0.048 0.277 0.050 0.313

Table 4.12: Test statistics for tests of the null hypotheses of exchangeability and radial symmetry in the pseudo-observations during the
downturn periods, against the alternative hypotheses of the absence of these properties. The p-values are calculated from bootstrap
replicates of the test statistics. The null hypotheses of exchangeability and radial symmetry cannot be rejected.

When comparing the rank correlation in the main body to the rank correlation in the full dataset shown
in Table 4.9, the values are closer than they are for the dataset under regular economic conditions. This
is as expected, since the dependence in the tails is lower for the downturn data and therefore represents a
smaller part of the dependence in the full dataset. Interestingly, the implied PD log-returns of AT&T actually
show positive correlation with the swap rate log-returns in the main body. This is not unexpected, since the
correlation over the whole dataset is small as well and AT&T is one of the few companies whose PDs have
statistically significant negative tail dependence with the swap rates in both tails (see Table 4.10). The eco-
nomical implication of this is that AT&T is assumed by market participants to be less affected by economic
crises. This is understandable, since it is a telecommunications company, and their customers are likely to
keep using telephones and the internet during periods of crisis.

Finally, tests for exchangeability (Genest et al.; 2011) and radial symmetry (Genest and Nešlehová; 2014)
are performed on the dataset. The results are shown in Table 4.12. The test is between the null hypothe-
sis of exchangeability or radial symmetry being present and the alternative hypothesis of absence of these
properties. The results show that the null hypotheses cannot be rejected for any company for any reasonable
significance levelα (i.e. 0 < α ≤ 0.1). This is the same result as for the dataset under normal market conditions.

4.6. Copula fitting
A choice for which copula to fit can now be made, using the analysis of the dependence in the data performed
in the previous sections. The focus is on those copulas that are the most likely to be a good fit for the datasets;
ideally, a copula is found which is a good fit for the datasets from both regular economic situations and down-
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turn periods. Since almost all of the datasets exhibit exchangeability and radial symmetry (see Table 4.7 and
Table 4.12), a copula that fits the data well likely has these properties. However, tail dependence is also present
in the data, and there is only one well-known copula that exhibits both radial symmetry and tail dependence:
the t copula. Several other copulas are also fitted, although the expectation is that the t copula performs best.

The other copulas used are the Gaussian and Frank copulas, which are radially symmetric but do not
contain tail dependence, and the rotated Clayton, Gumbel, and Joe copulas, which are not radially symmet-
ric but do show tail dependence. Recall that the rotated Clayton copula is defined as the survival copula of
the Clayton copula, i.e. the copula of some bivariate random variable (1−U1, 1−U2), when the copula of

(U1,U2) ∈ [0, 1]2 is the Clayton copula. The reason for using the rotated Clayton copula is that the tail depen-
dence of all copulas with one-sided tail dependence is in the same tail; the rotated Clayton, Gumbel and Joe
copulas all exhibit tail dependence in the upper tail.

As the rotated Clayton, Gumbel and Joe copulas model only positive dependence, the data is transformed
before fitting these copulas. Suppose that (û1,1, û1,2), . . . , (ûn,1, ûn,2) with n = 316 is the dataset of pseudo-
observations, where the ûi ,1 correspond to the PD log-returns and the ûi ,2 to the swap rate log-returns for

i = 1, . . . , n. The rotated Clayton, Gumbel and Joe copulas are fitted to (û1,1, 1− û1,2), . . . , (ûn,1, 1− ûn,2).7 This
is still a dataset of pseudo-observations eligible for copula fitting, since the marginals are still both uniform
on [0, 1]. Transforming the pseudo-observations of the swap rate log-returns rather than the PD log-returns
means that the tail dependence in these copulas is in the tail of high PD log-returns and low swap rate log-
returns. This is the tail where most of the tail dependence in the data is present for the non-downturn data,
see Table 4.5.

The results of fitting the copulas mentioned above are shown in Table 4.13 for the non-downturn data

and in Table 4.14 for the downturn data. The goodness-of-fit test based on S
(B )
N as described by Genest et al.

(2009) and defined in (3.9) is performed. This test tests H0 ∶C ∈C0 against H1 ∶C ∉C0, where C is the copula
associated with the bivariate distribution underlying the data, and C0 is a certain parametric family of cop-

ulas. There is no explicit expression for the distribution of test statistic S
(B )
N , so the standard deviation of the

test statistic cannot be obtained. The p-values, however, are obtained by means of a bootstrap procedure.

One of the observations that stand out is that the copula with the highest p-value does not always have
the lowest AIC as well. For AT&T, Boeing, Exxon Mobil and JP Morgan senior in the non-downturn data and
Goldman Sachs senior and subordinate in the downturn data, the t copula has the highest p-value, but not
the lowest AIC. This is mostly due to the ’penalty’ in the AIC for the t copula having a second parameter.
This adds 2 to the AIC; if this 2 were not added, the t copula would actually have the lowest AIC for all of
these cases except Exxon Mobil (non-downturn) and Goldman Sachs senior (downturn). With Apple (non-
downturn), however, the AIC is the lowest for the t copula, while the Gumbel copula has the highest p-value.

As might be expected, no single copula is the best fit for all sectors. However, the t copula is the best fit in
most cases. It has three ’wins’ for the non-downturn data, i.e. it has both the highest p-value and the lowest
AIC for three sectors, and six wins for the downturn data. There are five cases where the t copula has either
the highest p-value or the lowest AIC (but not both) in the non-downturn data, and two of these cases in the
downturn data. This confirms the expectations that the t copula would be the best fit.

The Frank copula performs second best in both datasets. For the non-downturn data, its performance is
close to that of the t copula, also having three wins. For the downturn data, it performs significantly worse
than the t copula, and less consistently; it is a poor fit in terms of AIC for AT&T and Walmart, although the
other copulas (except for the t copula) do not perform well for these companies either. However, for the
downturn datasets, it still has the highest p-value whenever the t copula does not and it has the lowest AIC
whenever the t copula does not.

Another observation is that the Gaussian copula performs better than the t copula for the American Air-
lines and Volkswagen (non-downturn) sectors, in terms of both the p-value and the AIC. This is despite the
higher flexibility of the t copula: it approaches the Gaussian copula when the amount of degrees of freedom

7This corresponds to the regular Clayton copula being fitted to (1− û1,1, û1,2), . . . , (1− ûn,1, ûn,2).
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Normal economic circumstances

Fitted copula

Sector C t C Ga C Fr C R−Cl C Gu C Joe

Alibaba Parameter(s) -0.22, 12.56 -0.21 -1.35 0.24 1.15 1.18
LL 7.45 6.79 7.44 5.14 6.50 4.65

S
(B )
N 0.022 0.022 0.018 0.402 0.025 0.045

p-value 0.689 0.642 0.829 0.000 0.470 0.047
AIC -10.90 -11.57 -12.88 -8.27 -11.00 -7.30

American Parameter(s) -0.36, 1931.43 -0.36 -2.13 0.43 1.26 1.32
Airlines LL 20.24 20.25 18.59 15.43 17.71 13.34

S
(B )
N 0.039 0.039 0.047 1.072 0.053 0.095

p-value 0.172 0.177 0.045 0.000 0.035 0.001
AIC -36.49 -38.50 -35.17 -28.86 -33.41 -24.67

Apple Parameter(s) -0.20, 9.51 -0.20 -1.16 0.22 1.14 1.17
LL 7.08 5.87 5.59 4.67 5.97 4.47

S
(B )
N 0.030 0.030 0.030 0.346 0.028 0.038

p-value 0.228 0.254 0.195 0.000 0.306 0.101
AIC -10.16 -9.74 -9.18 -7.34 -9.94 -6.94

AT&T Parameter(s) -0.27, 12.61 -0.27 -1.65 0.35 1.20 1.26
LL 12.16 11.25 11.26 10.76 11.74 9.64

S
(B )
N 0.020 0.020 0.019 0.671 0.020 0.040

p-value 0.871 0.846 0.803 0.000 0.787 0.096
AIC -20.33 -20.50 -20.52 -19.52 -21.49 -17.28

Barrick Parameter(s) -0.40, 25.30 -0.39 -2.63 0.51 1.31 1.41
Gold LL 25.48 25.06 27.76 20.23 22.92 17.17

S
(B )
N 0.023 0.026 0.019 1.466 0.042 0.118

p-value 0.800 0.651 0.887 0.000 0.137 0.000
AIC -46.95 -48.11 -53.51 -38.46 -43.84 -32.35

Coca Cola Parameter(s) -0.34, 8.62 -0.32 -2.20 0.44 1.26 1.35
LL 18.58 16.21 19.27 15.83 17.09 13.78

S
(B )
N 0.021 0.032 0.020 0.985 0.029 0.065

p-value 0.809 0.324 0.846 0.000 0.402 0.004
AIC -33.16 -30.42 -36.54 -29.66 -32.19 -25.55

Diamond Parameter(s) -0.14, 7.44 -0.15 -0.83 0.15 1.09 1.10
Offshore LL 5.24 3.19 2.84 2.51 2.74 1.78

Drilling S
(B )
N 0.016 0.017 0.019 0.160 0.018 0.025

p-value 0.873 0.859 0.710 0.000 0.769 0.398
AIC -6.48 -4.38 -3.68 -3.02 -3.49 -1.55

Boeing Parameter(s) -0.35, 10.63 -0.35 -2.17 0.47 1.27 1.36
LL 20.74 19.57 18.87 18.24 20.22 16.64

S
(B )
N 0.026 0.026 0.033 0.973 0.033 0.065

p-value 0.614 0.574 0.266 0.000 0.254 0.012
AIC -37.47 -37.14 -35.74 -34.49 -38.45 -31.28

Exxon Parameter(s) -0.28, 22.73 -0.28 -1.75 0.32 1.19 1.23
Mobil LL 12.27 11.97 12.80 8.46 10.16 6.81

S
(B )
N 0.014 0.016 0.016 0.716 0.034 0.077

p-value 0.992 0.967 0.948 0.000 0.182 0.004
AIC -20.54 -21.94 -23.60 -14.92 -18.31 -11.62

Table 4.13: Results of fitting the t , Gaussian, Frank, rotated Clayton, Gumbel and Joe copulas to the the swap rate log-returns and the
implied PD log-returns. Parameter(s) denotes the fitted estimates of ρ and the degrees of freedom respectively for the t copula, ρ for
the Gaussian copula, and θ for the Frank, rotated Clayton, Gumbel and Joe copulas. The highest p-values and the lowest AIC values
are highlighted in bold. The t copula and the Frank copula perform best for most sectors. For a description of the test generating the
p-values and further interpretation of the results see Section 4.6.
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Fitted copula

Sector C t C Ga C Fr C R−Cl C Gu C Joe

Ford Parameter(s) -0.45, 7.28 -0.44 -2.93 0.60 1.39 1.50
LL 35.67 32.54 32.64 26.26 31.52 24.00

S
(B )
N 0.043 0.047 0.056 1.561 0.055 0.099

p-value 0.179 0.096 0.033 0.000 0.041 0.000
AIC -67.33 -63.09 -63.28 -50.52 -61.03 -46.00

JP Morgan Parameter(s) -0.44, 9.70 -0.43 -2.89 0.62 1.37 1.50
senior LL 32.51 30.34 32.34 28.36 31.04 25.39

S
(B )
N 0.036 0.039 0.038 1.651 0.046 0.102

p-value 0.284 0.202 0.209 0.000 0.083 0.000
AIC -61.02 -58.67 -62.68 -54.71 -60.08 -48.78

JP Morgan Parameter(s) -0.01, 4.05 -0.03 -0.04 0.04 1.04 1.05
subordinate LL 6.54 0.10 0.01 0.23 0.71 0.73

S
(B )
N 0.012 0.017 0.015 0.021 0.023 0.020

p-value 0.976 0.677 0.758 0.671 0.429 0.577
AIC -9.08 1.79 1.99 1.55 0.58 0.54

Volkswagen Parameter(s) -0.36, 9674.54 -0.36 -2.26 0.46 1.27 1.35
LL 20.73 20.73 21.44 16.80 18.97 14.64

S
(B )
N 0.024 0.024 0.030 1.181 0.035 0.093

p-value 0.717 0.731 0.403 0.000 0.198 0.001
AIC -37.46 -39.46 -40.89 -31.60 -35.94 -27.27

Table 4.13: Results of fitting the t , Gaussian, Frank, rotated Clayton, Gumbel and Joe copulas to the the swap rate log-returns and the
implied PD log-returns. Parameter(s) denotes the fitted estimates of ρ and the degrees of freedom respectively for the t copula, ρ for
the Gaussian copula, and θ for the Frank, rotated Clayton, Gumbel and Joe copulas. The highest p-values and the lowest AIC values
are highlighted in bold. The t copula and the Frank copula perform best for most sectors. For a description of the test generating the
p-values and further interpretation of the results see Section 4.6.

tends to infinity, so one would expect it to always perform at least as good as the Gaussian copula (at least in
terms of the p-value, where the t copula is not penalised for having one more parameter than the Gaussian
copula). The fitted amounts of degrees of freedom for the t copula are indeed large in these two cases, so that
the t copula approaches the Gaussian copula. As a consequence, the results for the two copulas are close, as
the p-value and the log-likelihood are almost equal for the two copulas.

Something else that stands out is that the rotated Clayton copula is not a good fit for any non-downturn
dataset except JP Morgan subordinate. This is the only non-downturn dataset that does not show statistically
significant dependence, see Table 4.4. For all other sectors, the rotated Clayton copula has a p-value of 0.000.
It also has a higher AIC than all the other copulas except the Joe copula, which consistently has an even higher
AIC than the rotated Clayton copula. The Joe copula does have slightly higher p-values, however. The sim-
ilarity between results from the rotated Clayton and Joe copulas (i.e. both being a poor fit for most sectors)
is in line with the observations in Section 3.2.2. In the dataset from downturn periods however, the results
for these copulas differ a bit more. They also perform better here, in some cases being a better fit than the
Gaussian, Frank or Gumbel copulas. In general however, the Gumbel copula outperforms the rotated Clayton
and Joe copulas, making it the best performing non-radially symmetric copula.

Comparing the radially symmetric copulas with the non-radially symmetric copulas, the former are the
better fit in most cases. They outperform the non-radially symmetric copulas in the datasets from both types
of market conditions, even though the tail dependence is asymmetric for the non-downturn periods (it is
stronger in the type 2 tail than in the type 1 tail). This implies that the data comes from a radially symmetric
copula, which was suggested but not confirmed by hypothesis tests (see Table 4.7 and Table 4.12). As dis-
cussed at the end of Section 4.4, this would contradict tail dependence in only one of the two tails; therefore
independence in the type 1 tail, which could not be rejected through hypothesis tests for many sectors where
independence in the type 2 tail could be rejected, must not hold. Another argument for this statement is the
poor performance of the copulas with tail dependence in one tail and independence in the other, being the
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Downturn periods

Fitted copula

Company C t C Ga C Fr C R−Cl C Gu C Joe

JP Morgan Parameter(s) -0.34, 11.12 -0.33 -2.17 0.40 1.24 1.28
senior LL 12.01 10.81 12.36 8.01 9.38 6.17

S
(B )
N 0.025 0.024 0.018 0.056 0.040 0.092

p-value 0.835 0.842 0.981 0.146 0.312 0.010
AIC -20.03 -19.62 -22.71 -14.02 -16.76 -10.34

JP Morgan Parameter(s) -0.35, 7.15 -0.34 -2.15 0.42 1.26 1.31
subordinate LL 13.68 11.41 11.93 8.76 11.00 7.79

S
(B )
N 0.020 0.021 0.023 0.053 0.033 0.073

p-value 0.941 0.930 0.890 0.171 0.488 0.036
AIC -23.36 -20.82 -21.85 -15.52 -20.00 -13.59

Southwest Parameter(s) -0.28, 2.09 -0.27 -1.78 0.47 1.26 1.38
airlines LL 20.91 7.27 7.48 10.94 13.22 12.77

S
(B )
N 0.017 0.034 0.028 0.034 0.026 0.031

p-value 0.993 0.443 0.693 0.528 0.717 0.457
AIC -37.83 -12.54 -12.97 -19.88 -24.45 -23.53

Ford Parameter(s) -0.29, 3.37 -0.25 -1.76 0.38 1.22 1.29
LL 11.52 5.85 7.60 7.34 9.72 8.64

S
(B )
N 0.024 0.046 0.033 0.055 0.037 0.055

p-value 0.871 0.191 0.510 0.144 0.366 0.082
AIC -19.05 -9.70 -13.21 -12.67 -17.44 -15.28

AT&T Parameter(s) -0.14, 2.28 -0.16 -0.84 0.25 1.15 1.21
LL 12.34 2.44 1.74 3.93 5.78 5.90

S
(B )
N 0.028 0.029 0.029 0.031 0.032 0.029

p-value 0.667 0.505 0.519 0.471 0.420 0.494
AIC -20.67 -2.88 -1.48 -5.86 -9.56 -9.81

Walmart Parameter(s) -0.13, 2.55 -0.10 -0.72 0.11 1.09 1.11
LL 10.00 0.87 1.28 0.71 1.94 1.45

S
(B )
N 0.022 0.027 0.026 0.033 0.025 0.025

p-value 0.842 0.548 0.582 0.317 0.646 0.555
AIC -15.99 0.26 -0.56 0.58 -1.88 -0.91

Goldman Sachs Parameter(s) -0.32, 13.65 -0.31 -2.03 0.31 1.21 1.22
senior LL 10.17 9.56 10.78 4.97 7.00 3.59

S
(B )
N 0.029 0.034 0.031 0.079 0.057 0.108

p-value 0.671 0.503 0.590 0.033 0.097 0.005
AIC -16.34 -17.12 -19.56 -7.94 -11.99 -5.17

Goldman Sachs Parameter(s) -0.31, 8.41 -0.30 -1.87 0.31 1.21 1.22
subordinate LL 10.18 8.70 9.23 5.06 7.02 4.05

S
(B )
N 0.024 0.027 0.029 0.060 0.042 0.078

p-value 0.798 0.687 0.654 0.100 0.249 0.027
AIC -16.35 -15.39 -16.45 -8.12 -12.05 -6.10

Citigroup Parameter(s) -0.33, 7.01 -0.32 -2.09 0.38 1.24 1.27
LL 12.29 10.29 11.12 7.46 9.48 6.31

S
(B )
N 0.024 0.030 0.026 0.072 0.044 0.082

p-value 0.870 0.653 0.766 0.043 0.252 0.024
AIC -20.58 -18.57 -20.23 -12.92 -16.96 -10.61

Table 4.14: Results of fitting the t , Gaussian, Frank, rotated Clayton, Gumbel and Joe copulas to the data from the downturn periods
of the swap rate log-returns and the implied PD log-returns. Parameter(s) denotes the fitted estimates of ρ and the degrees of freedom
respectively for the t copula, ρ for the Gaussian copula, and θ for the Frank, rotated Clayton, Gumbel and Joe copulas. The highest
p-values and the lowest AIC values are highlighted in bold. The t copula performs best for most sectors. For a description of the test
generating the p-values and further interpretation of the results see Section 3.1.
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Figure 4.7: Contour plots of the t copula density, superimposed with scatterplots of the pseudo-observations of the implied PD log-
returns and the swap rate log-returns. Data is from the periods of normal economic circumstances. Note that the scales for the contour
plots are different for each copula. The parameters for the t copula are those obtained in the fitting process, i.e. the parameters in Table
4.13. As shown by the densities, the tail dependence is stronger for a small (Ford) number of degrees of freedom. The scatterplots seem
to correspond to the contour plots, indicating a good fit.

rotated Clayton and Joe copulas, and to a lesser extent the Gumbel copula.8 It should be noted that although
the radially symmetric copulas are the best fit, the tail dependence of the true underlying distribution could
still be slightly different between the two tails. In this case, the true underlying copula would be ‘close’ to
radially symmetric.

To sum up, the t copula is the best fit for most of the datasets, especially for those obtained from periods
of financial crisis. The other radially symmetric copulas outperform the non-radially symmetric copulas, al-
though both of them lack the consistent performance of the t copula. Although the Gaussian copula can be
approximated by the t copula with a high number of degrees of freedom, it still outperforms the t copula in a
few cases. Of the non-radially symmetric copulas, the Gumbel copula is the best fit. The rotated Clayton and
Joe copulas are a poor fit for the non-downturn data, while their performance compared to the other copulas
is better during downturn periods. Since the t copula is the best performing copula for both the dataset from
downturn periods and the dataset from normal economic situations, it is the recommended copula for use in
models of the joint behaviour of the swap rate and the PDs of US companies.

In Figure D.2 and Figure D.3 in the appendix, scatterplots of the pseudo-observations of the datasets of
log-returns of implied PDs and log-returns of swap rates are shown for non-downturn and downturn data
respectively. These scatterplots are superimposed on contour plots of the t copula densities, with the param-
eters being those fitted to the data shown in the scatterplots, as shown in Table 4.13 and Table 4.14. As an
example, these plots are shown in Figure 4.7 for the non-downturn implied PD data from American Airlines
and Ford, and in Figure 4.8 for the downturn data from JP Morgan subordinate and Walmart CDS spreads. The
flexibility of the t copula is well visible in the density; the t copula for American Airlines has many degrees of
freedom, leading to little tail dependence, while the tail dependence is more severe in the t copula fitted to
data from the Ford sector, which has far fewer degrees of freedom. Similarly, the t copula fitted to JP Morgan
subordinate data has an absolutely higher correlation parameter than the t copula fitted to Walmart data,
which also shows in the plots. It can be seen that for all sectors and companies, for both the non-downturn
and the downturn data, the shapes of the copula densities appear to match the shapes of the scatterplots,
although the scatterplots for downturn data are less informative because of the smaller size of the dataset.
This is a visual confirmation of the assessment that the t copula is a good modelling choice for the purpose
of this thesis.

8Although the lower tail dependence coefficient of the Gumbel copula is zero, this is an asymptotic property. As visualised in Figure 3.1,
the Gumbel copula density is higher and shows slightly more dependence in the lower tail than the densities of the Joe and rotated
Clayton copulas.
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Figure 4.8: Contour plots of the t copula density, superimposed with scatterplots of the pseudo-observations of the implied PD log-
returns and the swap rate log-returns. Data is from the crisis periods. Note that the scales for the contour plots are different for each
copula. The parameters for the t copula are those obtained in the fitting process, i.e. the parameters in Table 4.14. The densities show
the difference in correlation between an absolutely high (JP Morgan subordinate) and low (Walmart) parameter ρ. The scatterplots seem
to correspond to the contour plots, indicating a good fit.

4.7. Financial interpretation
Many financial conclusions can be drawn from the fitted copulas for both the non-downturn and downturn
datasets, and from the other analyses that have been performed. The results are most informative if they
are combined before drawing conclusions, so that the differences and similarities between results of various
analyses can be explored. Therefore the financial interpretation of all results is collected in this section.

The most obvious result concerning the dependence structure is the observation of statistically signifi-
cant negative dependence between the log-returns of implied PDs and swap rate. This is implied by all fitted
copulas, as well as by the results of statistically significant negative rank correlation coefficients. This shows
that WWR is present for the receiver position of interest rate swaps, which is in line with the findings by Ben-
Abdallah et al. (2019) and Harris et al. (2015) for a set of mostly financial companies.

Tail dependence was shown to be present in the non-downturn dataset, as evidenced by the t copula be-
ing the best performing copula in terms of goodness of fit. The t copula contains tail dependence in both
tails, but when considering observations below the 0.1 quantile of swap rate log-returns and above the 0.9
quantile of PD log-returns and vice versa, it was shown that there is strong tail dependence of type 2, i.e. the
tail of high PD log-returns and low swap rate log-returns. Tail dependence of type 1 (low PD log-returns and
high swap rate log-returns) and dependence in the main body of the data is much weaker. This implies that
the dependence is strongest when PDs rise and swap rates fall. This situation corresponds to periods of eco-
nomic decline, as companies are more likely to default. One of the possible causes of this is the tendency of
companies to borrow less when the economy is in decline. They are less willing to take risks by taking out
large loans to pay for new investments, since if an investment does not work out, a company has to pay back
the loan using its financial reserves, which it might need. The demand for fewer loans increases interest rates.

On the other hand, in times of a neutral or good economic situation, there is less dependence between
PD log-returns and swap rate log-returns. However, the tail dependence in the tail corresponding to a good
economy (i.e. the type 1 tail of low PD log-returns and high swap rate log-returns) is still strong enough for
the radially symmetric copulas to outperform the copulas with tail dependence in only one tail. A possible
financial reason for the weaker dependence in the main body and the type 1 tail is the difference in company
strategies. While one company might look to aggressively take out loans and expand its business, another
company could be content to continue its operations as they currently stand and use only their profits to fi-
nance their expenses. Companies have many good paths to take in a good economy, while in a bad economy,
the best option for most companies may be to sit on their reserves and not take out any loans. This contrast
might be the reason for the difference in dependence observed for different economic situations.
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The main observation from the downturn analysis is that the correlation in the full dataset during the
downturn periods is lower than expected, given the tail dependence observed in the dataset of regular mar-
ket conditions. The expectation would be that the observed behaviour in the extreme cases (i.e. tails) during
regular market conditions would carry over to general cases during the downturn periods, since all move-
ments are more extreme in times of crisis. However, this is not the case.

To understand possible reasons for this discrepancy, first consider the economic reasons behind the de-
pendence structure between PDs and interest rates. One of the possible causes of this dependence is the
tendency of companies to borrow less when the economy is in decline, instead holding on to its financial re-
serves as described above. However, during a crisis, many companies are in worse situations than simply not
borrowing and sitting on their reserves. Some companies will have to take out loans to be able to survive. Na-
tional governments and central banks may act as guarantors for loans taken out for this reason, which would
cause more loans to be taken out. The demand for loans by these struggling companies is an upward push
to interest rates. Another upward driver for the interest rates is the increased risk banks face in these periods
when writing out loans that are not guaranteed by governments or central banks. These two upward drivers
counteract the general tendency of interest rates to move down in periods of a weaker economy and higher
PDs. This could explain why a lower correlation between PDs and swap rates is observed during crisis periods.

To summarise, the analyses performed in this chapter show that WWR in IRSs is strongest when the econ-
omy is worsening, observed through rising PDs. In such situations, companies are more careful and borrow
less, driving interest rates down. When the economy is stable or growing, the dependence between move-
ments in the PDs and the swap rate is weaker because of diverging company strategies. In periods of crisis,
the demand for loans needed for the survival of companies as well as guarantees on loans by central banks
and governments are upward drivers for the swap rate. This reduces WWR in IRSs in these periods, although
the high PDs mean that credit risk as a whole is high.





5
Interest Rate Swap Partial Insurance

Contracts

After determining that WWR is present in interest rate swaps and how to model it, a logical next question is:
what to do about it? An institution exposed to WWR might of course choose to simply accept the risk, but
many institutions prefer to hedge their risks.

This chapter introduces a new financial product called the interest rate swap partial insurance contract
(IPI). Its goal is to introduce an upper bound on the credit losses that may be suffered on an interest rate
swap, thus partially hedging the position. The IPI pays out if the counterparty of the IRS goes into default (the
default event) and the credit losses suffered by the IPI buyer due to the default event exceed a threshold value
K . In this case, the IPI pays out the difference between the losses and K .

First, Section 5.1 explains why a different model for WWR than those used in previous chapters is neces-
sary, and the WWR model used in this chapter is described. Then, Section 5.2 details the possible goals of a
hedging product in terms of the impact on the credit losses, and describes why the goal of bounding the credit
losses is chosen for the IPI. In Section 5.3, the IPI is introduced through the definition of its cash flows, which
are then used to obtain an exact expression for the no-arbitrage price of the product. Finally, a sensitivity
analysis on the price of an IPI is performed in Section 5.4.

5.1. Model for WWR
In this chapter, a different model for WWR is used than in the previous chapters of this thesis. As shown in
this section, the method of modelling WWR used in earlier chapters does not lead to a convenient expression

for the default event.1 This is a major disadvantage when deriving an exact expression for the no-arbitrage
price of the IPI.

Recall that the previous chapters estimated which copula could best be used to describe the swap rate
and the probability of default of a certain company, assuming that both the distribution of the swap rate and
the distribution of the probability of default (PD) were constant over time. In other words, the copula in the
expression

P (λ ≤ λ̃, sr ≤ s̃r) =C (H (λ̃),G(s̃r)), (5.1)

was estimated, where P is the real-world probability measure, H ∶ R→ [0, 1] is the CDF of the PD λ, G ∶ R→
[0, 1] is the CDF of the swap rate sr, and C ∶ [0, 1]2

→ [0, 1] is the copula of λ and sr.

1One possible approach to stay within the method of the previous chapters would be to assume a company goes into default when its
implied PD exceeds a certain threshold value. However, this is counter-intuitive; if the implied PD were a good approximation for true
PD, it would be equal to 1 when the company defaults. Additionally, there would be two ways to describe PD (the probability of the
implied PD exceeding the threshold, and the implied PD itself), leading to inconsistencies.

47
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The WWR model used in this chapter is the copula model described by e.g. Cherubini (2013), Černý and
Witzany (2018), and Böcker and Brunnbauer (2014). Rather than coupling the swap rate with the PD, this
model uses copulas to describe the swap rate and the time of default. The model is defined below.

Definition 5.1 (Copula model for swap rate and time of default). The copula model consists of three parts:

1. Take a set of points in time T0, . . . , Tn = T , with 0 ≤ T0 < ⋅ ⋅ ⋅ < Tn . The swap rate fsr(Ti ) ∈ R at some future
time Ti for an IRS starting at Ti and with payment dates Ti+1, . . . , Tn and maturity Tn ≥ Ti is random
and has CDF Gi ∶ R → [0, 1]. All interest rate swaps considered in this chapter have the same floating
payments; as shown later, the choice of floating payments is irrelevant.

2. There is one defaultable counterparty C , which defaults at a random time τ ∈ [0,∞]. The CDF of τ is
F ∶ R→ [0, 1].

3. The joint distribution of fsr(Ti ) and τ with respect to the risk-neutral probability measure Q is given by

Q(fsr(Ti ) ≤ s,τ ≤ t ) =C (Gi (s), F (t )), (5.2)

where C ∶ [0, 1]2
→ [0, 1] is a bivariate copula.

This model may be used to describe the default event and its dependence with the swap rate fsr(Ti ). This
is essential in the analytical pricing of the IPI, whose payoff depends on the default event taking place at some
time τ > 0 and the level of the swap rate at that time.

5.2. Hedging methods
Reducing or eliminating the effect of market variables on credit losses can be done in many ways. Several
approaches are listed below, characterised by the possible credit losses of the hedged portfolio.

1. The credit losses are equal to zero.
In this approach, the portfolio or product is completely immune to any counterparty credit risk, includ-
ing the credit risk not caused by WWR. This is achieved by an insurance contract on the portfolio, such
as a contingent CDS (C-CDS). A C-CDS is similar to a CDS, but at the credit event, the protection seller
is ready to pay an exposure on a derivative contract rather than a fixed amount. As there are already ex-
isting methodologies to reach an EL of zero (Brigo and Pallavicini; 2006), this approach is not explored
further.

2. The credit losses are bounded.
This goal can be realised using a contract similar to an option or swaption, effectively ’activating’ only
when the market variable of interest is above or below a certain threshold value. This approach is an
example of partial hedging.

3. The credit losses are equal to the hypothetical credit losses in the case of no WWR, i.e. independence
between PD and exposure.
This is a method that isolates and hedges the effect of WWR on the total credit risk, but leaves the
remaining credit risk, to be accepted by the institution or hedged in a different way.

4. The credit losses are equal to the hypothetical credit losses in the case of constant WWR.
This protects the institution against changes in the dependence structure between the counterparty’s
PD and the exposure, but leaves it exposed to the initial WWR and the credit risk not caused by WWR.
Since the dependence structure cannot be directly observed, this approach may be realised as a swap
on the value of an observed dependence measure between the counterparty’s PD and the exposure or
the value of the portfolio or product.

The third and fourth approach both require a hypothetical scenario to be created not only for the pricing,
but also for determining the payoff. This means the counterparties entering into an IPI must agree on how
to model this scenario, since there cannot be any discrepancies about the payoff. Hence, a hedging product
aiming to have the third or fourth of the listed effects on the total credit losses is unlikely to be traded in prac-
tice.
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The goal of the IPI is therefore to bound the credit losses, which is the second approach listed above. The
bound may be determined by the counterparties, to be customised to different levels of risk aversion. A high
bound means the product only covers losses caused by occurrences of high WWR, while with a low bound,
the product may also cover a part of the losses that would have been suffered without WWR.

5.3. Defining and pricing the product
The product can be seen as a partial insurance on an IRS; therefore the product is referred to as an interest
rate swap partial insurance contract, or IPI. This section defines the cash flows of an IPI and determines its
no-arbitrage value.2

The cash flows of the product are defined as follows. Say counterparty A has some IRS contract with
reference entity C, which is called IRS1 for the remainder of this chapter. Suppose A wants to buy protection
against particularly high losses due to default of C and the occurrence of WWR. It enters into an IPI with
protection seller B. Initially, A pays B the price of the IPI. If C does not default during the lifetime of IRS1, no
more IPI cash flows occur. Now suppose C does default within the lifetime of IRS1, and denote by τ the time
of its default. Then A suffers losses equal to the default-free value of IRS1 (if positive) multiplied by the LGD.
If these losses exceed a predefined barrier value K > 0, the difference is paid by B to A. If the losses do not
exceed the barrier value, no payment is made. In mathematical terms,

PayoffIPI(τ) = LGD (V +
IRS1

(τ)−K
∗)+ = LGD (VIRS1

(τ)−K
∗)+ , (5.3)

where K ∗
= K /LGD, VIRS1

(τ) ∈ R denotes the default-free value of IRS1 at time τ, and LGD is loss given default,
which is assumed to be a deterministic constant for simplicity. The second equality above holds by definition
if VIRS1

(τ) ≥ 0, and if VIRS1
(τ) < 0, then

LGD (V +
IRS1

(τ)−K
∗)+ = LGD (VIRS1

(τ)−K
∗)+ = 0. (5.4)

The cash flows of an IPI are also shown schematically in Figure 5.1, and the timing of the cash flows of an IPI
and the cash flows and credit loss of IRS1 are shown in Table 5.1.

Now suppose the payment dates of IRS1 are T0, . . . , Tn = T , where T0 < ⋅ ⋅ ⋅ < Tn and T is the maturity of
IRS1. Then the price VIPI(t , Tn) at time t ≥ 0 for an IPI with IRS1 being the underlying IRS can be split up as

VIPI(t , Tn) =
n−1

∑
i=0

VIPI(t , Ti , Ti+1), (5.5)

where VIPI(t , Ti , Ti+1) ≥ 0 is the value of the possible payoff due to default of reference entity C between times
Ti and Ti+1. This value is given by

VIPI(t , Ti , Ti+1) = P (t , Ti+1)LGD Et [(VIRS1
(τ)−K

∗)+ 1{Ti < τ ≤ Ti+1}] , i = 1, . . . , n −1, (5.6)

where 1{Ti < τ ≤ Ti+1} is the indicator function, which is equal to 1 if Ti < τ ≤ Ti+1 and zero otherwise,
P (t , Ti+1) > 0 is the price at time t of a unit nominal zero-coupon bond maturing at time Ti+1 (used as the
discounting factor), and Et is the conditional expected value conditional on the natural filtration F = (Ft )t≥0

of the stochastic process fsr(t ) and a jump process for the default of C. This filtration contains all information
up to time t of the swap rates fsr(t ) and the default time τ (i.e. whether τ ≤ t or not). Now define an auxiliary
function

V V (t , T̃ , Ti+1, Tn) ∶= P (t , Ti+1)LGD Et [(VIRS1
(Ti+1, Tn)−K

∗)+ 1{τ ≤ T̃ }] , i = 1, . . . , n −1 (5.7)

for T̃ ∈ (Ti , Ti+1]. The assumption3 is made that whenever the default event occurs between Ti and Ti+1,
IRS1 is terminated from Ti+1 onward and the losses are incurred at Ti+1. If the default event occurs at Ti+1,

2The price for which a financial product is traded is governed by supply and demand; but here the terms price and pricing refer to the
intrinsic, no-arbitrage value of an IPI.

3This is not an assumption but reality for many definitions of the default event that are common for CDS contracts, such as the reference
entity being 90 days late on its IRS payment. In that case, the time of default is only known 90 days after the missed payment, but for
the sake of losses and IPI payoff, the time of the default event is the moment the missed payment would have taken place.
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IPI buyer A
(IRS fixed receiver)

IPI seller B

Reference entity C
(IRS fixed payer)

𝑉IPI 𝑇0, 𝑇𝑛

At time of inception 𝑇0 = 0:

𝑉𝐼𝑅𝑆 𝑡0 = 0

IPI buyer A
(IRS fixed receiver)

IPI seller B

Reference entity C
(IRS fixed payer)

LGD (𝑉
IRS

𝜏 – 𝐾∗)
+

At time of default 𝜏 of C:

Loss: LGD 𝑉𝐼𝑅𝑆
+ 𝜏

Figure 5.1: The cash flows between the relevant counterparties of an IPI in the case where τ < T. The cash flows of IRS1 are shown in
blue. Note that the IRS position is not part of the IPI and it is not necessary for A and C to enter into an IRS. It is also possible for A to be
the fixed payer and C the fixed receiver.

the IRS1 cash flow that would take place at Ti+1 does not occur by convention. Under the above assumption,
VIRS1

(Ti+1) is equal to VIRS1
(τ) if Ti < τ ≤ Ti+1. One may write

VIPI(t , Ti , Ti+1) =V V (t , Ti+1, Ti+1, Tn)−V V (t , Ti , Ti+1, Tn), (5.8)

such that the task of pricing of the IPI is reduced to finding an expression for the conditional expectation in
(5.7).

From here on, the focus is on the case where counterparty A has a receiver position in IRS1, since the
earlier chapters of this thesis show that WWR is present in the receiver end of interest rate swaps. The pricing
of the IPI in the case where A has a payer position is analogous, however.

To calculate VIRS1
(Ti+1, Tn), note that its no-arbitrage value stays the same if a position in a different IRS

starting at Ti+1 is added, since the swap rate of the latter swap is such that the value of the swap is zero at time
Ti+1. Specifically, suppose a payer position is added in an interest rate swap IRS2 starting at time Ti+1 with
maturity Tn and with the same floating payments as IRS1. Denote by fsr(Ti+1) the swap rate of IRS2. Since
opposite positions are taken in the two swaps, the floating payments cancel out, and only the fixed payments
remain (see also Table 5.1). This means that

VIRS1
(Ti+1, Tn) = X (Ti+1, Ti+1, Tn)(sr− fsr(Ti+1)), (5.9)

where sr is the swap rate of IRS1, and

X (t , Ti , Tn) =
n

∑
j=i

δ j P (t , T j ) (5.10)

is the value of an annuity, with δi being the year fraction between payment dates Ti−1 and Ti , depending on
the calendar convention. Only the case where δi = δ is independent of the payment date is considered, since
this holds in most IRS contracts. Note that IRS2 is only used to obtain (5.9), and no position in it is entered for
the purposes of hedging IRS1 using the IPI.
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Time Default-free IRS1 Credit loss on IRS1 IRS2 Default-free IRS1 + IRS2 IPI
T0 = 0 −VIPI(T0, Tn)

T1 δ(sr−fl(T1)) δ(sr−fl(T1))
⋮ ⋮ ⋮

Ti δ(sr−fl(Ti )) δ(sr−fl(Ti ))
τ = Ti+1 δ(sr−fl(Ti+1)) −V +

IRS1
(Ti+1) δ(fl(Ti+1)− fsr(Ti+1)) δ(sr− fsr(Ti+1)) LGD (VIRS1

(Ti+1)−K ∗)+
Ti+2 δ(sr−fl(Ti+2)) δ(fl(Ti+2)− fsr(Ti+1)) δ(sr− fsr(Ti+1))
⋮ ⋮ ⋮ ⋮

TN−1 δ(sr−fl(TN−1)) δ(fl(TN−1)− fsr(Ti+1)) δ(sr− fsr(Ti+1))
TN δ(sr−fl(TN )) δ(fl(TN )− fsr(Ti+1)) δ(sr− fsr(Ti+1))

Table 5.1: Timing of the cash flows and credit losses of the underlying swap IRS1, the swap IRS2 starting at Ti+1, and the IPI, with default
of the reference entity taking place at Ti+1. The credit loss is indicated by a negative amount. fl(t ) denotes the floating rate at time t used
in both IRS1 and IRS2.

Using this, one can write

V V (t , T̃ , Ti+1, Tn) ≈ LGD X (t , Ti+1, Tn)Et [(sr− fsr(Ti+1)− K̃i+1)+1{τ ≤ T̃ }], (5.11)

where K̃i+1 = K ∗/X (Ti+1, Ti+1, Tn) = (LGD X (Ti+1, Ti+1, Tn))−1K . The approximation sign is due to the as-
sumption that X (Ti+1, Ti+1, Tn) is Ft -measurable for all t ≥ T0 and the approximation

P (t , Ti+1)X (Ti+1, Ti+1, Tn) ≈ X (t , Ti+1, Tn). (5.12)

Going forward, an approach similar to the one by Černý and Witzany (2018) is used. As shown in Appendix
B.1, one may write

Et [(sr− fsr(Ti+1)− K̃i+1)+1{τ ≤ T̃ }] = ∫
(sr−K̃i+1)+

0
Q(fsr(Ti+1) ≤ s,τ ≤ T̃ )d s, (5.13)

where Q is the risk-neutral probability measure. Whenever K̃i+1 ≥ sr, the integral on the right hand side is

zero. This situation corresponds to no losses being insured by the IPI, since the losses cannot exceed K .4 This
is more likely for higher i as K̃i+1 is increasing in i , since it is decreasing in X (Ti+1, Ti+1, Tn) which is decreas-
ing in i . The financial explanation for this is that the exposure of an IRS decreases as it approaches maturity,
since there are fewer future cash flows left. Therefore the losses can no longer exceed K .

Now (5.13) can be rewritten as

Et [(sr− fsr(Ti+1)− K̃i+1)+1{τ ≤ T̃ }] = ∫
(sr−K̃i+1)+

0
C (Gi+1(s), F (T̃ ))d s, (5.14)

where Gi+1 ∶ R → [0, 1] is the CDF of fsr(Ti+1), F ∶ R → [0, 1] is the CDF of τ, and C ∶ [0, 1]2
→ [0, 1] is the

bivariate copula of fsr(Ti+1) and τ, as described in Definition 5.1. If C is the independence copula or the
comonotonicity copula (the upper Fréchet bound),5 analytical expressions may be found for VIPI(t , Ti , Ti+1),
giving the value of the IPI in terms of swaptions and credit default swaps. The derivations are shown in

Appendix B.2. For the comonotonicity copula C COMON(u1, u2) = min{u1, u2}, (u1, u2) ∈ [0, 1]2, the value of an
IPI on a receiver interest rate swap with notional amount 1 is given by

V
COMON

IPI (t , T ) ≈ LGD
n−1

∑
i=0

[X (t , Ti+1, Tn)

× [(sr− K̃i+1 −bi+1)+ F (Ti+1)− (sr− K̃i+1 − ai )+ F (Ti )]
+VRSwaption (t , Ti+1, T, min{bi+1, (sr− K̃i+1)+})
−VRSwaption (t , Ti+1, T, min{ai , (sr− K̃i+1)+})] ,

(5.15)

4Note that the value and therefore the losses of a receiver position in an IRS are bounded, as can be seen by considering the case
fsr(Ti+1) = 0 in (5.9).

5Positive dependence between fsr(Ti+1) and τ corresponds to negative dependence between fsr(Ti+1) and the PD of C, which is the
direction of the dependence observed earlier in this thesis.
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where
ai =G

−1
i+1 (F (Ti )) , bi+1 =G

−1
i+1 (F (Ti+1)) , (5.16)

and VRSwaption (t , Ti+1, T, sK ) ≥ 0 denotes the value at time t of a default-free6 receiver swaption exercised at
time Ti+1 (such that the first payment takes place at Ti+2) and maturing at time T , with strike rate sK . In this
case, the IPI may be replicated by long positions default-free CDSs on the reference entity C, long positions in
default-free receiver swaptions with strikes min{bi+1, sr− K̃i+1}, and short positions in default-free receiver
swaptions with strikes min{ai , sr− K̃i+1}. This also constitutes a super-replicating strategy for the IPI. The

value of the IPI under the independence copula C IND(u1, u2) = u1u2, (u1, u2) ∈ [0, 1]2, corresponding to the
case of no WWR, is given by

V
IND

IPI (t , T ) ≈ LGD
n−1

∑
i=0

(F (Ti+1)−F (Ti ))VRSwapion (t , Ti+1, Tn , (sr− K̃i+1)+) , (5.17)

so that the IPI may be hedged with long positions in CDSs on reference entity C and long positions in receiver
swaptions with strikes sr− K̃i+1.

Other levels of dependence may be modelled by using a mixture copula which linearly interpolates be-
tween the comonotonicity and independence copulas, given by

C
MIX(u1, u2) = ρ̂C

COMON(u1, u2)+ (1− ρ̂)C IND(u1, u2), (u1, u2) ∈ [0, 1]2
, (5.18)

where C COMON(u1, u2) = min(u1, u2) and C IND(u1, u2) = u1u2 denote the comonotonicity and independence
copulas respectively, and ρ̂ ∈ [0, 1]. This way one can model any level of positive dependence by means of a
flat dependence parameter. When using this copula, the value of an IPI is interpolated in the same way, i.e.

V
MIX

IPI (t , T ) = ρ̂V
COMON

IPI (t , T )+ (1− ρ̂)V IND
IPI (t , T ). (5.19)

If there are pricing methods in place for CDS and swaption contracts, the above expressions allow for an exact
computation of the no-arbitrage price of an IPI contract for any level of dependence.

An estimate for ρ̂ is given by the Spearman’s correlation coefficient of the data, which is theoretically equal
to ρ̂. To see why this holds, consider the expression

ρS (X1, X2) = 12∫
1

0
∫

1

0
(C (u1, u2)−u1u2)du1du2 (5.20)

for any two random variables X1, X2 with copula C , which is proved by McNeil et al. (2005). Since all opera-
tions applied to the copula in this expression are linear, one has

ρS (C MIX) = ρ̂ρS (C COMON)+ (1− ρ̂)ρS (C IND) , (5.21)

where ρS (C ) denotes Spearman’s rank correlation of a copula C . Since Spearman’s rank correlation of the

comonotonicity and independence copulas is equal to 1 and 0 respectively, this yields ρS (C MIX) = ρ̂. Being a
measure of rank correlation, Spearman’s correlation coefficient is well-suited as an estimator, since it is inde-
pendent of the marginals and can be easily calculated from a dataset. 7

A numerical test is performed to compare Spearman’s correlation coefficient to the fitted value of ρ̂. Sev-

eral bivariate datasets on [0, 1]2 are generated by simulating from different copulas, and the mixture copula

in (5.18) is fitted to the datasets. The fitting is done by using ordinary least squares (OLS)8 on the equation

Ĉ
MIX(u1, u2) = ρ̂C

COMON(u1, u2)+ (1− ρ̂)C IND(u1, u2), (5.22)

6Default-free products do not exist in practice, but one can minimise the counterparty default risk e.g. by requiring collateral.
7As ρ̂ can be estimated by Spearman’s correlation coefficient, which is the linear correlation coefficient of a copula, one may wonder if

C MIX
∗ (u1, u2) = ρ̂C COMON(u1, u2)+

√
1− ρ̂2C COMON(u1, u2) for (u1, u2) ∈ [0, 1]2 could work as a mixture copula. However, the function

C MIX
∗ is not a distribution function, since C MIX

∗ (1, 1) ≠ 1 in general, and therefore it is not a copula.
8Maximum likelihood estimation is not available, since the density of the comonotonicity copula does not exist everywhere.
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Sampling copula Parameters Fitted ρ̂ Spearman
Independence copula 0.0176 0.0256
Mixture copula ρ̂ = 0.25 0.2723 0.2464
Mixture copula ρ̂ = 0.5 0.5356 0.4950
Mixture copula ρ̂ = 0.75 0.7379 0.7496
Comonotonicity copula 0.9566 1
Gaussian copula ρ = 0.5 0.4660 0.4876
t copula ρ = 0.5, df = 4 0.4525 0.4818
Frank copula θ = 2 0.2447 0.3219
Gumbel copula θ = 2 0.6248 0.6831

Table 5.2: Comparison of Spearman’s correlation coefficient and fitted values of ρ̂. Fitted values are obtained by fitting the mixture copula
in (5.18) to a dataset. Samples are obtained from several different copulas; ‘Mixture copula’ indicates the copula in (5.18). df is degrees
of freedom. As expected, Spearman’s correlation coefficient seems to be a good estimate for ρ̂.

where Ĉ MIX is the empirical distribution function based on the sample. The set [0, 1]2 is discretised to a

grid and the observed dependent variable Ĉ MIX(u1, u2) and the explanatory variables C COMON(u1, u2) and

C IND(u1, u2) are calculated for each grid point (u1, u2). The resulting estimates for ρ̂ and Spearman’s correla-
tion coefficients for the samples are shown in Table 5.2.

The results show that Spearman’s correlation coefficient is a good estimate for ρ̂, confirming the theo-
retical findings. When the sampling copula is the mixture copula itself, Spearman’s correlation coefficient is
actually a better estimate for ρ̂ than the value found with OLS fitting.

5.4. Sensitivity analysis
In this section, a numerical analysis of the sensitivity of the value of an IPI to its underlying variables is per-
formed. The effect of changing one of the parameters is analysed, while the other parameters are constant.
The maturity of the swap is 10 years, with quarterly payments, such that δ = 0.25. For the swaption values, a
standard Black model is used, which assumes that the future swap rate follows a lognormal distribution with
volatility parameter σ, i.e.

fsr(Ti+1) = sr exp(−σ
2

2
Ti+1 +σW (Ti+1)) , (5.23)

where W (Ti+1) ∼ N (0, Ti+1) is normally distributed. The time of default is assumed to follow an exponential
distribution with default intensity h. This means that ai and bi+1 can be expressed explicitly as

ai = sr exp{−σ
2

2
(Ti+1 − t )+Φ−1 (1−exp{−h (Ti − t )})σ

√
Ti+1 − t} ,

bi+1 = sr exp{−σ
2

2
(Ti+1 − t )+Φ−1 (1−exp{−h (Ti+1 − t )})σ

√
Ti+1 − t} .

(5.24)

The constant values of the parameters are as follows. LGD = 0.6, corresponding to the common assump-
tion that the recovery rate is equal to 0.4. The swap rate sr of IRS1 is equal to 0.006051, which was the 10 year
US swap rate on May 7, 2020. A realistic estimate that ρ̂ = 0.25 is used. The volatility of the future swap rate is
assumed to be constant at σ = 0.4, an estimate also made by Černý and Witzany (2018). For the parameter h
of the exponential distribution for default time, h = 0.0152 is used, based on the calibration by Ben-Abdallah
et al. (2019) for JP Morgan.

Figure 5.2 visualises the results. The value VIPI is relatively stable for low K , as most losses on IRS1 are
expected to exceed the bound. VIPI quickly drops to zero as K grows, however; this happens when K is close
to the expected losses on IRS1. The transition from the area where VIPI is stable in K to the area where VIPI = 0
is slower if the volatility σ is higher.

As expected, the value of the IPI is linear in ρ̂, since the interpolation is linear. It is notable, however, that
VIPI ≈ 0 for ρ̂ = 0, meaning the IPI has almost no value if the swap rate and the time of default of the refer-
ence entity (i.e. the counterparty of IRS1) are independent. This implies that for the chosen parameters, the
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IPI covers only losses caused by WWR, although there is no indication that it covers all losses caused by WWR.

The sensitivity of VIPI to the fixed swap rate is reminiscent of the sensitivity of the no-arbitrage value of a
European call option to the underlying stock. Recall that the IPI can indeed be interpreted as an option on the
future swap rate, which can be exercised conditional on the default of the reference entity. The future swap
rate at inception time of the IPI is equal to the fixed swap rate, therefore the observed sensitivity is expected.

The expectation is that VIPI is increasing in the volatility σ of the future swap rate, since this would give a
higher probability of a positive payoff, and the possible payoff is larger. This is indeed observed for low σ in
Figure 5.2d; however, as the volatility increases further, the value of the IPI decreases. This is surprising, and
no explanation for this behaviour is found.

As expected, VIPI is increasing in the parameter h of the exponential distribution of the time of default
of C. As h increases, a counterparty default becomes more likely to occur before maturity, therefore a sharp
rise in VIPI can be seen for low h. If h increases further, the probability of a default occurring earlier rises.
However, the exposure of an IRS is low (if positive) close to its inception time, since the swap rate is such that
the value of the IRS is zero at the inception time. Therefore such an early default does not increase the payoff
of an IPI, so for higher h, VIPI is almost constant in h.

The sensitivity to the LGD is not surprising either. For low LGD, the losses do not exceed the bound, so
no losses are insured and the IPI has no value. For high LGD, VIPI is linear in the LGD, as the losses are linear
in the LGD as well. The non-linearity in the middle of the plot is due to the dependence of the augmented
bounds K ∗ and K̃i+1 on the LGD.

To sum up, the observations are generally according to expectation. A useful observation is that the sensi-
tivity to the swap rate confirms the analogy between an IPI and an option. For the chosen parameters, the IPI
has almost no value if the copula is the independence copula (i.e. ρ̂ = 0), implying that it only covers losses
due to WWR. An unexpected observation is that VIPI is decreasing in the volatility σ of the future swap rate
for high σ; no explanation for this is found.
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Figure 5.2: Visualisation of the sensitivity of VIPI to the relevant variables. One of the variables varies in each plot, while the others are
fixed. The fixed variables are LGD = 0.6, sr = 0.006051, ρ̂ = 0.25,σ = 0.4, h = 0.0152 and K = 0.02. The sensitivity to σ is surprising.





6
Conclusion

The main goals of this thesis were to quantify wrong-way risk (WWR) in interest rate swaps (IRSs), and to
provide a method for hedging it. These goals have been achieved. A copula model was developed to model
WWR in IRSs, and the model was calibrated to historical data. The observed presence and severity of WWR
gives a strong argument for the usefulness of hedging it. The goal of providing a hedging method for WWR
in IRSs was achieved by developing a novel product called the IRS partial insurance contract (IPI). This is an
important result, since there are no existing well-known products aimed at hedging WWR. This chapter sum-
marises how the goals of this study are achieved. Section 6.1 lists potential subjects for future research.

For the modelling of the connection between the 10-year US dollar swap rate and the PD of a large US-
based multinational company, the dependence was found to be negative, and for the non-downturn data,
significant tail dependence was observed. These results were both expected, as mentioned in the introduc-
tion. The best fitting copula was found to be a t copula. For the non-downturn data, the Frank copula also
performed well, but it does not model tail dependence, while the t copula does. For the downturn data, the
t copula performed significantly better than the other copulas. The tail dependence observed for the non-
downturn data was expected to carry over to the main body of the data during crisis periods, but it was shown
that this is not applicable.

The above mathematical results were interpreted financially. One possible explanation for the tail depen-
dence during regular economic circumstances is that during these periods, when the economic situation is
deteriorating but not in a crisis, companies are more risk-averse and thus take out fewer loans, instead hold-
ing onto their financial reserves. This drop in demand for loans drives down interest rates. During financial
crises however, some companies need loans to survive the crisis. Central banks and governments may act as
guarantors for loans during these periods, causing even more loans to be taken out. This increase in demand
for loans, coupled with the increased risk banks run on non-guaranteed loans, drives up the interest rates.
This counteracts the general tendency of interest rates to move down in periods of higher PDs, which could
explain the lower absolute correlation observed during downturn periods.

The second main result of this thesis is the development of a novel product named the IPI, aimed at hedg-
ing WWR in IRSs. The usefulness of such a product is shown by the earlier results, being that WWR is indeed
present for IRSs and manifests itself especially in periods of economic decline outside financial crises. These
periods are already challenging for financial institutions, so it can be a great benefit to limit the losses suf-
fered. Furthermore, there are currently no well-known methods for hedging WWR available.

The IPI introduces an upper bound to the credit losses suffered on an IRS. The IPI buyer pays the seller
the price of the contract up front. Then if a predefined reference entity defaults, the seller pays the buyer the
difference (if positive) between the default-free value of an IRS and a predetermined barrier value. An IPI can
be seen as a conditional option that can only be exercised at the moment of default of the reference entity,
with the value of an IRS as the underlying variable. The barrier value plays the role of a strike price. The
hypothesis was that the product would not isolate WWR, as this would require both counterparties to agree
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on a model for WWR; this hypothesis was confirmed.

The pricing of an IPI has been performed using the comonotonicity copula, the independence copula or
a mixture copula that linearly interpolates between these two copulas to model WWR. The no-arbitrage value
of an IPI can be expressed in terms of the prices of swaptions and CDSs. If ways to determine the prices of
swaptions and CDSs are in place, one can easily determine the price of an IPI in this way for different levels
of WWR.

In the course of finding the best fitting copula to model WWR, another useful result was obtained. It was
found that the underlying copula of a dataset can be identified based on the Akaike Information Criterion

(AIC) and the goodness of fit statistic S
(B )
N described by Genest et al. (2009), whenever the true copula is the t ,

Gaussian, Frank or Gumbel copula. As the AIC is a well-known tool for comparing goodness of fit, and the test

based on S
(B )
N is one of the most powerful out of several tests described by Genest et al. (2009), this finding was

expected. A more surprising result was the similarity of the Joe copula and the survival copula of the Clayton

copula, as the model based on the AIC and S
(B )
N could not distinguish between them.

During the writing of this thesis, several insights were afforded on how the work could have been im-
proved, if different decisions had been made earlier. Firstly, the observation of tail dependence in the non-
downturn data leads to the question of how well the data would be described by extreme value copulas, such
as the Tawn, Galambos or t-EV copulas. One could go even further and use the flexibility of copulas to fit
separate copulas to the tails and to the main body. Conversely, fitting both the rotated Clayton copula and
the Joe copula to real data was not necessary in hindsight, as the fitting model was unable to differentiate
between these two copulas.

Moreover, better estimates for the marginals could have been made during the copula fitting. The empir-
ical marginal distributions have been used, but after observing tail dependence, it became clear that better
estimates of the tails of the marginals might be useful. Parametric distributions could be fitted as marginals,
or techniques from extreme value theory might be used for the tails. McNeil et al. (2005) propose a generalised
Pareto distribution for the tails and an empirical distribution for the body of the marginals. More accurate
estimates for the marginals also allow for a better analysis of those aspects of the dependence structure that
also depend on the marginals.

Furthermore, it might have been more useful to use the same copula model for both parts of the thesis, i.e.
the modelling of WWR and the development of the IPI. The WWR model used to price an IPI could have been
analysed in the earlier parts of the thesis, finding which copula would be the best fit for the data. While this
model contains path inconsistency, a solution for this issue might have been found if more time was spent
analysing the model.

Additionally, the non-downturn data and the downturn data on CDS spreads could have been obtained
for the same companies or sector curves. With this data, useful comparisons could have been made between
the behaviour of a single CDS spread in different economic situations. Finally, the downturn dataset was
small, especially since data from every two days was used to counteract illiquidity. Therefore data could have
been collected from more downturn periods, or from more volatile markets than the US market.

6.1. Future research
During the writing of this thesis, the obtained results have sometimes given rise to more questions. Due to
time constraints, not all of these questions could be answered. For the same reason, some simplifying as-
sumptions had to be made; new studies could investigate the effect of relaxing these assumptions. Some
potential topics for future research based on this study are listed below.

In Chapter 5, an analytical expression for the price of an IPI is obtained when the copula used to describe
the relationship between the time of default and the swap rate is an interpolation between the comono-
tonicity and the independence copulas. It is likely that such a copula is not the best copula to describe this
relationship. Therefore, a good extension of this study would be to determine expressions for the price of an
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IPI using different copulas.

The copula model used in Chapter 5, which couples the time of default of the counterparty with the swap
rate, exhibits path inconsistency. Böcker and Brunnbauer (2014) propose a method to solve this issue, al-
though it has its drawbacks compared to the model currently used. This method could be applied to the
copula model used for pricing an IPI. Furthermore, one could study a way to mitigate the drawbacks of this
method.

Wrong-way risk was interpreted as the positive dependence between the PD and the EAD of a counter-
party in this thesis, while the LGD was assumed to be constant. A more general definition of WWR is the
dependence between the PD of the counterparty on an exposure and the possible loss generated by that ex-
posure, which is equal to EAD× LGD. Although the current literature on WWR typically assumes either the
EAD or the LGD to be constant, research could be done where both quantities are modelled stochastically.
The PD, EAD and LGD could be described by a multivariate model, such as a three-dimensional copula.

In Section 5.4, it was found that the no-arbitrage value VIPI is decreasing in the volatility σ of the future
swap rate for highσ. This is contrary to the expectation that VIPI would be increasing inσ, as a higher volatility
means a higher probability of payoff and a larger potential payoff. No explanation was found for this coun-
terintuitive behaviour in this thesis, so this could be a topic for future research.

Finally, part of the financial interpretation of the results in this thesis could be verified by a future study.
On several occasions, a possible economic reason for the observed mathematical results was given, e.g. for
the observation that WWR was present in the tails of the non-downturn data, but less so in the main body
of the downturn data. A possible reason for this was given, being the fact that during a financial crisis, the
demand for loans is greater because some institutions need loans to survive and because some loans are
guaranteed by governments or central banks. While this phenomenon can generally indeed be observed, a
scientific study on its effects on the swap rates and through that on WWR could provide valuable insights.





A
The copula framework

In this appendix, copulas, the main method used to model WWR in this thesis, are clarified. Only the concepts
used in this thesis are described; further reading on copulas is found in Nelsen (2006). First the definition and
an essential theorem are considered in Section A.1. This section is a copy of the first part of Section 2.2.1,
repeated here for completeness. The most important copulas are described in Section A.2 and some possible
properties of copulas are explored in Section A.3.

A.1. Defining copulas
A vector of random variables is defined by its joint distribution, while the individual random variables can be
considered by looking at their marginals. An intuitive point of view is that when the effect the marginals have

on the joint distribution is removed, what remains is called the copula of the random vector1. The formal
definition of a copula is given below.

Definition A.1. A d-dimensional copula C (⋅) is a distribution function on [0, 1]d with standard uniform
marginals.

While copulas can be defined for any dimension d ≥ 2, d ∈N, this thesis only uses two-dimensional cop-
ulas C (u1, u2). This is because there are two random variables of interest, i.e. the swap rate and either the
probability of default or the time of default.

The intuitive interpretation above is confirmed by Sklar’s theorem (Sklar; 1959). This important theorem
shows firstly that a copula can be obtained from all multivariate distribution functions, and secondly that
copulas can be used together with univariate CDFs to construct multivariate CDFs.

Theorem A.2 (Sklar 1959). Let F be a joint distribution with marginals F1, F2. Then there exists a copula
C ∶ [0, 1]× [0, 1]→ [0, 1] such that, for all x1, x2 ∈ R = [−∞,∞],

F (x1, x2) =C (F1 (x1) , F2 (x2)) . (A.1)

If the marginals are continuous, then C is unique; otherwise C is uniquely determined on Ran F1 ×Ran F2,
where Ran Fi = Fi (R) denotes the range of Fi . Conversely, if C is a copula and F1, F2 are univariate distribution
functions, then the function F defined in (A.1) is a joint distribution function with marginals F1, F2.

Proof. See Schweizer and Sklar (1983).

Corollary A.3. The copula C can be obtained from the multivariate CDF and the marginals as

C (u1, u2) = F (F←1 (u1), F
←
2 (u2)), (A.2)

where F←1 and F←2 denote the generalised inverses of F1 and F2 respectively.

1There has been discussion about the question of whether the copula completely describes the dependence structure of a multivariate
distribution. This has largely to do with one’s interpretation of the term ’dependence structure’. There are many, such as Genest and
Rémillard (2006), who define a dependence structure as a margin-free concept. However, some dependence concepts from extreme
value theory require marginals to be known, as described in section 8.2 of the paper by Mikosch (2006). See also Section 2.3.
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In the above framework, C may be referred to as the copula of F , or as the copula of X if X is a bivariate
random variable with multivariate CDF F and marginals F1, F2.

A.2. Relevant copulas
The copula world is quite big; as shown by Definition A.1, there are infinitely many possible copulas. Some
of the most relevant copulas for this thesis are explored in this section. The copulas in this section can be
divided into three categories: independence and bounds, elliptical copulas and Archimedean copulas.

Independence and bounds
The first copulas considered provide the most basic of dependence structures: independence, comonotonic-
ity and countermonotonicity. Each copula models one level of dependence, and as such they are the only
copulas without parameters described in this section.

The independence copula is given by
C (u1, u2) = u1u2. (A.3)

This corresponds to the general notion in probability theory that two events are independent if and only if
the probability of both events happening is equal to the probability of the first event happening multiplied
by the probability of the second event happening.

The comonotonicity copula is
C (u1, u2) = min{u1, u2}. (A.4)

Note that this copula is the joint CDF of the clearly monotonic random vector (U ,U ), where U ∼U (0, 1).

The countermonotonicity copula is given by

C (u1, u2) = max{u1 +u2 −1, 0}. (A.5)

This is the joint CDF of the countermonotonic random vector (U , 1−U ), where U ∼ U (0, 1). Unlike the in-
dependence copula and the comonotonicity copula, the countermonotonicity copula cannot be extended to
dimensions higher than two, much like the concept of countermonotonicity itself.

Bounds for copulas are given by the Fréchet bounds. These bounds are themselves copulas, specifically
the comonotonicity and countermonotonicity copulas:

max{u1 +u2 −1, 0} ⩽C (u1, u2) ⩽ min{u1, u2}. (A.6)

Intuitively this makes sense, since these copulas represent the most extreme cases of dependence. Note that
these bounds can be extended to higher dimensions, although as mentioned, the lower bound is not a copula
itself for dimensions higher than 2.

In practice, the independence, comonotonicity and countermonotonicity copulas are useful for testing
extreme cases, and comparing them to the base case of independence. This can yield bounds for credit-
related quantities such as CVA. They can also be used in mixture copulas that interpolate between indepen-
dence and comonotonicity or countermonotonicity. This is done by for example Cherubini (2013) where the
copula

Cρ(u1, u2) = ρmin(u1, u2)+ (1−ρ)u1u2

is considered, with dependence parameter ρ.

Elliptical copulas
Another class of copulas are elliptical copulas, which are the copulas of elliptical distribution, such as the
normal distribution and the t distribution. An important property of all elliptical copulas is radial symmetry.
The copulas considered here are the Gaussian copula and the t copula. Both of these are copulas that are im-
plied by a multivariate distribution. This means that the copula is defined as the copula of the corresponding
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multivariate distribution through (A.2). As such, there is no closed form expression of these copulas.

If Y ∼ Nd (µ,Σ) is a Gaussian random vector, then its copula is called a Gaussian copula or Gauss copula.
The operation of standardizing the marginals is a strictly increasing transformation, and it can be shown that
strictly increasing transformations do not affect the copula of a distribution (see for example McNeil et al.;
2005). Therefore, the copula of Y is the same as the copula of X ∼ N2(0, P ), where P = ℘(Σ) is the correlation
matrix of Y . Through (A.2), this copula is given by

C
Ga
ρ (u1, u2) =Φρ(Φ−1(u1),Φ−1(u2)), (A.7)

with parameter ρ. This copula does not have a simple closed form, but can be expressed as the integral over
the density of X . For ∣ρ∣ < 1, the copula can be written as

C
Ga
ρ (u1, u2) = ∫

Φ
−1(u1)

−∞
∫
Φ
−1(u2)

−∞

1

2π (1−ρ2)1/2
exp{

− (s2
1 −2ρs1s2 + s2

2)
2 (1−ρ2)

}ds1ds2. (A.8)

Note that for ρ = −1, ρ = 0 and ρ = 1 one obtains the countermonotonicity, independence and comonotonic-
ity copulas respectively.

Using the same approach as for the Gaussian copula, one can obtain a copula from the multivariate t
distribution, called the t copula. It is given by

C
t
ν,ρ(u1, u2) = tν,ρ(t−1

ν (u1), t
−1
ν (u2)), (A.9)

with two parameters ν and ρ. This can be written in integral form as

C
t
ν,ρ (u1, u2) = ∫

t−1
ν (u1)

−∞
∫

t−1
ν (u2)

−∞

Γ (ν+2
2

)

Γ (ν
2
)νπ (1−ρ2)1/2

(1+
− (s2

1 −2ρs1s2 + s2
2)

ν (1−ρ2)
)
− ν+2

2

ds1ds2. (A.10)

Like for the Gaussian copula, for ρ = 1 the t copula is equal to the comonotonicity copula and for ρ = −1 one
obtain the countermonotonicity copula. But for ρ = 0, the t copula is in general not equal to the indepen-
dence copula. This is because uncorrelated multivariate t-distributed random variables are not independent.
When ν→∞, the t copula approaches the Gaussian copula.

The Gaussian copula is the copula behind the famous model by Li (2000), where the multivariate Gaussian
copula was used to model dependence between default times of different companies. The estimate for the
correlation parameters is done according to the CreditMetrics method developed by J.P. Morgan (1997), where
assuming the same correlation ρ between each pair of companies in a large pool is one of the proposed
approaches. The model has several shortcomings, about which Li himself warned in the Wall Street Journal
(Whitehouse; 12 September 2005), naming misuse of the model one of the biggest dangers. Nevertheless, his
model was widely used and misused in the mid-2000s, and it was one of the causes for the 2008 credit crisis
(MacKenzie and Spears; 2014). Some of the reasons for this were the use of a single correlation parameterρ for
each pair of defaults of companies in a large pool and the inability of the Gaussian copula to correctly model
the dependence between extreme events, such as extremely short times to default of multiple companies.

Archimedean copulas
Next Archimedean copulas are considered, a family of copulas with a specific structure. These copulas are
widely used in credit risk modelling (see e.g. Hofert and Scherer; 2011; Gatfaoui; 2005; Naifar; 2011). Many
Archimedean copulas are of the form

C (u1, u2) = φ−1(φ(u1)+φ(u2)), (A.11)

where φ is a continuous, strictly decreasing function known as the generator of the copula with φ(1) = 0. Not
all generators have inverses with domain [0,∞], hence the official definition of Archimedean copulas uses a
form of generalised inverse called the pseudo-inverse.
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Definition A.4 (Pseudo-inverse). Let φ ∶ [0, 1] → [0,∞] be a continuous, strictly decreasing function with
φ(1) = 0 and φ(0) ⩽∞. The pseudo-inverse of φ with domain [0,∞] is defined as

φ
[−1](t ) = { φ

−1(t ), 0 ⩽ t ⩽ φ(0),
0, φ(0) < t ⩽∞.

(A.12)

Theorem A.5 (Archimedean copula). Let φ and φ[−1] be as in Definition A.4. Then

C (u1, u2) = φ[−1](φ(u1)+φ(u2)) (A.13)

is a copula if and only if φ is convex.

Proof. See (Nelsen; 2006), pp. 91, 92.

If φ is convex, the function defined in (A.13) is known as an Archimedean copula.

A widely used Archimedean copula is the Clayton copula, defined as

C
Cl
θ (u1, u2) = (u−θ1 +u

−θ
2 −1)

−1/θ
, 0 < θ <∞. (A.14)

Its generator is φCl(t ) = 1
θ
(t−θ −1). For θ → 0 the Clayton copula approaches the independence copula, and

for θ→∞ it approaches the comonotonicity copula.

Another example of an Archimedean copula is the Gumbel copula, given by

C
Gu
θ (u1, u2) = exp{− ((− ln(u1))θ + (− ln(u2))θ)

1/θ
} , 1 ⩽ θ <∞. (A.15)

The Gumbel copula is generated by generator φGu(t ) = (− ln(t ))θ . It interpolates between the independence
copula (θ = 1) and the comonotonicity copula (θ→∞).

Often considered together with the Clayton and Gumbel copulas is the Frank copula, which is defined as

C
Fr
θ (u1, u2) = −

1
θ

ln(1+
(exp (−θu1)−1) (exp (−θu2)−1)

exp(−θ)−1
) , θ ∈ R. (A.16)

It has generator

φ
Fr(t ) = − ln(e−θt −1

e−θ −1
) .

For θ → −∞ it approaches the countermonotonicity copula, for θ → 0 it approaches the independence cop-
ula, and for θ→∞ it approaches the comonotonicity copula.

The final Archimedean copula used in this thesis is the Joe copula, given by

C
Joe
θ (u1, u2) = 1− [(1−u)θ + (1− v)θ − (1−u)θ(1− v)θ]

1/θ
, 1 ⩽ θ <∞. (A.17)

Its generator is φJoe(t ) = − ln[1− (1− t )θ] . Like the Gumbel copula, it interpolates between the independence
copula for θ = 1 and the comonotonicity copula for θ→∞.

A.3. Several properties
An exchangeable copula C is the CDF of an exchangeable random vector U of uniform random variables
U1,U2 i.e. a copula C is exchangeable if

C (u1, u2) =C (u2, u1). (A.18)

All copulas described in this appendix are exchangeable. Exchangeable copulas are useful for e.g. modelling
default dependence for homogeneous groups of companies.
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A version of (A.1) also applies to multivariate survival functions of distributions. Let X be a bivariate
random variable with CDF F and marginals F1, F2. Then it has bivariate survival function F̄ = 1 − F and
marginal survival functions F̄1 = 1−F1, F̄2 = 1−F2 and one has the identity

F̄ (x1, x2) = Ĉ (F̄1(x1), F̄2(x2)) (A.19)

for copula Ĉ . This copula is known as the survival copula. In general, the survival copula Ĉ of a copula C is
the CDF of 1−U when U has CDF C . This corresponds to the framework above for U = (F1(x1), F2(x2)). A
copula and its survival copula are related through

Ĉ (1−u1, 1−u2) = 1−u1 −u2 +C (u1, u2) . (A.20)

Radial symmetry can be a property of any multivariate distribution. Radial symmetry can be expressed
in terms of copulas and survival copulas, and since copulas are multivariate CDFs themselves, they can be
radially symmetric.

Definition A.6 (Radial symmetry). A random vector X ∈ R
n×2 with n ∈ N, or its distribution, is radially sym-

metric about a ∈ R2 if X −a
d
= a− X . If a is not specified, radial symmetry about (0.5, 0.5) is meant.

If U has CDF C , where C is a copula, then C is radially symmetric if U
d
= 1−U, or equivalently, Ĉ = C . All

elliptical copulas are radially symmetric, but Archimedean copulas are generally not. The Frank copula is the
only radially symmetric Archimedean copula.

An important implication is that for a radially symmetric copula, the dependence structure is the same in
the lower tail as in the upper tail. This is particularly useful to keep in mind when considering which copula
to fit to a dataset. If radial symmetry is detected in the data, a radially symmetric copula should be used.

Being joint distributions, many copulas have copula densities given by

c(u1, u2) =
∂

2C (u1, u2)
∂u1∂u2

. (A.21)

Not all copulas have joint densities; the comonotonicity and countermonotonicity are examples of copulas
without densities. All parametric copulas described in this appendix, however, do have copula densities.
For an absolutely continuous joint CDF F with strictly increasing, continuous marginals F1, F2 with inverses

F−1
1 , F−1

2 , joint density f and marginal densities f1, f2, the copula density can be related to the joint density
by

c(u1, u2) =
f (F−1

1 (u1), F−1
2 (u2))

f1 (F−1
1 (u1)) f2 (F−1

2 (u2))
. (A.22)

Copula densities are required for e.g. fitting copulas to data by maximum likelihood, see Section 3.1.





B
Mathematical derivations

B.1. Integral representation of conditional expectation
Here the proof of the statement

Et [(sr− fsr(Ti+1)− K̃i+1)+1{τ ≤ T̃ }] = ∫
(sr−K̃i+1)+

0
Q(fsr(Ti+1) ≤ s,τ ≤ T̃ )d s (B.1)

is given. This is shown as follows:

Et [(sr− fsr(Ti+1)− K̃i+1)+1{τ ≤ T̃ }] = Et [∫∞0 1{x ≤ (sr− fsr(Ti+1)− K̃i+1)+1{τ ≤ T̃ }}d x]
= Et [∫∞0 1{x ≤ (sr− fsr(Ti+1)− K̃i+1)+,τ ≤ T̃ }d x]
= Et [∫ (sr−K̃i+1)+

0 1{fsr(Ti+1) ≤ s,τ ≤ T̃ }d s]
= ∫ (sr−K̃i+1)+

0 Et [1{fsr(Ti+1) ≤ s,τ ≤ T̃ }]d s

= ∫ (sr−K̃i+1)+
0 Q(fsr(Ti+1) ≤ s,τ ≤ T̃ )d s,

(B.2)

where the last equality is due to a well-known relation between the expected value and the probability mea-
sure, and the third equality is due to the equivalence of the events

{x ≤ (sr− fsr(Ti+1)− K̃i+1)+}, x ∈ [0,∞) ⇔ {x ≤ (sr− fsr(Ti+1)− K̃i+1)+}, x ∈ [0, (sr− K̃i+1)+]
⇔ {x + fsr(Ti+1) ≤ (sr− K̃i+1)+}, x ∈ [0, (sr− K̃i+1)+]
⇔ {fsr(Ti+1) ≤ (sr− K̃i+1)+ − x}, x ∈ [0, (sr− K̃i+1)+]
⇔ {fsr(Ti+1) ≤ s}, s ∈ [0, (sr− K̃i+1)+],

(B.3)
with the substitution s = (sr− K̃i+1)+ − x being used in the last equivalence.

B.2. Final derivations for the expression for VIPI

Under the comonotonicity copula C COMON(u1, u2) = min(u1, u2) for (u1, u2) ∈ [0, 1]2, the arbitrage-free value
of an IPI is given by

V
COMON

IPI (t , T ) ≈ LGD
n−1

∑
i=0

[X (t , Ti+1, Tn)

× [(sr− K̃i+1 −bi+1)+ F (Ti+1)− (sr− K̃i+1 − ai )+ F (Ti )]
+VRSwaption (t , Ti+1, T, min{bi+1, (sr− K̃i+1)+})
−VRSwaption (t , Ti+1, T, min{ai , (sr− K̃i+1)+})] ,

(B.4)

where
ai =G

−1
i+1 (F (Ti )) , bi+1 =G

−1
i+1 (F (Ti+1)) , (B.5)
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and VRSwaption (t , Ti+1, T, min{bi+1, sr− K̃i+1}) > 0 denotes the value at time t of a default-free receiver swap-
tion exercised at time Ti+1 and maturing at time T , with strike min{bi+1, sr− K̃i+1}. The value of the IPI under

the independence copula C I N D (u1, u2) = u1u2 for (u1, u2) ∈ [0, 1]2, is given by

V
IND

IPI (t , T ) ≈ LGD
n−1

∑
i=0

(F (Ti+1)−F (Ti ))VRSwapion (t , Ti+1, Tn , sr− K̃i+1) . (B.6)

Part of the derivations to arrive at these expressions are given in Section 5.3; the remainder is shown here.
First recall that

Et [(sr− fsr(Ti+1)− K̃i+1)+1{τ ≤ T̃ }] = ∫
(sr−K̃i+1)+

0
C (Gi+1(s), F (T̃ ))d s. (B.7)

Substituting C COMON as the copula, this can be rewritten as

∫
(sr−K̃i+1)+

0
C (Gi+1(s), F (T̃ ))d s = ∫

(sr−K̃i+1)+

0
min(Gi+1(s), F (T̃ ))d s. (B.8)

Note that

min(Gi+1(s), F (T̃ )) = { Gi+1(s) for s ≤G−1
i+1(F (T̃ ))

F (T̃ ) for s >G−1
i+1(F (T̃ )) , (B.9)

so

∫ (sr−K̃i+1)+
0 min(Gi+1(s), F (T̃ ))d s = ∫min((sr−K̃i+1)+,G−1

i+1(F (T̃ )))
0 Gi+1(s)d s

+ ∫ (sr−K̃i+1)+

min((sr−K̃i+1)+,G−1
i+1(F (T̃ ))) F (T̃ )d s

= ∫min((sr−K̃i+1)+,G−1
i+1(F (T̃ )))

0 Gi+1(s)d s

+ [sr− K̃i+1 −G−1
i+1(F (T̃ ))]+F (T̃ ).

(B.10)

Due to derivations similar to those in Appendix B.1, one has

∫
sK

0
Gi+1(s)d s = Et [(sK − fsr(Ti+1))+] . (B.11)

Recall that VIPI can be deconstructed as follows:

VIPI(t , Tn) =

n−1

∑
i=0

VIPI(t , Ti , Ti+1),
VIPI(t , Ti , Ti+1) = V V (t , Ti+1, Ti+1, Tn)−V V (t , Ti , Ti+1, Tn),

V V (t , T̃ , Ti+1, Tn) ≈ LGD X (t , Ti+1, Tn)Et [(sr− fsr(Ti+1)− K̃i+1)+1{τ ≤ T̃ }].
(B.12)

The derivations above yield

V V (t , T̃ , Ti+1, Tn) ≈ LGD X (t , Ti+1, Tn)(sr− K̃i+1 −G
−1
i+1(F (T̃ )))+F (T̃ )

+LGD VRSwaption (t , Ti+1, T, min{G
−1
i+1(F (T̃ )), (sr− K̃i+1)+}) ,

(B.13)

where the presence of

VRSwaption (t , Ti+1, Tn , sK ) = X (t , Ti+1, Tn)Et [(sK − fsr(T1))+] (B.14)

is due to (B.11). This yields the final result

V
COMON

IPI (t , T ) ≈ LGD
n−1

∑
i=0

[X (t , Ti+1, Tn)

× [(sr− K̃i+1 −bi+1)+ F (Ti+1)− (sr− K̃i+1 − ai )+ F (Ti )]
+VRSwaption (t , Ti+1, T, min{bi+1, (sr− K̃i+1)+})
−VRSwaption (t , Ti+1, T, min{ai , (sr− K̃i+1)+})] ,

(B.15)

where
ai =G

−1
i+1 (F (Ti )) , bi+1 =G

−1
i+1 (F (Ti+1)) . (B.16)
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Now consider the case of the independence copula C IND. Substituting this copula into (B.7), one obtains

∫
(sr−K̃i+1)+

0
C (Gi+1(s), F (T̃ ))d s = F (T̃ )∫

(sr−K̃i+1)+

0
Gi+1(s)d s. (B.17)

Using (B.11), one has

V V (t , T̃ , Ti+1, Tn) ≈ LGDF (T̃ ) VRSwapion (t , Ti+1, Tn , (sr− K̃i+1)+) , (B.18)

from which the final result

V
IND

IPI (t , T ) ≈ LGD
n−1

∑
i=0

(F (Ti+1)−F (Ti ))VRSwapion (t , Ti+1, Tn , (sr− K̃i+1)+) (B.19)

follows.





C
Statistical properties of the data

Here a short statistical overview of the data is given. For the non-downturn data, daily data is obtained for the
period between September 18, 2018 and February 28, 2020. However, data after February 20, 2020 is disre-
garded, since the market conditions were extraordinary during these days due to the economic consequences
of the corona virus. For each company, there is a total of 349 data points. Some properties of the data on CDS
sector curve spreads is given in Table C.1. After applying the method described in Section 4.1, a dataset with
conditional PD values is obtained, which is described in Table C.2. Statistical properties of the dataset of swap
rates is shown in Table C.3. The swap data ranges from September 18, 2018 to January 3, 2020 and contains
317 observations. Similar statistical descriptions are given for the log-returns on the data in Table C.4 for the
CDS sector curve spreads, in Table C.5 for the implied annual PDs, and in Table C.6 for the swap rates. Note
that the log-returns on the CDS spreads and the implied PDs are equal up to the amount of digits displayed,
since the CDS spreads and the implied PDs are approximately equal up to a multiplicative factor (see (4.5)).
The same properties for the downturn data is given in Tables C.7 to C.12. The downturn data consists of data
from three periods: from August 28, 2008 to June 4, 2009, from April 2, 2010 to December 17, 2010, and from
February 20, 2020 until April 15, 2020. As the daily data is illiquid, data from every two days is used.

Scatterplots of the swap rate returns against the implied PD returns (only the data from before January 3,
2020 for the non-downturn data) are shown in Figure C.1 and Figure C.2. The 0.1 and 0.9 quantiles of both
variables are indicated by the blue lines.
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Raw data, non-downturn period

CDS sector curve spreads

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

Alibaba 0.008078 0.001172 0.005684 0.007147 0.007912 0.008858 0.010506
American Airlines 0.032968 0.004175 0.024947 0.030107 0.032605 0.035471 0.042452
Apple 0.010659 0.000718 0.009247 0.010156 0.010635 0.011047 0.012468
AT&T 0.010768 0.000662 0.009677 0.010315 0.010619 0.011078 0.012930
Barrick Gold 0.010206 0.000808 0.008786 0.009549 0.010141 0.010760 0.012085
Coca Cola 0.009457 0.000616 0.008350 0.008963 0.009436 0.009950 0.011049
Diamond Offshore Drilling 0.049869 0.006938 0.037976 0.045398 0.048781 0.052322 0.071388
Boeing 0.007377 0.000346 0.006644 0.007128 0.007291 0.007609 0.008317
Exxon 0.014935 0.001455 0.011896 0.013963 0.014993 0.016126 0.017932
Ford 0.016634 0.001271 0.014098 0.015821 0.016700 0.017469 0.019832
JPM sen 0.010364 0.000995 0.008649 0.009548 0.010281 0.011076 0.012803
JPM sub 0.012324 0.000868 0.010489 0.011720 0.012308 0.012753 0.015121
Volkswagen 0.011617 0.001092 0.010006 0.010621 0.011497 0.012460 0.014397

Table C.1: Statistical properties of the data on CDS sector curve spreads. All spreads for non-financials are senior. Data is obtained from
Bloomberg.

Implied PDs

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

Alibaba 0.004625 0.000450 0.003648 0.004381 0.004650 0.004929 0.005656
American Airlines 0.019050 0.001916 0.015578 0.017541 0.018959 0.020490 0.023693
Apple 0.006226 0.001148 0.004709 0.005347 0.005691 0.007604 0.008660
AT&T 0.006271 0.001006 0.004772 0.005373 0.006106 0.007436 0.008061
Barrick Gold 0.005909 0.000760 0.004766 0.005262 0.005744 0.006721 0.007374
Coca Cola 0.005495 0.000827 0.004355 0.004754 0.005309 0.006425 0.007134
Diamond Offshore Drilling 0.029276 0.005523 0.020414 0.024406 0.029244 0.033772 0.040486
Boeing 0.004303 0.000739 0.003365 0.003645 0.004117 0.005236 0.005606
Exxon 0.008850 0.002258 0.005799 0.006732 0.008433 0.010858 0.012947
Ford 0.009661 0.001349 0.007701 0.008416 0.009411 0.010873 0.012643
JPM sen 0.005981 0.000684 0.005023 0.005383 0.005734 0.006687 0.007506
JPM sub 0.007195 0.001302 0.005602 0.006078 0.006707 0.008312 0.010188
Volkswagen 0.006717 0.000843 0.005233 0.006072 0.006408 0.007636 0.008421

Table C.2: Statistical properties of the obtained values of annual PDs conditional on no earlier default. Values are implied from the
market data on CDS sector curve spreads. PD refers to the default event of a fictitious company that is assumed to have CDS spreads
equal to the sector curve spreads in Table C.1.

Swap rates

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

Swap rate 2.311163 0.579147 1.3263 1.762625 2.3639 2.748725 3.2836
Table C.3: Statistical properties of the data on 10 year interest rate swap rates. Data is obtained from Bloomberg.
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Log-returns, non-downturn period

CDS sector curve spreads

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

Alibaba -0.000146 0.017571 -0.065377 -0.010692 -0.000523 0.009310 0.095258
American Airlines 0.000488 0.019550 -0.103762 -0.010386 -0.000993 0.010403 0.075710
Apple 0.001364 0.020248 -0.063763 -0.009760 -0.000178 0.012495 0.093191
AT&T 0.001101 0.017401 -0.058523 -0.008641 -0.000401 0.010496 0.091208
Barrick Gold 0.000816 0.016258 -0.052110 -0.008840 -0.000170 0.008380 0.090559
Coca Cola 0.001143 0.016242 -0.047079 -0.008672 0.000144 0.010158 0.074635
Diamond Offshore Drilling 0.001620 0.030563 -0.218763 -0.011673 0.002573 0.015152 0.127732
Boeing 0.001308 0.017688 -0.055903 -0.010695 0.000407 0.011106 0.079266
Exxon 0.001740 0.023269 -0.088405 -0.009948 -0.001341 0.012634 0.087846
Ford 0.000908 0.017453 -0.050953 -0.010313 -0.000555 0.009172 0.087554
JPM sen 0.000757 0.015411 -0.051798 -0.008318 -0.000390 0.009221 0.062879
JPM sub 0.001066 0.020031 -0.055543 -0.010885 0.000361 0.012222 0.115587
Volkswagen 0.001098 0.019835 -0.055659 -0.010897 -0.000015 0.011209 0.131276

Table C.4: Statistical properties of the log-returns on CDS sector curve spreads. All spreads for non-financials are senior. Data is obtained
from Bloomberg.

Implied PDs

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

Alibaba -0.000146 0.017571 -0.065377 -0.010692 -0.000523 0.009310 0.095258
American Airlines 0.000488 0.019550 -0.103762 -0.010386 -0.000993 0.010403 0.075710
Apple 0.001364 0.020248 -0.063763 -0.009760 -0.000178 0.012495 0.093191
AT&T 0.001101 0.017401 -0.058523 -0.008641 -0.000401 0.010496 0.091208
Barrick Gold 0.000816 0.016258 -0.052110 -0.008840 -0.000170 0.008380 0.090559
Coca Cola 0.001143 0.016242 -0.047079 -0.008672 0.000144 0.010158 0.074635
Diamond Offshore Drilling 0.001620 0.030563 -0.218763 -0.011673 0.002573 0.015152 0.127732
Boeing 0.001308 0.017688 -0.055903 -0.010695 0.000407 0.011106 0.079266
Exxon 0.001740 0.023269 -0.088405 -0.009948 -0.001341 0.012634 0.087846
Ford 0.000908 0.017453 -0.050953 -0.010313 -0.000555 0.009172 0.087554
JPM sen 0.000757 0.015411 -0.051798 -0.008318 -0.000390 0.009221 0.062879
JPM sub 0.001066 0.020031 -0.055543 -0.010885 0.000361 0.012222 0.115587
Volkswagen 0.001098 0.019835 -0.055659 -0.010897 -0.000015 0.011209 0.131276

Table C.5: Statistical properties of the returns on annual PDs conditional on no earlier default. Daily values are implied from the market
data on CDS sector curve spreads. PD refers to the default event of a fictitious company that is assumed to have CDS spreads equal to
the sector curve spreads in Table C.1.

Swap rates

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

Swap rate -0.001621 0.022591 -0.081623 -0.012602 -0.001312 0.008845 0.080334
Table C.6: Statistical properties of the returns on 10 year interest rate swap rates. Data is obtained from Bloomberg.
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Raw data, downturn periods

CDS spreads

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

JP Morgan senior 0.011582 0.002925 0.006043 0.009304 0.011050 0.013438 0.021500
JP Morgan subordinate 0.016057 0.005016 0.008204 0.011901 0.015000 0.019159 0.029500
Southwest airlines 0.020408 0.007292 0.007230 0.016372 0.018000 0.021975 0.042500
Ford 0.097744 0.083288 0.023726 0.036137 0.071100 0.116244 0.467500
AT&T 0.013418 0.004336 0.007950 0.011049 0.012130 0.013788 0.036212
Walmart 0.007130 0.002384 0.002522 0.005628 0.005838 0.009338 0.013750
Goldman Sachs senior 0.019717 0.007637 0.008630 0.014721 0.017103 0.023750 0.058700
Goldman Sachs subordinate 0.026273 0.008713 0.012897 0.019214 0.023300 0.033500 0.061500
Citigroup senior 0.023323 0.010532 0.007683 0.016702 0.018961 0.026787 0.055500

Table C.7: Statistical properties of the data on CDS sector curve spreads. All spreads for non-financials are senior. Data is obtained from
Bloomberg.

Implied PDs

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

JP Morgan senior 0.019075 0.004731 0.010009 0.015368 0.018165 0.022299 0.034692
JP Morgan subordinate 0.026286 0.008054 0.013563 0.019612 0.024556 0.031437 0.047858
Southwest airlines 0.033016 0.011303 0.011882 0.026858 0.029246 0.035765 0.068260
Ford 0.143633 0.108616 0.038729 0.058380 0.111713 0.176929 0.555345
AT&T 0.021970 0.006991 0.013002 0.018140 0.019924 0.022531 0.058325
Walmart 0.011746 0.003887 0.004178 0.009321 0.009669 0.015284 0.022501
Goldman Sachs senior 0.032207 0.012022 0.014166 0.024311 0.027989 0.038721 0.091997
Goldman Sachs subordinate 0.042561 0.013726 0.021098 0.031389 0.038014 0.054198 0.096178
Citigroup senior 0.037819 0.016545 0.012622 0.027323 0.031030 0.043521 0.088212

Table C.8: Statistical properties of the obtained values of annual PDs conditional on no earlier default. Values are implied from the
market data on CDS sector curve spreads. PD refers to the default event of a fictitious company that is assumed to have CDS spreads
equal to the sector curve spreads in Table C.7.

Swap rates

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

Swap rate 0.030297 0.008643 0.006153 0.026897 0.030475 0.034652 0.04538
Table C.9: Statistical properties of the data on 10 year interest rate swap rates. Data is obtained from Bloomberg.
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Log-returns, downturn periods

CDS spreads

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

JP Morgan senior 0.001398 0.099486 -0.519578 -0.041944 0.000000 0.041944 0.350430
JP Morgan subordinate 0.001347 0.081296 -0.349126 -0.035290 -0.000022 0.034087 0.341214
Southwest airlines 0.001891 0.078538 -0.276316 -0.027214 -0.000383 0.019241 0.545707
Ford -0.001794 0.122267 -0.612210 -0.039151 -0.000674 0.033871 0.521200
AT&T 0.003549 0.069784 -0.244665 -0.021226 0.000000 0.019589 0.333428
Walmart -0.002054 0.066549 -0.492256 -0.016399 0.000000 0.019977 0.235906
Goldman Sachs senior 0.000685 0.124745 -0.745333 -0.050038 0.000000 0.050324 0.689746
Goldman Sachs subordinate 0.001381 0.109519 -0.607883 -0.038043 0.000000 0.042279 0.645519
Citigroup senior 0.004042 0.124670 -0.748063 -0.045079 0.000000 0.049506 0.565261

Table C.10: Statistical properties of the log-returns on CDS sector curve spreads. All spreads for non-financials are senior. Data is
obtained from Bloomberg.

Implied PDs

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

JP Morgan senior 0.001729 0.100768 -0.513701 -0.042120 0.000005 0.044078 0.347256
JP Morgan subordinate 0.001510 0.082428 -0.343260 -0.034451 -0.000168 0.034736 0.337544
Southwest airlines 0.002029 0.078862 -0.271465 -0.027171 -0.000541 0.021668 0.537538
Ford -0.001499 0.112106 -0.638510 -0.036122 -0.000750 0.030525 0.446400
AT&T 0.003663 0.071226 -0.280101 -0.021477 0.000002 0.019604 0.327940
Walmart -0.002075 0.076542 -0.763585 -0.016224 0.000425 0.020563 0.232911
Goldman Sachs senior 0.001103 0.124664 -0.726327 -0.049697 0.000002 0.052965 0.664377
Goldman Sachs subordinate 0.001734 0.108545 -0.590103 -0.037996 0.000011 0.042420 0.620211
Citigroup senior 0.004493 0.124459 -0.733613 -0.044556 0.000435 0.055129 0.552444

Table C.11: Statistical properties of the returns on annual PDs conditional on no earlier default. Daily values are implied from the market
data on CDS sector curve spreads. PD refers to the default event of a fictitious company that is assumed to have CDS spreads equal to
the sector curve spreads in Table C.7.

Swap rates

Quantiles
Mean Std. dev. Min 0.25 Median 0.75 Max

Swap rate -0.003936 0.069493 -0.392761 -0.03182 -0.00245 0.024758 0.333244
Table C.12: Statistical properties of the returns on 10 year interest rate swap rates. Data is obtained from Bloomberg.
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Regular market conditions
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(i) Exxon Mobil

Figure C.1: Scatterplots of the log-returns on implied PDs of all sectors against the log-returns on 10 year swap rates. 0.1 and 0.9 quantiles
are shown for both implied PDs and swap rates by the blue lines.
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Figure C.1: Scatterplots of the log-returns on implied PDs of all sectors against the log-returns on 10 year swap rates. 0.1 and 0.9 quantiles
are shown for both implied PDs and swap rates by the blue lines.
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Downturn periods
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(i) Citigroup

Figure C.2: Scatterplots of the log-returns on implied PDs of all companies against the log-returns on 10 year swap rates during the
downturn periods. 0.1 and 0.9 quantiles are shown for both implied PDs and swap rates by the blue lines.
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(a) t copula

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

1.27

2.54

PD log-returns

Sw
ap

 r
at

e 
lo

g-
re

tu
rn

s

(b) Gaussian copula
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(c) Frank copula

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

1.59

3.19

PD log-returns

Sw
ap

 r
at

e 
lo

g-
re

tu
rn

s

(d) Rotated Clayton copula
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(e) Gumbel copula
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(f) Joe copula

Figure D.1: Contour plots of the densities of the t , Gaussian, Frank, rotated Clayton, Gumbel and Joe copulas, superimposed with scat-
terplots of the artificial data generated by these respective copulas. Note that the scales for the contour plots are different for each
copula.
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Real data, normal economic circumstances
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(a) Alibaba
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(b) American Airlines
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(c) Apple
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(d) AT&T
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(e) Barrick Gold
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(f) Coca Cola

Figure D.2: Contour plots of the t copula density, superimposed with scatterplots of the pseudo-observations of the implied PD log-
returns and the swap rate log-returns. Data is from the periods of normal economic circumstances. Note that the scales for the contour
plots are different for each copula. The parameters for the t copula are those obtained in the fitting process, i.e. the parameters in Table
4.13.
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(g) Diamond Offshore Drilling
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(h) Boeing
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(i) Exxon Mobil
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(j) Ford
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(k) JP Morgan senior
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(l) JP Morgan subordinate

Figure D.2: Contour plots of the t copula density, superimposed with scatterplots of the pseudo-observations of the implied PD log-
returns and the swap rate log-returns. Data is from the periods of normal economic circumstances. Note that the scales for the contour
plots are different for each copula. The parameters for the t copula are those obtained in the fitting process, i.e. the parameters in Table
4.13.
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(m) Volkswagen

Figure D.2: Contour plots of the t copula density, superimposed with scatterplots of the pseudo-observations of the implied PD log-
returns and the swap rate log-returns. Data is from the periods of normal economic circumstances. Note that the scales for the contour
plots are different for each copula. The parameters for the t copula are those obtained in the fitting process, i.e. the parameters in Table
4.13.
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Real data, crisis periods
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(a) JP Morgan senior
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(b) JP Morgan subordinate
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(c) Southwest Airlines
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(d) Ford
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(e) AT&T
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(f) Walmart

Figure D.3: Contour plots of the t copula density, superimposed with scatterplots of the pseudo-observations of the implied PD log-
returns and the swap rate log-returns. Data is from the crisis periods. Note that the scales for the contour plots are different for each
copula. The parameters for the t copula are those obtained in the fitting process, i.e. the parameters in Table 4.14
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(g) Goldman Sachs senior
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(h) Goldman Sachs subordinate
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(i) Citigroup

Figure D.3: Contour plots of the t copula density, superimposed with scatterplots of the pseudo-observations of the implied PD log-
returns and the swap rate log-returns. Data is from the crisis periods. Note that the scales for the contour plots are different for each
copula. The parameters for the t copula are those obtained in the fitting process, i.e. the parameters in Table 4.14





Bibliography

Bank for International Settlements (2019). BIS statistical bulletin, Technical report. https://www.bis.org/
statistics/bulletin1912.pdf, accessed 29 November 2019.

Basel Committee on Banking Supervision (2019). The Basel framework, Technical report. https://www.bis.
org/basel_framework/index.htm, accessed 2 March 2020.

Ben-Abdallah, R., Breton, M. and Marzouk, O. (2019). Wrong-way risk of interest-rate instruments, Journal of
Credit Risk 15(2): 21–44.

Böcker, K. and Brunnbauer, M. (2014). Path-consistent wrong-way risk, Risk 27(11): 48–53.

Bolton, P. and Oehmke, M. (2014). Should derivatives be privileged in bankruptcy?, The Journal of Finance
70(6): 2353–2394.

Brigo, D., Hvolby, T. and Vrins, F. (2018). Wrong-way risk adjusted exposure: analytical approximations for
options in default intensity models, World Scientific, pp. 27–45.

Brigo, D. and Pallavicini, A. (2006). Counterparty risk and contingent cds valuation under correlation between
interest-rates and default, Econometric eJournal .

Casassus, J., Collin-Dufresne, P. and Goldstein, B. (2005). Unspanned stochastic volatility and fixed income
derivatives pricing, Journal of Banking & Finance 29: 2723–2749.

Cheng, D. and Cirillo, P. (2019). An urn-based nonparametric modeling of the dependence between PD and
LGD with an application to mortgages, Risks 7(3): 1–21.

Cherubini, U. (2013). Credit valuation adjustment and wrong way risk, Quantitative Finance Letters 1: 9–15.

Cherubini, U. and Luciano, E. (2003). Pricing and hedging credit derivatives with copulas, Economic Notes
32(2): 219–242.

Cox, J. C., Ingersoll, J. E. and Ross, S. A. (1985). A theory of the term structure of interest rates, Econometrica
53(2): 305–408.

Fischer, M., Köstler, C. and Jakob, K. (2016). Modeling stochastic recovery rates and dependence between
default rates and recovery rates within a generalized credit portfolio framework, Journal of statistical theory
and practice 10(2): 342–356.

Gatfaoui, H. (2005). How does systematic risk impact US credit spreads? A copula study, Bankers, Markets &
Investors 77: 5–16.

Genest, C. and Nešlehová, J. (2014). On tests of radial symmetry for bivariate copulas, Statistical papers
55: 1107–1119.

Genest, C., Nešlehová, J. and Quessy, J.-F. (2011). Tests of symmetry for bivariate copulas, The Institute of
Statistical Mathematics 64: 811–834.

Genest, C. and Rémillard, B. (2006). Discussion of ’Copulas: Tales and facts,’ by Thomas Mikosch, Extremes
9(1): 27–36.

Genest, C., Rémillard, B. and Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power
study, Insurance: Mathematics and Economics 44: 199—-213.

Harris, G., Wu, T. L. and Yang, J. (2015). The relationship between counterparty default and interest rate
volatility and its impact on the credit risk of interest rate derivatives, Journal of Credit Risk 11(1): 93–127.

87

https://www.bis.org/statistics/bulletin1912.pdf
https://www.bis.org/statistics/bulletin1912.pdf
https://www.bis.org/basel_framework/index.htm
https://www.bis.org/basel_framework/index.htm


88 Bibliography

Hofer, M. (2016). Path-consistent wrong-way risk: a structural model approach, Journal of Risk 19(1): 25–42.

Hofert, M. and Scherer, M. (2011). CDO pricing with nested Archimedean copulas, Quantitative Finance
11(5): 775–787.

Hull, J. C. and White, A. (2012). CVA and wrong way risk, Financial Analysts Journal 68(5): 9–15.

J.P. Morgan (1997). CreditMetrics - technical document, Technical report. https://www.msci.com/
documents/10199/93396227-d449-4229-9143-24a94dab122f, accessed 13 March 2020.

Li, D. (2000). On default correlation: A copula function approach, The Journal of Fixed Income 9(4): 43–54.

MacKenzie, D. and Spears, T. (2014). ’A device for being able to book P&L’: The organizational embedding of
the gaussian copula, Social Studies of Science 44(3): 418–440.

McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques and
Tools, Princeton University Press.

Mikosch, T. (2006). Copulas: Tales and facts, Extremes 9(1): 3–20.

Naifar, N. (2011). Modelling dependence structure with Archimedean copulas and applications to the iTraxx
CDS index, Journal of Computational and Applied Mathematics 235(8): 2459–2466.

Nelsen, R. B. (2006). An introduction to Copulas, 2nd edn, Springer.

Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing, Elsevier Science,
pp. 2111–2245.

Newson, R. (2002). Parameters behind "nonparametric" statistics: Kendall’s tau, Somers’ D and median dif-
ferences, The Stata Journal 2(1): 45–64.

Pan, K. (2018). CVA pricing for commodities with WWR, Risk .

Rosen, D. and Saunders, D. (2012). CVA the wrong way, Journal of Risk Management in Financial Institutions
5(3): 252–272.

Ruiz, I., Pachón, R. and del Boca, P. (2015). Optimal right- and wrong-way risk from a practitioner standpoint,
Financial Analysts Journal 71(2): 47–60.

Schweizer, B. and Sklar, A. (1983). Probabilistic Metric Spaces, Dover Publications.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut de Statis-
tique de l’Université de Paris 8: 229–231.

van Dijk, B. (2020). Shell boekt $400 tot $800 mln af door corona, Het Financieele Dagblad . https://fd.nl/
ondernemen/1339900/shell-boekt-400-mln-tot-800-mln-af-door-corona (in Dutch).
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