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None but those who have experienced them can conceive
of the enticements of science. In other studies you go

as far as others have gone before you, and there is
nothing more to know. But in a scientific pursuit there

is continual food for discovery and wonder.

Mary Shelley, Frankenstein
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SUMMARY

Although being a crucial step in structural design of laminated composites, prediction of
their long-term mechanical performance remains a challenging task for which no com-
prehensive and reliable solution is currently available. Nevertheless, structures such as
wind turbine blades, of which laminated composites constitute the main load bearing
parts, must be designed to withstand 20 years of service while being subjected to a com-
bination of fatigue loads and interaction with often extreme environmental conditions.
In the end, a compromise is reached by compensating the lack of knowledge on the com-
plex material degradation and failure mechanisms spanning multiple spatial and time
scales that determine mechanical performance by adopting higher safety factors. This
in turn leads to heavier, less efficient and more expensive designs. A better understand-
ing of these mechanisms through discerning experiments and the development of fast
and accurate numerical prediction tools are therefore necessary.

This work focuses on the phenomenon of hygrothermal aging (a combination of high
temperatures and moisture ingression) on unidirectional laminated composites. The
complexities of the aging problem, a combination of physical and chemical degradation
mechanisms that affect fibers, resin and interface differently, are investigated through a
combination of experiments, microscopic observation techniques and state-of-the-art
numerical modeling. The result is an efficient multiscale and multiphysics framework
for the prediction of failure and hygrothermal degradation in composites.

First, an experimental campaign is conducted on unidirectional glass/epoxy com-
posite samples and on pure epoxy specimens immersed in water at 50◦C and tested
quasi-statically and in fatigue. By comparing results of unaged, partially saturated, satu-
rated and redried samples, the contributions of reversible and irreversible hygrothermal
aging mechanisms are measured. The results indicate a strong correlation of degrada-
tion with the water concentration field inside the specimens. Furthermore, significant
differences in strength reduction between composites and pure resin specimens point
to damage in the fiber-matrix interfaces.

In order to realistically model the diffusion process that drives degradation, an ex-
perimental/numerical study is conducted on the anisotropic diffusion behavior of lam-
inated composites. Thin material slices extracted from a thick composite panel are im-
mersed until saturation and the obtained anisotropic diffusivity parameters are numer-
ically reproduced through a microscopic diffusion model with periodic concentration
field. The existence of an interphase transition region around the fibers is confirmed
through microscopic experiments and included in the model through a level set field.

Since both the diffusion process and the resultant material degradation are highly
influenced by the microstructure of the material, a multiphysics and multiscale analysis
approach becomes necessary. A numerical framework for modeling of the aging process
is proposed combining a macroscopic Fickian diffusion analysis with a multiscale stress
equilibrium analysis based on the FE2 method. Since the multiscale approach does not
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rely on any constitutive hypotheses at the macroscale, complex failure behavior com-
bined with plasticization and differential swelling can be accurately captured.

In order to expand the framework to allow for modeling of cyclic loading and cyclic
environmental exposure, a number of additional model ingredients are developed. Firstly,
a new constitutive model for epoxy combining viscoelasticity, viscoplasticity and a dam-
age formulation with rate-dependent fracture onset is presented. The model is cali-
brated through a series of quasi-static and fatigue experiments on pure resin specimens
at multiple strain rates and both before and after hygrothermal aging. The calibrated
model is able to accurately capture the observed strain rate dependency and stiffness
and strength degradations after aging, as well as correctly capturing damage activation
in low-cycle fatigue. Secondly, the significant computational cost associated with the
use of a cyclic multiphysics/multiscale analysis with nested micromodels is alleviated
through a number of acceleration techniques. Time homogenization is used to explic-
itly divide the loading into a nonlinear macrochronological part and a linear computa-
tionally inexpensive microchronological one. Furthermore, the size of the microscopic
boundary value problem is reduced through a combination of Proper Orthogonal De-
composition (POD) and the Empirical Cubature Method (ECM), resulting in a hyper-
reduced model. The resultant reduced and time homogenized micromodel allows for
speed-ups higher than 1000, dramatically accelerating the solution of the problem.

The modified version of the framework is used to numerically reproduce the experi-
mentally obtained interlaminar shear behavior of composite samples aged for different
durations. Use of the multiphysics/multiscale approach allows for accurately describing
the stress state in specimens with non-uniform water concentration fields. The viscoel-
satic/viscoplastic resin model is capable of capturing differences in stress response be-
tween the very slow conditioning phase and the much faster mechanical test. The model
is completed by a cohesive-zone model for fiber-matrix interface debonding including
friction calibrated with a set of Single Fiber Fragmentation tests performed on dry and
saturated samples.

Iuri Barcelos Carneiro Montenegro da Rocha
Delft, June 2018



SAMENVATTING

Hoewel het een cruciale stap is in het ontwerp van composietlaminaten, blijft het voor-
spellen van hun lange-termijn mechanische eigenschappen een uitdagende taak met tot
op heden geen allesomvattende en betrouwbare oplossing. Desondanks moeten con-
structies zoals windturbinebladen, die gemaakt worden van composietlaminaten, wor-
den ontworpen tegen vermoeiingsbelastingen en extreme weeromstandigheden voor
een levensduur van 20 jaar. In de praktijk, wordt dit gebrek aan kennis over de complexe
degradatie- en faalmechanismen die op verschillende schaalniveaus opereren gecom-
penseerd door hogere veiligheidsfactoren. Dit leidt tot zwaardere, minder efficiënte en
duurdere constructies. Het is derhalve noodzakelijk om beter inzicht te krijgen in deze
mechanismen door relevante experimenten en nauwkeurige numerieke methoden.

Dit proefschrift concentreert zich op het fenomeen van hygrothermische veroude-
ring (een combinatie van hoge temperaturen en vochtopname) van unidirectionele com-
posietlaminaten. De complexiteit van het verouderingsproces, een combinatie van fy-
sieke en chemische degradatiemechanismen die vezels, hars en vezel-matrix interfaces
beïnvloeden, is onderzocht met een combinatie van experimenten, microscopische ob-
servatietechnieken en numerieke modellering. Het resultaat is een efficiënt multischaal
en multifysisch raamwerk geschikt om zowel het bezwijken als de hygrothermische de-
gradatie van unidirectionele composieten te voorspellen.

Ten eerste is een experimenteel onderzoek uitgevoerd aan epoxy en unidirectionele
glasvezel/epoxy proefstukken geconditioneerd in 50 ◦C water en getest onder quasi-sta-
tische en vermoeiingsbelastingen. Door de eigenschappen van niet verouderde, gedeel-
telijk verzadigde, verzadigde en wederom gedroogde proefstukken te vergelijken, zijn de
bijdragen van tijdelijke en permanente hygrothermische degradatiemechanismen ge-
meten. De resultaten wijzen op een correlatie tussen degradatie en concentratie van
water in de proefstukken. Grote verschillen in sterkteafname tussen composieten en
hars wijzen op schade op de vezel-matrix interfaces.

Om het diffusieproces dat de degradatie bepaalt realistisch te modelleren, is een ex-
perimenteel/numeriek onderzoek uitgevoerd aan de anisotropische diffusiegegrag van
composietlaminaten. Dunne proefstukken van het materiaal zijn uit een dikke compo-
siet plaat genomen en de verkregen anisotropische diffusiecoëfficiënten zijn gereprou-
ceerd met een microscopisch diffusiemodel met een periodiek concentratieveld. De
aanwezigheid van een overgangszone tussen vezels en pure hars, de zogenaamde in-
terphase, is bevestigd door middel van microscopische experimenten en wordt gemo-
delleerd met een level set veld.

Omdat diffusie en degradatiegedrag in grote mate afhangen van de microscopische
structuur van het materiaal, is een multifysisch en multischaal modelbenadering nodig.
Een numeriek raamwerk voor het verouderingsproces is ontwikkeld bestaande uit een
diffusiemodel gebaseerd op de Wet van Fick en een multischaal mechanische evenwicht-
analyse gebaseerd op de FE2 methode. Omdat het macroscopische model geen constitu-
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tieve aannames bevat, kunnen complexe degradatie- en faalmechanismen nauwkeurig
worden gemodeleerd.

Om het raamwerk uit te breiden naar cyclische belastingen, is een aantal aanvul-
lende modellen ontwikkeld. Ten eerste is een nieuw constitutief model voor epoxy voor-
gesteld met een combinatie van visco-elasticiteit, visco-plasticiteit en schade met rek-
snelheidsafhankelijke scheurinitiatie. Het model is gecalibreerd met quasi-statische en
vermoeiingsproeven op epoxy proefstukken op verschillende reksnelheden zowel voor
als na veroudering. Het model kan het experimenteel waargenomen reksnelheidsaf-
hankelijke statische en vermoeiingsgedrag goed reproduceren en de afnames in stijfheid
en sterkte veroorzakt door het verouderingsproces goed voorspellen. Ten tweede is de
hoge numerieke inspanning die hoort bij een cyclisch multischaal/multifysisch model
met ingebedde micromodellen, verlicht door middel van een aantal versnellingstech-
nieken. Time Homogenization wordt toegepast om de cyclische belasting op te splitsen
in macro-chronologische (niet-lineaire) en micro-chronologische (lineaire) delen. Ver-
der is de complexiteit van het microscopische randwaardeprobleem gereduceerd door
een combinatie van de Proper Orthogonal Decomposition (POD) en Empirical Cubature
Method (ECM) methoden. Het hyper-gereduceerde tijd-gehomogeniseerde model leidt
tot versnellingen in rekentijd tot een factor 1000.

Het aangepaste raamwerk wordt gebruikt om het experimenteel gemeten interla-
minar afschuifgedrag van verouderde composieten proefstukken te reproduceren. De
multischaal/multifysische benadering zorgt voor een nauwkeurige beschrijving van de
tijdsafhankelijke spanningsverdeling veroorzakt door niet-uniforme vochtconcentratie
velden. Het viscoelastisch/viscoplastische harsmodel vertoont het verwachte materi-
aalgedrag zowel tijdens het langzame verouderingsproces als tijdens de relatief snelle
mechanische test. Het model wordt gecompleteerd door een cohesieve wet met fric-
tie voor de vezel-matrix interface gecalibreerd door Single Fiber Fragmentation proeven
uitgevoerd op droge en verzadigde proefstukken.

Iuri Barcelos Carneiro Montenegro da Rocha
Delft, Juni 2018
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1
INTRODUCTION

Here and elsewhere we shall not obtain
the best insight into things until we

actually see them growing from the beginning.

Aristotle, Politics

1.1. BACKGROUND
With an increase in human population, approximately 7.6 billion people at the time of
writing, the need for energy is also increasing dramatically. According to the Interna-
tional Energy Agency (IEA), there are still more than 1 billion people without access to
electricity, particularly in developing countries [1]. As those countries reach higher levels
of development, their energy demands are expected to increase sharply [2].

In this scenario, the search for new energy sources and the improvement of current
technologies are vital in order to allow for a sustainable growth of human population. In
particular, with political and ideological shifts towards greener technologies, renewable
energy sources such as wind energy play an increasingly significant role as they allow for
energy generation with low environmental impact. As a result, the cumulative worldwide
installed wind energy capacity saw a 350 % increase in the last 10 years (Fig. 1.1).

In recent years, the wind energy industry has been giving special attention to offshore
wind farms. According to the Global Wind Energy Council (GWEC), the cumulative off-
shore wind energy capacity has seen significant growth between 2011 and 2017 (Fig. 1.2),
with most of the new wind farms being installed in Europe. Siting wind turbines offshore
is advantageous since wind speeds are higher and farms pose a reduced environmental
impact. On the other hand, construction of offshore farms involves significantly higher
installation and electricity transmission costs [4].

In order to reduce offshore wind farm costs relative to onshore ones, the power gen-
erated by each installed turbine must be maximized. Apart from exposing the turbine

1
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Figure 1.1: Global cumulative installed wind capacity (adapted from [3]).
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Figure 1.2: Cumulative offshore wind capacity (adapted from [3]).
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Figure 1.3: Schematic representation of a laminated composite and its scales of observation.

to faster offshore winds, higher power generation can be achieved by increasing the ro-
tor diameter and consequently its swept area [4]. However, this leads to an increase in
the gravity fatigue bending moment proportional to the fourth power of the diameter
increase. Thus, adding more material actually has a detrimental effect on the fatigue life
of turbine blades. To circumvent this scenario, it is necessary to optimize the use of the
composite materials that compose the main load bearing structure of these blades.

Composite materials are defined as the combination of two or more base materials to
obtain a new material which performs better than its constituents in isolation [5]. These
materials are widely used in industrial applications, from aerospace structures to sports
apparel. In the specific case of wind turbine blades, laminated composite materials, a
combination of stacked plies composed of a polymeric matrix and fiber reinforcements,
are employed (Fig. 1.3).

Being a highly heterogeneous combination of two materials with large stiffness gra-
dients, laminated composites feature a complex mechanical behavior which is still not
fully understood. Furthermore, as the fibers used typically feature diameters in the or-
der of a few micrometers, the physical processes that drive material performance and
durability take place at a scale much smaller than the one considered in design. Ulti-
mately, this lack of detailed knowledge on material behavior is compensated by higher
design safety factors and large experimental programmes in coupon-sized specimens
which give little to no insight in the underlying microscopic processes driving material
behavior.

Significant gains in design efficiency — and consequently lower design weights —
are expected through deepening the knowledge on these microscopic processes and de-
veloping better prediction tools for mechanical behavior and durability of laminated
composites. In particular, the interaction between the material and its service environ-
ment, commonly referred to as aging, is poorly understood. Material aging can signifi-
cantly impact the mechanical performance of composites through the combined action
of physical and chemical processes that occur at multiple time scales and can either be
reversible or irreversible [6–8]. Among many types of aging, the combination of high
temperatures and moisture ingression — often referred to as hygrothermal aging or hot-
wet aging — is regarded as the most critical one [9–11]. Taking these aging processes into
account significantly increases the complexity of predicting composite material behav-
ior and long-term durability.

With the advent of easily accessible computational power, the use of numerical ma-
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terial models as prediction tools has seen tremendous growth in the past few years. Al-
beit computationally expensive, high-fidelity numerical modeling presents clear advan-
tages over closed-form analytical methods, being able to deal with complex geometries,
loads and boundary conditions. It also allows the use of complex material models that
include descriptions of plasticity, fracture and time-dependent behavior.

Micromechanical numerical analysis is especially advantageous for laminate com-
posites, allowing for explicitly modeling its complex material microstructure and em-
ploying relatively simple constitutive models for each material constituent (fibers, ma-
trix and interfaces) [12, 13]. The microscopic mechanical behavior can in turn be used
to predict the macroscopic one in a multiscale approach through homogenization tech-
niques [14, 15], while the coupling with other physical processes such as heat conduction
and moisture diffusion can be handled by employing a multiphysics approach [16–18].

However, the computational cost of complex multiscale models can be exceedingly
high and render the modeling effort infeasible. This is especially aggravated when the
analysis is carried out at both spatial scales simultaneously (concurrent multiscale) or
when a large number of analysis steps is performed — for instance when modeling cyclic
loads or predicting long-term durability. A rapidly growing field of research arose in or-
der to tackle this issue, focusing on the development of so-called reduced-order model-
ing (ROM) techniques [19–22]. These techniques attempt to reduce the computational
complexity of a model through data compression and machine learning while minimiz-
ing loss of accuracy.

1.2. SCOPE AND OUTLINE
In this thesis, a combination of macro- and microscopic experiments and state-of-the-
art numerical modeling techniques is used to investigate the phenomenon of hygrother-
mal aging in laminated composites. The goal is to provide a fast and accurate compu-
tational framework suitable for high-fidelity numerical analysis of unidirectional com-
posites subjected to a combination of mechanical loads and moisture ingression. The
experimental campaign is used to identify model ingredients suitable for modeling of
relevant physical processes, to calibrate the employed material models and to validate
the resultant framework. The methods and results presented here are limited to an epoxy
resin system reinforced with glass fibers. Other composite systems may require addi-
tional model ingredients. Nevertheless, the framework can be used as a starting point
for the analysis of different systems.

The rest of this chapter provides a brief introduction on a number of topics treated
in the remaining chapters. The rest of the thesis is organized as follows:

• In Chapter 2, the results of an experimental campaign on hygrothermal aging are
presented. The investigation includes tests on unidirectional composites and pure
resin specimens, both before and after aging. The most relevant hygrothermal
aging mechanisms and their relative contributions to the measured degradation
are identified.

• In Chapter 3, the complexities of the moisture diffusion process in unidirectional
composites are investigated through experiments and micromechanical model-
ing. The rates of moisture diffusion in each of the three main material direc-
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tions are obtained and the role of the material microstructure on the observed
anisotropy is studied.

• In Chapter 4, a multiscale and multiphysics numerical framework for hygrother-
mal aging is presented. At the macroscale, the model includes diffusion and stress
analysis components with a one-way coupling. Micromodels are embedded at
each macroscopic material point and include an elastoplastic matrix and mixed-
mode cohesive interfaces.

• In Chapter 5, the elastoplastic epoxy model employed at the microscale is mod-
ified to include viscoelasticty, viscoplasticity and rate-dependent fracture initia-
tion. An experimental campaign on pure resin specimens is presented and its re-
sults are used both to calibrate the model and to assess its capabilities.

• Chapter 6 presents a set of techniques that reduce the exceedingly high computa-
tional cost associated with concurrent multiscale models. Time homogenization
is used to accelerate long-term mechanical analyses involving cyclic loads. The
Proper Orthogonal Decomposition (POD) and Empirical Cubature Method (ECM)
techniques are used to reduce the number of degrees of freedom and integration
points of the microscopic boundary-value problem.

• In Chapter 7, the framework of Chapter 4, modified with the new developments of
Chapters 5 and 6, is used to numerically reproduce hygrothermal degradation on
unidirectional specimens tested in three-point bending. A new set of experiments
is performed with additional aging conditions. An estimation of the fiber-matrix
interface properties is obtained through micromechanical experiments. The mod-
ified framework is assessed and its drawbacks and missing ingredients are identi-
fied.

• Chapter 8 contains detailed information on the computational implementation of
the numerical tools used in this thesis, with the aim of providing a suitable knowl-
edge basis for future replication and expansion efforts.

• Finally, the scientific contributions of the work, its main conclusions and sugges-
tions for future research directions are summarized in Chapter 9.

1.3. AGING IN LAMINATED COMPOSITES

1.3.1. TEMPERATURE
In this section, a number of degradation effects caused by thermal conditioning (isother-
mal and cyclic) will be briefly presented. For the specific case of the glass/epoxy com-
posite considered in this work, the glass fibers are usually regarded as impervious to
temperature changes. Therefore, focus will be given to degradation effects related to the
epoxy resin, namely molecular relaxation and oxidation. Furthermore, the influence of
temperature on the mechanical response of the fiber-matrix interface due to differential
thermal expansion will be discussed.
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Figure 1.4: Typical glass transition behavior of an aged polymer as measured by a DSC test.

Molecular relaxation This phenomenon, also known as physical aging, concerns molec-
ular level changes on polymer chain arrangement upon exposure to temperatures below
the glass transition temperature (Tg) for extended periods of time — a process com-
monly referred to as annealing. This type of aging distinguishes itself from oxidation
in that the chemical structure of the polymer chains remains unchanged [23].

The reason for such relaxation behavior stems from the fact that polymers are amor-
phous or semi-crystalline materials that tend to seek more stable equilibrium configura-
tions at lower energy levels. During curing, crosslinking reactions take place and tend to
create an entangled configuration of polymer chains with a number of fixed crosslinked
nodes that deter the formation of an energetically stable crystalline structure. Neverthe-
less, annealing promotes progressive changes in free volume and internal energy of the
polymer chains towards lower energy states [23–25].

This enthalpy relaxation increases the necessary energy required to promote glass
transition, an effect which manifests as an apparent increase in the measured glass tran-
sition temperature [23]. This effect can be detected, for instance, in a Differential Scan-
ning Calorimetry (DSC) test, during which a constant heating ramp is applied to the
polymer while tracking the energy necessary to induce this temperature change (i.e. its
heat capacity). Near the Tg, a greater amount of energy is measured on aged polymers,
as shown schematically in Fig. 1.4a.

A more compact polymer chain structure tends to affect other relevant material prop-
erties. Increases in compression strength and fracture toughness have been noted after
aging [26], as well as in the thermal expansion coefficient and water diffusivity [27]. As
hygrothermal conditioning often involves drying phases in which the composite mate-
rial is annealed in order to promote water desorption, isolating the degradation part due
exclusively to water ingression requires knowledge on the potential effects of physical
aging.

Oxidation This chemical degradation effect involves a chain reaction between the resin
and oxygen molecules present in air. First, free radicals acquired during processing
react with oxygen molecules forming peroxide radicals. These in turn break polymer
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chains and form additional free radicals from which the reaction chain continues [6].
This breaking of chains (chain scission) lowers the glass transition temperature [8] and
promotes mechanical degradation [28].

The oxidation process is accelerated at higher temperatures and in oxygen-rich en-
vironments. In general, oxidation is associated to aging at relatively high temperatures
(above 100◦C), well above the Tg of a number of polymers. In a hygrothermal aging study
focused on the effects of water ingression, the impact of oxidation can therefore be lim-
ited by using relatively low (sub-Tg) conditioning temperatures and drying specimens in
an evacuated environment.

Thermal expansion Differential thermal strains in composite materials manifest from
the moment when fibers and resin are cured together due to a mismatch in the ther-
mal expansion coefficient of the two materials. These residual strains at the fiber-matrix
interface can be written as:

εres = (αf −αm) (T −T0)I (1.1)

where I is the identity matrix, the subscripts m and f refer to the matrix and fiber, re-
spectively, α is thermal expansion coefficient (isotropy is assumed) and T and T0 are the
current and curing temperature, respectively.

Changes in temperature modify this internal differential stress state and may pro-
mote fiber-matrix interface debonding [29]. When applied cyclically, interface cracks
may arise due to thermal stress fatigue, for instance after a large number of day/night
cycles on a climate with high temperature gradients [30, 31].

1.3.2. MOISTURE
Upon exposure to moisture, either through immersion in liquid water or through expo-
sure to a humid environment, water diffuses into the resin. Glass fibers, on the other
hand, do not absorb water and tend to act as barriers to diffusion in the resin around
them, leading to anisotropic diffusion in composites. Water diffusion is a thermally ac-
tivated process and diffusivity is therefore strongly influenced by conditioning temper-
ature. On the other hand, the equilibrium moisture level is usually considered to be in-
dependent of temperature and to depend only on the humidity level of the conditioning
environment.

For research purposes, it is advantageous to condition specimens at high tempera-
tures and immersed in a water bath in order to minimize conditioning time. It is, how-
ever, unclear how representative such an accelerated aging process is of a real life service
scenario. This discussion, albeit of significant relevance and still subject of scientific dis-
cussion [6], is left out of the scope of this work. In any case, it is worth mentioning that
hygrothermal aging does indeed occur during service, even in structures protected from
the outside environment by a coating layer. Sayer et al. [32] investigated water uptake on
a rotor blade after 18 years of service and measured the water content at different depths
inside the unidirectional composite structure that forms the blade spar caps. The au-
thors found a constant uptake level of approximately 50 % of the water uptake attained
through immersion, indicating the material had indeed reached a saturation level corre-
sponding to the average relative humidity it experienced throughout its service life.
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Since moisture diffusion is driven by concentration gradients, a one-phase Fickian
behavior [33] is able to describe diffusion with acceptable accuracy for many resin sys-
tems [9, 10, 34]. This is also the case for the epoxy resin used in this work. It is worthy,
however, to mention in passing that diffusion in a number of resin systems deviates from
the classic Fickian behavior and more complex diffusion-reaction models are needed to
accurately describe the diffusion process [35–37]. Once absorbed, water molecules tend
to drive a number of degradation mechanisms, some of which are briefly presented in
the following.

Plasticization Weak interactions between water molecules and polymer chains, rang-
ing from Van der Waals bonds to single hydrogen bonds, promote a plasticizing effect,
causing an increase in chain mobility and ductility [37, 38]. This in turn leads to de-
creases in glass transition temperature (Fig. 1.4), stiffness and strength [34, 35, 39]. In
contrast to chemical reactions, these weaker physical and chemical bonds tend to be
reversible upon drying.

Hydrolysis Water molecules may act as a corrosion agent and promote polymer chain
scission. Similar to thermo-oxidation, breakage of chain segments leads to Tg decreases
and degradation of mechanical performance in terms of stiffness and strength. Due to
the irreversible nature of hydrolytic chemical reactions, this degradation is not recover-
able upon drying.

Although epoxies are in general less susceptible to this type of degradation than other
polymer types (e.g. polyesters), water can attack the coupling agent applied to the fibers
meant to promote fiber-matrix interface bonding [9, 40] and therefore lead to degrada-
tion of interface performance.

Both of the aforementioned degradation mechanisms create new chemical com-
pounds that tend to accumulate in the interior of the degraded material. If these com-
pounds are not allowed to leach to the surrounding environment, an osmotic mech-
anism may be triggered which significantly accelerates water diffusion and promotes
fracture due to increased hydrostatic pressure [9].

Swelling The increased polymer chain mobility and the disruption of interchain Van
der Waals forces lead to a molecular rearrangement that increases the volume of the
bulk resin material [38]. The resultant swelling strain is proportional to the amount of
absorbed water and is usually assumed to increase linearly with water concentration:

εsw = cαswI (1.2)

where c is the water concentration and αsw is a swelling coefficient. Since the fibers
do not absorb water, swelling in the composite material leads to differential swelling
stresses that may drive fracture at the fiber-matrix interfaces [9, 10, 41]. The newly cre-
ated empty spaces may in turn act as secondary absorption locations and lead to devia-
tions from the classic Fickian diffusion behavior [9, 11].
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1.4. NUMERICAL MODELING

1.4.1. THE FINITE ELEMENT METHOD
The Finite Element Method (FEM) is a numerical solution technique for solving field
problems. In static or quasi-static problems, the fields sought in the solution only vary in
space, while transient or dynamic problems also show field variations in time. As many
natural phenomena can be modeled as field problems, FEM stands out as a powerful
and versatile numerical method.

The basic idea of FEM comes from modifying the classic Ritz method of obtaining
approximate solutions to boundary-value problems [42]. In this method, the exact solu-
tion u of a spatial field problem is approximated by the linear combination of a number
of trial functions:

utrial =
n∑

i=1
fi ai (1.3)

where fi are trial functions that satisfy the essential boundary conditions of the problem
and ai are generalized degrees of freedom with no physical meaning [43]. Convergence
towards the exact solution is achieved by adding more trial functions, which increases
the fitting capability of the model.

FEM expands upon this method by substituting the generalized degrees of freedom
for the field values at a number of nodal points throughout the solution domainΩ. Finite
elements of size Ωe are defined by interconnecting these nodal points. An approxima-
tion similar to Eq. (1.3) is done inside of each element:

u
∣∣
Ωe

=
n∑

i=1
Ni ūi (1.4)

where ūi are the nodal displacements, n is the number of nodes that form the element
and Ni are polynomial shape functions. A global solution in terms of the nodal degrees
of freedom ui is obtained by combining the contribution of every element and enforc-
ing a differential field equation in a weak sense [43]. Refinement can either happen by
using higher-order shape functions or by discretizing the domain Ω with a finer mesh
of elements. In the following, FEM solutions for stress equilibrium and transient mass
diffusion will be derived.

STRESS EQUILIBRIUM IN A CONTINUUM

Consider the two-dimensional body shown in Fig. 1.5 of volume Ω subjected to body
loads b, prescribed displacements at Γu and prescribed stresses at Γσ. Deformation is
represented by a change in infinitesimal vector dx at the undeformed configuration to a
vector dX at the same point of the deformed configuration. These vectors can be related
by the deformation gradient tensor F [44]:

dX = Fdx (1.5)

which, in terms of the displacements u by substituting dX = dx+u into 1.5:

F = ∂u

∂x
+ I (1.6)
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dX = dx + u
Γσ Γ

Γ

Figure 1.5: Quasi-static deformation of a two-dimensional body

where I is the identity matrix. The deformation gradient can in turn be used to define a
measure of strain. Here, the Green strain tensor E is considered:

E = 1

2

((
∂u

∂x

)T

+ ∂u

∂x
+

(
∂u

∂x

)T ∂u

∂x

)
(1.7)

Adopting the hypothesis of small strains, the quadratic term in Eq. (1.7) can be dropped.
This results in the classic form of the small strain tensor ε:

ε= 1

2

((
∂u

∂x

)T

+ ∂u

∂x

)
(1.8)

By definition, the body strains under the action of loads of prescribed displacements
until stress equilibrium is reached. Equilibrium can be mathematically enforced by solv-
ing:

∂

∂x
·σ+b = 0 (1.9)

where σ is the stress tensor. Both Eqs. (1.8) and (1.9) must be satisfied at every point of
Ωwhile satisfying the constitutive behavior of the material being modeled:

σ=D (ε,v) (1.10)

where D represents a general constitutive operator and v are internal variables that store
the state of the material. Crafting new constitutive models with the necessary physics for
each specific application entails the definition of D and its associated internal variables
[45–47]. The equilibrium problem is completed with the definition of the boundary con-
ditions acting on surfaces Γu and Γσ:

u
∣∣
Γu

= up σn
∣∣
Γσ

= fp (1.11)

with up and fp being prescribed displacements and forces, respectively, and n is the nor-
mal to the surface Γσ.

In order to solve the problem using FEM, it is useful to transform Eqs. (1.8) and (1.9)
in integrals, which allows for the contribution of all finite elements to be combined. Us-
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ing the Virtual Work Principle and representing strains and stresses as vectors (Voigt no-
tation), the following weak integral form is obtained [43]:∫

Ω
(δε)TσdΩ=

∫
Ω

(δu)T bdΩ+
∫
Γσ

(δu)T fp dΓ (1.12)

where δu is a small displacement perturbation that satisfies essential boundary condi-
tions and δε are its associated strains.

Recalling the nodal interpolation in Eq. (1.4), displacements inside element e can be
written as:

ue =
[

N1 0 · · · Nn 0
0 N1 · · · 0 Nn

]
ūe ⇒ ue = Nu,e ūe (1.13)

where ue are nodal displacements and a two-dimensional element is considered for the
sake of simplicity. Substitution of Eq. (1.13) into Eq. (1.8) yields:

εe =


∂N1
∂x 0 · · · ∂Nn

∂x 0

0 ∂N1
∂y · · · 0 ∂Nn

∂y
∂N1
∂y

∂N1
∂x · · · ∂Nn

∂x
∂Nn
∂y

 ūe ⇒ εe = Bu,e ūe (1.14)

Substituting Eqs. (1.13) and (1.14) into both sides of Eq. (1.12) yields expressions for the
variations of the internal and external virtual works for element e:

δW int
e = δūT

e

(∫
Ωe

BT
u,eσdΩ

)
δW ext

e = δūT
e

(∫
Ωe

NT
u,e bdΩ+

∫
Γσe

NT
u,e fΓdΓ

)
(1.15)

Combining the contribution of every element through an assembly procedure that
takes into account element connectivity (represented here by an upper-case A operator)
and recalling that Eq. (1.12) must be valid for every small but admissible displacement
perturbation δū, the global equilibrium problem is obtained:

fΩ (ū) = fΓ (1.16)

where fΩ and fΓ are the global internal and external force vectors, respectively, given by:

fΩ =
ne

A
e=1

(∫
Ωe

BT
u,eσdΩ

)
fΓ =

ne

A
e=1

(∫
Ωe

NT
u,e bdΩ+

∫
Γσe

NT
u,e fp dΓ

)
(1.17)

where ne is the number of elements in the mesh. This global system of equations can
be solved directly or iteratively, depending on the behavior of the constitutive opera-
tor D. The equilibrium paths of nonlinear problems are usually found using a Newton-
Raphson algorithm at each load or displacement increment [48]. More complex equi-
librium paths with snap-through or snap-back behaviors can be followed by so-called
arc-length algorithms [48–52].

Although not explicitly arising from the virtual work formulation, computing a tan-
gent stiffness matrix is necessary in order to solve Eq. (1.16):

KΩ = ∂fΩ

∂ū
=

ne

A
e=1

(∫
Ωe

BT
u,e DBu,e dΩ

)
(1.18)
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Figure 1.6: A two-dimensional interface element embedded between a fiber and surrounding matrix.

where D is the tangent constitutive matrix:

D = ∂σ

∂ε
(1.19)

Consistent linearization of the constitutive response is crucial in order to assure optimal
convergence of the Newton-Raphson iterative procedure [48]. Convergence issues are
particularly problematic when nonlinear constitutive models with sharp transitions (for
instance at the onset of fracture or when unloading is triggered) are employed. In these
situations, correct definition of D significantly improves the numerical robustness of the
model.

STRESS EQUILIBRIUM ACROSS A DISCONTINUITY

The preceding FEM solution for stress equilibrium assumes the displacement field u is
continuous in Ω. However, since fracture is a discontinuous phenomenon by nature,
cracks are better represented by displacement discontinuities. In the specific context
of this thesis, allowing for discontinuities to form between fibers and resin provides a
realistic way to model fiber-matrix interface debonding.

The most straightforward way to introduce a displacement discontinuity in a con-
tinuum model, and the one adopted in this work, is by inserting a so-called interface
element between two continuum elements [53, 54], as illustrated in Fig. 1.6. For the sake
of simplicity, the formulation presented here considers two-dimensional interfaces, but
extension to three dimensions is trivial.

In a non-deformed state, the two faces of the element lie on top of each other. During
loading they are drawn apart and the relative displacement between them is used to
define a displacement jump. Referring to the element faces as top and bottom (Fig. 1.6),
standard finite element interpolation can be applied to each one separately:

utop = Nūtop ubot = Nūbot N =
[

N1 0 N2 0
0 N1 0 N2

]
(1.20)

where the functions Ni are the same used for continuum elements. The displacement
jump �u� is defined as:

�u� = utop −ubot = [
Nu −Nu]{

ūtop

ūbot

}
⇒ �u� = Nu

intū (1.21)



1.4. NUMERICAL MODELING

1

13

In order to control the displacement jump growth — and therefore the fracture en-
ergy dissipation — cohesive tractions are applied to both element faces (Fig. 1.6) and
take the place of the stresses of Eq. (1.10):

t =Dint (�u�,v) (1.22)

where Dint is a general traction-separation law and v is a set of internal variables. The
contribution of the interface tractions to the internal force and tangent stiffness matrix
can be written as:

fΓint =
ne

A
e=1

∫
Γint,e

NT
int,e tdΓ KΓint =

ne

A
e=1

∫
Γint,e

NT
int,e TNint,e dΓ (1.23)

where T is the tangent constitutive matrix for interface elements:

T = ∂t

∂�u� (1.24)

Interface elements perform optimally when employed to model actual boundaries
between materials, which is the case for the micromechanical models developed in this
thesis. In situations for which the crack path is not known a priori, positioning interface
elements can be a complex task. The straightforward approach to circumvent this draw-
back is to include interfaces along every continuum element boundary [55]. However,
apart from the added computational effort caused by duplicated nodes and additional
integration points, a mesh bias may be introduced as the element edge orientations in-
fluence the direction of crack propagation.

It is therefore worth mentioning a number of alternative techniques that have been
rising in popularity in the past few years, such as Partition of Unity (PUM), also called
XFEM (Extended Finite Element Method) or GFEM (Generalized Finite Element Method)
[56–58] and the Phantom Node Method [59]. These methods allow for cracks to run in-
side continuum elements with an arbitrary orientation.

TRANSIENT DIFFUSION

Consider the two-dimensional body shown in Fig. 1.7 with a concentration field c vary-
ing in space, prescribed concentration at Γc and prescribed mass flux at Γj. Diffusion
manifests as a movement of matter from regions of higher concentrations to regions of
lower concentrations. This mass flux can be written as:

j =−D
∂c

∂x
(1.25)

where j is the flux vector and D is a diffusivity matrix that determines diffusion speed.
Similar to a constitutive model for stress analysis, D may be a constant (linear diffusiv-
ity) or depend on c or other fields (nonlinear diffusivity). It is interesting to note that
Eq. (1.25) is similar to Fourier’s law for heat conduction. Numerical treatment of heat
conduction and mass flow is therefore similar.

With the definition of flux, the variation of concentration in time at a certain point in
space can be seen as the net flux on a differential plane (or volume) element around it.
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Figure 1.7: Diffusion through a two-dimensional body, with a differential material plane in detail.

Fig. 1.7 shows such an element, from which the concentration variation can be written
as:

∂c

∂t
+ ∂

∂x
· j = 0 (1.26)

which is known as Fick’s second law of diffusion [33], which must be solved for c at each
time step. The problem is completed by formalizing the concentration and flux bound-
ary conditions:

c
∣∣
Γc

= cp jn
∣∣
Γj
= jp (1.27)

where n is the vector normal to the surface Γj and cp and jp are prescribed concentration
and flux values, respectively.

Discretization of the domain Ω in finite elements allows the constructions of nodal
interpolations for both the concentration c and its variation in time, denoted by ċ:

ce =
[
N1 N2 · · · Nn

]
c̄e ⇒ ce = Nc,e c̄e (1.28)

ċe =
[
N1 N2 · · · Nn

]
¯̇ce ⇒ ċe = Nc,e ¯̇ce (1.29)

where c̄e and ¯̇ce are vectors of nodal values at element e. Similar to Eq. (1.14) for stress
analysis, the concentration gradients of Eq. (1.25) are also interpolated:

∂ce

∂x
=

[
∂N1
∂x

∂N2
∂x · · · ∂Nn

∂x
∂N1
∂y

∂N2
∂y · · · ∂Nn

∂y

]
c̄e ⇒ ∂ce

∂x
= Bc,e c̄e (1.30)

A weak integral form of the problem inside a single element is obtained through a
Galerkin approach [43]: ∫

Ωe

NT
c,e

(
∂

∂x

(
D
∂c

∂x

)
− ċ

)
dΩ= 0 (1.31)

Applying integration by parts to the first term of Eq. (1.31) and summing the contribution
of every finite element, the following compact form is obtained:

KΩc̄+CΩ ¯̇c = jΓ (1.32)

where KΩ is the global diffusion matrix, CΩ is the global capacity matrix and jΓ is the
global flux vector:

KΩ =
ne

A
e=1

(∫
Ωe

BT
c,e DBc,e dΩ

)
CΩ =

ne

A
e=1

(∫
Ωe

NT
c,e Nc,e dΩ

)
jΓ =

ne

A
e=1

(∫
Γj,e

NT
c,e jp dΓ

)
(1.33)
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Eq. (1.32) is solved with a suitable time integration algorithm which can be either implicit
or explicit [48, 60].

1.4.2. MATERIAL MODELS
This section briefly presents a number of types of constitutive law that can be employed
to model nonlinear material behavior. In essence, the models presented in the follow-
ing can be used to fill in the role of the constitutive operators D and Dint of Eqs. (1.10)
and (1.22), respectively. Here, only the general idea of each type of model is presented.
Further details on the specific formulations used in this work will be presented in the
remaining chapters as the need for their use arises.

ELASTICITY

At the microscopic scale and for pristine material conditions (i.e. in the linear regime),
both fibers and resin are modeled with a simple isotropic linear-elastic constitutive model
based on Hooke’s law:

σ= Dε (1.34)

where D is a stiffness tensor defined in terms of the Young’s (E) and shear (G) moduli of
the material being modeled. In this work, only the resin and interfaces are assumed to
display nonlinear behavior. Fiber behavior is assumed to remain linear-elastic inside the
strain ranges considered here.

Viscoelasticity Polymers, among which the epoxy resin considered here, are known to
exhibit viscoelastic behavior that manifests as strain rate dependency [46, 61], ratcheting
[62], stress relaxation [63] and hysteresis [64]. Since all of these phenomena happen
within the elastic domain (i.e. strains and stresses are fully recoverable upon unloading),
it is necessary to include a time-dependent element in Eq. (1.34).

One straightforward way to achieve this is by using a rheological element composed
of a spring and a dashpot arranged in series, known as a Maxwell element. For a unidi-
mensional element, this results in an exponentially decaying stress in time upon instan-
taneous application of an initial strain ε0 given by [48]:

σ(t ) = Eε0

(−tE

η

)
(1.35)

where η is the viscosity of the dashpot.
In practice, a single spring-dashpot element is not sufficient to fully describe the vis-

coelastic behavior of polymers across time scales. One can therefore opt for a chain of
Maxwell elements arranged in parallel, each with its own stiffness (Ei ) and viscosity (ηi ),
coupled with a long-term stiffness element that is time-independent, resulting in a total
instantaneous stiffness E0 = E∞+∑

Ei . A rheological representation of the model and its
relaxation response are shown in Fig. 1.8.

PLASTICITY

Plasticity is a popular constitutive framework used to describe nonlinear material be-
havior, particularly for metals and quasi-brittle materials like rock, concrete and ceram-
ics [48, 65, 66]. The basic idea of plasticity is that nonlinearity arises through the de-
velopment of permanent (plastic) strains. In the specific case of glassy polymers such
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Figure 1.8: Maxwell chain viscoelastic model.
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Figure 1.9: Rheological representation and typical stress-strain behavior of plasticity models

as epoxy, these permanent strains are attributed to irreversible movement of polymer
chains relative to one another and changes in segmental orientation [67–69]. Although
arising from intrinsically different mechanisms as the ones responsible for plasticity in
metals, classic metal plasticity formulations are often used for polymers. This behavior
can be rheologically represented by a frictional slider element (Fig. 1.9a).

The model supposes a decomposition of strain in elastic and plastic parts, and stress
is computed as:

σ= D
(
ε−εp)

(1.36)

where D is the elastic stiffness tensor of Eq. (1.34). This results in the elastic unloading
behavior shown in Fig. 1.9b. Plastic strain evolution is dictated by a flow rule with general
form given by:

ε̇p = λ̇m (1.37)

where λ is a scalar plastic multiplier and m is the plastic flow direction, and a yield sur-
face f = f (σ) determines λ̇ through the classic Kuhn-Tucker conditions:

λ̇≥ 0 f ≤ 0 λ̇ f = 0 (1.38)

which usually results in a nonlinear system of equations solved by a return mapping
algorithm [48, 70].
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Viscoplasticity A special class of plasticity models allows for strain rate dependent
plastic strain development, which consequently leads to stress equilibrium states that
lie beyond the yield surface — that is, f is allowed to attain positive values. This requires
substituting the Kuhn-Tucker conditions of Eq. (1.38) for alternative formulations of λ.
A popular approach, known as the Perzyna model [46, 48, 71], is to compute the plastic
multiplier as:

λ̇= 1

ηp
〈 f 〉 (1.39)

where ηp is a viscoplastic parameter and 〈···〉 are the Macaulay’s brackets, which return
the positive part of their operand. Eq. (1.39) is the simplest form of a Perzyna model, but
formulations with additional parameters can also be found in literature [46, 71].

DAMAGE

Continuum damage models offer a straightforward way to take into account fracture
phenomena in a smeared sense. The main idea of damage models is that the effective
material area bearing the stresses decreases as it fractures. This can be written as [48, 72]:

A = (1−d) A0 (1.40)

where d is a damage variable which is zero for the pristine material (corresponding to
the initial area A0) and 1 for the completely damaged material. The damage variable
is usually defined as a function d = d(r) of one or more internal variables. The secant
(damaged) stiffness Ds is used to compute stresses:

σ= Dsε (1.41)

In the simplest of damage formulations, the secant matrix is given by:

Ds = (1−d)D (1.42)

which implies that both bulk and shear stiffnesses are equally degraded and the Pois-
son’s ratio remains constant. In contrast with plasticity models, the stiffness is modified
instead of dividing the strains in elastic and plastic parts. This leads to a secant unload-
ing behavior (Fig. 1.10).

Evolution of the internal variables — and consequently of the damage parameter d
— is governed by a fracture surface f analogous to a yield surface. For a damage model
with one internal variable r , the Kuhn-Tucker conditions are used to explicitly compute
ṙ :

ṙ ≥ 0 f ≤ 0 ṙ f = 0 (1.43)

where the fracture function f is usually based on an equivalent strain measure [45, 48,
73]. The updated internal variable is then used to compute d , whose evolution with r is
usually a function of fracture toughness and strength.

Mesh dependency Continuum damage models suffer from mesh sensitivity problems.
In contrast to discretization errors that vanish upon mesh refinement, this mesh depen-
dency issue is aggravated as the mesh is refined [74]. It manifests upon softening as
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Figure 1.10: Loading-unloading behavior of a damage model

strain localization in a single element or band of elements. The resultant energy dissipa-
tion is proportional to the volume of a single element and therefore vanishes at the limit
of discretization. Apart from the resultant unrealistic energy dissipation, the structural
response suffers from sharp snapbacks and consequent Newton-Raphson convergence
issues.

A number of techniques can be used to mitigate this mesh dependency issue. The
most straightforward one is the Crack Band method [75], which introduces the element
length as a scaling parameter for energy dissipation. Another approach involves intro-
ducing a viscous damage behavior analogous to viscoplasticity that retards strain lo-
calization and forces damage initiation in neighboring elements [72]. Lastly, non-local
formulations explicitly introduce an internal length scale for strain localization derived
from phenomena occurring at lower scales [76].

Cohesive-zone models Variations of continuum damage models can be employed as
cohesive laws for interface elements (Eq. (1.22)). In this case, Eq. (1.41) is substituted for
a traction-separation law:

t = (1−d)Kd�u� (1.44)

where Kd is a stiffness operator that promotes interconnectivity between element faces
and prevents their interpenetration. The rest of the formulation is similar to the one for
the continuum case, with the fracture surface f now being a function of �u�. In con-
trast with continuum damage models, cohesive-zone models do not suffer from mesh
dependency and energy dissipation is a direct function of fracture toughness.

1.4.3. MULTISCALE ANALYSIS
The three material scale levels of interest for modeling of laminated composites can be
seen in Fig. 1.3. Moving down in scale has two main advantages: Firstly, the fidelity
of the analysis is improved as the intrinsic boundaries between materials are discerned
and microscopic failure processes and degradation mechanisms can be taken into ac-
count. Secondly, increasingly simpler constitutive models can be employed, as much
of the physics that can only be included in higher-scale models in a phenomenological
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way emerges naturally on lower-scale models. Conversely, increasingly complex consti-
tutive models are needed as one moves up in scale, which also implies a larger number
of parameters that need to be experimentally calibrated.

Obviously, the ideal model would explicitly model the microscopic material compo-
nents (e.g. fibers, resin and interfaces) for the whole macroscopic structure (e.g. a wind
turbine blade) — an approach referred to as Direct Numerical Simulation (DNS). This
is, however, computationally infeasible even for relatively small macroscopic domains.
The main appeal of multiscale analysis is therefore to harness the advantages of lower
scale models while still obtaining relevant predictions at higher scales with reasonable
computational cost.

The multiscale techniques present in literature can be divided in two categories:

• Domain decomposition: In this type of analysis, the microstructure of domain re-
gions with high strain gradients (e.g. the region around a crack path) are explicitly
included in a coarser macroscopic mesh while computationally efficient homog-
enized constitutive models are used for the rest of the domain [77–79]. Obviously,
the progressive remeshing and consistent coupling of macro- and microscopic
mesh regions are not trivial and demand considerable implementation effort.

• Homogenization: In this set of methods, the analysis scales are explicitly sepa-
rated. Material properties of the smaller scale are averaged into an equivalent ho-
mogeneous medium and used as constitutive model at the macroscale.

Homogenization methods are by far the most popular of the two types. In the follow-
ing, the main types of homogenization will be briefly mentioned and relevant references
will be provided.

Analytical Homogenization These are closed-form mathematical expressions which
give equivalent properties based on assumed periodic microstructures. These range
from the widely used Rule of Mixtures solutions [80, 81], to asymptotic homogenization
solutions such as Eshelby’s [82], Mori-Tanaka [83], Self-consistent homogenization [84,
85], among others. These solutions are computationally efficient and provide good ac-
curacy as long as the assumptions made during their formulations remain valid, namely
material periodicity and small macroscopic strain gradients. However, material failure
usually leads to loss of periodicity and strain localization, invalidating both assumptions.

Numerical Homogenization In these models, also known as Unit Cell methods, ma-
terial parameters required for macroscopic constitutive models are derived from virtual
experiments at smaller scales [12, 13, 15]. Scale transitions are done before the analy-
sis and are only performed once. The macroscopic response is dictated by a calibrated
macroscopic constitutive model. This approach is computationally efficient and avoids
the need for experimental calibration of the macroscopic constitutive behavior.

However, the performance of numerical homogenization drops when highly non-
linear microscopic phenomena are modeled. In many cases, the microscopic behav-
ior becomes too complex to be reasonably predicted by phenomenological macroscopic
constitutive models built upon a series of simplifying assumptions. Moreover, by dis-
regarding the microscopic behavior during the analysis, relevant information about the
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evolution of failure, such as propagation of microscopic cracks, is lost. Such information
could in turn be useful in realistically modeling macroscopic failure (e.g. determining
the orientation of macroscopic cracks based on the orientation of the microscopic strain
localization band).

Computational Homogenization In this type of analysis, also referred to as concur-
rent analysis or the FE2 method, the constitutive behavior of each macroscopic integra-
tion point is determined during the analysis using nested numerical models [14, 86].
This means that no simplifying constitutive assumptions are made at the macroscale,
allowing for modeling of complex non-linear phenomena that would be difficult or im-
possible to capture in homogenized constitutive models. In contrast to domain decom-
position methods, the microscopic mesh is not explicitly inserted in the macroscopic
one. Instead, macroscopic strains are applied to the nested microscopic models as pre-
scribed displacements and the resultant microscopic stress field is homogenized in order
to compute the macroscopic stress and stiffness.

Computational homogenization (CH) is a relatively novel method and subject of in-
tense research. Early investigations on the subject can be found in [87, 88], while a com-
prehensive review on the current trends of the field can be found in [89]. One major
drawback of the method is its significant computational demands, which follows from
the fact that for each analysis step a nested micromodel has to be solved for each macro-
scopic integration point. This is especially aggravated if the models at both scales fea-
ture dense meshes. Furthermore, homogenization of micromodels with localized strain
bands to continuum macroscopic elements leads to an ill-posed problem that is not ob-
jective with respect to micromodel size [90, 91]. Lastly, coupling a concurrent multiscale
analysis with a multiphysics formulation presents a number of difficulties with respect to
the coupling between physical processes and scale transitions of non-mechanical fields
[16, 17, 92].

Extension to time scales Even though the preceding discussion dealt with a numerical
analysis that takes place in two or more spatial scales of interest, it is worth mentioning
that many of the same techniques can be employed to deal with multiple time scales.
This is especially advantageous for the prediction of the long-term behavior of structures
subjected to cyclic loads.

In a time-homogenized model, the equilibrium problem is decomposed into mi-
crochronological and macrochronological parts analogous to micro and macroscopic
models in space [61, 71, 93, 94]. This allows for larger time steps to be used without
compromising solution accuracy. Furthermore, the constitutive response of the mi-
crochronological problem (e.g. a single load cycle) is simplified as a consequence of
the employed homogenization operators, often leading to linear problems that do not
require the use of an iterative solver.

1.4.4. REDUCED-ORDER MODELING
The computational cost involved in solving multiscale/multiphysics models with non-
linear microscopic material behavior can be exceedingly high. Research on model-order
reduction techniques arose from the need to accelerate the computation of high-fidelity
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numerical models, particularly in many-query applications — when the same numerical
mesh is solved multiple times with different boundary conditions and input properties.
Concurrent multiscale can be immediately identified as one such application, but one
could also point to parametric sensitivity studies or design optimization as other exam-
ples [22].

The basic idea of reduced-order modeling (ROM) is to substitute the original high-
fidelity model by a significantly less complex reduced model with minimum loss of accu-
racy. In a finite element context, complexity reduction entails reductions in the number
of degrees of freedom and in the number of integration points where material response
is computed. It is important at this point to discern the reduction operations treated
here from conventional finite element refinement. While it is, by definition, possible to
construct a reduced model by simply employing a coarser mesh, the resultant loss of
accuracy for the same reduction (or compression) levels reached by ROM techniques,
defined as the ratio between the number of degrees of freedom of the full and reduced
models, would be unacceptably high. It is also worth mentioning that resolving fine mi-
croscopic features such as groups of fibers closely packed together severely limits the
possibility of using coarser meshes.

Model order reduction relies on the premise that the full-order solution can be ac-
curately represented in a lower-dimensional solution subspace that carries highly com-
pressed information of the full solution space. Assuming that such a reduced subspace
can be defined by a set of basis vectors, the task of constructing the reduced model lies
in determining these vectors. This is the role of the so-called offline training phase: The
full-order model is solved for a representative set of inputs and a dimensionality reduc-
tion technique is used to find a set of solution modes that compose the basis of the re-
duced subspace. The trained model is then used in the many-query online application
by projecting the global equilibrium equation onto the reduced subspace.

Displacement projection Solving a full-order finite element problem with N displace-
ment degrees of freedom in the offline phase and applying a reduction technique such as
the Proper Orthogonal Decomposition (POD) [20] to the obtained solution vectors, a ba-
sis matrix Φ ∈ RN×n with n basis vectors is obtained. The original equilibrium problem
(Eq. (1.16)) is then projected onto the reduced basis (Galerkin projection):

ΦT (
fΩ− fΓ

)= 0 ⇒ fΩr − fΓr = 0 (1.45)

where the subscript r represents reduces entities. This reduced solution is a linear com-
bination of the basis modes contained inΦ:

ū =Φα (1.46)

where α is a vector of reduced degrees of freedom that represents the contribution of
each displacement mode (Fig. 1.11). The reduction process can therefore be seen as
compressing as much information as possible in a single degree of freedom. In the orig-
inal problem, a degree of freedom contains only information on the displacement of a
single node, while a reduced degree of freedom contains information on the deforma-
tion of the whole mesh. It is interesting to note the similarity between the reduced model
and the Ritz solution of Eq. (1.3).
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Figure 1.11: Reduced model response by a combination of displacement modes.

Further procedures can be applied to the displacement basis, in what can be seen as
additional reduction stages. For instance, machine learning techniques such as k-means
clustering can be used to construct subsets of basis vectors from a larger initial set and
change between bases during the online analysis [22, 95, 96].

Hyper-reduction Computing the internal force vector fΩ of Eq. (1.45) still requires in-
tegrating the internal force of each finite element, which in turn requires computing ex-
pensive nonlinear constitutive models for every integration point. A second reduction
stage can be employed to alleviate this computational cost, leading to a so-called hyper-
reduced model [97]. In such a model, the constitutive response is computed only in a
subset of integration points that is heuristically determined during the offline training
phase. These sampling points are then used to compute an approximation of fΩ or fΩr .
Two main approaches can be used to obtain such an approximation:

• Gappy Data: This is essentially the same operation shown in Eq. (1.46) but one
where a subsampled version of the global force takes the place of α and a non-
linear least-squares interpolation matrix fills the role ofΦ [98], resulting in an ap-
proximation for the full-order vector fΩ. This is the basis for methods such as the
Discrete Empirical Interpolation Method (DEIM) [22, 99].

• Modified Cubature: Sampling integration points are selected and modified inte-
gration weights are computed which lead to a sparse version of fΩ after standard
FE assembly which accurately approximates the reduced global vector fΩr after be-
ing compressed by Φ (Eq. (1.46)). The Empirical Cubature Method [21] and other
cubature formulations [100, 101] fall in this category.

1.5. VISION AND CHALLENGES
Despite the large body of literature on the subject, hygrothermal aging in composites
is still not fully understood, which consequently hinders the progress on modeling the
phenomenon and developing accurate durability prediction tools. Studies often focus
on macroscopic experiments which, although providing valuable information on ma-
terial degradation at scales closer to the ones considered in design, offer only limited
insight in the underlying microscopic aging mechanisms [31, 102–104]. Furthermore,
inclusion of these mechanisms into existing modeling approaches is a complex task in-
volving multiple physical processes, spatial and time scales [37, 61, 105]. In order to de-
velop a suitable modeling framework for the problem at hand, a number of challenges
must be overcome:
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• Moisture diffusion: Since hygrothermal aging is driven by moisture ingression, it is
important to understand the diffusion process across spatial scales. In this regard,
although it is well known that the fibers create a barrier effect that leads to faster
diffusion along the fibers [35], this is often not enough to explain the experimen-
tally measured level of anisotropy [10]. In particular, the existence of an interphase
region around the fibers and its role on accelerating the diffusion process is not
clear.

• Hygrothermal degradation: The relative contribution of each of the mechanisms
mentioned in Section 1.3.2 on the resultant hygrothermal degradation in compos-
ites must be experimentally determined. This not only entails mechanical tests
on composite specimens but also an explicit comparison between composite and
pure resin specimens, an approach which very few authors follow. Furthermore,
the amount of available experimental data on specimens tested after a complete
immersion-redrying cycle is limited, making it difficult to discern to which extent
the degradation is reversible. Finally, direct measurements of hygrothermal degra-
dation of fiber-matrix interface performance through micromechanical tests are
not extensively available.

• Multiscale/multiphysics modeling: The presence of transient swelling stresses in
specimens with non-uniform water concentration fields [106] and the potential
influence that these stresses can have in driving microscopic failure motivate the
use of a concurrent (FE2) analysis (Section 1.4.3). Although stress analysis in FE2

is well documented, treatment of other field problems such as heat transfer [17],
diffusion [16] and coupled diffusion-reaction [105] are still not extensively doc-
umented. Furthermore, no consensus exists on how to perform macro to micro
transitions of non-mechanical fields [16, 92].

• Computational efficiency: Employing a concurrent multiscale modeling approach
comes at the cost of computational efficiency, in particular when computationally
expensive material models are used at the microscale or when a large number of
load cycles is considered. Therefore, a suitable combination of homogenization
and reduced-order modeling techniques must be found in order to accelerate the
solution of the microscopic boundary value problem from which the macroscopic
material behavior is derived.
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2
HYGROTHERMAL AGING BEHAVIOR

OF GLASS/EPOXY COMPOSITES

In time and with water,
everything changes.

Leonardo da Vinci

2.1. INTRODUCTION
In this chapter, an investigation is performed on damage processes induced by hygrother-
mal aging on an epoxy system reinforced with E-Glass fibers representative of the ma-
terial used in wind turbine blade design. The water ingression process is tracked and
a finite element modeling approach combined with an optimisation-based parameter
identification technique is used to identify Fickian and non-Fickian absorption phases
and determine the diffusivity parameters. In order to evaluate the combined effect of
interface and matrix degradation, ILSS (Interlaminar Shear Strength) short-beam speci-
mens are tested quasi-statically and in fatigue.

Furthermore, in an attempt to isolate the contribution of matrix degradation, neat
epoxy specimens are also conditioned and tested. In order to isolate the irreversible part
of the degradation due to water immersion, a combination of mechanical and thermal
tests is also conducted on specimens dried after saturation and on moisture-free isother-
mically conditioned specimens.

Lastly, the material damage processes incurred during the immersion process and
the consequent changes in failure modes observed in the mechanical tests are inves-
tigated through the use of optical microscopy. The combination of wet and dry tests

Apart from minor changes to its introductory section, this chapter was integrally extracted from [1].
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on composite and resin specimens allows for a reconstruction of the chronology of the
complex process of aging in composites.

2.2. EXPERIMENTS

2.2.1. MATERIALS

The resin system used is the Momentive EPIKOTE RIMR 135 / EPIKURE RIMH 1366, con-
sisting of a monomer (70-100% 4,4’-Isopropylidenediphenol-Epichlorohydrin Copoly-
mer and 0-30% 1,6-Hexanediol Diglycidyl Ether) and a hardener (25-50% Alkyletheramine,
20-25% Isophoronediamine and up to 20% Aminoethylpiperazine) [2] mixed in a 100:30
ratio in weight. For the composite panels, a unidirectional fabric composed of PPG Hy-
bon 2002 glass fiber rovings (95% of the fibers oriented at 0◦ with 5% composing sta-
bility rovings oriented at 90◦) was used. This glass/epoxy material is one of the most
commonly used systems to compose the main load bearing structures of wind turbine
blades.

Composite panels with 4 and 6 plies (3mm and 4.5mm thick, respectively) and neat
resin panels of 4mm thickness were manufactured through vacuum infusion molding.
The curing cycle consisted of 2h at 30◦C and 5h at 50◦C, followed by postcuring for 10h
at 70◦C. Specimens were cut from the panels using a CNC milling machine. Compos-
ite specimens were 0◦ unidirectional short-beams with geometry according to the ISO
14130 standard. As for neat epoxy specimens, dog-bone specimens according to speci-
men geometry 1B of the ISO 527-2 standard and flexural beams according to the ISO 178
standard were used.

2.2.2. SAMPLE CONDITIONING

An overview of the applied conditioning procedures can be seen in Figure 2.1, where
each point marked in the curve represents a point in time when specimens were re-
moved from conditioning and tested. In accelerated aging studies, the choice of the
reference (unaged) state can be a complex one. For the particular case of hygrothermal
aging, the ideal reference state would be a moisture-free one, allowing for the correct de-
termination of the maximum water uptake and degree of irreversible material degrada-
tion through the redrying of saturated specimens. However, unless such state is achieved
by drying (and redrying) the material at room temperature, which can be prohibitively
time-consuming, interactions with other aging processes such as physical aging and ox-
idation are difficult to avoid when the material is dried at higher temperatures. These
additional aging processes can in turn modify not only the material mechanical prop-
erties [3, 4] but also properties related to the diffusion process itself such as maximum
uptake, diffusivity and swelling coefficient [5, 6].

Here, the Unaged state was defined by seeking a balance between a moisture-free
state and an unmodified polymer chain structure. This was achieved by drying all speci-
mens for 72h in a desiccator with silica gel at 50◦C. Therefore, most of the moisture could
be removed while minimising the effects of physical aging. Oxidative reactions were also
minimised by appyling vacuum to the desiccator. In order to keep track of the correct
initial water uptake and provide a consistent comparison basis for specimens dried after
being immersed, part of the specimens (Dry set) was kept in the desiccator for an addi-
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tional 2500h, after which a moisture-free state was reached and physical aging processes
were considered to be stabilised [6].

From the unaged state, sets of specimens were immersed in demineralised water
at 50◦C for 500h, 1000h, 1500h and 4800h (Saturated set) according to Procedure A of
the ASTM D5229/D5229M standard. This particular temperature was chosen based on
DSC test results conducted on saturated resin material. Since DSC specimens are small
blocks of material, their short saturation time allows for a quick determination of the
wet glass transition temperature (Tg ). For the resin system considered here, the wet Tg

was approximately 70◦C (see Section 2.3.4 and Table 2.6 for details) and since the ma-
terial behavior changes drastically after this threshold, a safety temperature margin of
20◦C was adopted. The effect of changing the immersion temperature on the diffusion
process and material degradation is well documented in the literature [7–9] and is out of
the scope of this work.

Time

Water content

Saturated

RedriedDry

Unaged

1500h

1000h

500h

2500h 4800h 8000h

Drying

- Desiccator (silica gel)

- 50°C

- Vacuum

Immersion

- Demineralised water

- 50°C

Figure 2.1: Overview of conditioning procedures.

From the saturated state, a final set of specimens was redried in the desiccator at
50◦C until weight stabilisation was reached (Redried set). These specimens are used to
investigate the possibility of mass loss or residual water after drying and to provide a
measure of the irreversible material damage brought by immersion. As the drying pro-
cess is long and may involve additional physical aging, the results of this set were com-
pared with the ones from the Dry set for consistency.

2.2.3. MATERIAL INVESTIGATIONS
An overview of the mechanical and thermal tests performed for each condition and spec-
imen type can be seen in Table 2.1, where the number of specimens used for each set
is indicated in parentheses. Composite short-beam specimens with 4 and 6 plies were
tested in three-point bending according to the ISO 14130 standard in an MTS test frame
with a 10kN load cell. Quasi-static tests were conducted in displacement control at a
speed of 1mm/min until a significant load drop was observed. Fatigue tests were con-
ducted only on 6-ply specimens in a compression-compression setup in load control at
3Hz, with an R-value of 10.

Resin dog-bone specimens were tested quasi-statically in tension at a speed of 1mm/
min and in tension-tension fatigue at 2Hz with an R-value of 0.1. In order to accurately
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Unaged 500h 1000h 1500h Saturated Dry Redried

ILSS C4S(12)/C6S(12)/C6F(7) C4S(3) C4S(3) C4S(3) C4S(6)/C6S(6)/C6F(6) C4S(6)/C6S(6) C4S(6)/C6S(6)
Tension ES(6)/EF (5) - - - ES(6)/EF(9) ES(6) ES(6)
Bending ES(6) - - - ES(6) ES(6) ES(6)

DMA E(6) - - - E(6) E(6) E(6)
DSC E(3) - - - E(3) E(3) E(3)

Optical - - - - C4(3)/C6(3) C4(3)/C6(3) -

C4 - Composite (4-ply), C6 - Composite (6-ply), E - Neat Epoxy, S - Quasi-static, F - Fatigue

Table 2.1: Overview of the performed investigations for each condition. The number of specimens for each set
is indicated in parentheses.

measure strains in quasi-static tests, strain gauges were used both in longitudinal and
transverse directions. Neat epoxy bending specimens were also tested using the same
fixture mentioned for composite ones. For these tests, a 1kN load cell was used to mea-
sure force. In this case, only quasi-static tests were performed, at a speed of 2mm/min.

Dynamic Mechanical Analysis (DMA) tests were conducted in neat epoxy bending
specimens by applying a displacement-controlled tension-compression cyclic load with
an amplitude of 0.1 mm and a frequency of 1Hz. At the same time, a temperature ramp
was applied to the specimen, from 25◦C to 130◦C at a rate of 2◦C/min. After logging
the obtained force readings for the complete temperature ramp, the procedure outlined
in the standard ISO 6721-5 was used to obtain measurements of the storage and loss
moduli, as well as the loss factor. Then, by observing variations in the storage modulus
as temperature increases, an estimate of the glass transition temperature was obtained.

Differential Scanning Calorimetry (DSC) tests were performed on resin specimens
using a Netzsch DSC 200 F3 Maia apparatus. In the tests, small material blocks are
subjected to a temperature ramp of 20◦C/min while having their specific heat capacity
measured by a calorimeter. During the ramp, the transition to the rubbery state can be
identified by an increase in the energy necessary to maintain the constant temperature
ramp as the material requires additional energy to make the transition. Besides provid-
ing glass transition temperature measurements, specific heat capacity peaks around the
Tg are indicative of polymer relaxation linked to physical aging [6].

In order to obtain additional information about the irreversible effects brought by
water immersion, the first temperature ramp is followed by an isothermal period of 20
minutes at 130◦C to erase the polymer relaxation history (thermal rejuvenation) [6] and
completely remove the water molecules inside. The material is then quenched back to
room temperature and a second ramp is executed. Results from this second ramp are
then used to investigate whether irreversible chain scission or additional crosslinking
have occurred during the immersion and drying steps.

Lastly, microscopic observations of dry and saturated composite specimens were
made both before and after mechanical tests in order to assess microscopic material
failure events occurred during immersion and changes in failure behavior during the
performed tests. Microscopy samples were prepared by cutting slices from specimens
along one of their orthotropy planes. The slices were then polished using a Labopol 30
polishing machine by progressively grinding the material with sanding surfaces ranging
from 320 to 4000 grit and polishing the final surface using a suspension of diamond par-
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ticles with an average diameter of 1µm. After preparation, the slices were observed in a
Motic BA210 optical microscope.

2.3. RESULTS AND DISCUSSION

2.3.1. WATER UPTAKE AND DESORPTION
The average water uptake curves with time can be seen in Figure 2.2, where the uptake
percentage at time t was calculated as:

w(t ) = 100 ·
(m(t )−mu

72

mu
72

− md
72 −mdry

mdry

)
(2.1)

where the reference weight mu
72 was measured for the Unaged set prior to immersion.

The points are then adjusted using weight measurements on specimens of the Dry set,
which were dried until a moisture-free state was achieved. Thus, the plots do not start
at zero but rather at the initial water content level of the unaged specimens. For neat
epoxy, both specimen geometries have a similar final uptake of approximately 3.94%. In
the curves for composite specimens, a difference in uptake speed is observed between
the thinner 4-ply and the thicker 6-ply specimens, as expected. Eventually, they both
attain the same final uptake of approximately 1.25%.

Water transport in polymers and polymer matrix composites is often modeled as
Fickian, represented by a smooth molecular flux J driven by a concentration gradient
with components given by:

Js =−Ds
∂c

∂s
(2.2)

where c is the water concentration field and Js and Ds are the flux component and diffu-
sivity in the s direction, respectively. By considering all flux components in an infinitesi-
mal material volume, the concentration variation with time (∂c/∂t ) can be obtained via:

∂c

∂t
= D∇2c (2.3)

with ∇2 being the Laplace operator with respect to the spatial coordinates and D is the
diffusivity matrix, which is usually considered orthotropic for unidirectional fiber-rein-
forced polymer specimens.

Equation 2.3 is usually solved analytically for the simple case of unidimensional dif-
fusion [7, 10, 11], a suitable approach for specimens such as panels, where the thickness
is considerably smaller than the other dimensions. Here, such assumption is not valid
and the contribution of all three dimensions must be considered. Instead of resorting to
analytically solving Eq. 2.3, the Finite Element Method can be used to solve it numeri-
cally by dividing the spatial domain in finite elements and solving the weak integral form
of the problem:

Kc+Cċ = f (2.4)

where c and ċ are now nodal vectors of concentration and its variation with time, K is
a diffusion matrix which depends on the shape functions and on the diffusivity matrix
D, C is a capacity matrix that depends only on the shape functions and f is a vector of
externally applied water fluxes.



2

38 2. HYGROTHERMAL AGING BEHAVIOR OF GLASS/EPOXY COMPOSITES

Each specimen type is meshed with 512 8-node hexahedrical finite elements and the
concentration at every boundary node is prescribed to be the final uptake w∞. Finally,
the uptake curve is obtained by averaging the concentration field in the whole volume
of the specimen at each time step.

In order to fit the experimental data using the proposed model, suitable values for
the diffusivity coefficients in each direction (Dx , D y and Dz ) and the maximum uptake
(w∞) have to be found. In order to evaluate the quality of the fit, the sum of the squared
differences between experimental (wexp) and numerical (wnum) uptakes is used and cast
as a function f of the model parameters:

f (D, w∞) =
∑

t

[
wexp (t )−wnum (D, w∞, t )

]2 (2.5)

The problem of identifying the parameter set that produces the best fit can be seen as
an optimization problem in which we seek to minimise the function f subjected to the
variable bounds Dx ,D y ,Dz , w∞ ≥ 0 and to the transverse isotropy condition D y = Dx .
Furthermore, for neat resin specimens, complete isotropy is assumed (Dz = Dx ) while
for composites the following relationship is considered [12]:

Dz = Dx ·
(
1−V f

)(
1−2

√
V f /π

) (2.6)

in order to account for the faster diffusion along the fibers, where V f is the fiber volume
fraction. It is important to note that such expression does not account for eventual capil-
larity effects but only for the geometric effect of fibers acting as obstacles and hindering
the diffusion process in the x and y directions. For the laminate considered in this work,
V f = 0.46 (obtained through loss on ignition) and therefore Dz = 2.3Dx . The problem
can then be solved for Dx and w∞ using a quasi-Newton nonlinear optimization algo-
rithm.

The parameter identification results can be seen in Figure 2.2 and Table 2.2 (labelled
Optimised w∞), where the value of f was adimensionalised with respect to w∞ to pro-
duce relative differences. For neat resin, a good fit was obtained for both specimen types
and the identified value of w∞ coincided with the experimentally obtained one. This
indicates that the resin behavior can be correctly represented by Fick’s law. For compos-
ite specimens, high relative errors were found at long immersion times, as can be seen
in plots (b) and (c) of Figure 2.2, suggesting the occurrence of non-Fickian absorption
processes. The same conclusion is reached if the value of w∞ is fixed at the maximum
experimental value and the optimisation problem is used to find only Dx (with label
Maximum w∞), with the fit being better at longer times but worse at shorter times, with
an overall higher value for f .

Even though an accurate Fickian fit cannot be obtained for the complete curves of
the composite samples, closer inspection of the 4-ply curve shows an apparent satura-
tion at 1.19% between 1000h and 2000h, suggesting that the absorption behavior takes
place in two distinct phases. Fixing w∞ = 1.19% and optimising for Dx (Adjusted w∞),
a very close fit is obtained for the first 2000h, shown as the f value inside parantheses
in Table 2.2. This first absorption phase can therefore be considered as Fickian and is
followed by a secondary time-dependent phase. For 6-ply specimens, the same adjusted
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value of w∞ = 1.19% also gives a good fit for the early phase of fast water uptake and an
underestimate for the later phase. It is concluded that water uptake on composite spec-
imens is not a purely Fickian process. This can be indicative for topological changes in
the material microstructure.
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Figure 2.2: Water uptake values and Fick’s law fit. Each point is an average of measurements in three specimens.

Figure 2.3 shows specimen weights measured during the desorption process for both
neat resin and composite, a process that took approximately 3200h. Both types of com-
posite specimens showed weight loss (0.15% loss for 4-ply and 0.06% loss for 6-ply spec-
imens). Such material loss was also observed by other authors [4, 7, 9], particularly
when high immersion temperatures are used, and is usually attributed to leaching of
hydrolised components from the bulk resin and interphase regions.

For neat resin, on the other hand, a residual water uptake of 0.31% was observed at
equilibrium, suggesting that part of the water could not be removed through drying at
50◦C. Such behavior was also observed by Zhou and Lucas [13], who describe two types
of chemical bonds which occur between water molecules and epoxy polymer chains.
Type I bonds have a lower activation energy and are readily removed through drying, but
type II bonds have higher energy and require higher drying temperatures in order to be
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Optimised w∞ Maximum w∞ Adjusted w∞

Tens. Flex. 4 plies 6 plies 4 plies 6 plies 4 plies 6 plies

Dx (·10−13) [m2/s] 7.41 7.92 7.84 7.57 6.46 6.43 8.57 7.68
Dz (·10−13) [m2/s] 7.41 7.92 18.03 17.41 14.86 14.79 19.71 17.67

w∞ [%] 3.94 3.94 1.21 1.20 1.26 1.24 1.19 1.19
f /w2∞ (·10−2) [-] 0.33 0.15 1.24 1.18 3.05 1.89 1.84 (0.74) 1.21 (0.01)

Table 2.2: Uptake curve fitting results, with adopted values shown in bold.
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Figure 2.3: Water desorption curves showing weight loss for composites and residual uptake for resin

removed. Two out of the three types of epoxy considered by Zhou and Lucas [13] showed
a residual uptake of approximately 0.30% after immersion and drying at 60◦C, while the
third one retained 0.18% of the absorbed water. The results obtained in this work seem
to confirm the existence of such stronger bonds. Furthermore, irreversible water up-
take in neat resin implies that the actual amount of material washed away in composite
specimens is higher than what follows directly from weight loss measurements.

2.3.2. MECHANICAL TESTS
In order to investigate the evolution of the composite material degradation during water
uptake, sets of 4-ply ILSS specimens were tested after 500h, 1000h and 1500h of immer-
sion and at saturation. Figure 2.4 shows stress-displacement curves for specimens tested
after each immersion time. To avoid clutter, only one representative curve was chosen
from each set. Also shown is the evolution of strength plotted together with the mea-
sured water uptake values.

From the results, material degradation both in terms of stiffness and strength can be
observed, with up to 36% strength reduction. Such degradation is usually attributed to
the combined effect of hydrolytic attack on both the resin and the silanic coupling agent
around the fibers [14], differential swelling between fiber and matrix [15] and matrix
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Figure 2.4: Static ILSS results for specimens immersed for multiple durations (4-ply composites).

plasticization [16]. By conducting both mechanical and thermal tests and fractographic
observations, the relative contributions of each of these mechanisms will be assessed
throughout the rest of this paper.

Closer inspection of the stress-displacement curves of Figure 2.4 suggests that the
failure behavior becomes more ductile as immersion time increases, with gradual load
drops instead of the more sudden drops observed in reference specimens, suggesting
the occurrence of matrix plasticization. Regarding the evolution of strength with immer-
sion time, it can be seen that the degradation keeps increasing well beyond the apparent
saturation phase between 1000h and 2000h. This suggests that degradation is not only a
function of water uptake but is also time-dependent. Two distinct mechanisms may be
suggested as being responsible for such behavior. Firstly, hydrolytic chemical reactions
and subsequent leaching of material at the fiber/matrix interfaces lead to a weakening
of the interfacial bond and creation of additional spaces for water uptake [17]. Secondly,
differential swelling stresses [15, 18] at the weakened interfaces promote crack initiation
and propagation, further increasing the available space for water uptake. It is important
to note that such mechanisms may act in isolation or in combination, synergistically
reinforcing one another.

Results for 6-ply specimens can be seen in Figure 2.5, for which a 34% strength reduc-
tion was observed, with similar failure behavior when compared to the 4-ply specimens.
In this case, stress-displacement curves for all specimens are shown. Results for both
specimen types can also be seen in Table 2.3.

For fatigue, S-N curves were obtained by fitting the experimental data to a straight
line in log-log space given by:

log10 N = A+B · log10 |τmax| (2.7)

where N is the number of cycles before failure occurs, |τmax| is the absolute value of the
maximum attained shear stress and A and B are the intercept and slope parameters, re-
spectively. From the obtained curves, it can be observed that conditioned specimens
suffered a fatigue life reduction of three orders of magnitude for a given load level, while



2

42 2. HYGROTHERMAL AGING BEHAVIOR OF GLASS/EPOXY COMPOSITES

the maximum stress showed decreases of approximately 40% for a given number of cy-
cles, a degradation level similar to the one obtained in the static tests.
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Figure 2.5: Static and fatigue ILSS results for unaged and saturated specimens (6-ply composites).

Unaged 500h 1000h 1500h Saturated Dry Redried

4 plies

τmax [MPa] 45.6±1.0 40.9±0.2 35.9±1.4 33.5±1.5 29.1±0.9 53.7±1.6 44.6±1.3

6 plies

τmax [MPa] 46.1±1.3 - - - 30.3±1.1 52.3±1.8 41.7±1.0

Table 2.3: ILSS values of composite specimens for every type of conditioning.

Although interlaminar shear fatigue results after hygrothermal aging for the current
material system could not be found in literature, a limited comparison can be made with
works dealing with other resin systems or test types. Hu et al. [19] reported 90◦ tension-
tension fatigue results on the same glass/epoxy system used in this work, with strength
reductions of up to 44% for low cycle tests, similar to the present results. As 90◦ tension
and interlaminar shear tests are both dominated by a combination of resin and inter-
face properties, similar levels of degradation were expected. However, a drastic slope
reduction was obtained by the authors, resulting in near-horizontal S-N curves for wet
samples and seemingly no effect of aging in high cycle tests. Such behavior, which was
also reported by Vauthier et al. for a different glass/epoxy system [20], was not observed
here.

In order to investigate the relative contributions of interface and matrix damage after
immersion, neat epoxy specimens were tested in tension and bending. Stress-displace-
ment curves for reference and conditioned specimens are shown in Figures 2.6 and 2.7,
while average results can be seen in Tables 2.4 and 2.5. For both specimen types, the
Young’s modulus and strength decreased by approximately 17% after saturation. A slight
change in failure mode was also noticed for tension specimens, as can be seen in Fig-
ure 2.10, with saturated specimens showing a markedly ductile behavior with extensive
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necking. In fatigue, the number of cycles to failure decreased by two orders of magnitude
for a given stress level and a slightly steeper slope was obtained, which is again opposite
to the behavior observed by other authors [19, 20].

Here, two possible major degradation mechanisms exist, namely plasticization and
breakage of polymer chains through hydrolytic reactions. While the more ductile failure
mode suggests that plasticization is the main effect, the thermal tests of Section 2.3.4
will be used to confirm this hypothesis. Comparing results of resin and composite spec-
imens, it can be seen that the observed magnitude of resin degradation (17%) is not
enough to explain the one obtained for composites (35%), indicating that interfacial hy-
drolysis and differential swelling play an equally important role in the total property re-
duction.
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Figure 2.6: Static and fatigue tension results for unaged and saturated specimens (neat resin).

Unaged Saturated Dry Redried

σmax [MPa] 70.3±0.6 55.5±0.3 72.2±0.3 58.1±11.5

ε at σmax [%] 4.53±0.05 4.35±0.08 4.53±0.05 2.71±1.05

ν [-] 0.381±0.010 0.399±0.018 0.382±0.007 0.374±0.011

E [GPa] 3.15±0.06 2.53±0.07 3.06±0.03 3.05±0.03

Table 2.4: Results of tension tests in neat epoxy specimens for every type of conditioning.

Unaged Saturated Dry Redried

σflex,max [MPa] 113.8±0.4 95.1±0.6 116.2±0.7 113.8±1.4

ε at σflex,max [%] 5.98±0.12 5.85±0.09 5.84±0.08 5.89±0.11

Eflex [GPa] 2.88±0.23 2.47±0.03 3.03±0.02 3.03±0.10

Table 2.5: Results for bending tests in neat epoxy specimens for every type of conditioning.
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Figure 2.7: Static bending results for unaged and saturated specimens (neat resin).

As both differential swelling and softening effects caused by plasticization are re-
versible upon moisture removal, tests on redried specimens are useful in order to isolate
the contribution of the non-reversible mechanisms. As mentioned in Section 2.2.2, re-
sults from the Redried set will be compared with those from the Dry set, since both are
tested after complete drying at 50◦C and after stabilisation of polymer relaxation pro-
cesses. Figures 2.8 and 2.9 show stress-displacement curves for both sets, with average
results shown in Tables 2.3, 2.4 and 2.5.

For composites, an irreversible shear strength degradation of 17% for 4-ply and 20%
for 6-ply specimens was found, with similar permanent reductions observed for the
shear stiffness. This irreversible degradation indicates a significant contribution of the
combined effect of hydrolytic interface weakening and cracking driven by differential
swelling stresses, a process which is also consistent with the observed non-Fickian ab-
sorption uptake phase and the mass loss upon drying.

It is also important to investigate the resin behavior after redrying, since any irre-
versible effects on the resin will also impact the composite behavior. Here, in contrast
to previous observations, the effect on stiffness is markedly different from the one on
strength and fracture behavior. For both tensile and bending specimens, a complete
recovery of stiffness was obtained after drying. However, a transition from ductile to
brittle failure behavior was observed (Figure 2.10). This effect can be observed for bend-
ing specimens in the form of a lower strain at failure for redried specimens, but is much
more drastic for tensile specimens, with only one specimen out of six reaching the end
of the plastic hardening regime and sudden failure with a large amount of scatter for all
other specimens.
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Figure 2.8: Static ILSS results for dry and redried specimens (4-ply and 6-ply composites) .
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Figure 2.9: Static tension and bending results for dry and redried specimens (neat resin).

Assuming that the possibility of post-curing and chain breakage during the immer-
sion and redrying steps can be ruled out (see Section 2.3.4 for details), two explanations
can be proposed for the observed decrease in the strain at failure. First, even though
both specimen sets were given enough time for polymer relaxation to happen until sta-
bilisation [6], the movement of water molecules during the uptake-desorption cycle ex-
perienced by the redried specimens may have modified their free volume structure, as
argued by Wong and Broutman [5], which would bring changes to their fracture behav-
ior. Second, the residual water retained in the specimens after redrying may be promot-
ing secondary crosslinks between polymer chains, as proposed by Zhou and Lucas [13].
Such stronger link between the water molecules and polymer chains also helps explain-
ing why they require a higher energy in order to be removed.
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Figure 2.10: Change of failure pattern between unaged, saturated and redried tension specimens.

2.3.3. MICROSCOPIC OBSERVATIONS

Composite specimens from the Dry and Saturated sets were inspected using an optical
microscope both before and after being tested. The inspections conducted before test-
ing were carried out to find evidences of material degradation from immersion, while
the ones conducted after testing investigated changes in failure behavior caused by such
degradation.

Figure 2.11 shows x-y plane views of a dry and a saturated specimen (plies are stacked
along the z axis). After immersion, the fiber bundles, which were barely visible in ref-
erence specimens, can be visually identified, suggesting that interface debonding took
place. In particular, this is visible in the areas marked (a) and (b), showing debonding in
fibers oriented both in 0◦ and 90◦ directions. Figure 2.12 shows views of the x-z plane
of two different saturated specimens at two different points along their thickness. In the
pictures, the fabric stitches can be seen as shadows in the spaces between two consec-
utive plies and are indicated in white. In both pictures, regions of intact and darkened
fibers can be identified, with the latter being marked by arrows. Such darkened fibers
are indicative of cracks running along the interfaces and are considered as a sign of weak
interface adhesion since they do not propagate to the surrounding resin [21, 22]. These
observations reinforce the hypothesis that the combination of high differential swelling
stresses and a weakened interface cause cracks to propagate along them and create new
loci for water absorption.

Figures 2.13 and 2.14 show y-z views of dry and saturated specimens after being
tested in three-point bending, with the fiber direction oriented out of plane. The gen-
eral failure behavior is the same for both condition types, with longitudinal shear cracks
running through the whole width of the specimens. For dry specimens, a single crack or
a pair of symmetric cracks is observed around the fiber bundle located at mid-thickness,
where the material experiences the maximum value of shear stress. For saturated spec-
imens, on the other hand, cracks occur at multiple locations, including in regions close
to the specimen surfaces, as shown in Figure 2.14a. This observation is consistent with
the fact that regions closer to the surfaces were the first to get saturated and therefore
the ones exposed for the longest time to the time-dependent degradation mechanisms
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Figure 2.11: In-plane microscopic comparison of dry and saturated specimens, with (a) debonding in the 0◦
direction and (b) debonding in the 90◦ stabilization roving.

Figure 2.12: Through-thickness micrographs of a saturated specimen with arrows indicating debonded re-
gions.

mentioned in Section 2.2. The crack propagation behavior was also different between
dry and saturated specimens. In dry samples, the main crack tends to run along the
boundaries of fiber bundles, with secondary cracks moving inside the bundles being ar-
rested. In saturated samples, the cracks tend to run inside the bundles, where differential
swelling creates high stress concentrations.

Finally, upon further investigation of the crack surfaces at higher magnifications,
more differences between dry and saturated specimens become apparent. Crack sur-
faces in dry specimens suggest a failure dominated by clean fiber/matrix interface debond-
ing (Figure 2.13b). For saturated specimens, at multiple points along the cracks (marked
with arrows in Figure 2.14a), damage was more distributed, with the presence of resin
fragments between fibers (marked areas in Figure 2.14b), suggesting that the main crack
was formed by the propagation and coalescence of multiple smaller interface cracks.
This reinforces both hypotheses of a plasticized resin and a weakened fiber/matrix in-
terface after immersion and the consequent crack arrest mechanisms explain the in-
creasingly ductile material behavior as more water is absorbed (Figure 2.4).

2.3.4. THERMAL TESTS

Figure 2.15 shows storage modulus curves obtained through DMA testing, where the
crossing of tangents to the inflection points in the storage modulus curve is considered
to be the glass transition temperature (Tg ) of the resin. Loss factor curves are also plotted
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(a) Crack propagation (b) Detail of the crack surface

Figure 2.13: Microscopic observation of the crack surfaces of a dry specimen after testing.

(a) Crack propagation (b) Detail of the crack surface

Figure 2.14: Microscopic observation of the crack surfaces of a saturated specimen after testing, with arrows
indicating regions of predominant plastic resin failure.

and peak values are marked (Tfp). Average values are reported in Table 2.6. In saturated
specimens, the measured glass transition temperature was on average 17◦C lower than
in Unaged specimens. Such decrease is in line with the observed decreases in stiffness
and strength of the resin, since it also points to the occurrence of matrix plasticization.

Comparing results from the Dry and Redried sets, previous exposure to moisture re-
sulted in an increase of 4◦C to the measured Tg , which agrees with the observed change
to brittle failure modes in mechanical tests. As an increase in Tg is expected both in
the case of additional crosslinking and polymer relaxation associated with a reduction
of specific free volume [6], the results observed here support the hypothesis that these
processes can explain the decrease in strain at failure discussed in Section 2.3.2. Sim-
ilar changes were observed for the loss peak temperature, although a second peak is
observed for the Saturated set. This phenomenon was also observed by other authors
[23, 24], who attributed it to a phase change of water molecules not attached to the poly-
mer structure. However, since the temperature for the second peak is similar to the one
for Unaged samples, it may also point to the presence of unplasticized polymer chains
in the saturated material.

Figure 2.16 shows Differential Scanning Calorimetry (DSC) curves for one represen-
tative specimen of each set. To facilitate the comparison between specimens, the curves
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Figure 2.15: DMA results for every type of conditioning (neat resin).

Unaged Saturated Dry Redried

Dynamic Mechanical Analysis (DMA)

Tg [◦C] 86.8±0.3 70.0±0.6 90.3±0.4 94.3±0.4

Tfp [◦C] 99.1±0.5 80.3±0.8 & 98.9±1.1 101.9±0.4 107.4±0.4

Differential Scanning Calorimetry (DSC)

Tg1 [◦C] 86.6±0.3 69.3±0.5 90.1±1.7 87.9±2.5

Tg2 [◦C] 90.1±0.8 88.2±0.5 89.4±1.2 89.0±0.3

∆h [J/g] 1.44±0.55 6.16±0.48 2.99±0.45 2.64±0.31

Table 2.6: Thermal analysis results on neat resin.

were scaled based on the heat capacity value at 140◦C. The main conclusion here comes
by considering the results from the second heat cycle, after the specimens were kept
at 130◦C in order to erase their polymer relaxation history and remove residual water
molecules. The Tg 2 of specimens for all conditions, measured at the onset of the phase
change, was the same, indicating that no additional monomer-hardener crosslinks oc-
curred during drying or redrying of the samples and that chain breakage through hydrol-
ysis was not significant during immersion.

Finally, Tg measurements are also taken during the first heating cycle. As expected,
Tg 1 values of saturated specimens were lower than those of the other sets due to the
presence of plasticized polymer chains. However, comparing the Dry and Redried sets,
no significant difference in Tg 1 was found, in contrast to the results obtained with DMA
tests. As the first cycle usually includes an enthalpy relaxation peak caused by physical
aging occurred during manufacturing and conditioning, it is also interesting to evaluate
their magnitudes (∆h) by subtracting the first and second cycle curves and taking the
area below the resultant curve in a 30◦C temperature range starting at the glass tran-
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Figure 2.16: DSC results for every type of conditioning (neat resin).

sition onset. As the Unaged condition was chosen in order to minimise the effects of
polymer relaxation, an expected increase in∆h is observed for Dry and Redried samples.
Differences were also observed between the two dry sets, indicating differences in their
polymer structure and agreeing with DMA and mechanical test results. Lastly, the relax-
ation of Saturated specimens was the highest and can be associated with the combined
phase change of the resin and unbounded water molecules.

2.4. CONCLUSIONS
This chapter investigated material degradation effects caused by hygrothermal aging in
composite and neat epoxy specimens for a fiber and resin system representative of the
material used in wind turbine blades. Water uptake and desorption behaviors were in-
vestigated. Specimens were conditioned in hot water (50◦C) for 4800h, dried after having
been immersed and isothermally dried without immersion. Static and fatigue properties
of aged and unaged specimens were measured and compared. Additionally, a combina-
tion of thermal analytical techniques and optical microscopy was used in order to ex-
plain the relative contributions of each degradation effect.

An optimisation-based parameter identification procedure was used to fit a 3D Fick
finite element model to the measured uptake data. For neat resin, the behavior was Fick-
ian, while for composites it was composed of an initial Fickian phase followed by a sec-
ondary non-Fickian absorption phase at longer immersion times. Upon redrying, com-
posite specimens showed weight loss linked to the combined action of interface decom-
position and crack propagation driven by differential swelling stresses with subsequent
leaching of material. For neat resin specimens, part of the water could not be removed
through redrying, an evidence suggesting that part of the water molecules form stronger
bonds with the polymer network [13] and that the material loss observed for composite
specimens is higher than what follows from weight measurements.

Material degradation in composite specimens as measured through mechanical tests
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was not only dependent on the water uptake but also on immersion time, with shear
strength reductions of up to 36% and fatigue life up to three orders of magnitude shorter.
For resin specimens, a degradation level of approximately 17% was observed, both in
tension and in bending. After redrying, an irreversible mechanical property reduction
of 17% was found for composite samples, while for resin the stiffness and maximum at-
tainable stress are fully recovered and a notable decrease in the strain level at failure is
observed. Even though different test types were used in the comparison between com-
posite and resin, the observed differences in magnitude and reversibility of degradation
strongly indicate that composite degradation cannot be fully explained by only consider-
ing mechanisms that act on the resin. Fractographic analysis in unaged composite sam-
ples indicated that cracks tend to run along the fiber bundle boundaries and concentrate
close to the specimen mid-thickness. For saturated ones, cracks are evenly distributed
along the specimen thickness and tend to propagate inside the bundles, suggesting the
presence of high differential swelling stresses.

Based on the conducted material investigations, the following chronology is pro-
posed for the hygrothermal aging process in the present glass/epoxy system: Water dif-
fuses through the material and promotes resin plasticization, degradation of interfacial
strength and differential swelling. The combination of the time-dependent weakening
of the interfaces with the high differential swelling stresses promotes crack formation
along the interfaces and cause additional water uptake in the newly created empty vol-
umes. Upon redrying, the plasticization is reversed and differential swelling subsides,
leading to property recovery, although the resin free volume is irreversibly changed and
part of the water molecules remain strongly bonded to polymer chains. However, as the
irreversible effects on resin specimens do not significantly impact their mechanical be-
havior, it can be concluded that the interface cracks formed in composites during uptake
are the main reason for the observed permanent reductions in stiffness and strength.
With the obtained information about the relative contributions of each degradation ef-
fect and their interactions, numerical models can be developed to simulate the aging
process and subsequent material failure during service fatigue loading.
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3
ANISOTROPIC MOISTURE

DIFFUSION IN GLASS/EPOXY

COMPOSITES

The worst form of inequality it to
try to make unequal things equal.

Aristotle, Politics

3.1. INTRODUCTION
Since the aging process is driven by water ingression, as the results in Chapter 2 indi-
cate, it is important to understand the process of water diffusion across scales. For fiber
reinforced polymers, the material microstructure brings complexity to the diffusion phe-
nomenon since water molecules have to go around the fibers for diffusion in transverse
direction [2], giving rise to orthotropic diffusion behavior. Furthermore, chemical inter-
action between the epoxy and fiber sizing creates an interphase region around the fibers
where water diffusivity can be different from the one in bulk resin regions [3].

In this chapter, a combined experimental and numerical approach is used to elu-
cidate the water diffusion process in composite laminates. For the experimental part,
a thick unidirectional glass/epoxy composite panel was manufactured and thin slices
were cut along the three orthotropy planes of the material. The slices were immersed
in demineralised water at 50◦C and weighed at regular intervals. By fitting a unidimen-
sional analytical solution of Fick’s second law of diffusion to the experimentally obtained

Apart from minor changes to its introductory section, this chapter was integrally extracted from [1].
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water uptake curves, the orthotropic diffusivity constants were retrieved. Using a com-
bination of scanning thermal microscopy and local thermal analysis, the presence of an
interphase was confirmed for the present composite system and its approximate thick-
ness was measured.

The diffusivity coefficients were also numerically obtained through homogenisation
of the microscopic diffusion behavior. For this purpose, a three-dimensional Represen-
tative Volume Element (RVE) was subjected to water concentration gradients in each
direction. By integrating the flux components in the microscopic volume, homogenised
diffusivity values were obtained. In order to account for the impact of the fiber/matrix
interphase on the diffusion process, the resin diffusivity was made a function of the dis-
tance to the nearest fiber. A parametric study on the RVE size and mesh density was
performed and the model was used to verify the validity of a number of hypotheses put
forward in literature that may explain the observed anisotropy.

3.2. EXPERIMENTS

3.2.1. MATERIALS

The material system considered in the present study consists of the epoxy resin EPIKOTE
135/1366, manufactured by Momentive [4], with embedded unidirectional glass fiber
fabrics (Saertex PPG 2002 2400tex [5]). For the resin preparation, the monomer and hard-
ener were mixed in a 100:30 ratio and the resultant mixture was degassed in vacuum in
order to minimise void content. Unidirectional glass fiber plies were stacked and infused
through vacuum bagging in a heated flat mould.

In order to experimentally investigate the anisotropic diffusion behavior through
weight measurements, specimens must be devised in such a way that the water move-
ment in a certain direction is promoted while diffusion in the other directions is min-
imised. This can be achieved by selectively sealing specimen edges [6] or by cutting thin
material slices in each direction [2]. Here, the latter procedure was chosen and a thick
laminate of 50 unidirectional (UD) plies (total thickness of 30 mm) was manufactured
in order to obtain specimens with high width/thickness and length/thickness ratios for
three different orientations.

Each UD fabric ply used in the manufacturing was mainly composed of fibers ori-
ented at 0◦ (95% in weight) with stability rovings oriented at 90◦ accounting for 5% of
their weight. In order to obtain a purely UD laminate, the stability rovings were manu-
ally removed prior to infusion. The panel was cured for 3 hours at 30◦C and 5 hours at
50◦C, with a subsequent post-curing period of 10 hours at 70◦C. After curing, 30 x 30 mm2

slices were cut from the panel along the three orthotropy planes of the material, as shown
in Figure 3.1.

Three slices were cut in each direction using a water-cooled diamond saw and were
grinded with a Labopol 30 polishing machine using progressively higher sanding grits
ranging from 320 to 1200 until a thickness of 0.9 mm was reached, resulting in width/thick-
ness and length/thickness ratios of approximately 30. The average thickness among the
nine slices was 0.94±0.06 mm, while the average ratio was 31.9±2.3. Finally, the sur-
faces were polished using a suspension of diamond particles with average diameter of
1µm. The final surfaces were inspected for defects using a Motic BA210 optical micro-
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Figure 3.1: Material slices and preferred diffusion directions.

scope, although the occurrence of microscopic failure events such as interface debond-
ing during specimen preparation cannot be completely ruled out. Using three additional
specimens, average values of fiber volume fraction of 53.1±0.27% and void content of
0.85±0.21% were obtained through loss on ignition, according to the ISO 1172 standard.

3.2.2. CONDITIONING

In order to obtain accurate measurements of the maximum water uptake, the slices were
first dried for approximately 200 h in a desiccator at 50◦C, after which a stable weight
was achieved. The choice of the reference state in diffusion experiments on polymer
matrix composites can be a complex one, since additional aging processes such as phys-
ical aging and oxidation can occur during the initial drying phase. Due to changes in
the polymer structure caused by these additional aging mechanisms, the diffusivity and
the maximum uptake may suffer both reversible and irreversible changes [7, 8]. In this
work, oxidative reactions were avoided by applying vacuum to the desiccator during the
drying process, while the short duration of the drying phase, enabled by the use of thin
slices, helped to minimise the influence of physical aging.

The slices were subsequently immersed in demineralised water kept at a tempera-
ture of 50±1.5◦C. This immersion temperature was chosen in order to accelerate water
uptake while keeping a safety margin of 20◦C from the glass transition temperature (Tg)
measured in saturated resin specimens (70◦C). The Tg of the unaged resin is 87◦C (Sec-
tion 2.3.4). Dependency of the diffusivity on the immersion temperature is well docu-
mented in literature [9] and will not be treated in the present work.

Water uptake was individually tracked for each slice through weight measurements,
according to the ASTM D5229/D5229M-14 standard, using a Kern ALJ 160-4NM analyti-
cal balance with 0.1 mg resolution. Hourly weighings were performed in the first 8 hours
of immersion, two weighings were performed on the second day and the frequency was
decreased to one weighing per day for the remainder of the experiment. Only one slice
was taken out of immersion at a time, with the complete weighing procedure for each
individual slice taking approximately one minute.
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3.2.3. DIFFUSIVITY COMPUTATION
The experimental water uptake wexp at time t is computed from the measured weight m
according to the ASTM D5229/D5229M-14 standard:

wexp(t ) = 100 ·
(m(t )−mdry

mdry

)
(3.1)

where mdry is the weight measured after the initial drying phase. The diffusion process is
considered as one-phase Fickian. Due to the high width/thickness and length/thickness
ratios of the slices, the diffusion is modeled as a one-dimensional process in the thick-
ness direction:

∂c

∂t
= Ds

∂2c

∂s2 (3.2)

where s ∈ {x, y, z} is the preferred diffusion direction which depends on the cutting direc-
tion of the slice and c = c(s) is the water concentration field. An analytical solution for
the volume averaged water uptake during immersion of an initially dry specimen, wfick,
can be obtained [6]:

wfick(Ds , w∞, t ) = w∞
{

1− 8

π2

∞∑
n=0

[ 1

(2n +1)2 exp
(
−Ds (2n +1)2π2t

h2

)]}
(3.3)

where w∞ is the uptake level at saturation and h is the thickness of the slice.
Suitable values for the Fick model parameters Ds and w∞ have to be chosen in or-

der to fit the experimental uptake points. The fitting procedure can be cast as an un-
constrained optimisation problem involving the minimisation of an objective function
f which gives the sum of the squared difference between experimental and analytical
data:

f (Ds , w∞) =∑
t

[wexp(t )−wfick(Ds , w∞, t )]2 (3.4)

which can be solved for Ds and w∞.

3.2.4. SCANNING THERMAL MICROSCOPY AND LOCAL THERMAL ANALYSIS
To study the composite surfaces in search of an interphase region around the fibers, a
micro-thermal analyser µTATM 2990 from TA-Instruments was used. A number of au-
thors conducted studies on the measurement of interphases in thermoset composite
materials using µTA [3, 10–13], showing that micro-thermal analysis may be used to
characterize interphases in such composites. The instrument was calibrated following
the procedures described in [14]. Two modes of operation were employed. In a sur-
face mapping mode, the thermal probe was used in AFM-contact mode over a 100µm
x 100µm area. The probe was held at a temperature of 60◦C (below the glass transi-
tion temperature of the epoxy resin). This resulted in images of the topography and of
the thermal conductivity. In a second mode, localised thermal analysis (L-TA) was per-
formed. The probe was held in contact at a location selected after the mapping. The
temperature of the probe was raised from 25◦C to 250◦C with a rate of 10 K/s while
recording the vertical position of the probe (L-TMA, localised thermomechanical analy-
sis) and the power difference between sample and reference probe needed to realize the
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programmed temperature ramp (L-CA, localised calorimetry) simultaneously. A mea-
surement in the air was used as a baseline signal.

Glass transition temperatures were evaluated as the onset of the drop in the sen-
sor deflection signal. This corresponds to the beginning of polymer softening. For L-CA
measurements, glass transition temperatures are not easily detected for highly crosslinked
thermoset materials [12]. After each L-TA measurement, the probe was heated to 600◦C
over a period of 1 s to remove any residue of polymeric material. The results have been
shown to be reproducible.

3.3. NUMERICAL MODELING

3.3.1. MICROSCOPIC DIFFUSION PROBLEM
At the macroscopic scale, diffusion is assumed to be orthotropic and can therefore be
described by three independent diffusivities Dx , D y and Dz , with z being the direction
parallel to the fibers (Figure 3.1). It is hypothesised that such orthotropic behavior is
a consequence of the microscopically inhomogeneous nature of the composite mate-
rial. Therefore, the diffusivity coefficient in each direction can be retrieved through ho-
mogenisation of the microscopic diffusion behavior. Furthermore, it is assumed that the
diffusivity coefficient does not depend on time or on water concentration.

At the microscopic scale, the composite material is represented by a three-dimensional
RVE composed of unidirectional fibers and surrounding matrix. Since water does not
diffuse through the fibers, only the resin is modeled. The fiber arrangements were gen-
erated using the discrete element package HADES [15]. A fiber volume fraction of 53.1%
was used and the fiber diameter was fixed at 15µm. A minimum distance of 0.5µm be-
tween the fibers was adopted during the contact analysis in order to avoid fiber overlap.
The diffusion process is idealised as steady-state [16, 17]:

∇· j = 0 (3.5)

where j is the flux vector. After applying an average (macroscopic) concentration gra-
dient (∇c)M to the RVE, the microscopic water concentration field can be decomposed
without loss of generality in:

c(x) = c0 + (∇c)Mx+ c̃(x) (3.6)

where c0 is the concentration of the origin of the microscopic coordinate frame and c̃ is
a fluctuation field [17].

Consistent homogenisation requires that the volume average of the microscopic con-
centration gradients must be equal to the applied gradients (∇c)M, with the same hold-
ing true for the resultant flux jM:

(∇c)M = 1

|ω|
∫
ω

(∇c)dω jM = 1

|ω|
∫
ω

jdω (3.7)

with ω being the RVE volume. The use of such homogenisation operators requires the
average of gradients and fluxes to be zero at the RVE boundaries [16]. This requirement is
enforced by imposing periodicity of concentration at the edges of the micromodel. More
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Figure 3.2: Periodic RVE with prescribed nodes, master and slave surfaces.

details on the homogenization and asymptotic analysis concepts used in the present
formulation can be found in [16].

Figure 3.2 shows the node groups involved in the definition of such periodic bound-
ary conditions. The macroscopic concentration gradient components in the x, y and z
directions are applied to the control nodes 1, 2 and 3, respectively:

c s = (∇c)Mxs (3.8)

where xs is a vector with the coordinates of controlling node s ∈ {1,2,3}. The concentra-
tions on opposing boundary surfaces are then related by:

c
∣∣
γs+

= c
∣∣
γs−

+ c s (3.9)

In order to ensure that a unique solution exists for the microscopic concentration
field, the slave corner node concentration c0 is adjusted so that the volume average of
the concentration is equal to a prescribed value. Recalling that the diffusivity is assumed
to be independent of the concentration, an average value of zero was adopted for con-
venience.

Finally, the directional macroscopic diffusivity is obtained from the homogenised
flux for a unit macroscopic concentration gradient in that direction:

Ds =
j M

s

(∇c)M
s

=
∫
ω

js dω (3.10)

It is worth mentioning that the concentration gradients and flux components con-
sidered in the present formulation are computed only for the resin, since the fibers are
not included in the model. The water concentration, gradient and flux for the composite
material can be recovered through the relations:

ccomp =Vresin cresin (∇c)comp =Vresin (∇c)resin jcomp =Vresin jresin (3.11)

where Vresin is the resin volume fraction. It follows that the diffusivity value resulting
from integrating only over the resin volume is consistent with the one that would be
obtained by also taking the fiber volume into account.
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Figure 3.3: Diffusivity values versus distance to nearest fiber.

3.3.2. INTERPHASE MODELING
In the preceding formulation, no assumption was made on the diffusivity behavior of the
resin. A simple approach is to consider that the diffusivity of the resin is isotropic, con-
stant at every microscopic point and equal to the one obtained from neat resin immer-
sion experiments. However, literature evidence [3] suggests that diffusion may happen
faster in the interphase region close to the fibers [10–13, 18]. An attempt to experimen-
tally detect the interphase region in the present composite system will be described in
Section 3.4.2.

Joliff et al. [3] modeled the interphase as a region with a higher diffusivity than the
one of the surrounding bulk resin. Although the authors in [3] considered a constant
interphase diffusivity, their own experimental observations suggest that the degree of
material modification changes continuously with the distance to the fiber surface. Here,
such effect is modeled by using a level set fieldφ to define the distance of any given point
to the nearest fiber surface:

φ(xm) =
nf

min
f =1

(√
x xc

f + y yc
f − r f

)
(3.12)

where nf is the number of fibers, xc and yc are the coordinates of the fiber centre and
r is the radius of the fiber. Since only x and y coordinates are used to compute φ, the
resultant field is prismatic. The diffusivity at integration point p is then defined as a
linear function of φ (Figure 3.3):

Dp = Dmax −φp
Dmax −Dbulk

tint
(3.13)

where Dmax and Dbulk are the diffusivities at the fiber surface and at the bulk resin, re-
spectively, and tint is the thickness of the interphase region. The choice for a linear func-
tion allows for a more realistic representation of the interphase than the one shown in
[3] while maintaining the same number of parameters. Figure 3.4 shows the resultant
diffusivity field for an interphase thickness of 4µm.

It is important to note that even though diffusivity in pure resin (Dbulk) is usually
considered isotropic, the same might not hold for the interphase region, for instance
due to changes in polymer chain orientation at the immediate vicinity of the fibers [19].
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Figure 3.4: Diffusivity field with an interphase thickness of 4µm.

Therefore, no a priori assumption will be made regarding the isotropy of Dmax in the
present study.

3.4. RESULTS

3.4.1. EXPERIMENTAL UPTAKE

In Figure 3.5, experimental water uptake values are plotted for diffusion in each of the
x, y and z directions. The represented Fickian diffusion curve for each direction was
obtained by fitting the average uptake of 3 specimens using the procedure described in
Section 3.2.3. The final uptake level of approximately 0.91% was similar for all directions.

A Fickian behavior was observed for all specimen types, although small deviations
are observed for diffusion along the z direction between 20 h and 50 h of immersion. The
diffusivities obtained for the x and y directions of approximately 0.52µm2/s were sim-
ilar, which was expected due to the similar fiber arrangement inside the samples. For
these two directions, saturation was reached after approximately 300 h of conditioning.
On the other hand, a diffusivity of 1.638µm2/s was obtained for diffusion in the z direc-
tion, approximately 3 times higher than in the other directions. In this case, saturation
was reached after approximately 100 h of immersion.

The observed anisotropy in diffusivity was expected and also observed by other au-
thors [2, 6]. This effect is usually attributed to the fact that the fibers act as barriers to
the water movement in the x and y directions, whereas diffusion in the z direction runs
along the fibers and is therefore unhindered. For the present epoxy system, the diffu-
sivity in pure resin specimens is 0.741µm2/s [20]. As expected, diffusivities in the x and
y directions are lower than the pure resin one due to the aforementioned barrier effect.
For the z direction, however, a value approximately twice as high as for pure resin is ob-
tained. It is clear that the barrier effect caused by the fibers is not enough to fully explain
the anisotropic diffusion behavior observed for this material system as it cannot explain
such increase in diffusivity in the z direction.
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Figure 3.5: Experimental water uptake results with Fick fit.
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Figure 3.6: Thermal conductivity profile in a 0.01mm2 area of a z-direction slice.
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Figure 3.7: Three different line scans of thermal conductivity in the vicinity of a fibre.

3.4.2. INTERPHASE MEASUREMENT

In Figure 3.6, the thermal conductivity map obtained with micro-thermal analysis is
shown, clearly displaying the contrasts between fibers and the surrounding epoxy resin.
In such conductivity mapping, the fibers are observed as zones with a higher power
value, since the bulk thermal conductivity for the glass is about four times higher than
the value for epoxy resin. As the probe moves away from a fiber, the thermal conductivity
decreases gradually to a lower level corresponding to the resin. To determine the width
of the interphase in the thermal map, line scans drawn in several directions across the
detected glass fibers show a transition zone which extends over 4-5µm (Figure 3.7).

To determine the origin of this thermal conductivity gradient, L-TMA measurements
were made in positions with different (increasing) distances from the centre of the fiber
(Figure 3.8). In the bulk of the material, sufficiently far from the fibers, the glass transi-
tion temperature is constant. As the distance to the fiber decreases, the glass transition
temperature decreases by 10-15 K in an interphase region of 4-5µm (Figure 3.9) and may
be defined as the area where the softening temperature is lower than the softening tem-
perature of the bulk. The distance over which this decreasing Tg stretches is comparable
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Figure 3.8: Surface map obtained through µTA in a 0.01mm2 area of a z-direction slice showing L-TMA test
locations.
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Figure 3.9: L-TMA experiments at increasingly distant locations from a glass fiber.

to the distance over which the gradual evolution in thermal conductivity is observed in
the surface mapping (Figure 3.6). The L-TMA curve measured on the fiber shows only
thermal expansion. The presence of an interphase may be attributed to incomplete cur-
ing or modification of the bulk resin after chemical reactions with the sizing applied to
the fibers, also seen for instance by Mallarino et al. [13].

In a similar study performed by Joliff et al. [3], the authors measured interphase
thickness values using both micro-thermal analysis and atomic force microscopy (AFM),
with values ranging from 1µm obtained through AFM force measurements to 4µm of
highly modified resin and 6µm of slightly modified resin obtained through local Tg mea-
surements. Since significantly different values are obtained for the same material system
by using different techniques, the models of the next sections will consider both a thin
interphase of 1µm and a thick interphase of 4µm.

3.4.3. RVE STUDY
The anisotropic diffusivity behavior of the present material system was obtained through
homogenisation of the response of a Representative Volume Element (RVE) according to
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Figure 3.10: Changes in diffusivity of 50 different micromodels with increasing mesh density.

the formulation presented in Section 3.3. This section describes the parametric study
performed in order to chose a representative micromodel for comparison with the ex-
perimental behavior.

In order to correctly represent the diffusivity behavior of the interphase region, par-
ticularly where the distance between fibers is small, an adequate mesh density is re-
quired. Figures 3.10a and 3.10b show the obtained diffusivity values in the x and z direc-
tions for 50 different 5 x 5 fiber micromodels (90µm x 90µm) with varying characteristic
element size ranging from 3µm to 0.3µm in steps of 0.05µm. In all cases, the discreti-
sation in the z direction consisted of a single layer of elements, which is sufficient to
solve the steady state flow in that direction exactly for the given prismatic geometry. For
the parametric study, Dmax was considered isotropic and a ratio Dmax/Dbulk of 10 was
adopted in order to investigate the relative differences between models with thin and
thick interphases. Choosing an appropriate ratio is not crucial at this point since only
relative differences between the two interphase thicknesses are of interest for the para-
metric study. Wedge elements with three integration points were used.

As expected, the diffusivities converge to stable values as the mesh density increases.
For both directions and interphase thicknesses, such stabilisation happened at an el-
ement length of approximately 0.5µm. For both directions, the final diffusivities for
the thick interphase models showed significantly higher scatter than the thin interphase
ones. It is possible that this behavior is induced by the larger area of influence of fibers
with thick interphases. The interphases of adjacent fibers tend to overlap more often and
the resultant interaction between fibers makes the thick interphase model more sensi-
tive to changes in fiber arrangement.

With a fixed element length of 0.5µm, the next calibration step involved choosing
an RVE size large enough to ensure that the resultant homogenised diffusivity does not
change considerably if the size is further increased. Figures 3.11a and 3.11b show ho-
mogenised diffusivity values in the x and z directions for both thin and thick interphase
thicknesses with increasing RVE size, expressed by its number of fibers (from 1 x 1 to 9 x 9
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Figure 3.11: Effect of RVE size on the obtained diffusivities.

fibers). The plotted values represent average values from 50 different micromodels and
the bars represent standard deviations.

Consistent with the results obtained for 5 x 5 micromodels, the response of models
with a thick interphase had a higher scatter when compared to models with a thin inter-
phase. Nevertheless, the average response of both types of model reached a stable value
from a 3 x 3 RVE size. For the final comparison with experimental results, an RVE size of
5 x 5 fibers was chosen as a compromise between precision and computational effort.

3.4.4. VALIDATION OF THE STEADY STATE ASSUMPTION
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Figure 3.12: Steady-state model error.

For high Dmax/Dbulk ratios, flow in the z direction mostly takes place through the
interphases. In the limit case, the interphases are instantly saturated along the whole
thickness of the specimen, with subsequent diffusion happening radially from the fibers
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into the surrounding resin in the x and y directions. In such case, the assumption of
steady-state flow in the z direction is invalid and a full microscale transient analysis be-
comes necessary to capture the physics of water uptake in slices that are thin in the z
direction.

In order to validate the steady state assumption, transient analyses were also per-
formed to simulate the uptake in the z direction. For these simulations, the micromodel
was extruded to match the actual thickness of the slice. The same fitting procedure as
for the experimental results was used to obtain an effective diffusivity parameter from
the transient analysis results.

Figure 3.12 shows the error (Dtrans−Dsteady)/Dtrans in the diffusivity obtained with the
steady-state micromodel with respect to the one obtained from the transient analysis.
For ratios of up to 500 between the interphase and bulk diffusivities, the steady-state
assumption led to errors smaller than 1%. Further increasing the ratio causes the error
to increase, with up to 20% difference observed for Dmax/Dbulk = 10000. Since such high
ratios are not realistic, the steady-state assumption is valid for obtaining the diffusivity
in all three directions.

3.4.5. NUMERICAL RESULTS AND DISCUSSION

The proposed RVE diffusion model was used in an attempt to reproduce the obtained
experimental results. A 5 x 5 fiber RVE size was adopted and the results were computed
as an average of 50 executions with different RVE geometries since scatter is still present
for such size. The characteristic element size was fixed at 0.5µm in the x-y plane, with
a single layer of elements in the z direction. The resultant diffusivities for all models are
shown in Table 3.1 and the resultant uptake curves can be seen in Figure 3.13.

Dbulk

(
Dmax
Dbulk

)
x,y

(
Dmax
Dbulk

)
z

tint Dx D y Dz

[µm2/s] [-] [-] [µm] [µm2/s] [µm2/s] [µm2/s]

Experimental - - - - 0.519 0.529 1.638

No interphase 0.741 - - - 0.397 0.389 0.741

Thick int. [3] 0.741 5.0 5.0 4.0 1.368 1.353 2.149

Thin int. [3] 0.741 5.0 5.0 1.0 0.832 0.826 1.187

Thick int. fit 0.741 1.5 1.5 4.0 0.538 0.529 0.928

Thin int. fit 0.741 2.1 2.1 1.0 0.537 0.529 0.863

Anisotropic fit 0.741 1.5 3.5 4.0 0.538 0.529 1.638

Table 3.1: Comparison between experiments and numerical simulations.

For the first model (no interphase), the level set field was not used and the diffusiv-
ity of every material point was equal to Dbulk. Therefore, only the effect of geometric
inhomogeneity was taken into account in this case. As expected, the homogenised dif-
fusivities in the x and y directions were lower than the neat resin one, due to the barrier
effect caused by the fibers. In the z direction, since no obstacles are present, the ob-
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tained diffusivity is equal to Dbulk. Compared with the experimental results, the values
provided by the model are approximately 27% lower for Dx and D y and 55% lower for Dz ,
suggesting the presence of additional mechanisms that accelerate the diffusion process.

For the next two models (thick int., thin int.), the level set field was used to allow
for higher diffusivity at the interphase regions and the ratio Dmax/Dbulk = 5 proposed by
Joliff et al. [3] was adopted. For these models, isotropic diffusivity was assumed at the
interphase. As expected, the inclusion of an interphase yields higher homogenised dif-
fusivity values. For both cases, however, the resultant values for Dx and D y were higher
than the experimental ones. The Dmax/Dbulk ratio proposed in [3] is therefore not valid
for the present material system.

Since the diffusivity ratio proposed by Joliff et al. [3] was not based on a direct mea-
surement, only the values for tint were kept for the next two models (thick int. fit, thin
int. fit) and Dmax was adjusted in order to fit the experimental value for D y . For a thick
interphase, the obtained ratio between Dmax and Dbulk was 1.5, while a ratio of 2.1 was
found for a thin interphase. Even though both models correctly capture the diffusion
mechanics in the x-y plane, the diffusivity along the fibers was still approximately 43%
lower than the one obtained from the experiments.

The results indicate that the combination of geometric inhomogeneity and linearly
increasing diffusivity at the interphase is not enough to explain the experimental value
for Dz . We see three different potential explanations for this effect. Firstly, polymer chain
orientation close to the fiber/matrix interface is unlikely to be isotropic [19, 21], which
could give rise to anisotropic water diffusivity. Secondly, water movement through cap-
illarity in micro cracks would be significantly faster than diffusion in bulk resin [22, 23].
These cracks are caused by fiber/matrix debonding and are therefore oriented parallel
to the fibers. It is reasonable to suppose that such cracks would accelerate diffusion
the most in the fiber direction. Thirdly, z direction slices are more delicate and there-
fore more susceptible to manufacturing damage. If the two first explanations are dom-
inant, they can be represented in a homogenised sense by assuming anisotropic diffu-
sion in the interphase, similar to the approach proposed in [23]. To demonstrate this,
a fit for all directions can be obtained by relaxing the assumption of isotropic diffusion
at the interphase (anisotropic fit). Keeping the hypothesis of a thick interphase, a ratio(
Dmax/Dbulk

)
z

of 3.5 was found to give an optimal fit for the uptake in the z direction.

It is important to note that since another fit parameter was added, no unique solution
exists for this case and a similar fit could be obtained with a thin interphase.

3.5. CONCLUSIONS
In this work, a combined numerical and experimental investigation of the anisotropic
water diffusion behavior of unidirectional glass/epoxy composites has been performed.
The experimental procedure consisted of manufacturing a thick unidirectional panel
from which material slices were cut in each of the orthotropy planes of the material and
immersed in water at 50◦C. The experimental diffusivities were obtained by fitting an
analytical Fick solution to the uptake results. Furthermore, a measure of the interphase
thickness in the vicinity of the fibers was performed through micro-thermal analysis. In
order to gain further insight in such anisotropic water movement, the diffusion process
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Figure 3.13: Numerical water uptake results.



REFERENCES

3

71

was modeled in a three-dimensional RVE from which homogenised diffusivity values
were obtained. A level set field was used to retrieve the distance of any resin point to the
nearest fiber and allow for faster diffusion in the interphase region.

From the experimental results, a similar uptake behavior was observed for diffusion
in directions transverse to the fibers due to a comparable fiber arrangement, with satu-
ration being attained after approximately 300 hours of immersion. On the other hand,
diffusion in the longitudinal direction was significantly faster and a saturated state was
reached after approximately 100 hours. Even though the diffusivities in the transverse
directions followed the expected trend of being lower than the neat resin one due to a
barrier effect caused by the fibers, the diffusivity along the fibers was found to be twice
as high as the neat resin one, a fact that cannot be explained by the barrier effect alone.
From thermal analysis, an interphase region of softer resin with a thickness of 4-5µm
was detected, suggesting that diffusion may happen at a faster rate close to the fibers.

For the numerical investigation, a parametric study was performed on the RVE size
and finite element mesh density. For comparison with the experimental diffusivities, a
characteristic element size of 0.5µm was chosen and the homogenised diffusivities were
obtained as the average result of 50 realisations with different fiber arrangements. Re-
sults showed that the geometric effect of fibers acting as barriers for the water movement
is indeed responsible for part of the observed anisotropy. However, it was not possible to
fit the experimental values by using only the bulk epoxy diffusivity. With the addition of
an interphase around the fibers, a fit could be obtained for diffusion in both transverse
directions, although the diffusivity ratios proposed in [3] were not valid for the present
material system. Nevertheless, the combination of the aforementioned barrier effect
and faster isotropic diffusion at the interphase was not sufficient to be able to fit exper-
imental results in all three directions with a single set of parameters. Such a fit could
only be found by making the interphase diffusivity orthotropic with a higher value in the
direction parallel to the fibers.
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4
A MULTISCALE/MULTIPHYSICS

FRAMEWORK FOR HYGROTHERMAL

AGING

One’s ideas must be as broad as nature
if they are to interpret nature.

Arthur Conan Doyle, A Study in Scarlet

4.1. INTRODUCTION
In this chapter, knowledge on aging mechanisms (Chapter 2) and moisture diffusion
(Chapter 3) will be used as the basis of a multiphysics and multiscale numerical frame-
work for modeling hygrothermal aging in composites. A diffusion model at the macroscale
is coupled with a computational (FE2) homogenization scheme in order to model swelling
and material degradation at both the micro- and macroscales. At the microscale, fail-
ure is modeled in a representative volume element (RVE) of the material by using an
elasto-plastic epoxy model with damage [2] combined with cohesive interfaces around
every fiber [3]. A model for concentration-dependent mechanical properties with a sin-
gle degradation factor is proposed. At every time step, the spatial scales are coupled
by passing the local strain and water concentration to micromodels embedded at ev-
ery material point, from which stress and tangent stiffness are in turn obtained. The
model formulations and the calibration of the epoxy model using experimental results
are shown in detail. A study on the required RVE size is performed and the framework
is demonstrated by modeling aging in a unidirectional short-beam shear test specimen
immersed in water.

Apart from minor changes to its introductory section, this chapter was integrally extracted from [1].
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Figure 4.1: Schematic representation of the multiphysics/multiscale model for hygrothermal aging

4.2. MODEL FORMULATION

4.2.1. MATHEMATICAL NOTATION
In this work, both index notation and matrix notation will be used to represent tensors
and vectors. When index notation is used, the indices i , j ,k, l range from one to the
number of spatial dimensions of the problem being solved. In products between two
entities in index notation, summation over repeated indices is implied. In matrix nota-
tion, vectors are represented by boldfaced lower-case symbols while matrices are given
by boldfaced upper-case symbols. When representing stresses and strains in matrix no-
tation, the use of Voigt notation is implied.

As the formulations presented here span multiple spatial scales, the superscripts M
and m will be used to represent macroscopic and microscopic entities, respectively. For
the sake of generality, all formulations will be presented considering three-dimensional
macro- and micromodels.

4.2.2. MACROSCALE PROBLEM
In order to simulate the aging process at the macroscopic scale, a coupled multiphysics
problem is solved involving water diffusion and mechanical stresses (Figure 4.1). At a
given point in time, the water concentration field cM is given by Fick’s second law of
diffusion:

ċM + ∂ j M
i

∂xM
i

= 0 (4.1)

where j M
i are the water flux components, given by:

j M
i =−DM

i j
∂c

∂xM
j

(4.2)

and DM
i j is a diffusivity tensor. The water movement is therefore modeled as a smooth

molecular motion driven by concentration gradients.
It is worth mentioning that the water uptake model of Eq. (4.1) is suitable for resin

systems featuring one-phase Fickian diffusion behavior, which is the case for the epoxy
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system used to calibrate the present formulations [4] and systems studied by multiple
other authors [5–8]. For systems that display a two-phase behavior, the model must
be expanded into a diffusion-reaction scheme, which entails the inclusion of a reaction
term into Eq. (4.1). Details of such procedure can be found in [9].

An increase in water concentration will cause the macroscopic specimen to swell. If
the specimen is constrained or if the concentration field is not constant at every point in
space, swelling stresses will be generated. Stress equilibrium is enforced by:

∂σM
j i

∂xM
j

+bi = 0 (4.3)

where bi are body forces. In stress analysis, it is also necessary to define the relationship
between the strain and displacement fields. Here, the small strain tensor is used:

εM
i j =

1

2

(∂uM
i

∂xM
j

+
∂uM

j

∂xM
i

)
(4.4)

For the rest of this section, matrix notation will be adopted and the superscript M will be
dropped to keep the notation compact. In order to solve the multiphysics problem with
the Finite Element Method (FEM), the macroscopic volumeΩ is discretised in elements
and both concentration and displacement fields are interpolated using the nodal values
c and u:

c = Nc c u = Nu u (4.5)

where Nc and Nu are shape functions for concentration and displacements, respectively.
Substituting the discretized fields of Eq. (4.5) into Eqs. (4.1) and (4.3) and solving

them in their weak form, the global moisture and stress equilibrium equations are ob-
tained:

Kc c+Cċ = fj Ku u = fext (4.6)

with ċ being the nodal values of the time derivative of the concentration, Kc , C and f j are
the diffusion matrix, the water capacity matrix and the external flux vector, respectively,
given by:

Kc =
∫
Ω

BT
c Dc Bc dΩ C =

∫
Ω

NT
c Nc dΩ f j =

∫
Γ j

NT
c jΓdΓ (4.7)

and Ku and fext are the stiffness matrix and the external force vector, respectively:

Ku =
∫
Ω

BT
u Du BudΩ fext =

∫
Ω

NT
u bdΩ+

∫
Γσ

NT
uσΓdΓ (4.8)

whereΓdenotes surfaces with prescribed water flux or stresses and integrals in the macro-
scopic domainΩ imply element-wise integration followed by an assembly procedure.

In Eqs. (4.7) and (4.8), B contains spatial derivatives of the shape functions and Dc is
the diffusivity tensor of Eq. (4.2). In this work, the diffusivity is considered independent
of the water concentration and is thus constant throughout the analysis. Finally, Du is



4

78 4. A MULTISCALE/MULTIPHYSICS FRAMEWORK FOR HYGROTHERMAL AGING

the tangent material stiffness matrix. In contrast with the diffusivity behavior, a consti-
tutive model for strains is not assumed a priori but is instead substituted by embedded
micromodels at every integration point. Each micromodel receives the strain from the
macromodel and returns the associated stress tensor and tangent stiffness. The down-
and upscaling procedures involved in this process are shown in Section 4.2.4.

As can be seen in Figure 4.1, a one-way coupling exists between the diffusion and
stress models. The diffusion analysis is not affected by the stress state of the material and
the interaction between the two problems shown in Eq. (4.6) does not need to be solved
iteratively. Instead, the diffusion model is solved first and the resultant concentration
field is passed to the stress model. This type of staggered operator-split strategy was also
adopted by other authors [10, 11].

4.2.3. MICROSCALE PROBLEM
The micromodel considered in this work consists in a Representative Volume Element
(RVE) of unidirectional fibers surrounded by resin, with interface elements around every
fiber, allowing for the modeling of fiber-matrix interface debonding. The difference in
length scales between macro- and micromodels is considered large enough for the prin-
ciple of separation of scales [12] to be applied. Thus, the macroscopic strains and water
concentration are considered uniform over the microscopic domain and only the stress
equilibrium problem is considered:

∂σm
j i

∂xm
j

= 0 εm
i j =

1

2

(∂um
i

∂xm
j

+
∂um

j

∂xm
i

)
(4.9)

where the body forces bi are neglected. The reasoning behind considering that the wa-
ter concentration is constant over the entire micro domain is presented in Section 4.2.4.
Solving the problem using FEM involves solving a system of equations similar to the sec-
ond expression of Eq. (4.6) but now the integrations are performed over the microscopic
volumeω. Additionally, since the micromodel includes interface elements around every
fiber, the displacement jumps along them are also interpolated and their contribution to
the global stiffness matrix is obtained via:

�u� = N�u�u ⇒ K�u� =
∫
γi

NT
�u�TN�u�dγi (4.10)

where N�u� is the shape function matrix for displacement jumps, γi are the interface sur-
faces and T is the tangent constitutive matrix for the interface elements.

At the microscale, the constitutive model of each material component is assumed a
priori and is used to compute the stresses σ =σ(ε), the tractions t = t(�u�) and provide
the tangent constitutive matrices:

Du = ∂σ

∂ε
T = ∂t

∂�u� (4.11)

Since water affects each material component (fiber, matrix, interface) differently,
suitable constitutive models have to be chosen in order to capture the essential degra-
dation and failure processes that can occur during aging. The fibers are modeled as
linear-elastic and their failure is not considered. In the subsequent sections, the models
for the epoxy and fiber-matrix interface behaviors are presented in detail.
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EPOXY MODEL

The epoxy resin is modeled as elasto-plastic with damage, using the model formulated
by Melro et al. [2] and incorporating improvements proposed by Van der Meer [13]. The
model is composed of a linear-elastic portion followed by plastic hardening and transi-
tioning to damage with exponential softening after the fracture strength is reached.

The model starts as elasto-plastic, with a stress-strain relationship given by:

σi j = De
i j kl

(
εkl −εp

kl

)
(4.12)

where only the elastic part of the strains is considered and the elastic stiffness Di j kl can
be written as:

Di j kl =G(δi jδkl +δi lδ j k )+
(
K − 2

3
G

)
δi jδkl (4.13)

with K being the bulk modulus for the resin and G its shear modulus. Plastic strains
develop when the yield surface is reached. A paraboloidal surface is considered:

φp(σ,σc,σt) = 6J2 +2I1(σc −σt)−2σcσt ≤ 0 (4.14)

where σc and σt are the compression and tension yield stresses, respectively, J2 is the
second invariant of the deviatoric stress tensor and I1 is the first stress invariant. This
yield surface consists of the classic von Mises surface augmented with the pressure-
dependent term 2I1(σc −σt).

The evolution of the yield surface due to hardening is dictated by the evolution of
σc and σt with the equivalent plastic strain ε

p
eq. At each time step, the variation of the

equivalent plastic strain is given by:

∆ε
p
eq =

√
k∆εp

i j∆ε
p
i j ⇒ σc =σc(εp

eq), σt =σt(ε
p
eq) (4.15)

and the variation of the plastic strains is computed through a non-associative flow rule
given by:

∆ε
p
i j =∆γ

(
3Si j + 2

9
αI1δi j

)
(4.16)

where Si j is the deviatoric stress tensor and α depends on the plastic Poisson ratio νp:

α= 9

2

1−2νp

1+νp
(4.17)

In order to determine the plastic multiplier increment ∆γ, an iterative elastic predic-
tor/return mapping algorithm is used until the computed stress state stops violating the
yield surface (i.e. until φp = 0). Details on the return mapping algorithm and on com-
puting the consistent tangent matrix are left out of the present discussion for the sake of
compactness and can be found in [13].

When the material fracture strength is reached, the model switches to a continuum
damage formulation with secant unloading. After such point, the stress-strain relation-
ship is given by:

εe
i j = εi j −εp

i j =
1+ν

E(1−dm)
σi j − νdm

E(1−dm)
σi jδi j − ν

E
σkkδi j (4.18)
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where the plastic strain is still subtracted from the total strain but stops evolving after
damage starts developing. A single damage variable dm is adopted and its evolution is
dictated by the fracture surface defined as:

φd(σ̃,r ) = 6 J̃2 +2Ĩ1(Xc −Xt)−2r XcXt ≤ 0 (4.19)

which is similar to Eq. (4.14) but with yield stresses substituted by the fracture strengths
(Xc, Xt) and the invariants are now computed with the effective stresses, calculated using
the undamaged stiffness tensor of Eq. (4.13).

In order to ensure that the stress state does not violate the fracture surface, the inter-
nal variable r at time step tn is:

r tn = max
{

1, max
0≤t≤tn

{ 3 J̃ t
2

XcXt
+ Ĩ t

1(Xc −Xt)

XcXt

}}
(4.20)

and is related to the damage parameter dm by:

dm = 1− e A
(

3−
p

7+2r 2
)

p
7+2r 2 −2

(4.21)

where the parameter A is computed through the classic Crack Band model by regularis-
ing the dissipated energy with respect to the fracture toughness Gc and the characteristic
length of the finite element le:

f (A) =
∫ ∞

1

∂U

∂dm

∂dm

∂r
dr = Gc

le
(4.22)

with le computed as:

l 2D
e = 6

π
4p3

p
γe l 3D

e = 3
p
ωe (4.23)

andγe andωe are the element area and volume, respectively. The consistent tangent ma-
trix is obtained through linearisation of the secant stress-strain expression of Eq. (4.18).
Further details on the linearisation process can be found in [2].

COHESIVE INTERFACE MODEL

The occurrence of fiber-matrix interface debonding is simulated by incorporating a co-
hesive zone damage model to interface elements generated around every fiber of the
RVE. The chosen model is a mixed-mode damage law developed by Turon et al. [3], with
later improvements proposed by Van der Meer and Sluys [14]. In the local frame of the
interface element, the traction-separation law can be written as:

t = [I−diP]Kd�u� (4.24)

where Kd is an initial stiffness, di is the damage variable associated with the model and
the matrix P prevents the development of cohesive tractions in compression by applying
the operator 〈x〉 = (x +|x|)/2:

P =
 〈�u�n〉

�u�n
0 0

0 1 0
0 0 1

 (4.25)
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where �u�n is the displacement jump in the direction normal to the interface surfaces.
The damage variable di is given by:

d tn
i = max

0≤t≤tn


0, �u�eq ≤ �u�0

eq
�u�f

eq(�u�eq−�u�0
eq)

�u�eq(�u�f
eq−�u�0

eq)
, �u�0

eq < �u�eq < �u�f
eq

1, �u�eq ≥ �u�f
eq

(4.26)

where the equivalent displacement jump (�u�eq), the displacement jump at the onset of
damage (�u�0

eq) and the jump after damage has completely developed (�u�f
eq) are given

by:

�u�eq =
√

〈�u�n〉2 +�u�2
sh �u�2

sh = �u�2
s +�u�2

t (4.27)

�u�0
eq =

√
(�u�0

n)2 +χη
[

(�u�0
s )2 − (�u�0

n)2
]

(4.28)

�u�f
eq =

�u�0
n�u�f

n +χη
[
�u�0

s �u�f
s −�u�0

n�u�f
n

]
�u�0

eq
(4.29)

where η is the Benzeggagh-Kenane mode interaction parameter [15] and χ is the ratio
between the shear energy dissipation and the total dissipation:

χ= �u�2
sh

�u�2
sh +〈�u�n〉2

(4.30)

Finally, the single-mode displacement jumps at damage onset depend on the fracture
strength of the interface while the final interface openings depend on its fracture tough-
ness:

�u�0
n = Xn

Kd
�u�0

s =
Xs

Kd
�u�f

n = 2G I c

Xn
�u�f

s =
2G I I c

Xs
(4.31)

The formulation is completed with the definition of the material tangent stiffness
matrix T of Eq. (4.11) through consistent linearisation of the traction-separation law of
Eq. (4.24). Details of the linearisation procedure can be found in [14].

LOADS AND BOUNDARY CONDITIONS

In the present model, periodic boundary conditions are adopted in the micromodel in
order to represent the behavior of a macroscopic bulk material point. Figure 4.2 shows a
schematic representation of the node groups involved in enforcing the boundary condi-
tions. The origin of the RVE coordinate system is fixed at node 0 and its displacement is
fixed:

u0 = 0 (4.32)

The corner nodes with displacements given by uc
j , where j ranges from 1 to the number

of spatial dimensions of the RVE, will be prescribed based on the macroscopic strain
values at the point according to the scale transitions discussed in Section 4.2.4. Finally,
the displacements of nodes on opposing boundary surfaces are related by:

uγ
+
j = uγ

−
j +uc

j (4.33)
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Figure 4.2: Periodic RVE with controlling nodes and boundary surfaces.

where the constraints are handled using the master-slave method, which means that the
degrees of freedom of the slave nodes will be condensed out of the microscopic global
stiffness matrix.

Resin elements are allowed to swell based on the current water concentration of the
micromodel. The swelling is applied as a strain contribution at each material point:

εtotal
i j = εi j − cαswδi j (4.34)

where αsw is the swelling coefficient of the resin. Since the fibers do not take water and
are therefore not allowed to swell, differential swelling stresses will be generated. If the
RVE is free to swell, the volume average of such stresses will be zero. However, the pres-
ence of prescribed macroscopic strains on the RVE implies that the micromodel cannot
swell freely, and the resultant modified stress field may bring changes to its failure be-
havior.

CONCENTRATION-DEPENDENT PROPERTIES

Experimental evidence shows a significant drop in mechanical properties of the resin
and interface after water uptake [16, 17]. In order to realistically predict the effects of the
aging process, such degradation caused by plasticization and interfacial bond weaken-
ing must be incorporated in the micromodel. Here, resin and interface properties are
linearly dependent on the water concentration of the micromodel using a single degra-
dation factor:

dw = d∞
w

c∞
c (4.35)

where c∞ and d∞
w are respectively the water concentration and associated material degra-

dation at saturation, obtained experimentally.
With the definition of the degradation factor, the resin properties are modified as:

E w = (1−dw)E , σw
c = (1−dw)σc, σw

t = (1−dw)σt (4.36)

X w
c = (1−dw)Xc, X w

t = (1−dw)Xt, Gw
c = (1−dw)2Gc (4.37)

and the interface properties as:

X w
n = (1−dw)Xn , X w

s = (1−dw)Xs , Gw
I c = (1−dw)2G I c , Gw

I I c = (1−dw)2G I I c (4.38)
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It is important to note that applying the degradation factor to the yield stressesσc andσt

implies a degradation of the hardening curve for every value of equivalent plastic strain.
For fracture toughness, the squared degradation factor was adopted for the sake of nu-
merical stability and implies reductions in both the strength and the strain (or displace-
ment jump) level at which the softening is completely developed.

4.2.4. SCALE TRANSITIONS
With the formulations of the models in both macro- and microscales, it is necessary to
define the interaction between scales. Following the scheme presented in Figure 4.1,
such interactions comprise a macro-to-micro downscaling procedure, where strain and
water concentration are passed to the micromodels, and a micro-to-macro upscaling
procedure, with the recovery of the macroscopic stress and tangent stiffness.

Starting with the downscaling procedure, the displacement field of the micromodel
can be decomposed in a linear displacement field related to the macroscopic strain and
a fluctuation field ũ caused by microscopic inhomogeneities:

um
i = εM

i j xm
j + ũm

i (4.39)

It is important to note that such linear dependency on the macroscopic strain is only al-
lowed because the principle of separation of scales mentioned in Section 4.2.3 is consid-
ered valid. For water concentration, since it is directly linked to strains through swelling
(Equation 4.34), bringing concentration gradients to the microscale would make it nec-
essary to also bring strain gradients. This approach is not followed here and the concen-
tration is therefore considered constant over the entire microscopic domain, a hypothe-
sis also adopted by Terada and Kurumatani [11]:

cm = cM(xM) (4.40)

When making the transition to the microscale, the volume average of the micro-
scopic strain must be equal to the macroscopic strain at a particular material point:

εM
i j (xM) = 1

|ω|
∫
ω
εm

i j (xm)dω= 1

|ω|
∫
γ

(um
i n j +um

j ni )dγ (4.41)

where the volume integral was substituted by one in the RVE surface γ using the Gauss
theorem and n is the vector normal to γ. Substituting Eq. (4.39), we obtain:

1

|ω|
∫
γ

(ũm
i n j + ũm

j ni )dγ= 0 ⇒ εM
i j =

1

|ω|
∫
ω
εm

i j dω (4.42)

which dictates that the strain averaging is only satisfied if the fluctuation displacement
field cancels at the RVE boundary.

After solving the microscopic boundary value problem, the macroscopic stress ten-
sor must be recovered from the micro solution. For this part of the upscaling procedure,
the Hill-Mandel principle is applied:

σM
i j ε̇

M
i j =

1

|ω|
∫
ω
σm

i j ε̇
m
i j dω= 1

|ω|
∫
γ

t m
i u̇m

i dγ (4.43)
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The principle postulates that the macroscopic stress power must be equal to the volume
average of the microscopic one. The volume integral can be substituted by a boundary
integral of the product between the traction and the variation of the displacement field.
Substituting Eq. (4.39), we obtain a result similar to the one in Eq. (4.42):

1

|ω|
∫
γ

t m
i

˙̃um
i dγ= 0 ⇒ σM

i j =
1

|ω|
∫
ω
σm

i j dω (4.44)

which means that the microscopic fluctuation field must have zero resultant work at the
boundaries.

Considering the periodic boundary conditions shown in the previous section and
imposing the additional requirement that the geometry of the RVE must be symmetric,
it can be shown that:

ũm+
i = ũm−

i n+
i =−n−

i t m+
i =−t m−

i (4.45)

from which the following equalities arise:∫
γ−

(ũm−
i n−

j + ũm−
j n−

i )dγ=−
∫
γ+

(ũm+
i n+

j + ũm+
j n+

i )dγ (4.46)

∫
γ−

˙̃um−
i t m−

i dγ=−
∫
γ+

˙̃um+
i t m+

i dγ (4.47)

Substituting Eqs. (4.46) and (4.47) into Eqs. (4.42) and (4.41), it can be seen that both
requirements for the fluctuation field are satisfied.

Finally, the scale transitions can be formulated in Voigt notation for ease of imple-
mentation. For a given macroscopic strain tensor εM, the displacements uc

j of the con-

trolling nodes shown in Figure 4.2 are computed as:

uc
j = HT

j ε
M, H j = 1

2



2x 0 0
0 2y 0
0 0 2z
y x 0
0 z y
z 0 x


j

,εM =



εM
xx
εM

y y

εM
zz

2εM
x y

2εM
y z

2εM
xz

 (4.48)

where the matrix H is filled with the coordinates of each controlling node. After solving
the microscopic equilibrium equations and obtaining the internal forces at the control-
ling nodes, the macroscopic stresses are recovered:

σM = 1

|ω|
[
H1 H2 H3

]fm
1

fm
2

fm
3

= 1

|ω|Hfm
c (4.49)

The final step in the upscaling procedure is to compute the tangent macroscopic
stiffness matrix δσM = DM

u δε
M from Eq. (4.8). Here, the procedure follows the formu-

lation presented by Nguyen et al. [18] but is rewritten for the case of homogenization
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towards a bulk macroscopic point. The procedure starts by partitioning the global stiff-
ness matrix of the micromodel as follows:[

Km
ii Km

id
Km

di Km
dd

][
δum

i
δum

d

]
=

[
rm

i
rm

d

]
(4.50)

with d representing the dependent nodes from the slave surfaces (Figure 4.2) and i the
remaining ones, including the controlling corner nodes. Representing the constraints by
a coefficient matrix C, the displacement vector is given by:[

δum
i

δum
d

]
=

[
I
C

]
δum

i = Tδum
i (4.51)

Pre-multiplying both sides of Eq. (4.50) by TT and substituting the displacement vec-
tor by the one in Eq. (4.51), the dependent displacements are condensed out and a re-
duced system is obtained:[

K
m

0
0 I

][
δum

i
δum

d

]
=

[
rm

δum
d

]
, K

m = TTKmT, rm = TTrm (4.52)

The system is further partitioned by separating the controlling nodes (c) from the rest
(a): [

K
m
aa K

m
ac

K
m
ca K

m
cc

][
δum

a
δum

c

]
=

[
0
δfm

c

]
(4.53)

where the variation of the external force on the controlling nodes used in the stress up-
scaling of Eq. (4.49) now appears in the right-hand side. From this reduced system, the
macroscopic tangent stiffness matrix can be evaluated in a columnwise manner by using
a probing technique:

DM
u = [

DM
1 DM

2 · · ·DM
n

]
, DM

j = 1

|ω|H(ξ−λ) (4.54)

where each column j = 1, ...,n gives the stiffness contribution of one of the n strain com-
ponents. The matrix H is given in Eq. (4.48) and the vectors ξ and λ are given by a se-
quence of matrix-vector multiplications:

ξ= K
m
ccβ, β= He j , λ= K

m
caκ, (4.55)

with e j being the j -th row of an identity matrix of size n andλ is obtained by solving the
linear system: [

K
m
aa K

m
ac

K
m
ca K

m
cc

][
κ

0

]
=

[
K

m
acβ

0

]
(4.56)

which completes the definition of the macroscopic tangent stiffness without the need to
invert the microscopic global stiffness matrix.
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4.2.5. SOLUTION METHODS

Using the multiphysics/multiscale numerical framework presented in the previous sec-
tions requires robust and efficient solution methods. For the diffusion analysis, a time
stepping procedure is necessary, while a non-linear path-following method has to be
used in the FE2 stress analysis.

To solve the transient diffusion problem, the linear 3-step method developed by Park
[19] is used. The water concentration field at time t is computed as [20]:

ct = hβċt +ht (4.57)

where hβ is the scaled time step and h is a history vector that depends on the concentra-
tion fields of the three previous steps.

For the stress analysis, a Newton-Raphson solver is applied. During the aging pro-
cess, the non-linear equilibrium problem is solved for each time step and a path-following
algorithm is not needed. For every macroscopic iteration, the microscopic equilibrium
problem has to be solved at every material point. Since the points are independent from
one another, they are solved in parallel in a shared-memory environment. For mate-
rial points close to the surfaces exposed to water, saturation happens in one time step,
which can make convergence difficult. In order to mitigate this issue, the substepping
algorithm proposed by Sommer et al. [21] is applied. Here, the method is modified by
splitting not only the macroscopic strains but also the water concentration in two con-
secutive substeps. If no convergence is obtained for any of the substeps, the process is
repeated recursively.

At the end of the aging process, it is interesting to assess the strength degradation
caused by water immersion by loading each material point to failure and obtaining their
failure envelopes. For this type of analysis, the dissipation-based arclength method de-
veloped by Gutiérrez is used [22]. The method constrains the dissipated energy during
one time step by imposing the constraint:

1

2

(
λ0∆uTq−∆λuT

0 q+∆uTf∗0
)
=∆U (4.58)

where λ is the load factor, q is the unit load vector and the subscript 0 indicates values
from the last converged time step. The term ∆uTf∗0 was proposed by Van der Meer et
al. [23] and accounts for the presence of permanent plastic deformations and swelling
strains. The dissipated energy∆U is adjusted during the analysis by an efficient adaptive
stepping algorithm [24].

Since a continuum damage model regularised using the Crack Band method is used
for the epoxy at the microscale, additional convergence problems arise as the Newton-
Raphson solver struggles to identify which band of elements is damaging and gets trapped
in an oscillatory response. To restore convergence in such cases, the modified Newton-
Raphson scheme proposed by Van der Meer [24] is used, in which the oscillating points
are identified and their secant stiffness is used instead of the consistent tangent one.
After the residual decreases for a certain number of consecutive steps, the algorithm
switches back to using the consistent tangent.
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Figure 4.3: Input hardening data for the epoxy model.
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Figure 4.4: Experimental validation of the epoxy model.

4.3. RESULTS
The presented numerical framework is used to model the hygrothermal aging behav-
ior of unidirectional composite laminates. In the examples presented in this section, a
glass/epoxy material system used in wind turbine design (EPIKOTE RIMR135/1366 resin
and PPG Hybon 2002 glass fiber rovings) is considered. The material properties for each
of the constituents (fiber, matrix and interface) are shown in Table 5.1.

For the resin, most properties were obtained experimentally on neat resin specimens
tested in tension and compression. The resultant stress-strain curves were also used to
extract the plastic hardening curves, shown in Figure 4.3. Properties for the glass fiber
and fiber/matrix interface were obtained from literature. The maximum uptake c∞ and
diffusivity (D) for the unidirectional composite material were obtained through an im-
mersion experiment in water at 50◦C, with weight measurements performed periodically
[25]. Finally, the maximum property degradation at saturation (d∞

w ) was obtained from
mechanical tests on saturated tension specimens.

The proposed model for concentration dependency of Section 4.2.3 was validated
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using experimental results on saturated epoxy. Figure 4.4 shows results of 1-element
models, where the purple and red curves were obtained using the hardening curves ex-
tracted from compression and tension tests on dry resin specimens, respectively. For
these two cases, a good agreement between experiments and models is expected since
the original curves were used to calibrate the model. The blue curve was obtained by de-
grading the dry model using dw = 0.2. The good agreement with the experimental curve
of a saturated specimen shows that using a single degradation factor for stiffness, yield
stress and strength is effective for describing the degradation in the material response,
although no conclusion can be drawn about the adopted fracture toughness degradation
due to the sudden failure behavior of the specimens.

4.3.1. RVE STUDY

In applying the proposed formulation, it is important to choose a suitable RVE size. In or-
der to be representative, the RVE should be large enough to ensure that the micromodel
response does not change considerably if the size is further increased. In this work, two-
dimensional micromodels with random fiber distributions are used. Simplification of
the presented three-dimensional formulations of Section 5.2 for a 2D analysis is trivial
and will not be presented.

The models were generated using the discrete element package HADES, starting with
a regular grid of circles representing the fibers, bounded by a periodic box. A pseudo-
random velocity vector is assigned to each circle and a contact model is executed, let-
ting the circles get rearranged as they collide, while the bounding box shrinks over time.
The process is stopped when the desired fiber volume fraction is reached. The resul-
tant geometry is then meshed with triangular finite elements using Gmsh [26]. Based
on loss-on-ignition measurements and microscopic observations on the adopted mate-
rial system, the fiber diameter was randomly generated between 13µm and 16µm and a
target volume fraction of 0.6 was adopted. Interface elements are generated at runtime
around every fiber.

Figure 4.5a shows homogenised stiffness values for micromodels with a number of
fibers ranging from 4 (2 x 2) to 49 (7 x 7), including a unit cell with one fiber and sur-
rounding matrix. Values for both dry and saturated micromodels are shown and each
point shows the average and standard deviation obtained using 30 different micromod-
els (with the exception of unit cell values).

As the size of the RVE is increased, average stiffness values for both dry and wet mod-
els tend to decrease. The standard deviation also decreases, although significant scatter
is still observed even for the largest RVE size considered, which is partly due to fluctua-
tions in the obtained fiber volume fraction after the discrete element contact analysis.

It is interesting to note that the difference between wet and dry stiffness values in-
creases as the RVE grows in size, with a 17% reduction obtained for the unit cell model
and a 23% one for 7 x 7 models, on average. The difference in the rate of stiffness reduc-
tion with RVE size is caused by failure events driven by the combination of swelling and
degradation of the resin and interface properties. These failure events are not fully cap-
tured in smaller micromodels, making the convergence to a stable stiffness value slower
when compared to dry micromodels.

The micromodels were also loaded in transverse tension (σ22), with changes in strength
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Figure 4.5: Changes in computed transverse tension stiffness and strength with RVE size.

as the RVE size increases shown in Figure 4.5b. A behavior similar to the one obtained
for stiffness is observed, with a decrease in strength as the RVE size increases, although
the convergence rate is now similar for both dry and wet micromodels. In general, a
representive initial stiffness can be achieved with a relatively small RVE size, while cor-
rectly representing its failure behavior both in terms of distributed and localised damage
requires larger RVE sizes. Nevertheless, since significant scatter is still present for both
stiffness and strength even for the largest RVE size considered in the present study, it
cannot be claimed that a truly representative micromodel was found.

It is also interesting to investigate changes in failure behavior after aging for stress
states other than uniaxial transverse tension. Figure 4.6 shows biaxial failure envelopes
in both dry and wet conditions of a 7 x 7 RVE. Each point in the envelope was obtained
by applying a horizontal load of λcosθ to controlling node 1 and a vertical load of λsinθ
to controlling node 2 (see Figure 4.2), with θ ranging from 0◦ to 345◦ in steps of 15◦. The
load scale factor λ is resolved in every time step using the arc length method. For each

direction, the strength was identified as the point that maximises
√
σ2

22 +σ2
33.

Comparing the obtained envelopes, it is interesting to note the differences in the
wet material behavior in tension and compression. For tension, a strength reduction of
approximately 27% was obtained after aging. In compression, however, the strength re-
duction falls to 15% due to the effect of differential swelling. This effect is particularly
relevant for the case of biaxial compression (θ = 225◦), for which the wet strength is ac-
tually higher than the dry one, in spite of the weakening effect caused by plasticization
and interface weakening. The resultant change in envelope shape after aging can there-
fore be interpreted as the combination of shrinkage caused by water degradation and a
shift caused by differential swelling.

It can therefore be concluded that in order to realistically model the hygrothermal
aging phenomenon in composites, it is important to take into account the contributions
of both differential swelling and physical/chemical degradation. In isolation, neither
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Epoxy Interface Fibre Diffusion

E [MPa]a 3130 Kd [MPa]b 5 ·107 E [MPa] [27] 73000 c∞ [%]a 3.4

ν [-]a 0.37 Xn [MPa] [28] 60.0 ν [-] [27] 0.22 D [µm2/s]a 0.500

νp [-]a 0.32 Xs [MPa] [28] 60.0

Xt [MPa]a 70.7 G I c [N/mm] [28] 0.87

Xc [MPa]a 88.5 G I I c [N/mm] [28] 1.72

Gc [N/mm] [2] 0.09 η [-]b 1.0

αsw [%−1]a 0.002 d∞
w [-]b 0.2

d∞
w [-]a 0.2

aValues experimentally obtained by the authors.
bAssumed values.

Table 4.1: Material Properties used in the examples.
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Figure 4.6: Biaxial failure envelopes for a 7 x 7 RVE, both dry and saturated.

mechanism is enough to represent the complex changes in failure behavior after aging.

4.3.2. AGING EXAMPLE
The numerical framework presented in this work is demonstrated by simulating the
hygrothermal aging process in a unidirectional glass/epoxy composite specimen im-
mersed in water at 50◦C. The specimen dimensions and fiber direction are shown in
Figure 4.7a, consisting in a short-beam typically used to evaluate the interlaminar shear
strength of unidirectional composites in a three-point bending setup. Here, the virtual
specimen is not mechanically loaded, and only the material degradation caused by the
hygrothermal conditioning is simulated.

Figure 4.7b shows an idealised model of the aging problem, where only the trans-
verse plane of the specimen is modeled in plane strain and symmetry along the x and
y axes is exploited in order to reduce the computational effort. With this modeling ap-
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Figure 4.8: Evolution of macroscopic displacements and stresses during aging.

proach, it is assumed that diffusion and swelling do not occur along the z-axis. The
latter assumption is reasonable since the specimen is significantly stiffer in the fiber di-
rection, while the former leads to an underestimation of the water concentration field
at any given time step, which is an acceptable drawback in exchange for computational
efficiency. The specimen is initially dry and the immersion environment is simulated by
prescribing the water concentration of pure resin at saturation to the top and left edges,
while the bottom and right edges are mechanically constrained. A 5 x 5 RVE with strength
response close to the average shown in Figure 4.5b was chosen to represent the material
microscopic response.

The transient FE2 problem is solved from t = 0 h to t = 750 h, when saturation oc-
curs, with a time step h = 15 h. Figure 4.8 shows concentration and stress fields of the
macromodel at three different time steps. The full field solution can be recovered from
the symmetric model through mirroring along the x and y axes.

As expected, water concentration gradients along the specimen create transient ten-
sion, compression and shear stresses. These stresses attain peak values of 5 MPa in
shear, 9 MPa in tension and 17 MPa in compression. The stress fields are consistent
with the ones experimentally observed by Pitarresi et al. [8]. As diffusion progresses
and the concentration gradients decrease, start to subside, vanishing upon saturation,
as expected.

The effect of transient swelling in the microscopic material state can be visualised by
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Point location t = 45h t = 225h t = 750h

Figure 4.9: Evolution of microscopic displacements and transverse stresses for three different integration
points.

tracking microscopic deformations throughout the aging process. Figure 4.9 shows dis-
placements and transverse stress fields (σ22) of three distinct material points at three dif-
ferent time steps. Since the points are located close to the specimen surface, near-instant
saturation is expected. However, the micromodels are constrained by the macroscopic
compatibility requirement: Points 1 and 3 are constrained by neighboring dry points
and can therefore only swell in one direction, while point 2 undergoes a combination of
shear and swelling. At longer immersion times (750 h), the macroscopic stresses vanish
and the points attain a similar deformed shape. However, because of the distinct strain
history, equally saturated points can have different residual stress fields due to differ-
ences in local material state, as shown in Figure 4.10.

Besides tracking the material state during the aging process in terms of stiffness
degradation and distributed failure phenomena, it is also interesting to assess the strength
degradation caused by exposure to water by mechanically loading the macroscopic spec-
imen to failure. However, such analysis involves a number of incompatibilities with the
presented numerical framework. Firstly, as the micromodel starts to exhibit global soft-
ening due to strain localisation, it can be proven that an RVE ceases to exist and the ma-
terial response becomes more brittle as the micromodel size is increased [29]. Secondly,
the periodic boundary conditions applied to the micromodels may impose additional
constraints in the formation of a strain localisation band, depending on the direction of
the external loading.

In this work, a simplified approach is taken in order to circumvent such incompati-
bilities. After the aging analysis is completed (i.e. after the macromodel saturates), the
displacement fields and material history of the micromodels are saved and used as the
starting point of new analyses where mechanical loads are applied to the controlling
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Figure 4.11: Spatial distribution of transverse tension strength in the macro specimen after aging.

nodes and the models are loaded until failure. Since an arc length method is used in-
stead of resorting to displacement control, biaxial stress states can be simulated while
keeping stress ratios constant. Stress values are then computed by averaging the nodal
forces along the edges of the RVE. Since only the maximum stress is of interest, incom-
patibilities of the strain localisation band direction with the applied periodic boundary
conditions have limited influence.

Such analysis approach can be used to obtain the spatial strength distribution of the
macroscopic specimen after aging, as can be seen in Figure 4.11 for uniaxial transverse
tension σ22. During aging, the additional constraints imposed by transient swelling
stresses and the consequent differences in development of distributed resin and inter-
face failures create a non-uniform strength distribution. Although the difference in stren-
gth between the weakest and strongest points is small (approximately 200 kPa), the tran-
sient swelling effectively creates weak spots where damage is likely to initiate and prop-
agate from. Such effect can only be captured by combining macroscopic diffusion with
a fully-coupled multiscale mechanical analysis.

4.4. CONCLUSIONS
This work presented a coupled multiscale/multiphysics numerical analysis framework
suitable for modeling of hygrothermal aging in laminated composites. The proposed
model consists of a macroscopic transient diffusion analysis coupled with a multiscale
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(FE2) mechanical model in order to account for microscopic degradation mechanisms
and failure events.

At the macroscale, diffusion is considered isotropic with constant diffusivity, while
no mechanical constitutive model is explicitly defined. The mechanical response is in-
stead obtained through homogenization of the microscopic material response. At the
microscale, diffusion is modeled as steady-state with constant water concentration. An
elasto-plastic epoxy model with damage is combined with cohesive zones at the fiber/ma-
trix interfaces in order to model failure caused by swelling, plasticization and interface
weakening after water ingression. Detailed formulations for every constituent of the
framework were presented.

While properties for the interfaces were obtained from literature, the calibration of
the epoxy model has been performed based on experimental investigations in both dry
and saturated pure resin specimens. It was shown that the water degradation model with
a single degradation factor was capable of correctly predicting the experimental stress-
strain material response after aging.

An RVE size study was conducted, ranging from a unit cell model with a single fiber to
7 x 7 fibers micromodels with random fiber distribution. While the mean dry stiffness re-
sponse stabilised with relatively small RVE sizes, the saturated stiffness and both dry and
wet transverse strengths required larger sizes. Nevertheless, an RVE with representative
behavior could not be obtained in the investigated size range, since significant scatter
was still present for both stiffness and strength. Biaxial transverse failure envelopes of
both dry and saturated micromodels were also compared. After aging, the failure enve-
lope tends to shrink due to plasticization and interface weakening as well as shift towards
the compression bisector due to differential swelling.

The capabilities of the model were demonstrated through the simulation of the hy-
grothermal aging process of a unidirectional composite short-beam immersed in water
at 50◦C. Transient swelling stresses due to water concentration gradients were correctly
predicted. Through the FE2 scale coupling, the macroscopic compatibility requirement
acted as constraints to the micromodels and influenced their final homogenised stiff-
ness and strength. Although such transient effects were found to bring limited impact to
the final material stiffness and strength, they effectively create weak spots where damage
can initiate and propagate from.
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5
A VISCOELASTIC, VISCOPLASTIC,

DAMAGE MODEL FOR EPOXY

I prepared myself for a multitude of reverses; my operations
might be incessantly baffled, and at last my work be imperfect,

yet when I considered the improvement which every day takes place
in science and mechanics, I was encouraged to hope my present

attempts would at least lay the foundations of future success.

Mary Shelley, Frankenstein

5.1. INTRODUCTION
In Chapter 4, an elastoplastic model with damage was used to represent the microscopic
mechanical behavior of the epoxy resin considered in this thesis. Such an inviscid model,
although suitable for a number of loading scenarios, is not capable of taking into account
the strain rate-dependent response of the resin. This is of particular importance given
the fact that hygrothermal aging is, for most practical applications, a significantly slower
process than the mechanical loads applied, for instance, during the mechanical test of a
pre-conditioned specimen. A correct representation of the epoxy resin behavior across
time scales is therefore an important extension to the framework, and the subject of the
present chapter.

Accurate constitutive modeling of epoxies and other polymers is complicated by the
fact that their mechanical behavior is time- and temperature-dependent. Such viscous
effects give rise to phenomena such as strain rate dependency [2], ratcheting [3] and
stress relaxation [4]. Additionally, polymers are known to develop permanent strains

This chapter is based on [1]. Text from the appendices has been moved back into the main text and the intro-
ductory section has been shortened.
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through pressure-dependent plastic yielding [5] and, in the particular case of crosslinked
thermosets, undergo rate-dependent brittle failure at relatively low strain levels [6, 7]. Fi-
nally, all of these material features are sensitive to physical and chemical effects caused
by water absorption [8, 9], physical aging [10], oxidation [11], among others. Therefore,
despite the already large amount of literature on the subject, experimental and numeri-
cal efforts on polymer characterization often ignore such complex material aspects.

A number of authors opt for elastoplastic constitutive models with pressure-depen-
dent yielding [12, 13] calibrated using experiments with fixed strain rate and tempera-
ture and therefore ignoring the aforementioned viscous material features. The use of
such models to describe material failure in fatigue or during aging may therefore be un-
realistic. Phenomenological corrections have been proposed in order to introduce such
dependencies by scaling a reference yield surface depending on rate and temperature
[14]. However, this approach becomes unsuitable in loading situations with continu-
ously changing strain rate or in non-isothermal conditions.

A second class of models attempts to introduce a time scale to the plastic flow rate
while keeping the original inviscid yield surface [7, 9, 15–17]. This approach is interest-
ing for finite element implementation since it can build upon previously implemented
inviscid models. However, the temperature dependence is still not captured.

A third option in which temperature dependency is also addressed involves using
Eyring-type rate equations [18], which consider yielding as a thermomechanically acti-
vated process [2, 19–21]. This is usually combined with a hyperelastic model in order to
capture orientation hardening at high strains [2].

Finally, a number of physically-based macromolecular constitutive models have been
devised which take into account changes in polymer chain orientation after yielding
[6, 22–30]. In these approaches, both strain and temperature dependencies as well as
orientation hardening are captured and arise as a consequence of underlying macro-
molecular mechanisms, providing a strong physical basis for the models. However, a
number of drawbacks remain for application of these models in the numerical analy-
sis of highly cross-linked thermosetting polymers. Firstly, most of the models are con-
structed with thermoplastic polymers in mind, which are capable to attain significantly
higher strain levels. Consequently, the models are seldom concerned with material fail-
ure through fracture, while for highly cross-linked epoxies fracture is indeed observed at
relatively low strain levels. Secondly, the models usually assume that no plastic deforma-
tion occurs before the peak stress, while experiments in epoxy show the occurrence of
pre-peak plasticity (see [6] for an adapted macromolecular model). Thirdly, the models
are often formulated in terms of principal stretches and seldom provide tangent stiff-
ness operator expressions (notable exceptions are [30, 31]), making their finite element
implementation and use for micromechanical modeling of complex stress states a diffi-
cult task.

Regarding modeling of the cyclic response of polymers, multiple works are limited to
accurately describing the stress-strain behavior after a small number of loading-unloading
cycles [7, 8, 17]. In those works, the viscoelastic-viscoplastic material behavior is taken
into account but no attempt is made to model material failure in fatigue. At the other end
of the spectrum, a number of works focus on high-cycle fatigue failure by phenomeno-
logically imposing the evolution of a continuum damage internal variable with the num-
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ber of fatigue cycles while ignoring viscous contributions [32, 33]. However, experimen-
tal results by multiple authors [3, 4, 28] emphasize the occurrence of fatigue failure with
little to no change in stiffness, particularly in the high-cycle regime, which invalidates the
use of a damage variable. It is important to note that modulus measurements in fatigue
are affected by viscoelastic contributions that relax over time and might be erroneously
interpreted as modulus degradation, in particular for tests in the low-cycle regime. For
materials showing such type of fatigue failure behavior, appropriate definitions for the
onset and evolution of damage are needed while maintaining a correct description of
their viscous behavior.

5.1.1. EXPERIMENTAL MOTIVATION
Figure 5.1 illustrates the shortcomings of using state-of-the-art elastoplastic-damage (E-
P-D) formulations to model the cyclic behavior of the epoxy resin considered here. In
a preliminary study, a material sample was subjected to a number of loading-unloading
cycles at 1 mm/min with increasing displacement amplitudes until failure occurred. The
resultant load-displacement curve can be seen in Figure 5.1a, while the expected mate-
rial response using either the inviscid model by Melro et al. [12] or its rate-dependent
variation proposed by Bai et al. [14] is shown in Figure 5.1b.
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Figure 5.1: Material response in a loading-unloading scenario with increasing amplitude.

According to the model, the material behaves elastically up until the yield point Fy af-
ter which a hardening regime is observed until the fracture load Ff is reached. The model
unloads and reloads elastically along the same path with a slope equal to the initial stiff-
ness until damage is activated, at which point plasticity stops evolving and the stiffness
gradually decreases until final failure. During reloading, the curve always meets its re-
spective unloading point and the response returns to the curve for monotonic loading
even if a rate-dependent yield surface is used [14], since the strain rate does not change
throughout the test.

On the other hand, experimental unloading and reloading branches are nonlinear
and do not follow the same path, with significant hysteresis (viscoelasticity). Upon reload-



5

100 5. A VISCOELASTIC, VISCOPLASTIC, DAMAGE MODEL FOR EPOXY

ing, the curve does not meet its original unloading point and further plastic strain devel-
ops (viscoplasticity). Finally, the specimen fails without ever reaching the monotonic
failure load and without a gradual stiffness reduction, suggesting that fracture initiation
is driven by plastic strain development and rapid crack propagation leading to brittle
failure. Furthermore, subjecting the material to fatigue loads in the high-cycle regime
leads to failure without any measurable loss of stiffness and after stabilization of ratchet-
ing, suggesting that fracture initiation is not only affected by plastic strain development
but also by phenomena occurring in the elastic regime.

Based on these preliminary investigations, a number of additional model ingredients
may be proposed in order to improve the performance of conventional elastoplastic-
damage models when dealing with time-dependent mechanical behavior while keeping
as many of their original components as possible. Firstly, the observed hysteresis behav-
ior can be captured by adding a time-dependent stiffness contribution to the existing
elasticity formulation. Secondly, since permanent strains develop gradually under cyclic
loading, plastic strain development must be retarded by allowing stresses to temporar-
ily surpass the original yield surface. Finally, the existing damage formulation must be
adjusted in order to allow for fracture initiation at load levels lower than the original
fracture load by introducing a fracture surface shrink driven by both viscoelastic and
viscoplastic mechanisms.

5.1.2. OUTLINE OF THE STUDY

In this chapter, the state-of-the-art pressure-dependent elastoplastic formulation pre-
sented by Melro et al. [12] is expanded into a viscoelastic-viscoplastic-damage (VE-VP-
D) model. The modified model can in turn be used in isolation or to provide more realis-
tic predictions of the mechanical behaviour of composite materials subjected to mono-
tonic or cyclic loadings through micromechanical modeling.

Viscoelasticity is incorporated through a series of springs and dashpots. Viscoplas-
ticity is modeled through a Perzyna-type formulation. Fracture is modeled by a thermo-
dynamically consistent damage model with linear softening and a fracture surface that
shrinks as energy is dissipated. Finally, the mechanical model is complemented by a
damage model with a single degradation factor in order to take into account changes in
polymer behavior after moisture absorption. The formulations are presented in a way
that facilitates their implementation in a finite element framework. The model is cali-
brated using an original series of monotonic and cyclic experiments on pure resin speci-
mens both dry and after being saturated in water at 50 ◦C. After calibration, the model is
used to predict the rate-dependent response of the water-saturated polymer and its be-
havior during loading-unloading and fatigue tests. The model performance is assessed
by comparing these predictions with validation experiments.

5.2. MODEL FORMULATION

5.2.1. MATHEMATICAL NOTATION

In this work, both index notation and matrix notation will be used to represent tensors
and vectors. When index notation is used, the indices i , j ,k, l range from one to the
number of spatial dimensions of the problem being solved. In products between two
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Figure 5.2: Schematic representation of the VE/VP/D model.

entities in index notation, summation over repeated indices is implied. In matrix nota-
tion, vectors are represented by boldfaced lower-case symbols while matrices are given
by boldfaced upper-case symbols. When representing stresses and strains in matrix no-
tation, the use of Voigt notation is implied.

5.2.2. RHEOLOGICAL MODEL
The present model can be schematically represented by the rheological model of Fig-
ure 5.2. For a given applied stress, the strain response is decomposed into elastic and
plastic parts. The elastic behavior is represented by a parallel chain of Maxwell elements
with springs and dashpots to which a long-term spring is added. The plastic behavior
is represented by a sliding element on which the stress cannot be higher than the yield
stressσy. By adding a dashpot element in parallel with the sliding element, an overstress
is allowed to develop resulting in viscoplastic behavior. Finally, damage is enforced by
degrading the resultant effective stress σ̃.

In the following sections, each model component will be formulated and expressions
for stress update and tangent stiffness will be provided in order to facilitate their imple-
mentation in general finite element codes.

5.2.3. VISCOELASTICITY
In the model, an additive decomposition of strain in elastic and plastic parts is consid-
ered:

εi j = εe
i j +εp

i j (5.1)

The viscoelastic stress is computed in integral form by applying the Boltzmann su-
perposition principle [15]:

σi j (t ) = D∞
i j klε

e
kl (t )+

∫ t

0
Dve

i j kl (t − t̃ )
∂εe

kl (t̃ )

∂t̃
d t̃ (5.2)

where the long-term and viscous contributions are explicitly separated. The long-term
elastic stiffness D∞

i j kl is given by:

D∞
i j kl =G∞(δi jδkl +δi lδ j k )+

(
K∞− 2

3
G∞

)
δi jδkl (5.3)
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where G∞ and K∞ are the long term shear and bulk modulus, respectively. It is impor-
tant to note that the response of this back-bone elastic solid is time-independent and is
therefore taken out of the integral of Eq. (5.2).

The viscoelastic contribution has a similar form but is now composed of time-depen-
dent stiffnesses:

Dve
i j kl (t ) =Gve(t )(δi jδkl +δi lδ j k )+

(
Kve(t )− 2

3
Gve(t )

)
δi jδkl (5.4)

where Gve and Kve are the stiffnesses of the Maxwell elements of Figure 5.2 and can be
expressed as a Prony series of nr bulk elements and ns shear elements:

Kve(t ) =
nr∑

r=1
Kr exp

(
− t

kr

)
Gve(t ) =

ns∑
s=1

Gs exp
(
− t

gs

)
(5.5)

where Kr , Gs , kr and gs are bulk and shear stiffnesses and relaxation times, respectively.
In order to avoid performing the time integration of Eq. (5.2) at every time step and

thus having to store the whole strain history of every material point, the stress update
can be represented in a time discrete manner. Following the development in Haouala
and Doghri [15], Eq. (5.2) becomes:

σi j (tn+1) = D∞
i j klε

e
kl (tn+1)+

nr∑
r=1

pve
r (tn+1)δi j +

ns∑
s=1

Sve
i j ,s (tn+1) (5.6)

where the deviatoric and hydrostatic viscoelastic stress contributions Sve
i j and pve of each

Prony element are given by:

pve
r (tn+1) = exp

(−∆t

kr

)
pve

r (tn)+Kr

[
1−exp

(−∆t

kr

)] kr

∆t

(
εe

v(tn+1)−εe
v(tn)

)
(5.7)

Sve
i j ,s (tn+1) = exp

(−∆t

gs

)
Sve

i j ,s (tn)+2Gs

[
1−exp

(−∆t

gs

)] gs

∆t

(
εe

i j ,d(tn+1)−εe
i j ,d(tn)

)
(5.8)

where ∆t = tn+1 − tn is the time step, εv = εkk is the volumetric part of the strain and
εi j ,d = εi j −1/3εvδi j is the deviatoric part. In discrete form, only information about the
previous converged time step tn has to be stored. Finally, the total elastic stiffness can
be found by substituting Eqs. (5.7) and (5.8) into Eq. (5.6):

De
i j kl (tn+1) = D∞

i j kl +Dve
i j kl (∆t ) (5.9)

5.2.4. VISCOPLASTICITY
In contrast with the stress update for viscoelasticity, an iterative procedure is necessary
in order to compute the stresses in the viscoplastic regime. At first, it is assumed that the
increment of strain is viscoelastic and a trial stress is computed. By explicitly isolating
historical terms from terms that operate on the current strain increment in Eq. (5.6), the
trial stress is computed as:

σtr
i j = D∞

i j kl

(
εkl (tn+1)−εp

kl (tn)
)+Dve

i j kl

(
εkl (tn+1)−εp

kl (tn)−εe
kl (tn)

)+σhist
i j (tn) (5.10)
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If no further plastic strain is developed, the computed trial stress is correct and the
update is completed by updating the historical stresses of Eqs. (5.7) and (5.8). However,
if the amount of plastic strain changes, the stresses must be corrected:

σi j =σtr
i j − (D∞

i j kl +Dve
i j kl )∆εp

kl (5.11)

and the historical stresses must be updated using the correct value for the elastic strain.
The yield surface adopted in this model is the one proposed by Melro et al. [12]:

fp(σ,εp
eq) = 6J2 +2I1

(
σc −σt )−2σcσt (5.12)

where σt and σc are the yield stresses in tension and compression, respectively, I1 =σkk

is the first stress invariant and J2 = 1
2 Si j Si j is the second invariant of the deviatoric stress.

The hardening behavior is a consequence of the evolution of the yield stressesσt and
σc , which are functions of the equivalent plastic strain:

∆ε
p
eq =

√
1

1+2ν2
p
∆ε

p
i j∆ε

p
i j ⇒ σt =σt (εp

eq), σc =σc (εp
eq) (5.13)

whereνp is the plastic Poisson ratio and the yield stresses are given by functions of equiv-
alent plastic strain that can take any form. The variation in plastic strains is computed
through a non-associative flow rule:

∆ε
p
i j =∆γ

(
3Si j + 2

9
αI1δi j

)
(5.14)

where γ is the plastic multiplier, the expression in parentheses is the plastic flow direc-
tion, and α is:

α= 9

2

1−2νp

1+νp
(5.15)

The choice for non-associative plasticity is related to the pressure dependency of the
model and is done in order to avoid the occurrence of spurious volumetric plastic strains
[12].

A viscous time scale is introduced in the model by relaxing the classic Kuhn-Tucker
conditions on the yield function and allowing it to attain positive values. This effectively
delays the development of plastic strains and allows for the development of an overstress
above the yield surface. In this work, the Perzyna-type formulation used in [15] is modi-
fied for the yield surface of Eq. (5.12) and dictates the evolution of the plastic multiplier:

∆γ=
∆t
ηp

(
fp

σ0
t σ

0
c

)mp
, if f > 0

0, if f ≤ 0
(5.16)

where the time discrete expression is obtained through a backward Euler scheme [15],
the superscript 0 indicates yield stress values for εp

eq = 0, and ηp and mp are the vis-
coplastic modulus and exponent, respectively.

With the definition of the flow rule, the stresses of Eq. (5.11) may be written as:

σi j =
Str

i j

ζs
+ I tr

1 δi j

3ζp
(5.17)
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where the factors ζs and ζp are:

ζs = 1+6
(
G∞+Gve(∆t )

)
∆γ ⇒ ζs = 1+6Ĝ∆γ (5.18)

ζp = 1+2
(
K∞+Kve(∆t )

)
α∆γ ⇒ ζp = 1+2K̂α∆γ (5.19)

Substituting Eq. (5.17) into the equivalent plastic strain expression of Eq. (5.13) through
Eq. 5.14 and into the yield surface of Eq. (5.12), Eq. (5.16) becomes a function of ∆γ only
and can be solved iteratively using Newton’s method:

Φ(∆γ) = ∆t

ηp
(∆γ)

( fp

σ0
tσ

0
c

)mp −∆γ= 0 (5.20)

In order to accelerate convergence, it is necessary to compute the derivative of Eq. (5.20)
with respect to ∆γ:

∂Φ

∂∆γ
= mp∆t

ηpσ
0
tσ

0
c

( fp

σ0
tσ

0
c

)mp−1 ∂ fp

∂∆γ
−1 = V̂

∂ fp

∂∆γ
−1 (5.21)

where ∂ f /∂∆γ is:

∂ fp

∂∆γ
=−72Ĝ

ζ3
s

J tr
2 − 4K̂αI tr

1

ζ2
p

(σc −σt )+ ∂ fp

∂ε
p
eq

∂∆ε
p
eq

∂∆γ
(5.22)

and ∂ fp/∂εp
eq is:

∂ fp

∂ε
p
eq

= 2I tr
1

ζp
(Hc −Ht )−2(σc Ht +σt Hc ) = Ĥ (5.23)

where Hc and Ht are derivatives of σc and σt with respect to ε
p
eq and representing the

compressive and tensile hardening moduli, respectively.
The only remaining term to compute in Eq. 5.22 is ∂∆εp

eq/∂∆γ. Substituting Eq. (5.14)
in Eq. (5.13) and applying the trial stress conversion of Eq. (5.17), the variation of equiv-
alent plastic strain becomes:

∆ε
p
eq =∆γ

√√√√√ 18
ζ2

s
J tr

2 + 4α2

27ζ2
p

(I tr
1 )2

1+2ν2
p

=∆γ
√√√√ Â

1+2ν2
p

(5.24)

and its derivative with respect to ∆γ is:

∂∆ε
p
eq

∂∆γ
=

√
1

1+2ν2
p

[√
Â− ∆γ

2
√

Â

(216Ĝ J tr
2

ζ3
s

+ 16α3K̂ (I tr
1 )2

27ζ3
p

)]
(5.25)

The last step in the formulation is to obtain the consistent tangent stiffness matrix.
Because of the time scale introduced by the viscous plastic multiplier of Eq. (5.16), there
is no strict relationship between variations of stress and strain. However, since the stress
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update is performed in a time discrete manner, it is still possible to define an algorithmic
tangent matrix by differentiating Eq. (5.17) with respect to strain:

∂σi j

∂εkl
= 1

ζs

∂Str
i j

∂εkl
− 6Ĝ

ζ2
s

Str
i j
∂∆γ

∂εkl
+ 1

3ζp
δi j

∂I tr
1

∂εkl
− 2K̂αI tr

1

3ζ2
p

δi j
∂∆γ

∂εkl
(5.26)

The derivatives of the deviatoric stress and first stress invariant can be readily com-
puted:

∂Str
i j

∂εkl
= Ĝ

(
δi kδ j l +δi lδ j k −

2

3
δi jδkl

)
(5.27)

∂I tr
1

∂εkl
= 3K̂δkl (5.28)

while the variation of the plastic multiplier with respect to strain is derived from differ-
entiation of the viscoplastic consistency condition of Eq. (5.17) [34]:

δΦ= ∂Φ

∂εkl
δεkl +

∂Φ

∂∆γ
δ∆γ= 0 ⇒ ∂∆γ

∂εkl
= 1

µ

∂Φ

∂εkl
(5.29)

where µ is the negative of the derivative of Eq. (5.21):

µ=− ∂Φ

∂∆γ
(5.30)

Differentiation ofΦwith respect to strain takes a similar form as Eq. (5.21):

∂Φ

∂εkl
= V̂

∂ fp

∂εkl
(5.31)

and ∂ fp/∂εkl in terms of trial stresses is given by:

∂ fp

∂εkl
= 6

ζ2
s

∂J tr
2

∂εkl
+ 2(σc −σt )

ζp

∂I tr
1

∂εkl
+ Ĥ

∂ε
p
eq

∂εkl
(5.32)

The derivative of the first invariant is shown in Eq. (5.28), while the derivative of J tr
2 is

given by:

∂J tr
2

∂εkl
= Str

i j

∂Str
i j

∂εkl
= 2ĜStr

kl (5.33)

The last term of Eq. (5.32) takes into account variations in yield stress with strain
through the consequent variation in equivalent plastic strain [34]. The factor Ĥ is given
in Eq. (5.23), and ∂εp

eq/∂εkl is obtained from Eqs. (5.13) and (5.14):

∂ε
p
eq

∂εkl
= 1

1+2ν2
p

(∆γ)2

∆ε
p
eq

(3Str
i j

ζs
+ 2αI tr

1 δi j

9ζp

)
·

·
( Ĝ

ζs

(
3(δi kδ j l +δi lδ j k )−2δi jδkl

)+ 2K̂α

3ζp
δi jδkl

)
= Êkl

(5.34)
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Substitution of Eqs. (5.27), (5.28) and (5.29) in the tangent tensor of Eq. (5.26) yields:

∂σi j

∂εkl
= Ĝ

ζs

(
δi kδ j l +δi lδ j k −

2

3
δi jδkl

)
+ K̂

ζp
δi jδkl

− 72V̂ Ĝ2

µζ4
s

Str
i j Str

kl −
36(σc −σt )V̂ K̂ Ĝ

µζpζ
2
s

Str
i jδkl

− 8αI tr
1 V̂ K̂ Ĝ

µζ2
pζ

2
s

δi j Str
kl −

4αI tr
1 (σc −σt )V̂ K̂ 2

µζ3
p

δi jδkl

− 6V̂ Ĝ Ĥ

µζ2
s

Str
i j Êkl −

2αI tr
1 V̂ K̂ Ĥ

3µζ2
p

δi j Êkl

(5.35)

which can be cast in the notation adopted by Melro et al. [12] and later by Van der Meer
[34]:

∂σ

∂ε
=βIs

4 +
(
φ− β

3

)
II−ρStrI−χStrStr −ψIStr −ωStrE−ξIE (5.36)

where Is
4 = 1/2(δi kδ j l +δi lδ j k ) and the coefficients are given by:

β= 2Ĝ

ζs
φ= K̂

ζp
− 4αI tr

1 (σc −σt )V̂ K̂ 2

µζ3
p

(5.37)

ρ = 36(σc −σt )V̂ K̂ Ĝ

µζpζ
2
s

χ= 72V̂ Ĝ2

µζ4
s

(5.38)

ψ= 8αI tr
1 V̂ K̂ Ĝ

µζ2
pζ

2
s

ω= 6V̂ Ĝ Ĥ

µζ2
s

ξ= 2αI tr
1 V̂ K̂ Ĥ

3µζ2
p

(5.39)

5.2.5. DAMAGE
The formulation for the damage model starts with the definition of a measure of material
free energy [7, 35]:

Ψ= (1−d)
[1

2

∫ t

0

∫ t

0

∂εe
i j (t̄ )

∂t̄
De

i j kl (2t − t̄ − t̃ )
∂εe

kl (t̃ )

∂t̃
d t̄d t̃

]
+Ψh (5.40)

where 0 ≤ d ≤ 1 is the single damage variable adopted in this work and the plastic hard-
erning energy contribution Ψh has been ommited for compactness. It is worth men-
tioning that damage evolution is not linked to the development of plastic strains, as
adopted by Krairi and Doghri [7], but rather evolves independently, similar to the ap-
proach adopted by Simo and Ju [35] and Melro et al. [12].

For this particular definition of free energy, the term within brackets can be readily
identified as the thermodynamic force Y =−∂Ψ/∂d , and Eq. (5.40) may be rewritten as:

Ψ= (1−d)Y +Ψh (5.41)

In order to impose the second law of thermodynamics and assure that damage is
an energetically irreversible process, the Clausius-Duhem inequality for the isothermal
case is imposed:

Ξ=σi j ε̇i j − Ψ̇≥ 0 (5.42)
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where Ξ is the mechanical energy dissipation. Following the derivation by Krairi and
Doghri [7], the total derivative of the energy can be given by:

Ψ̇= (1−d)
[1

2

∫ t

0

∫ t

0

∂εe
i j (t̄ )

∂t̄

∂De
i j kl (2t − t̄ − t̃ )

∂t

∂εe
kl (t̃ )

∂t̃
d t̄d t̃

+
∂εe

i j

∂t

∫ t

0
De

i j kl (t − t̃ )
∂εe

kl (t̃ )

∂t̃
d t̃

]
−Y ḋ + Ψ̇h

(5.43)

Substituting Eq. (5.43) into the inequality of Eq. (5.42) and splitting the strains in
elastic and plastic parts as shown in Eq. (5.1), the damaged stress-strain relationship is
recovered:

σi j = (1−d)
∫ t

0
De

i j kl (t − t̃ )
∂εe

kl (t̃ )

∂t̃
d t̃ (5.44)

and the dissipation now reads:

Ξ= Y ḋ + (1−d)Ξve +Ξp (5.45)

where Ξp is the plastic dissipation:

Ξp =σi j ε̇
p
i j − Ψ̇h (5.46)

and Ξve is the viscoelastic dissipation, given by:

Ξve =−1

2

∫ t

0

∫ t

0

∂εe
i j (t̄ )

∂t̄

∂De
i j kl (2t − t̄ − t̃ )

∂t

∂εe
kl (t̃ )

∂t̃
d t̄d t̃ (5.47)

Adopting the concept of effective stress proposed by Simo and Ju [35], stresses in the
undamaged portion of the material can be written as:

σ̃i j =
σi j

1−d
(5.48)

Using this definition and Eqs. (5.6) and (5.44), the thermodynamic force and viscoelastic
dissipation can be expressed in terms of effective stress as [7]:

Y =
S̃∞

i j S̃∞
i j

4G∞
+ (p̃∞)2

2K∞
+

ns∑
s=1

S̃ve
i j ,s S̃ve

i j ,s

4Gs
+

nr∑
r=1

(p̃ve
r )2

2Kr
(5.49)

Ξve =
ns∑

s=1

S̃ve
i j ,s S̃ve

i j ,s

2Gs gs
+

nr∑
r=1

(p̃ve
r )2

Kr kr
(5.50)

For numerical simulation purposes, the stress update of Eq. (5.44) is done in a time
discrete manner in the same way as done in Eq. (5.6). The deviatoric and hydrostatic
stresses used to compute Y and Ξve are therefore the ones at time tn+1.

In order to control the evolution of damage, an internal variable r ∈ [1,∞] is adopted
to represent the size of a pressure-dependent paraboloidal fracture surface in effective
stress space:

fd(σ̃,r ) = 3 J̃2

XcXt
+ Ĩ1(Xc −Xt)

XcXt
− r ⇒ fd(σ̃,r ) =Λ− r (5.51)
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which is similar to the yield surface of Eq. (5.12) but with the yield stresses substituted
by the fracture strengths Xc and Xt.

In order to allow for rate-dependent damage initiation, the viscosity already included
in the preceding viscoelastic/viscoplastic formulation is exploited by making the fracture
surfaces Xt and Xc general functions of an accumulated energy measureΥwhich allows
them to shrink as the material dissipates energy:

Xt = Xt(Υ) Xc = Xc(Υ) (5.52)

whereΥ includes the dissipated energy and the energy stored by hardening:

Υ(t ) =
∫ t

τ=0

[
Ξve(τ)+σi j (τ)ε̇p

i j (τ)
]

dτ (5.53)

which allows for damage initiation both in a quasi-static or low-cycle fatigue scenarios
(dominated by Ξp) as well as in the high-cycle fatigue regime (dominated by Ξve).

As this shrink is driven by both VE and VP contributions, the present formulation
is a departure from the classic Chaboche-Lemaitre coupled plasticity-damage models
that explicitly consider damage as a function of plastic strain [7, 36]. The advantage of
the proposed approach lies in allowing for fracture initiation even after the backbone
plastic yield surface is reached, for instance after ratcheting stabilizes during a fatigue
test [3]. Such a link between damage activation and dissipated energy has also been put
forward in literature both for quasi-static loading [7] and for fatigue [3, 4]. After damage
initiates, the fracture surface is kept constant in order to control the amount of energy
that is dissipated during damage development.

Using the classic loading-unloading conditions ṙ ≥ 0; fd ≤ 0; ṙ fd = 0, the value of r
can be explicitly obtained:

rtn+1 = max
{

1, max
0≤t≤tn+1

Λt

}
(5.54)

It is worth mentioning that, in contrast with the plasticity-coupled damage evolution
models used by Krairi and Doghri [7] and Zhu and Sun [17], damage and plasticity evolve
independently in the present formulation.

Having defined an evolution law for the internal variable r , it is necessary to relate it
to damage variable d . Since it is often difficult to experimentally obtain fracture proper-
ties using axially loaded specimens due to structural instabilities such as necking [6] and
kinetic energy dissipation due to rapid crack propagation, a damage evolution law with
linear softening based on an uniaxial tensile test is adopted for simplicity [37]:

d =


σ̃f(σ̃eq − σ̃0)

σ̃eq(σ̃f − σ̃0)
, σ̃eq ≤ σ̃f

1, σ̃eq > σ̃f

(5.55)

where σ̃0 and σ̃f are the effective stress levels at the onset of damage and at complete
failure, respectively:

σ̃0 = Xt σ̃f =
2G∗Ê

leXt
(5.56)
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with σ̃eq being an equivalent stress measure that allows the treatment of multiaxial stress
states, Ê the instantaneous Young’s modulus computed from K̂ and Ĝ and G∗ an energy
parameter related to the fracture energy Gc which is regularized using the finite element
characteristic length le according to Bažant’s crack band model [38]. Depending on the
element type, le can be computed as:

l 2D
e = 6

π
4p3

√
Ae l 3D

e = 3
√

Ve (5.57)

where Ae and Ve are the element area and volume, respectively. These are computed as
the sum of the integration weights of each element in a mesh, yielding the area in case
the element is 2D or the volume in case a 3D element is used. Finally, the expression for
σ̃eq can be found by evaluating Ĩ1 and J̃2 for an uniaxial stress state, inserting them into
Eq. (5.51) and imposing the loading condition fd = 0:

σ̃eq = Xt −Xc +
√

(Xt −Xc)2 +4XcXtr

2
(5.58)

It is important to acknowledge that adopting the free energy measure of Eq. (5.40)
implicitly assumes that the Poisson’s ratio will remain unchanged, leading to the afore-
mentioned discrepancy between G∗ and Gc. Furthermore, keeping a constant ratio may
lead to undesired spurious hardening when a band of elements is softening while being
constrained by bands of elastically unloading elements. For a non-viscous model that
accounts for this effect, the reader is referred to [37]. Similar to the model by Melro et
al. [12], plasticity is deactivated after initiation of damage in order to guarantee that the
energy dissipated during the whole fracture process (i.e. up until the damage reaches
d = 1) is equal to the input fracture toughness G∗

After updating r , the damage variable d and the stresses can be computed using
Eqs. (5.55) and (5.44), respectively. In a numerical analysis context, it is also important
to compute the algorithmic tangent stiffness matrix. Since plasticity is deactivated after
damage starts, the total strain rate is fully elastic (i.e. ε̇kl = ε̇e

kl ) and differentiation of
Eq. (5.48) yields:

∂σi j

∂εkl
= (1−d)

∂σ̃i j

∂εe
kl

− ∂d

∂r
σ̃i j

∂r

∂εe
kl

(5.59)

which can be cast in a form similar to Eq. (5.36):

∂σ

∂ε
=βIs

4 +
(
φ− β

3

)
II−ρS̃I−χS̃S̃−ψIS̃ (5.60)

with coefficients:

β= 2(1−d)Ĝ φ= (1−d)K̂ − D̂K̂ Ĩ1(Xc −Xt)

XcXt
(5.61)

ρ = 3D̂K̂ (Xc −Xt)

XcXt
χ= 6D̂Ĝ

XcXt
ψ= 2D̂Ĝ Ĩ1

XcXt
(5.62)

where K̂ = K∞+Kve(∆t ), Ĝ =G∞+Gve(∆t ) and D̂ = ∂d/∂r .
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(a) Manufacturing (b) Conditioning (c) Testing

Figure 5.3: Experimental procedure workflow.

5.2.6. WATER CONCENTRATION DEPENDENCY
In this work, the mechanical models of the preceding sections are complemented by a
simple model for representing the effects of plasticization after water absorption on the
mechanical properties of epoxy resins. This is of particular importance when accurate
predictions of long-term material performance during service are sought. Experimen-
tal evidence suggests that physical processes such as plasticization promote significant
changes in stiffness and strength after water absorption [9, 13, 39]. In the present formu-
lation, such changes are represented by a single degradation factor dw:

dw = d∞
w

c∞
c (5.63)

where a linear dependency on the water concentration c is assumed and c∞ and d∞
w are

the concentration and the degradation level at saturation, respectively.
The degradation factor is then used to modify the properties as follows:

K̂w = (1−dw)K̂ , Ĝw = (1−dw)Ĝ (5.64)

σw
c = (1−dw)σc, σw

t = (1−dw)σt (5.65)

X w
c = (1−dw)Xc, X w

t = (1−dw)Xt, G∗
w = (1−dw)2G∗ (5.66)

where the viscoelastic relaxation times and the viscoplastic modulus and exponent are
assumed to remain constant. The validity of such simplifications will be assessed in the
next section. It is important to note that, in contrast with the damage formulation in-
troduced in Section 5.2.5, the evolution of dw is not irreversible and complete property
recovery can be achieved through drying.

5.3. EXPERIMENTS

5.3.1. MANUFACTURING AND CONDITIONING
The epoxy resin considered in this work is the Momentive EPIKOTE RIMR 135 / EPIKURE
RIMH 1366, with a ratio between monomer and hardener of 100:30 in weight. Panels
with a thickness of 3 mm were manufactured through vaccuum infusion molding (Fig-
ure 5.3a), with a curing cycle consisting of 2 h at 30◦C, 5 h at 50◦C and 10 h at 70◦C.
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Figure 5.4: Planar dimensions of the specimens used for tension experiments (thickness is 3mm).

Specimens were cut from the panels using a CNC milling machine in a custom-
tailored short dog-bone shape that induces a stress concentration at a single point at
mid-length (Fig. 5.4). Inducing strain localization at the center of the specimen in con-
trast to having a longer gauge length reduces the influence of material imperfections on
the fracture behavior of the material and limits the influence of necking on its yield be-
havior by hindering its formation and propagation along the length. It is important to
note that necking (in tension) and barreling (in compression) are structural instabilities
which do not represent intrinsic material behavior and therefore do not generate useful
data for model calibration [6]. Beam-shaped specimens used for Dynamic Mechanical
Analysis (DMA) tests were also extracted from the panels.

After cutting, part of the specimens was kept in a desiccator at 50◦C in vacuum un-
til the time of testing in order to guarantee a moisture-free material state and achieve
stabilization of molecular relaxation processes (physical aging) and post-curing [10], ef-
fectively creating a baseline material state with which results in aged samples will be
compared. Another set of specimens was conditioned in demineralized water at 50◦C
(20◦C lower than the saturated Tg) and tested after saturation at a concentration level of
3.2%. The conditioning setups are shown in Figure 5.3b.

5.3.2. MECHANICAL TESTS

For calibration of the viscoelastic moduli and relaxation times, DMA tests were con-
ducted using a Netzsch DMA 242 E Artemis apparatus. Dry and saturated prismatic
samples (55 x 10 x 3 mm3) were loaded in three-point bending with a deflection ampli-
tude of 100µm at multiple frequencies ranging from 0.1 Hz to 25 Hz, resulting in storage
(E’) and loss (E’) moduli values as a function of frequency. The reported DMA results and
calibrated viscoelastic properties were obtained using averaged measurements from two
specimens.

Dry and saturated dog-bone specimens were tested in tension in an MTS univer-
sal test frame in displacement control at three different nominal rates (0.1 mm/min,
1 mm/min and 36 mm/min). Furthermore, dry specimens were tested in tension until
failure with intermediate unloading branches and in stress-controlled fatigue with an R
ratio of 0.1. For quasi-static and loading-unloading tests, two specimens were tested for
each condition. For fatigue, four different stress levels were considered with 3 specimens
being tested for each level. All tests were conducted at standard laboratory conditions
(23◦C, 50%RH). The dependency of resin properties on temperature will therefore not be
treated in this work. For relevant investigations on the matter, the reader is referred to
[6, 9].

Strain in the longitudinal direction was measured through micro video-extensometry
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by stamping an array of dots covering an area of 1.8 x 1.8 mm2 at the center of the spec-
imens and tracking their positions throughout the test using a camera equipped with a
microscope lens (Figure 5.3c). Each frame from the resultant videos was then assigned a
time stamp in sync with the load and displacement signals from the test frame. Finally,
the relative distances between the dots at the edges of the tracked area were used to
compute the engineering strain εx. Since the constitutive features of interest are located
in the low strain regime and measurements after global softening (strain localization)
occurs are not used for calibration, the use of engineering strains was considered a rea-
sonable approach.

5.3.3. MODEL CALIBRATION

VISCOELASTICITY AND MOISTURE DEPENDENCY

Calibration of viscoelastic properties was performed following Miled [40]. The dynamic
moduli obtained through DMA can be expressed as a function of the oscillatory fre-
quency ω and the Prony moduli and relaxation times:

E ′(ω) = E∞+
ni∑

i=1

Eiω
2

1
τ2

i
+ω2

(5.67)

E ′′(ω) =
ni∑

i=1

Ei
ω
τi

1
τ2

i
+ω2

(5.68)

The value for E∞ and for the viscoelastic moduli Ei and relaxation times τi were fit
to the data through a nonlinear least squares procedure. Finally, bulk and shear values
were obtained under the assumption of a constant Poisson’s ratio [7, 15, 40]:

G∞ = E∞
2(1+ν)

Gi = Ei

2(1+ν)
gi = τi Ei

Gi
(5.69)

K∞ = E∞
3(1−2ν)

Ki = Ei

3(1−2ν)
ki = τi Ei

Ki
(5.70)

with ν= 0.37 obtained in previous experiments on the same material system [41].
Figure 5.5a shows the obtained values for storage (E ′) and loss (E") moduli of dry

DMA samples, with the lines representing the best attained fit. The resultant properties,
comprising 4 Prony elements, are shown in Table 5.1. Since the value for E∞ was also
obtained from the same fitting procedure, the resultant optimization problem features
a large number of local minima. Therefore, the least squares procedure was performed
multiple times starting from random values for the moduli and relaxation times until a
final fit was chosen which featured good agreement in terms of loss modulus without
significantly sacrificing precision in terms of storage modulus. The fitted model can de-
scribe the viscoelastic behavior reasonably well, with small deviations in storage modu-
lus for frequencies between 0.1 Hz and 1 Hz and in loss modulus between 1 Hz and 4 Hz.
The fitting procedure was also performed with a higher number of Prony elements, but
the quality of the fit did not improve further.
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Figure 5.5: DMA results for dry and wet samples.

With this set of dry VE properties, another fitting procedure was performed in order
to determine the moisture degradation factor d∞

w using DMA results from saturated sam-
ples. The results can be seen in Figure 5.5b. For the present material system, a value of
d∞

w = 0.14 was found to correctly represent the material behavior after saturation with-
out having to obtain another complete set of VE properties. It can be seen, however,
that differences in loss moduli are slightly higher than for the dry case, suggesting that
plasticization not only promotes stiffness degradation but also lead to a slightly more
pronounced viscoelastic behavior. With the obtained degradation factor, no additional
calibration is necessary in order to describe the behavior of the saturated resin.

VISCOPLASTICITY

For calibration of the viscoplastic properties, the model of Section 5.2 was implemented
in an in-house finite element code using the Jem/Jive C++ library [42]. In order to ob-
tain an accurate stress value at the center of the specimen from the force signal of the
load cell, the complete geometry of the dog-bone was modeled and a stress concentra-
tion factor (Kσ) was computed in order to account for concentrations arising from the
specimen geometry and the presence of grips:

Kσ =
σnum

y A

F num (5.71)

where A is the cross-sectional area at the center of the specimen and σnum
y is the lon-

gitudinal stress at the same point resulting from the FE analysis when a prescribed dis-
placement is applied to the top of the dog-bone and generates an internal force Fnum.
The experimental stress can then be estimated as:

σ
exp
y = Kσ

F exp

A
(5.72)
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Figure 5.6: Evolution of stress concentration factor Kσ with strain for three different strain rates.

where Fexp is the force value measured by the load cell in the test frame.
The full dog-bone model was then substituted by a single-element model of the re-

gion where strain was measured. The experimental strain in the longitudinal direction
was applied as a prescribed displacement and the fitting problem was cast as the mini-
mization of the function:

f =∑
t

[σexp
y (t )−σnum

y (t )]2 (5.73)

and solved using a nonlinear optimization algorithm.
In order to take into account the difference in yield behavior in tension and compres-

sion, a constant σc/σt ratio of 1.25 was considered based on previously obtained exper-
imental results (Section 4.3). Furthermore, since only longitudinal strains were used in
the current calibration procedure, the value for νp = 0.32 was also adopted from Chap-
ter 4.

It is important to note that, due to the development of plastic strains at different rates
for different parts of the specimen, Kσ is not constant but rather depends on the shape
of the yield surfaces, the test speed and the current strain at the center of the specimen.
Therefore, an iterative fitting procedure was performed: The experimental stresses were
first obtained under the assumption of purely viscoelastic behavior. With the resultant
VP properties, two additional calibration rounds were performed while updating the fac-
tors between each of them. Figure 5.6 shows the final stress concentration curves for the
three different strain rates used for VP calibration as a function of strain at the center of
the specimen.

Figure 5.7a shows the stress-strain curves obtained experimentally for each strain
rate. Curves from different specimens tested in the same conditions exhibit low vari-
ability, similar to previous observations in the same system (Section 2.3) and suggest-
ing that the performed tests have an acceptable degree of reproducibility. The portions
of the curves depicted in gray refer to stress-train data obtained after the experimental
load peak and were therefore not used for calibration since they may not represent the
intrinsic constitutive behavior of the material [6]. As expected, the present epoxy sys-
tem features nonlinear stress-strain behavior, in particular at strains higher than 0.02,
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Figure 5.7: Results for dry quasi-static tension in three different strain rates. Grayed lines indicate the reponse
after strain localization and marks represent experimental results.

exhibits strain-rate dependency and fractures at relatively low strain levels, with higher
failure strains observed for slower tests.

Using a single curve for each strain rate, an exponential yield surface was fitted by
determining the coefficients c1 to c5 in:

σt = c1 + c2eε
p
eq/c3 + c4eε

p
eq/c5 (5.74)

as well as the VP parameters ηp and mp, with the resultant properties shown in Table 5.1.
Figure 5.7b shows the fitted curves together with their experimental counterparts. It can
be seen that a good agreement was obtained for all rates, with only small deviations
noted for the intermediate rate test at low strains.

FRACTURE

The first step in calibrating the damage model was fixing an upper bound for Xt, since
rate dependency arises naturally as the material dissipates energy and the fracture sur-
face shrinks. In view of the available test data, a pragmatic choice would be the peak load
for the highest rate test (83.8 MPa). Naturally, bounding Xt in this manner will result in
early failure for the highest strain rate test since the energy dissipation at the peak load
would not be accounted for. Nevertheless, since failure occurs after the peak load for all
strain rates, energy dissipation at the onset of fracture is not well defined and thus the
practical choice of Xt = 83.8 MPa was adopted.

With a value for Xt, the fracture energy G∗ = 1.9 N/mm was computed using Eq. (5.56),
leading to a vertical softening branch for le = 1.8mm failing at the upper bound of Xt.
It is important to note that the sudden failure observed in the experiments is in fact a
dynamic event for which part of the energy will be dissipated as kinetic energy. Since
inertia effects are not taken into account in the energy expression of Eq. (5.40), the cali-
brated value of G∗ should be interpreted with caution and cannot be seen as a fracture
energy measurement.
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Figure 5.8: Model response of the dry material in tension including damage. Marks represent experimental
results and gray marks indicate the response after strain localization.

The last step in the calibration process was the definition of Xt as a function of the
accumulated dissipated energy measure Υ. As previously mentioned, the energy dissi-
pation at failure is not well defined in quasi-static tests since it takes place after the global
peak load and is therefore potentially influenced by strain localization and necking. The
dissipation was therefore obtained from the stress-controlled fatigue test with the high-
est peak load (and thus the shortest duration). Since only one condition was used for
calibration, a linear Xt decay was adopted:

Xt = 83.8−aΥ with a = 83.8−σmax

Υbreak
(5.75)

where σmax = 74.9 MPa for the highest tested fatigue load and Υbreak was obtained by
running the model for a number of load cycles equal to the average cycles at break ob-
tained for the 3 specimens tested at this stress level.

The stress-strain response of the calibrated damage model can be seen in Figure 5.8.
As expected, the failure strain for the curve with the highest strain rate was not cor-
rectly captured, which also caused the peak load to be slightly (approximately 2 MPa)
lower. Failure for the other two strain rates occurred at higher strain levels, following the
trend observed experimentally. It is interesting to note that since the adopted rheologi-
cal model couples VE and VP (σhist

i j helps drive plastic strain development), the test with

the highest strain ratio actually features a higher amount of plastic strain than the slower
ones, leading to a higher energy dissipation and consequently to failure at a lower strain
level.

5.3.4. MODEL PREDICTIONS
In this section, the model is used to predict material behavior in loading scenarios not
used for calibration, including quasi-static tensile tests of saturated specimens at differ-
ent strain rates, loading-unloading tests with increasing strain amplitudes and stress-
controlled fatigue tests. The predictions are compared with further experimental results
and the model performance is discussed.
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Viscoelasticity

K∞ [MPa] 3205

G∞ [MPa] 912

Kr [MPa] 125 182 625 143

Gs [MPa] 36 52 178 41

kr [s] 4.16 ·10−2 2.30 ·100 4.22 ·101 3.11 ·104

gs [s] 1.46 ·10−1 8.08 ·100 1.48 ·102 1.09 ·105

Viscoplasticity

σt [MPa] 64.80−33.6e−ε
p
eq/0.003407 −10.21e−ε

p
eq/0.06493

σc [MPa] 81.0−42.0e−ε
p
eq/0.003407 −12.77e−ε

p
eq/0.06493

ηp [s] 3.49 ·1012

mp [-] 7.305

νp [-] 0.32

Damage

Xt [MPa] 83.8−5.99Υ

Xc [MPa] 104.7−7.48Υ

G∗ [N/mm] 1.9

Hygrothermal aging

d∞
w [-] 0.14

c∞ [%] 3.2

Table 5.1: Calibrated material properties.

WATER CONCENTRATION INFLUENCE

Figure 5.9a shows quasi-static tensile test results for specimens saturated in water at
50◦C. Similar to dry specimens, results for all strain rates featured low scatter both in the
elastic and plastic regimes as well as in the failure strain. Once again tests with the high-
est rate failed at higher stresses but lower strains, with only limited strain localization.
Plasticization due to interaction with water molecules resulted in lower peak stresses for
all rates. Interestingly enough, the failure strains remained similar to the ones from dry
specimens, although it is difficult to determine the exact stress or strain at failure due to
the occurrence of strain localization.

Using the dry VE/VP properties and the value for d∞
w calibrated from DMA tests, the

saturated VE/VP response was predicted and is shown together with the experimental
pre-peak curves in Figure 5.9b. The model shows excellent agreement with experiments
for all strain rates, suggesting that the simple degradation model of Section 5.2.6 can
effectively describe the behavior of the saturated resin in both VE and VP regimes, even
though the viscoplastic parameters remain intact and only the backbone yield surface
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Figure 5.9: Results for saturated quasi-static tension specimens. Gray lines indicate the response after strain
localization. Marks represent experimental results on saturated specimens.

is degraded. Nevertheless, the present results are limited to quasi-static loading and
further tests need to be performed in order to assess the performance of the model in
predicting the fatigue behavior of saturated specimens.

LOADING-UNLOADING TESTS

The next loading scenario is a revisit of the loading-unloading test of Figure 5.1. Speci-
mens were loaded in displacement control at 1 mm/min (strain rate of 4.9 ·10−4/s) and
unloaded at intermediate steps. A special test frame control procedure was then used
in order to trigger a new loading phase when the force reached zero. Each loading cycle
stopped at a linearly increasing maximum strain value until final failure. The resultant
stress-strain curve can be seen in Figure 5.10a and the model prediction in Figure 5.10b.

From the numerical response, it can be seen that all time-dependent phenomena
mentioned in Section 5.1.1 are now present: Non-linear reloading branches that do not
meet the original curve, hysteresis during unloading and failure at slightly lower strain
and stress when compared to the monotonic response.

However, comparing the model prediction with the experimental curve makes an
important shortcoming of the model evident. Even though the stresses at the unload-
ing points are similar for the two curves, the model grossly overestimates the amount of
plastic strain at the points of zero stress. The source of this discrepancy lies in the way
by which the nonlinear part of the stress-strain response is modeled. While the load-
displacement response of Figure 5.1 suggests the presence of significant pre-localization
plastic strains, Figure 5.10a suggests that the greater part of the nonlinearity is in fact
viscoelastic. This observation also helps to explain the differences in hysteresis area be-
tween model and experiments.

In order to confirm the existence of pre-localization plastic strains and rule out the
possibility of a purely viscoelastic response, the same test was repeated but including
rest periods of one minute at zero stress before reloading. Figure 5.11 shows the strain
response obtained during one such rest period. Despite the presence of measurement
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Figure 5.10: Loading-unloading test with increasing amplitude (dry). Gray lines indicate the response after
strain localization.
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Figure 5.11: Strain relaxation after unloading from εamp = 0.035, indicating the presence of permanent strains.
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Figure 5.12: Experimental (marks) and numerical (lines) strains for different load levels (dry).

noise, an asymptotic relaxation process towards a non-zero strain value can be clearly
identified. It is concluded that the nonlinear behavior consists of a complex combina-
tion of nonlinear viscoelasticity and viscoplasticity.

It is important to note that either a purely VE model like the one proposed by Xia et al.
[43] or the present VE/VP model are able to reproduce the quasi-static curves from the
previous section, and the complex constitutive nature of the resin would be overlooked
if no loading-unloading tests were performed. It is also interesting to note that even
though the hysteresis area is underestimated by the model, the added plastic dissipation
helps to diminish the difference in total dissipation and the damage part is activated at
the same strain level at which localization starts in the experiments. Nevertheless, the
inclusion of nonlinear viscoelasticity [9, 43] would improve the predictive capabilities of
the present model.

FATIGUE TESTS

The last loading scenario consists of stress-controlled fatigue tests at four different stress
levels with an R-ratio (σmin/σmax) of 0.1 and a nominal strain rate of 2.0 ·10−2/s. Since
stress is controlled, VE creep and VP evolution become manifest in the form of ratcheting
(i.e. strain accumulation with fatigue cycles). It is therefore interesting to track the evo-
lution of strains at the peak and valley loads with the number of cycles. Figures 5.12a and
5.12b show strains at peak and valley stress, respectively, for the four stress levels, with
lines representing model predictions. Since the model does not take into account the
nonlinear viscoelastic behavior exhibited by the material, both peak and valley strains
were overestimated. This overestimation is particularly significant for valley strains, sim-
ilar to the mismatch in permanent strain observed in the loading-unloading tests. As
σmax decreases, the model predictions become more accurate because less plastic strain
develops.

Figures 5.13a and 5.13b show experimental and numerical curves for a complete fa-
tigue test with σmax = 74.9 MPa. The experimental response showed failure with no no-
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Figure 5.13: Fatigue stress-strain curves for σmax = 74.9MPa (dry).

ticeable loss of stiffness and featured a large hysteresis area that is partly obscured by
the ratcheting strain that develops with the number of cycles. The numerical response
showed a significantly larger ratcheting strain, as the model relies on plastic strains in
order to correctly represent the nonlinear stress-strain response.

Such differences in energy dissipation can be clearly seen in Figure 5.14, which shows
stress-strain snapshots of a fatigue test at σmax = 48.3 MPa after 1300 load cycles, when
the material is close to breaking. A large hysteresis loop can be seen in the experimen-
tal curve, while the numerically predicted area is significantly smaller. On the other
hand, the model features a larger amount of viscoplastic dissipation, as evidenced by
the higher valley strain. If the hypothesis that energy dissipation promotes initiation of
fracture is valid, it is reasonable to suppose that the erroneous viscoelastic dissipation
predicted by the model will in part be compensated by its overestimated viscoplastic
dissipation.

Using the fracture surface degradation calibrated with the tests at σmax = 74.9 MPa,
the model was used to predict fatigue life at the three other stress levels, with results
shown in Figure 5.15. The model gives reasonable estimates for the number of cycles
to failure for all stress levels, suggesting that the dissipation-driven fracture initiation
hypothesis is a valid approach for the high- to medium-cycle fatigue regimes. A loss of
accuracy can be expected for lower stress levels as the viscoelastic dissipation will tend
to dominate the material response and the present model is not able to reproduce this
in a satisfactory manner. Furthermore, the role of dissipative mechanisms on fracture
initiation might change in the high-cycle regime. More experimental data and model
development are therefore necessary.

5.4. CONCLUSIONS
Based on preliminary experiments on an epoxy resin, a number of time-dependent phe-
nomena were identified which are not taken into account by conventional elastoplastic
models but may nevertheless play an important role in the long-term mechanical re-
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sponse of epoxy resins, such as hysteresis and strain-rate dependency. In this work, a
viscoelastic/viscoplastic model with continuum damage was developed that can repro-
duce such phenomena.

The model consists of a parallel array of elastic Maxwell elements arranged in series
with a pressure-dependent viscoplastic element. The integral viscoelastic stress update
was presented in a time-discrete manner suitable for finite element implementation.
For viscoplasticity, a Perzyna-type function was included in a non-associative plasticity
model with general-shape yield functions. A pressure-dependent continuum damage
model was developed for which the fracture surfaces are made to shrink as the mate-
rial dissipates energy. Finally, a simple degradation model was presented for polymer
degradation through plasticization.

The viscoelastic and viscoplastic properties were calibrated using DMA tests in bend-
ing and quasi-static monotonic tests in tension at different strain rates. The damage
model was calibrated using static tests at a single strain rate and a short cyclic test with
controlled stress. The calibrated model was able to accurately reproduce the rate-depen-
dent material response both in plasticity and fracture, with good predictions for failure
strain and maximum stress. The response of the water-saturated material at different
rates was also predicted with excellent accuracy. For cyclic tests, the model was found
inadequate in its representation of the observed nonlinear stress-strain response which
was modeled as plastic but is in fact a combination of plasticity and nonlinear viscoelas-
ticity.
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6
ACCELERATION TECHNIQUES FOR

CYCLIC MICROMECHANICAL

ANALYSIS

’Wait’, he says.
Do I look like a waiter?

Kefka, Final Fantasy VI

6.1. INTRODUCTION
The multiscale/multiphysics numerical framework of Chapter 4 involves solving an in-
dependent microscopic mesh for each integration point of the macroscopic model. This
results in an exceedingly high computational cost, in particular if large micromodels
with dense finite element meshes are employed or cyclic loads are treated. To make
matters worse, using material models with time-discrete response such as the one for-
mulated in Chapter 5 at the microscale requires small time steps in order to be accurate.
In order to arrive at a framework suitable for predicting material behavior after long-term
environmental exposure combined with cyclic mechanical loads, it is thus necessary to
seek techniques to accelerate the solution of these microscopic boundary-value prob-
lems without sacrificing the accuracy of the homogenized material response needed at
the macroscale analysis.

One approach for acceleration is based on recognizing that prediction of the cyclic
behavior in polymers is a multiscale problem in time [2–4]. This multiscale problem can

Apart from minor changes to its introductory section, this chapter was integrally extracted from [1].

127



6

128 6. ACCELERATION TECHNIQUES FOR CYCLIC MICROMECHANICAL ANALYSIS

be solved efficiently through a so-called Time Homogenization process by explicitly sep-
arating the fast response inside a load cycle from the long-term material response and
solving the problem for each time scale in isolation. Another approach relies on con-
structing Reduced-Order Models (ROM) from the original high-fidelity model. The most
popular reduction technique involves representing the solution of the equilibrium prob-
lem in terms of a lower-dimensional solution basis, similar to the Ritz method [5]. Such
reduced basis is constructed by gathering snapshots of the high-fidelity model response
and applying a dimensionality reduction technique such as the Proper Orthogonal De-
composition (POD) [6–8]. This reduction in the size of the global equilibrium equations
can be coupled with a so-called hyper-reduction technique in order to minimize the
number of constitutive model evaluations, such as the Discrete Empirical Interpolation
Method (DEIM) [9], the Missing Point Estimation Method [10], Gappy Data reconstruc-
tion [11] and Empirical Cubature Method [12–14]. Other reduction strategies can also
be found in literature, such as self-consistent clustering [15], wavelet-based reduction
[16], nonuniform transformation field analysis [17, 18], which attempt to overcome the
drawbacks of classic reduction by projection. Lastly, a number of adaptive strategies
have been proposed that expand upon the classic POD by adding new basis vectors or
performing corrections to the reduced basis during the analysis [6] as well as employing
domain decomposition techniques to fully solve the equilibrium problem only in strain
localization zones while the rest of the domain is solved in a reduced space [19, 20].

In this chapter, a number of acceleration techniques are explored and applied to the
micromechanical analysis of fiber-reinforced composites. The micromodels consist of
linear-elastic fibers and a viscoelastic/viscoplastic resin. Time Homogenization (TH) is
used to decompose the original equilibrium problem into macro- and microchronolog-
ical parts. A modified return mapping algorithm incorporating time averaging is pro-
posed in order to compute the plastic strain increment after a complete load cycle. Proper
Orthogonal Decomposition (POD) is used to reduce the number of degrees of freedom
of the problem and a hyper-reduction step based on the Empirical Cubature Method
(ECM) is performed. A novel adaptive analysis scheme combining features of TH and
POD is proposed which avoids the need for an offline training phase. Lastly, an effi-
cient technique for recovering stresses and material history at all integration points is
proposed by combining a Gappy Data least-squares reconstruction with a clustering al-
gorithm typically used in machine learning and data mining applications. The perfor-
mance of each acceleration ingredient is assessed in terms of speed-up and accuracy of
the approximated solutions and an adaptive analysis scheme combining both reduced
and unreduced steps is proposed.

6.1.1. MATHEMATICAL NOTATION

In this chapter, both index notation and matrix notation are used to represent tensors
and vectors. When index notation is used, the indices i , j ,k, l range from one to the
number of spatial dimensions of the problem being solved. In products between two
entities in index notation, summation over repeated indices is implied. In matrix nota-
tion, vectors are represented by boldfaced lower-case symbols while matrices are given
by boldfaced upper-case symbols. When representing stresses and strains in matrix no-
tation, the use of Voigt notation is implied.
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6.2. MICROMECHANICAL PROBLEM
This chapter focuses on the micromechanical modeling of fiber-reinforced polymer com-
posites. The material microstructure consists of unidirectional fibers and surrounding
resin. The fibers are modeled as linear elastic and the resin as a viscoelastic/viscoplastic
solid. In this section, the constitutive model for the resin will be briefly presented in
its original form in preparation for applying the time homogenization strategy of Sec-
tion 6.3.

6.2.1. VISCOELASTICITY
In the present model, an additive decomposition of the total strain εi j in viscoelastic
(VE) and viscoplastic (VP) parts is adopted:

εi j = εe
i j +εp

i j (6.1)

where the superscripts e and p refer to elastic and plastic contributions, respectively.
The stresses σi j at time tn are computed from the viscoelastic strains in an integral form
through the Boltzmann superposition principle:

σi j (tn) = D∞
i j klε

e
kl (tn)+

nu∑
u=1

pve
u (tn)δi j +

nv∑
v=1

sve
v,i j (tn) (6.2)

where D∞
i j kl is the long-term stiffness tensor and pve and sve

s,i j are respectively the hydro-

static and deviatoric viscous stress contributions of a Prony series of Maxwell elements
comprising nu bulk elements and nv shear elements. The long-term stiffness can be
written as:

D∞
i j kl =G∞(δi jδkl +δi lδ j k )+

(
K∞− 2

3
G∞

)
δi jδkl (6.3)

with G∞ and K∞ being the long-term shear and bulk moduli, respectively. The viscoelas-
tic contributions of each Prony element are computed in a time-discrete form as:

pve
u (tn) = exp

(−∆t

ku

)
pve

u (tn−1)+Ku

[
1−exp

(−∆t

ku

)] ku

∆t

(
εe

v(tn)−εe
v(tn−1)

)
(6.4)

sve
v,i j (tn) = exp

(−∆t

gv

)
sve

v,i j (tn−1)+2Gv

[
1−exp

(−∆t

gv

)] gv

∆t

(
εe

i j ,d(tn)−εe
i j ,d(tn−1)

)
(6.5)

where ∆t = tn − tn−1, Ku and Gv are the bulk and shear stiffness contributions for each
Prony element, ku and gv are the associated relaxation times and εe

v and εe
i j ,d are the

volumetric and deviatoric components of the elastic strain, respectively.
The resultant stiffness is the combination of the long-term and viscous contribu-

tions:
Di j kl = D∞

i j kl +Dve
i j kl (6.6)

where Dve
i j kl has a similar structure to the long-term stiffness of Eq. (6.3):

Dve
i j kl (t ) =Gve(t )(δi jδkl +δi lδ j k )+

(
Kve(t )− 2

3
Gve(t )

)
δi jδkl (6.7)

and the time-dependent bulk and shear moduli are written as:

Kve(t ) =
nu∑

u=1
Ku

[
1−exp

(−∆t

ku

)] ku

∆t
Gve(t ) =

nv∑
v=1

Gv

[
1−exp

(−∆t

gv

)] gv

∆t
(6.8)
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6.2.2. VISCOPLASTICITY

At the beginning of each time step, a trial stress σtr
i j is computed, supposing that the

stress update is purely viscoelastic and given by Eq. (6.2). If the trial stress state lies out-
side the yield surface, it is corrected by removing the plastic strain contribution:

σi j =σtr
i j − (D∞

i j kl +Dve
i j kl )∆εp

kl (6.9)

A paraboloidal yield surface with pressure-dependent hardening [21] is adopted:

f
(
σ,εp

eq
)= 6J2 +2I1

(
σc −σt )−2σcσt (6.10)

where I1 and J2 are the first stress invariant and the second invariant of the deviatoric
stresses, respectively, and the tension (σt) and compression (σc) yield stresses are a func-
tion of the equivalent plastic strain εp

eq:

∆ε
p
eq =

√
1

1+2ν2
p
∆ε

p
i j∆ε

p
i j ⇒ σt =σt (εp

eq), σc =σc (εp
eq) (6.11)

with νp being the plastic Poisson’s ratio.
Plastic flow is dictated by a non-associative flow rule:

∆ε
p
i j =∆γ

(
3si j + 2

9
αI1δi j

)
≡∆γmi j (6.12)

where γ is the plastic multiplier, mi j is the direction of the plastic flow and α is given by:

α= 9

2

1−2νp

1+νp
(6.13)

In an inviscid plasticity model, ∆γ would be computed in order to keep the final
stress state on top of the yield surface (i.e. f = 0). However, in order to capture rate-
dependent plasticity, a rheological modification of the plasticity model is performed by
adding a dashpot element which takes part of the overstress resulting from crossing the
yield surface. In this work, a Perzyna-type viscoplastic formulation is used and the evo-
lution of the plastic multiplier is prescribed as:

∆γ=


∆t

ηp

( f

σi
tσ

i
c

)mp ≡ g∆t , if f > 0

0, if f ≤ 0
(6.14)

where g = g ( f ) is the viscoplastic function, ηp and mp are the viscoplastic modulus and
exponent, respectively, and σi

c and σi
t are the initial yield stress values (for εp

eq = 0).
By substituting Eq. (6.12) into Eq. (6.9), the corrected stresses can be expressed as a

function of the trial stresses and ∆γ. Substitution into Eq. (7.10) leads to a nonlinear ex-
pression for ∆γ which is solved iteratively. The conventional return mapping procedure
with 7 unknowns (6 stress components and the plastic multiplier) is then substituted
by the simpler problem of determining only ∆γ since σtr

i j and σi j have the same direc-

tion. Since this property is lost after applying time homogenization, further details on
the return mapping procedure and the resultant tangent stiffness matrix are omitted in
the current development. The interested reader is instead referred to [22] for an inviscid
description of the algorithm.
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Figure 6.1: Separation of time scales.

6.3. TIME HOMOGENIZATION
Running a viscoelastic/viscoplastic micromodel for a large number of time steps re-
quires significant computational effort, especially when a multiscale technique such as
FE2 [23] is employed. Eqs. (6.4), (6.5) and (6.8) are obtained from time discretization,
which implies that the use of larger time steps is detrimental to the accuracy of the vis-
coelastic solution. In this regard, a time homogenization strategy can be applied in order
to reduce the number of computationally heavy viscoplastic stress updates to a single
one per load cycle while maintaining a high accuracy for the viscoelastic part. In this
section, the homogenization strategy proposed by Yu and Fish [4] and later adopted by
Haouala and Doghri [2] is applied to the present pressure-dependent VE/VP material
model. The formulation proposed in [2] is expanded to include a return-mapping algo-
rithm suitable for multi-point time integration of multiaxial stress states.

The homogenization process is based on the definition of two distinct time scales
(Fig. 6.1). The first time scale (t ) describes the long-term loading and material response,
while the second (t̃ ) describes rapid variations caused by a cyclic load of period T . The
physical time t is then the combination of these slow and fast time scales:

t = t +T t̃ (6.15)

where t̃ ∈ [0,1] is parametrized inside a single load cycle. Using the chain rule, the total
time derivative of a general response field φ is given by:

φ̇= ∂φ

∂t
+ 1

T

∂φ

∂t̃
(6.16)

In order to obtain separate boundary-value problems in the slow and fast time coor-
dinates, the model response fields are asymptotically expanded in powers of T :

φ(t , t̃ ) =
∞∑

i=0
T iφi (t , t̃ ) (6.17)
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where φi are periodic functions of decreasing amplitude. Adopting a first-order expan-
sion, the stress update of Eq. (6.2) can be rewritten as:

σ0,i j +Tσ1,i j = D∞
i j kl (εe

0,kl +T εe
1,kl )+

nu∑
u=1

(pve
0,u +T pve

1,u)δi j +
nv∑

v=1
(sve

0,v,i j +Tsve
1,v,i j ) (6.18)

and the evolution of plastic strains and plastic multiplier can be given by:

ε̇
p
0,i j +T ε̇p

1,i j = B0,i j +T
(∂B0,i j

∂σ0,i j
σ1,i j +

∂B0,i j

∂γ0
γ1

)
(6.19)

γ̇0 +T γ̇1 =C0 +T
( ∂C0

∂σ0,i j
σ1,i j + ∂C0

∂γ0
γ1

)
(6.20)

where B0,i j and C0 are the viscoplastic operators shown in Eqs. (6.12) and (7.10), respec-
tively, evaluated at (σ0,i j ,γ0).

Applying the total time derivative of Eq. (6.16) to the variations of plastic strain and
plastic multiplier and grouping terms of the same order of T , the following problems are
obtained:

O(−1) :


∂ε

p
0,i j

∂t̃
= 0

∂γ0

∂t̃
= 0

(6.21)

O(0) :



σ0,i j = D∞
i j klε

e
0,kl +

nu∑
u=1

pve
0,uδi j +

nv∑
v=1

sve
0,v,i j

∂ε
p
0,i j

∂t
= B0,i j

∂γ0

∂t
=C 0

(6.22)

O(1) :



σ1,i j = D∞
i j klε

e
1,kl +

nu∑
u=1

pve
1,uδi j +

nv∑
v=1

sve
1,v,i j

∂ε
p
1,i j

∂t̄
= ∂B0,i j

∂σ0,i j
σ1,i j +

∂B0,i j

∂γ0
γ1

∂γ1

∂t̄
= ∂C0

∂σ0,i j
σ1,i j + ∂C0

∂γ0
γ1

(6.23)

From the O(−1) problem, it can be seen that the variation of the zero-order plastic
strain with the fast time coordinate is zero. Therefore, by solving only the O(0) problem,
the fact that viscoplasticity only evolves with slow time t can be exploited in order to ac-
celerate the analysis. Naturally, ignoring the higher-order problems introduces an error
in the prediction of the response fields φ.

Following the time decomposition of Eq. (6.15), the response fields are also decom-
posed in slow and fast parts:

φ= 〈φ〉+ φ̃ (6.24)
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where 〈φ〉 is defined as the average response within a load cycle:

〈φ〉 =
∫ 1

0
φ(t , t̃ )d t̃ (6.25)

With such definitions, the original boundary-value problem can be decomposed into
microchronological and macrochronological parts. Since only the O(0) problem is being
solved, the subscript 0 will be dropped from now on for notational simplicity.

6.3.1. MICROCHRONOLOGICAL PROBLEM
At the fast time scale, the boundary-value problem involves the fluctuations of applied
displacements or forces:

ũi
∣∣
Γu

= ũΓi (σ̃i j n j )
∣∣
Γσ

= f̃ Γi (6.26)

where Γu and Γσ refer to Dirichlet and Neumann surfaces, respectively, and the super-
script Γ indicates a prescribed value. Since the evolution of viscoplasticity is blocked, the
stress update is purely viscoelastic:

σ̃i j = D∞
i j kl ε̃

e
kl +

nu∑
u=1

p̃ve
u δi j +

nv∑
v=1

s̃ve
v,i j (6.27)

and the variations of plastic strain and plastic multiplier are trivially determined:

∆ε̃
p
i j = 0 ∆γ̃= 0 (6.28)

Since only a viscoelastic problem needs to be solved, the analysis is accelerated by
skipping the viscoplastic return mapping algorithm and by solving the global system of
equations using a linear solver.

6.3.2. MACROCHRONOLOGICAL PROBLEM
At the macroscale, the time-averaged values for the applied forces or displacements are
used:

〈u〉i
∣∣
Γu

= 〈u〉Γi (〈σ〉i j n j )
∣∣
Γσ

= 〈 f 〉Γi (6.29)

and the stress update can be written as:

〈σ〉i j = D∞
i j kl 〈ε〉e

kl +
nu∑

u=1
〈p〉ve

u δi j +
nv∑

v=1
〈s〉ve

v,i j (6.30)

It is important to note that the hereditary stresses of Eqs. (6.27) and (6.30) evolve in-
dependently and therefore need to be separately stored. Finally, the plastic strain and
plastic multiplier rates are defined as time averages of the nonlinear operators Bi j and
C :

∆〈ε〉p
i j = 〈B〉i j ∆〈γ〉 = 〈C〉∆t (6.31)

Recalling from Eqs. (6.19) and (6.20) that the viscoplastic operators must be evalu-
ated using the total stresses σi j = 〈σ〉i j + σ̃i j , the one-way coupling between time scales
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becomes evident: For each macro time step, the microchronological problem is solved
and the resultant stresses are used in combination with the macroscopic ones in order
to compute the viscoplastic operator averages. Since the stress updates on both scales
are time-discrete, these averages are computed through numerical integration:

∆〈γ〉 = 〈g 〉∆t ≈
nip∑
τ

∆t

ηp

( f
(〈σ〉i j ,τ+ σ̃i j ,τ

)
σi

tσ
i
c

)mp
βτωτ (6.32)

∆〈ε〉p
i j =∆〈γ〉〈m〉i j ≈∆〈γ〉

nip∑
τ

mi j
(〈σ〉i j ,τ+ σ̃i j ,τ

)
βτωτ (6.33)

where ωτ is the integration weight at t̃ = τ and βτ is a factor used to account for the
discontinuous nature of the viscoplastic operators: βτ = 1 if the yield function is crossed
at point τ and βτ = 0 otherwise.

VISCOPLASTIC RETURN MAPPING

Since the flow direction 〈m〉i j does not depend only on 〈σ〉i j but rather on the total
stressσi j , the simple return mapping algorithm with a single unknown presented in [22]
cannot be employed here. The resultant system of equations with seven unknowns in
matrix notation is given by:{

rσ = 〈σ〉−〈σ〉tr +∆〈γ〉D〈m〉 = 0

r γ = 〈g 〉∆t −∆〈γ〉 = 0
(6.34)

which is solved iteratively using the Newton-Raphson method:

( 〈σ〉
∆〈γ〉

)
n
=

( 〈σ〉
∆〈γ〉

)
o
−


∂rσ

∂〈σ〉
∂rσ

∂∆〈γ〉
∂r γ

∂〈σ〉
∂r γ

∂〈γ〉


−1

o

(
rσ

r γ

)
o

(6.35)

where the subscripts n and o indicate values from the current and previous iterations,
respectively. Elaborating the residual derivatives gives:

∂rσ

∂〈σ〉 = I+∆〈γ〉D
∂〈m〉
∂〈σ〉 (6.36)

∂rσ

∂∆〈γ〉 = D〈m〉 (6.37)

∂r γ

∂〈σ〉 =
∂〈g 〉
∂〈σ〉∆t (6.38)

∂r γ

∂∆〈γ〉 =
∂〈g 〉
∂∆〈γ〉∆t −1 (6.39)

where I is the identity matrix. The derivatives of the numerically integrated time aver-
ages of m and g are given by:

∂〈m〉
∂〈σ〉 =

nip∑
τ

[
3I+

(
2

9
α−1

)
I2

]
βτωτ (6.40)
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∂〈g 〉
∂〈σ〉 =

mp

ηp(σi
tσ

i
c)mp

nip∑
τ

f
mp−1
τ

∂ fτ
∂〈σ〉βτωτ (6.41)

∂〈g 〉
∂∆〈γ〉 =

mp

ηp(σi
tσ

i
c)mp

nip∑
τ

f
mp−1
τ

∂ fτ
∂∆〈γ〉βτωτ (6.42)

where I2 is the Voigt representation of the tensor δi jδkl . The derivatives of the yield
function with respect to stress and plastic multiplier at t̃ = τ are computed as:

∂ fτ
∂〈σ〉 = 6

(〈s〉+ s̃τ
)T

(
I− 1

3
I2

)
+2(σc −σt)i1 + ∂ fτ

∂〈ε〉p
eq

∂∆〈ε〉p
eq

∂〈σ〉 (6.43)

∂ fτ
∂∆〈γ〉 =

∂ fτ

∂〈ε〉p
eq

∂∆〈ε〉p
eq

∂∆〈γ〉 (6.44)

where i1 is the Voigt representation of the matrix δi j . In the previous expressions, the
derivative of f with respect to equivalent plastic strain is the tangent pressure-dependent
hardening modulus:

∂ fτ

∂〈ε〉p
eq

= 2(〈I1〉+ Ĩτ1 )(Hc −Ht)−2(σcHt +σtHc) (6.45)

with Hc and Ht being the hardening moduli in compression and tension, respectively.
The formulation is completed by defining the variations of equivalent plastic strain with
stresses and plastic multiplier:

∂∆〈ε〉p
eq

∂〈σ〉 = (∆〈γ〉)2k

∆〈ε〉p
eq

〈m〉∂〈m〉
∂〈σ〉

∂∆〈ε〉p
eq

∂∆〈γ〉 =
√

k〈m〉〈m〉 (6.46)

where k = 1/(1+ 2νp) is the plastic contraction factor from Eq. (6.11). It is important
to note that the present algorithm is suitable for multiaxial load cases, thus expanding
upon the multi-point integration return mapping proposed by Haouala and Doghri [2]
for uniaxial loading.

ALGORITHMIC TANGENT STIFFNESS

The last step in the time-homogenized viscoplastic discretization is the definition of the
algorithmic tangent stiffness matrix. Taking the full derivative of rσ yields:

δ〈σ〉 = Dδ〈ε〉−D〈M〉δ∆〈γ〉−∆〈γ〉D
∂〈m〉
∂〈σ〉 δ〈σ〉−∆〈γ〉D

∂〈m〉
∂∆〈γ〉δ∆〈γ〉 (6.47)

where the last term evaluates to zero since 〈m〉 does not depend on the plastic multiplier.
In order to obtain an expression for δ∆〈γ〉, the full derivative of r γ is rearranged into:

δ∆〈γ〉 = 1

µ

∂〈g 〉
∂〈σ〉∆tδ〈σ〉 (6.48)

with µ given by:

µ= 1− ∂〈g 〉
∂∆〈γ〉∆t (6.49)
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Finally, substitution of Eq. (6.48) into Eq. (6.47) yields an expression for the tangent
stiffness matrix:

δ〈σ〉 = H−1Dδ〈ε〉 (6.50)

where the matrix H is:

H = I+ ∆t

µ
D〈m〉 ∂〈g 〉

∂〈σ〉 +∆〈γ〉D
∂〈m〉
∂〈σ〉 (6.51)

6.4. REDUCED-ORDER MODELING
Although promoting gains in execution time, both micro- and macrochronological prob-
lems of Section 6.3 are still conventional finite element problems often featuring dense
meshes and a large number of degrees of freedom. In this section, an additional set of
numerical techniques used to reduce the complexity of a finite element problem is pre-
sented.

6.4.1. FULL-ORDER FE PROBLEM
In the current development, a stress equilibrium problem is solved using the Finite Ele-
ment (FE) method. The domain Ω is subdivided in a number of discrete elements con-
nected by nodes, with a total of N degrees of freedom. The global equilibrium problem
is therefore solved iteratively (e.g. with a Newton-Raphson solver) in its weak form:

r = fΓ− fΩ(u) = 0 (6.52)

where r ∈ RN is a residual vector that vanishes at equilibrium, fΓ ∈ RN is an external
force vector representing a set of Neumann boundary conditions acting on surfaces Γf

and fΩ ∈ RN is the internal force vector which is a function of the nodal displacements
u ∈ RN . In Eq. (6.52), Dirichlet constraints of the form u

∣∣
Γu

= uΓ are implicitly applied
(Γf ∩Γu =∅).

Solution of Eq. (6.52) involves iteratively correcting the displacement vector as fol-
lows:

∆u = un −uo =−K−1
o ro (6.53)

where the subscripts o and n refer to values from the old and new analysis increments,
respectively, K ∈RN×N is the global tangent stiffness matrix:

K = ∂fΩ

∂u
(6.54)

and the global internal force vector is obtained by a volume integral:

fΩ =
∫
Ω

fdΩ≈
M∑
i

f(xi )wi (6.55)

where f ∈ RN is the sparse internal force vector at a given material point obtained af-
ter an assembly procedure that relates the local degrees of freedom of a given element
with their global counterparts. The integral is computed numerically by evaluating the
integrand f at M integration points with integration weights w ∈RM .
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Two main complexity reduction avenues can be identified. Firstly, reducing the num-
ber of degrees of freedom N accelerates the solution of the nonlinear equilibrium prob-
lem of Eq. (6.52). Section 6.4.2 presents a strategy of reduction by projection that aims to
address this part of the complexity. Secondly, solving the problem for n ¿ N degrees of
freedom still requires the volume integration of f, which in turn depends on the size of
the full problem. Section 6.4.3 presents a modified numerical integration technique that
drastically reduces the number of integration points to m ¿ M in Eq. (6.55).

After these two reduction procedures, the constitutive response of most of the origi-
nal integration points is never computed, causing loss of information in terms of stresses
and material history. If stresses and history at every material point are required online
(e.g. an adaptive reduction scheme involving sporadic execution of a full analysis), an
efficient recovery procedure becomes necessary. Section 6.4.4 presents a combination
of techniques that use information at the reduced integration points to retrieve stresses
and history at all other points in the mesh. Finally, an adaptive reduction scheme which
avoids the need of an offline training phase is presented in Section 6.4.5

6.4.2. PROPER ORTHOGONAL DECOMPOSITION (POD)
The full model response u may be approximated by the linear combination of n ¿ N
displacement modesφi ∈RN (also called Ritz vectors [6]). By arranging such modes in a
matrixΦ ∈RN×n :

Φ= [
φ1 φ2 · · · φn

]
(6.56)

the original problem can now be expressed in terms of relative contributions αi of each
mode:

u =Φα (6.57)

withα ∈Rn being the reduced vector of degrees of freedom.
With this definition, the problem of Eq. (6.52) can be solved in the reduced space

by enforcing the Galerkin projection constraint ΦTr = 0. The force vectors and stiffness
matrix are then given by:

fΩr =ΦTfΩ fΓr =ΦTfΓ Kr =ΦTKΦ (6.58)

and Dirichlet boundary conditions can be imposed on α by selecting the terms of the
basis vectors corresponding to the original constraints:

uΓ =Φ∣∣
Γu
α (6.59)

The basis matrixΦ is obtained in the so-called offline or training phase by first run-
ning the full model and collecting displacement snapshots for each configuration (time
step or loading type), resulting in a snapshot matrix X ∈ RN×P . In the classic Proper Or-
thogonal Decomposition (POD) method, the basis matrix is obtained through the Sin-
gular Value Decomposition (SVD) of X:

X =ΦSVT (6.60)

where Φ is the left-singular matrix of orthonormal basis vectors, V is the right-singular
basis matrix and S is a diagonal matrix of singular values.
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In the present development, this procedure is complemented by the elastic-inelastic
decompostion proposed by Hernández et al. [24]. First, the snapshot matrix is decom-
posed into elastic (Xe) and inelastic (Xi) parts:

X = [
Xe Xi

]
(6.61)

Then, an orthogonal basis matrix Y ∈ RN×ne for the ne first elastic modes of Xe is com-
puted and the full X is projected into it:

Xe = Y(YTX) (6.62)

yielding a modified elastic snapshot matrix. Finally, the inelastic part is obtained by
subtracting it from the original X:

Xi = X−Xe (6.63)

With the modified versions of Xe and Xi, the SVD is applied separately to each of them
and the resulting left-singular matrices are truncated to ne elastic modes and ni inelastic
modes:

Xe ≈ UeSeV
T
e Xi ≈ UiSiV

T
i (6.64)

with Ue ∈ RN×ne , Ui ∈ RN×ni and n = ne +ni. Finally, the basis is the combination of
elastic and inelastic contributions:

Φ= [
Ue Ui

]
(6.65)

6.4.3. EMPIRICAL CUBATURE METHOD (ECM)
In addition to reducing the complexity of the global equilibrium equations of Eq. (6.52),
further acceleration is possible by reducing the number of material points used to com-
pute the internal force vector from M to m ¿ M (the subscript r is omitted for compact-
ness):

fΩ =
∫
Ω

fdΩ≈
m∑

i=1
f(xi )$i (6.66)

where $i are modified integration weights. The result of combining this strategy with
POD is a so-called hyper-reduced model. The Empirical Cubature Method (ECM) pro-
posed by Hernández et al. [12] is chosen in order to determine an optimized combina-
tion of points and weights. The method is summarized here in order to keep the work
self-contained, but without motivating every formulation choice. For further details, the
interested reader is referred to the original works by Hernández et al. [12] and An et al.
[13].

The optimization problem involved in determining the set ζ of m integration points
and their respective weights$ consists in minimizing the integration error for all P train-
ing configurations:

($,ζ) = argmin
$∈Rm ,ζ∈Nm

‖E‖ (6.67)

where the matrix E ∈ Rn×P consists of error vectors e j ∈ Rn for each training configura-
tion j :

e j =
m∑
i

f j (xi )$i −
∫
Ω

f j dΩ (6.68)
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and the operator ‖·‖ applied to a matrix is its Frobenius norm:

‖E‖ =
√√√√ n∑

i

P∑
j

E 2
i j (6.69)

Solving Eq. (6.67) for all training configurations P can be burdensome, especially if a
large number of time steps is considered (which is commonly the case for VE/VP mod-
els). Alternatively, f j can be approximated by a set of basis functionsΛk and coefficients
ck

j that reasonably approximate its value for all P training configurations. Since only the

coefficients change with j , the error vector may be rewritten as:

f j ≈
p∑

k=1
Λk ck

j ⇒ e j =
[

m∑
i=1

(
p∑

k=1
Λk (xi )

)
$i −

∫
Ω

(
p∑

k=1
Λk

)
dΩ

]
c j (6.70)

which reduces the size of the optimization problem from P to p, with p ¿ P . Based on
this idea but using a basis matrixΛ instead of basis functions, Eq. (6.67) can be recast as:

(α,ζ) = argmin
α≥0 ,ζ

∥∥∥J
ζ
α−b

∥∥∥2
(6.71)

with the weights:
$i =p

wiαi (6.72)

and the terms Jζ and b:

Jζ =
[
Λζ

√
wζ

]T
b = [

0 Ω
]T

(6.73)

where Λζ ∈ Rm×p is a block matrix extracted from Λ ∈ RM×p corresponding to the re-
duced set of m integration points ζ ⊂ {1,2, ..., M }. Inclusion of the original integration
weights w and the domain volumeΩ in the problem guarantees that the reduced points
and weights will integrate the domain volume exactly and eliminates the ill-posedness
of the optimization problem if fΩj = 0,∀ j (e.g. when only Dirichlet boundary conditions

are used).
In order to obtain the basis matrix Λ for the internal forces, the stress-based ap-

proach presented in Hernández et al. [12] is adopted in combination with the elastic-
inelastic decomposition presented in Section 6.4.2. The POD-reduced model is executed
for all P training configurations and the stresses at every integration point are gathered
as:

Xσ =


σ1(x1) σ2(x1) · · · σP (x1)
σ1(x2) σ2(x2) · · · σP (x2)

...
...

. . .
...

σ1(xM ) σ2(xM ) · · · σP (xM )

 (6.74)

withσ ∈Rs , with s being the number of stress components. Applying the elastic-inelastic
decomposition procedure, a basis matrix for stresses Ψ ∈ RsM×q and its corresponding
singular valuesλ ∈Rq are obtained:

Ψ=
[

U
σ
e U

σ
i

]
λ= [

se si
]

(6.75)
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The basis matrix is then obtained by combining the projected internal force vector
F̂ j ∈RM×n for each column ofΨ:

Λ= [
F̂ 1 F̂ 2 · · · F̂ q

]
(6.76)

where the contribution of each mode is given by:

F̂ j =



p
w1

(
f j (x1)− 1

Ω fΩj

)
p

w2

(
f j (x2)− 1

Ω fΩj

)
...p

wM

(
f j (xM )− 1

Ω fΩj

)

 (6.77)

and the internal force is computed from the stress snapshots as:

f j =ΦTBTλ jψ j (6.78)

where ψ j ∈ Rs is a block extracted from Ψ corresponding with the j -th stress snapshot
and B ∈ Rs×N is the strain-displacement matrix expanded to global size by a conven-
tional FE assembly procedure. It can be seen from Eqs. (6.76) and (6.77) that, for such
stress-based strategy, the number of columns p ofΛ is qn.

The optimization problem of Eq. (6.71) is solved using Algorithm 1, a modified ver-
sion of the classic active set algorithm developed by Lawson and Hanson [25] incorpo-
rating changes proposed by An et al. [13] and Hernández et al. [12].

6.4.4. STRESS AND HISTORY RECONSTRUCTION
Employing an ECM-reduced model leads to loss of information in terms of stress and
material history at most integration points. In order to circumvent this drawback, an
efficient recovery procedure is proposed that combines the so-called Gappy Data re-
construction [11, 12] with a k-means clustering algorithm inspired by the work of Liu
et al. [15]. Gappy data reconstruction consists in approximating a vector using values at
a small number of sampling points through a least-squares procedure based on previ-
ously obtained snapshots of the full vector. The method is the basis for hyper-reduction
methods such as the Discrete Empirical Interpolation Method (DEIM) [9] and has also
been employed by Hernández et al. [12] for stress recovery.

The efficiency of the recovery procedure can be further improved by using a k-means
clustering algorithm, a method originally employed in machine learning, data mining
and image compression applications, which involves grouping entities in k clusters based
on how similar each entity is to the mean value of each cluster. The method was used in
a mechanical analysis context by Liu et al. to cluster material points based on their me-
chanical response and solve a reduced equilibrium problem [15]. Here, the two methods
are combined, resulting in a compressed version of the classical Gappy data reconstruc-
tion. First, a history snapshot matrix similar to the one from Eq. (6.74) is assembled:

Xhist =


h1(x1) h2(x1) · · · hP (x1)
h1(x2) h2(x2) · · · hP (x2)

...
...

. . .
...

h1(xM ) h2(xM ) · · · hP (xM )

 (6.79)
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Input: J = [
Λ

p
w

]T
, b = [

0 Ω
]T

, m, imax, tol
Output: Reduced point set ζ, Modified integration weights$
Initialization: ζ=∅, y = {1,2, ..., M },α= 0,αold = 0, r = b;
while size(ζ) ≤ m and i ≤ imax and r

‖r‖ > tol do

compute next index j = argmax
j∈y

( J j∥∥∥J j

∥∥∥
)T(

r
‖r‖

)
;

move j from y to ζ;

update integration weightsαζ = (JT
ζ

Jζ)−1JT
ζ

b,αy = 0;

while any element ofαζ < 0 do

compute return amplitude c = min
( αold

ζ

αold
ζ

−αζ

)
;

correct integration weightsαζ =αold
ζ

+ c(αζ−αold
ζ

);

move to y all indices j from ζ for which αζ, j = 0;

update integration weightsαζ = (JT
ζ

Jζ)−1JT
ζ

b,αy = 0;

end

updateαold
ζ

=αζ, r = (b− Jζαζ);

end
compute the final weights $ j =p

w jαζ, j ;

Algorithm 1: Nonnegative least-squares algorithm for ECM.

with Xhist ∈ RhM×P and h is the size of the history vector which may also include the
stresses. In that case, the remaining history terms may be added to the already stored Xσ

for efficiency.
The SVD is then applied to Xhist in order to obtain a truncated orthonormal basis

matrixΥ ∈RhM×p for history:
Xhist ≈ΥSVT (6.80)

which can be divided in a block corresponding to the reduced integration points (Υζ)
and a block corresponding to the remaining points for which history is unknown (Υy).
If only stresses are being recovered, the basis matrixΨ of Eq. (6.75) can be used directly
without performing another SVD.

After gathering the history data computed at the reduced integration point set ζ in
a vector, history at the remaining points is obtained via Gappy Data reconstruction as
follows:

hy =Υy

(
ΥT
ζΥζ

)−1
ΥT
ζhζ (6.81)

with hy ∈ Rh(M−m) and hζ ∈ Rhm . Although all right-hand side terms aside from hζ can
be pre-computed, this recovery approach is still dependent on the full size of the mesh
(since m ¿ M) and may become inefficient if h is large — which incidentally is the case
for a VE/VP material with multiple Prony elements for which hereditary stresses have to
be stored.

An alternative to improve the efficiency of the recovery procedure consists in divid-
ing the points in y into k clusters, where k ¿ (M−m), and assuming that all points inside
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a given cluster have the same history. The recovery problem is therefore reduced to de-
termining h for each cluster:

hC =ΥC

(
ΥT
ζΥζ

)−1
ΥT
ζhζ (6.82)

where hC ∈Rhk andΥC ∈Rhk×p is a compressed version ofΥy now containing the aver-
age cluster response for each loading scenario.

In the present approach, instead of building clusters using the Euclidean distance
between points (e.g. a Voronoi diagram), the Frobenius norm of the difference between
the basis matrix of a point and the cluster average is used as objective function in an
optimization procedure:

(C ,ΥC ) = argmin
C

k∑
i=1

∑
j∈ci

∥∥∥Υ j −Υi
C̄

∥∥∥2
(6.83)

where C is a matrix containing the indices of points inside the k clusters ci :

C = [
c1 c2 · · · ck

]
(6.84)

Υ j ∈ Rh×q is a block matrix corresponding to integration point j extracted from Υy and
Υi

C
∈ Rh×q is the centroid of the i -th cluster. The clustering procedure is performed

using the classical Lloyd’s algorithm [26], the steps of which are presented in Algorithm
2 for completeness.

Input: Basis matrix of non-ECM pointsΥy, number of clusters k
Output: Cluster set C , compressed basisΥC

Initialization: Select k random points from y as centroids;

while C old 6=C do
C old =C ;
for each j in y do

move point to cluster i = argmin
ī

∥∥∥Υ j −Υī
C

∥∥∥2
;

end
for each ci in C do

update centroidΥi
C
= 1

Ni

∑
j∈ci

Υ j ;

end
end

Algorithm 2: k-means clustering procedure for history recovery.

6.4.5. ADAPTIVE POD
One last analysis strategy combining Time Homogenization and POD is proposed. Since
TH guarantees that the microchronological cycles are purely VE, it follows that a POD
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basis which correctly represents the structure’s behavior at the beginning of a micro cycle
will maintain its accuracy during at least the entirety of the cycle.

This observation motivates the use of an adaptive reduction scheme: The analy-
sis starts unreduced until the first macrochronological point is reached. The obtained
snapshots are then gathered and the SVD is performed in order to obtain a POD ba-
sis. From this point on, all micro steps are reduced and all macro steps are unreduced.
After each macro step, the model is checked for plastic strain development. If this is de-
tected, the current POD basis is updated to include the latest full model response. The
macrochronological displacement field u is projected on the current base by means of a
Gram-Schmidt process:

v = u−
n∑

i=1
φT

i uφi (6.85)

and the resulting mode is included in the basis. If the number of snapshots exceeds
a user-determined limit, the oldest live snapshot is removed. Such a scheme exploits
features of both TH and POD and requires no offline training, being useful in situations
for which the loading path is not known a priori. Although the examples in this work
are confined to a scheme that updates the POD basis every time further plastic strain is
developed, variations of the method can be developed in which updating is performed
less frequently. Due to this high update frequency, which would imply the execution
of Algorithm 1 at every macrochronological step, ECM is not included in the present
adaptive scheme.

6.5. RESULTS AND DISCUSSION
The numerical techniques presented in Sections 6.3 and 7.4.3 were implemented in in-
house Finite Element software built using the open-source Jem/Jive C++ numerical anal-
ysis library [27]. In this section, each of the techniques is applied to the solution of
microscopic boundary-value problems in laminate composites and their performance
is assessed in terms of acceleration and retention of accuracy. The material properties
used in all examples are shown in Table 6.1. The micromodels consist of unidirectional
fibers embedded in resin in plane strain conditions. Periodic geometries with pseudo-
random fiber arrangements were generated using the discrete element package HADES
[22] and meshed with Gmsh [28]. Micromodel sizes ranging from a unit cell with a single
fiber to domains with 7×7 fibers are used in the examples.

First-order (3-node) triangular elements are used in all micromechanical examples.
It should be noted in passing that using first-order elements, especially in coarse meshes,
may lead to irregular stress distributions that can influence plastic strain development.
This issue is, however, left out of the scope of the present work, which instead focuses on
the additional losses in accuracy caused by the acceleration techniques of Sections 6.3
and 7.4.3. In using these methods, it is therefore assumed that the full-order model used
as basis for constructing the faster reduced models has an adequate level of fidelity.

When cyclic loads are treated, the following general load characteristic is adopted:

at +b(t )sin

(
2πt

T

)
+ c (6.86)
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Linear-elastic glass fibers ([29])

K [MPa] 43452

G [MPa] 29918

Viscoelastic/viscoplastic epoxy resin (5)

K∞ [MPa] 3205

G∞ [MPa] 912

Ku [MPa] 125 182 625 143

Gv [MPa] 36 52 178 41

ku [s] 4.16 ·10−2 2.30 ·100 4.22 ·101 3.11 ·104

gv [s] 1.46 ·10−1 8.08 ·100 1.48 ·102 1.09 ·105

σt [MPa] 64.80−33.6e−ε
p
eq/0.003407 −10.21e−ε

p
eq/0.06493

σc [MPa] 81.0−42.0e−ε
p
eq/0.003407 −12.77e−ε

p
eq/0.06493

ηp [s] 3.49 ·1012

mp [-] 7.305

νp [-] 0.32

Table 6.1: Material properties used in the numerical examples.

where T is the load period and the coefficients a, b and c vary in the examples. Loads
are applied as prescribed displacements to the corner nodes of the micromodel and rep-
resent a macroscopic strain value that is constant inside the micro domain. Periodic
boundary conditions are applied to the edges of the micromodel in order to simulate the
behavior of a macroscopic material point [22]. The results presented here are therefore
representative of using these acceleration techniques in an FE2 context. All examples
are executed on a single core of a Core i7-7500U processor on a machine with 8GB RAM
running Ubuntu 16.04.3. The reported speed-ups are the average of three executions.

6.5.1. TIME HOMOGENIZATION

Before applying the time homogenization (TH) technique to a micromodel, it is first
used in a one-element mesh. Since time homogenization is applied directly at the con-
stitutive model level, a one-element model can be used to obtain knowledge on its ad-
vantages and drawbacks.

First, time-step dependency of a full VE/VP model is illustrated. A cyclic strain εxx

with shape a = 0, b = 1.125×10−2, c = 1.375×10−2 and period T = 0.01s is applied and
the full model (TH deactivated) was executed until t = 40s, for a total of 4000 cycles. The
model is executed with different numbers of steps per cycle (i.e. with ∆t ranging from
0.01 s to 0.0005 s). Fig. 6.2 shows the evolution of stresses in the last load cycle.

It is interesting to note that the one-step curve essentially models the cyclic strain
as a relaxation test, with a significant plastic strain overshoot (8.3% lower stress). The
retardation effect caused by cycling the strain instead of holding it is lost. As more points
are added, better predictions of the plastic strain are obtained. This illustrates the im-
portance of using appropriately sized time steps for time-dependent materials. The po-
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Figure 6.3: Comparison between full and TH responses.

tential of TH lies in reducing the computational effort of the analysis while maintaining
the original number of time steps.

The same example is also run with time homogenization. Since the amplitude of
the microscopic loading does not change with time, it is possible to both run the mi-
crochronological steps for every load cycle (TH refreshed) or alternatively compute the
microscopic stresses only once and skip refreshing their values for the rest of the anal-
ysis (TH not refreshed). In Fig. 6.3, the graph on the left shows the response during the
second load cycle while the one on the right shows the response during the last cycle.
As expected, VE/VP relaxation leads to drops in peak and valley stresses even though
the load has constant mean and amplitude. Use of TH results in differences in stress
of approximately 1.5 MPa and a relative error of approximately 2.3 % with respect to the
full solution. This difference is constant throughout the analysis, in contrast with the
observations made by Haouala and Doghri [2] who obtained significantly higher differ-
ences during the first cycles. This may be due to the choice of numerical time integration
(1-point Gauss in [2] versus trapezoidal integration here). Skipping all microchronolog-
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Figure 6.4: Time homogenization of variable-amplitude loading: Effect of refreshing σ̃.

ical cycles except the first one results in the same solution but requires significantly less
equilibrium steps. In this case, only the solution is only computed for the macrochrono-
logical steps, but the original homogenized curve would be readily recovered by adding
the stored values of σ̃.

Although computing the microchronological part of the loading only once leads to
higher speed-ups (≈ 18 versus 1.3 when refreshing σ̃ every cycle), this strategy becomes
unsuitable for cases when the microscopic loading depends on the macroscopic time
(e.g. variable-amplitude loading). In order to illustrate this effect, the applied strain is
modified by making b = 1.125×10−2pt for 0s ≤ t ≤ 1s and b = 1.125×10−2

p
2− t for

1s ≤ t ≤ 2s. The results can be seen in Fig. 6.4, where TH responses shown as 〈σxx〉 to
avoid clutter. For this loading scenario, keeping the σ̃ values for the first cycle through-
out the analysis leads to a significant overshoot in stress response, while refreshing it
leads to better predictions.

Finally, TH is applied to a micromodel with 2×2 fibers to which a horizontal cyclic
displacement with increasing mean is applied to its bottom-right corner node (a = 5×10−4,
b = 5.625×10−5, c = 6.875×10−5). The resultant load is obtained by summing up the
horizontal internal force components at the right edge of the micromodel. Fig. 6.5 shows
the obtained results. Both Refreshed and Not refreshed responses are found to be accu-
rate, with a difference of approximately 1.1 % with respect to the full response. It is inter-
esting to note that, even though the mean displacement is increasing, the microchrono-
logical cycle is constant and computing it only once for the complete analysis does not
bring additional loss of accuracy.

6.5.2. REDUCED-ORDER MODELING

PROPER ORTHOGONAL DECOMPOSITION (POD)
First, the performance of POD in isolation is assessed. A 2×2-fibers micromodel is sub-
jected to uniaxial tension with a linearly-increasing deformation εxx (a = 5×10−2, b =
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c = 0) until plastic strain starts to localize in bands and the global response is perfectly-
plastic. Applying the SVD to the collected displacement snapshots, a series of reduced
models with increasing number of modes is obtained. Fig. 6.6 shows the full model re-
sponse along with the reduced response with 1, 2 and 5 modes. Using the elastic/inelastic
decomposition of Eq. (6.56), the elastic response of the model is always exactly captured
with a single mode. As expected, this single mode loses precision as plastic strain devel-
ops, requiring the presence of additional modes. For this micromodel and loading type,
using 5 modes (1 elastic and 4 inelastic) yields a maximum relative error of 0.44 % with
respect to the full solution. Fig. 6.7a shows the evolution of the error as additional modes
are added.

Keeping a constant number of modes (1 elastic and 4 inelastic), the resultant acceler-
ation caused by reducing the size of the global equilibrium problem for different micro-
model sizes ranging from a unit cell (1×1) to a micromodel with 49 fibers (7×7) is shown
in Fig. 6.7b. As expected, the acceleration increases with micromodel size as the number
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Figure 6.8: Precision of the POD-reduced model for increasingly large micromodels.

of degrees of freedom increases but the number of modes is kept constant (resulting in
a higher compression ratio CR = N

n ). With an acceleration of up to 15 times, the POD
speed-ups obtained in the current study are significantly higher than the ones reported
by Hernández et al. [12], who report a speed-up of 2 for a model with N = 92326 and
CR = 9217. Finally, the maximum relative error in load-displacement behavior for n = 5
and different micromodel sizes are plotted in Fig. 6.8. It is observed that the error caused
by the POD reduction remains small irrespective of the RVE size. Since POD modes are
constructed with the global displacement field of the micromodel, the precision of the
method does not depend on N . In practice, this allows for increasing the size of the mi-
crodomain — which largely determines its ability to correctly represent a macroscopic
material point — without sacrificing accuracy or efficiency.
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Figure 6.9: Precision of the ECM-reduced model with the number of points and stress modes.

EMPIRICAL CUBATURE METHOD (ECM)
Moving to the hyper-reduced model based on the ECM approach of Section 6.4.3, the
first investigation considers the performance of the nonnegative least squares proce-
dure of Algorithm 1. Using the same micromodel as the one of Fig. 6.6, the n = 5 POD
model is used as a first reduction phase, and q = 5 stress modes are used in the SVD of
Eq. (6.75), resulting in a J matrix with 26 columns. The selection algorithm is truncated
at different values of m. The resultant hyper-reduced model is run and the relative er-

ror in the global internal force vector at the last analysis step is computed as
∥∥fΩECM−fΩPOD

∥∥∥∥fΩPOD

∥∥ .

Results are shown in Fig. 6.9a. The point selection algorithm progressively reduces the
integration error, reducing to 0.03 % when 26 (nq +1) points are selected, at which point
Jζ becomes a square matrix and the mesh volume is exactly integrated. Although such
low integration error effectively guarantees an excellent approximation for the reduced
internal force vector, the convergence behavior of the selection algorithm shows a de-
parture from the asymptotic convergence observed by Hernández et al. [12]. Assuming
the selection algorithm was correctly implemented, this difference may indicate that the
performance of a truncated ECM-reduced model is problem-dependent.

The number of stress modes q also impacts the quality of the approximated inte-
gral. Fig. 6.9b shows the resultant integration error for different values of q while main-
taining nq + 1 ECM points. As expected, if only a single (elastic) stress mode is used,
the hyper-reduced approximation of the internal force vector is inaccurate. This error
quickly moves to zero as more modes are added.

Keeping n = q = 5 (resulting in 26 integration points), the obtained analysis speed-
up as the micromodel size increases is shown in Fig. 6.10a. Once again the speed-up in-
creases with micromodel size as the number of integration points M increases together
with the compression ratio CR = M

m , with a value as high as 120 for a 7×7 micromodel.
One last interesting aspect that drives ECM performance is the number of loading

scenarios included in the training set. The importance of including additional loading
cases when training both POD and ECM is illustrated in Fig. 6.11. The equivalent plas-
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Figure 6.10: ECM speed-ups for different micromodel sizes and number of loading scenarios in basis.

tic strain field on the left was obtained by running the full model of a 5×5 micromodel
subjected to biaxial tension loading indicated by the red arrows. Including both hori-
zontal and vertical load cases in the reduced basis (n = 10) and running the resultant
POD-reduced model yields the erroneous field shown on the right. Even though the ini-
tial linear behavior is correctly captured by the snapshots of both longitudinal load cases
in isolation, a spurious strain localization behavior is obtained at higher strains.

For most practical applications, it is therefore necessary to include a large num-
ber of loading scenarios when training a reduced model, which leads to an increased
number of reduced DOFs n and consequently to a higher number of integration points
m. Fig. 6.10b shows that the resultant speed-up is significantly impacted by such ex-
tended training. This highlights the importance of developing adaptive reduction meth-
ods which can improve their predictions on-the-fly [6, 7, 19, 20].

GAPPY DATA AND K-MEANS CLUSTERING

The investigation moves to the history recovery procedure based on the Gappy Data re-
construction and the k-means clustering method. Fig. 6.12 shows the result of the clus-
tering process in a 5×5 micromodel with different values of k and a history vector of size
30 (including stresses, strains, plastic strains, equivalent plastic strain and hereditary
stresses). The history snapshots are stored together with the stress snapshots used for
ECM training, in this case for a longitudinal tensile loading. Similar to the ones obtained
by Liu et al. [15], the clusters are irregular and disconnected.

Using the compressed Gappy Data process to reconstruct the equivalent plastic strain
field of a longitudinal tensile test yields the fields shown in Fig. 6.14. This post-localization
field is especially challenging for reconstruction, as the clustered micromodel has diffi-
culty to reproduce the observed localization bands. Instead, a diffuse distribution of
strain is predicted for models with low k. For 100 clusters, the band patterns start to
be correctly reproduced, although some diffusion is still noted. The clustering proce-
dure produces better results if the original field also exhibits a diffuse behavior, as seen
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Figure 6.11: Erroneous post-localization response of a reduced model with incomplete basis.

in Fig. 6.15 for the plastic strain field prior to localization. However, even for localized
bands, an increase of the number of clusters leads to better reconstructions. Using the
same compressed Gappy Data matrix, the stresses in the resin are also reconstructed
(Fig. 6.16).

Finally, Fig. 6.13 shows the additional time spent with history reconstruction as the
number of clusters increases. Using the original Gappy Data reconstruction approach
without the clustering leads to a increase of 200 % in execution time due to the very
large matrix operations involved in the reconstruction process. This effectively negates
a significant part of the speed-up obtained through POD and ECM. On the other hand,
compressing the reconstruction matrix through clustering makes the reconstruction op-
eration significantly more efficient, with up to only 15 % increase in execution time for
100 clusters. Here, the compression ratio is given by CR = k

M−m .

ADAPTIVE POD
The performance of the adaptive POD scheme of Section 6.4.5 is assessed by returning
to the final example of Section 6.5.1. The results of the adaptive method (A-POD) are
compared with the ones obtained with TH in isolation and by solving the micro cycles
with a POD model (n = 2) trained online with data from the first micro cycle but not
updated as the analysis progressed. For the adaptive model, a limit of 1 elastic mode
and 1 adaptive mode is adopted. The curves for the first 0.25s of loading are shown in
Fig. 6.17.

As expected, the non-refreshed POD model loses precision as the analysis progresses.
The incorrect displacement modes used during the micro cycles also degrade the solu-
tion quality of the fully-solved macro steps (indicated by markers). On the other hand,
the adaptive model yields exactly the same solution as the TH model.

6.5.3. COMBINING THE METHODS
After establishing the capabilities of time homogenization and reduced order modeling
separately, they are now combined in solving a practical case of micromechanical analy-
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sis of a micromodel subjected to cyclic loads. The problem involves the analysis of a 7×7
micromodel subjected to a horizontal tensile cyclic displacement described by Eq. (6.86)
with a = 5×10−4, b = 5.625×10−5, c = 6.875×10−5 and T = 0.01s, identical in shape to
the one used in Fig. 6.5. The analysis is stopped when a time t = 5s is reached.

Method Recovery Refreshed σ̃ Error [%] Runtime [s] Speedup [-]

Full N/A N/A - 19440 1.0

TH N/A Yes 0.68a 6538 2.97

Adaptive POD N/A N/A 0.68a 3691 5.27

TH N/A No 0.68a 3144 6.18

TH + POD N/A Yes 1.19a 974 19.9

TH + POD + ECM Unclustered Yes 0.25b 604 32.2

TH + POD N/A No 1.19a 452 42.9

TH + POD + ECM k = 100 Yes 0.25b 134 145.0

TH + POD + ECM None Yes 0.25b 111 174.9

TH + POD + ECM k = 100 No 0.25b 17.9 1086.4

TH + POD + ECM None No 0.25b 16.6 1167.8

aError computed from the load-displacement behavior with the full solution as reference.
bAdditional error computed from the reduced fΩ vector with the POD solution as reference

Table 6.2: Runtimes obtained using different combinations of techniques.

Table 6.2 shows the obtained execution times for the problem at hand by using dif-
ferent combinations of TH, POD, ECM and clustering. All models that required training
are trained by subjecting the micromodel to a monotonically increasing horizontal ten-
sile loading until a perfectly plastic response is obtained. History recovery is performed
both with k = 100 and through unclustered Gappy Data. Since the accuracy of the meth-
ods was already investigated in the previous sections, this example is only concerned
with speed-ups.

It is interesting to note that, for this specific load case, only time homogenization in
isolation, with a speed-up of approximately 3, allowed for larger time savings than for the
cases considered in Section 6.5.1. The speed-up is related to the fact that, as the mean
load increases, all microchronological stress points actually lie above the yield surface,
which results in a large number of Newton-Raphson iterations in the full analysis. The
TH model, on the other hand, solves a purely VE problem for every microchronological
time step which does not need any iterations. The adaptive POD strategy takes longer
to run than a non-refreshed TH model without ROM. It should be noted, however, that
the adaptive POD would prove advantageous if a variable-amplitude loading was con-
sidered. Furthermore, the adaptive strategy requires no offline training and still provides
reasonable acceleration without additional sources of error.

Combining POD with the time homogenized model increases the speed-up to 20
and 42 for the cases with refreshed and not refreshed microscale stresses, respectively.
The effect of precomputing σ̃ brings an additional speed-up of approximately 2, in con-
trast with the additional acceleration of about 14 obtained in the one-element tests of
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Section 6.5.1. In this case, the large number of iterations required for each macro step
dominates the execution time, making the influence of the linear micro steps less pro-
nounced.

Very large speed-ups are obtained by also adding ECM, with combined speed-ups
that exceed a factor 1000. Interestingly, the additional acceleration obtained by skipping
microchronological steps is higher again for this case, with a factor of almost 7. Since
ECM speed-ups are proportional to the computational cost of the constitutive model,
it is less effective in reducing the computational effort of the already inexpensive mi-
crochronological steps. These consequently account for a significant portion of the total
execution time, making the choice for precomputation more effective.

Due to the large number of history variables, performing an unclustered Gappy Data
procedure negates most of the speed-up offered by ECM and makes history recovery
at every step impractical. On the other hand, the additional time required for history
reconstruction with k = 100 falls in line with the results reported in Fig. 6.13.

It is concluded that combining the different acceleration techniques drastically im-
proves the feasibility of having fast and accurate predictions of material behavior even
when complex time-dependent material models are used and a large number of load
cycles is simulated. The results are also promising in mitigating the high computational
demands of concurrent multiscale analysis (FE2). However, the limitations of each ac-
celeration technique must be kept in mind in order to avoid introducing additional ap-
proximation errors:

• For time homogenization, the loading must be periodic (Eq. (6.17)) and the sep-
aration of time scales principle should hold (Eq. (6.15). The computation of the
microchronological cycle can only be skipped if the micro loads do not change
with time.

• For POD and ECM, it is important to include all relevant load cases in the train-
ing process, and special care must be taken if the analysis moves into the strain
localization regime. In this regard, adaptive techniques such as the Adaptive POD
proposed here, the domain partition strategy proposed by Kerfriden et al. [20] or
the machine learning techniques presented by Ghavamian et al. [7] may be used.

6.6. CONCLUSIONS
This chapter explored a number of techniques used to accelerate the solution of an FE
stress equilibrium problem when large numbers of load cycles are considered. The tech-
niques of Time Homogenization (TH), Proper Orthogonal Decomposition (POD) and
Empirical Cubature Method (ECM) were presented and analyzed. An efficient material
history recovery technique was developed combining Gappy Data reconstruction with a
k-means clustering algorithm. An adaptive ROM strategy was proposed combining the
advantages of TH and POD which avoids the need to train the reduced model before the
analysis.

Time homogenization allows for the plastic strain evolution to be computed only
once per load cycle. Furthermore, if the microchronological cycle does not change through-
out the analysis, it may be computed only once at the beginning of the analysis, leading
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to further acceleration. For the load scenarios considered in the examples, the loss of ac-
curacy after homogenization was very limited (between 1.1 % and 2.3 %). The resultant
speed-up is highly dependent on the number of microchronological points that cross
the yield surface, with values as high as 3.0 obtained for a 7× 7 micromodel loaded in
transverse tension with increasing mean.

Reduction by projection (POD) was also found to correctly reproduce the behavior
of the full model, if enough basis vectors are used. The number of necessary displace-
ment modes increases when the micromodel reaches a plastic strain localization regime.
Moreover, the shape of the strain localization bands is highly dependent on the load
shape. Failure to include a certain load combination in the basis can lead to erroneous
plastic strain distributions at higher strains, even if all load directions are included in
isolation. Employing POD in isolation, speed-ups as high as 15 were found for 7×7 mi-
cromodels.

The hyper-reduction strategy based on the Empirical Cubature method offers accu-
rate approximations of the global internal force vector using only a small fraction of the
integration points, with errors as low as 0.03 % and speed-ups as high as 120. Live re-
construction of the history variables through Gappy Data and k-means clustering yields
promising results, even though a relatively large number of clusters was necessary to
correctly reproduce localized plastic strain patterns. For a case where the microchrono-
logical response could be precomputed, the combination of time homogenization with
hyper-reduction and the proposed history recovery method resulted in speed-up values
higher than 1000.

REFERENCES
[1] I. B. C. M. Rocha, F. P. van der Meer, and L. J. Sluys, Efficient micromechanical anal-

ysis of fiber-reinforced composites subjected to cyclic loading through time homog-
enization and reduced-order modeling, Computer Methods in Applied Mechanics
and Engineering 345, 644 (2019).

[2] S. Haouala and I. Doghri, Modeling and algorithms for two-scale time homogeniza-
tion of viscoelastic-viscoplastic solids under large numbers of cycles, International
Journal of Plasticity 70, 98 (2015).

[3] C. Oskay and J. Fish, Fatigue life prediction using 2-scale temporal asymptotic ho-
mogenization, International Journal for Numerical Methods in Engineering 61, 329
(2004).

[4] Q. Yu and J. Fish, Temporal homogenization of viscoelastic and viscoplastic solids
subjected to locally periodic loading, Computational Mechanics 29, 199 (2002).

[5] R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and applications of
finite element analysis (John Wiley and Sons, 2001).

[6] P. Kerfriden, P. Gosselet, S. Adhikari, and S. P. A. Bordas, Bridging proper orthogo-
nal decomposition methods and augmented newton-krylov algorithms: An adaptive
model order reduction for highly nonlinear mechanical problems, Computer Meth-
ods in Applied Mechanics and Engineering 200, 850 (2011).



6

158 REFERENCES

[7] F. Ghavamian, P. Tiso, and A. Simone, POD-DEIM model order reduction for strain-
softening viscoplasticity, Computer Methods in Applied Mechanics and Engineering
317, 458 (2017).

[8] R. A. van Tuijl, J. J. C. Remmers, and M. G. D. Geers, Integration efficiency for model
reduction in micro-mechanical analyses, Computational Mechanics , 1 (2017).

[9] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empir-
ical interpolation, SIAM Journal on Scientific Computing 32, 2737 (2010).

[10] P. Astrid, S. Weiland, K. Willcox, and T. Backx, Missing point estimation in mod-
els described by proper orthogonal decomposition, IEEE Transactions on Automatic
Control 53, 2237 (2008).

[11] R. Everson and L. Sirovich, Karhunen-Loeve procedure for gappy data, Journal of the
Optical Society of America A 12, 1567 (1996).

[12] J. A. Hernández, M. A. Caicedo, and A. Ferrer, Dimensional hyper-reduction of non-
linear finite element models via empirical cubature, Computer Methods in Applied
Mechanics and Engineering 313, 687 (2017).

[13] S. An, T. Kim, and D. James, Optimizing cubature for efficient integration of subspace
deformations, ACM Transactions on Graphics 27, 165 (2009).

[14] C. Farhat, P. Avery, T. Chapman, and J. Cortial, Dimensional reduction of nonlinear
finite element dynamic models with finite rotations and energy-based mesh sam-
pling and weighting for computational efficiency, International Journal for Numeri-
cal Methods in Engineering 98, 625 (2014).

[15] Z. Liu, M. Bessa, and W. K. Liu, Self-consistent clustering analysis: An efficient multi-
scale scheme for inelastic heterogeneous materials, Computer Methods in Applied
Mechanics and Engineering 306, 319 (2016).

[16] H. Flórez and M. Argáez, A model-order reduction method based on wavelets and
pod to solve nonlinear transient and steady-state continuation problems, Applied
Mathematical Modelling 53, 12 (2018).

[17] R. Crouch, C. Oskay, and J. Fish, Multiple spatio-temporal scale modeling of com-
posites subjected to cyclic loading, Computational Mechanics 51, 93 (2013).

[18] C. Oskay and J. Fish, Eigendeformation-based reduced order homogenization for
failure analysis of heterogeneous materials, Computer Methods in Applied Mechan-
ics and Engineering 196, 1216 (2007).

[19] P. Kerfriden, J. C. Passieux, and S. P. A. Bordas, Local/global model order reduction
strategy for the simulation of quasi-brittle failure, International Journal for Numer-
ical Methods in Engineering 89, 154 (2012).

[20] P. Kerfriden, O. Goury, T. Rabczuk, and S. P. A. Bordas, A partitioned model order
reduction approach to rationalise computational expenses in nonlinear fracture me-
chanics, Computer Methods in Applied Mechanics and Engineering 256, 169 (2013).



REFERENCES

6

159

[21] A. R. Melro, P. P. Camanho, F. M. Andrade Pires, and S. T. Pinho, Micromechanical
analysis of polymer composites reinforced by unidirectional fibres: Part I - Constitu-
tive modelling, International Journal of Solids and Structures 50, 1897 (2013).

[22] F. P. van der Meer, Micromechanical validation of a mesomodel for plasticity in com-
posites, European Journal of Mechanics - A/Solids 60, 58 (2016).

[23] C. Miehe, J. Schotte, and J. Schröder, Computational micro-macro transitions and
overall moduli in the analysis of polycrystals at large strains, Computational Mate-
rials Science 16, 372 (1999).

[24] J. A. Hernández, J. Oliver, A. Huespe, M. Caicedo, and J. Cante, High-performance
model reduction techniques in computational multiscale homogenization, Com-
puter Methods in Applied Mechanics and Engineering 276, 149 (2014).

[25] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (SIAM, 1974).

[26] S. P. Lloyd, Least squares quantization in pcm, IEEE Transactions on Information
Theory 28, 129 (1982).

[27] Jive - Software development kit for advanced numerical simulations,
http://jive.dynaflow.com, accessed: 04-03-2018.

[28] C. Geuzaine and J.-F. Remacle, Gmsh: A three-dimensional finite element mesh gen-
erator with built-in pre- and post-processing facilities, International Journal for Nu-
merical Methods in Engineering 79, 1309 (2009).

[29] C. Qian, T. Westphal, and R. P. L. Nijssen, Micro-mechanical fatigue modelling of
unidirectional glass fibre reinforced polymer composites, Computational Materials
Science 69, 62 (2013).





7
VALIDATION OF THE FRAMEWORK

Do you know, Poole, that you and I are about
to place ourselves in a position of some peril?

Robert Louis Stevenson, The Strange Case of Dr. Jekyll and Mr. Hyde

7.1. INTRODUCTION
In this chapter, the framework of Chapter 4 is used to predict hygrothermal degradation
in unidirectional short beams tested in three-point bending. As improvements to the
original framework, a slightly modified version of the viscoelastic/viscoplastic material
with damage formulated in Chapter 5 is employed, friction stresses are included in the
cohesive-zone model formulated in Chapter 4 and the full-order microscopic boundary-
value problems are substituted by a hyper-reduced model using the techniques of Chap-
ter 6. The fiber-matrix interface properties are estimated through single fiber fragmen-
tation tests and a new set of interlaminar shear experiments with additional redried tests
is presented. In order to gain further insight in the aging process, fractographic analysis
of specimens aged at two different temperatures (50 ◦C and 65 ◦C) is performed through
X-ray 3D computed tomography. The modified framework is used in an attempt to re-
produce the experimentally obtained interlaminar shear stress behavior.

7.2. MECHANICAL TESTS
In this section, the effects of hygrothermal aging in a glass/epoxy material system are
investigated through mechanical tests. More specifically, this chapter focuses on me-
chanical performance degradation of composite specimens subjected to interlaminar

Apart from its introductory section and slight changes to Section 7.4, this chapter was integrally extracted from
[1].
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shear and of the fiber-matrix interface adhesion as measured by single-fiber fragmenta-
tion tests (SFFT). The results obtained from the micromechanical tests are used as input
for the multiscale modeling framework of Section 7.4 while results from the macroscopic
tests are used to assess model performance.

7.2.1. MANUFACTURING AND CONDITIONING

The material system used in this chapter is a combination of the EPIKOTE RIMR 135/EPI-
KURE RIMH 1366 epoxy resin reinforced with unidirectional (UD) E-Glass fiber fabrics
composed of PPG Hybon 2002 fiber rovings. In order to obtain purely UD laminates, the
90° stability roving layers originally included in the commercial UD fabric were manually
removed.

Dog-bone shaped single-fiber fragmentation specimens with 16 mm gauge length,
2 mm gauge width, 6.45 mm tab width and 2 mm thickness were manufactured by ex-
tracting single fibers from a fabric and positioning them in latex molds into which resin
was poured and cured. For interlaminar shear strength (ILSS) tests, a 3-ply 320 mm×320
mm×2.15 mm panel was manufactured through vacuum infusion molding and short-
beams with 21.5 mm length, 10.75 mm width and 2.15 mm thickness (ISO 14130 [2]) were
cut from it using a CNC milling machine. The curing cycle for both specimen types con-
sisted of 2 h at 30 ◦C, 5 h at 50 ◦C and 10 h at 70 ◦C.

After manufacturing, the specimens were kept in an evacuated desiccator at 50 ◦C
and periodically weighed until a moisture-free state was reached. Sets of specimens were
tested in this dry reference state. The remaining specimens were immersed in dem-
ineralized water at 50 ◦C for different durations before being removed for testing. ILSS
specimens were immersed for periods varying from 250 h to 2000 h, during which wa-
ter uptake measurements through weighing were periodically conducted. Single-fiber
fragmentation specimens were immersed until saturation (approximately 500 h), after
which weight measurements performed on two consecutive days were used to confirm
that saturation had been reached. Finally, sets of ILSS samples immersed for 500 h and
1000 h were redried in the evacuated desiccator before being tested. Weight measure-
ments performed on two consecutive days were used to confirm that a stable dry state
had been reached.

7.2.2. TESTING

After conditioning, 10 single-fiber fragmentation specimens (5 dry, 5 saturated) were
tested in an MTS test frame with 1 kN load cell using a custom tensile fixture suitable
for small dog-bone specimens. The specimen was tested in displacement control at a
rate of 0.5 mmmin−1 until failure. A microscope camera equipped with polarized light
filters was used to record the development of fiber breaks.

Sets of 10 ILSS specimens for each condition were tested in three-point bending at
1 mmmin−1. The bending span was fixed at 11.4 mm and steel cylinders with diameters
measuring 3.14 mm and 6 mm were used as supports and loading nose, respectively.

7.2.3. RESULTS AND DISCUSSION
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SINGLE-FIBER FRAGMENTATION TESTS

An attempt is made at estimating the fiber-matrix interface properties through a com-
bination of optic measurements around broken fiber fragments, the recent shear-lag
model proposed by Sørensen [3] and a finite element model of the fragmentation pro-
cess. Interface decohesion is modeled through a cohesive zone model with friction (Sec-
tion 7.4.1) and is characterized by a decohesion strength Xsh, a fracture toughness GIIc

and a friction coefficient µ.
Fig. 7.1a shows a zoomed-in view of a single fiber break during a fragmentation test.

Three quantities of interest are identified: The debonded length ld, which delimits the
region where interface adhesion is completely lost and only a constant friction stress be-
tween fiber and matrix remains, the length lcz of the cohesive zone in which debonding
is taking place [4], and the distance lp between the brightest light spots in the fragment,
which can be reliably measured even at lower magnifications and used to derive ld.

For each fiber break, the debonded length ld is plotted against the strain of the gauge
section of the dog-bone ε, measured through videoextensometry with 10 mm gauge length.
A straight line is then fitted through the data points:

ε= ε0 + d ε

d ( ld/rf)

ld

rf
(7.1)

where ε0 is an intercept parameter and rf is the fiber radius. Care is taken to select frag-
ments which grow with no other fragments nearby and for strain values before plastic
localization occurs, two situations that violate assumptions made in the shear-lag model
for data reduction [3]. Assuming a constant friction stress τsh along the debonded zone,
the shear-lag model allows to evaluate its value from measured strain and debond length
as:

τsh = 1

2

d ε

d ( ld/rf)
Ef (7.2)

where Ef is the Young’s modulus of the fiber. In order to compute the fracture toughness,
a residual strain εres used to compute the strain at the fiber surface is estimated from the
combined actions of curing (shrinking) and water swelling (expansion). Assuming that
resin hardening takes place during the 50 ◦C curing step and that chemical shrinkage due
to crosslinking reactions is negligible for the present multi-step curing cycle [5], a differ-

ential strain ε
dry
res = 0.0015 is obtained. For saturated specimens, the swelling contribu-

tion is subtracted leading to εwet
res =−0.0049. With these values, the fracture toughness is

computed as [3]:

GIIc = 1

4
Efrf (ε0 −εres)2 (7.3)

With values for τsh, GIIc and the cohesive zone length lcz, the interface strength Xsh

can be estimated through a finite element model with a one-dimensional fiber with slip
degrees of freedom embedded in a periodic resin slice (the reader is referred to [6] for
details on the model formulation). From Fig. 7.1b, features with the same shapes as
the ones seen through birefringence in the experiments can be observed. The cohesive
strength Xsh used as input in the model has a direct influence on the resultant cohesive
zone length lcz. This means that an estimate for Xsh can be obtained by fixing the other
parameters that also influence lcz, namely the frictional stress τsh and the fracture energy
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2ldlcz

lp

lcz 2ld

(a) Experiment (b) Simulation

Figure 7.1: A fiber break as observed during an experiment and through numerical simulation, showing the
quantities of interest for property estimation.

GIIc, and adjusting the input strength until the numerical lcz matches the experimentally
measured one. Since neither the analytical nor the numerical model take radial stresses
into account, it is not possible to estimate the friction coefficient µ. For the present,
the value µ = 0.4, found by Naya et al. [7] to give the best fit with experimental data for
carbon/epoxy composites, is adopted.

Measurement results are presented in Figs. 7.2a and 7.2b, showing adimensional-
ized debonded lengths (ld/rf) versus fiber strain (ε−εres) for 4 dry fragments and 12 wet
fragments. In the plots, the different colors and point markers represent measurements
on individual fragments. The reason for the lower number of dry fragments stems from
the relatively low failure strain of the present epoxy resin, which caused global failure
to happen in many of the tested specimens before useful debond measurements could
be made. For saturated specimens, in contrast, plasticization and differential swelling
promote earlier fragment development.

The averages and standard deviations of the obtained properties are shown in Ta-
ble 7.1, computed with lcz = 0.15mm, considered constant throughout the test. Due to
the indirect nature of the estimation procedure, a lack of literature consensus on the def-
inition of a debonded region with constant shear stress [3, 4], uncertainties related to the
amount of thermal and chemical residual strains and the large scatter observed between
fragments, these values only provide a rough estimate of interface performance. Fur-
ther experiments and model development are therefore necessary. Nevertheless, results
indicate loss of friction and degraded adhesion properties after aging, as expected.

Dry Saturated

τsh [MPa] 46.27±16.37 27.31±13.22
GIIc [N/mm] 0.093±0.056 0.067±0.031

Xsh [MPa] 52.0 30.0

Table 7.1: Interface properties estimated through single-fiber fragmentation tests.
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Figure 7.2: Results from Single-Fiber Fragmentation Tests (SFFT).

INTERLAMINAR SHEAR TESTS

For the macromechanical part of this study, hygrothermal degradation is measured in
unidirectional short beams tested in three-point bending. A measure of the transverse
shear stress at the center of the short-beam specimens is obtained from the force signal
F of the test frame [2]:

τILSS = 3

4

F

bh
(7.4)

where b and h are the specimen width and thickness, respectively, measured after con-
ditioning. Fig. 7.3a plots the thus computed shear stress versus crosshead displacement
for different aging times. To avoid clutter, only one representative specimen for each
condition is shown. Average values of the maximum attained stress (interlaminar shear
strength) for each condition are presented in Table 7.2.

In order to relate changes in strength to the water concentration in the specimens,
the water uptake is computed as:

w%(t ) = 100
m(t )−mdry

mdry
(7.5)

where m(t ) is the specimen mass at time t and mdry is a reference mass measured before
aging. Water uptake and average interlaminar shear strength values (wet and redried) are
plotted against time in Fig. 7.3b. It is important to note that unsaturated samples have
a non-uniform water concentration field. The associated w% values for these samples
are therefore the volume averages of the concentration and do not represent the exact
amount of water at material regions where interlaminar failure occurs.

The results point to a gradual strength decrease as the specimens absorb water, with
up to 50 % degradation after 1000 h, a point in time when the diffusion process subsides
and the specimen is saturated with water. A clear correlation can therefore be identified
between the amount of water in the specimen and its interlaminar shear performance.
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Figure 7.3: Results from ILSS tests on wet and redried specimens.

After reaching a stable value at saturation, the strength and uptake remain approxi-
mately constant between 1000 h and 2000 h, suggesting that long-term chemical degra-
dation of the interface, as observed in the results of Chapter 2, is negligible for the short
aging durations considered here. Nevertheless, a small part of the degradation is irre-
versible, as evidenced by the redried tests performed after 500 h and 1000 h of immer-
sion. The numerical models of Section 7.4 will help elucidate if this permanent degra-
dation arises from swelling-induced microscopic failure events or if it is instead caused
by a fast chemical degradation process taking place at the same time scale as that of the
diffusion phenomenon.

Unaged 250h 500h 1000h 1500h 2000h

Tested wet
τmax

ILS [MPa] - 39.4±1.0 34.4±2.6 28.7±0.9 29.5±1.3 27.9±0.9
Tested dry
τmax

ILS [MPa] 56.7±0.8 - 51.6±0.9 51.8±0.9 - -

Table 7.2: ILSS values for short-beam specimens.

7.3. X-RAY COMPUTED TOMOGRAPHY

Results from mechanical tests point to the occurrence of material damage after hygrother-
mal aging. It is therefore interesting to employ microscopic observation techniques in
an attempt to observe degradation events in specimens after aging but before being me-
chanically tested.
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Cut Mount

ROI

ILS specimen Pin mount Scanning chamber

Figure 7.4: Specimen preparation and scanning procedure, showing the Region of Interest (ROI) for the scans.

7.3.1. CONDITIONING
For this part of the study, one additional short-beam specimen was conditioned at 50 ◦C
for the longer period of 5000 h in order to investigate both short- and long-term hy-
grothermal degradation. Furthermore, a specimen was conditioned at 65 ◦C for 500 h
so that degradation at two different temperatures can be compared. Observations on an
unaged specimen are also performed for comparison.

7.3.2. SCANNING
Three-dimensional X-ray computed tomography scans of the specimens are performed
using a Zeiss Xradia Versa 520 scanner. Strip specimens with nominal dimensions 2.15
mm×2.15 mm×21.5 mm are cut from the short-beams and glued to an aluminum pin
which is then attached to a special mount and positioned in the scanning chamber be-
tween an X-ray source and a detector (Fig. 7.4). A motorized x-y-z stage is used to align
the scanning Region of Interest (ROI) with the source and suitable source-sample and
sample-detector distances are chosen in order to obtain the desired scanning Field of
View (FoV). During the scans, tomographic projections of the ROI are taken as the sam-
ple holder is gradually rotated. As a post-processing step, the projections are combined
to form three-dimensional reconstructions of the scanned volumes.

As scanning resolution is inversely proportional to the size of the scanned volume
but the study involves searching for relatively small features (e.g. interfacial debonding
cracks on single fibers), a sequential scanning strategy is adopted. First, a large field of
view (LFoV ) scan is performed and regions of interest close to the center and surface of
the specimens are chosen for small field of view scans (SFoV ). Parameters for both scan
types are shown in Table 7.3.

7.3.3. RESULTS AND DISCUSSION
Fig. 7.5 shows the reconstructed cylindrical volume resulting from the LFoV scan of an
unaged specimen. The locations of the fiber bundles and resin rich regions along the



7

168 7. VALIDATION OF THE FRAMEWORK

Parameter LFoV SFoV

Magnification [-] 4.0x 20.0x
Beam voltage [keV] 30 45

Beam power [W] 2 3.5
Exposure time [s] 13-18 40

No. of projections [-] 5201-5801 3801
Field of view [µm] 2500 500

Scanning time [h/scan] 32 45

Table 7.3: Scanning parameters for small and large field of view scans.
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Figure 7.5: Reconstructed scanned volume of a dry specimen (LFoV).

three plies that make up the specimen can be clearly identified. Fig. 7.6 shows SFoV
scans of the same specimen. No visible failure can be identified for this condition.

More interesting features are observed on the specimen aged at 65 ◦C. The LFoV scan
of Fig. 7.7 shows a region of extensive interface debonding close to the specimen surface.
By moving along the specimen length (z-axis), it is possible to observe the crack and its
associated fracture process zone. Similar failure loci can also be observed at multiple
other points close to the specimen surface. The SFoV scan of Fig. 7.8a shows one of
these locations, with interface debonding both in isolated fibers and propagating among
groups of fibers. In contrast, a zoomed-in scan close to the center of the specimen reveals
only barely visible debonding cracks (Fig. 7.8b).

For the specimen aged at 50 ◦C, only minor failure events can be observed, both in
the LFoV and SFoV scans (Fig. 7.9). Material degradation is therefore markedly worse for
specimens aged at 65 ◦C. Furthermore, the new spaces formed by crack opening pro-
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(a) Specimen surface (b) Specimen center

Figure 7.6: Small field of view scans of a reference specimen.

mote additional water uptake, with a moisture content of 1.5 % measured after 500 h of
immersion at 65 ◦C, higher than the observed saturation level of 1.2 % for 50 ◦C speci-
mens (Fig. 7.3b). Similar uptake behavior has been observed in Chapter 2 and in other
studies [8–10].

Based on their proximity to the surface and on the large openings between crack
faces, it can be hypothesized that such debonding cracks, initiated through differential
swelling, propagate aided by an osmotic process that leads to accelerated water uptake
and hydrostatic pressure between crack faces. This is similar to the behavior reported for
glass/polyester composites by Gautier et al. [9] and would imply that hydrolytic chem-
ical reactions take place involving either the interface sizing or the glass fibers, creating
leachates that drive the ensuing osmosis.

Activation of such osmotic mechanism would therefore depend on the differences in
speed between diffusion, chemical reaction and leaching. For specimens aged at 50 ◦C, it
is reasonable to suppose that diffusion and reaction are slow enough to allow for reaction
products to be leached before significant osmosis takes place. Nevertheless, hydrolytic
reactions would permanently degrade interface performance, which corresponds with
the measured strength loss in the redried specimens of Section 7.2.3.

7.4. NUMERICAL MODELING
The aging process followed by mechanical testing is numerically simulated using the Fi-
nite Element Method in order to reproduce the experimentally observed material degra-
dation. Since aging affects each material constituent differently, a micromechanical
modeling strategy is adopted. In order to realistically simulate tests on specimens with
non-homogeneous water concentration fields, a multiscale approach is used to model
both micro and macroscales concurrently. In this section, the resultant numerical frame-
work, which builds upon the one presented in Chapter 4, is briefly summarized in order
to keep this chapter self-contained.
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Figure 7.7: Large field of view scan of a specimen aged at 65 ◦C showing a large debonding crack.

(a) Specimen surface (b) Specimen center

Figure 7.8: Small field of view scans of a specimen aged at 65 ◦C, with cracks marked in red.
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(a) Specimen surface (b) Specimen center

Figure 7.9: Small field of view scans of a specimen aged at 50 ◦C, with small debonding cracks marked in red.

7.4.1. MICROSCOPIC MATERIAL MODELS

VISCOELASTIC-VISCOPLASTIC-DAMAGE EPOXY

An epoxy model with viscoelastic, viscoplastic and damage components is adopted in
order to take into account rate-dependent plasticity and damage activation. The present
development is based on the model of Chapter 5 but features a modified damage com-
ponent inspired by the work of Arefi et al. [11].

The model is based on an additive strain decomposition in elastic, plastic, thermal
and swelling parts:

ε= εe +εp +εth +εsw (7.6)

where the thermal and swelling contributions are given by:

εth =αt (T −T0)I εsw =αswcI (7.7)

with αt and αsw being the thermal and swelling expansion coefficients, respectively, I
being the identity matrix, c being the water concentration and T and T0 the actual tem-
perature and the temperature at which resin hardening took place, respectively.

The elastic strains are used to compute the stresses by integrating the complete strain
time history through the use of a time variable t̃ :

σ̃(t ) = D∞εe(t )+
∫ t

0
Dve(t − t̃ )

∂εe(t̃ )

∂t̃
d t̃ (7.8)

The stresses are composed of an inviscid contribution related to the long-term stiffness
D∞ and a viscous contribution driven by the time-dependent viscoelastic stiffness Dve.
This viscous contribution is represented by a Prony series of bulk and shear stiffness
elements arranged in parallel, with stiffnesses Ku and Gv and relaxation times ku and
gv , respectively.

Plastic strain develops when a pressure-dependent paraboloidal yield surface is reached:

fp(σ,εp
eq) = 6J2 +2I1

(
σc (εp

eq)−σt (εp
eq)

)−2σc (εp
eq)σt (εp

eq) (7.9)
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where J2 and I1 are the second invariant of the deviatoric stress tensor and the first in-
variant of the stress tensor, respectively, and σc and σt are the yield stresses in compres-
sion and tension, respectively. Hardening is taken into account through the dependency
of the yield stresses on the equivalent plastic strain εp

eq. The non-associative plastic flow
∆εp is dictated by the plastic multiplier γ which in turn evolves in a viscous manner:

∆εp =∆γ
(
3S+ 2

9
αI1I

)
∆γ=

∆t
ηp

(
fp

σ0
t σ

0
c

)mp
, if fp > 0

0, if fp ≤ 0
(7.10)

where S is the deviatoric stress tensor, α is a factor related to the plastic Poisson’s ratio
νp, ηp and mp are the viscoplastic modulus and exponent, respectively, σ0

t and σ0
c are

the initial yield stresses, and ∆t is a time step.
A continuum damage model is adopted in order to model resin fracture. A damage

variable dm is adopted and the damaged stresses are computed as:

σ= DsH0σ̃ (7.11)

where σ̃ and H0 are the stresses and compliance matrix computed for the pristine mate-
rial (i.e. with dm = 0) and Ds is a secant stiffness matrix written as:

Ds =



κ β β 0 0 0
β κ β 0 0 0
β β κ 0 0 0
0 0 0 Ĝ(1−dm) 0 0
0 0 0 0 Ĝ(1−dm) 0
0 0 0 0 0 Ĝ(1−dm)

 (7.12)

and the factors κ and β are given by:

κ= Ê(1−dm)(1− ν̂(1−dm))

(1+ ν̂(1−dm))(1−2ν̂(1−dm))
β= Ê ν̂(1−dm)2

(1+ ν̂(1−dm))(1−2ν̂(1−dm))
(7.13)

with Ĝ being the viscoelastic shear modulus and Ê and ν̂ the viscoelastic Young’s modu-
lus and Poisson’s ratio, computed as:

Ê = 2Ĝ (1+ ν̂) ν̂= 3K̂ −2Ĝ

2Ĝ +6K̂
(7.14)

This definition of the secant stiffness deviates from the model of Chapter 5 by also ap-
plying a degradation to ν̂. This makes the model more suitable for use in dense finite
element meshes by avoiding spurious hardening on damaged elements constrained by
bands of elements undergoing elastic unloading.

A pressure-dependent paraboloidal fracture surface is adopted:

fd(σ̃,r ) = 3 J̃2

XcXt
+ Ĩ1(Xc −Xt)

XcXt
− r ⇒ fd(σ̃,r ) =Λ− r (7.15)

where r is an internal variable which controls damage evolution and Xc = Xc(Υ) and
Xt = Xt(Υ) are the fracture strengths in compression and tension, respectively, which
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are functions of the cumulative dissipated energy Υ=Υve +Υvp, as shown in Chapter 5.
Through a shrink in the fracture surfaces as energy dissipates, rate-dependent damage
activation is taken into account.

At each time step, the variable r is explicitly updated as:

rtn+1 = max
{

1, max
0≤t≤tn+1

Λt

}
(7.16)

and the damage variable is computed based on the linear softening law proposed by
Arefi et al. [11]:

dm =


εf(εeq −ε0)

εeq(εf −ε0)
, εeq ≤ εf

1, εeq > εf

(7.17)

where the strains at the beginning (ε0) and end (εf) of the softening regime are deter-
mined based on an uniaxial tensile test:

ε0 = Xt εf =
2GcÊ

leXt
(7.18)

with Gc being the resin fracture toughness and le the characteristic finite element length
[12]. Finally, εeq is a scalar measure of the strain state:

εeq = −q +
√

q2 −4pu

2p
(7.19)

and the parameters q , p and u are given by:

q = 2a(1−a)bεf + (1+2a)c u = b(aεf)
2 −2acεf − r XtXc

p = b(1−a)2 a = ν̂Xt

Ê(εf −ε0)

b =
(

Ê

1+ ν̂
)2

c =
(

Ê

1−2ν̂

)
(Xc −Xt)

(7.20)

COHESIVE INTERFACES WITH FRICTION

Fiber-matrix interface debonding is modeled using interface elements with softening
behavior dictated by a cohesive-zone model. The model used in this chapter is based on
the one presented in Chapter 4 but is modified to include a friction component, follow-
ing the formulation by Alfano and Sacco [13]. The displacement jump is additively split
into elastic and friction contributions:

�u� = �u�e +�u�µ (7.21)

and a friction traction contribution tµ is added to the original cohesive traction:

t = (1−di)K �u�+dit
µ (7.22)

where K is an initial stiffness, tµ = K (�u�−�u�µ), and di is a damage variable which rep-
resents the degree of interface debonding.
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The evolution of di with the total displacement jump �u� remains unchanged from
the one of Chapter 4. Friction evolves in a way analogous to non-associative plasticity.
The displacement jump �u�µ is updated when a Coulomb friction surface is reached:

fµ(tµ) =µ〈tµn 〉− + tµsh (7.23)

where the 〈···〉− operator returns the negative part of its operand and tµsh =
√

(tµs )2 + (tµt )2

is the normalized shear traction. Finally, the friction flow rule is given by:

∆�u�µ =∆λ

 0
tµsh

|tµsh|

 ∆λ= fµ
K

(7.24)

which is complemented by the Kuhn-Tucker conditions λ̇≥ 0, fµ ≤ 0, λ̇ fµ = 0.

HYGROTHERMAL AGING

Plasticization and fiber-matrix interface weakening are modeled with an additional degra-
dation variable dw which is a function of the water concentration c of the material point:

dw = d∞
w

c∞
c (7.25)

where c∞ and d∞
w are the water concentration and material degradation at saturation,

respectively. Since only tests at dry and saturated states are available for resin (Sec-
tion 5.3.4) and interface (Section 7.2.3), a linear evolution of dw is adopted. The degra-
dation variable is then used to modify the resin properties as follows:

Êw = (1−dw)Ê (7.26)

σw
c = (1−dw)σc, σw

t = (1−dw)σt (7.27)

X w
c = (1−dw)Xc, X w

t = (1−dw)Xt, Gw
c = (1−dw)2Gc (7.28)

where the squared toughness degradation is adopted for the sake of numerical stabil-
ity, since no reliable measurements of saturated fracture toughness on the present resin
system are available and only an estimation of its value based on the tensile tests of Sec-
tion 5.3.3 is adopted.

For the fiber-matrix interface, a similar degradation approach is adopted, but the
change in fracture toughness is modified in order to reflect the results obtained on the
fragmentation tests of Section 7.2.3:

X w
n = (1−dw)Xn X w

sh = (1−dw)Xsh Gw
Ic =

√
1−dwGIc Gw

IIc =
√

1−dwGIIc (7.29)

where Xn, GIc, Xsh and GIIc are the interface strength and fracture toughness in mode
I and modes II and III, respectively. Since only mode II properties are available for the
present material system (Table 7.1), they are also used to describe decohesion in mode I
in the present study.

The experiments on neat resin from Chapter 2 point to complete stiffness and strength
recovery after a single immersion-redrying cycle at 50 ◦C. Hygrothermal degradation of
the resin is therefore modeled as a reversible process. Due to the lack of experimen-
tal data on redried fragmentation specimens, interface degradation is also modeled as
reversible.
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7.4.2. MULTISCALE/MULTIPHYSICS FRAMEWORK
The microscopic material models of Section 7.4.1 are used in conjunction with a multi-
scale/multiphysics framework in order to predict the behavior of macroscopic material
specimens subjected to aging followed by mechanical loads. The main features of the
framework, presented in detail in Chapter 4, will be briefly summarized in the following.

DIFFUSION MODEL

A Fickian diffusion model is used to predict the evolution of the macroscopic water con-
centration field with aging time. The changes in concentration and the resultant mass
flux j are computed by:

ċΩ+ ∂

∂xΩ
· jΩ = 0 jΩ =−DΩ ∂c

∂xΩ
(7.30)

where D is an orthotropic diffusivity matrix and the superscriptΩ indicates macroscopic
quantities. The water concentration at each material point is downscaled to an embed-
ded micromodel (FE2) and is considered constant inside the microdomain. This solution
implicitly assumes that water diffusion in the resin is well represented by a one-phase
Fick solution. The anisotropic diffusivity parameters from Chapter 3 are used and con-
sidered constant throughout the analysis, leading to a linear transient diffusion problem.

STRESS MODEL

The nonlinear stress problem is solved iteratively using a Newton-Raphson solver and
takes place after the water concentration field is updated (staggered coupling). An equi-
librium problem is solved at both scales:

∂

∂xΩ
·σΩ = 0

∂

∂xω
·σω = 0 (7.31)

where the superscript ω indicates microscopic quantities. No assumptions are made
regarding the constitutive behavior of the macroscopic material. Instead, stresses and
stiffnesses are obtained through homogenization of the microscopic response: Strains
are applied as prescribed displacements at the corners of the embedded micromodels,
the micro boundary value problems are solved and volume averages of stiffnesses and
stresses are upscaled.

7.4.3. REDUCED-ORDER MODELING
The multiscale/multiphysics framework of Section 7.4.2 involves solving a microscopic
boundary value problem for each macroscopic integration point on every iteration of
every time step. In turn, solving each micromodel involves solving a nonlinear finite el-
ement equilibrium problem featuring dense meshes and complex material models. The
resultant computational effort is, therefore, exceedingly high. In this section, the two
model order reduction techniques presented in detail in Chapter 6 will be used to effi-
ciently solving the microscopic equilibrium problems with minimum loss of accuracy.

PROPER ORTHOGONAL DECOMPOSITION (POD)
Instead of solving for the full micro displacement field uω with N unknowns, one can
instead choose a number n ¿ N of displacement modes arranged in a matrixΦ ∈ RN×n
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and solve for their relative contributions α, which reduces the size of the equilibrium
system to n unknowns. The original displacement field is the linear combination of the
n modes:

u =Φα (7.32)

which leads to reduced versions of the global internal force and tangent stiffness:

fωr =ΦTfω Kω
r =ΦTKωΦ (7.33)

where a subscript r denotes a reduced entity. The displacement modes are computed
before the multiscale analysis by subjecting the micromodel to representative loading
situations and applying a truncated Singular Value Decomposition (SVD) process to the
obtained displacement snapshots (Section 6.4.2).

EMPIRICAL CUBATURE METHOD (ECM)
Although POD reduces the size of the global equilibrium equation, computing fω and
Kω still involves computing complex constitutive models for all M integration points
of the microscopic domain ω. Further acceleration (so-called hyper-reduction) can be
achieved by choosing a number m ¿ M of integration points and computing modified
integration weights $ in order to obtain a good approximation of the reduced global
internal force vector with only a small fraction of the effort:

fω =
∫
ω

fdω≈
m∑

i=1
f
(
xωi

)
$i (7.34)

The reduced set of points and weights is chosen by minimizing the error between the
original and approximated versions of fωr using the least-squares point selection algo-
rithm of Section 6.4.3.

7.4.4. RESULTS AND DISCUSSION
The preceding numerical framework was implemented in an in-house Finite Element
code built using the open-source Jem/Jive C++ library [14]. The analyses are executed on
a workstation equipped with an Intel Xeon E5-2650 processor and 64 Gb of RAM. Evalua-
tion of the micromodels during concurrent multiscale analyses is performed in parallel.
The microscopic domain is represented by a periodic microcell with 16 fibers. Based
on the RVE study of Section 4.3.1, this microdomain size is considered to represent the
macroscopic behavior of the unidirectional composite material with reasonable accu-
racy. The micromodel is discretized with 3198 wedge finite elements and 337 interface
elements around the fibers. The fibers are modeled as linear-elastic, while the material
models of Section 7.4.1 are used for the resin and interfaces. The adopted microscopic
material properties are shown in Table 7.4.

In order to employ the micromodel in a macroscopic simulation of an ILSS test, a
reduced-order model is first trained to accurately represent the elastic, plastic and frac-
ture response of a micromodel subjected to a combination of interlaminar shear, hy-
grothermal aging and residual stresses. The load cases used in the training process are
shown in Fig. 7.10. A strain rate ε̇= 5×10−2 s−1 is adopted for all cases with mechanical
loads. For cases including water concentration, it is applied in steps from an initially dry
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Elastic cases

Inelastic cases

Prescribed displacements

Water concentration

Temperature change

Figure 7.10: Load cases used for training the reduced-order model.

state to a concentration value of 3.2 %, corresponding to the saturation level of the epoxy
resin. For residual stresses, a temperature variation ∆T =−27◦C is applied in steps. For
cases combining environmental loads with mechanical strains, water is applied first, fol-
lowed by temperature and finally by prescribed displacements. Each elastic case is run
for three steps in order to provide the reduced model with information on the decay of
viscoelastic stresses. The inelastic cases are run until a stress drop is observed, indicating
strain localization. Since failure occurs due to transverse shear, it manifests as a single
horizontal localization band which runs between the left and right boundaries of the
RVE.

The original model is reduced from N = 12138 to n = 21 degrees of freedom in a first
reduction stage (POD). This reduced model is then subjected to a second training stage
in order to select a reduced set of integration points, with a reduction from M = 4546
to m = 589 integration points. Fig. 7.11 shows the homogenized stress-strain responses
for both the dry and saturated conditions of the full micromodel and its POD-reduced
counterpart (after the first reduction phase). The reduced model is able to accurately
represent the full response of the cases used for training, although the prediction of the
softening response of the saturated material is relatively less accurate due to the sharp
softening branch caused by the influence of displacement modes obtained from the
dry test. Comparing the reduced internal force vectors for the POD-reduced and ECM-
reduced models, the additional error caused by hyper-reduction is approximately 1.9 %.
The resultant speed-ups of the POD-reduced and ECM-reduced models with respect to
the full-order model are 51 and 302, respectively.

Before using the reduced model in a multiscale analysis, it is interesting to assess
its performance for non-trained load cases. Full and POD-reduced micromodels loaded
in transverse shear at intermediate water concentration values are executed and their
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Figure 7.11: Reduced RVE model response for the inelastic training cases.
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Figure 7.12: Reduced RVE model response for untrained scenarios of mechanical tests at different levels of
saturation.

homogenized responses are compared in Fig. 7.12. The reduced model is capable of
interpolating from the trained cases and correctly predicting material behavior for all
concentration values, with only small overshoots in failure strain. The largest overshoot
occurs for a concentration of 1.6 %, a case that requires the largest amount of interpo-
lation from either the dry or saturated states used for training. Influenced by the dis-
placement modes at failure obtained from the training cases, failure strains are overes-
timated and steep load drops are obtained for all intermediate concentration values. It
is interesting to note that, due to the smaller number of degrees of freedom, the reduced
model features improved numerical robustness. This can be observed, for instance, in
the c = 2.4% curve, a case on which the full analysis is terminated due to lack of con-
vergence as soon as the softening branch of the equilibrium path is reached while the
reduced model maintains the convergence behavior observed during the training cases.

For the next test, the POD-reduced model is assessed on its ability to represent load-
ing at different strain rates. The full and reduced responses of a micromodel subjected



7.4. NUMERICAL MODELING

7

179

0 1 2 3
0

20

40

Strain [%]

Sh
ea

r
st

re
ss

[M
Pa

]
ε̇= 5.0×10−4 s−1 (reduced)

ε̇= 5.0×10−4 s−1 (full)

ε̇= 5.0s−1 (reduced)

ε̇= 5.0s−1 (full)

Figure 7.13: Reduced RVE model response for untrained scenarios of mechanical tests at different strain rates.

to transverse shear at strain rates both 100 times faster and slower than the one used for
training are shown in Fig. 7.13. In both cases, the reduced model correctly extrapolates
the time-dependent material response in both the elastic and plastic regimes, while once
again showing only a limited loss of accuracy in terms failure strain. As expected, the re-
duced model tends to exhibits behaviors closer to the ones used for training, leading to
underestimated values of peak load and failure strain for the very fast strain rate and
overestimated values for the very slow rate. For both studies on untrained load cases
(water concentration and strain rate), the additional error caused by hyper-reduction
(ECM), computed by comparing the norm of the reduced global internal force vectors
with and without ECM, is at most 6 %. Both the POD-reduced and the hyper-reduced
models are therefore considered suitable for representing the full-order model, with sig-
nificant acceleration and only limited loss of accuracy even upon considerable extrapo-
lation from the load cases used in training.

A multiscale/multiphysics model of a three-point bending interlaminar shear test is
performed. At the macroscale, symmetry along the x- and z-axes is exploited, and only
one quarter of the short-beam is modeled (Fig. 7.14). The model is meshed with 8-node
hexagonal elements. It is a known issue that an RVE ceases to exist upon microscopic
strain localization, with the amount of energy dissipated by the macroscopic model be-
ing dependent on the size of the microdomain [15]. In order to bypass this issue, the
thickness of a band of elements close to the specimen center along its thickness, where
strain localization is expected, is made equal to the size of the micromodel [16]. The
complete mesh comprises 1536 elements with a total of 5120 embedded micromodels.
In order to further reduce computational effort, micromodels with a coarser mesh are
used for material points located after the support along the length of the specimen, a
region which is mostly free of stresses. The resultant mesh can be seen in Fig. 7.15. The
analysis begins with a pre-conditioning phase with a time step ∆t = 25h, during which
a constant water concentration of 3.2 % is applied at the boundary. After the immersion
phase, the virtual specimen is cooled down from 50 ◦C to 23 ◦C at a rate of 5.5 ◦Cmin−1,
after which a mechanical test is performed in three-point bending at 1 mmmin−1 and
the resultant load is used to compute the apparent interlaminar shear stresses using
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Figure 7.14: Multiscale model of the aging and mechanical test of a short-beam specimen.
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Figure 7.15: Snapshot of the multiscale analysis of a specimen immersed for 250 h at the onset of failure.

Eq. (7.4).
The multiscale model is used to obtain load-displacement curves for a dry specimen

and specimens immersed for 250 h, 500 h and 1000 h, after which the water concentra-
tion field inside the specimen is non-homogeneous. In these situations, a stand-alone
micromechanical analysis of the point of maximum concentration is not enough to de-
rive the behavior of the macroscopic specimen, which is instead dictated by stress redis-
tribution between regions with different water concentrations and suffers the influence
of transient swelling stresses caused by the non-uniform concentration field.

Fig. 7.16a shows the obtained stress-displacement curves for each condition up un-
til the point when interlaminar failure occurs at the center of the specimen. Although
the mechanical response for the unaged sample is similar to the one obtained for a sin-
gle RVE in pure transverse shear (Fig. 7.11), the same does not hold after aging. For
an isolated micromodel saturated with water, failure occurs at approximately 34 MPa,
which is slightly higher but still reasonably close to the experimentally obtained strength
(Fig. 7.3a). On the other hand, the multiscale model points to a higher peak load of
39 MPa for the saturated specimen. This increase, which can only be captured in a mul-
tiscale analysis, results from the highly non-linear behavior of the saturated material
prior to strain localization (Fig. 7.11), leading to stress redistribution along the specimen
thickness. Predicting the interlaminar shear response of an aged specimen is therefore a
more complex task than simply computing the micromechanical response of an isolated
material point at its center.

Nevertheless, the gradual degradation behavior with water concentration observed
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Figure 7.16: Numerical ILSS results.

in Fig. 7.3a is qualitatively reproduced by the multiscale model (Fig. 7.16b). The nu-
merically obtained peak stress for the unaged case is approximately 7 MPa lower than
the average value obtained from the experiments. Since failure in the dry specimen is
driven by resin fracture, such discrepancy is not surprising given the fact that no reliable
measurement for the fracture toughness of the present epoxy resin is currently available.
Furthermore, the fiber bundles and resin-rich regions seen in Fig. 7.5 are not modeled,
which would result in differences in crack propagation during the simulation. The high
saturated peak stress levels predicted by the model suggest that interface degradation
is significantly worse than the one used as input (d∞

w = 0.42 from Table 7.4). This in-
dicates that the saturated properties obtained through SFFT are overestimations of the
actual degraded interface performance. Given the large measurement scatter obtained
in those experiments (Section 7.2.3), the adopted values for Xsh and GIIc are estimated
with a high level of uncertainty.

Results on redried micromodels do not show any permanent degradation, with a
peak stress of approximately 49 MPa being obtained for both unaged and redried spec-
imens. This suggests that plastic strain development and interface debonding due to
swelling are not responsible for the observed irreversible degradation, since the effect
of swelling is already captured by the model. These results reinforce the hypothesis of
chemical reactions permanently degrading interface performance, a mechanism also
observed in the tomographic scans of Section 7.3. This can be modeled in a phenomeno-
logical way by introducing a concentration threshold that assures a minimum level of
degradation even upon subsequent redrying.

As a last numerical example, it is interesting to take advantage of the computational
efficiency of the reduced model in order to investigate the effect of cyclic immersion-
redrying on the transverse shear strength of the composite material. For this example,
the effect of cycling on a point close to the specimen surface is considered, for which
complete saturation is supposed to be reached after 300 s. For simplicity, the mechanical
test is performed on the completely dry material (after cycling), eliminating the need for
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Figure 7.17: Reduced model response for testing after multiple immersion-redrying cycles.

a concurrent multiscale approach.

Fig. 7.17 shows the model stress-strain response after 1, 100 and 200 immersion-
drying cycles. Due to the viscous nature of the epoxy model and its dissipation-dependent
fracture surface, and since saturation and redrying happen at relatively fast rates, cyclic
differential swelling stresses promote a gradual strength decrease. Although it is rea-
sonable to suppose the occurrence of such gradual degradation, further experimental
evidence is required in order to confirm this trend.

7.5. CONCLUSIONS
This chapter presented a combined experimental and numerical study on hygrothermal
aging of unidirectional glass/epoxy composites. Macroscopic material degradation was
investigated through mechanical tests on short-beam specimens tested in three-point
bending. Specimens were tested unaged, after having been immersed in water for vari-
ous durations and after immersion-redrying cycles. Microscopic hygrothermal degrada-
tion was investigated through mechanical tests on single-fiber fragmentation specimens
and by performing fractographic analyses on aged specimens through X-ray computed
tomography. An attempt was made to numerically reproduce the observed degradation
with a concurrent multiscale/multiphysics finite element model with hyper-reduced mi-
cromodels equipped with a viscous resin model and cohesive fiber-matrix interfaces
with friction.

The mechanical properties of the fiber-matrix interface were estimated through a
combination of single-fiber fragmentation tests and reverse modeling. Significant re-
ductions in strength, friction and fracture toughness were observed after aging. How-
ever, the relatively low failure strain of the resin led to a large number of fragments for
which no information could be extracted. Furthermore, the small number of valid frag-
ments showed a large scatter in debonding behavior.

Results from interlaminar shear tests on specimens aged at 50 ◦C showed a gradual
strength decrease which had a strong correlation with the amount of water absorbed
by the specimens. After saturation at 1000 h of immersion, the strength remained un-
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changed for another 1000 h. Upon redrying, permanent degradation was observed for
immersion times as short as 500 h. Microscopic observations on these specimens through
X-ray computed tomography revealed no signs of widespread interface debonding, in
contrast with observations on specimens aged at 65 ◦C. It is concluded that an osmotic
mechanism is activated at the higher temperature, leading to extensive debonding and
additional water uptake. At 50 ◦C, it is hypothesized that diffusion and reaction are suffi-
ciently slow as to allow the reaction products to leach out of the specimen before exten-
sive osmosis occurs. In any case, these observations strongly suggest the occurrence of
chemical damage at fiber-matrix interfaces.

The aging phenomenon was numerically simulated in a multiscale/multiphysics frame-
work. A combination of the POD and ECM reduced-order modeling techniques was used
to construct a reduced model which runs up to 300 times faster than the full-order one
with limited loss of accuracy. The resultant model is able to qualitatively capture the ex-
perimentally observed dependency of interlaminar shear strength with water concentra-
tion, although uncertainties related to the fracture toughness of the resin and interface
strength and toughness lead to incorrect predictions of both dry and saturated strengths.
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Glass fibers
K∞ [MPa] 43452
G∞ [MPa] 29918
αt [K−1] 5.4 ·10−6

Epoxy resin
K∞ [MPa] 3205
G∞ [MPa] 912
Ku [MPa] 125 182 625 143
Gv [MPa] 36 52 178 41
ku [s] 4.16 ·10−2 2.30 ·100 4.22 ·101 3.11 ·104

gv [s] 1.46 ·10−1 8.08 ·100 1.48 ·102 1.09 ·105

σt [MPa] 64.80−33.6e−ε
p
eq/0.003407 −10.21e−ε

p
eq/0.06493

σc [MPa] 81.0−42.0e−ε
p
eq/0.003407 −12.77e−ε

p
eq/0.06493

ηp [s] 3.49 ·1012

mp [-] 7.305
νp [-] 0.32
Xt [MPa] 83.8−5.99Υ
Xc [MPa] 104.7−7.48Υ
Gc [N/mm] 1.9
d∞

w [-] 0.14
αt [K−1] 6.0 ·10−5

αsw [%−1] 0.002
Fiber-matrix interface
K [MPa] 106

Xn/Xsh [MPa] 52
GIc/GIIc [N/mm] 0.093
µ [-] 0.4
d∞

w [-] 0.42
Diffusion
c∞ [%] 3.2
Dx /D y [µm/s] 0.520
Dz [µm/s] 1.638

Table 7.4: Properties used for numerical modeling.





8
COMPUTATIONAL

IMPLEMENTATION

Having neither flesh nor souls, they
are just binary numbers. They both

exist and do not exist at the same time.

Citan Uzuki, Xenogears

8.1. INTRODUCTION
The numerical formulations presented in the preceding chapters were implemented in
an in-house finite element code based on the open-source Jem-Jive libraries. In this
chapter, details on these implementations will be presented in order to aid future repli-
cation and expansion efforts. First, a small introduction on the base libraries will be
presented which will help to identify at which points of a general finite element imple-
mentation the formulations treated in this thesis fit. This will be followed by details on
the material models of Chapters 3 to 5, the multiphyics/multiscale numerical framework
of Chapter 4 and the acceleration techniques of Chapter 6. Finally, a brief mention will
be made of a number of additional numerical tools used throughout the thesis.

8.2. THE JEM/JIVE LIBRARY
Jem and Jive are two programming libraries written in C++ that provide a set of classes
aimed at facilitating the implementation of numerical methods [1]. Jem performs lower-
level tasks related to memory allocation and garbage collection, input/output, mathe-
matical operations involving multi-dimensional arrays, among others. Jive is a higher-
level library that builds upon Jem and provides tools for handling degrees of freedom
and solving large systems of equations, managing nodes, elements and element shapes,

187
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(b) Solver module run routine

Figure 8.1: Solution of an FE problem: Analysis flow and communication between modules and models.

handling boundary conditions, among others. Both libraries are used in implementing
the formulations described in this chapter, but most of the modifications and new de-
velopments are performed at an implementation level handled by Jive.

A Jive application is composed of two parts: A Model, which represents the physical
problem being solved (e.g. a finite element problem), and a Module which operates on
the model data (e.g. a solver). Between these two components lies the globdat, a com-
munication database through which model and module exchange data. In all but the
simplest applications, it is necessary to employ a number of different modules acting on
the same model (e.g. an input module, a solver module and a postprocessing module).
For this purpose, a wrapper class called ChainModule can be used to construct a module
chain which executes each of the modules in a predefined order.

Modules have three main components: An init function which is executed only once
and handles initialization tasks, a run function which is executed at each analysis step
and a shutdown function executed at the end of the analysis. Fig. 8.1a shows the basic
execution flow of a Jive application, with dashed arrows representing data exchange be-
tween components. Communication between a module and the model being solved is
done through the takeAction function, which instructs the model to perform a certain
task and store the resultant data in Globdat so that it can be accessed by the module.
Fig. 8.1b shows the basic workflow of the run function of a solver module. The degrees
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of freedom a (e.g. displacements or concentrations) are stored in Globdat as a StateVecor
object and the mapping between nodes and degrees of freedom of different types as
a DofSpace object, accessible by both model and module. For transient problems, the
solver asks the model for the mass MΩ, damping CΩ and stiffness KΩ matrices as well as
for internal fΩ and external fΓ force vectors and uses them to compute the iterative cor-
rection ∆a. The relevant actions interpreted by the model are written in capital letters.

8.3. BASE MODELS
Given the data required by the solver module, a suitable model must be constructed such
that all relevant action requests made by the module are properly answered. Conceiv-
ably, every action could be handled by a single model class. This would, however, result
in a convoluted — and therefore error-prone — implementation. Instead, a set of mod-
els can be bundled together through the wrapper class MultiModel, which relays action
calls to every submodel. Each relayed action can either be handled or ignored by each of
the models. This effectively allows for an organized division of tasks, with models deal-
ing with applying constraints ignore actions related to assembling global matrices while
matrix models ignore calls for constraints. In the following, models required for solving
the base finite element problems of Section 1.4.1 will be briefly presented. Most of the
models were implemented from the ground up for the purpose of the work in this the-
sis, but some of them were based on initial versions previously used in other works, on
which case the relevant references will be provided.

StressModel This model assembles the necessary matrices for bulk equilibrium prob-
lems. The displacement field is stored in a DofSpace object, the finite element mesh is
handled by NodeSet and ElementSet objects and a continuum Shape object handles nu-
merical integration. The constitutive behavior is obtained through the update function
of the Material class, which receives the strains at the material point and returns stresses
and stiffness. Main actions: GET_MATRIX, GET_INT_VECTOR, COMMIT.

InterfaceModel This model handles tractions across a discontinuity through an inter-
face Shape object [2]. When used in conjunction with StressModel, both models operate
on the same degrees of freedom, but assemble different parts of the stiffness matrix and
internal force vector. The constitutive response is obtained through the update function
of the CohesiveMaterial class. Main actions: GET_MATRIX, GET_INT_VECTOR, COM-
MIT.

FickModel This model handles transient mass diffusion problems solved using Fick’s
laws of diffusion. It operates on a DofSpace containing nodal concentrations and as-
sembles the global diffusion and capacity matrices as well as the global flux vector. Ma-
terial diffusivity and the flux at a material point are obtained from a FickMaterial object
which can feature either isotropic or anisotropic diffusivity. Main actions: GET_MATRIX,
GET_INT_VECTOR.
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LoadModel This is responsible for applying either Dirichlet- or Neumann-type bound-
ary conditions to specific node groups. A Constraints object is obtained from Globdat
and prescribed displacements or concentrations are added for later use by the solver.
Alternatively, the model can assemble the external force vector fΓ. The boundary condi-
tions can either be constant or change in time, the shape of which can be specified by a
user-defined mathematical expression. This also allows the application of cyclic bound-
ary conditions. Main actions: ADVANCE, GET_EXT_VECTOR, GET_CONSTRAINTS, COM-
MIT, CANCEL.

PeriodicBCModel, ConcPBCModel These models can be used to apply periodic bound-
ary conditions to the boundaries of micromodels, both in terms of displacements [3] as
well as concentrations. The helper module GroupInputModule is employed to identify
the nodes at relevant boundaries and the periodic constraints described in Sections 3.3.1
and 4.2.3 are applied to them. Main actions: ADVANCE, GET_CONSTRAINTS, COMMIT,
CANCEL.

8.4. MATERIAL MODELS
When building new material models, the main concern lies in the implementation of
the update function, which receives the strain vector and returns the stress vector and
the consistent tangent stiffness matrix. All material models are derived from an abstract
Material (or CohesiveMaterial) base class. Specialized materials are derived from the
base class through polymorphism, implementing their own update functions and having
their own parameter sets.

For linear materials, the update function basically consists in multiplying the strains
by a constant stiffness tensor to obtain the stresses. For nonlinear materials, a helper
Hist class provides a data structure and relevant functions for handling internal vari-
ables. As a general rule, the update function only operates on the history variables of the
last converged time step (preHist) and sets their new candidate values (newHist). Upon
convergence (when the COMMIT action is called), history is permanently updated by
assigning the new values to preHist.

Fig. 8.2a shows a flowchart of the update function of a bulk material with plasticity,
damage, hygrothermal degradation and swelling and thermal strains. This general im-
plementation can describe both the inviscid epoxy model used in Chapter 4 (expanded
from the implementation in [3]) as well as the viscous variants of Chapters 5 to 7. For vis-
coelasticity, historical and viscous stresses are included in σtr while viscoplasticity is in-
cluded by modifying the return mapping algorithm that computes the change in plastic
multiplier ∆γ. For all models, the simplifying assumption is made that plasticity ceases
to evolve after damage activation, allowing for the energy dissipation during softening
to be controlled by the damage model.

Fig. 8.2b shows the update function for the mixed-mode cohesive zone model with
friction [2] described in Chapter 7. If the algorithm is stopped after first computing the
tractions and stiffness, it can also represent the model without friction of Chapter 4. This
update procedure is performed in the local coordinate system of the interface element
(Fig. 1.6). It is therefore necessary to apply coordinate transformations to compute the
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(b) Cohesive-zone model with friction

Figure 8.2: Nonlinear material models for bulk and interfaces.
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local displacement jump and the global tractions and stiffness. These transformations
are performed by InterfaceModel before and after the update function is called.

8.5. ADAPTIVE SOLVER MODULES
For monotonic loading and simple material models, the global system of equations can
be readily solved by the Newton-Raphson incremental/iterative procedure implemented
in the NonlinModule included in the standard Jive implicit solver package. For materials
undergoing sharp stiffness transitions, such as the transition from loading to unloading
or when the behavior changes from plasticity to damage, achieving convergence can be
considerably more difficult. In such cases, employing modified solvers or adding wrap-
per modules that adaptively modify solver behavior becomes a necessity. In the follow-
ing, three different strategies used in Chapters 4 and 7 are briefly described.

XNonlinModule This is a modified version of the built-in NonlinModule with two main
changes. First, a configurable maximum residual level is included through which the
current step is cancelled if the Newton-Raphson residual becomes too high. This dra-
matically improves the efficiency of the solver when material models with Return Map-
ping algorithms are used. For these materials, convergence of the local root finding al-
gorithm is significantly degraded if the global solver starts to diverge, which can lead, in
extreme cases, to a complete freeze of the analysis. In these cases, it is therefore more
reasonable to cancel the current increment before the maximum number of iterations is
reached. Second, the solver is configured to detect oscillatory behavior in the residual
and switch to a modified Newton-Raphson strategy that identifies the material points
responsible for the oscillations and forces them to use secant versions of their stiffness
matrices [4]. This strategy is crucial for achieving convergence while using the contin-
uum damage models of Chapters 4, 5 and 7. For this work, the original algorithm was
expanded to include more complex oscillatory patterns.

AdaptiveStepModule This module, a slightly modified version of the one described in
[4], is wrapped around XNonlinModule and adaptively changes the analysis step size
based on the convergence behavior of the last load increment. An optimum number of
iterations can be set and the step size is increased if the solver is converging with less
iterations or decreased if more iterations are necessary, respectively. If no convergence
is achieved, the current step is cancelled and the increment for the next step is reduced.
After a lower step size limit is reached, the module instead tries to increase the step size
until an upper bound is reached. The analysis is shut down only after both strategies fail.

FlexArclenModule This module was employed to obtain the failure envelopes of Chap-
ter 4. The original implementation described in [4, 5] was left unmodified but the dissi-
pative term ∆uTf∗0 from Eq. (4.58), computed at material level, was modified to account
for the presence of swelling strains. The algorithm constrains the dissipated energy in-
stead of performing an incremental step in terms of loads or displacements. This allows
for equilibrium paths with a snapback to be correctly captured.
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8.6. MULTISCALE/MULTIPHYSICS FRAMEWORK
In Chapters 4 and 7, a staggered multiphysics approach was adopted in order to couple
diffusion and stress equilibrium models acting on the same macroscopic finite element
mesh. Since the two models are not fully coupled — in which case every iteration would
entail the execution of both model components — they are given their own ChainMod-
ule, Globdat and Model objects.

Starting from a single chain, the ForkModule is used to create one additional chain
and duplicating the original Globdat during the initialization phase. These two instances
of Globdat share data initialized before duplication (e.g. mesh data), but have different
DofSpaces. Further data sharing is handled by ForkModule. For each time step, the diffu-
sion chain is executed, the water concentration field is copied to the stress Globdat and
only then the stress chain is executed (Fig. 8.3). An optional tmax parameter is added in
order to allow for a pre-conditioning coupled phase followed by a mechanical test dur-
ing which the water concentration field is kept constant. Once stored in Globdat, the
nodal water concentration field is accessed by StressModel and InterfaceModel, used to
compute the concentration at the integration points and subsequently relayed to the
materials. In order to trigger this process, a simple module called MultiPhysicsModule
was created which looks for the water concentration field in Globdat at each time step.
If it is found, the action APPLY_WATER is called asking the models to retrieve the field.

The implementation of a concurrent multiscale (FE2) analysis is based on the mod-
els used in [6] but were heavily modified for use in Chapters 4 and 7. The micromodels
embedded at each macroscopic integration point can be conceptually seen as a ma-
terial, and are therefore implemented as a subclass of Material. The new class, called
MacroMicroInterface, can be directly used as material by the StressModel employed at
the macroscale. Although no further modifications are necessary at this level, a new
GET_MATRIX implementation is added in order to execute the constitutive updates in
parallel. This exploits the fact that the input for each micromodel depends only on the
strain at the macroscopic material point associated with it and can therefore be indepen-
dently computed. The parallelization is done in a shared-memory environment using
the pthread library.

In the update function, a child module chain is created for each macroscopic ma-
terial point. Since they are used to implement the microscopic material domain, these
new chains use a different mesh from that of the macroscale and a different set of mod-
els. By default, all micromodels use the same mesh geometry, but the option to use dif-
ferent meshes for each macroscopic point is also available. Analogous to the Hist objects
used for conventional material models, each micromodel has two associated MicroState
objects, one for the new state and another for the state corresponding to the latest con-
verged macroscopic equilibrium point.

The new material state corresponding to the current macroscopic strain is applied
to the micro chain: Strains are applied as prescribed displacements to the corner nodes
of the micromodel (Section 4.2.3) and water concentration and temperature are relayed
in the same way as performed by MultiPhysicsModule. The micro chain is executed and
checked for convergence. If not converged, a modified version of the substepping pro-
cedure from [7] is used. This is a function that takes two MicroState objects representing
an interval which is applied in two parts (both strain, concentration, temperature and
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time are divided). If convergence is not achieved in either half of the interval, the same
function is called recursively. After the micromodel successfully converges to the current
material state, the stresses and stiffness are computed through the method described in
Section 4.2.4.

8.7. ACCELERATION TECHNIQUES
Performing the time-homogenized VE/VP analysis of Section 6.3 involves the modified
load model THLoadModel and the viscoelastic/viscoplastic material THMaterial and is
controlled by the solver wrapper FatigueModule. At the beginning of each time step,
the module chooses between a macrochronological and a microchronological solver ob-
jects. Having separate solvers for each time scale is useful because micro steps are purely
viscoelastic and additional time savings can be obtained by switching to a less compu-
tationally demanding linear solver.

The load model is then asked for a new time increment and load/displacement val-
ues, all of which depend on the time scale. The nested solver is executed and THMa-
terial chooses between performing a VE update and storing the stresses or performing
a VP update combining the current macro stresses and the stored micro stresses. After
convergence, the module determines the time scale of the next step: If the current step
is macrochronological and the next micro cycle is not going to be skipped, the analysis
moves to the microscale. If the current step is microchronological but one more micro
time increment would complete a full load cycle, the analysis moves to the macroscale.
It is worth mentioning that THMaterial keeps σ̃ values for every micro time step of the
latest cycle. If the module skips the next cycle and instead jumps to the next macro time
step, the same values are going to be used for the next VP update, which is the expected
behavior. The complete analysis flowchart is shown in Fig. 8.5.

The reduced-order modeling techniques of Chapter 6 involve two distinct phases:
An offline phase during which the model is trained and an online phase in which the
resultant accelerated model is employed. Training is performed by combining a model
which runs the offline analyses (TrainingModel) with a module (ROMModule) that uses
the collected displacement or stress snapshots to compute the reduced displacement
basis (POD), the reduced set of integration points (ECM) and the clusters for history
reconstruction (clustered Gappy Data). The training process is therefore entirely inte-
grated within Jive and does not involve extensive reading and writing operations involv-
ing data files.

Fig. 8.6 shows the procedures involved in the training process. When asked to per-
form a training round, the TrainingModel class uses a child ChainModule object (analo-
gous to the embedded micromodels of MacroMicroInterface) to initialize the first model
on a list of user-defined model configuration files representing the different load cases
used for training and solves them while collecting displacement snapshots. After the last
time step is reached, the next model is initialized and the process is repeated until all
models have been executed. The snapshots are gathered by a helper class called ROM-
Data, the reference of which is stored in Globdat.

After performing the first reduction step by computing the POD basis matrixΦ (Fig. 8.7),
the modes are written to a data file for future online use and injected back into Training-
Model in order to perform the second (hyper reduction) training round. In this second
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phase, stress/traction snapshots are gathered, as well as history snapshots if a Gappy
Data reconstruction of material history is sought. The ECM method is then applied to
obtain the reduced set of integration points and their modified weights, with an optional
step of computing the Gappy recovery matrix for material history (Fig. 8.8). The points,
clusters and recovery matrix are written to data files for online use.

It is worth mentioning that even though the SVD is applied to snapshot matrices
composed of stresses or tractions, the basis matrix Λ is composed of reduced internal
force components. This conversion is done in two parts: First, the model (the latest child
model solved by TrainingModel) is asked to pre-multiply the stresses or tractions by BT

(Eq. (1.14)). The resultant full-order internal force is stored in ROMData which then pre-
multiplies it by ΦT in order to obtain the force components in the reduced space. It
is also important to note that the cubature procedure is performed separately for bulk
elements (recovering the original mesh volume) and for interface elements (recovering
the original sum of surface areas of all interfaces). This is an expansion of the original
method proposed by Hernández et al. [8]

If data files containing the reduced displacement modes for POD-reduction are given
at the beginning of the analysis, ROMModule skips the training process and assumes an
online analysis is to be executed. The data is loaded into a ROMData object, stored in
Globdat and sent to the model through the LOAD_DATA action. Optionally, data files
containing ECM and history recovery data can also be provided. This description now
moves to the online phase.

By default, both models and modules operate on the same DofSpace: The solver finds
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new values for the degrees of freedom and the models use them to compute updated ver-
sions of fΩ and KΩ. This behavior is modified when a POD-reduced model is used: The
solver is not aware of the full size of the problem and solves it in a reduced DofSpace,
while the model is not aware of the reduction and uses a full-order DofSpace to compute
global vectors and matrices. To achieve this, an intermediate layer which wraps around
the full-order models (PODModel) is employed in order to perform the transitions be-
tween full and reduced solution spaces using the matrix of displacement modes Φ of
Eq. (6.56). Fig. 8.9 shows the general behavior of the model when the solver requests
information on the reduced space.

Adding ECM reduction to the online model requires only minor modifications to
StressModel and InterfaceModel. Since the number of integration points is reduced, the
standard loop through the points, in which the update function is called, is substituted
by a loop through ECM points. The standard integration weights computed by the Shape
class are substituted by the modified weights obtained during training. For history recov-
ery, an additional step is performed after committing material history which performs
the Gappy reconstruction at non-ECM points. If clustering is used, the cluster values are
reconstructed and subsequently copied inside each of them.

It is important to note that when using the hyper-reduced model with the concur-
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rent multiscale strategy of Fig. 8.4, computingσ and D through the technique presented
in Section 4.2.4 would entail solving the unreduced system once for each strain compo-
nent (i.e. 3 times for a 2D problem or 6 times for a 3D problem). This effectively negates a
significant portion of the speed-up obtained through model order reduction. The alter-
native adopted here consists in computing a matrix Hr ∈Rn×s , with n being the number
of reduced degrees of freedom and s the number of strain components, such as to satisfy:

α= Hrε
M (8.1)

which is analogous to Eq. (4.49) but involves all reduced degrees of freedom, as the POD
reduction implies that the displacement of any corner node is computed through a linear
combination of modes and thus depends on all values of α. The Hr matrix is then used
to compute σ and D as:

σ= Hrfr D = HrKΩr HT
r (8.2)

ROMModule is also responsible for implementing the adaptive POD scheme of Sec-
tion 6.4.5. Adopting this strategy means skipping both the offline training and the pro-
cess of loading the data for online use, which are actions performed during the initial-
ization of the module (init function). On the other hand, the adaptive strategy involves
a gradual training process as an online full-order analysis progresses and is thus per-
formed in the run function, as shown in Fig. 8.6. Therefore, the init function of ROM-
Module has three distinct behaviors:

• No data files given, adaptive POD deactivated: Perform POD and ECM training,
optionally computing the Gappy reconstruction matrix and clusters. Store the data
in files and immediately trigger a shutdown, ending the analysis

• Data files given, adaptive POD deactivated: Load the data and send it to the model.
Skip the run function for the current analysis

• Adaptive POD active: Skip the whole init function. Perform the adaptive reduction
procedures with the run function

The analysis starts unreduced and the module collects snapshots until the first mi-
crochronological cycle is reached. When the next macrochronological point is reached,
the basis is computed through SVD but skipping the elastic/inelastic decomposition of
Fig. 8.7. This basis is then used to run all subsequent micro cycles while a full-order anal-
ysis is employed at macro steps. The adaptive strategy requires that a third nested solver
is added to FatigueModule (Fig. 8.5), which will then contain a full solver for the macro
steps, a full solver for the first micro cycle and a reduced solver for the remaining micro
cycles.

8.8. OTHER MODELS AND MODULES
This chapter is completed by a list of additional models and modules that do not fit in
any of the previous sections but that were nonetheless important in order to obtain the
results shown in the previous chapters:
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• OptimizationModule: This module implements a bounded BFGS nonlinear op-
timization algorithm that handles inequality constraints using an Active Set ap-
proach. It can be used to efficiently solve parameter identification problems. This
module is used to obtain the fitted diffusivities of Section 2.3.1 and to calibrate the
constitutive model of Chapter 5.

• IdentificationModel: This model is used in conjunction with OptimizationModule.
It contains a nested ChainModule and associated model whose parameters are
being identified. At each iteration of the optimization process, the current design
variables (i.e. material parameters) are set by the module and the model is exe-
cuted for a number of pre-defined inputs extracted from experimental data. The
objective function is computed as the sum of the squared differences between the
numerical and experimental responses for each set of inputs.

• InterfaceNodesModule: This helper module takes as input two element groups and
identifies the nodes belonging to both groups simultaneously (i.e. the interfaces
between groups). These nodes are then duplicated and used to build interface
elements. This module is used to generate the interface elements for the RVE sim-
ulations of Chapters 4 and 7.

• StaticLevelSetModel: This class constructs three-dimensional (cylindrical) level sets
around the fibers of a micromodel with a pre-defined radius. It is based on a model
previously used for level set simulations [9]. In this work, this simplified version of
the model is used in Chapter 3 to define the interphase region around the fibers.
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CONCLUSION

We all make choices, but
in the end our choices make us.

Andrew Ryan, Bioshock

In this thesis, the phenomenon of hygrothermal aging in laminated composites was
investigated using a combination of experiments and numerical modeling. The relevant
microscopic degradation mechanisms are identified through experiments on pure resin
and composite samples. A high-fidelity multiscale/multiphysics numerical framework is
developed in order to describe hygrothermal degradation across spatial scales. Material
nonlinearity at the microscale is captured through a viscoelastic/viscoplastic damage
epoxy model and cohesive zone models with friction for the fiber/matrix interfaces. The
framework is made efficient through a set of acceleration techniques combining time
homogenization and reduced-order modeling.

CONTRIBUTIONS

The following contributions were made to the current knowledge on hygrothermal ag-
ing of laminated composites and on relevant modeling techniques for fast and accurate
simulation of aging:

• A new extensive set of experiments on hygrothermal aging degradation of uni-
directional glass/epoxy specimens was performed. The relative degradations of
resin and interface were assessed through tests on pure resin specimens. The irre-
versible part of the degradation was investigated through redried tests.

• The evolution of hygrothermal degradation in composite samples was investigated
by testing specimens after different conditioning durations. Time-dependent degra-
dation processes were assessed by testing specimens conditioned for significantly
longer than their saturation times.

205
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• Anisotropic diffusion behavior in unidirectional composites was experimentally
and numerically investigated. The relative contributions of barrier effects and
anisotropic interphase diffusion were determined.

• A new set of monotonic and cyclic tests on pure resin at different strain rates was
performed. The viscoelastic behavior of the polymer was investigated through
DMA tests.

• A new approach for obtaining interface properties through the single fiber frag-
mentation tests combining analytical and numerical solutions was proposed. The
combination allows the estimation of both strength and fracture toughness prop-
erties.

• A multiphysics and multiscale numerical framework for hygrothermal aging was
proposed. A degradation model for plasticization and interface degradation with
a single degradation factor was introduced.

• The inviscid elastoplastic model by Melro et al. was modified to include viscoelas-
ticity, viscoplasticity and rate-dependent fracture initiation. The idea of a shrink-
ing fracture surface based on the total dissipated energy was introduced.

• The time homogenization formulation by Yu and Fish was applied to the new
pressure-dependent viscoelastic/viscoplastic model. A return mapping algorithm
with numerical time integration capable of dealing with multiaxial stress states
was developed.

• The Empirical Cubature Method (ECM) proposed by Hernández et al. was ex-
tended to treat interface elements. An efficient stress and history recovery method
combining Gappy Data and k-means clustering was developed.

• An adaptive model-order reduction scheme combining POD and time homoge-
nization was proposed which introduces no additional approximation errors to
the time-homogenized full-order model and requires no offline training.

CONCLUSIONS

From the performed experiments and numerical analyses, a number of conclusions can
be made regarding the hygrothermal aging behavior of the present glass/epoxy material
system and the progress made in its modeling:

• For immersion in demineralized water at 50 ◦C, diffusion in pure resin is well de-
scribed by Fick’s law. For composites, non-Fickian secondary absorption mech-
anisms related to the fiber/matrix interfacial region occur at longer immersion
times.

• Hygrothermal degradation consists in the combination of resin plasticization, dif-
ferential swelling and physicochemical weakening of interfacial adhesion. Only
part of the degradation is reversible upon redrying.
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• Diffusion occurs at a faster rate inside a transition region between fibers and bulk
resin (interphase). This effect, combined with the barrier effect caused by the pres-
ence of fibers, leads to anisotropic water diffusion behavior. Although the exact
mechanism is still unclear, results point to additional anisotropy within the inter-
phase, with faster diffusion along the fibers.

• Large micromodels (with at least 25 fibers) are necessary in order to accurately
capture macroscopic hygrothermal degradation through homogenization. Due to
the combined effect of differential swelling, plasticization and transient macro-
scopic swelling, the degradation level inside a specimen is higher at regions close
to its surface, although this difference is very small.

• The present epoxy resin exhibits a number of time-dependent phenomena such
as strain-rate plasticity and fracture, ratcheting, stress relaxation and hysteresis.
An inviscid elastoplastic model with damage is not able to capture any of these
phenomena and is therefore unsuitable for modeling cyclic loadings or loading
situations with varying strain rates (e.g. the slow process of hygrothermal aging
followed by a rapid mechanical test).

• The implemented viscoelastic/viscoplastic/damage epoxy model can accurately
represent the strain-rate dependent response of the polymer in both dry and sat-
urated conditions. However, the model significantly overestimates the amount of
permanent strain upon unloading.

• Time homogenization allows for reducing the cost of a cyclic analysis to one non-
linear step per load cycle with a very limited loss of accuracy of approximately 2 %
for the analyzed case. If the microchronological cycle does not change throughout
the analysis, it can computed only once, leading to significant time savings.

• The combination of POD and ECM leads to speed-ups as high as 120 for 7×7 mi-
cromodels. Combining these reduction techniques with time homogenization in-
creases the acceleration to more than 1000 with an additional loss of accuracy of
less than 1 %.

• Combining time homogenization and reduced-order modeling techniques with
the developed multiscale/multiphysics model results in a fast and accurate frame-
work suitable for long-term prediction of material degradation due to a combina-
tion of aging and cyclic loads.

• The framework qualitatively reproduces the experimentally observed stiffness and
strength degradation in dry, saturated and partially saturated interlaminar shear
specimens. Further experiments on the fracture behaviors of resin and interface
are necessary in order to obtain reliable properties and improve the predictive ca-
pabilities of the framework.

FUTURE PERSPECTIVE

Although this work represents a step forward in better understanding hygrothermal ag-
ing of laminated composites and developing relevant tools for its computational simu-
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lation, a large number of open questions remain. In the following, a number of potential
improvements for future works are listed.

Additional aging experiments The hygrothermal aging experiments performed in this
work were focused on water immersion in demineralized water at 50 ◦C of unidirectional
interlaminar shear short-beams. Further knowledge can be gained on the aging mecha-
nisms as experiments are performed under different conditions and with different speci-
men types. Immersion at different temperatures is expected to drastically change degra-
dation behavior and should be the immediate focus of future studies on this subject. Al-
though the effect of temperature on the diffusivity is well documented in literature, the
effect on hygrothermal degradation is less so, and consistent comparisons between pure
resin and composite samples and of dry, saturated and redried specimens at multiple
temperatures have not been found.

Tests with different types of water (e.g. seawater) are expected to yield different degra-
dation behaviors, since diffusion, chemical bonds and chemical reactions strongly de-
pend on the chemical composition of the immersion environment. Conditioning at dif-
ferent levels of relative humidity would also be interesting. More specifically, a compari-
son between immersion and a condensation environment would yield new and valuable
knowledge.

Investigations on different specimen types are also recommended, particularly in
specimens with different layups. Most importantly, this work did not dwell upon the
subject of fiber leaching and the consequent reduction in strength in the fiber direction
that such mechanism would cause. Once again, such a study should be conducted at
different temperatures, conditioning environments and for multiple aging durations.

Micromechanical experiments A number of tests on pure resin specimens were per-
formed throughout the present work, but only a limited attempt on micromechanical
characterization of the fiber/matrix interface behavior was performed. Further develop-
ment of the single fiber fragmentation test is necessary, both regarding the manufactur-
ing and test setups as well as the processing of the results and property determination,
matters for which no literature consensus exists at present. Since the development of
fragments happens rather late for this composite system — often coinciding with neck-
ing of the dog-bone specimen — more tests are necessary in order to obtain a statistically
significant estimation of interface properties. Additional tests at different immersion
times, both shorter and longer than the saturation time, would give useful data on the
evolution of interface degradation with water concentration and time. Tests on redried
specimens are also essential in order to determine the irreversible part of the degrada-
tion. Lastly, the presence of friction in wet fragmentation samples — for which differen-
tial swelling leads to tension radial stresses — is still an open question. Other microme-
chanical tests could also be explored, such as micro- and nanoindentation, pushout tests
and micro-droplet tests.

Water movement through cracks The present development only considers diffusion
through continuum media in order to compute the water concentration field. At the
same time, a multitude of failure phenomena that effectively create discontinuities and
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empty spaces inside the material, including interface and resin cracks, are predicted
by stress analysis. The contradiction involved in combining these two approaches and
the consequent loss in analysis fidelity is obvious. A better description of water move-
ment through and across discontinuities would be a valuable addition to the present
framework. When combined with a suitable description of the time-dependent chem-
ical degradation of the interphase, the water moving through the newly created empty
spaces would help to reproduce the secondary uptake process observed experimentally.

Chemical damage and blistering The present framework predicts only a limited amount
of permanent degradation after a complete immersion-redrying cycle. This implies that
plasticization and differential swelling are not enough to explain the complete hygrother-
mal degradation process in the present material system and that an appropriate descrip-
tion of chemical damage is necessary. A suitable model for tracking the concentrations
of the various chemical compounds involved in hydrolytic chemical reactions would be
a first step in developing a model that accounts for the extensive blistering process ob-
served through tomography on specimens aged at 65 ◦C (Section 7.3).

Temperature dependency Although immediately obvious from results of DMA tests
on the present epoxy resin, changes in stiffness and viscous behavior with temperature
are not taken into account by the constitutive models formulated in this work. This also
implies that properties obtained from tests at room temperature are used to describe
the aging phenomenon occurring at higher temperatures. Inclusion of the effect of tem-
perature on the viscoelastic/viscoplastic resin properties, ideally with the inclusion of
a realistic model for the glass transition phenomenon [1], would be a beneficial step in
expanding the current framework.

Nonlinear viscoelasticity Although the viscoelastic/viscoplastic formulation adopted
in this work reproduces the rate-dependent monotonic material behavior accurately, the
unloading behavior is not correctly captured as the amount of plastic strain is overesti-
mated. Inclusion of a nonlinear viscoelastic model would improve predictions of the
cyclic behavior of the polymer. However, additional experiments would be necessary
since the added material parameters would need to be calibrated.

Longer time scales The time-homogenized viscoelastic/viscoplastic formulation used
in this work reduces the computational effort of a cyclic analysis by allowing the use of a
single time step per load cycle. However, given the significantly slower time scale asso-
ciated with water diffusion, the inclusion of a consistent way of performing cycle jumps,
therefore further increasing the size of the time steps, would be beneficial. Including a
third time scale in the time homogenization formulation or solving higher-order prob-
lems associated with the asymptotic expansion of the mechanical response fields would
allow for larger time steps to be considered with only limited loss of accuracy.

Adaptive ROM strategies The reduction techniques used in this work, based on pro-
jecting the solution onto a lower-dimensional subspace, are pushed to their limit if a cor-
rect prediction of structural behavior after strain localization is sought. In practice, this
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means that a large number of POD modes and ECM points will be necessary for correctly
describing the failure behavior of a micromodel subjected to complex loading scenarios,
negating a significant part of the speed-up attained through the reduction process.

A definitive solution to the problem of representing strain localization with reduced
models does not exist at this point in time and research on the subject is still in its in-
fancy. One class of solutions that has been producing promising results involves the use
of adaptive reduction strategies, for instance solving only part of the mesh in the reduced
space while using a full-order solver at regions with localized strain [2, 3]. Alternatively,
machine learning techniques can be used to select, at the beginning of each time step,
an optimized subset of displacement modes among a larger pool of modes and using
only these selected modes to solve the equilibrium problem [4].

Strain localization with FE2 Upon strain localization, the homogenized mechanical
response of the micromodel ceases to be objective with respect to the size of the micro-
scopic domain — the larger the RVE the more brittle its homogenized softening response
is. Therefore, if the conventional homogenization procedure is used, an RVE does not ex-
ist for softening. In this work, this issue is bypassed either by stopping the analysis before
localization or by matching the size of the macroscopic element with the one of the mi-
croscopic domain. In future developments, incorporating a definitive solution for this
problem, such as the one proposed by Nguyen et al. [5, 6] would be beneficial.

Molecular Dynamics This work sought to investigate hygrothermal aging at the mi-
croscale in an attempt to avoid the significant amount of phenomenological characteri-
zation necessary when a purely macroscopic approach is adopted. By focusing on degra-
dation mechanisms acting on a lower scale, changes in macroscopic behavior emerge in
a natural way. However, even at the microscale, both the aging phenomenon as well as
the mechanical behavior of resin and interphase are still exceedingly complex and their
modeling still requires an enormous amount of calibration experiments. It seems, there-
fore, that further downscaling is necessary. Molecular- or atomic-level modeling through
Molecular Dynamics could be an interesting approach to aid the development and cal-
ibration of higher-scale models as well as improve the understanding of experimentally
observed phenomena.
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Propositions

accompanying the dissertation

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF HYGROTHERMAL
AGING IN LAMINATED COMPOSITES

by

Iuri BARCELOS CARNEIRO MONTENEGRO DA ROCHA

1. Water is one of the simplest chemical compounds found in nature. Yet it still offers
boundless potential for new scientific discoveries.

2. The complex degradation mechanisms involved in hygrothermal aging make purely
macroscopic experimental and modeling efforts inadequate.

3. Capturing multiple long-term degradation processes with an accurate multiscale
model either requires efficient acceleration techniques or a great deal of patience.

4. A great portion of the time of a computational mechanics researcher is spent try-
ing to get models to converge. Nevertheless, matters of robustness are seldom
reported and should deserve more space in discussion.

5. The excitement of trying new ideas and stumbling upon interesting new ways to
combine existing methods is so great, one often forgets to question if using them
is even necessary in the first place.

6. Juggling between the idealized version of reality provided by computational mod-
els and the ever unpredictable world of real experiments is a tricky balancing act.

7. Sometimes two different research communities study the exact same thing, but
they often cannot understand each other’s works.

8. Rooting for a model that is struggling to converge is as thrilling as rooting for your
favorite sports team.

9. Implicit methods often need local and global iterative schemes. Writing articles
with many authors can also be seen as an implicit process: Iterate on your own
until you are satisfied with the draft and global convergence will come more easily.

10. Prejudice arises because the human brain finds it much easier to categorize peo-
ple into well-defined stereotypes, cultures or social groups instead of struggling to
cope with the infinite complexity of human behavior. "To define is to limit." (Oscar
Wilde, The Picture of Dorian Gray).

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor prof. dr. ir. L. J. Sluys.



Stellingen

behorende bij het proefschrift

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF HYGROTHERMAL
AGING IN LAMINATED COMPOSITES

door

Iuri BARCELOS CARNEIRO MONTENEGRO DA ROCHA

1. Water is een van de eenvoudigste chemische verbindingen in de natuur. Toch
biedt het onbegrensde mogelijkheden voor wetenschappelijke uitvindingen.

2. De complexe degradatiemechanismen die een rol spelen bij hygrothermische ver-
oudering maken pure macroscopische experimentele en numerieke benaderin-
gen ongeschikt.

3. Het modelleren van meerdere langdurige degradatieprocessen met een nauwkeu-
rig multischaal model vereist efficiënte versnellingstechnieken óf veel geduld.

4. Een groot deel van de tijd van een onderzoeker van computationele mechanica
is besteed aan pogingen om modellen te laten convergeren. Niettemin worden
discussies over stabiliteit, die veel belangstelling verdienen, maar zelden gerap-
porteerd.

5. Omdat het uitproberen van nieuwe ideeën en het vinden van nieuwe manieren
om bestaande technieken te combineren zo opwindend is, vergeet de onderzoeker
vaak om na te denken of de ideeën überhaupt nuttig zijn.

6. Het balanceren tussen de geïdealiseerde wereld van computermodellen en de on-
voorspelbare werkelijkheid van echte experimenten is een lastige taak.

7. Soms bestuderen twee verschillende onderzoeksgemeenschappen precies hetzelfde
onderwerp, maar toch kunnen ze elkaars werken niet begrijpen.

8. Het juichen voor een model dat het moeilijk heeft om te convergeren is even span-
nend als het juichen voor je favoriete sportteam.

9. Vaak eisen impliciete methoden locale en globale iteratieve algoritmen. Het schrij-
ven van artikelen met veel auteurs kan ook worden gezien als een impliciet proces:
itereer in je eentje tot je helemaal tevreden bent met de tekst en globale conver-
gentie zal sneller komen.

10. Vooroordelen ontstaan omdat het menselijke brein het veel makkelijker vindt om
mensen toe te wijzen aan welomschreven stereotypes, culturen of maatschappe-
lijke groepen in plaats van te worstelen met de oneindige complexiteit van mense-
lijk gedrag. "Definiëren is beperken."(Oscar Wilde, Het Portret van Dorian Gray).

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotor prof. dr. ir. L. J. Sluys.
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