
Efficient Neural Architecture Search
for Language Modeling

MASTER THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Mingxi Li

Thesis Committee:

Chair: Dr. Frans A. Oliehoek, TU Delft, supervisor
Committee Member: Dr. Wei Pan, TU Delft
Committee Member: Dr. Jan van Gemert, TU Delft
Committee Member: Ph.D. student Hongpeng Zhou, TU Delft

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

c© 2019 Mingxi Li

Preface

I would like to thank my supervisor Frans Oliehoek for his guidance and many helpful
comments and discussions through the whole process of this master thesis. Moreover,
I would like to thank Wei Pan and Jan van Gemert for agreeing to sit in my defense
committee. And I would like to thank my daily supervisor Hongpeng who always
made time when I was in need of advice.

Mingxi Li
Delft, the Netherlands

July 22, 2019

i

Abstract

Neural networks have achieved great success in many difficult learning tasks like im-
age classification, speech recognition and natural language processing. However, neu-
ral architectures are hard to design, which requires lots of knowledge and time of
human experts. Therefore, there has been a growing interest in automating the process
of designing neural architectures. Though these searched architectures have achieved
competitive performance on various tasks, the efficiency of NAS still needs to be im-
proved. Moreover, current neural architecture search approach disregards the depen-
dency between a node and its predecessors and successors.

This thesis builds upon BayesNAS which employs the classic Bayesian learning
method to search for CNN architectures, and extends it to the problem of neural ar-
chitecture search for recurrent architectures. Hierarchical sparse priors are used to
model the architecture parameters to alleviate the dependency issue. Since the update
of posterior variance is based on Laplace approximation, an efficient method to com-
pute the Hessian of recurrent layer is proposed. We can find candidated architectures
after training the over-parameterized network for only one epoch. Our experiments on
Penn Treebank and WikiText-2 show that competitive architectures can be found in 0.3
GPU days using a single GPU for language modeling task. We find that our algorithm
is more efficient than state-of-the-art.

iii

Contents

Preface i

Abstract iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Research Questions and Contributions 2
1.2 Outline . 3

2 Background 4
2.1 Deep Neural Network . 4

2.1.1 Convolutional Neural Network 4
2.1.2 Recurrent Neural Network 5
2.1.3 Batch Normalization . 6
2.1.4 Layer Normalization . 8

2.2 Language Modeling . 9
2.2.1 Statistical language modeling 9
2.2.2 Application of RNN to language modeling 10

2.3 Neural Architecture Search . 10
2.3.1 Search Space Design . 11
2.3.2 Search Strategy . 14
2.3.3 Performance Estimation Strategy 19

2.4 Bayesian Learning . 20
2.4.1 Bayes’ Theorem . 21
2.4.2 Bayesian Inference . 21
2.4.3 Evidence Framework . 22

2.5 Approximate Inference Methods . 22
2.5.1 Taylor Series . 23
2.5.2 MAP . 23

v

CONTENTS

2.5.3 Laplace approximation . 23

3 BayesNAS for RNN 25
3.1 Search Space . 25

3.1.1 Design Search Space as a DAG 25
3.1.2 Recurrent Highway Network (RHN) 26

3.2 Dependency . 28
3.3 Search Strategy . 29

3.3.1 Bayesian Neural Network 30
3.3.2 Laplace approximation . 30
3.3.3 Optimization . 31

4 Efficient Hessian Computation 33
4.1 Hessian computation for fully connected layer 33
4.2 Hessian computation for recurrent layer 34
4.3 Hessian computation for architecture parameters 36

5 Experiments 37
5.1 Datasets . 37

5.1.1 Penn Treebank . 37
5.1.2 WikiText-2 . 37

5.2 Architecture Search . 37
5.3 Architecture Evaluation . 38
5.4 Normalization . 40
5.5 Transferability . 40
5.6 Results Analysis . 41

6 Conclusion 43
6.1 Future Work . 44

Bibliography 45

vi

List of Figures

2.1 A simple neural network, consisting of an input layer, an output layer and
two hidden layers . 5

2.2 Typical CNN architecture . 5
2.3 An example of a simple RNN structure and its unfolded architecture throught

sequence t. Each arrow represents a fully conncetions of units between
layers . 6

2.4 Abstract illustration of Neural Architecture Search methods 11
2.5 An illustration of chain-structured search space. Each node in the graphs

corresponds to a layer in a neural network. Figure 2.5(a) is an element
of a basic chain-structured space. Each layer has single input and single
output. Figure 2.5(b) shows an example of a more complex search space
with multiple branches and skip connections. 12

2.6 LEFT: structure of the NASNet search space where n normal cells fol-
lowed by a reduction cell. RIGHT: detailed view with the skip inputs. The
1*1 convolution is a special operation which converts ‡(n) to match the
shape of ‡(n+1). 13

2.7 An illustration of cell-based search space. Figure 2.7(a) and Figure 2.7(b)
show an example of a normal cell and a reduction cell respectively. The
final architecture is built by stacking the cells sequentially 13

2.8 The standard reinforcement-learning model. 14
2.9 The controller used by [66] to predict configuration of one layer 15
2.10 A general framework for evolutionary algorithms 16
2.11 A possible architecture discovered by the algorithm described by [52] . . 16
2.12 Illustration of the two mutation types . 17
2.13 An overview of DARTS: (a) Operations on the edges are initially un-

known. (b) Continuous relaxation of the search space by placing a mixture
of candidate operations on each edge. (c) Joint optimization of the mixing
probabilities and the network weights. (d) Inducing the final architecture
from the learned mixing probabilities. 18

2.14 An example of the problem caused by disregarding dependency. Left: The
isolated node 2 should be removed from the graph but there are still edges
to keep it connected. Right: Expected connected graph with no connection
from node 2 to 3 and from node 2 to 4 19

vii

List of Figures

2.15 Example for weight sharing with only two operations in the chain-structured
search space. Each box has its own weights, every path is one architecture
in the search space (e.g. the red path). Thus, weights are shared across
different architectures. 21

3.1 The DAG defines the search space of NAS. The very first two nodes xt and
ht are the input of the current time step and the output of the previous time
step. The red and blue arrows represent candidate operations. 26

3.2 An example of the learned recurrent cell. 26
3.3 Comparison of (a) stacked RNN with depth d and (b) Deep Transition

RNN of recurrence depth d, both operating on a sequence of T time steps.
The longest path between hidden states T time steps is d× T for Deep
Transition RNNs. 27

3.4 An illustration of enhancement of operation. si−1 and si are two nodes
in the DAG, which represents feature maps. σ is the activation function.
Instead of applying operation σ directly, each operation in the DAG is
enhanced with a highway bypass. 28

4.1 An abstract illustration of BPTT process of RNN 35

5.1 The best 2 cells after training for 800 epochs 38
5.2 The learned cell with fewer parameters (λ = 0.20) 38
5.3 Search progress for recurrent cell on Penn TreeBank. For each λ, we run

the experiments four times with different initial seeds and report the mean
and variance of the performance. 39

viii

List of Tables

5.1 Performance of learned cells generated by different normalization meth-
ods (lower perplexity(PPL) is better) . 41

5.2 Comparison with state-of-the-art language models on PTB (lower perplex-
ity(PPL) is better) . 41

5.3 Comparison with state-of-the-art language models on WT2 (lower per-
plexity(PPL) is better) . 42

ix

Chapter 1

Introduction

Deep Learning has achieved great success in various tasks, such as image classifi-
cation, natural language processing and speech recognition over the last years. The
powerful ability that deep neural networks can achieve state-of-the-art results on var-
ious competitive benchmarks derives from the featurea extraction stages. Thanks to
the ImageNet [17] and GPU, the access to large amount of data and great improve-
ments in the computation ability of the hardware have accelerated the research in deep
learning. Since the first powerful model, AlexNet [33], was found, many innovative
architectures has been proposed, like ResNet [24], DenseNet [27], and LSTM [26].

However, the ability of deep neural networks still depends on the design of neu-
ral architectures which requires substantial effort of human experts. There is a great
demand for architecture engineering, where complex architectures of neural networks
are designed manually. Therefore, developing algorithms to search for novel archi-
tectures automatically instead of the manual process of design has attracted more and
more interests. Neural Architecture Search (NAS), which is the process of automating
architecture engineering, has become a hot topic in the field of automated machine
learning.

In this thesis, an efficient approach is proposed to automate the process of archi-
tecture engineering based on classic Bayesian learning. The approach is a one-shot
based NAS which can be treated as a network pruning problem on the architecture
parameters from an over-parameterized network. The search time of a one-shot neural
architecture search can be significantly reduced because it does not need any seperate
training. While some earlier work [66, 50, 38, 39, 13, 5] has proposed some promis-
ing approaches, there is one issue associated with most of them. The the dependency
between a node and its predecessors and successors are often disregarded. The de-
pendency logic is first considered and encoded in [64] which is based on Bayesian
learning. However, this work is only able to design convolutional cells on CIFAR-10
for image classification. Therefore it makes sense to employ Bayesian learning ap-
proach to neural architecture search for a task which requires recurrent architectures.

The goal of this thesis is to apply Bayesian learning approach to automate the
search process of novel architectures for word-level language modeling task, which
predicts the probability that a given word appears next after a given sequence of words.

1

CHAPTER 1. INTRODUCTION

1.1 Research Questions and Contributions

In the search space for recurrent architectures of some previous work [66, 50, 38, 39],
batch normalization is enabled during the architecture search stage to avoid gradient
issues. However, it is not normal to use batch normalization in recurrent architectures
as the statistics are computed per batch, which does not consider the recurrent part of
the network. The statistics of all time steps are the same, which tend to be different.
Therefore, the first research question:

Research Question 1. How can batch normalization [28] influence the architecture
search? Moreover, how can the behaviour of the algorithm be influenced if we use
other normalization methods, for example, layer normalization [30] which is widely
used in RNN?

Previous work [64] showed that Bayesian learning approach could be used to de-
sign convolutional cells automatically. It assigns a probability distribution over neural
networks and uses Laplace approximation [40, 48] to perform the inference. Since
Laplace approximation requires computation of Hessian which costs an intensive com-
putation burden in large networks, they propose an efficient method to compute Hes-
sian. However, it is only applicable to convolutional layers. Inspired by [9] which
proposed an efficient method to compute the Hessian of fully connected layer, the next
research question is:

Research Question 2. Can this method be extended to recurrent layers to make clas-
sic Bayesian learning approach applicable to design recurrent architectures automati-
cally for language modeling task?

The classic Bayesian learning approach [40, 48] prevents overfitting and promotes
sparsity by specifying sparse priors. Additionally, as [15] has established that recurrent
neural network models with more parameters can learn to store more information, the
following research question rises:

Research Question 3. Can we generate novel recurrent architectures that can trade-
off between the performance and model size?

Thus, the contribution of this thesis is:

1. An efficient method to compute the Hessian of recurrent layers is proposed based
on earlier work [9].

2. research on how can normalization in the search space influence the perfor-
mance.

3. research on applying classic Bayesian learning approach to the problem of de-
signing recurrent architectures by automation.

2

1.2. OUTLINE

1.2 Outline

This section provides an outline of the rest of the thesis. Chapter 2 introduces the
necessary background information for deep learning, the approaches used in neural
architecture search and Bayesian learning. Chapter 3 presents methodology used for
recurrent architectures. Chapter 4 presents an efficient computation of Hessian in re-
current neural network. Chapter 5 presents the details of experiments and results anal-
ysis. Chapter 6 concludes and suggests directions for future work.

3

Chapter 2

Background

Before starting to investigate the research questions proposed in Section 1, it is nec-
essary to introduce background knowledge needed. Section 2.1 introduces some con-
cepts in deep learning. Section 2.2 introduces an overview of the language modeling
task. The next section presents existing methods of neural architecture search. Since
our approach is based on BayesNAS which employs Bayesian learning, Section 2.4
introduces necessary background knowledge for understanding Bayesian learning. Fi-
nally section 2.5 presents Laplace approximation, an approximate inference methods
that is widely used in Bayesian learning.

2.1 Deep Neural Network

Neural networks are composed of layers of connective units called artificial neurons
(Figure 2.1). Usually a neural network is referred to as a "shallow network" if it has
one input layer, one output layer and at most one hidden layer without recurrent con-
nections. If we increase the number of layers or connect the layers recursively, the
depth of the network is increased and this kind of neural network is referred to as
"deep neural network" (DNN). Depends on how layers are connected in the network,
there two kinds of deep neural network, Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN).

2.1.1 Convolutional Neural Network

Convolutional neural network is a methodology which is often used to perform com-
puter vision tasks, such as image classification [33, 24, 27] and object detection [21,
20, 54]. The design of CNN was inspired by how neurons of animals are connected.
A convolutional neural network is composed of several building blocks, such as con-
volutional layer, pooling layer and fully connected layer. Basically each convolutional
layer in the CNN performs an operation called convolution to the inputs with convolu-
tional kernels. In order to learn hierarchical representations of features from the data,
nonlinearity is introduced by passing features to non-linear activation function, such
as tanh and Relu. To reduce the dimensions of features, the pooling layer combines
multiple outputs of neurons of one layer into a single neuron of the next layer. In fully
connected layer, each neuron is connected to all neurons in another layer. Figure 2.2
shows a example of convolutional neural network.

4

2.1. DEEP NEURAL NETWORK

Figure 2.1: A simple neural network, consisting of an input layer, an output layer and two
hidden layers

Figure 2.2: Typical CNN architecture

2.1.2 Recurrent Neural Network

Deep neural network with recurrent connections are usually called recurrent neural
network. In RNN, neurons have at least one feedback loop, which are recurent cycles
over sequence (time). RNN are used to process sequential data because the recurrent
connection and hidden states work as the memory in the network, which makes them
applicable to tasks such as handwriting recognition [56] and speech recognition [35].

Model Architecture A simple RNN has three blocks, the input, hidden and output
layers. The input layer is a N-dimension vector which has N input units. The inputs to
the input layer are a sequence of vectors (...,xt−1,xt ,xt+1, ...) where t is the time step
and xt = (x1, ...,xN). The input units are connected to the M hidden units in the hidden
layer ht = (h1, ...,hM) with weight matrix WIH . The hidden layer works as the memory
of the network

ht = fH(WIHxt +WHHht−1 +bH) (2.1)

The output is computed as
yt = fO(WHOht +bO) (2.2)

5

CHAPTER 2. BACKGROUND

Equation 2.1 and Equation 2.2 show the non-linear state equations of RNN is iterable
through time. In each time step, the hidden layer predicts the output based on the input
vector and the information about the past hidden states of the network over many time
steps. Therefore, we can always replace an unrolled RNN over time with a feedforward
neural network as shown in Figure 2.3.

(a) Folded RNN (b) Unfolded RNN through time

Figure 2.3: An example of a simple RNN structure and its unfolded architecture throught
sequence t. Each arrow represents a fully conncetions of units between layers

2.1.3 Batch Normalization

Training a deep neural network is complicated. The hyper-parameters of a model need
to be tuned carefully, like the learning rate and the initial values of network parameters.
During the training of deep neural networks, the distribution of the inputs of each layer
can easily change because the inputs to each layer are affected by all its preceding
layers. The change in the distributions of internal nodes of a deep network is referred
as Internal Covariate Shift [28].

Internal covariate shift presents a problem that the layers need to continuously
adapt to the new distribution. Consider a network computing the loss l as:

l = F2(F1(x,θ1),θ2) (2.3)

where x is the input vector, F1 and F2 are transformations and θ1 and θ2 are parameters
to be learned. This can be viewed as if the outputs of the first layer u = F1(x,θ1) are
fed into sub-network. Therefore, the loss can be computed as:

l = F2(u,θ2) (2.4)

The input distribution properties that accelerate the training process apply to the train-
ing of sub-network. Therefore, if the distribution of the u is fixed, θ2 does not have
re-adjust to compensate for the change of the distribution of u.

Fixed-distribution of inputs has other positive consequences. Consider a layer with
sigmoid activation function z = sigmoid(Wu+b) where u is the input of this layer, W
and b are network parameters to be learned. The gradient flowing down to u tends to
be zero with Wu+b increasing, which may cause gradient vanishing problem and the
training process is slowed down. If the distribution of the inputs of layers could be
stable, the optimizer would be less likely to get stuck in this situation.

Batch normalization [28] is proposed to eliminate internal covariate shift and speed
up the training process. They first normalize each scalar feature independently, which

6

2.1. DEEP NEURAL NETWORK

means that they have zero mean and variance of 1. For a layer with d-dimensional
input x = (x(1), ...,x(d)), each dimension can be normalized by:

ˆx(k) =
x(k)−E[x(k)]√

Var[x(k)]
(2.5)

where the expectation and variance are computed over the training data set as shown
in [34]. However, such simple normalization can change what the layer can represent.
For example, if we normalize the inputs to a sigmoid function, then the output would
be bound to the linear region only. To make the transformation in the network can
represent the original transform. Thus for each activation x(k), two learnable parame-
ters are introduced, γ(k) and β(k). The output is the results of scaling and shifting the
normalized value:

y(k) = γ
(k)x̂(k)+β

(k) (2.6)

In practice, when using mini-batch stochastic optimization, this process can be
simplified. The mean and variance are estimated based on each mini-batch. Assume
that the size of a mini-batch B is m. Therefore, for x(k), we have m values:

B = {x(k)1 , ...,x(k)m } (2.7)

Since the normalization of each dimension is independent, we focus on this particu-
lar dimension and omit k for clarity. Therefore, B = {x1, ...,xm}. The algorithm is
presented in Algorithm 1.

Algorithm 1 Batch normalization
Input: Values of x over a mini-batch: B = x1...m; Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ← 1
m

m
∑

i=1
xi

σ2
B ←

1
m

m
∑

i=1
(xi−µB)

2

x̂i← xi−µB√
σ2

B−ε

yi← γx̂i +β≡ BNγ,β(xi)

During inference, we do not want to use the statistics of each mini-batch. Instead
we use the normalization

x̂ =
x−E[x]√

Var[x]
(2.8)

over the entire dataset. The expectation and variance are over all training mini-batches
of size m:

E[x] = EB [µB] (2.9)

and
Var[x] =

m
m−1

EB [γ
2
B] (2.10)

where µB and γ2
B is the means and variances produced by each mini-batch respectively.

Batch normalization has several advantages by normalizing activations. It makes
the model less sensitive to the learning rate and scale of network parameters which

7

CHAPTER 2. BACKGROUND

may result in gradient explosion and vanishing. Also, since a training example is
seen in conjunction with other examples in the mini-batch, this effect promotes the
generalization of the model [28].

2.1.4 Layer Normalization

Though batch normalization reduces the training time by normalizing the inputs of
each layer, it has several limitations. The first is that batch normalization estimates
the mean and variance using mini-batch statistics. Since smaller mini-batch sizes in-
crease the variance of these estimates, we have to be careful about the batch size when
batch normalization is performed using SGD. Additionally, the recurrent activations of
each hidden layer will have different statistics, which makes it difficult to apply batch
normalization in recurrent neural network. This can be solved by storing the statis-
tics separately for each hidden layer. However, batch normalization requires running
averages of the summed input statistics [28]. It can be problem if a test sequence is
longer than any of the training sequences because the statistics of some time steps are
not estimated during training. Layer normalization [30] is a simple method to improve
the training speed of recurrent neural network models. It estimates the normalization
statistics from the summed inputs to a layer at the current time-step directly.

In a feedforward neural network, the changes in the output of one layer will cause
changes in the summed inputs of this layer. Thus the covariate shift can be reduced
by fixing the mean and variance of the summed inputs of a layer. In this case, batch
normalization is transposed into layer normalization [30]. Layer normalization com-
putes the mean and variance used for normalization from all of the summed inputs to
the neurons in a layer as follows:

µl =
1
H

H

∑
i=1

al
i (2.11)

σ
l =

√
1
H

H

∑
i=1

(al
i−µl)2 (2.12)

where H represents the number of hidden units in a layer.
In case of a standard RNN, the summed inputs to a recurrent layer can be computed

as:
at =WHHht−1 +WIHxt (2.13)

where xt is the current input and ht−1 is the previous hidden state. WHH is the the
recurrent hidden to hidden weights and WIH is the input to hidden weights. Then we
can normalize the recurrent layer using normalization terms similar to Equation 2.11
and Equation 2.12:

µt =
1
H

H

∑
i=1

at
i (2.14)

σ
t =

√
1
H

H

∑
i=1

(at
i−µt)2 (2.15)

In a standard RNN, the summed inputs of the recurrent layers tend to grow or
shrink at each time step. It leads to exploding and vanishing gradients which makes

8

2.2. LANGUAGE MODELING

it hard to train recurrent neural network models. In a layer normalized RNN, the
normalization terms makes it possible to re-scale all of the summed inputs to a layer.
Therefore, the recurrent neural network models can be more stable.

2.2 Language Modeling

In this section, we first presents an overview of the task of statistical language model-
ing. Then we discuss the application of recurrent neural network to language modeling
and some drawbacks of current RNN models.

2.2.1 Statistical language modeling

Statistical language modeling aims to estimate the probability distribution of various
linguistic units, such as words, sentences and whole documents [55]. The applications
of language modling include speech recognition [29], text generation [16] and machine
translation [11].

A traditional language modeling task is word-level, which is also our target task.
The goal is to model the probability that a given word appears next after a given se-
quence of words. The most common measure to evaluate language models is per-
plexity (PPL). It is the inverse of the geometric average probability assigned by the
model to each word in the test dataset. The training data of language modeling is often
taken from large and structured sets of texts, which are also know as corpora. The
Wikicorpus and the Brown corpus are two frequently used corpora.

N-gram model [29] is one of the earliest techniques to model the probability of
observing a word after several previous words. The N represents the number of previ-
ous words which are considered plus the next word in the sequence. Thus N - 1 is the
number of words that the model uses the predict the probability of the next word. The
probability is estimated as the number of times that the given sequence augmented with
the given word appears in the training divided by the number of times that the given
sequence is present in the training data. In practice, the non-zero probabilities are as-
signed to the words that do not appear in the training data to smooth the probability
distribution.

Some more models were developed later which estimated the probability based on
the incorporation of various features. Then neural network models found their way into
the language modeling domain with the work [6]. It used a feedforward neural network
to learn a vector which represents every word in a predefined vocabulary and predict
the next word in a sentence. The ability of neural networks project the vocabulary
into hidden layers can explain why neural networks can provide better estimates for
N-grams. And that is why neural networks has driven much of the recent interest in
the domain of language modeling.

The text documents in corpora need some preprocessing before they can be used
by neural network. A vocabulary V needs to be constructed, which contains all distinct
words in a corpus. It requires the splitting of the corpus into words. The word UNK is
often used to represent all words that are not in the vocabulary but in the test dataset.
Assume the label of UNK is w1 and the labels of all the other words w2, ...,wN . Thus
we have V = (w1,w2, ...,wN). Each word in the vocabulary is represented by a vector
of N components via function τ. For example, τ(w1) = (1,0, ...,0). Assume there are

9

CHAPTER 2. BACKGROUND

n words in the corpus. Then the corpus can be represented by a sequence of vectors,
D = (w1, ...,wn), by replacing each word by its corresponding coding vector.

2.2.2 Application of RNN to language modeling

Though FNN has show that neural networks can be used for language modeling, it
has one drawback that only a fixed number of words can be considered to predict the
next word. In other words, the structure of FNN lacks of memory. Only the words
that are presented by a fixed number of neurons are taken into account. All words
that are presented earlier are forgotten, even if they may be essential to determine
the next word. In this case, recurrent neural network was used to introduce memory
to overcome the limited fixed context length. The inputs of RNN are a sequence of
coding vectors of words from the vocabulary. The softmax can be used as the output
function to ensure that the outputs can be interpreted as the probabilities of apperance
of each word in the vocabulary V given inputs.

However, the standart RNN has several drawbacks:

1. Training time. Training RNN is known to be slow. And the size of vocabu-
lary V is very large for many language applications, which increases the real
complexity of training.

2. Short context length in practice. Although the context length can be unlimited
in theory, the range of context that is accessed in practice is limited due to the
vanishing and exploding gradient problem [26].

There are several methods to reduce the training time. One obvious way is to limit
the size of vocabulary V . It can be achieved by replacing the least frequent words with
unkown word UNK. However, a compromise has to be made between the performance
and training time. To increase the context size of RNN, we can use the long short-term
memory (LSTM) [26]. It extends the standart RNN by replacing each hidden unit by a
memory block. Each block contains self-connected memory cells and three gates, the
input, output and forget gates. They provide continuous analogues of write, read and
reset for the cells. Then the memory cells can store and access information over many
training examples.

2.3 Neural Architecture Search

Neural Architecture Search (NAS) a kind of algorithms which automate the manual
design of neural architectures [66, 50, 38], which is a subfield of Auto Machine Learn-
ing. We can denote NAS in three dimensions: search space, search strategy and perfor-
mance estimation strategy. Basically search space defines which kind of architectures
can be generated theoretically. Search strategy defines how to search for an architec-
ture in the search space. For a generated architecture, we need to estimate its perfor-
mance because the target is to find architectures with high performance on test data.
Figure 2.4 illustrates how NAS methods work [59].

10

2.3. NEURAL ARCHITECTURE SEARCH

Figure 2.4: Abstract illustration of Neural Architecture Search methods

2.3.1 Search Space Design

Search space determines which architectures can be searched in principle. The settings
of search space have a strong influence on the search cost and the performance of the
learned architectures.

Chain-Structured Search Space The space of chain-structured neural networks is a
relatively basic search space as illustrated in Figure 2.5(a). We can consider the struc-
ture of the chain structure of the neural network as a neural network with n sequential
layers, where the output of each layer serves as the input of its successors. Therefore,
the architectures could be represented by: i) the maximum number of layers n; ii) types
of operations that can be performed at each layer; and iii) hyperparameters associated
with the operation.

Some previous works include [2] explore this search space. Their operations set
inclueds convolutions, pooling, linear transformations (dense layers) with activation,
and global average pooling. They introduce different hyperparameter settings such as
number of filters, kernel size, stride and pooling size. They also add constraints that
exclude certain architectures. For example, they do not consider architectures with
pooling as the first operation. Additionally, architectures with feature transformations
by fully connected layer before convolutions are also excluded.

Incorporating previous knowledge about hand-built architectures for some specific
tasks is widely used in recent NAS work ([67]; [12]; [66]). It allows to build more
complex networks with hand-crafted elements such as skip connections. Such set-
tings allow for higher degrees of freedom. Figure 2.5(b) shows an example of a more
complex search space with multiple branches and skip connections. [66] permits skip
connections between the ordered nodes of a chain-structured architecture. However,
only convolutions with different hyperparameters are included in the set of operations.
If nodes have multiple inputs, the combination operation is fixed as concatenation.

[60] uses summation instead of concatenation in their search space. Furthermore,
architectures are seperated into sequentially connected segments in their search space.
Each segment is a set of nodes with convolutions as their operation. Note that each
segment begins with a convolution and concludes with a max pooling. The maxi-
mum number of convolution operations is also fixed for each segment. [57] consider
a similar search space. Architectures are also structured by sequential segments. Each
segment has repeating patterns of operations. We can select operations and the number
of repetitions. Note that they allow segments to be different.

11

CHAPTER 2. BACKGROUND

input

L0

L1

L2

L3

output

(a)

input

L0 L1

L2

L6

L3

L4 L5

L7

L8

output

(b)

Figure 2.5: An illustration of chain-structured search space. Each node in the graphs corre-
sponds to a layer in a neural network. Figure 2.5(a) is an element of a basic chain-structured
space. Each layer has single input and single output. Figure 2.5(b) shows an example of a
more complex search space with multiple branches and skip connections.

Cell Based Search Space Inspired by the fact that many hand-crafted architectures
consists of repeated motifs ([24]), [67] and [12] propose to search for such cells instead
of searching for the whole architectures. Such architectures often consist of smaller-
sized graphs that are stacked to form a larger architecture.

NASNet [67] is one of the first that uses cell based search space as shown in Figure
2.6. It learns two kinds of cells as shown in Figure 2.7(a) and Figure 2.7(b): a normal
cell which keeps the dimensionality of the input and a reduction which reduces the
spatial dimension. Then the final learned architecture is based on stacking these cells
in a predefined manner. They include concatenation as a possible merge operation.
However, in their experiments they find that architectures with summation operation
outperform those with concatenation operation in terms of accuracy. Therefore, [36]
fix the merge operation to summation. A similar search space is proposed by [63].
Graphs comprising of arbitrary connections between different nodes are defined as
cells. Also, they use fixed max-pooling layers instead of reduction cells for decreasing
feature dimensions. The instances of cells differ in the type of operations and their
input, which allow higher degrees of freedom than normal cells.

Cell based search space outperforms chain-structured search space in two main
aspects. The first is the search cost is significantly reduced. Compared with searching
for the whole architecture, the size of cell based search space can be comparably small.
Also, the transferability of architectures learned based on chain-structured search space
is weak. However we can easily transfer cells to other datasets by adapting the number
of cells used within a model.

Summary The key design choice of search space is how much prior knowledge from
human experts we should introduce. Introducing properties well-suited for specific
tasks can reduce the size of the search space and simplify the search process. For

12

2.3. NEURAL ARCHITECTURE SEARCH

Figure 2.6: LEFT: structure of the NASNet search space where n normal cells followed by a
reduction cell. RIGHT: detailed view with the skip inputs. The 1*1 convolution is a special
operation which converts ‡(n) to match the shape of ‡(n+1).

input

L1 L2 L3

L4 L5

L6

output

(a)

input

L1

L2

L3

L4

L7

L5

L6

output

(b)

Figure 2.7: An illustration of cell-based search space. Figure 2.7(a) and Figure 2.7(b) show
an example of a normal cell and a reduction cell respectively. The final architecture is built by
stacking the cells sequentially

example, [12] and [67] incorporate modern design elements known from hand-crafted
architectures such as skip connections to build more complex neural networks. [12]
employs the high-level structure of well-known manually designed architectures, such
as DenseNet ([27]), and use their cells within these models. By utilizing such prior
knowledge, the search cost is reduced while achieving better performance.

However, this also introduces a human bias, which may prevent finding novel ar-
chitectural building blocks that go beyond the current human knowledge. Consider the
case when using cell-based search space. If how to connect the learned cells is decided
by human experts, the search for the cell could become overly simple if most of the

13

CHAPTER 2. BACKGROUND

complexity is already accounted for by the high-level architecture.

2.3.2 Search Strategy

Given a fixed search space, the search strategy defines how to explore it. There are
many different search strategies which can be used, including reinforcement learning
(RL), evolutionary methods and one-shot methods.

Reinforcement Learning Reinforcement Learning [31] is a family of algorithms to
solve the problem that an agent has to learn its behaviour based on rewards of its
interactions with the environment as shown in Figure 2.8. Formally, a reinforcement
learning consists of a set of environment states S, a set of agent’s behaviour B, a set of
reinforcement signals R, an input function I and a state transition function T . In each
step, the agent receives the indication i of the current state s. Then the agent learns
to choose an action a based on some algorithms. The action changes the state of the
environment. This transition is passed to the agent through a reinforcement signal r.

Figure 2.8: The standard reinforcement-learning model.

To frame neural architecture search as a reinforcement learning problem ([2]; [66];
[67]), the action space is considered to be identical to the search space. Therefore,
when the agent takes actions, a neural architecture is generated. The performance of
the learned architectures on unseen data can be used to estimate the reward of the
agent.

Different RL methods have different strategies on how to represent agents and how
to optimize them. [2] is one of the first to use RL-based algorithms for neural architec-
ture search. Their algorithm is a combination of Q-learning, ε-greedy, and experience
replay. The actions in their approach are the choice of different layers to add to an
architecture. Also we have the option to terminate building the architecture. After
initializing the action-value function, the agent samples a trajectory which comprises
of multiple decision steps, eventually leading to a terminal state. The algorithm then
trains the model corresponding to the trajectory and updates the action-value function
as defined in the Q-learning algorithm.

[66] is the first to employ policy gradient methods. It generates the architecture
description of the neural network by using a recurrent neural network (RNN) policy
and trains the RNN with reinforcement learning based on the expected accuracy of
the generated architecture on the validation dataset. Every action is sampled from the
probability distribution implied by a softmax operation and then fed into the next time

14

2.3. NEURAL ARCHITECTURE SEARCH

step as input as shown in Figure 2.9. The RNN-controller in their approach samples
layers which are sequentially appended to construct the final network. Finally they
trained the network with the REINFORCE policy gradient algorithm and achieved very
competitive performance on the CIFAR-10 and Penn Treebank benchmarks. After that
NAS became a mainstream research topic in the machine learning community. In their
follow-up work of scalable image recognition, Proximal Policy Optimization (PPO)
is used. [2] generates architectures by sequentially sampling a layer’s type and its
corresponding hyperparameters with Q-learning.

Figure 2.9: The controller used by [66] to predict configuration of one layer

Despite different strategies of these approaches, they can be considered as sequen-
tial decisions which samples actions to generate a architecture sequentially. All the
previous decisions define an environment’s state. However, during this decission pro-
cess, there is no interaction with the environment and the agent can only obtain the
reward after the final decision action. One alternative view is framing NAS as the
sequential generation of a single action ([12]). The architecture is encoded into a
fixed-length representation by a bi-directional LSTM. And the actor controller make a
decision on which action to sample based on this representation.

Neuro-Evolutionary A neuro-evolutionary use evolutionary algorithms for generat-
ing the neural architecture. Evolutionary algorithms have a candidated pool of models,
a set of neural netowrk architectures. Each model is assigned a fitness based on its per-
formance. In every evolution step, some models with good fitness from the pooling are
sampled. By applying mutations to these parents, these models generate descendants.
Mutations are local operations including adding or removing a layer and generating
new settings of the hyperparameters of a layer. Then the descendants are trained and
evaluated based on their performance. The fitness is assigned. Models with poor fit-
ness will be removed from the pool. The framework is shown in Figure 2.10.

In the context of neural architecture search, the population consists of candidated
architectures. Several architectures are selected for mutation, which can generate new
architectures in the search space. These new architectures are evaluated then for fit-
ness. The process is repeated till convergency.

Tournament selection [22] is the most widely used parent selection method in neu-
ral architecture search. It first selects k individuals randomly. Then it iterates over

15

CHAPTER 2. BACKGROUND

Figure 2.10: A general framework for evolutionary algorithms

them in the descending order of their fitness while selecting individuals for further
steps with some high probability p.

[46] is the first approach which optimizes the neural architecture using evolution-
ary algorithms. They use evolutionary algorithms to generate neural architectures and
optimize weights with backpropagation. In recent work ([52]; [53]; [37]; [18]), evo-
lutionary algorithms are not used to optimize weights because the large size of pa-
rameters related to weights of neural networks. These neuro-evolutionary approaches
use evolutionary algorithms to generate neural architectures and use gradient-based
methods like SGD for optimizing weights.

[52] is one of the first to find CNN architectures for image classification based
on evolutionary algorithm. In the parent selection step, they sample a pair of archi-
tectures. The architecture with better fitness is mutated, evaluated and added to the
population. The other is removed. The set of mutations includes adding convolutions,
altering kernel size, number of channels, stride and learning rate, adding or removing
skip connections, removing convolutions, resetting weights, and a mutation that corre-
sponds to no change. Since no further domain constraints are enforced, architectures
with redundant components can be potentially sampled in this approach as shown in
Figure 2.11.

Figure 2.11: A possible architecture discovered by the algorithm described by [52]

[37] uses the hierarchically organized search space along with evolutionary algo-
rithm. Mutations modify the representations at every step. The population is initialized
with 200 trivial genotypes which are diversified by applying 1000 random mutations.
In their setting, mutations can add, alter and remove operations from the genotype.

[53] is one of the most significant works in the direction of using evolutionary al-
gorithms for architecture search. They select parents with tournament selection based

16

2.3. NEURAL ARCHITECTURE SEARCH

on the NASNet search space in each iteration. Mutation includes a random change in
an operation or a connection in either a normal or a reduction cell as shown in Figure
2.12. Then the new architectures are trained for 25 epochs. They add a regularization
term to the objective function to make sure that generated architectures are not only
capable of reaching high validation accuracy once but every time.

Figure 2.12: Illustration of the two mutation types

One-Shot One-shot architecture search is another mainstream approach for NAS.
The essential idea of the one-shot algorithm is to treat all candidated architectures
as subgraphs of a supergraph ([10]; [5]; [50]; [38]). The weights of edges are shared
among different subgraphs if they have edges in common in the supergraph. Therefore,
only the supergraph needs to be trained because the weights of edges are shared among
candidated architectures. The generated architectures can be evaluated without any
separate training which could speed up performance estimation.

ENAS ([50]) uses a RNN controller to sample candidated architectures from the
search space and train the one-shot model based on approximate gradients obtained
through REINFORCE which is similar to [66]. DARTS ([38]) places a mixture of can-
didate operations on each edge of the supergraph. It proposes a method for continuous
relaxation of the search space. Then the weigths of all edges could be jointly trained
based on it.

Darts [38] propose a method based on differentiable loss function which makes all
parameters differentiable. Each node x(i) represents a feature map and each directed
edge (i, j) is associated with some operation o(i, j). Let O be a set of candidated op-
erations (e.g., convolution, max pooling, zero) that can be applied to xi. To make the
search space continuous, they relax the categorical choice of a particular operation to

17

CHAPTER 2. BACKGROUND

a softmax over all possible operations:

o(i, j)(x) = ∑
o∈O

exp(α(i, j)
o)

∑
o′∈O

exp(α(i, j)
o′)

o(x) (2.16)

where the operation mixing weights for a pair of nodes (i, j) are parameterized by a
vector α of dimension |O|. The task of architecture search then reduces to learning
the set of continuous variables. At the end of search, a discrete architecture can be
obtained by replacing each mixed operation oi, j with the most likely operation (Figure
2.13):

o(i, j) = argmaxo∈Oα
(i, j)
o (2.17)

The network parameters and architecture parameters can be learned by minimizing
the loss on the training set and loss on the validation by gradient-based optimization
methods.

Figure 2.13: An overview of DARTS: (a) Operations on the edges are initially unknown. (b)
Continuous relaxation of the search space by placing a mixture of candidate operations on
each edge. (c) Joint optimization of the mixing probabilities and the network weights. (d)
Inducing the final architecture from the learned mixing probabilities.

However, one disadvantage is that all parameters must be kept in memory all the
time. Since the super-graph is large, this is a significant drawback. To overcome this
problem, [13] introduce update rules that keep only a part of the network in mem-
ory. They use binary gate a part of the path based on a learned probability. The
memory load is significantly reduced because we do not need to cash the entire over-
parameterized model.

Though one-shot algorithm greatly speeds up performance estimation of architec-
tures, one general limitation of one-shot NAS is that the architecture of the supergraph
actually restricts the search space of its subgraph. Therefore, the performance of one-
shot NAS relies on a good design of the search space. Moreover, the size of the super-
graph will be relatively small because the entire supergraph needs to be cashed in the
GPU memory during the architecture search process.

18

2.3. NEURAL ARCHITECTURE SEARCH

Bayesian Approach Since this thesis is based on BayesNAS [64], which employs
Bayesian learning, a brief introduction of BayesNAS is presented. It treats neural
architecture search problem as a netowrk compression problem on the architecture pa-
rameters form an over-parameterized network. The main idea is to use Hierarchical
sparse priors to model the architecture parameters. BayesNAS ([64]) uses the priors
to model the dependency between a node and its predecessors and successors, which
is often disregarded by current NAS approaches. This is mainly the consequence of
improper zero operations. Consider the case that all operations from a node’s predeces-
sors are zero, which means that this node is disconnected with all the previous nodes.
However, there is the case that the child network still has other non-zero edges to keep
it connected as shown in Figure 2.14. For a complex search space, it would take extra
cost to safely check and remove such isolated nodes from the graph. For each wo

i j, they
introduce a variable, switch so

i j which has two states {ON, OFF}. Then they assign a
probability distribution to encode this logic, for example Gaussian distribution, over
wo′

i j . If sii′ is OFF, sii′ = 0, γo
jk will always be a small value close to zero. which means

that we have great confidence that the corresponding weight w jk is zero. Therefore,
the super-graph can be pruned based on γ. Bayesian approach shares the advantage of
Bayesian learning. It prevents overfitting and promotes sparsity by specifying sparse
priors.

Figure 2.14: An example of the problem caused by disregarding dependency. Left: The iso-
lated node 2 should be removed from the graph but there are still edges to keep it connected.
Right: Expected connected graph with no connection from node 2 to 3 and from node 2 to 4

2.3.3 Performance Estimation Strategy

The search strategy of NAS defines how to generate an architecture that maximizes the
evaluated performance. To guide these approaches, the performance of architectures
on unseen dataset needs to be estimated. We can always train architectures on training
dataset from scratch and report their performance on validataion dataset, which is the
simplest option. However, the computation cost can be expensive and the number of
architectures that can be explored will be limited. For example, the computation cost

19

CHAPTER 2. BACKGROUND

of NAS ([66]) is in the order of thousands of GPU days. Therefore, some recent work
focuses on methods that could estimate the performance without much cost.

Estimation Based on Lower Fidelities The computation cost of performance es-
timation can be reduced by validating architectures based on lower fidelities of the
actual performance after normal training. Low-fidelity approximations include shorter
training time ([67]), training on a subset of data ([32]), and on lower-resolution im-
ages ([14]). However, estimation based on lower fidelities can introduce bias because
the performance is typically underestimated. Even search strategies which ranks all
candidated architectures may not solve this problem. [62] indicates that the relative
ranking is not stable if the difference between the low-fidelity approximations and the
real evaluation is too big.

Estimation Based on Extrapolation Some recent works propose another possible
way of estimating an architecture’s performance based on extrapolation. [3] trains
a prediction network with initial learning curves. Then it will predict the converged
performance based on the learning curve for a predefined number of epochs. The
architectures which are predicted to perform poorly will be terminated to speed up the
estimation process. [36] trains the prediction network with architectural/cell properties
instead of learning curve and extrapolate to architectures/cells with larger size than
architectures during training.

Estimation Based on Weight Sharing Weight sharing is another promising approach
to speed up performance estimation. The main idea is to reuse weights between dif-
ferent architectures as shown in Figure 2.15. [50] formulates the NAS problem as
searching for subgraphs in a super directed acyclic graph. The weights corresponding
to each operation are shared between different subgraphs. This significantly speed up
the estimation process as we only need to train the weights of the supergraph. The gen-
erated architectures do not need to be trained because they can inherit trained weights
from the supergraph. However, weight sharing may also introduce biases into the ar-
chitecture search. Consider the case that there is an initail bias in exploring some parts
of the search space more than others. The weights of the supergraph will be better
adapted for these architectures. And in return the bias of the search to these parts of
the search space would be reinforced. This may lead to premature convergence of NAS
to a region of suboptimal architectures.

2.4 Bayesian Learning

Bayesian learning [40, 7, 48] is a particular set of approaches to probabilistic machine
learning. Bayesian learning treats model parameters as random variables. To define
a model, a generative process is provided describing how the data was created, which
also includes the known model parameters. The initial beliefs about parameters are
the distributions over possible values that the parameters might take [48, 7]. Data is
viewed as observations from the generative process. And the beliefs about parameters
will be updated based on observations, which means that a new distribution over the
parameters will be assigned. Bayesian learning uses Bayes’ theorem to determine the

20

2.4. BAYESIAN LEARNING

Figure 2.15: Example for weight sharing with only two operations in the chain-structured
search space. Each box has its own weights, every path is one architecture in the search space
(e.g. the red path). Thus, weights are shared across different architectures.

conditional probability of a hypotheses given some evidence or observations. In this
section, several key concepts related to Bayesian learning are explained.

2.4.1 Bayes’ Theorem

The main idea of Bayes’ theorem is that we can calculate the probability of an event
given prior knowledge of some conditions related to the event [7, 48]. Equation 2.18
states Bayes’ theorem mathematically.

P(A|B) = P(B|A)P(A)
P(B)

(2.18)

where A and B are events and P(B) 6= 0. P(A|B) and P(B|A) are the likelihood of a
event occuring when another event is true. P(A) and P(B) are often called marginal
likelihood, which represents the probabilities of observing A and B independently of
each other.

2.4.2 Bayesian Inference

Given Bayes’ theorem, we can computes the posterior probability based on a prior
probability and a likelihood function derived from observed data [40]. Assume that:

• x: a data point

• θ: the parameter of data distribution

• α: the hyperparameter of parameters’ distribution

• X: the set of observed data points, x1, ...,xn

• x̃: a new data point with distribution to be predicted

21

CHAPTER 2. BACKGROUND

Therefore, the posterior distribution can be seen as the distribution of parameter θ

after observing X, which is determined by Bayes’ theorem:

p(θ|X,α) =
p(θ,X,α)

p(X,α)
=

p(X|θ,α)p(θ,α)
p(X|α)p(α)

=
p(X|θ,α)p(θ|α)

p(X|α)
(2.19)

where p(X|α) =
∫

p(X|θ)p(θ|α)dθ.
Then we can predict the distribution of a new data point x̃, which is also known as

the posterior predictive distribution, by:

p(x̃|X,α) =
∫

p(x̃|θ)p(θ|X,α)dθ (2.20)

2.4.3 Evidence Framework

In most cases, the hyperparameter α in Equation 2.19 is unknown. However, they can
be set accoding to evidence framework [40]. Given the noise precision β, the evidence
framework works as follows. First, the parameters are estimated by:

p(X|α,β) =
∫

p(X|θ,β)p(θ|α)dθ (2.21)

Then the hyperparameters can be updated by:

βt =
N− γ

(Y−Xθ)>(Y−Xθ)
(2.22)

and

αt =
p(X|αt−1,βt−1)

2θ>θ+Trace(∑)
(2.23)

where N is the number of inputs, ∑ is the covariance of the input data, and γ is the
number of the ’well-determined’ coefficients, given by

γ = p(X|αt−1,βt−1)−αt−1Trace(∑) (2.24)

The derivation of Equation 2.22 to 2.24 is available in [40].

2.5 Approximate Inference Methods

In case of neural networks, Bayesian inference can be used to calculate the posterior
distribution P(θ|D) of the network parameters given the training data. This distribu-
tions can then answer predictive quires about unseen data by taking expections. Each
possible configuration of the parameters, weighted according to the posterior distri-
bution, makes a prediction about the unknown label given the test data. Thus taking
an expectation under the posterior distribution on parameters is equivalent to using an
ensemble of an uncountably infinite number of neural networks [8]. However, this is
not tractable in practice because of the large size of neural networks.

Several approaches have been proposed to find approximation to the posterior dis-
tribution on the parameters, e.g., the Laplace approximation [40], Hamiltonian Monte
Carlo [48] and variational inference [25, 23]. Among these methods, the Laplace
approximation is widely used because of its easy implementation. The Laplace ap-
proximation [40] is based on a second-order Taylor approximation of the log posterior
around the MAP estimate, which results in a Gaussian approximation to the posterior.

22

2.5. APPROXIMATE INFERENCE METHODS

2.5.1 Taylor Series

In mathematics a function can be represented by a Taylor series, which is an infinite
sum of terms that are calculated from the values of the function’s derivatives at a single
point [58]. The Taylor series of function f (x) that is infinitely differentiable at point a
is the series:

f (x) = f (a)+
f ′(a)
1!

(x−a)+
f ′′(a)

2!
(x−a)2 +

f ′′′(a)
3!

(x−a)3 + ... (2.25)

Then the function can be approximated by using a finite number of terms of Taylor
series [1]. In case of a second-order Taylor approximation, which is also know as a
quadratic approximation, we can get:

f (x) = f (a)+
f ′(a)
1!

(x−a)+
f ′′(a)

2!
(x−a)2 (2.26)

2.5.2 MAP

In Bayesian statistics, a maximum a posterior probability (MAP) estimate is an esti-
mate of an unknown quantity based on observed data [47]. Assume that X is the set of
observed data points, x1, ...,xn, and θ is the parameter of data distribution. According
to Bayes’ Theorem, the posterior distribution can be calculated by

p(θ|X) =
p(X|θ)p(θ)

p(X)
(2.27)

The method of maximum a posterior estimation then estimates θ [4]:

θ̂MAP(x) = argmax
θ

f (θ|x) = argmax
θ

p(X|θ)p(θ)
p(X)

(2.28)

Since the marginal likelihood p(X) is always positive and does not depend on θ, it
plays no role in the optimization. Therefore, we can rewrite Equation 2.27 as:

θ̂MAP(x) = argmax
θ

p(X|θ)p(θ) (2.29)

2.5.3 Laplace approximation

The Laplace approximation is a method of approximating Bayesian parameter estima-
tion [40]. It will find a Gaussian approximation to the conditional distribution of a set
of continuous variables.

Assume that an unnormalized probability density P∗(x) which achieves its maxi-
mum at a point x0. Its normalizing constant is:

ZP ≡
∫

P∗(x)dx (2.30)

If we Taylor-expand the logarithm of P∗(x) around its maximum point x0 where ∂

∂x lnP∗(x)|x=x0 =
0 and approximate P∗(x) using 2nd derivative, we can get:

lnP∗(x)' lnP∗(x0)−
c1

2
(x− x0)−

c2

2
(x− x0)

2 (2.31)

23

CHAPTER 2. BACKGROUND

where

c1 =−
∂

∂x
lnP∗(x)|x=x0 (2.32)

and

c2 =−
∂2

∂x2 lnP∗(x)|x=x0 (2.33)

Since x0 is a local maximum and ∂

∂x P∗(x)|x=x0 = 0, we can rewrite Equation 2.31 as:

lnP∗(x)' lnP∗(x0)−
c
2
(x− x0)

2 (2.34)

where

c =− ∂2

∂x2 lnP∗(x)|x=x0 (2.35)

We then approximate P∗(x) by an unnormalized Gaussian:

Q∗(x)≡ P∗(x0)exp{− c
2
(x− x0)

2} (2.36)

and approximate the normalizing constant ZP by the normalizing constant of this Gaus-
sian,

ZQ = P∗(x)

√
2π

c
(2.37)

Equation 2.30 to 2.37 can be generalized to approximate ZP for a density P∗(x)
over a K-dimensional space x. Assume A is the Hessian matrix, the matrix of the
second derivatives, of −lnP∗(x) at the maximum x0. And we can get:

Ai j =−
∂2

∂xi∂x j
lnP∗(x)|x=x0 (2.38)

Then Equation 2.31 can be generalized to:

lnP∗(x)' lnP∗(x0)−
1
2
(x−x0)

>A(x−x0) (2.39)

The normalizing constant can be approximated by:

Zp ' ZQ = P∗(x)
1√

det 1
2π

A

= P∗(x)
√

(2π)K

detA

(2.40)

Predictions can be made using the approximation Q∗

Q∗(x)≡ P∗(x0)exp{1
2
(x−x0)

>A(x−x0} (2.41)

24

Chapter 3

BayesNAS for RNN

BayesNAS [64] is a promising method to significantly reduce search time. It employs
the classic Bayesian learning approach using hierarchical automatic relevance deter-
mination (HARD) priors. It can find candidated architectures by training the over-
parameterized network for only one epoch. However, this work is only able to design
convolutional cells for image classification. Since our goal is to extend BayesNAS to
the design of recurrent architectures, this section first describes how the search space
for RNN is designed. Then the details of the search strategy of BayesNAS are ex-
plained.

3.1 Search Space

The search space of neural architecture search defines what kind of neural architectures
could be learned based on a NAS approach. Specifically for recurrent neural network,
we search for a basic recurrent cell. The inputs of the learned cell are the input of
the current time step and output of the previous time step and the hidden state of the
current time step is generated based on the inputs. Therefore the learned cell could be
recursively connected to form a recurrent neural network.

3.1.1 Design Search Space as a DAG

[66] iterates over all of the possible graphs and search for a cell based on the reward
signal. We can consider this as searching for sub-graphs in a super-graph. Therefore,
the search space of NAS could be viewed as a directed acyclic graph (DAG) ([50];
[38]). The candidate architecture can be generated by sampling a sub-graph of the
DAG. The edges in the DAG represent the operations and the nodes represent the local
feature map.

We design our search space as followings. A recurrent cell is viewed as a directed
acyclic graph, which consists of an ordered sequence of N nodes. Each node xi is asso-
ciated with a feature map in the recurrent network and each edge ei, j represents a kind
of operations oi, j ∈ O which transforms the feature map xi. To control the information
flow in the graph, operations of all edges are associated with scaling scalars wo

i, j. The
input nodes are defined as the input of the current time step and the hidden state of the
previous time step. For the output of the recurrent cell, all the intermediate nodes are
averaged. The cell uses the average as the output. Since all the nodes are ordered, each

25

CHAPTER 3. BAYESNAS FOR RNN

intermediate node is connected with all of its predecessors. The intermediate node is
computed by

x j = ∑
i< j

∑
o∈O

wo
i, joi, j(W o

i, jxi) (3.1)

where W = {W o
i, j} are network parameters and w = {wo

i, j} are architecture parameters.
Figure 3.1 illustrates an example of how to design recurrent cell. The example recur-
rent cell has N = 4 nodes and two alternative operations. The two input nodes xt and ht

represents the input of the current time step and the hidden state of the previous time
step respectively. The first node, node 0, is obtained by linearly transforming xt and ht ,
summing the results then passing through a tanh activation function, which means that
x0 = tanh(xt ·Wx +ht ·Wh). Note that how to compute x0 is fixed. Then for each of the
intermediate nodes, node 1 to 3, the search strategy decides the index of its predecessor
to connect with and the kind of operation to apply. For example, Figure 3.2 shows a
learned cell with x1 = relu(x0 ·W relu

0,1), x2 = tanh(x0 ·W tanh
0,2), and x3 = relu(x1 ·W relu

1,3).

x_{t}

0

h_{t-1}

1

2

3 h_{t}

Figure 3.1: The DAG defines the search space of NAS. The very first two nodes xt and ht are
the input of the current time step and the output of the previous time step. The red and blue
arrows represent candidate operations.

x_{t}

0

h_{t-1}

1relu

2

tanh

3
relu

h_{t}

Figure 3.2: An example of the learned recurrent cell.

3.1.2 Recurrent Highway Network (RHN)

In a standard recurrent layer, assume xt is the inputs of the current time step and ht−1
is the hidden state of the previous time step. Then the current hidden state can be
computed by:

ht = fH(WIHxt +WHHht−1 +bH) (3.2)

Therefore, there is only one nonlinear transition function fH from one time step to
the next in a standard recurrent layer. However, in our search space as discussed in

26

3.1. SEARCH SPACE

Section 3.1.1, each recurrent cell has more complex nonlinear transition functions.
In each time step, the depth of the step-to-step recurrent state transition is increased,
which is also known as the recurrence depth [65].

Compared to stacking recurrent layers, increasing the recurrence depth can add
significantly higher modeling power to an RNN as shown in Figure 3.3. Assume that
there are T time steps. Stacking d recurrent layers allows a maximum path length
of d + T − 1 between hidden states, while a recurrence depth of d enables a maxi-
mum path length of d×T . While this allows greater power and efficiency using larger
depths, it also explains why such architectures are much more difficult to train com-
pared to stacked RNNs. Deep networks suffer from what are commonly referred to
as the vanishing and exploding gradient problems [26], because the magnitude of the
gradients may shrink or explode exponentially during backpropagation.

Figure 3.3: Comparison of (a) stacked RNN with depth d and (b) Deep Transition RNN of
recurrence depth d, both operating on a sequence of T time steps. The longest path between
hidden states T time steps is d×T for Deep Transition RNNs.

In order to solve the gradient issues and augment the simple transformations be-
tween nodes, our setting is similar to the settings of ENAS ([50]) and DARTS ([38]).
Each operation in the DAG is enhanced with a highway bypass ([65]) as shown in
Figure 3.4. Highway connections enable easy training of very deep feedforward net-
works through the use of adaptive computation. Assume the output of node i is si. Let
h = σ(Whsi−1), c = sigmoid(Wcsi−1) be outputs of nonlinear transforms with associ-
ated weight matrices and σ is the activation function of the corresponding operation.
Therefore, the output of node i could be computed by:

si = c⊗h+(1− c)⊗ si−1 (3.3)

27

CHAPTER 3. BAYESNAS FOR RNN

For instance, instead of having x2 = tanh(x0 ·W tanh
0,2) as shown in the example from

Section 3.1.1, we have
x2 = c⊗h+(1− c)⊗ x0 (3.4)

where c = sigmoid(x ·W (c))0,2) and h = tanh(x ·W (h))0,2)

Figure 3.4: An illustration of enhancement of operation. si−1 and si are two nodes in the DAG,
which represents feature maps. σ is the activation function. Instead of applying operation σ

directly, each operation in the DAG is enhanced with a highway bypass.

3.2 Dependency

In this section, how to model the dependency between a node and its predecessors
and successors is stated. As shown in Figure 2.14, both the blue and red edges from
node 2 to 3 and from node 2 to 4 should be removed as a consequence. Therefore, the
following proposition is presented:

Proposition 1 There is no information flow from node j to node k under operation
o′ if and only if all the operations of all the predecessors of node j are zeros or the
corresponding scaling scalar wo′

j,k in Equation 3.1 is zero.

One possible expression to encode this proposition is wo′
j,k ∑o∈O ∑i< j wo

j,k. In order
to implement this expression, for each wo

i j, we introduce a variable, switch so
i j which

has two states {ON, OFF}. Assume that wo′
jk is redundant if so′

jk is OFF or all so
i j are

OFF, ∀i < j,o ∈ O. One possible solution is⋃
i< j

⋃
o∈O

{so
i j ∩ so′

jk} (3.5)

To encode set union and intersection, assume that s is a continous variable. If s = ∞,
the switch is ON and s = 0 for OFF. Then we can use addition and multiplication to

28

3.3. SEARCH STRATEGY

represent set union and intersection respectively. For example, if s1 is ON and s2 is
OFF, then s1∪ s2 is ON and s1∩ s2 is OFF, which can be represented by s1+ s2 = ∞

and s1× s2 = 0 respectively.
An approach to encode this logic is to assign a probability distribution, for example

Gaussian distribution, over wo′
i j

p(wo′
jk) = N (wo′

jk|0,so′
jk),∑

i< j
p(wo

i j) = ∑
i< j

N (wo
i j|0,so

i j) (3.6)

Since wo
i j,∀i, j,o are independent with each other, the distribution over wo′

jk ∑i< j wo
i j is

p(wo′
jk ∑

i< j
wo

i j) = N (wo′
jk|0,so′

jk)∑
i< j

N (wo
i j|0,so

i j)

= N (wo′
jk|0,so′

jk)N (∑
i< j

so
i jw

o
i j

∑i< j so
i j
|0,so

i j)

= N (wo′
jk ∑

i< j

so
i jw

o
i j

∑i< j so
i j
|0,γo′

jk)

(3.7)

where

γ
o′
jk = (

1
∑i< j ∑o∈O so

i j
+

1
so′

jk
)−1 (3.8)

Since Equation 3.5 and Equation 3.7 are equivalent, we may find the redundant opera-
tions in a probabilistic manner by applying Bayesian methods.

In our search space, we exclude zero operations as candidate operations. This is
because zero operations should have higher priority than other possible operations.
Once zero operations are selected, all the non-zero operations should not be selected
after all. Instead a dummy node i′ is added between node i and node j. Only a single
identity operation is allowed. The associated weight wii′ is trainable and initialized to
1 as well as its switch sii′ . If s′ii if OFF, all the operations from i′ to j will be disabled.
Therefore Equation 3.8 can be rewritten as:

γ
o′
jk = (

1
∑i< j ∑o∈O(sii′+ so

i′ j)
−1 +

1
so′

jk
)−1 (3.9)

Equation 3.9 encode the logic of Equation 3.5. If sii′ is OFF, which means that sii′ = 0,
γo

jk will always be a small value close to zero. Therefore, we have great confidence
that the corresponding weight w jk is zero.

3.3 Search Strategy

The search strategy details how to explore the search space. Since our search strategy
is one-shot based, the objective becomes removing redunt edges. This section explains
how BayesNAS employ classic Bayesian learning to determine the uncertainty of pa-
rameter distribution.

29

CHAPTER 3. BAYESNAS FOR RNN

3.3.1 Bayesian Neural Network

We can easily apply Bayesian learning to the NAS problem ([64]). The likelihood for
the network weights and the noise precision σ−2 is

p(Y|W,w,X,σ2) =
N

∏
n=1

N (yn|Net(xn;W,w);σ
2) (3.10)

We have assigned a Gaussian prior distribution. In particular,

p(W|λ) = ∏
i< j

∏
o∈O

N (W o
i j|0,λ−1) (3.11)

p(w|s) = ∏
j<k

∏
o∈O

∏
o′∈O

N (wo′
jk ∑

i< j
wo

i j|0,γo′
jk) (3.12)

where γo′
jk is the variance of wo′

jk as defined in Equation 3.9 and σ−2, λ and s are hy-
perparameters. Hierarchical priors are employed on these variables using Gamma
priors on the inverse variances following Mackay’s evidence framework ([40]). Fol-
lowing [7], the hyper-prior for these hyperparameters can be chosen to be a gamma
distribution, i.e., p(λ) = Gam(λ|aλ,bλ), p(σ−2) = Gam(σ−2|aσ−2

,bσ−2
) and p(so

i j) =

Gam(so
i j|a

so
i j ,bso

i j). To make these priors flat, we fix a and b to zero, which means
that the priors are uniform for analysis and implementation. This formulation of prior
distribution is a type of hierarchically constructed automatic relevance determination
(HARD).

Then we can get the posterior distribution based on Bayes’ rule:

p(W,w,λ,s,σ2|D) =
p(Y|X,W,w,λ,s,σ2)p(W|λ)p(w|s)p(λ)p(γ)p(σ2)

p(Y|X)
(3.13)

In a NAS problem, we only focuse on the architecture parameters w, which means that
we can fix hyperparameters related to network parameters W. Particularly, λ is set to
the weight decay coefficient in SGD and σ2 is set to the regularization coefficient for
network parameters. In case of uniform hyperpriors, we only need to maximize the
term p(Y|λ,s,σ2) ([40], [7]):∫ ∫

p(Y|W,w,X,λ,s,σ2)p(W|λ)p(w|s)dWdw (3.14)

3.3.2 Laplace approximation

Since the quantity in Equation 3.14 is the marginal likelihood [48], we can use the
Laplace approximation to approximate the integral. However, we need to compute the
inverse Hessian of the log-likelihood in Equation 2.39 if we adopt Laplace approxi-
mation, which can cause intensive computation cost. For a k dimensional parameter
vector, computing the Hessian needs O(k2) evaluations of the log likelihood function.
Due to the large size of the practical neural networks, k can be very large. It presents
a significant computation cost, which makes it infeasible. We propose an efficient
method to approximate Hessian in RNN. The detailed approximation method is ex-
plained in Chapter 4.

30

3.3. SEARCH STRATEGY

3.3.3 Optimization

The search strategy is summarized in Algorithm 2. The candidate architecture is de-
rived by:

1. Jointly train architecture parameters w and network weights W by minimizing
the loss function. The loss function has three components: the performance pre-
diction loss lpred , the regularization of network weights W and the regularization
of architecture parameters w:

L = lpred +λ‖W‖2
2 +λw ∑

i< j
∑
o∈O

∥∥ω
o
i j(t)w

o
i j

∥∥
1 (3.15)

where λ and λw are the regularization coefficients of network parameters and
architecture parameters respectively.

2. Freeze the architecture parameters w and compute corresponding hessian.

3. Update the variables associated with w. Equation 3.16 computes the convariance
of the posterior of the energy function over data. Equation 3.18 updates the
value of hyperparameter s, which represents the uncertainty of the corresponding
architecture parameter. However, the update rules for s does not consider the
dependency has been explained in Section 3.2. Therefore, based on the Gaussian
prior defined in Equation 3.8 and 3.9, the uncertainty could be computed in
Equation 3.19.

4. Prune the architecture. Since p(wo′
jk) in Equation 3.7 is Gaussian with zero mean

γo′
jk variance, the maximum information entropy of the distribution is 1

2 ln(2πeγo′
jk).

Therefore if γo′
jk ≤ 0.0585, the related link will be removed.

To make our generated architectures comparable with those in the existing work, for
each node, we retain the edge with the highest γ in the pruned graph, which means that
we select the operation of its prodecessor with the highest confidence that the operation
should not be removed.

31

CHAPTER 3. BAYESNAS FOR RNN

Algorithm 2 BayesNAS Algorithm
Initialization:

γ(0),ω(0),w(0) = 1, sparsity intensity λo
ω ∈ R+

Iteration:
for t = 1 to Tmax do

1. Update w and W by minimizing loss function
2. Compute Hessian for w
3. Update variables associated with w
while i < j < k,o,o′ ∈ O do

Co′
jk(t) = (

1
γo′

jk(t−1)
+Ho′

jk(t))
−1 (3.16)

ω
o′
jk(t) =

√
γo′

jk(t−1)−Co′
jk(t)

γo′
jk(t−1)

(3.17)

so′
jk(t) =

∣∣∣∣∣wo′
jk(t)

ωo′
jk(t)

∣∣∣∣∣ (3.18)

γ
o′
jk(t) = (

1
∑i< j ∑o∈O so

i j(t)
+

1
so′

jk(t)
)−1 (3.19)

end while
end for

32

Chapter 4

Efficient Hessian Computation

As shown in Equation 3.16, to make the algorithm work, we need Hessian of ar-
chitecture parameters. Although Hessian of weight matrix has been widely used in
second-order optimization technology, it is still not feasible to calculate explicit Hes-
sian directly because of the great computation cost. Inspired by the Hessian calculation
methods for Fully Connected (FC) layers as shown in [9], we propose a recursive and
efficient method to compute the Hessian of recurrent layer.

4.1 Hessian computation for fully connected layer

Previous work [9] proposed a recursive method to compute H in a fully connected
layer. The behaviour of fully connected layer can be formulated as:

ho
j =W o

i, jai, ai = σ(hi) (4.1)

where hi is the pre-activation value of node i and ai is the activation value of node i.
σ represents the element-wise activation function. W o

i, j is the weight matrix associated
with operation o between node i and node j. Therefore, the hessian H of W o

i, j can be
computed by:

Ho
i, j = ai · (ai)

>⊗Ho
j (4.2)

where ⊗ stands for Kronecker product.
The pre-activation Hessian Ho

j is known and could be used to compute the pre-
activation Hessian recursively for the previous layer:

Hi = Bi(W o
i, j)
>Ho

j W
o
i, jBi +Di (4.3)

where

Bi = diag(σ′(hi)), Di = diag(σ′′(hi)◦
∂L
∂ai

) (4.4)

It should be noted that diag() does not represent extracting the diagonal values of input
variable. Instead it means that Bi and Di are diagonal matrices, whose diagonal values
are the first and second derivatives of σ respectively. If we replace the original pre-
activation Hessian Ho

j and Hessian H with their diagonal values for recursive computa-
tion, the matrix multiplication could be reduced to vector multiplication, which means

33

CHAPTER 4. EFFICIENT HESSIAN COMPUTATION

that the computation complexity could be significantly reduced. We could rewrite the
Hessian computation process as:

Ho
i, j = a2

i ⊗Ho
j (4.5)

Hi = B2
i ◦ (((W o

i, j)
>)2Ho

j)+Di (4.6)

where

Bi = σ
′(hi), Di = σ

′′(hi)◦
∂L
∂ai

(4.7)

4.2 Hessian computation for recurrent layer

A RNN cell could be unrolled over the time sequence. We denote ut , xt , and ot as the
input of the current time step, the hidden state of the current time step and the output
of the current time step respectively. The mathematical operation in a recurrent layer
can be formulated as:

xt = tanh(Wiut +Wxxt−1) (4.8)

ot = σ(Woxt) (4.9)

where Wi, Wx and Wo represent the weight matrix of the input, hidden state and output.
σ is the output activation function. Therefore, the Hessian computation at a certain
time step can refer to the approach for fully connected layer which has already been
explained.

The left main problem is how to conduct sequential Hessian calculations when
considering the influence of time sequence and the backward propagation through time
(BPTT) process. BPTT is a generalization of back-propagation for feed-forward net-
works. The standard BPTT method for learning RNN unfolds the recurrent neural
network in time and propagates the gradient backwards through time as shown in Fig-
ure 4.1. Assume θ is the set of network parameters and ht represents the hidden state
at time t. The gradient of ht is

∂L
∂θ

=
T

∑
t=1

∂Lt

∂θ
(4.10)

where the expansion of loss function gradients at time t is

∂Lt

∂θ
=

t

∑
k=1

(
∂Lt

∂ht

∂ht

∂hk

∂hk

∂θ
) (4.11)

∂hk
∂θ

describes how the parameters affect the loss at time step k. Also, in order to
transport the error from time step t to time step k, we have

∂ht

∂hk
=

t

∏
i=k+1

∂hi

∂hi−1
(4.12)

34

4.2. HESSIAN COMPUTATION FOR RECURRENT LAYER

Figure 4.1: An abstract illustration of BPTT process of RNN

How we compute Hessian is similar to the computation of gradient. Assume that
the input sequence length of a RNN cell is T and τ is the backward propagation time
horizon. Thus, the Hessian for Wo can be calculated as:

Ho =
1
T

T

∑
t=1

Ht
o (4.13)

where Hessian Ht
o = (xt)

2⊗Ht
o and Ht

o is the pre-activation Hessian of Wo at time step
t.

Next we compute the pre-activation Hessian for Wx. Then the Hessian Hx is com-
puted as:

Hx =
T

∑
t=1

t

∑
k=1

Ht,k
x (4.14)

Ht,k
x = (xk−1)

2⊗Ht,k
x (4.15)

where Ht,k
x and Ht,k

x represent the Hessian and the pre-activation Hessian transported
from time step t to time step k respectively. Therefore, we can compute Ht,bptt

x as:

Ht,k
x =

t

∏
bptt=k+1

B2 ◦ (((Wx)
>)2Hbptt,bptt−1

x) (4.16)

where

B = σ
′(hbptt), D = σ

′′(hbptt)◦
∂L

∂xbptt
(4.17)

To avoid the gradient issues in recurrent neural network, at each time step t, we
compute the pre-activation Hessian Hx and Hessian Hx over a proper backward time
horizon τ. Therefore, we can rewrite Equation 4.14 as:

Hx =
1

T × τ

T

∑
t=1

t

∑
k=t−τ+1

Ht,k
x (4.18)

Similarly the Hessian of the input could be computed as:

Hi =
1

T × τ

T

∑
t=1

t

∑
k=t−τ+1

Ht,k
i (4.19)

35

CHAPTER 4. EFFICIENT HESSIAN COMPUTATION

where Ht,k
i = (uk−1)

2⊗Ht,k
i . Ht,k

i can be computed as:

Ht,k
i =

t

∏
bptt=k+1

B2 ◦ (((Wi)
>)2Hbptt,bptt−1

i) (4.20)

B = σ
′(hbptt), D = σ

′′(hbptt)◦
∂L

∂hbptt
(4.21)

4.3 Hessian computation for architecture parameters

Now we need to consider the computation of Hessian of architecture parameters. The
output from node i to node j under operation o can be computed as:

Bo
j = wo

i jBi (4.22)

where wo
i j is the architecture parameter and Bi = ∑o∈O Bo

i is the output from node i.
Since wo

i j is a scalar, inspired by [9], the Hessian of wo
i j can be computed as:

Ho
i j = E(B2

i H j) (4.23)

where E return the mean. The pre-activation Hessian of wo
i j can be computed as:

Hi = ∑
o∈O

(wo
i j)

2H j (4.24)

36

Chapter 5

Experiments

In this section, the designed experiments which search for competitive novel RNN
architectures on datasets of language modelling are reported. Our settings are similar
to settings of [38]; [50]; [39].

5.1 Datasets

In the following, the datasets which are relevant for this work will be discussed. These
datasets were pre-splitted when we downloaded them.

5.1.1 Penn Treebank

The Penn Treebank ([41]) has long been a central data set for experimenting with
language modeling. It is a corpus consisting of over 4.5 million words of Ameri-
can English, which consists of 929k training words, 73k validation words, and 82k
test words. The data set was heavily preprocessed by [45]. Words were lower-cased,
numbers were replaced with N, newlines were replaced with < eos >, and all other
punctuation was removed. The vocabulary has 10k words. The rest of the tokens was
replaced by an < unk > token.

5.1.2 WikiText-2

WikiText-2 ([43]) is another benchmark dataset for language modelling. The PTB
was heavily preprocessed which means that it has many limitations and is unrealistic
for real language use. To overcome these limitations, WikiText-2 was constructed by
using articles extracted from Wikipedia which have been reviewed by humans. It is
broad in coverage and stable. The size of WikiText-2 is two times the size of the Penn
Treebank dataset. It has 2088k training words, 217k validation words, and 245k test
words. The vocabulary has more than 33k words.

5.2 Architecture Search

The set of operations includes four activation functions, tanh, relu, sigmoid and iden-
tity mapping, which follows [50], [66], and [38].

37

CHAPTER 5. EXPERIMENTS

The cell has 12 intermediate nodes. The first node, node 0, is obtained by adding
the results of linearly transforming the two input nodes and passing through a tanh
activation function. The rest of the cell is learned based on the search strategy. Each
operation is enhanced with highway connections([65]). The output of each node is
the sum of results of all operations of all its predecessors. And the final output of
the cell is the average of all intermediate nodes. Considering the gradient explosion
problem, batch normalization layer is always added after each node during architecture
search stage. Also in order to avoid scaling the output of each operation, the affine
parameters of batch normaliztion is not learnable, which means that γ = 1, β = 0. The
final recurrent neural network is a single cell without stacking.

Both the embedding and the hidden sizes are set to 300. Dropout is applied to
several layers([19]), 0.2 to word embeddings, 0.75 to the cell input, and 0.25 to all the
hidden nodes. Other training settings are identical to those in [44].

x_{t}
0

h_{t-1}

1relu

2identity

5identity

6
identity

3identity

4
relu

7tanh

h_{t}

8identity

(a) λ = 0.15

x_{t}
0

h_{t-1}

1sigmoid

3
tanh

2relu

5relu

6identity h_{t}

7identity

4relu

8relu

(b) λ = 0.17

Figure 5.1: The best 2 cells after training for 800 epochs

x_{t}
0

h_{t-1}

1relu

3
tanh

2relu

4relu

6identity
h_{t}

8identity

5

7

Figure 5.2: The learned cell with fewer parameters (λ = 0.20)

5.3 Architecture Evaluation

To determine the architecture for final evolutation, the set of regularization coefficients
of architecture parameters λw (Equation 3.15) is set to {0.1,0.13,0.15,0.17,0.2}. For

38

5.3. ARCHITECTURE EVALUATION

each λw value, we run the experiments four times with different random seeds because
the architecture learned can be initialization-sensitive (Figure 5.3). Therefore, there are
20 candidated architectures. For evaluation, we first train all candidates five times for
800 epochs. The best 2 cells are picked based on their average validation performance
obtained. The best 2 cells after training for 800 epochs are shown in Figure 5.1. To
evaluate the selected architectures, we train them for 2500 more epochs and report
their performance on the test dataset.

Figure 5.3: Search progress for recurrent cell on Penn TreeBank. For each λ, we run the
experiments four times with different initial seeds and report the mean and variance of the
performance.

Experimential details A single layer recurrent neural network is trained 3300 epochs
in total with batch size 64 using averaged SGD([51])(ASGD), with learning rate ηw =
10 and weight decay 8× 10−7. To speedup, we start with SGD and trigger ASGD
using the same protocol as in [44]. To ensure the model size is comparable with other
baselines, the sizes of both the embedding and the hidden layer are set to 850. We
apply variational dropout ([19]) of 0.1 to word embeddings, 0.75 to the cell input, 0.25
to the hidden nodes, and 0.75 to the output layer. Other training settings are identical
to those in [44]. For fair comparison, we do not finetune our model at the end of the
training, nor do we use any additional enhancements.

As we treat the architecture search problem as model compression and remove the
edge of operation o′ between node i and node j if γo′

i j ≤ 0.0585, our search strategy is
able to learn a light cell with acceptable performance decrease but with fewer param-
eters as shown in Figure 5.2. Two intermediate nodes are not connected with any of
their predecessors. Therefore, they are removed from the graph. One thing to be noted
is that grid search is not used for architecture search due to the limited time. Therefore,
the learned cells may not be optimal. It is likely for our search strategy to learn cells
with better performance or fewer parameters.

39

CHAPTER 5. EXPERIMENTS

5.4 Normalization

While recurrent architectures are simple and powerful models, it is actually hard to
train them properly. There are two widely known issues with properly training re-
current architectures like LSTM and GRU, the vanishing and the exploding gradient
problems [49]. These gradient problems can be alleviated by normalization. In the
previous work [66, 50, 38, 39], batch normalization is enabled in each node to pre-
vent gradient explosion. However, from the point of view of language modeling, batch
normalization is not applicable to recurrent architectures directly. On one hand, batch
normalization estimates the variance and mean of the inputs of each batch during train-
ing process and uses these estimation values when evaluating the model on validation
dataset during evaluation. Therefore, if the distribution of training data and validation
data is different, batch normalization can result in poor performance on unseen data.
On the other hand, since there are recurrent connections in the architecture, actually
we reuse the same batch normalization layer in all time steps, which means that we
use the same estimated variance and mean at every time step. However, they are more
likely to be different.

In order to get how different normalization methods influence the performance of
the learned cell, two normalization methods, batch normalization and layer normaliza-
tion, are selected. For each method, we can set parameters of the normalization layer
to learnable or non-learnable. If the parameters are not learnable, γ and β are fixed to
1 and 0 respectively. Otherwise they are learned by optimization algorithms. There-
fore, there are four kinds of normaliztion layer to test. Note that for each normalization
method, the same set of initialization seeds is used during the architecture search stage.
The normalization layer is removed during performance estimation stage.

Experimential details A single layer recurrent neural network is trained 50 epochs
in total with batch size 64 using SGD, with learning rate ηw = 10 and weight decay
8× 10−7. The sizes of both the embedding and the hidden layer are set to 850. We
apply variational dropout ([19]) of 0.1 to word embeddings, 0.75 to the cell input, 0.25
to the hidden nodes, and 0.75 to the output layer. Other training settings are identical to
those in [44]. The initialization seed during the search stage is reused here to initialize
network weights.

5.5 Transferability

In order to investigate the transferability of the cells learned by the search strategy
on Penn TreeBank, we train the recurrent cell on another dataset, Wiki-Text2 ([43]),
which has a larger data size compared with Penn TreeBank.

Experimential details The experiment hyperparameters are almost the same as in
Penn TreeBank. A single layer recurrent neural network is trained 3300 epochs in
total with batch size 64 using averaged SGD([51])(ASGD), with learning rate ηw =
10 and weight decay 5× 10−7. To speedup, we start with SGD and trigger ASGD
using the same protocol as in [44]. To ensure the model size is comparable with other
baselines, the sizes of both the embedding and the hidden layer are set to 700. we

40

5.6. RESULTS ANALYSIS

apply variational dropout ([19]) of 0.1 to word embeddings, 0.75 to the cell input, 0.25
to the hidden nodes, and 0.75 to the output layer. Other training settings are identical
to those in [44]. For fair comparison, we do not finetune our model at the end of the
training, nor do we use any additional enhancements.

5.6 Results Analysis

Table 5.1 presents the performance of learned cells generated by different normal-
ization methods. There is not much difference between the performance of batch
normalization and layer normalization. The normalization layer with non-learnable
parameters outperforms that with learnable parameters regardless of how the inputs
are normalized. This can be explained by the fact that the outputs of operations are
rescaled if the parameters are set to learnable.

Table 5.1: Performance of learned cells generated by different normalization methods (lower
perplexity(PPL) is better)

Architecture Valid PPL Parameters(M)
Batch Normalization (non-learnable) 80.4 ± 0.5 23

Batch Normalization (learnable) 82.5 ± 0.4 23
Layer Normalization (non-learnable) 80.7 ± 0.3 23

Layer Normalization (learnable) 82.3 ± 0.4 23

Table 5.2 presents the results of our learned cell and state-of-the-art. The best
model learned by our search strategy can achieve a validation perplexity around 59.62
and test perplexity around 57.20, which is very comparable with state-of-the-art. Our
automatically learned cell is superior to most of the architectures designed manually
except LSTM + SE [61].

Table 5.2: Comparison with state-of-the-art language models on PTB (lower perplexity(PPL)
is better)

Architecture Valid PPL Test PPL Parameters(M) Search Cost(GPU days)
Variational RHN [65] 67.9 65.4 23 -

LSTM [44] 60.7 58.8 24 -
LSTM + skip connections [42] 60.9 58.3 24 -

LSTM + 15 softmax experts [61] 58.1 56.0 22 -
NAS [66] - 64.0 25 104

ENAS(v2) [50] - 55.8 24 0.5
DARTS(1st) [38] 60.2 57.6 23 0.5
DARTS(2nd) [38] 58.1 55.7 23 1

BayesNAS (lambda = 0.17) 59.62 ± 0.53 57.20 ± 0.52 23 0.3
BayesNAS (lambda = 0.20) 60.56 ± 0.38 58.34 ± 0.33 20 0.3

Results in Table 5.3 show the competitive results of the learned cell on WT2 among
automatically architectures, although the transferability between Penn TreeBank and
WikiText-2 seems a bit weak. The performance of our learned cell is worse than most
manually designed architectures on WT2, which is not the case on PTB. This may be
because the learned cell is searched on a small dataset (PTB) while evaluate on a large

41

CHAPTER 5. EXPERIMENTS

dataset (WT2). If we search directly on WT2, we could get a better performance and
circumvent the issue of transferability.

Table 5.3: Comparison with state-of-the-art language models on WT2 (lower perplexity(PPL)
is better)

Architecture Valid PPL Test PPL Parameters(M) Search Cost(GPU days)
LSTM [44] 69.1 66.0 33 -

LSTM + skip connections [42] 69.1 65.9 24 -
LSTM + 15 softmax experts [61] 66.0 63.3 33 -

ENAS [50] (searched on PTB) 72.4 70.4 33 0.5
DARTS [38] (searched on PTB) 71.2 69.6 33 1

BayesNAS (lambda = 0.17) 72.5 ± 0.3 70.1 ± 0.2 33 0.3
BayesNAS (lambda = 0.20) 74.0 ± 0.1 71.4 ± 0.0 31 0.3

Currently most neural architecture search apporaches search on relatively small
datasets, such as CIFAR and PTB, then transfer the learned architectures to large-scale
datasets, like ImageNet and WT2, although the transferable ability may be a bit weak
and the overall results on large-sclae datasets are less strong. The obstacle of directly
searching on large-scale datasets is the huge search cost. To the best of our known,
we can achieve the lowest search cost compared with other neural architecture search
approaches (20 runs in 0.3 GPU days). Note that the code is not heavily optimized
and it is likey to achieve a lower search cost than reported. Our search strategy is
very efficient which makes searching directly on large-scale datasets possible. We will
explore this opportunity in our future work.

42

Chapter 6

Conclusion

In this work, we propose an efficient gradient-based neural architecture search ap-
proach which employs the classic Bayesian learning approach. Our approach reduces
the search cost significantly. We get the candidate architecture which could achieve
competitive performance compared with state-of-the-art architectures by running only
one epoch.

Research Question 1. asks ’How can batch normalization influence the archi-
tecture search? Moreover, how can the behaviour of the algorithm be influenced if
we use other normalization method, for example, layer normalization which is widely
used in RNN?’ - We investigate this in Section 5.4 and find that Batch normalization
alleviates the gradient issues and help to stablize the architecture search process. To
achieve better performance, the parameters of batch normalization layer should not be
learnable to avoid rescaling the outputs of the candidate operations. However, we do
not see much difference between the performance of batch normalization and that of
layer normalization.

Research Question 2. - ’Can this method be extended to recurrent layers to make
classic Bayesian learning approach applicable to design recurrent architectures auto-
matically for language modeling task?’ - To employ Bayesian learning, we propose
an efficient method to compute the Hessian of recurrent layer. Then the posterior vari-
ance can be updated based on Laplace approximation which requires computation of
the inverse Hessian of log likelihood. Our approach is able to find architectures, which
can achieve competitive performance, with much lower search cost compared with
state-of-the-art.

Research Question 3. - ’ Can we generate novel recurrent architectures that can
trade-off between the performance and model size?’ - In our experiments, we find that
we can get more sparse architectures if we increase the regularization coefficient of ar-
chitecture parameters. Finally we discover an architecture with less model parameters
and competitive performance.

In conclusion, our algorithm is a promising method for neural architecture search
for recurrent architectures. The main contributions are presented below.

43

CHAPTER 6. CONCLUSION

6.1 Future Work

There are many directions to improve our NAS approach further. Future research can
focus on improving the efficiency or performance of NAS.

Perform Hessian Computation during Backpropagation The hessian computa-
tion in our implementation is not efficient. Currently to compute the hessian, all the
feature maps are cashed in the memory. However, it is possible to perform hessian
computation during backpropagation, which can further reduce the search cost and
memory used. If so, it may be possible to search directly on large datasets like WT2.
Then the transferability of the learned cell can be improved.

Design novel Search Space Our search space follows Darts and NAO [38, 39],
which could be viewed as a directed acyclic graph. Since the search space defines
what kind of neural architectures could be learned in principle, a different setup of
search space may improve the performance. For example, in our setup, the input of
each node is the sum of all outputs from all its predecessors. We can involve more
combination methods, like element-wise multiplication. Inspired by the construction
of the LSTM cell, we can also introduce memory state as another input to the cell.

44

Bibliography

[1] Tom. Apostol, editor. Calculus, Wiley, 1996. ISBN 0-471-00005-1.

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neu-
ral network architectures using reinforcement learning. CoRR, abs/1611.02167,
2016.

[3] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Practical neu-
ral network performance prediction for early stopping. CoRR, abs/1705.10823,
2017. URL http://arxiv.org/abs/1705.10823.

[4] Robert Bassett and Julio Deride. Maximum a posteriori estimators as a limit
of bayes estimators. Mathematical Programming, 11 2016. doi: 10.1007/
s10107-018-1241-0.

[5] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc
Le. Understanding and simplifying one-shot architecture search. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 550–559, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[6] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A
neural probabilistic language model. J. Mach. Learn. Res., 3:1137–1155,
March 2003. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?
id=944919.944966.

[7] James O Berger. Statistical decision theory and bayesian analysis. Springer
Science & Business Media, 2013.

[8] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.
Weight uncertainty in neural networks. In Proceedings of the 32Nd Interna-
tional Conference on International Conference on Machine Learning - Volume
37, ICML’15, pages 1613–1622. JMLR.org, 2015. URL http://dl.acm.org/
citation.cfm?id=3045118.3045290.

[9] Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton
optimisation for deep learning. In Proceedings of the 34th International Confer-

45

http://arxiv.org/abs/1705.10823
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=3045118.3045290
http://dl.acm.org/citation.cfm?id=3045118.3045290

BIBLIOGRAPHY

ence on Machine Learning - Volume 70, ICML’17, pages 557–565. JMLR.org,
2017.

[10] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick Weston.
SMASH: one-shot model architecture search through hypernetworks. CoRR,
abs/1708.05344, 2017.

[11] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L.
Mercer. The mathematics of statistical machine translation: Parameter estima-
tion. Comput. Linguist., 19(2):263–311, June 1993. ISSN 0891-2017. URL
http://dl.acm.org/citation.cfm?id=972470.972474.

[12] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level
network transformation for efficient architecture search. CoRR, abs/1806.02639,
2018. URL http://arxiv.org/abs/1806.02639.

[13] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture
search on target task and hardware. CoRR, abs/1812.00332, 2018.

[14] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of
imagenet as an alternative to the CIFAR datasets. CoRR, abs/1707.08819, 2017.
URL http://arxiv.org/abs/1707.08819.

[15] Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. Capacity and train-
ability in recurrent neural networks. ArXiv, abs/1611.09913, 2016.

[16] Eder Miranda De Novais, Thiago Dias Tadeu, and Ivandré Paraboni. Im-
proved text generation using n-gram statistics. In Proceedings of the 12th Ibero-
American Conference on Advances in Artificial Intelligence, IBERAMIA’10,
pages 316–325, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-
16951-1, 978-3-642-16951-9. URL http://dl.acm.org/citation.cfm?id=
1948131.1948173.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[18] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective
neural architecture search via lamarckian evolution. In ICLR 2019, 2019.

[19] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of
dropout in recurrent neural networks. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS’16, pages 1027–
1035, USA, 2016. Curran Associates Inc. ISBN 978-1-5108-3881-9.

[20] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015. URL http:
//arxiv.org/abs/1504.08083.

[21] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. CoRR,
abs/1311.2524, 2013. URL http://arxiv.org/abs/1311.2524.

46

http://dl.acm.org/citation.cfm?id=972470.972474
http://arxiv.org/abs/1806.02639
http://arxiv.org/abs/1707.08819
http://dl.acm.org/citation.cfm?id=1948131.1948173
http://dl.acm.org/citation.cfm?id=1948131.1948173
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1311.2524

BIBLIOGRAPHY

[22] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection
schemes used in genetic algorithms. In FOGA, 1990.

[23] Alex Graves. Practical variational inference for neural networks. In Proceed-
ings of the 24th International Conference on Neural Information Processing Sys-
tems, NIPS’11, pages 2348–2356, USA, 2011. Curran Associates Inc. ISBN
978-1-61839-599-3. URL http://dl.acm.org/citation.cfm?id=2986459.
2986721.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015. URL http:
//arxiv.org/abs/1512.03385.

[25] Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks simple
by minimizing the description length of the weights. In Proceedings of the Sixth
Annual Conference on Computational Learning Theory, COLT ’93, pages 5–13,
New York, NY, USA, 1993. ACM. ISBN 0-89791-611-5. doi: 10.1145/168304.
168306. URL http://doi.acm.org/10.1145/168304.168306.

[26] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral Comput., 9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.
1162/neco.1997.9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.
9.8.1735.

[27] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolu-
tional networks. CoRR, abs/1608.06993, 2016. URL http://arxiv.org/abs/
1608.06993.

[28] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR, abs/1502.03167,
2015. URL http://arxiv.org/abs/1502.03167.

[29] Frederick Jelinek. Statistical Methods for Speech Recognition. MIT Press, Cam-
bridge, MA, USA, 1997. ISBN 0-262-10066-5.

[30] Geoffrey E. Hinton Jimmy Lei Ba, Jamie Ryan Kiros. Layer normalization. arXiv
e-prints, abs/1607.06450, 2016. URL https://arxiv.org/abs/1607.06450.

[31] Leslie Pack Kaelbling, Michael L. Littman, and Andrew P. Moore. Reinforce-
ment learning: A survey. Journal of Artificial Intelligence Research, 4:237–285,
1996. URL http://people.csail.mit.edu/lpk/papers/rl-survey.ps.

[32] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hut-
ter. Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
Datasets. In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and Statistics, volume 54 of Pro-
ceedings of Machine Learning Research, pages 528–536, Fort Lauderdale, FL,
USA, 20–22 Apr 2017. PMLR. URL http://proceedings.mlr.press/v54/
klein17a.html.

47

http://dl.acm.org/citation.cfm?id=2986459.2986721
http://dl.acm.org/citation.cfm?id=2986459.2986721
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://doi.acm.org/10.1145/168304.168306
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1607.06450
http://people.csail.mit.edu/lpk/papers/rl-survey.ps
http://proceedings.mlr.press/v54/klein17a.html
http://proceedings.mlr.press/v54/klein17a.html

BIBLIOGRAPHY

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Proceedings of the 25th In-
ternational Conference on Neural Information Processing Systems - Volume 1,
NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc. URL http:
//dl.acm.org/citation.cfm?id=2999134.2999257.

[34] Orr G.B. Müller KR. LeCun Y.A., Bottou L., editor. Neural Networks: Tricks of
the Trade, London, UK, UK, 1998. Springer-Verlag. ISBN 3-540-65311-2.

[35] Xiangang Li and Xihong Wu. Constructing long short-term memory based
deep recurrent neural networks for large vocabulary speech recognition. CoRR,
abs/1410.4281, 2014. URL http://arxiv.org/abs/1410.4281.

[36] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan L. Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architec-
ture search. CoRR, abs/1712.00559, 2017.

[37] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Ko-
ray Kavukcuoglu. Hierarchical representations for efficient architecture search.
CoRR, abs/1711.00436, 2017.

[38] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable archi-
tecture search. CoRR, abs/1806.09055, 2018.

[39] Renqian Luo, Fei Tian, Tao Qin, and Tie-Yan Liu. Neural architecture optimiza-
tion. CoRR, abs/1808.07233, 2018.

[40] David J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–
447, 1992. doi: 10.1162/neco.1992.4.3.415. URL https://doi.org/10.1162/
neco.1992.4.3.415.

[41] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building
a large annotated corpus of english: The penn treebank. Comput. Linguist., 19
(2):313–330, June 1993. ISSN 0891-2017.

[42] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation
in neural language models. CoRR, abs/1707.05589, 2017.

[43] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer
sentinel mixture models. CoRR, abs/1609.07843, 2016.

[44] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and
optimizing LSTM language models. CoRR, abs/1708.02182, 2017.

[45] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernocký, and Sanjeev Khu-
danpur. Recurrent neural network based language model. Proceedings of the 11th
Annual Conference of the International Speech Communication Association, IN-
TERSPEECH 2010, 2:1045–1048, 01 2010.

[46] Geoffrey Miller, Peter M. Todd, and Shailesh U. Hegde. Designing neural net-
works using genetic algorithms. pages 379–384, 01 1989.

48

http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://arxiv.org/abs/1410.4281
https://doi.org/10.1162/neco.1992.4.3.415
https://doi.org/10.1162/neco.1992.4.3.415

BIBLIOGRAPHY

[47] Kevin P Murphy. Machine learning: a probabilistic perspective. Cambridge,
MA, 2012.

[48] Radford M. Neal. Bayesian Learning for Neural Networks. PhD thesis, Toronto,
Ont., Canada, Canada, 1995. AAINN02676.

[49] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume 28,
ICML’13, pages III–1310–III–1318. JMLR.org, 2013. URL http://dl.acm.
org/citation.cfm?id=3042817.3043083.

[50] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient
neural architecture search via parameter sharing. CoRR, abs/1802.03268, 2018.

[51] B. Polyak and A. Juditsky. Acceleration of stochastic approximation by aver-
aging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992. doi:
10.1137/0330046.

[52] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Quoc V. Le, and Alex Kurakin. Large-scale evolution of image classifiers.
CoRR, abs/1703.01041, 2017.

[53] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized
evolution for image classifier architecture search. CoRR, abs/1802.01548, 2018.
URL http://arxiv.org/abs/1802.01548.

[54] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-
CNN: towards real-time object detection with region proposal networks. CoRR,
abs/1506.01497, 2015. URL http://arxiv.org/abs/1506.01497.

[55] R. Rosenfeld. Two decades of statistical language modeling: where do we go
from here? Proceedings of the IEEE, 88(8):1270–1278, Aug 2000. ISSN 0018-
9219. doi: 10.1109/5.880083.

[56] Hasim Sak, Andrew W. Senior, and Françoise Beaufays. Long short-term mem-
ory recurrent neural network architectures for large scale acoustic modeling. In
INTERSPEECH, 2014.

[57] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V.
Le. Mnasnet: Platform-aware neural architecture search for mobile. CoRR,
abs/1807.11626, 2018. URL http://arxiv.org/abs/1807.11626.

[58] Jr.; Finney Ross L. Thomas, George B., editor. Calculus and Analytic Geometry
(9th ed.), Addison Wesley, 1996. ISBN 0-201-53174-7.

[59] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on neural
architecture search. CoRR, abs/1905.01392, 2019. URL http://arxiv.org/
abs/1905.01392.

[60] Lingxi Xie and Alan L. Yuille. Genetic CNN. CoRR, abs/1703.01513, 2017.
URL http://arxiv.org/abs/1703.01513.

49

http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1905.01392
http://arxiv.org/abs/1905.01392
http://arxiv.org/abs/1703.01513

BIBLIOGRAPHY

[61] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Break-
ing the softmax bottleneck: A high-rank RNN language model. CoRR,
abs/1711.03953, 2017. URL http://arxiv.org/abs/1711.03953.

[62] Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated
deep learning: Efficient joint neural architecture and hyperparameter search.
CoRR, abs/1807.06906, 2018. URL http://arxiv.org/abs/1807.06906.

[63] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design
with q-learning. CoRR, abs/1708.05552, 2017. URL http://arxiv.org/abs/
1708.05552.

[64] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. Bayesnas: A bayesian
approach for neural architecture search. CoRR, abs/1905.04919, 2019. URL
http://arxiv.org/abs/1905.04919.

[65] Julian G. Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmidhuber.
Recurrent highway networks. CoRR, abs/1607.03474, 2016.

[66] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement
learning. CoRR, abs/1611.01578, 2016.

[67] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning
transferable architectures for scalable image recognition. CoRR, abs/1707.07012,
2017. URL http://arxiv.org/abs/1707.07012.

50

http://arxiv.org/abs/1711.03953
http://arxiv.org/abs/1807.06906
http://arxiv.org/abs/1708.05552
http://arxiv.org/abs/1708.05552
http://arxiv.org/abs/1905.04919
http://arxiv.org/abs/1707.07012

	Preface
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Research Questions and Contributions
	Outline

	Background
	Deep Neural Network
	Convolutional Neural Network
	Recurrent Neural Network
	Batch Normalization
	Layer Normalization

	Language Modeling
	Statistical language modeling
	Application of RNN to language modeling

	Neural Architecture Search
	Search Space Design
	Search Strategy
	Performance Estimation Strategy

	Bayesian Learning
	Bayes' Theorem
	Bayesian Inference
	Evidence Framework

	Approximate Inference Methods
	Taylor Series
	MAP
	Laplace approximation

	BayesNAS for RNN
	Search Space
	Design Search Space as a DAG
	Recurrent Highway Network (RHN)

	Dependency
	Search Strategy
	Bayesian Neural Network
	Laplace approximation
	Optimization

	Efficient Hessian Computation
	Hessian computation for fully connected layer
	Hessian computation for recurrent layer
	Hessian computation for architecture parameters

	Experiments
	Datasets
	Penn Treebank
	WikiText-2

	Architecture Search
	Architecture Evaluation
	Normalization
	Transferability
	Results Analysis

	Conclusion
	Future Work

	Bibliography

