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Abstract

Optimal portfolio selection problems are determined by the (unknown) parameters of the data generating

process. If an investor wants to realise the position suggested by the optimal portfolios, he/she needs to

estimate the unknown parameters and to account for the parameter uncertainty in the decision process. Most

often, the parameters of interest are the population mean vector and the population covariance matrix of

the asset return distribution. In this paper, we characterise the exact sampling distribution of the estimated

optimal portfolio weights and their characteristics. This is done by deriving their sampling distribution by

its stochastic representation. This approach possesses several advantages, e.g. (i) it determines the sampling

distribution of the estimated optimal portfolio weights by expressions, which could be used to draw samples

from this distribution efficiently; (ii) the application of the derived stochastic representation provides an

easy way to obtain the asymptotic approximation of the sampling distribution. The later property is used

to show that the high-dimensional asymptotic distribution of optimal portfolio weights is a multivariate

normal and to determine its parameters. Moreover, a consistent estimator of optimal portfolio weights and

their characteristics is derived under the high-dimensional settings. Via an extensive simulation study, we

investigate the finite-sample performance of the derived asymptotic approximation and study its robustness

to the violation of the model assumptions used in the derivation of the theoretical results.

Keywords— sampling distribution, optimal portfolio, parameter uncertainty, stochastic representation, high-

dimensional asymptotics.

1 Introduction

The solution to the optimal portfolio selection problems are determined by the parameters of the data generating

process. In many cases, the optimal portfolio weights and their characteristics, like the portfolio mean, the

portfolio variance, the value-at-risk (VaR), the conditional VaR (CVaR), etc., can be computed by using only

the mean vector and the covariance matrix of the asset return distribution. More precisely, these relationships

are summarized by the following five quantities:

VGMV =
1

1>Σ−11
, wGMV =

Σ−11

1>Σ−11
, RGMV =

µ>Σ−11

1>Σ−11
, s = µ>Qµ, v =

Qµ

µ>Qµ
, (1.1)
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where µ = E(x) and Σ = V ar(x) are the mean vector and the covariance matrix of the p-dimensional asset

return vector x and

Q = Σ−1 − Σ−111>Σ−1

1>Σ−11
. (1.2)

The five quantities in (1.1) have an interesting financial interpretation. The components of the p-dimensional

vector wGMV define the weights of the global minimum variance (GMV) portfolio, i.e. of the portfolio with the

smallest variance, while RGMV and VGMV are the expected return and the variance of the GMV portfolio. The

quantity s is the slope parameter of the efficient frontier, the set of all optimal portfolios following Markowitz’s

approach. This parameter, together with RGMV and VGMV , fully determine the location and the shape of the

efficient frontier, which is a parabola in the mean-variance space. Finally, the components of the p-dimensional

vector v define the weights of the so-called self-financing portfolio (cf. Korkie and Turtle [50]), i.e. the sum of

its weights is equal to zero, that is 1>v = 0.

The five quantities in (1.1) determine the structure of many optimal portfolios, like the GMV portfolio, the

mean-variance (MV) portfolio, the expected maximum exponential utility (EU) portfolio, the tangency (T)

portfolio, the optimal portfolio that maximizes the Sharpe ratio (SR), the minimum VaR (MVaR) portfolio,

and the minimum CVaR (MCVaR) portfolio, maximum value-of-return (MVoR) portfolio, maximum conditional

value-of-return (MCVoR) portfolio, among others (see, e.g., Markowitz [52], Ingersoll [43], Jobson and Korkie

[46], Alexander and Baptista [3], Alexander and Baptista [4], Okhrin and Schmid [56], Kan and Zhou [49],

Frahm and Memmel [37], Bodnar et al. [23], Adcock [1], Woodgate and Siegel [64], Bodnar et al. [19], Bodnar

et al. [13], Simaan et al. [61], Bodnar et al. [18], Bodnar et al. [11]). On the other hand, the quantities (1.1)

cannot be directly used to compute the weights and the characteristics of these portfolios, since both µ and Σ

are unobservable parameters in practice. As a result, an investor determines the optimal portfolios by replacing

µ and Σ in (1.1) with the corresponding sample estimators given by

µ̂ =
1

n

n∑
i=1

xi and Σ̂ =
1

n− 1

n∑
i=1

(xi − µ̂)(xi − µ̂)>, (1.3)

given a sample of asset returns x1,x2, ...,xn. This approach leads to the sample or the so-called plug-in

estimators of the optimal portfolios, which are based on the corresponding sample estimators of (1.1), expressed

as

V̂GMV =
1

1>Σ̂
−1

1
, ŵGMV =

Σ̂
−1

1

1>Σ̂
−1

1
, R̂GMV =

µ̂>Σ̂
−1

1

1>Σ̂
−1

1
, ŝ = µ̂>Q̂µ̂, v̂ =

Q̂µ̂

µ̂>Q̂µ̂
, (1.4)

with

Q̂ = Σ̂
−1
− Σ̂

−1
11>Σ̂

−1

1>Σ̂
−1

1
(1.5)

as well as to the sample (plug-in) estimators of the optimal portfolio weights.

The notion of the sampling distribution in portfolio allocation has recently been given large attention.

Investors and researchers realize that the uncertainty, introduced by using historical data, needs to be integrated

into the optimal portfolio decision process as well as properly assessed. The sampling distribution of the

mean-variance portfolio was investigated as early as Jobson and Korkie [46], Britten-Jones [25], Okhrin and

Schmid [56], where the distributions of estimated optimal portfolio weights were derived under the assumption

of an independent sample of asset returns taken from a multivariate normal distribution. Moreover, both the
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asymptotic and finite-sample distributions of the estimated efficient frontier, the set of all mean-variance optimal

portfolios, were obtained by Jobson [45], Bodnar and Schmid [21], Kan and Smith [47], and Bodnar and Schmid

[22], among others, while Siegel and Woodgate [60] and Bodnar and Bodnar [8] presented its improved estimators

and proposed a test of its existence. Some of these results were later extended to the high-dimensional setting in

Frahm and Memmel [37], Glombeck [39], Bodnar et al. [19], Bodnar et al. [18], whereas several limiting results

related to the estimation of optimal portfolios under high-dimensional settings are present in Ao et al. [5], Kan

et al. [48], Cai et al. [28], Ding et al. [33], Bodnar et al. [10], among others.

The sample mean vector and the sample covariance matrix given by (1.3) have been used extensively in

previous research (see, e.g., Britten-Jones [25], Memmel and Kempf [54], Okhrin and Schmid [57]) for esti-

mating the asset return vector and its covariance matrix. These estimators appear to be consistent and the

corresponding estimated optimal portfolios have desirable asymptotic properties when the portfolio dimension

is considerably smaller than the sample size. However, they can no longer be used when a high-dimensional

portfolio is constructed, due to their performance when the portfolio dimension is comparable to the sample

size. One of the issues lies in that the quantities (1.4) depend on the inverse covariance matrix. Its sample

counterpart is not a consistent estimator in the high-dimensional settings (see, e.g., Bodnar et al. [12]). To cope

with these limitations, a number of improved estimators have been considered in the literature (cf., Efron and

Morris [34], Jagannathan and Ma [44], Golosnoy and Okhrin [40], Frahm and Memmel [37], DeMiguel et al.

[31], Rubio et al. [59], Yao et al. [65]).

We contribute to the existent literature by deriving the joint sampling distribution of the estimated five

quantities in (1.4), which solely determine the structure of optimal portfolios. These results are then used

to establish a unified approach for characterizing the sampling distributions of the estimated weights and the

corresponding estimated characteristics of optimal portfolios. The goal is achieved by presenting the joint

distribution of (V̂GMV , ŵ
>
GMV , R̂GMV , ŝ, v̂

>)> in terms of a very useful stochastic representation. A stochastic

representation is a computationally efficient tool in statistics and econometrics to characterize the distribution

of a random variable/vector, which is widely used in both conventional and Bayesian statistics. While it plays a

special rule in the theory of elliptical distributions (c.f., Gupta et al. [42]), the stochastic representation is also

a very popular method to generate random variables/vectors in computational statistics (see, e.g., Givens and

Hoeting [38]). The applications of stochastic representations in the determination of the posterior distributions

of estimated optimal portfolios can be found in Bodnar et al. [14] and Bauder et al. [7]. Finally, Zellner and

Ando [66], among others, argued that the direct Monte Carlo approach based on stochastic representations

is a computationally efficient method to calculate Bayesian estimation. In the present paper, we employ the

derived stochastic representation for (V̂GMV , ŵ
>
GMV , R̂GMV , ŝ, v̂

>)> in the derivation of their high-dimensional

asymptotic distribution, as well as in obtaining the high-dimensional asymptotic distribution of estimated

optimal portfolios.

The theoretical results derived in the paper are based on the assumption that the asset returns are inde-

pendent and normally distributed. Although this assumption is crucial for the derivation, especially of the

finite-sample distributions of the estimated portfolio weights and their estimated characteristics, it is not obvi-

ously fulfilled in practical applications, especially, when financial data of daily or higher frequency are considered.

On the other side, such assumptions are still appropriate for data taken of weekly or lower frequency, especially

when the data is obtained from developed financial markets. For that reason, in the numerical part of the
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paper, we investigate the robustness of the derived high-dimensional asymptotic results to the violation of both

normality and independence considering multivariate t-distributions and the CCC-GARCH model (see, Boller-

slev [24]). The results of the simulation study indicate the presence of overestimation for the slope parameter

of the efficient frontier and underestimation of the variance of the global minimum variance portfolio under

the t-model, while the asymptotic normality can still be used for the rest of the desired quantities. Moreover,

the presence of autocorrelation between squared asset returns has only minor influence on the derived high-

dimensional distributions. It means that, when the data follows a heavy tailed distribution, it is not fully clear

what happens with the derived asymptotic distributions, and this case should be considered with care. We

expect that the asymptotic results will depend on the fourth moments of the noise variables, and we will study

this case deeper in the future papers.

The rest of the paper is organized as follows. In Section 2, we derive the finite-sample joint distribution of

(V̂GMV , ŵ
>
GMV , R̂GMV , ŝ, v̂

>)>. This result is then used to establish the sampling distributions of the estimated

optimal portfolio weights and their estimated characteristics in Section 3. Section 4 presents the asymptotic

distributions of the estimated weights derived under the large-dimensional asymptotics. The results of the

finite-sample performance of the asymptotic distributions and the robustness analysis to the distributional

assumptions imposed on the data-generating process are investigated in Section 5, while final remarks are given

in Section 6. The technical derivations are moved to the appendix.

2 Exact sampling distribution of V̂GMV , ŵGMV , R̂GMV , ŝ, and v̂

Throughout the paper we assume that the p-dimensional vectors of asset returns x1,x2, ...,xn are independent

and normally distributed with mean vector µ and covariance matrix Σ, i.e. xi ∼ Np(µ,Σ) for i = 1, ..., n.

While Fama [35] argued that the distribution of monthly asset returns can be well approximated by the normal

distribution, Tu and Zhou [62] found no significant impact of heavy tails on the performance of optimal portfolios.

The stochastic representation of V̂GMV , θ̂, R̂GMV , ŝ, and η̂ is derived in a more general case, namely by

considering linear combinations of θ̂ and η̂ expressed as

θ̂ = LŵGMV and η̂ = Lv̂,

where L is a k × p matrix of constant with k < p − 1 and rank(L) = k.In Sections 2 and 3 we assume that

k < p−1, while a stronger condition on k is imposed in the derivation of the high-dimensional asymptotic results

given in Section 4. Here, we assume that k remains finite, while the portfolio dimension p increases together

with the sample size n. The matrix L represents the investors interest and views of the portfolio weights. If L

is selected to be the row vector with one on the ith element and zero otherwise, for instance (1, 0, 0, ..., 0), then

the investor would be interested in the ith weight and its distribution. If the distribution of the ith weight is

centered around zero, then one can start to question whether or not the true weight is actually zero and in turn

if the asset should be present in the portfolio.

In the same manner as above, we define the population counterparts of θ̂ and η̂ given by

θ = LwGMV and η = Lv.

Since µ̂ and Σ̂ are independently distributed (cf. Rencher [58]), the conditional distribution of (V̂GMV , θ̂
>

,
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R̂GMV , ŝ, η̂>)> under the condition µ̂ = µ̃ is equal to the distribution of (V̂GMV , θ̂
>
, R̃GMV , s̃, η̃

>)> with

R̃GMV =
µ̃>Σ̂

−1
1

1>Σ̂
−1

1
, s̃ = µ̃>Q̂µ̃, and η̃ =

LQ̂µ̃

µ̃>Q̂µ̃
, (2.1)

while their population counterparts we denote by:

R̆GMV =
µ̃>Σ−11

1>Σ−11
, s̆ = µ̃>Qµ̃, and η̆ =

LQµ̃

µ̃>Qµ̃
. (2.2)

Let the symbol
d
= denote the equality in distribution. In Lemma 6.1 we derive the joint distribution of

(V̂GMV , θ̂
>
, R̃GMV , s̃, η̃

>)>, whose result is an intermediate step towards Theorem 2.1. For that reason, Lemma

6.1 is placed in the Appendix. In Theorem 2.1 we present a joint stochastic representation of V̂GMV , θ̂, R̂GMV ,

ŝ, and η̂, which will be used in the next section to characterize the distribution of portfolio weights on the

efficient frontier. Furthermore, we use the notation t ∼ tp(r) to indicate that a random vector t of size p follows

a standardized multivariate t distribution with r degrees of freedom. Since the multivariate t distribution is not

uniquely defined, we state the density to be used. The density and further information can be found in Gupta

et al. [42]. If t ∼ tp(r), then we imply that it has density

ft(y) =
Γ(p)

(πr)p/2Γ(r/2)

(
1 +

y>y

r

)− p+r
2

, (2.3)

where Γ(·) is the gamma function. We omit the subindex in tp when it is a one dimensional t distribution. The

proof of Theorem 2.1 is given in the appendix.

Theorem 2.1. Let x1,x2, ...,xn be independent and normally distributed with mean vector µ and covariance

matrix Σ, i.e. xi ∼ Np(µ,Σ) for i = 1, ..., n with n > p. Define M = (L>, µ̃,1)> and assume that rank(M) =

k+ 2. Let Σ be positive definite. Then, a joint stochastic representation of V̂GMV , R̂GMV , θ̂, ŝ, and η̂ is given

by

(i) V̂GMV
d
= VGMV

n−1 ξ1;

(ii) R̂GMV
d
= RGMV +

√
VGMV

(
z1√
n

+
√
f t1√

n−p+1

)
;

(iii)

θ̂
d
= θ +

√
VGMV

(
sη + z2/

√
n√

f

t1√
n− p+ 1

+

(
LQL> − (sη + z2/

√
n) (sη + z2/

√
n)
>

f

)1/2√
1 +

t21
n− p+ 1

t2√
n− p+ 2

)
;

(iv) ŝ
d
= (n− 1)

(
1 +

t21
n−p+1

)
f
ξ2

with

f =
ξ3
n

+

(
sη +

z2√
n

)> (
LQL>

)−1
(
sη +

z2√
n

)
; (2.4)

(v)

η̂
d
=

sη + z2/
√
n

f
+

1√
f

(
LQL> − (sη + z2/

√
n) (sη + z2/

√
n)
>

f

)1/2

×

 1√
1 +

t21
n−p+1

t2√
n− p+ 2

t1√
n− p+ 1

+

(
Ik + f

t2t
>
2

n− p+ 2

)1/2
t3√

n− p+ 3
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where ξ1 ∼ χ2
n−p, ξ2 ∼ χ2

n−p+2, ξ3 ∼ χ2
p−k−1;nµ>Aµ, z1 ∼ N (0, 1), z2 ∼ Nk(0,LQL>), t1 ∼ t(n − p + 1),

t2 ∼ tk(n− p+ 2), and t3 ∼ tk(n− p+ 3) are mutually independent with

A = Q−QL>
(
LQL>

)−1
LQ. (2.5)

The results of Theorem 2.1 provides a simple way to simulate observations from the distribution of V̂GMV ,

R̂GMV , θ̂, ŝ, and η̂. To simulate observations from the joint distribution, we only need to simulate random

variables from well-known distributions. Moreover, the total dimension of independently simulated variables is

equal to (3k + 5), which is considerably small when direct simulation would imply simulating p × p matrices

from a Wishart distribution and a p-dimensional vector from a normal distribution. To this end, we point out

that both the square roots in (iii) and (v) can be computed analytically, which will further facilitate speeding

up the simulation study. This observation is based on the following two equalities

(D− bb>)1/2 = D1/2
(
I− cD−1/2bb>D−1/2

)
(2.6)

where D1/2 is a symmetric square root of D, c = (1−
√

1− b>D−1b)/b>D−1b and

(I + dd>)1/2 = I + add> (2.7)

where a = (
√

1 + d>d− 1)/d>d. Hence, it holds that(
LQL> − (sη + z2/

√
n) (sη + z2/

√
n)
>

f

)1/2

=
(
LQL>

)1/2Ik −
1−

√
ξ3
nf

f − ξ3
n

(
LQL>

)−1/2 (
sη + z2/

√
n
) (
sη + z2/

√
n
)> (

LQL>
)−1/2

 (2.8)

and (
Ik + f

t2t
>
2

n− p+ 2

)1/2

= Ik +

√1 + f
t>2 t2

n− p+ 2
− 1

 t2t
>
2

t>2 t2
. (2.9)

In equations (2.8) and (2.9) the matrix inverse and square roots are functions of population quantities. They

only need to be computed once, independently of the length of the generated sample. The same argument

cannot be performed when simulations of the joint distribution are obtained through simulating the sample

covariance matrix and the sample mean vector directly. Hence, Theorem 2.1 provides an efficient algorithm to

generate samples of arbitrary large size from the joint distribution of V̂GMV , R̂GMV , θ̂, ŝ, and η̂ relative to

simulating Σ̂ and µ̂ directly. The findings of Theorem 2.1 also leads to an efficient way of sampling from the

sample distribution of the optimal portfolio weights and their estimated characteristics, which will be discussed

in detail in the next section.

3 Exact sampling distribution of optimal portfolio weights

The weights of the optimal portfolios that belong to the efficient frontier have the following structure

wg = wGMV + g(RGMV , VGMV , s)v (3.1)

with their k linear combinations expressed as

Lwg = θ + g(RGMV , VGMV , s)η, (3.2)
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where the function g(RGMV , VGMV , s) determines a specific type of an optimal portfolio. This function depends

on µ and Σ only through the three quantities RGMV , VGMV , and s, which fully determine the efficient frontier

in the mean-variance space. By considering the general form of (3.2), we are able to cover a number of well-

known optimal portfolios: the global minimum variance (GMV) portfolio, the mean-variance (MV) portfolio,

the expected maximum exponential utility (EU) portfolio, the tangency (T) portfolio, the optimal portfolio that

maximizes the Sharpe ratio (SR), the minimum Value-at-Risk (MVaR) portfolio, and the minimum conditional

Value-at-Risk (MCVaR) portfolio, the maximum Value-of-Return (MVoR) portfolio, the maximum conditional

Value-of-Return (MCVoR) portfolio, among others. The specific choices of g(., ., , ) for each of these optimal

portfolios are provided in Table 1.

Portfolio g(RGMV , VGMV , s) Additional quantities

GMV 0

MV µ0 −RGMV µ0 ∈ R -target expected return

EU γ−1s γ > 0 is the risk-aversion coefficient

T VGMV s/(RGMV − rf ) rf is the risk-free return

SR VGMV s/RGMV

MVaR s
√
VGMV /(z2

α − s) zα = Φ−1(α)

MCVaR s
√
VGMV /(k2

α − s) kα = exp{−z2
α/2}/(2π(1− α))

MVoR
(RGMV +v0)s+

√
z2
αs((RGMV +v0)2+(s−z2

α)VGMV )

z2
α−s

v0 > 0 is the target value-at-risk

MCVoR
(RGMV +k0)s+

√
k2
αs((RGMV +k0)2+(s−k2

α)VGMV )

k2
α−s

k0 is the target conditional value-at-risk

Table 1: Choice of the function g for several optimal portfolios. The symbol Φ(.) denotes the distribution

function of the standard normal distribution and Φ−1(.) stands for its inverse.

Let ŵg denote the sample estimator of the optimal portfolio weights given in the general form as in (3.2),

which is obtained by plugging the sample mean vector and the sample covariance matrix instead of the unknown

population counterparts. The k linear combinations of the optimal portfolio weights are estimated by

Lŵg = θ̂ + g(R̂GMV , V̂GMV , ŝ)η̂. (3.3)

By Theorem 2.1 the exact sampling distribution of (3.3) is derived in terms of its stochastic representation.

The results are summarized in Theorem 3.1, whose proof follows from Theorem 2.1.

Theorem 3.1. Under the conditions of Theorem 2.1, it holds that

Lŵg
d
= θ +

(√
VGMV

f

t1√
n− p+ 1

+
g(R̂GMV , V̂GMV , ŝ)

f

)(
sη + z2/

√
n
)

+

(
LQL> − (sη + z2/

√
n) (sη + z2/

√
n)
>

f

)1/2

×

(√
VGMV

√
1 +

t21
n− p+ 1

+
g(R̂GMV , V̂GMV , ŝ)√

f

t1/
√
n− p+ 1√

1 +
t21

n−p+1

)
t2√

n− p+ 2

+
g(R̂GMV , V̂GMV , ŝ)√

f

(
Ik + f

t2t
>
2

n− p+ 2

)1/2
t3√

n− p+ 3
(3.4)
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where the joint stochastic representation of V̂GMV , R̂GMV and ŝ is given in (i)-(v) of Theorem 2.1.

From Theorem 3.1 we can derive a number of important results. First, it provides a complete characterization

of the sampling distribution of the estimators for the optimal portfolio weights. This distribution can be assessed

by drawing samples with independent observations from the derived stochastic representation of a relatively

large size and then applying the well-established statistical methods for estimating the distribution function, the

density, the moments, etc. Second, the obtained stochastic representation in Theorem 3.1 provides an efficient

way for generating samples from the finite-sample distribution of Lŵg following the discussion provided in

Section 2 after Theorem 2.1, which is based on drawing independent realizations from well-known univariate

and multivariate distributions. To this end, we note that the two square roots in (3.4) should be computed

as given by (2.8) and (2.8). Similarly to the prior discussion, using these simplifications the derived stochastic

representation can be rewritten to include matrix inverses and square roots of population quantities. Once

more, these objects should only be computed once during the whole simulation study. Third, for the chosen

values of the population quantities used in the simulation study, we can construct concentration sets of optimal

portfolio weights. Fourth, an important probabilistic result about the sampling distribution of Lŵg follows

directly from the derived stochastic representation, namely that the finite-sample distribution of Lŵg depends

on the population mean vector µ and the population covariance matrix Σ through RGMV , VGMV , s, θ, η, and

LQL. To sample from the distribution of Lŵg we only need to fix these seven quantities. In particular, in the

case of a single linear combination, i.e. when k = 1, we only have to fix six univariate quantities independently

of the dimension p of the data-generating process.

In a similar way, we derive statistical inference for the estimated characteristics of optimal portfolio with

weights ŵg as given by (3.1). The expected return of the optimal portfolio with the weights (3.1) is given by

Rg = RGMV + g(RGMV , VGMV , s), (3.5)

while its variance is

Vg = VGMV +
g(RGMV , VGMV , s)

2

s
. (3.6)

Similarly, the Value-at-Risk (VaR), the Conditional Value-at-Risk (CVaR), the Value-of-Return (VoR) and the

Conditional Value-of-Return (CVoR) are computed by

V aRg = − (RGMV + g(RGMV , VGMV , s))− zα

√
VGMV +

g(RGMV , VGMV , s)2

s
, (3.7)

CV aRg = − (RGMV + g(RGMV , VGMV , s))− kα

√
VGMV +

g(RGMV , VGMV , s)2

s
, (3.8)

and by symmetry

V oRg = (RGMV + g(RGMV , VGMV , s))− zα

√
VGMV +

g(RGMV , VGMV , s)2

s
, (3.9)

CV oRg = (RGMV + g(RGMV , VGMV , s))− kα

√
VGMV +

g(RGMV , VGMV , s)2

s
. (3.10)

Equation (3.7) and (3.8) describe the VaR and CVaR respectively for a specific portfolio and not a single asset.

Since risk measures simply measure the risk of random objects, the interpretation of the VaR remains the same

as in the case of the univariate case. The VaR measures the loss at a certain confidence level and specifies
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a quantile. The CVaR specifies the mean loss when a loss larger than (or equal to) the VaR occurs, a tail-

conditional expectation, hence its name Conditional Value-at-Risk. By a change of sign, the same holds for the

CVoR and VoR.

Inserting the sample mean vector and the sample covariance matrix in (3.5)-(3.10) instead of the population

counterparts, we get the sample estimators of the optimal portfolio characteristics. The application of Theorem

2.1 leads to the statement of their (joint) sampling distribution, which is presented in Theorem 3.2

Theorem 3.2. Under the conditions of Theorem 2.1, the stochastic representation of the estimated character-

istic of optimal portfolio are obtained as in (3.5)-(3.10) where RGMV , VGMV , and s are replaced by their sample

counterparts R̂GMV , V̂GMV , and ŝ with

V̂GMV
d
=

VGMV

n− 1
ξ,

R̂GMV
d
= RGMV +

√
VGMV

n

(
1 +

p− 1

n− p+ 1
ψ

)
z,

ŝ
d
=

(n− 1)(p− 1)

n(n− p+ 1)
η,

where ξ ∼ χ2
n−p, ψ ∼ F (p− 1, n− p+ 1, ns), z ∼ N(0, 1) are mutually independent.

The proof of Theorem 3.2 is given in the appendix. It has to be noted that the joint distribution of all

six estimators (R̂g, V̂g, V̂ aRg, ̂CV aRg, V̂ oRg, ̂CV oRg) is completely determined by three mutually independent

random variables ξ, ψ, and z with the standard marginal univariate distribution. Moreover, it depends on

the unknown population mean vector and covariance matrix over three univariate quantities RGMV , VGMV ,

and s. These uniquely determine the whole efficient frontier in the mean-variance space. To this end, the

stochastic representation derived for the estimated optimal portfolio characteristics appears to be simpler than

the one obtained in Theorem 3.1 for the corresponding estimator of the optimal portfolio weights. Similarly,

the independent realizations from the joint distribution of (R̂g, V̂g, V̂ aRg, ̂CV aRg, V̂ oRg, ̂CV oRg) can be drawn

efficiently by employing the results of Theorem 3.2.

Another interesting financial application of the derived theoretical findings of Theorem 3.2 is present in the

case of the EU portfolio, whose sample expected return and sample variance possess the following stochastic

representations:

R̂EU
d
= R̂GMV + γ−1ŝ, (3.11)

V̂EU
d
= V̂GMV + γ−2ŝ. (3.12)

It appears that R̂EU and R̂EU are conditionally independent, given the estimated slope parameter of the

efficient frontier ŝ. In the limit case, when the risk aversion coefficient γ tends to infinity and the EU portfolio

tends towards the vertex of the efficient frontier, the two estimated portfolio characteristics are unconditionally

independent. In all other cases, the dependence between them is fully captured by the estimated geometry of

the efficient frontier.

4 High-dimensional asymptotic distributions

The derived stochastic representations of Sections 3 and 4 are also very useful in the derivation of the asymptotic

distributions of the estimators of optimal portfolio weights and their estimated characteristics. To this end,
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we note that the same approach can be used independently whether the dimension of the data generating

process p is assumed to be fixed or allowed to grow together with the sample size n. These two regimes

have been intensively discussed in statistical literature. The former asymptotic regime, i.e. with fixed p, is

called the “standard asymptotics” (see, e.g., Le Cam and Yang [51]). Here, both the sample mean and the

sample covariance matrix are proven to be consistent estimators for the corresponding population counterparts.

Challenges arise when p is comparable to n, i.e. both the dimension p and the sample size n tend to infinity

while their ratio p/n tends to a positive constant c ∈ [0, 1), the so-called concentration ratio. It is called “large

dimensional asymptotics” or “Kolmogorov asymptotics” (c.f., Bühlmann and Van De Geer [26], Cai and Shen

[27]), while the case c = 0 corresponds to the standard asymptotics.

Although, a large amount of research has been done on the asymptotic behavior of functionals which only

include the sample mean vector or the sample covariance matrix under the high-dimensional asymptotics (see,

e.g., Bai and Silverstein [6], Cai et al. [29], Wang et al. [63], Bodnar et al. [12], Bodnar et al. [16], Bodnar

et al. [9]), the situation becomes more complicated when both the sample mean vector and the sample (inverse)

covariance matrix are present in the expressions. The problem is still unsolved and attracts both researchers

and practitioners. In this section, we show how the derived stochastic representations of Sections 2 and 3 can be

employed in the derivation of the high-dimensional asymptotic distributions of the estimated optimal portfolios

and their characteristics. The main advantage of the suggested approach based on the stochastic representations

is the clear separation between the deterministic quantities and the stochastic ones. By using the stochastic

representation we can determine the joint asymptotic distributions of the latter.

Throughout this section, we will impose the following technical conditions on the functions involving the

population mean vector and the population covariance matrix:

(A1) There exist m and M , such that

0 < m ≤ µ>Σ−1µ ≤M <∞ and 0 < m ≤ 1>Σ−11 ≤M <∞ (4.1)

uniformly in p. Moreover, for a linear combination of optimal portfolio weights determined by the p-

dimensional vector l it holds uniformly in p that

0 < m ≤ l>Σ−1l ≤M <∞. (4.2)

Assumption (A1) ensures that the efficient frontier RGMV , VGMV , and s as well as the components of k

linear combinations of optimal portfolio weights Lwg are all finite numbers in higher dimensions. The financial

interpretation shows that even though we have an infinite amount of assets, we should not be able to gain an

infinite amount of return for any amount of risk taken, i.e., the slope of the efficient frontier is bounded. It also

states that the variance of the GMV portfolio is finite and bounded from zero, which can also be interpreted

as investing in a market (regardless of how big it is), should imply some risk, but it can be neither infinite nor

zero. Mathematically, it may happen depending on µ and Σ that some quantities of RGMV , VGMV , s, and

Lwg tend to infinity as p increases. In such cases, one should replace the constants m and M in (4.1) and (4.2)

by pκm and pκM for some κ > 0. This approach would lead only to minor changes in the expressions of the

derived asymptotic covariance matrices in this section, where some terms might disappear (see, e.g., Bodnar

et al. [15] for a similar discussion).
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To this end, by an abuse of notations, we use the same notations for the functions involving the population

mean vector µ and the population covariance matrix Σ and their corresponding deterministic limits. For

instance, µ>Σ−1µ will also be used to denote the limit limp→∞ µ
>Σ−1µ. The interpretation of the quantities

becomes clear from the text where they are used.

4.1 High-dimensional asymptotic distribution of V̂GMV , R̂GMV , θ̂, ŝ, and η̂

Before presenting the high-dimensional asymptotic results for the estimated optimal portfolio weights and

their characteristic, we derive the asymptotic stochastic representation for the five quantities V̂GMV , R̂GMV ,

θ̂, ŝ, and η̂. It is presented in Theorem 4.1 in terms of several independently normally distributed random

variables/vectors. Such a presentation allows also to characterize the asymptotic dependence structure V̂GMV ,

R̂GMV , θ̂, ŝ, and η̂ as well as to derive the expression of the asymptotic covariance matrix which is given after

Theorem 4.1.

Theorem 4.1. Under the conditions of Theorem 2.1 and Assumption (A1), it holds that

(i)
√
n− p

(
V̂GMV − 1−p/n

1−1/n
VGMV

)
d→
√

2(1− c)VGMV u1,

(ii)
√
n− p

(
R̂GMV −RGMV

)
d→
√
VGMV

(√
1− cu4 +

√
s+ cu5

)
,

(iii)
√
n− p

(
θ̂ − θ

)
d→
√
VGMV

(
su5√
s+c
η +

(
LQL> − s2

s+c
ηη>

)1/2
u6

)
,

(iv)
√
n− p

(
ŝ− (s+p/n)(1−1/n)

1−p/n+2/n

)
d→ 1

1−c

(√
2(1− c) (c+ 2µ>Aµ)u2 + 2s

√
(1− c)η>(LQL>)−1/2u3 +

√
2(s+ c)u7

)
,

(v)
√
n− p

(
η̂ − s

s+p/n
η
)

d→ 1√
s+c

(
LQL> − s2

s+c
ηη>

)1/2
u8 +

√
1−c

(s+c)

(
LQL> − 2 s2

s+c
ηη>

)
(LQL>)−1/2u3

−
s
√

2(1−c)(c+2µ>Aµ)u2

(s+c)2
η

for p/n→ c ∈ [0, 1) as n→∞ where u1, u2,u3, u4, u5,u6, u7,u8 are mutually independent, u1, u2, u4, u5, u7 ∼

N(0, 1) and u3,u6,u8 ∼ Nk(0, Ik).

Several interesting results are summarized in the statement of Theorem 4.1, whose proof is given in the

appendix. We observe that three quantities related to the estimators of the weights and of the characteristics of

the GMV portfolio, the vertex point on the efficient frontier, are asymptotically independent of the estimated

slope parameter of the efficient frontier ŝ and the self-financing portfolio η̂. However, these two are not asymp-

totically independent. This may not be so surprising since it is implicitly present in the estimated weights of the

self-financing portfolio v from its definition (1.4). Moreover, the sample variance of the GMV portfolio appears

to be asymptotically independent of its estimated expected return R̂GMV and the estimator of the weights θ̂

following the finite-sample findings of Theorem 2.1. However, it is surprising that the covariance between θ̂ and

R̂GMV is partly determined by the self-financing portfolio η due to the deterministic expression close to u5 in

the asymptotic stochastic representations of
√
n− p

(
R̂GMV −RGMV

)
and
√
n− p

(
θ̂ − θ

)
. Finally, the direct

application of the derived stochastic representations in Theorem 4.1 leads to the expression of the asymptotic

covariance matrix as given in Corollary 4.1.
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Corollary 4.1. Under the conditions of Theorem 2.1 and Assumption (A1), it holds that

√
n− p



V̂GMV − 1−p/n
1−1/nVGMV

R̂GMV −RGMV

θ̂ − θ

ŝ− (s+p/n)(1−1/n)
1−p/n+2/n

η̂ − s
s+p/nη


→ N2k+3 (0,Ξ)

with

Ξ =



2V 2
GMV (1− c)2 0 0 0 0

0 VGMV (1 + s) VGMV sη
> 0 0

0 VGMV sη VGMV LQL> 0 0

0 0 0 Ξs,s Ξ>s,η

0 0 0 Ξs,η Ξη,η


for p/n→ c ∈ [0, 1) as n→∞ where

Ξs,s =
2(c+ 2s)

(1− c)
+ 2

(s+ c)2

(1− c)2
, (4.3)

Ξη,η =
s+ 1

(s+ c)2
LQL> − s2(2c(1− c) + (s+ c)2)

(s+ c)4
ηη>, (4.4)

Ξs,η =
2s
(
2c− s+ 4µ>Aµ)

)
(s+ c)2

η.

4.2 High-dimensional asymptotic distribution of optimal portfolio weights

The results of Theorem 4.1 are used to derive the high-dimensional asymptotic distribution of linear combina-

tions of the estimated optimal portfolio weights ŵg as well as of the corresponding estimated characteristics of

the portfolios given in Section 3. Throughout this section we assume that the number of linear combinations k

is finite.

Let

λ̂ = (R̂GMV , V̂GMV , ŝ)
> and λ =

(
RGMV , (1− c)VGMV ,

s+ c

1− c

)>
(4.5)

where the results of Theorem 4.1 show that

R̂GMV −RGMV = oP (1),

V̂GMV − (1− c)VGMV = oP (1),

ŝ− s+ c

1− c
= oP (1),

where oP (1)→0 for p/n→ c ∈ [0, 1) as n→∞.

Throughout this section it is assumed that the function g(x, y, z) is differentiable with first order continuous

derivatives and define

g1(x0, y0, z0) =
∂g(x, y, z)

∂x

∣∣∣∣∣
(x,y,z)=(x0,y0,z0)

,

g2(x0, y0, z0) =
∂g(x, y, z)

∂y

∣∣∣∣∣
(x,y,z)=(x0,y0,z0)

,

g3(x0, y0, z0) =
∂g(x, y, z)

∂z

∣∣∣∣∣
(x,y,z)=(x0,y0,z0)

.
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The asymptotic distribution of Lŵg is given in Theorem 4.2, with the proof presented in the appendix.

Theorem 4.2. Let g(., ., .) be differentiable with first order continuous derivatives. Then, under the conditions

of Theorem 2.1 and Assumption (A1), we get

√
n− p

(
Lŵg −

(
θ +

sg (λ)

s+ p/n
η

))
d→ Nk(0,ΩL,g) (4.6)

for p/n→ c ∈ [0, 1) as n→∞ with

ΩL,g =

((
1− c
s+ c

+ g (λ)

)
g (λ)

s+ c
+ VGMV

)
LQL> + s2

{
2

(1− c)2V 2
GMV

(s+ c)2
g2 (λ)

+

(
g3 (λ)

1− c
− g (λ)

s+ c

)2
2(1− c)c
(s+ c)2

+
4(1− c)
(s+ c)2

[
g (λ)

(
g3 (λ)

1− c
− g (λ)

s+ c

)
+ s

(
g3 (λ)

1− c
− g (λ)

s+ c

)2
]

+
VGMV (1− c)

(s+ c)2
g1 (λ)

2
+
VGMV

(s+ c)
g1 (λ) +

2

1− c
g3 (λ)

2 − g (λ)
2

(s+ c)2

}
ηη>. (4.7)

The results of Theorem 4.2 are derived for the finite number k of linear combinations of the estimated optimal

portfolio weights ŵg and, consequently, they cannot be used to verify the consistency of the whole vector ŵg.

Several consistency results about estimated optimal portfolio weights can be found in Ao et al. [5].

In the special case of the EU portfolio we get g(x, y, z) = γ−1z, g1(x, y, z) = g2(x, y, z) = 0, and

g3 (λ)

1− c
− g (λ)

s+ c
=

1

1− c
γ−1 − γ−1(s+ c)

(1− c)(s+ c)
= 0.

As a result, the asymptotic covariance matrix of LŵEU is expressed as

ΩL,EU =

((
1− c
s+ c

+ γ−1 s+ c

1− c

)
γ−1

1− c
+ VGMV

)
LQL> +

(1− 2c)γ−2s2

(1− c)2
ηη>. (4.8)

In the same way, the high-dimensional asymptotic distribution of the estimated optimal portfolio characteris-

tics is obtained. Following (3.5)-(3.10), (Rg, Vg, V aRg, CV aRg, V oRg, CV oRg) are functions of RGMV , VGMV ,

and s only. On the other hand, Theorem 4.1 determines the joint high-dimensional asymptotic distribution of

R̂GMV , V̂GMV , and ŝ expressed as

√
n− p


R̂GMV −RGMV

V̂GMV − 1−p/n
1−1/nVGMV

ŝ− (s+p/n)(1−1/n)
1−p/n+2/n

→ N3 (0,ΞRV s)

for p/n→ c ∈ [0, 1) as n→∞ with

ΞRV s =


VGMV (1 + s) 0 0

0 2V 2
GMV (1− c)2 0

0 0 2(c+2s)
(1−c) + 2 (s+c)2

(1−c)2

 ,

which shows that (R̂GMV , V̂GMV , ŝ) are asymptotically independently distributed.

The characteristics in equations (3.5) through (3.10) can be viewed as transformations of RGMV , VGMV , s.

In a similar fashion to Theorem 4.2, we can also construct high-dimensional asymptotic distributions for these.

Let hg,i(RGMV , VGMV , s) denote the i-th characteristic of the optimal portfolio with the weights wg and let

hg,i

(
λ̂
)

denote its corresponding estimate, where λ is defined in (4.5). In the example of characteristics given

by equations (3.5) through (3.10), i would range from 1 to 6. Let the j-th first order partial derivative of hg,i(.)

at λ be denoted by hg,i;j (λ). We get the following result of the high-dimensional distribution of estimated

optimal portfolio characteristic, whose proof is obtained from the proof of Theorem 4.2.
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Theorem 4.3. Let hg,i(., ., .), i = 1, ..., q, be differentiable with first order continuous derivatives. Then, under

the conditions of Theorem 2.1 and Assumption (A1), we get for p/n→ c ∈ [0, 1) as n→∞

√
n− p


hg,1

(
λ̂
)
− hg,1 (λ)

...

hg,q

(
λ̂
)
− hg,q (λ)

→ Nq (0,Ξh)

with Ξh = (Ξh;ij)i,j=1,...,q where

Ξh;ij =

3∑
l=1

ΞRV s;llhg,i;l (λ)hg,j;l (λ) . (4.9)

4.3 Interval estimation and high-dimensional test theory

The results of Theorems 4.2 and 4.3 indicate that both Lŵg and hg,i

(
λ̂
)

, i = 1, ..., q, are not consistent

estimators for Lŵg and hg,i (RGMV , VGMV , s), i = 1, ..., q, respectively. While the asymptotic bias of the

sample estimator of linear combinations of optimal portfolio weights is
(

s
s+cg (λ)− g (RGMV , VGMV , s)

)
η, the

asymptotic bias in the estimator of the i-th portfolio characteristic is hg,i (λ)− hg,i (RGMV , VGMV , s).

On the other hand, the results of Theorem 4.1 already provide consistent estimators for VGMV , RGMV , θ,

s, and η. Namely, they are given by

V̂GMV ;c =
V̂GMV

1− p/n
, (4.10)

R̂GMV ;c = R̂GMV , (4.11)

θ̂c = θ̂, (4.12)

ŝc =
n− p
n

(
ŝ− p

p+ n

)
, (4.13)

η̂c =
ŝc + p/n

ŝc
η̂. (4.14)

Combining these equalities, we derive consistent estimators for Lŵg and hg,i (RGMV , VGMV , s) expressed as

Lŵg;c = θ̂ + g
(
R̂GMV ;c, V̂GMV ;c, ŝc

)
η̂c and (4.15)

ĥg,i,c = hg,i

(
R̂GMV ;c, V̂GMV ;c, ŝc

)
. (4.16)

In Theorem 4.4, the asymptotic covariance matrices of the consistent estimators of optimal portfolio weights

and their characteristics are present.

Theorem 4.4. Let λ = (RGMV , VGMV , s)
>. Then, under the conditions of Theorems 4.2 and 4.3, it holds that

(a)
√
n− p (Lŵg;c − Lwg)

d→ Nk(0,ΩL,g,c) for p/n→ c ∈ [0, 1) as n→∞ with

ΩL,g,c =

((
1− c
s+ c

+
s+ c

s
g (λ0)

)
g (λ0)

s
+ VGMV

)
LQL>

+ s2
{

2
(1− c)V 2

GMV

s(s+ c)
g2 (λ0) +

(
g3 (λ0) (s+ c)

s
− g (λ0)

s

)2
2(1− c)c
(s+ c)2

+
4(1− c)
(s+ c)2

[
s+ c

s
g (λ0)

(
g3 (λ0) (s+ c)

s
− g (λ0)

s

)
+ s

(
g3 (λ0) (s+ c)

s
− g (λ0)

s

)2
]

+
VGMV (1− c)

s2
g1 (λ0)2 +

VGMV

s
g1 (λ0) +

2(1− c)(s+ c)2

s2
g3 (λ0)2 − g (λ0)2

s2

}
ηη>;
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(b) for p/n→ c ∈ [0, 1) as n→∞ holds

√
n− p


ĥg,1,c − hg,1 (λ0)

...

ĥg,q,c − hg,q (λ0)

→ Nq (0,Ξh,c) with Ξh,c = (Ξh,c;ij)i,j=1,...,q

where

Ξh,c;ij = VGMV (1+s)hg,i;1 (λ0)hg,j;1 (λ0)+2V 2
GMV hg,i;2 (λ0)hg,j;2 (λ0)+

(
2s2 + 4s+ 2c

)
hg,i;3 (λ0)hg,j;3 (λ0) .

(4.17)

Since both ΩL,g,c and Ξh,c depend on unobservable quantities, we have to estimate them consistently under

the high-dimensional asymptotic regime when confidence regions for the optimal portfolio weights and for the

optimal portfolio characteristics are derived.

Consistent estimators for VGMV , RGMV , θ, s, and η are given in (4.10)-(4.14). Similarly, to construct a

consistent estimator for LQL>, we have that

LQL> = L

(
Σ−1 − Σ−111>Σ−1

1>Σ−11

)
L> = LΣ−1L> − 1

VGMV
θθ>.

First, VGMV and θ are replaced by their consistent estimators V̂GMV ;c and θ̂c. Second, note that a con-

sistent estimator for l>i Σ−1lj with deterministic vectors li and lj satisfying Assumption (A1) is given by

(1− p/n) l>i Σ̂
−1

lj (c.f., Bodnar et al. [18, Lemma 5.3]). As a result, LQL> is consistently estimated by

(1− p/n) LQ̂L> with Q̂ given in (1.5) and, hence, VGMV , RGMV , θ, s, η, and LQL> with their consistent

estimators in (4.17) and (4.17), we obtain consistent estimators for ΩL,g,c and Ξh,c denoted by Ω̂L,g,c and Ξ̂h,c.

For instance, a consistent estimator for the covariance matrix of the estimated weights of the EU portfolio is

given by:

Ω̂L,EU,c =

((
1− cn
ŝc + cn

+ (ŝc + cn)γ−1

)
γ−1 + V̂GMV ;c

)
(1− cn)LQ̂L> (4.18)

+ γ−2

{
2(1− cn)c3n
(ŝc + cn)2

+ 4(1− cn)cn
ŝc(ŝc + 2cn)

(ŝc + cn)2
+

2(1− cn)c2n(ŝc + cn)2

ŝ2
c

− ŝ2
c

}
η̂cη̂

>
c ,

where cn = p/n.

The suggested consistent estimators of ΩL,g,c and Ξh,c are then used to derive (1 − β) asymptotic confi-

dence intervals for the population optimal portfolio weights and their characteristics. In the case of k linear

combination of the optimal portfolio weights wg we get

CL,g;1−β =
{
ω : (n− p) (Lŵg;c − Lwg)

>
Ω̂
−1

L,g,c (Lŵg;c − Lwg) ≤ χ2
k;1−β

}
, (4.19)

where χ2
k;1−β denotes the (1− β) quantile from the χ2-distribution with k degrees of freedom.

Finally, using the duality between the interval estimation and the test theory (c.f., Aitchison [2]), a test

on the equality of k-linear combination of optimal portfolio weights to a preselected vector r can be derived.

Namely, one has to reject the null hypothesis H0 Lwg = r in favour to the alternative hypothesis H0 Lwg = r

at significance level β as soon as r does not belong to the confidence interval CL,g;1−β , as given in (4.19). Similar

results are also obtained in the case of optimal portfolio characteristics.
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5 Finite-sample performance and robustness analysis

The finite-sample performance of the derived high-dimensional asymptotic approximation of the sampling dis-

tribution of the estimated optimal portfolio weights is investigated via an extensive Monte Carlo study in this

section. Additionally, we study the robustness of the obtained asymptotic distributions to the violation of the

assumption of normality used in their derivation. The following four simulation scenarios will be considered in

the simulation study:

Fig. 1: QQ-plots of the empirical qunatiles computed for the (standardized) sample estimators (left column)

and for the (standardized) consistent estimators (right column) of VGMV , θ, RGMV , s, η, and LwEU in

comparison to the quantiles obtained from the corresponding high-dimensional asymptotic distribution. Data

of asset returns are generated following Scenario 1 with c = 0.5.

Scenario 1: Multivariate normal distribution

Sample of asset returns x1,x2, ...,xn are generated independently from Np(µ,Σ);

Scenario 2: CAPM model
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Fig. 2: QQ-plots of the empirical qunatiles computed for the (standardized) sample estimators (left column)

and for the (standardized) consistent estimators (right column) of VGMV , θ, RGMV , s, η, and LwEU in

comparison to the quantiles obtained from the corresponding high-dimensional asymptotic distribution. Data

of asset returns are generated following Scenario 1 with c = 0.9.

Sample of asset returns x1,x2, ...,xn are generated independently from the CAPM model. That is, we

sample n observations from xi = yi + βzi where y1, ...,yn are generated independently from Np(µ,Σ)

and z1, ..., zn are generated independently from a standard normal distribution;

Scenario 3: Multivariate t-distribution

Sample of asset returns x1,x2, ...,xn are generated independently from multivariate t-distribution with

degrees of freedom d = 10, location parameter µ, scale matrix d−2
d Σ. This choice of the scale matrix

ensures that the covariance matrix of xi is Σ;

Scenario 4: CCC-GARCH model (c.f., Bollerslev [24])

The asset returns are assumed to be conditionally normally distributed with xt

∣∣∣Σt ∼ Np(µ,Σt). The
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conditional covariance matrix is specified by Σt = D
1/2
t CD

1/2
t with Dt = diag(h1,t, ..., hp,t) and

hi,t = αi,0 + α1,i(xi,t−1 − µi)2 + β1,ihi,t−1, for i = 1, ..., p and t = 1, ..., n,

where xt = (x1,t, ..., xp,t)
>, µ = (µ1, ..., µp)

>, αi,0 ≥ 0 and α1,i, β1,i > 0 for i = 1, ..., p.

Fig. 3: QQ-plots of the empirical qunatiles computed for the (standardized) sample estimators (left column)

and for the (standardized) consistent estimators (right column) of VGMV , θ, RGMV , s, η, and LwEU in

comparison to the quantiles obtained from the corresponding high-dimensional asymptotic distribution. Data

of asset returns are generated following Scenario 2 with c = 0.5.

Scenario 1 corresponds to the assumption used in the derivation of the theoretical results of the paper. Sce-

nario 2 corresponds to a one-factor model of asset returns, which is a popular approach in financial literature.

Although, following this model the largest eigenvalue of the covariance matrix Σ + β211> is of order p (see,

e.g., Fan et al. [36]), it still fulfills the assumptions used in the derivation of the theoretical findings of Sections

2 and 3. Scenario 3 violates the key assumption of normality by allowing heavy tails in the distribution of the

asset returns. Finally, Scenario 4 is used to investigate the performance of the high-dimensional asymptotic
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Fig. 4: QQ-plots of the empirical qunatiles computed for the (standardized) sample estimators (left column)

and for the (standardized) consistent estimators (right column) of VGMV , θ, RGMV , s, η, and LwEU in

comparison to the quantiles obtained from the corresponding high-dimensional asymptotic distribution. Data

of asset returns are generated following Scenario 2 with c = 0.9.

approximation of the sampling distribution of the estimated optimal portfolio weights when the assumption of

independence does not hold by introducing non-zero autocorrelation between the squared values of the asset

returns.

In order to make the results more flexible, the model parameters are not fixed to some preselected values,

but are randomly simulated. In the considered scenarios the components of µ are generated from U(−0.2, 0.2),

where U(a, b) stands for the uniform distribution on [a, b]. The eigenvalues of the covariance matrix Σ are fixed,

such that 20% of them are equal to 0.2, 40% are equal to 1, and 40% are equal to 5, while its eigenvectors

are simulated from the Haar distribution. In Scenario 3 we sample βj ∼ U(−0.2, 0.2), j = 1, 2, ..., p. The

coefficients α1,i, β1,i of CCC-GARCH model in Scenario 4 are generated according to α1,i ∼ U(0, 0.1) and

β1,i ∼ U(0.6, 0.7). By such a construction, we always ensure α1,i + β1,i < 1, i.e., the stationarity condition is
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fulfilled. Finally, αi,0 is chosen such that the unconditional covariance matrix of the CCC-GARCH process is

equal to Σ. Finally, we put n = 1000 and c ∈ {0.5, 0.9} in all four scenarios.

Fig. 5: QQ-plots of the empirical qunatiles computed for the (standardized) sample estimators (left column)

and for the (standardized) consistent estimators (right column) of VGMV , θ, RGMV , s, η, and LwEU in

comparison to the quantiles obtained from the corresponding high-dimensional asymptotic distribution. Data

of asset returns are generated following Scenario 3 with c = 0.5.

The results of the simulation study are illustrated in the case of five quantities VGMV , θGMV , RGMV , s, and

η, and the first weight of the EU portfolio with γ = 20 and L = (1, 0, 0, ..., 0). We will compute the sample and

consistent estimators for these quantities in all scenarios, and compare their finite-sample distributions to the

corresponding high-dimensional ones derived in Section 4. In Figures 1 to 8, we display QQ-plots for each of the

six estimated quantities, both ordinary sample estimator and consistent ones, against the quantiles obtained

from their corresponding high-dimensional distribution. On the first row of each figure, we see the estimators

for R̂GMV and θ̂, where the sample and consistent estimators coincide. On the second to fifth row, the first

column corresponds to the sample estimators of the considered quantities, while the second column presents
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Fig. 6: QQ-plots of the empirical qunatiles computed for the (standardized) sample estimators (left column)

and for the (standardized) consistent estimators (right column) of VGMV , θ, RGMV , s, η, and LwEU in

comparison to the quantiles obtained from the corresponding high-dimensional asymptotic distribution. Data

of asset returns are generated following Scenario 3 with c = 0.9.

the results for the consistent estimators.

In the first and second scenarios, we employ the stochastic representations of Theorems 2.1 and 3.1. We

sample from the finite-sample distribution of each estimated quantity through 1000 independent draws V̂
(b)
GMV ,

θ̂
(b)

GMV , R̂
(b)
GMV , ŝ(b), η̂(b), and Lŵ

(b)
EU for b = 1, ..., 1000. To this end, we note that the application of Theorems

2.1 and 3.1 provides an efficient way to generate the sample V̂
(b)
GMV , θ̂

(b)

GMV , R̂
(b)
GMV , ŝ(b), η̂(b), and Lŵ

(b)
EU , which

also avoids the computation of the inverse sample covariance matrix, which might be an ill-defined object in

large dimensions, especially when c = 0.9. In Scenarios 3 and 4, the stochastic representations derived in
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Theorems 2.1 and 3.1 can no longer be used, since the assumptions used for their derivation are no longer

fulfilled. In these two cases, we calculate all quantities explicitly for each simulation run. This increases the

computational cost immensely, since we need to invert a p× p matrix for each generated sample.

Fig. 7: QQ-plots of the empirical qunatiles computed for the (standardized) sample estimators (left column)

and for the (standardized) consistent estimators (right column) of VGMV , θ, RGMV , s, η, and LwEU in

comparison to the quantiles obtained from the corresponding high-dimensional asymptotic distribution. Data

of asset returns are generated following Scenario 4 with c = 0.5.

In Figures 1 and 2 the results obtained under Scenario 1 are depicted. We observe in the figures that

the high-dimensional asymptotic distributions provide a good approximation for the moderate value of the

concentration ratio c = 0.5 and its large value c = 0.9. The approximation seems to be worst off in the context

of approximating the distribution of ŝ when c = 0.9, as the tails become much heavier than the approximation

seems to be able to account for. Also, there seems to be some instability in the sample estimator for η̂, as there

is one observation which is very large. We do not see the same behaviour for the consistent estimator. Similar

findings are also present in Figures 3 and 4, where we simulated from Scenario 2, that is from the CAPM
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Fig. 8: QQ-plots of the empirical qunatiles computed for the (standardized) sample estimators (left column)

and for the (standardized) consistent estimators (right column) of VGMV , θ, RGMV , s, η, and LwEU in

comparison to the quantiles obtained from the corresponding high-dimensional asymptotic distribution. Data

of asset returns are generated following Scenario 4 with c = 0.9.

model. The sample estimator for η̂ seems to have some deviating observations which are no longer observable

when the consistent estimator is used.

In Figures 5 and 6 we display the high-dimensional asymptotic approximations of the sampling distributions of

the sample and consistent estimators of VGMV , θ, RGMV , s, η, and LwEU . The high-dimensional distributions

approximate the corresponding sampling distributions reasonably well when the asset returns are assumed to

be multivariate t-distributed. There are some deviations from normality in the sampling distributions of the

estimators for s and VGMV , regardless of which estimator we use. There are also some observations in the
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finite-sample distribution of the sample estimator η̂ that might indicate the presence of heavy tails or skewness,

while the same behaviour is not seen in its consistent estimator. There is a small bias for two quantities s and

VGMV which could be explained by the influence of heavy tails in the data-generating model on the estimation of

the inverse of the high-dimensional covariance matrix. On the other hand, the asymptotic variances seem to be

well approximated by the results of Theorems 4.1 and 4.2. All other quantities show a good performance despite

the violation of the distributional assumption. We also observe the same type of skewness as in Scenarios 1

and 2 in the case of s, when the asset universe becomes large.

In Figures 7 and 8 the results of the simulation are shown in the case of Scenario 4. In contrast to the

previous three scenarios, here it is assumed that the square asset returns are autocorrelated, which violates the

assumption of independence imposed in the derivation of the theoretical results. The empirical findings of both

figures also document here that the high-dimensional asymptotic distributions provide a good approximation of

the corresponding finite-sample distributions. The only inconsistency we observe is the same type of heavy tail

behaviour in the finite-sample distribution of the sample estimator for η which disappear in its consistent coun-

terpart. No significant impact of dependence on the performance of the derived high-dimensional distribution

is observable in other plots of Figures 7 and 8.

6 Summary

In this paper we derive the exact sampling distribution of the estimators for a large class of optimal portfolio

weights and their estimated characteristics. The results are present in terms of stochastic representations, which

provides an easy way to assess the sampling distribution of the estimated optimal portfolio weights. Another

important application of the derived stochastic representations is that it presents an efficient way to sample

from the corresponding (joint) distribution. The largest computational efficiency comes from the fact that

it excludes the inversion of the sample covariance matrix in each simulation run. Furthermore, the derived

stochastic representation simplifies the study of the asymptotic properties of the estimated quantities under the

high-dimensional asymptotic regime.

In the derivation of the theoretical results we assume that the asset returns are independent and normally dis-

tributed. These assumptions seem to be appropriate when asset returns are taken at weekly or lower frequency,

while they are not fulfilled for financial data of daily and higher frequency. In our Monte Carlo simulations,

we study the finite-sample performance of the obtained asymptotic distributions in comparison to the exact

sampling distributions. We investigate the implications of violations to the model assumptions, namely depar-

tures from the assumption of normality and independence. We observe a good performance of the asymptotic

distributions for finite samples when the data are simulated from the normal distribution. If the assumption

of normality is violated, the asymptotic distribution fails to capture some structure in the data. These are

biases that appear in the means and variances for a selected few of the estimated quantities. For the rest, the

normal approximations still seem to provide a good fit. Assessing the biases in the asymptotic means and in

the asymptotic (co)variances of the estimated optimal portfolio weights and their characteristic is an important

challenge which will be treated in the consequent paper. Finally, we also find minor impact of the presence of

autocorrelation between squared asset returns on the performance of the derived asymptotic distributions.
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Appendix

In this section, the proofs of the theoretical results are given. In Lemma 6.1 we derive the conditional distribution

of (V̂GMV , θ̂
>
, R̂GMV , ŝ, η̂

>)> under the condition µ̂ = µ̃, i.e. the distribution of (V̂GMV , θ̂
>
, R̃GMV , s̃, η̃

>)>.

Lemma 6.1. Under the conditions of Theorem 2.1, the distribution of (V̂GMV , θ̂
>
, R̃GMV , s̃, η̃

>)> is determined

by

(i) V̂GMV is independent of (θ̂
>
, R̃GMV , s̃, η̃

>)>;

(ii) (n− 1) V̂GMVVGMV
∼ χ2

n−p;

(iii)

 θ̂

R̃GMV

 ∼ tk+1

n− p+ 1,

 θ

R̆GMV

 , VGMVn−p+1Ğ

,

with Ğ =

 LQL> LQµ̃

µ̃>QL> µ̃>Qµ̃

 =

LQL> s̆η̆

s̆η̆> s̆


(iv) s̃ and η̃ are conditionally independent given θ̂ and R̃GMV

(v) (n− 1) s̆s̃

(
1 + (R̃GMV −R̆GMV )2

VGMV s̆

)
∼ χ2

n−p+2;

(vi) η̃|θ̂
>
, R̃GMV ∼ tk

(
n− p+ 3, η̆ + h, (n−p+3)−1F̃

s̆
(

1+
(R̃GMV −R̆GMV )2

VGMV s̆

)2

)
, where

h =

(
1 +

(R̃GMV − R̆GMV )2

VGMV s̆

)−1
(θ̂ − θ − η̆(R̃GMV − R̆GMV ))(R̃GMV − R̆GMV )

VGMV s̆

F̃ =
(
LQL> − s̆η̆η̆>

)(
1 +

(R̃GMV − R̆GMV )2

VGMV s̆

)

+
s̆

VGMV

(
θ̂ − θ − η̆(R̃GMV − R̆GMV )

)(
θ̂ − θ − η̆(R̃GMV − R̆GMV )

)>
.

Proof of Lemma 6.1: Under the assumption of independent and normally distributed sample of the asset returns,

we get that

(a) µ̂ ∼ Np
(
µ,

1

n
Σ

)
;

(b) (n−1)Σ̂ ∼ Wp(n−1,Σ) (p-dimensional Wishart distribution with (n−1) degrees of freedom and covariance

matrix Σ);

(c) µ̂ and Σ̂ are independent.
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As a result, the conditional distribution of a random variable defined as a function of µ̂ and Σ̂ given µ̂ = µ̃ is

equal to the distribution of a random variable defined by the same function where µ̂ is replaced by µ̃.

Let M̃ = (L>, µ̃,1)> and define

H̃ = M̃Σ̂
−1

M̃> =

 H̃11 H̃12

H̃21 H̃22


with

H̃11 =

 LΣ̂
−1

L> LΣ̂
−1
µ̃

µ̃>Σ̂
−1

L> µ̃>Σ̂
−1
µ̃

 , H̃12 =

 LΣ̂
−1

1

µ̃>Σ̂
−1

1

 , H̃21 = H̃>12, H̃22 = 1>Σ̂
−1

1

and

H = M̃Σ−1M̃> =

 H11 H12

H21 H22


with

H11 =

 LΣ−1L> LΣ−1µ̃

µ̃>Σ−1L> µ̃>Σ−1µ̃

 , H12 =

 LΣ−11

µ̃>Σ−11

 , H21 = H>12, H22 = 1>Σ−11.

Also, let

G̃ = H̃11 −
H̃12H̃21

H̃22

=

 L

µ̃>

 Q̂
(

L> µ̃
)

=

 LQ̂L> LQ̂µ̃

µ̃>Q̂L> µ̃>Q̂µ̃

 =

 G̃11 G̃12

G̃21 G̃22

 (6.1)

and

G = H11 −
H12H21

H22
=

 L

µ̃>

Q
(

L> µ̃
)

=

 LQL> LQµ̃

µ̃>QL> µ̃>Qµ̃

 =

 G11 G12

G21 G22

 (6.2)

with G̃22 = µ̃>Q̂µ̃ and G22 = µ̃>Qµ̃.

In using the definitions of H̃ and G̃, we get

V̂GMV =
1

H̃22

,

 θ̂

R̃GMV

 =
H̃12

H̃22

, s̃ = G̃22, η̃ =
G̃12

G̃22

.

Moreover, from Muirhead [55, Theorem 3.2.11] we get (n−1)H̃−1 ∼ Wk+2(n−p+k+1,H−1) and, consequently,

(see, Gupta and Nagar [41, Theorem 3.4.1] (n− 1)−1H̃ ∼ W−1
k+2(n− p+ 2k+ 4,H) ((k+ 2)-dimensional inverse

Wishart distribution with n − p + 2k + 4 degrees of freedom and parameter matrix H). The application of

Theorem 3 in Bodnar and Okhrin [17] leads to

(i) H̃22 is independent of H̃12/H̃22 and G̃ and, consequently,

V̂GMV is independent of (θ̂
>
, R̃GMV , s̃, η̃

>)>.

(ii) We get that (n− 1)−1H̃22 ∼ W−1
1 (n− p+ 2,H22). Hence,

(n− 1)
1>Σ−11

1>Σ̂
−1

1
= (n− 1)

V̂GMV

VGMV
∼ χ2

n−p ; (6.3)

(iii) Let Γl

(
m
2

)
= πl(l−1)/4

∏l
i=1 Γ

(
m−i+1

2

)
be the multivariate gamma function. Then, the density of

H̃12/H̃22 =
(
θ̂
>

R̃GMV

)>
is given by

f(y) =
|G|− 1

2 |H22|
(k+1)

2

π
k+1

2

Γk+1(n−p+k+2
2 )

Γk+1(n−p+k+1
2 )

|I + G−1(y −H12/H22)H22(y −H12/H22)>|−
n−p+k+2

2

=
|G/H22|−

1
2

π
k+1

2

Γk+1(n−p+k+2
2 )

Γk+1(n−p+k+1
2 )

(
1 + H22(y −H12/H22)>G−1(y −H12/H22)

)−n−p+k+2
2 (6.4)
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where the last equality is obtained by the use of the Sylvester determinant identity. The density presented

in (6.4) corresponds to a (k + 1)-dimensional t distribution with (n− p+ 1) degrees of freedom, location

parameter H12/H22 =
(
θ> R̆GMV

)>
and scale matrix VGMV

n−p+1G.

In the proof of parts (iv)-(vi) we use the following result (see Theorem 3.f of Bodnar and Okhrin [17])

(n− 1)−1G̃|θ̂
>
, R̃GMV ∼ W−1

k+1

(
n− p+ 2k + 4, B̃

)
,

where

B̃ = G +
1

VGMV

 θ̂ − θ

R̃GMV − R̆GMV

 θ̂ − θ

R̃GMV − R̆GMV

> =

 B̃11 B̃12

B̃21 B̃22


with B̃22 = G22 + (R̃GMV −R̆GMV )2

VGMV

Hence,

(iv) s̃ = G̃22 and η̃ = G̃12/G̃22 are conditionally independent given θ̂
>

and R̃GMV .

(v) It holds that (n− 1)−1G̃22|θ̂
>
, R̃GMV ∼ W−1

1

(
n− p+ 4, B̃22

)
. Hence,

(n− 1)
s̆+ (R̃GMV − R̆GMV )2/VGMV

s̃
∼ χ2

n−p+2 . (6.5)

(vi) Finally, similarly to the proof of part (iii), we get

η̃|θ̂
>
, R̃GMV ∼ tk

(
n− p+ 3,

B̃12

B̃22

,
1

n− p+ 3

B̃11B̃22 − B̃12B̃21

B̃2
22

)
,

where

B̃11B̃22 − B̃12B̃21

=

(
G11 +

1

VGMV
(θ̂ − θ)(θ̂ − θ)>

)(
G22 +

(R̃GMV − R̆GMV )2

VGMV

)

−

(
G12 +

R̃GMV − R̆GMV

VGMV
(θ̂ − θ)

)(
G12 +

R̃GMV − R̆GMV

VGMV
(θ̂ − θ)

)>
= G11G22 −G12G21 +

G22

VGMV
(θ̂ − θ)(θ̂ − θ)>

+
(R̃GMV − R̆GMV )2

VGMV
G11 −

R̃GMV − R̆GMV

VGMV

(
(θ̂ − θ)G>12 + G12(θ̂ − θ)>

)
=

(
G11 −

G12G21

G22

)(
G22 +

(R̃GMV − R̆GMV )2

VGMV

)

+
G22

VGMV

(
θ̂ − θ − G12

G22
(R̃GMV − R̆GMV )

)(
θ̂ − θ − G12

G22
(R̃GMV − R̆GMV )

)>
.

Proof of Theorem 2.1: From Theorem 6.1.ii we get

V̂GMV
d
=
VGMV

n− 1
ξ1 (6.6)
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where ξ1 ∼ χ2
n−p. Moreover, Theorem 6.1.iii implies that θ̂ and R̃GMV are jointly multivariate t-distributed

and, hence, it holds that (see, e.g., Ding [32]) R̃GMV ∼ t
(
n− p+ 1, R̆GMV ,

VGMV s̆
n−p+1

)
and

θ̂|R̃GMV ∼ tk

(
n− p + 2,θ + η̆(R̃GMV − R̆GMV ),

n− p + 1 + (n− p + 1)(R̃GMV − R̆GMV )2/(VGMV s̆)

n− p + 2

VGMV

n− p + 1

(
LQL> − s̆η̆η̆>

))

= tk

(
n− p + 2,θ + η̆(R̃GMV − R̆GMV ),

VGMV

n− p + 2

(
1 +

(R̃GMV − R̆GMV )2

VGMV s̆

)(
LQL> − s̆η̆η̆>

))

As a result, we get

R̂GMV
d
=

1>Σ−1µ̂

1>Σ−11
+

√
VGMV

√
µ̂>Qµ̂

√
n− p+ 1

t1 (6.7)

and

θ̂
d
= θ +

√
VGMV

t1√
n− p+ 1

LQµ̂√
µ̂>Qµ̂

+

√
1 +

t21
n− p+ 1

√
VGMV√

n− p+ 2

(
LQL> − LQµ̂µ̂>QL>

µ̂>Qµ̂

)1/2

t2

= θ +
√
VGMV

(
LQµ̂√
µ̂>Qµ̂

t1√
n− p+ 1

+

(
LQL> − LQµ̂µ̂>QL>

µ̂>Qµ̂

)1/2√
1 +

t21
n− p+ 1

t2√
n− p+ 2

)
(6.8)

where t1 ∼ t(n− p+ 1), t2 ∼ tk(n− p+ 2) are independent and also they are independent of ξ1.

Similarly, the application of Theorem 6.1.v leads to

ŝ
d
= (n− 1)

(
1 +

t21
n− p+ 1

)
µ̂>Qµ̂

ξ2
, where ξ2 ∼ χ2

n−p+2 and is independent of t1, t2, and ξ1. (6.9)

Finally, the application of Theorem 6.1.vi leads to

η̂
d
=

LQµ̂

µ̂>Qµ̂
+

√
1 +

t21
n−p+1

(
LQL> − LQµ̂µ̂>QL>

µ̂>Qµ̂

)1/2
t2√

n−p+2
1√

µ̂>Qµ̂

t1√
n−p+1

1 +
t21

n−p+1

+
1√

µ̂>Qµ̂

1

1 +
t21

n−p+1

((
LQL> −

LQµ̂µ̂>QL>

µ̂>Qµ̂

)(
1 +

t21
n− p + 1

)

+
µ̂>Qµ̂

VGMV

(
1 +

t21
n− p + 1

)
VGMV

n− p + 2

(
LQL> −

LQµ̂µ̂>QL>

µ̂>Qµ̂

)1/2

t2t
>
2

(LQL> −
LQµ̂µ̂>QL>

µ̂>Qµ̂

)1/2
>)1/2

t3√
n− p + 3

=
LQµ̂

µ̂>Qµ̂
+

1√
µ̂>Qµ̂

(
LQL> −

LQµ̂µ̂>QL>

µ̂>Qµ̂

)1/2

×

 1√
1 +

t21
n−p+1

t2√
n− p + 2

t1√
n− p + 1

+

(
Ik + µ̂>Qµ̂

t2t>2
n− p + 2

)1/2
t3√

n− p + 3

 (6.10)

where t3 ∼ tk(n − p + 3) and is independent of t1 and t2. Moreover, due to Theorem 6.1.i and 6.1.iv we get

that ξ1, ξ2, t1, t2, and t3 are mutually independent.

Next, we derive stochastic representations for the linear and quadratic forms in µ̂, namely of 1>Σ−1µ̂, LQµ̂

and µ̂>Qµ̂ which are present in the derived above stochastic representations. Let P = QL>
(
LQL>

)−1/2
and

A = Q−PP> = Q−QL>
(
LQL>

)−1
LQ. Then

µ̂>Qµ̂ = µ̂>Aµ̂+ (P>µ̂)>(P>µ̂). (6.11)

Moreover, the equality 1>Q = 0> implies

 1>Σ−1

P>

ΣA =

 1>A

P>ΣA

 =

 0>

P> −P>

 = O and,

consequently, we get from Theorem 5.5.1 in Mathai and Provost [53] that µ̂>Aµ̂ is independent of 1>Σ−1µ̂
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and P>µ̂, while Corollary 5.1.3a in Mathai and Provost [53] implies that

nµ̂>Aµ̂
d
= ξ3, where ξ3 ∼ χ2

p−k−1;nµ>Aµ. (6.12)

Finally, the identity 1>Σ−1ΣP = 0 ensures that 1>Σ−1µ̂ and P>µ̂ are independent (c.f., Rencher [58,

Chapter 2.2]) with

1>Σ−1µ̂
d
= 1>Σ−1µ+

√
1>Σ−11

z1√
n

=
RGMV

VGMV
+

1√
VGMV

z1√
n

(6.13)

P>µ̂
d
= P>µ+

(
P>ΣP

)1/2 z̃2√
n

=
(
LQL>

)−1/2
sη +

z2√
n

(6.14)

where z1 ∼ N (0, 1) and z̃2 ∼ Nk(0, Ik) are independent. Inserting (6.11) – (6.14) in (6.6) – (6.10) and performing

some algebra, we get the statement of the theorem.

Proof of Theorem 3.1: The statement of the theorem follows directly from the results of Theorem 2.1.

Proof of Theorem 3.2: The mutual independence of ξ, ψ, and z follows from Theorem 2.1, while Theorem 2.1.i

provides the stochastic representation for V̂GMV .

Next, we derive the joint stochastic representation for R̂GMV and ŝ. Let ξ̃2 = ξ−1
2 , then the distribution of

(R̂GMV , ŝ, t1, f) is obtained as a transformation of (z1, ξ̃2, t1, f) with the Jacobian matrix given by

J =



√
VGMV√
n

0
√
f
√
VGMV√

n−p+1
1
2

√
VGMV t1√
n−p+1

√
f

0 (n− 1)
(

1 +
t21

n−p+1

)
f 2(n−1)

n−p+1ft1ξ̃2 (n− 1)
(

1 +
t21

n−p+1

)
ξ̃2

0 0 1 0

0 0 0 1


which implies that |J| = (n−1)√

n

√
VGMV

(
1 +

t21
n−p+1

)
f .

Let df (·) denote the marginal density of the distribution of f . Ignoring the normalizing constants, we get

the joint density of (R̂GMV , ŝ, t1, f) expressed as

d(R̂GMV , ŝ, t1, f) ∝ exp

−
n

2

(
R̂GMV −RGMV −

√
f
t1
√
VGMV√
n−p+1

)2

VGMV


(

(n− 1)f

ŝ

(
1 +

t21
n− p+ 1

))n−p+2
2

+1

× exp

{
− (n− 1)f

2ŝ

(
1 +

t21
n− p+ 1

)}(
1 +

t21
n− p+ 1

)−n−p+2
2

(
f

(
1 +

t21
n− p+ 1

))−1

df (f)

∝
(
f

ŝ

)n−p+2
2

+1
1

f
exp

{
− n

2

(
R̂GMV −RGMV

)2
VGMV

+
n
(
R̂GMV −RGMV

)√
f t1√

n−p+1√
VGMV

− (n− 1)f

2ŝ
− 1

2

(
n+

n− 1

ŝ

)
ft21

n− p+ 1

}
df (f).

We now notice that

exp

n
(
R̂GMV −RGMV

)√
f t1√

n−p+1√
VGMV

− (nŝ+ (n− 1))f

2ŝ(n− p+ 1)
t21


= exp

− (nŝ+ (n− 1))f

2ŝ(n− p+ 1)

t1 − n2ŝ
√
n− p+ 1

(
R̂GMV −RGMV

)
√
VGMV f(nŝ+ (n− 1))

2
 exp


n2ŝ

(
R̂GMV −RGMV

)2
2VGMV (nŝ+ (n− 1))

 ,
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where the first factor is the kernel of a normal distribution. Hence,

d(R̂GMV , ŝ) =

∫
R+

∫
R

d(R̂GMV , ŝ, t1, f)dt1df ∝ exp

{
− n

2

(
R̂GMV −RGMV

)2
VGMV

}
exp


n2ŝ

(
R̂GMV −RGMV

)2
2VGMV (nŝ+ (n− 1))


×
∫
R+

(
f

ŝ

)n−p+2
2

+1
e−

f
2ŝ

f
df (f)

∫
R

e
− ((n−1)+nŝ)f

2ŝ(n−p+1)

(
t1−

ŝ
√
n−p+1(R̂GMV −RGMV )√
VGMV f(ŝ−1+1/n)

)2

dt1df

∝
(

1 +
n

n− 1
ŝ

)−1/2

exp

{
− n

2

(
R̂GMV −RGMV

)2
(1 + n

n−1
ŝ)VGMV

}
(6.15)

∫
R+

(
f

ŝ

)n−p+1
2

+1
e−

(n−1)f
2ŝ

f
df (f)df. (6.16)

where (6.15) determines the conditional distribution of R̂GMV given ŝ which is a normal distribution with mean

RGMV and variance
(

1 + n
n−1 ŝ

)
VGMV
n . The expression in (6.16) specifies the marginal distribution of ŝ which is

the integral representation of the density of the ratio of two independent variables f and ζ with (n−1)ζ ∼ χ2
n−p+1

and nf ∼ χ2
p−1(ns) (c.f., Mathai and Provost [53, Theorem 5.1.3]). Hence, n(n− p+ 1)/((n− 1)(p− 1))ŝ has a

noncentral F -distribution with (p− 1) and (n− p+ 1) degrees of freedom and noncentrality parameter ns.

Proof of Theorem 4.1. If ξ ∼ χ2
m,δ, then it holds that (see, e.g., Bodnar and Reiß [20, Lemma 3])(

ξ

m
− 1− δ

m

)
a.s.→ 0 and

√
m

(
2

(
1 + 2

δ

m

))−1/2(
ξ

m
− 1− δ

m

)
d→ N (0, 1) (6.17)

for m→∞.

Throughout the proof of the theorem the asymptotic results are derived under the high-dimensional asymp-

totic regime, that is under p/n → c ∈ [0, 1) as n → ∞. The applications of Slutsky’s lemma (c.f., DasGupta

[30, Theorem 1.5]) and Theorem 2.1, and the fact that a t-distribution with increasing degrees of freedom tends

to the standard normal distribution yield the following results:

(i) The application of Theorem 2.1.i and (6.17) with m = n− p leads to

√
n− p

(
V̂GMV −

1− p/n
1− 1/n

VGMV

)
d
=

1− p/n
1− 1/n

VGMV

√
n− p

(
ξ2

n− p
− 1

)
d→
√

2(1− c)VGMV u1,

where u1 ∼ N(0, 1).

(ii) Using (6.17) with m = p− k − 1 and δ = nµ>Aµ, we get

f
d
=

ξ3
n

+

(
sη +

z2√
n

)>
(LQL>)−1

(
sη +

z2√
n

)
=

(p− k − 1)

n

(
ξ3

p− k − 1
− 1− nµ>Aµ

p− k − 1

)
+

(p− k − 1)

n
+ µ>Qµ

+
1√
n

(
2sη(LQL>)−1z2 +

1√
n

z>2 (LQL>)−1z2

)
a.s.→ s+ c (6.18)

and, hence,
√
n− p (f − (s+ p/n))

d→
√

2(1− c) (c+ 2µ>Aµ)u2 + 2s
√

(1− c)η>(LQL>)−1/2u3, where

u2 ∼ N(0, 1) and u3 ∼ Nk(0, Ik) which are independent of u1 following Theorem 2.1. Furthermore, the

application of (6.18) yields

√
n− p

(
R̂GMV −RGMV

)
d
=

√
VGMV

(√
1− p/nz1 +

(
1− p/n

1− p/n + 1/n

)1/2√
ft1

)
d→
√
V GMV

(√
1− cu4 +

√
s + cu5

)
where u4, u5 ∼ N(0, 1) and u1, u2, u3, u4, u5 independent.
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(iii) Furthermore, by the stochastic representation of θ̂ as given in Theorem 2.1.iii we have that in distribution
√
n− p

(
θ̂ − θ

)
d
=

√
VGMV

(
sη + z2/

√
n

√
f

√
1− p/n

1− p/n + 1/n
t1 +

(
LQL> −

(
sη + z2/

√
n
) (

sη + z2/
√
n
)>

f

)1/2√
1 +

t21
n− p + 1

√
n− p

√
n− p + 2

t2

)

d→
√

VGMV

(
sη
√
s + c

u5 +

(
LQL> −

s2

s + c
ηη>

)1/2

u6

)
,

where u6 ∼ Nk(0, Ik) and is independent of u1, u2, u3, u4, and u5.

(iv) The application of Theorem 2.1.iv and (6.17) leads to

√
n− p

(
ŝ− (s+ p/n)(1− 1/n)

1− p/n+ 2/n

)
d
=

1− 1/n

1− p/n+ 2/n

((
1 +

t21
n− p+ 1

) √
n− p(f − (s+ p/n))

ξ2/(n− p+ 2)
+ (s+ p/n)

 t21
n−p+1

−
(

ξ2
n−p+2

− 1
)

ξ2/(n− p+ 2)

)

d→ 1

1− c

(√
2(1− c) (c+ 2µ>Aµ)u2 + 2s

√
(1− c)η>(LQL>)−1/2u3 +

√
2(s+ c)u7

)
,

where u7 ∼ N(0, 1) and is independent of u1, u2, u3, u4, u5, and u6.

(v) Similarly, from Theorem 2.1.v we get

√
n− p

(
η̂ − s

s+ p/n
η

)
d
=

1

f

(
−s

s+ p/n

√
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)

+
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t2t
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ū8
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s2ηη>
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s
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(s+ c)2
η,

where u8 ∼ Nk(0, Ik) and u1, u2, u3, u4, u5, u6, u7, u8 are mutually independent distributed.

Proof of Theorem 4.2: The application of Theorem 4.1 and of the continuous mapping theorem (c.f., DasGupta

[30, Theorem 1.14]) leads to Lŵg
a.s.→ θ + sg(RGMV ,(1−c)VGMV ,(s+c)/(1−c))

s+c η for p/n→ c as n→∞.

Let λ̂ and λ be defined as in (4.5). Then, the first order Taylor series expansion yields
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Hence, from Theorem 4.1 we get
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Using that u1, u2, u3, u4, u5, u6, u7, u8 are mutually independent and standard (multivariate) normally

distributed, the expression of the asymptotic covariance matrix of Lŵq is obtained.

Proof of Theorem 4.4: Using (4.10)-(4.14) together with a first order Taylor expansion we get that

√
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d
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ŝ− s+p/n
1−p/n


>

×


g1 (RGMV , VGMV , s)

(1− p/n)−1 g2 (RGMV , VGMV , s)

(1− p/n)
(
g3 (RGMV , VGMV , s)− p/n
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The rest of the proof of part (a) follows from the proof of Theorem 4.2. Similarly, the statement of part (b) is

obtained.
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