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Abstract

In this thesis, a test device is designed for the company Momo Medical. Momo Medical is developing a
system that can be used to prevent pressure ulcers and adding more functionality is being investigated. For
this system they need a device to test the functionality of the six piezoelectric sensors that are used in their
product. The sensors’ response to a known pulse needs to be tested in order to give a pass/fail indication of
the sensor quality.

First, different ways of testing the sensors are investigated. Based on the results of the investigation, a
final test setup is chosen and characterized.

The test system developed in this thesis is based on a pneumatic setup, using a solenoid valve to con-
trol well-defined air pulses directed towards the sensors. Due to the addition of a reference load cell with
custom designed read-out electronics, the device is able to test all six sensors one at the time and provides
detailed feedback about the individual sensor quality. The test is performed using GUI-based software writ-
ten in MATLAB, connected to a microcontroller. The software offers a broad variety of settings and can be
configured according to Momo Medical’s wishes. After configuration, the test can be performed at the click
of a button.

The standard deviation of the device precision over three hours is æ = 4.16, which equals a variation of
cv = 0.82% of the mean µ= 504.8. This easily satisfies the requirements set by Momo Medical.
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�
Introduction

In this chapter, an introduction will be given about Momo Medical, the product they are developing and what
problem they are facing.

1.1. Pressure ulcers and Momo Medical

Pressure ulcers are localized damages to the skin and/or underlying tissue. They are caused by pressure to
the skin over an extended period of time. This affects the upper skin and underlying tissue. These wounds are
painful and take a long time to heal [1]. Pressure ulcers cause patient suffering, high expenses and increased
workload for health care staff [2].

Momo Medical (hereafter also called Momo) strives to prevent these wounds from occurring. They de-
veloped a smart technology that provides continuous insight in the posture and movements of the patient.
Their solution consists of a sensor plate and matching control unit (seen in figure 1.1), providing feedback to
nurses and other staff. If a patient has not repositioned him/herself after a set amount of time, a nurse can be
alerted.

The sensor plate is a thin plate (approximately 65x12x1 cm) placed underneath the mattress. It is covered
by a sleeve to protect it against moisture and dust (not shown in the figure). The sensor plate provides a
non-intrusive way to detect the position of the patient using a variety of sensors.

The control unit is a small box attached to the wall or the bed frame and reads the signals from the sensor
plate. The signals are analyzed to determine the position of the patient. A circle of RGB LEDs indicates how
long the patient has been in his/her current position (see figure 1.1). As soon as a patient lies down in the bed,
a timer starts in the control unit. When a patient repositions him/herself, or a nurse repositions the patient,
the timer is reset. If a repositioning has not occurred after a set time (e.g. 3 hours), a nurse is notified.

In future versions they would also like to be able to detect heart rate and breathing patterns with the same
device [3].

1.2. The sensor plate in detail

In this thesis version 5 of Momo’s sensor plate is considered. The sensor plate contains 6 dynamic force
sensors and 8 static force sensors, as well as an accelerometer to detect the bed angle. Piezoelectric (PE)
sensors are used as the dynamic force sensors, and force-sensing resistors (FSRs) are used as the static force
sensors. All sensors are connected to conditioning circuits, after which the signal passes through to analog-
to-digital converters (ADCs). The ADCs are then connected to the control unit using I2C.

6



1.2. The sensor plate in detail 7

Figure 1.1: Sensor plate (left) and control unit (right). Pictures provided by Momo Medical

1.2.1. Domes and pucks

Momo refers to the ‘triangle’ shaped parts (seen in figure 1.2) as domes. The PE sensors are taped to the
bottom of the six middle domes. On the narrow end there is a so called ‘puck’ (see figure 1.3), where the dome
rests on the FSRs, on the opposite side the puck rests on the frame. The PE sensor thus measures how much
the dome deforms.

Figure 1.2: Sensor plate "exploded view". Picture provided by Momo Medical

1.2.2. PE sensor used by Momo Medical

Momo uses piezoelectric sensors to detect small vibrations through the mattress.

A piezoelectric sensor is based on the piezoelectric effect, found by Pierre and Jacques Curie in 1890. A
piezoelectric material consists of a crystal lattice with electric dipole moments. These dipoles are generally
oriented randomly throughout the material, so no net polarization is exhibited [4]. When a strong electric
field is applied, the dipoles orient themselves according to the applied field.
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↑
puck

Figure 1.3: Dome with puck. Picture provided by Momo Medical and edited by the authors
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When an external mechanical stress is induced, the dipoles change orientation. To the outside, this ap-
pears as a variation of surface charge density upon the different faces of the lattice [5].

The PE sensors used by Momo are piezoelectric diaphragms manufactured by Murata, type 7BB-20-6L0.
Even though these diaphragms are designed to be used as buzzers, they can be used in reverse as pressure
sensors. The diaphragms belong to the family of lead zirconate titanate (PZT) ceramics. PZT ceramics “exhibit
very high dielectric and piezoelectric properties and find wide applications as sensor and actuator devices"
[6]. The specific diaphragms used by Momo are 20 mm in diameter, have a resonance frequency fr es = 6.3±
0.6kHz and a capacitance of 10nF±30% [7].

1.2.3. Schematic of the PE sensor conditioning circuit

In order to properly read the data coming from the sensor, Momo Medical uses a conditioning circuit as seen
in figure 1.4. As a model for the piezoelectric sensor a charge source is used in parallel with a resistor R =
10G≠ (see [8]) and a capacitor C = 10nF. A simulation in LTspice is performed and the frequency response
can be seen in figure 1.5. The entire circuit can be viewed as having a first order high-pass filter with a cut-off
frequency fhp f = 4Hz and a second order low-pass filter with a cut-off frequency of fl p f = 18.4Hz.

1.2.4. Analog-to-digital conversion

After the conditioning circuit, the signals are fed to an ADC. The ADCs used in Momo’s current system are the
ADS1015 made by Texas Instruments. These ADCs are 12-bit with a programmable gain amplifier (PGA) of
1, 2, 4, 8 or 16x. This PGA can amplify the signal before it enters the A/D converter itself. With a gain of 1,
the full-scale range of the ADS1015 is ±6.144V since it has an internal voltage reference. This means the least



1.3. Problem overview 9

significant bit size equals
2 · 6.144

16

212 = 0.125mV (1.1)

The smallest output voltage of the conditioning circuit as can be measured by the ADC is therefore 0.125 mV[9].
On the other hand we have the maximum value of the supply voltage (5V).

1.3. Problem overview

At this moment, the data from the piezoelectric sensors is unusable for a proper algorithm. The difference
in sensitivity is more than 100% from sensor to sensor, even in a single sensor plate. As Momo’s product will
be put into production in the next few months, there is an urgency to address this problem. The goal of this
thesis is to design a device which tests the sensors before they are shipped out, to make sure they are able to
detect a heart rate and breathing pattern whilst placed under a mattress. After this, they would like to be able
extract some values so the data can then be trimmed when data is read from the sensor plate.

1.3.1. Problem definition

Momo Medical wishes to have their piezoelectric sensors in their sensor plate tested before they are shipped
out. For a sensor plate to be usable in the field, it is necessary that every sensor can be considered as equally
sensitive. This means that every sensor must respond in a similar manner to a certain applied pressure.
Sensor plates that pass can be shipped to the end users, plates that fail go back to the production area to be
fixed. This test is done at the production facility and should be done in the same time it takes the production
company to build one sensor plate (30 min). The test ensures that faulty sensors are replaced before the
sensor plate is shipped out to the customers. Momo Medical would like to make use of the piezoelectric
sensors to accurately measure heart rate and breathing pattern, as well as improving patient detection and to
offer extra functionality to the customer. The sensor plate is the device-under-test (DUT).

1.3.2. System requirements

Momo Medical has provided certain requirements for the proposed testing device. These requirements are
classified using the MoSCoW method [10] into Must haves, Should haves, Could haves and Won’t haves tables
(see table 1.1, 1.2, 1.3 and 1.4, respectively). The requirements placed in each section are numbered arbitrary
and do not reflect their priority.



10 1. Introduction

Table 1.1: Must-have requirements. Requirements from both the resources provided by Momo and the system design requirements.
These requirements have a high priority and must be fulfilled in order to achieve the goal; designing a testing machine for the sensor
plate.

Must Haves
Requirement Description

M1 The testing must be done on the assembled sensor plate without protecting sleeve
M2 The maximum weight on the single sensor is 5 kg
M3 The minimum sampling frequency used for reading out the sensors is 50 Hz
M4 The dimensions of the testing system must be smaller than 2x2x2m (l x w x h)
M5 A production worker with moderate technical knowledge must know how to use the

testing device at the production location, after a maximum of 8 hours of instructions
M6 All calculations must be done in software (external PC or embedded firmware) with a

pass/fail indication per sensor
M7 All measurements must be stored in an external device
M8 The testing system must use 230 V AC as input (<16 A, 50 Hz)
M9 User documentation must be provided for operating and testing the system

M10 The sensor plate values must be read-out via the existing I2C interface
M11 The total price of the materials used for the testing system must be lower than "10,000

(ex. VAT)
M12 The testing of a single sensor plate must be done within 30 minutes

Table 1.2: Should-have requirements. Requirements that would make the system better, but are not needed to achieve the goal

Should Haves
Requirement Description

S1 When starting the software, the user should only have to press one start button in order
to start testing a sensor plate

S2 The reference sensor should give equal responses within a ±5% margin in amplitude,
3 hours after testing

S3 The testing device should test all 6 sensors without manually repositioning the system
S4 Compensation coefficients should be exported from the software

Table 1.3: Could-have requirements. Requirements would be desirable for the system, but will only be touched upon if there is enough
available time.

Could Haves
Requirement Description

C1 The force-sensing resistors could be calibrated absolute with a 5% error margin
C2 The static and dynamic testing systems could be integrated into a single system
C3 The system could be made portable and simple so it is usable for Momo clients (e.g.

hospitals, nursing homes) to have a test unit in-house
C4 The testing device could have a self-test option
C5 The testing device could meet CE and RoHS requirements

Table 1.4: Won’t-have requirements. Requirements that will not be part of the current schedule, but may be interesting in the future to
work on by another team

Won’t Haves
Requirement Description

W1 Calibration data is stored in the Cloud



�
Design Concepts

In this chapter different solutions to the problem described previously are put to the test and a final setup is
chosen.

2.1. State-of-the-art analysis

The state-of-the-art analysis focuses on comparing similar solutions for a certain problem. Applications that
use dynamic pressure sensors are looked into to get a better understanding of the currently used methods for
calibrating dynamic forces.

2.1.1. Calibration systems

Calibration is a fundamental process for instruments that require high accuracy. During the calibration pro-
cess, measurements are done on the instrument which are compared to values from a standard reference
device. In case the measurements differ from each other, the instrument can be adjusted to ensure the re-
sults comply with the standard reference.

In modern processes, the standard reference is based on the SI units and some of their derived units. As
the characteristics of devices change over time due to material property or the different environments it is
used in, it is necessary to calibrate devices frequently to ensure they are still accurate.

Different kinds of sensors are used to perform measurements. Force can be measured using a wide variety
of sensors [11]. For each of these sensors, calibration is necessary if accurate measurements are needed.
Calibration systems are used to perform these calibrations and must comply to the standard reference for
that quantity. The standard reference in the case of calibrating a force sensor is a known applied force. For
each known force, the sensor read out should result in the same value as the calibrated system. If this is not
the case, the instrument is not accurate and should not be used for applications which require high accuracy.

2.1.2. Dynamically calibrating force sensors

Systems which calibrate force sensors are common. However, the amount of force applied to an instrument
is different. Tekscan makes force-sensing resistors called FlexiForce sensors [12]. These sensors have a range
between 0 N and 111 N (0 - 25 lb). One of the possible ways of calibrating these sensors is written by Somer
et al. [13]. In this paper, static calibration is done with the use of static weights and dynamic calibration is
done through the inertial force of the mass. In order to transfer static force to the sensor, a lever mechanism is
used in combination with a digital weighing device. Dynamic force is transferred through an oscillating mass.
Different masses are used for this calibration process. In order to determine the amount of pressure applied

11



12 2. Design Concepts

to the sensor, a relation between the pressure applied to the sensor and the inertial force is made. As the mass
is known and the acceleration is measured through an accelerometer, the inertial force can be calculated.

Unfortunately, the calibration system used to measure these FlexiForce sensors cannot be used to cali-
brate Momo’s sensor plate, since the sensors should be calibrated while they are in the sensor plate. This
method to mount these sensors to the plate can affect the sensitivity. Finally, the surface contact of the mass
to the domes on the sensor plate may affect the measurement. In order to solve the issue with the surface
contact, a medium must be chosen which is able to transfer the force from the mass onto the dome.

Another commonly used method for calibrating force sensors is by means of shock tubes. A shock tube
consists of a closed tube with two compartments separated by a diaphragm. One compartment is filled with
a low pressure gas (driven gas) with the force transducer on the end of the tube. The other compartment is
filled with a high pressure gas (driver gas). When the pressure of the driver gas is increased, the diaphragm
will rupture at a predetermined pressure. The high pressure of the driver gas expands in the direction of the
low pressure size and increases the temperature of the driven gas as a result of the shock wave. The shock can
be measured to calibrate the force transducer [14].

The frequency range of interest for the piezoelectric sensors is below 20 Hz. Since the shock tube pro-
duces an impulse (the rise time of the produced shock is in the order of nanoseconds, see [15]), frequency
components from DC to the MHz-range are present.

The main disadvantages for using a shock tube is that the piezoelectric sensors Momo uses, have to be
tested in the complete sensor plate after production. This means that it is not possible to use a shock tube,
since that requires a single sensor to be mounted on the end of the tube. Mounting a complete sensor plate
in the tube won’t be a feasible solution.

2.2. Morphological chart

In order to make a selection out of the possible options for a dynamic force measurement, a morphological
chart is created. In table 2.1 it can be seen that several options are compared with each other. The best
concepts will be put to the test in this thesis. This chart is based on assumptions and only the chosen options
will be investigated in detail.

From this table the following options are chosen: steel beam, dome-on-dome and the pneumatic setup.
The first two options can be easily tested, as many of the parts necessary are readily available. At the same
time the last option is being investigated, and all parts needed are ordered.
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Figure 2.1: Schematic overview of the steel beam setup

2.3. Setup

The setup used for measuring the piezoelectric sensors consists of a microcontroller connected to the DUT
through an I2C interface. The microcontroller (LPC1768, made by NXP) uses Mbed as its software platform.
The microcontroller reads out values from the ADC and can modify the ADC’s PGA. Values received from the
ADC are sent through a UART connection to a program made in MATLAB App Designer. The values received
by MATLAB are processed and plotted in the GUI. By means of the program, measurement options can be
selected which are sent to the microcontroller. These measurement options include which sensor is read out,
the duration of the measurement and the gain factor of the PGA.

2.4. Steel beam with stepper motor setup

Since a stepper motor with driver is available at Momo Medical, this setup is considered first. This stepper
motor is attached to a steel beam. The aim is to get a general idea of the problem at hand and to see if this
setup proves to be a good candidate to be used in a final design.

2.4.1. Test Setup

A stepper motor with a small eccentric weight (mass m = 50g, radius axis to weight r = 1cm) is attached to
a steel beam (60mm£60mm£1m, 5.1kg). To ensure proper contact between the steel and the domes, soft
plastic adhesive pads are carefully stuck on the steel to ensure that each pad is equally spaced. The steel
beam is positioned on top of the DUT. An overview of the setup can be seen in figure 2.1. A microcontroller
is used to generate a square wave with variable frequency, which controls a stepper motor driver (DRV8825)
[16]. When the motor is spinning at a certain frequency (i.e. rotations per second) the unbalanced weight
creates a vibration on the beam. The measurements are performed with test frequencies of 1, 2, 3, 4, 5, 6, 7,
8, 9 and 10 Hz.

2.4.2. Results

The unfiltered output for four different frequencies (1 Hz, 2 Hz, 3 Hz and 4 Hz) is plotted in figure 2.3. In figure
2.4 the frequency response for an input frequency of 5 Hz is shown to give an indication of the individual
sensor responses. A clear difference between sensor responses can be seen. Appendix D.1

To see if standing waves in the steel beam play a role in the deflection of the beam, a simple calculation is
made. If the standing waves in the beam turn out to have a significant impact, it would render the measure-
ments useless, since the beam itself would move differently at every location along the beam. The speed of
sound in steel is 4880 to 5050 ms°1 [17]. The maximum used test frequency is 10 Hz. This results in a wave-
length of minimally ∏= v

f = 4880
10 = 488m. This is much larger than the 1 meter beam used in this experiment

and therefor any deflection due to standing waves is negligible.



2.4. Steel beam with stepper motor setup 15

Figure 2.2: Actual steel beam setup
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Figure 2.3: Sensor output with a 1 Hz (1-3.5s), 2 Hz (3.5-6.5 s), 3 Hz (6.5 - 9.5 s) and 4 Hz stepped input
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Figure 2.4: Frequency response of six PE sensors at a frequency of 5 Hz using the steel beam setup

2.4.3. Conclusion

The results shown confirm the expectation by Momo that the sensors’ sensitivity varies greatly. When testing
using the current setup, it is difficult to determine the amount of force the motor with its weight induces on
the six sensors. Even when this force is known, it cannot be said with certainty that each sensor is exerted
with 1/6th of the total force. Since all domes are not at the exact same height, no proper conclusions can be
drawn from the sensor responses.

In a production environment this setup also has some flaws, as the motor used is not made for an eccen-
tric load this could cause the motor to fail quickly.
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2.5. Dome-on-dome

In order to get some information on the possibility of using a PE sensor as a sort of actuator, one dome is
placed upside down on another dome. The bottom dome is excited with a function generator with a fre-
quency of 1, 2, 4, 8 and 16Hz. As an additional advantage, this setup allows for an easy comparison of different
binding materials of the PE sensor to the dome. This is an import aspect, since Momo raised questions about
the currently used double sides tape.

The tests are performed with 6 domes, pairs of two, with the PE sensors fixated with the following binding
materials:

• Super glue (cyanoacrylate)
• Epoxy
• Double sided tape

2.5.1. Test Setup

The test setup consists of two domes placed back-to-back, with one being driven by a function generator
(Vpp = 20V and the other being read out by Momo’s sensor plate PCB. The same conditioning circuit is used
for all dome-on-dome tests. In order to minimize the influence of external electromagnetic fields, both domes
are placed in a shielded container, with all ground connections made to mains earth. See figure 2.5 for a
schematic overview of the used system.

Dome 

Dome

Puck 

Puck 

Piezo 
 

Piezo 
 Adhesive 

Adhesive 

Sensor plate  
read out PCB

Function
generator

Figure 2.5: Schematic overview of the dome-on-dome setup. The gap between the two domes is only drawn for clarity. In practice the
two domes are place on top of each other. The whole system is placed in a shielded environment to eliminate any interference

2.5.2. Results

The results of the test are shown in figure 2.6. In every measurement the excitation frequency can be distin-
guished, however the variation in adhesive materials seem to have a large impact on the results. Note that
these results are not conclusive, but at least give a hint about the best of these three adhesive options.

2.5.3. Conclusion

The results are consistent with the expectation from a material standpoint, tape being the least rigid, then
(still curing) epoxy and lastly the super glue. The sensor fixated with super glue shows the largest amplitude
and the best consistency over various drive frequencies. Momo Medical was informed about these results
and from this data, Momo determined that new versions will be fixated with super glue.

The main problem with using this setup for a testing device is that the surfaces need to be completely
flat for a proper pressure transfer from one dome to another. Momo’s current generation of sensor plates is
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Figure 2.6: Frequency response for three different materials: Epoxy, Super glue and Tape. Each material is tested with 5 frequencies: 1, 2,
4, 8 and 16 Hz. A clear difference in amplitudes can be seen for the different binding materials and frequencies
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Figure 2.7: Schematic overview of the compressed air setup Figure 2.8: Setup with compressor connected to orange tube

made out of lasercut Polymethylmethacrylate (PMMA), which is not perfectly flat. If the upper dome does
not contact the lower dome fully, proper testing cannot be done. Furthermore, using the piezo as a speaker
as well as a sensor, it is unknown if the differences in response are the result of the speaker or the sensor.
Therefore this method will not be developed further.

2.6. Compressed air

To deal with the repeating problem of a proper force transfer from an actuator to the dome, compressed air
is considered next.

2.6.1. Test Setup

Using a test setup that can be seen in figure 2.8 pulses of air are shot towards a dome, and the output is shown
in MATLAB. The compressor (Gamma CP-6 [18]) is connected to the orange tube (top right). The steady state
pressure of the output pressure regulator is set to 3 bar. This output is then connected to a solenoid valve
(Festo VUVS-LK25-M32C-AD-G14-1B2-S [19]). The valve has an opening time of 16 ms and closing time of
20 ms. In order to have a thin jet of air, an end cap with a 2.5 mm drilled hole in the middle, is screwed into
the valve output connection. The valve is mounted on a rod, with an extra rod for support. For now, the valve
is in a fixed position, above one sensor.

Schematically this setup is depicted in figure 2.10. The left part of the schematic shows the electrical
system, consisting of the 24 V power input, the solenoid valve S1 between points 1 and 3, and the switch
between points 3 an 4 for turning on and off the valve. The right part of the schematic shows the pneumatic
system. From bottom to top one can see: pressure ‘ground’ (i.e. atmospheric pressure), the air compressor,
the external pressure regulator with pressure gauge, the solenoid valve S1 and on top the air output nozzle.

The before mentioned microcontroller and MATLAB software is modified so it can open and close the
valve from the microcontroller. In order to drive the 24 V solenoid a PCB was soldered containing a PN2222A
NPN transistor connected to a MOSFET (IRFZ44N). A fly-back diode is added across the solenoid to eliminate
induced voltage spikes when the circuit is switched, which could otherwise damage the MOSFET. A schematic
of the circuit can be found in figure 2.9. The circuit is powered from a lab power supply set to 24 V. The test
starts by the user pressing the run button, the parameters are sent to the microcontroller which controls the
valve with the use of a digital output pin. The microcontroller waits one second before the valve is toggled.
For all tests we used 5 Hz as the valve frequency with a total of 20 pulses.

2.6.2. Results

Multiple measurements were performed with this setup, many of them performed very well, yet some did not.
This is different from the expected result, as it is expected that the air pulse and sensor do not vary greatly
over time. In figure 2.11 three interesting results can be found, first a measurement that looks as expected. All
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Figure 2.9: Schematic of 24 V solenoid valve driver, controlled from a
microcontroller

Figure 2.10: Electric (left); pneumatic (right) schematic.
Picture provided by Roel van der Plas

periods are more or less equal and in the corresponding FFT the test frequency can be detected clearly. In the
second measurement shown, a problem occurs at t = 3.5s: suddenly many higher frequency components
start to arise and the FFT becomes less clear. In the third measurement this problem persists, even when
the measurements are performed multiple times and the FFT no longer shows its highest peak at the test
frequency.

It has to be stated that the first and last results in figure 2.11 are repeatable (n = 10), whereas the second
measurement was only observed one time. After this, we moved the valve and nozzle to another sensor in
the same DUT, and the results are very similar to the first measurement in figure 2.11, only with a different
amplitude. It is assumed that the tape holding the PE speaker in place has loosened or something similar, but
the test setup seems to perform consistently.

2.6.3. Conclusion

The square wave frequency can clearly be seen from the FFT of the good measurements in figure 2.11. How-
ever, when the measurement shows a result similar to the bad measurement in figure 2.11, higher harmonics
are present with higher amplitudes, so determining the test frequency is more difficult. The source of this
problem has to be pinpointed exactly in order to do proper testing on the DUT. The repeatability of the good
measurements however do seem to provide enough reliable data for a proper testing system.

2.7. Chosen concept

As mentioned in chapter 2, the steel beam and dome-on-dome setup have major drawbacks regarding the
surface contact and the ability to use a reference. The compressed air setup however does not have this issue
to the same extend. With this setup it is possible to place a different reference sensor under the nozzle in
order to determine the consistency of the air exiting the system. The problems found using the setup are most
likely problems with the sensor plate itself, but this will have the first priority for further testing. Therefor the
compressed air setup is developed further for the final system.
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Figure 2.11: Measurement with compressor setup



�
Final Design

In this chapter the development of the final design will be explained.

3.1. Needed improvements

As mentioned in chapter 2, a pneumatic setup is chosen as the basis for the final design. The concept version
had some major flaws, that lead to many needed improvements.

A general idea of the fluid dynamics involved is needed in order to determine if the system is stable from a
mechanical standpoint. It should be determined if the data shown from the measurements is consistent with
its theory.

When performing tests, the compressor sometimes switches on in order to provide enough air pressure
for the system. This causes a slight ripple in the air pressure going to the valve. In order to reduce this issue,
an extra pressure regulator (Festo LR-1/4-D-7-MINI) is connected to the system.

Before developing this idea further, the consistency of the generated air pulses has to be determined. For
this reason a load cell will be placed underneath the valve nozzle and a 3 hour long test will be performed.

When it turns out these air pulses are consistent, it is possible to conclude that the DUT in itself causes
the issue. Momo has called back their sensor plates in order to glue the PE sensors instead of using tape.
Therefor it is more accurate to start testing with a sensor plate with glued sensors. As these sensor plates are a
factor 10 more sensitive (according to Momo), the nozzle diameter is reduced to 0.7 mm and the air pressure
to 1.5 bar. This version of the DUT is still considered version 5.

Lastly some major modifications have to be made to the structure of the test setup. All six sensors have to
be tested, so either the DUT has to be moved, or the valve. Our colleague Roel van de Plas, a Mechatronics
engineering student, will consider different concepts and together a final design will be chosen.

Testing can be done at any frequency between 0.5 and 10Hz, but the actual test frequency could be a single
frequency. The frequency characteristics need to be determined for all sensors of the DUT in order to test the
frequency characteristics of the sensors used by Momo. A test frequency or range can then be selected.

3.2. Theory

In order to get a better understanding of the amount of force applied to the DUT by the air pulse, fluid me-
chanics theory from [20] and [21] is applied to the system.

22
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As a first approach, the nozzle on the output of the solenoid valve is modelled as a minimal Laval nozzle.
The diameter of the nozzle is 0.7 mm. To see if the air escaping the nozzle is choked, the downstream pressure
p§, which is the normal atmospheric pressure of 0.1 MPa, should be no less than the critical ratio seen in
equation 3.1. The pressure P0 equals the upstream pressure, which is the 2.5 bar (0.25 MPa) pressure applied
to the valve. For dry air, the heat capacity ratio ∞= 1.4.

p§

P0
=

µ
2

∞+1

∂ ∞
∞°1

= 0.528 (3.1)

Since p§ ∑ 0.528P0, choked flow occurs when the air escapes the nozzle of the valve. This means the air is
choked at Mach 1. Equation 3.2 is used to determine an approximated air velocity. In this equation, T0 equals
room temperature (293K) and the gas constant R = 287Jkg°1 K°1.

v =
p
∞RT0 =

p
1.4 ·287 ·293 = 343ms°1 (3.2)

For the mass flow rate of the air escaping the nozzle, equation 3.3 is used, where the discharge coeffi-
cient Cd = 0.8 is chosen to compensate for any irregularities in the nozzle hole. The nozzle area A = ºr 2 =
3.85£10°7 m2, air pressure P0 = 0.25MPa and compressed air density Ω0 =

p
P0/(RT ) = 3kgm°3.

ṁ =Cd A

vuut
∞Ω0P0

µ
2

∞+1

∂ ∞+1
∞°1

(3.3)

This results in a mass flow rate ṁ = 1.83£10°4 kgs°1.

To calculate the force, we use the relationship Fcalc = ṁv = 1.83£10°4 ·343 = 62.6£10°3 N. To compare
this calculated force against the used setup, a digital weighing scale is placed underneath the air nozzle and
a constant air flow is released. The scale measured a constant 6.6 g, which equals a force of Fmeas = mg =
0.0066 ·9.81 = 64.7£10°3 N. The air pressure will not be changed during the rest of the measurements in this
thesis. This also means that system requirement M2 is satisfied (see table 1.1).

3.3. Reference measurements

3.3.1. Reference setup

As mentioned in section 3.1 a load cell is added to the system in order to obtain a good reference measure-
ment. A load cell based scale is constructed out of PMMA and 4mm MDF and can be seen in figure 3.2. The
load cell used is the TAL221 made by HTC-Sensor [22]. It is bolted together using M3 screws and bolts. The
relevant specifications for the load cell can be found in table 3.1.

Table 3.1: TAL221 load cell specifications

Capacity 500 g
Rated output 0.7±0.15mV/V

Combined error ±0.05%FS
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Figure 3.1: Schematic of load cell, read-out with the AD620 instrumentation amplifier and connected to the ADS1015 analog-to-digital
converter. The I2C lines from the ADC are connected to the microcontroller (not shown in this schematic)

Figure 3.2: Load cell sensor mounted on a PMMA base and with an MDF and PMMA top in the same shape as a single dome on the DUT.
The brass nozzle with the 0.7mm air hole can be seen underneath the Festo valve

3.3.2. Load cell linearity

In order to use the load cell as a reference for the final setup, it is necessary to determine the linearity of the
load cell. To test this, different weights are placed on the load cell and the ADC values are read out. Weight
from 5g to 100g are used, and with Newton’s second law F = mg , where the standard gravitation acceleration
g = 9.81ms°2. Figure 3.3 shows the output ADC values for the different applied weights. It can be seen that
the load cell acts very linear. This means the load cell can be used to convert the ADC values to a force.
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Figure 3.3: Mean ADC output values versus static force on the load cell. The measured values are shown as crosses

3.3.3. First measurements with the load cell

A first measurement is shown in figure 3.4 (top left). The result has many higher frequency components and
does not seem to be the an approximated square wave.

Figure 3.4: Results of the load cell test. Upper left: raw load cell measurement with a 5 Hz input. Upper right: deconvoluted measurement
using the curve fitted impulse response from figure 3.5. Lower left: FFT taken from the deconvoluted measurement. Lower right: filtered
deconvoluted measurement taken with the same filter used in the DUT
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When looking closely at these higher frequency components, ringing can be seen at t = 5s. This ringing
could come from the mechanical system of the load cell and/or the air pulse itself. The ringing frequency
is determined at fd = 99Hz. The load cell system can be modelled as a damped mass-spring system. This
is a damped oscillator with a frequency determined by the spring constant k [Nm°1], its mass m [kg] and

the damping ratio ≥. The damped natural frequency !d can be calculated via !d =
q

k(1°≥2)
m . The impulse

response of an ideal damped oscillator is of the form

y = Ae°t/ø sin(!d t ) (3.4)

To test if this load cell mass-spring system is responsible for the ringing seen in the data, a weight of 50 g
is placed on the load cell and removed very quickly when a measurement is running. The resulting ringing
is multiplied by -1 to obtain an approximated step response, so it can be differentiated in order to find the
impulse response. This ringing can be curve fitted using equation 3.4. In figure 3.5 the measured ringing and
the curve fitted damped sine are plotted (script in appendix D.2). The used parameters for equation 3.4 are
A = 2000, ø= 0.05s and !d = 2º ·99 = 622rads°1.

Figure 3.5: Curve fitting the ringing. The blue line represents the calculated impulse response from the measured step response. The
orange line is the curve fitted damped sine used for the deconvolution

The measured signal can be seen as the result of a convolution between the load cell system and the air
pulse system. Mathematically this is described by equation 3.5.

y(t ) = hlc (t )§ f (t ) (3.5)

In this equation, y(t ) is the measured output from the load cell, hlc (t ) is the impulse response of the load
cell mass-spring system and f (t ) of the air pulse system.

It is now possible to deconvolute the measurement of the load cell with the impulse response of the load
cell to obtain data without the ringing of the load cell. Since a deconvolution is very sensitive to noise ([23]),
the curve fitted sine wave is an ideal approximation of the load cell system impulse response. The result of
this deconvolution can be seen in figure 3.4 on the top right. When looking at the FFT of this deconvoluted
signal, a peak at 294.8 Hz can be detected (script in appendix D.6). It turns out higher frequency components
are still present, which can originate from either the air or inaccuracies in the modeling of the mass-spring
system.
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Fortunately, as mentioned in section 1.2.3, the DUT has internal filtering. When modeling the piezo
speaker and its signal conditioning circuit, it was determined that the system has a first order high-pass filter
around 4 Hz and a second order low-pass filter around 18 Hz. When filtering the deconvoluted data using
these conditions, the bottom right plot in figure 3.4 can be shown.

Comparing this to the upper measurement in figure 2.11, it is very similar. It is therefor assumed that air
pulses are consistent enough to be able to do proper testing.

Lastly, the damped natural frequency fd = 99Hz and the used test frequency is ftest = 5Hz. Since ftest
fd

=
0.05 ø 1, we can neglect the frequency behaviour of the load cell.

3.3.4. Load cell repeatability

For approximately 3 hours, every 90 seconds a test is performed to determine the repeatability of the load cell,
128 measurements in total. From every measurement, the peak FFT value at 5 Hz test frequency is taken and
plotted in figure 3.6. In this figure the mean value and the standard deviation are shown to give an indication
about the consistency of the FFT amplitude. The used script can be found in D.4.
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Figure 3.6: FFT peak values at 5 Hz during a ±3h test

3.3.5. Load cell frequency response

For testing purposes it is convenient to use a single test frequency. In order to be able to tell if a sensor is
‘good’ or ‘bad’ based on one test frequency, a test is performed on all sensors of the DUT.

First the frequency characteristics of the air pulse are examined using the load cell. Each test consists of
a measurement with 20 pulses of a certain frequency. The frequencies used go from 0.5 Hz to 12 Hz. Lower
frequencies might take too much time during production and higher frequencies are not reachable with the
current pneumatic valve. As the pulse is not a perfect square wave, not all frequency components are present
at the same amplitude. In table A.1 the peak FFT values for every test frequency are shown. The test is
repeated 5 times and the measurements are averaged for further analysis. These averages can also be seen in
table A.1 together with the percent deviation of the single measurements. All deviations are within 2% of the
average. It can be seen that there are large differences in the response for the different test frequencies. The
FFT peak at 12 Hz is ( 735.1

411.6 °1)·100% = 79% higher than the peak at 7 Hz. To compensate for these differences,
a scaling factor is calculated where all averages are scaled relative to the FFT value at 0.5 Hz. These scaling
factors can be seen in table 3.2.
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Table 3.2: Frequency scaling factors used to compensate for the frequency characteristics of the air pulse

Frequency (Hz) Scale factor
0.5 1.000
1 1.016
2 1.029
3 1.560
4 1.042
5 1.361
6 1.577
7 0.949
8 1.063
9 1.408

10 1.453
11 1.531
12 1.695

3.4. DUT measurements

3.4.1. Schematic setup

In figure 3.7 the setup used for the final testing system can be seen. In a wooden beam, holes are drilled exactly
above each sensor. Since only the inner 6 domes contain piezoelectric sensors, no holes are drilled above the
first and the last dome. An extra hole is drilled above the load cell, so the reference measurements can be
incorporated in the same system. The DUT can be placed underneath the wooden frame and its position is
fixed by a raised edge. To have the least amount of variables, the protecting sleeve which is normally fitted
around the DUT when used in the field will be removed. This also satisfies requirement M1.

The pneumatic solenoid valve is attached to a wooden rail where a hole with the same diameter is drilled
on the top side. With bolts the rail with the valve can be positioned above each sensor or above the load cell.
The darker yellow wooden slats are used to fix the position of the valve, so the air won’t be blowing on the
domes under an angle. The nozzle height is 1.4 cm and this distance is the same for all PE sensors and for the
load cell. The load cell is fixed to the base plate to ensure no extra vibrations are induced in this system.

The control unit forms the core of the system. In the control unit, the load cell amplifier circuit (shown
in figure 3.1), the solenoid valve driver (shown in figure 2.9) and the LPC1768 microcontroller are placed. A
bench power supply is used to supply the +5 V and °5 V to power the load cell and load cell amplifier, and
a power adapter provides the 24 V which is used to drive the solenoid valve. MATLAB is used to control the
microcontroller via USB.

The air compressor has an internal pressure regulator, and the air hose is connected from this pressure
regulator to a second pressure regulator to remove any pressure fluctuations when the pressure of the com-
pressor drops.

The complete setup could be placed in an area of 1.1x0.5x0.5m. This is excluding the air compressor, since
compressed air is usually available at production sites where the system will be placed. Requirement M4 is
satisfied with this area. Since the setup is a concept, no care is taken to meet CE and RoHS requirements (C5).

A small calculation is done to provide some information about the amount of power used by the complete
setup. The solenoid valve in on-state consumes 3.3 W according to the datasheet. The microcontroller and
ADCs only use a couple of milliampères at 5 V, so the consumed power is in the order of tens of milliwatts.
The same holds for the load cell and its amplifier circuitry. The used laptop has a rated maximum power
of 90 W. The biggest power consumer is the air compressor when turned on, which has 1100 W as its rated
maximum power. Even with the air compressor taken as a part of the setup, the total power still falls below
the maximum requirement given by M8.
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Figure 3.7: Complete overview of the setup used

3.4.2. Measurement software

The measurement software has as its main tasks to regulate the amount of air to the sensors, reading out the
sensor values from the DUT and to determine if a sensor is deemed to be unsuitable for use. The software
allows the user to change certain parameters through an interface. Based on the measurement type, results
are shown in graphs or tables, or both.

The software used to measure the sensors are MATLAB App Designer and Mbed as aforementioned in
section 2.3. The program (using MATLAB App Designer) controls certain configurations inside the microcon-
troller and processes the data which it receives from the microcontroller. The microcontroller (using Mbed
platform) communicates with the PC to receive the user configuration settings. These configuration settings
will be used to control the valve and the DUT. The code of the MATLAB program can be found in E, the code
used for the microcontroller is found in F. A Nassi-Shneiderman diagram is made of the MATLAB program
and shown in figure 3.8.

The microcontroller communicates through I2C with three ADCs. Two ADCs are from the DUT and one
is used to read out the load cell. Furthermore a pin is used to control the valve circuit. For each ADC, the
gain factor of the PGA is set at the start of a measurement based on the user configuration. The sample
frequency argument is used to set the frequency to which the ADC is reading out. The sensor number is used
to determine which ADC and its channel is read out. The duration parameter is used to determine for how
long the microcontroller is reading the ADC for the sensor values. The valve frequency and the amount of
times it should open and close is used to determine when the pin out to the valve circuit should be high or
low. At last the choice can be made to have a pulse or a step as output signal, which is useful for the load cell.

The main program has three measurement types. A single test is used to measure a single sensor once. The
‘continuously’ test is used to continuously measure a certain sensor for the purpose of consistency testing.
The last measurement type is the full test, which will be the main test used by Momo Medical.

The full test starts with measuring a sensor once to determine a suitable gain factor, after which the pro-
gram will start a measurement with the determined gain factor. Once the measurement is done, the next
sensor is read out. As a reference, the load cell is measured at the start and at the end of a session. A constant
amount of air is applied to the load cell, whereas pulses are applied to the piezoelectric sensors based on the
valve frequency and the amount of times it should open and close. The result between the measurement of
the load cell at the start and at the end should result in a similar plot if the air is indeed constant. If there
are any differences in these two measurements, it means the sensor values from the measurement session
are inaccurate and the measurements should be redone. If the results of the two load cell measurements are
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similar, the program will analyze the data based on the frequency response of the signal. The dominant fre-
quency and its value of each sensor is determined and placed in a table. The value at the dominant frequency
is compared to a certain threshold value to determine if a sensor is acceptable or should be replaced. The
threshold value is adjustable by Momo Medical. Along with a pass/fail indication, scaling factors are deter-
mined to compensate for the differences in sensitivity. Using these scaling factors, the ADC value of each
sensor will be brought closer to each, but the accuracy will drop when the scale factor is too high.

In the final design of the program, only the full test is of importance. A separate panel in the program
accessible by Momo Medical, contains the other two tests in case additional measurements are needed, along
with the configuration settings and a log system to follow each major step inside the program. Depending on
Momo Medical’s wishes, they can decide to include this into the version used by the production worker.

In order to comply with the system requirements, several features are added into the program. The sam-
pling frequency is adjustable by the user, with a range between 50 to 2500Hz (thus M3 is satisfied). The main
program only consists of three buttons, for ease of use. As the production worker must understand what the
buttons do, additional information will be provided in the user manual of the program, which can be found
in appendix C (thus satisfying M5 and M9). Pressing the ‘Run Full Test’ button starts the test, the user is not
required to change configuration settings (satisfying S1). Besides buttons, visual items are included in the
program such as colored circles and a status bar, to follow the progress of the test. Data is received from the
microcontroller and processed in the program. At the end of a full test a pass/fail indication is shown for each
sensor through a red colored circle if a sensor is rejected, or a green colored circle in the case it passed the
test (satisfying M6). The measurement data and scaling factors are saved after each full test in a specified
location, such as an external USB storage device (satisfying M7 and S4). Data is not saved to a cloud based
solution (satisfying W1).

The duration of a full test depends on the duration of each measurement. The minimum amount of
measurements in one session is sixteen, as each sensor is measured once to determine the gain factor, and
once to measure the signal with the determined gain. As it may happen that the maximum value of the signal
is close to the full scale range of the ADC with the used gain factor. A higher gain factor is chosen in that
situation. On average a full session requires eighteen measurement. Moving the valve to the next sensor
takes around fifteen seconds with seven movements, resulting in 105 seconds in total for moving the valve.
The duration for each measurement depends on the default value. Accounting for the data processing and
pressing the buttons, a total average of eight seconds (six seconds for the measurement itself, two seconds
for the data processing and pressing on buttons if necessary) results in 144 seconds for the program to run
a session. Combining these two results in 249 seconds, in other words four minutes and nine seconds. This
amount is less than the required thirty minutes, making it satisfy M12.
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Figure 3.8: Nassi-Shneiderman Diagram of the MATLAB program

3.4.3. DUT frequency response

As the frequency characteristics of the air pulse are known, a complete DUT can be tested over the frequency
range of interest. The results are plotted in figure 3.9 using D.5. Apart from a difference in amplitude, the
frequency response looks very similar for all 6 sensors. Because of the band-pass filter in the conditioning
circuit of the piezoelectric sensors (shown in figure 1.4), the high-pass characteristic seen in the results are to
be expected. A zoomed-in version of figure 1.5 is shown in figure 3.10.

As all sensors respond very similar to all frequencies, 5 Hz is chosen as the testing frequency for the sys-
tem.
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Figure 3.9: Frequency response of a complete sensor plate (6 PE
sensors)

Figure 3.10: Zoomed in version of the frequency response of the
conditioning circuit shown in figure 1.4

Figure 3.11: FFT peaks from sensor 3 of the DUT at the test frequency ftest = 5Hz measured every 5 minutes for 3 hours

3.4.4. DUT repeatability

A long term test is performed to determine the repeatability of testing the DUT. It makes no sense if the
DUT has passed the test but reacts very differently a few moments later. A single sensor of the DUT is tested
every 5 minutes for 3 hours to see if the output drifts over time. Sensor 3 is chosen for this test since that
sensor has the highest output for the same test frequencies (as can be seen in figure 3.9). To compare every
measurement, the FFT peak at the 5 Hz test frequency is taken and plotted in figure 3.11.

A small downward drift can be seen over the complete time span. The mean value µ= 2594 is also drawn
in the figure, together with the standard deviation æ= 13.2 to give a good indication of the maximum devia-
tion from the mean to the measured peak values. The maximum deviation from the mean is with measure-
ment 3. The percent deviation in this case is 2629°2594

2594 ·100% = 1.4%.
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Results

In this chapter the device precision is derived and a full test is performed on the DUT.

4.1. Device precision

To determine the precision of the the total system, first the precision of the air pulse on the load cell is taken.
From figure 3.6 the mean and the standard deviation can be calculated. The mean µ= 504.8 with a standard
deviation æ= 4.16. This results in a coefficient of variation of cv = æ

µ ·100% = 4.16
504.8 ·100% = 0.82%.

The maximum deviation from the mean is during measurement 27, where the measured FFT peak is at
493.8. This results in a percent deviation | 493.8°504.8

504.8 | ·100% = 2.2%. This means requirement S2 is met.

4.2. Full DUT test

On December 13th at 22:43, a full system test is performed using the DUT.

The result can be seen in figure 4.1. Through individual sensor tests, the response of each sensor to an
applied force is clearly observable; there are large differences in amplitude between the sensors. In order to
get an idea of the sensitivity of each sensor, the measurement of each sensor is plotted next to the other in
order to make a good comparison. Sensor 5 is rejected because of poor performance using the arbitrary FFT
peak threshold (set at 800).

The data collected during the measurement is used to analyze the DUT. The results are then shown in the
analyze panel in the program depicted in figure 4.2.

4.3. Device costs

The costs for the device are approximately "3186,92. An overview of the different costs can be found in table
B.1. If the production company has an available laptop and/or MATLAB license, the costs of these can be
omitted. The same goes for the air compressor if a compressed air line is available at the production facility.
Any way, the cost is less than "10.000 and thus M11 is satisfied.
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Figure 4.1: Plot of a full test, the measurements of each sensor are placed next to each other

Figure 4.2: Analyzing the measurement data in the MATLAB program



�
Conclusion

From the three concepts seen in chapter 2, the compressed air method is chosen to be developed in detail in
chapter 3. This method does not have the issue regarding surface contact between the actuator and the DUT,
and can be used with a reference.

From the measurements in chapter 4 it is concluded that the device is able to properly measure the DUT.
The precision of the measurement device has a coefficient of variation cv = 0.82% which is well within the
system limits.

The test devices performs as intended, and all parts work together nicely. Testing is performed on the
sensor plate without its protecting sleeve as intended, no weight limits are exceeded, and the test does not
exceed the testing time of 30 minutes. The sampling rate is set to Fs = 2500Hz and is therefor more than
enough for proper testing. The devices stayed within its size and cost limit, and is operable by a production
worker. Testing starts by pressing one button, all calculations are performed in software and a pass/fail in-
dicator is displayed on the screen. Raw data is exported for Momo to be able to do a more detailed analysis
later on. The device is powered from one power cord and does not draw too much (>16 A) current. User doc-
umentation is provided for users who wish to know more about the software. All tests were performed using
version 5 of Momo’s sensor plate using the existing I2C connection, although the piezo sensor fixation was
altered in chapter 3. The device performs a self-test when the first measurement is started. In short, most
important requirements have been met.

35



6
Discussion and Recommendation

Nothing is perfect, and discussion and improvements are always possible. This is also the case with this
project and its limited time span. In this chapter some possible improvements are discussed.

6.1. Discussion

As the air pulse is noisy, measurements at frequencies much higher than 10 Hz could result in an inaccurate
system. Moreover, at these frequencies the rise and fall time of the valve become a major part of the total
period, so frequencies higher than 12 Hz cannot be tested at all. If the system should be able to test using
higher frequencies, more investigation is needed into the air characteristics of the pulse and a faster valve is
needed.

For our current setup, it is assumed the production worker plugs in the DUT to the microcontroller before
starting any tests. The software is written based on reading out the ADC values from the sensor plate. If no
sensor plate is connected to the microcontroller, the ‘read’ action still happens. Of course the microcontroller
is not able to read any data, but this is not known by the MATLAB program. This issue can be resolved by
implementing a check function in the microcontroller, by not allowing any connection to MATLAB before the
sensor plate is connected.

The main program has an abort button, used to terminate the current running process. However, this
abort button only terminates the processes within MATLAB. The valve control inside the microcontroller still
operates whenever this button is pressed. During our tests, the workaround used for this issue is unplugging
the USB cable of the microcontroller and plugging it back into the laptop if the test should be stopped. The
software can be improved by sending a stop signal to the microcontroller if the abort button is pressed. The
stop signal should halt any actions until the system is reset.

6.2. Recommendations

Currently, MATLAB is used for the testing program. This requires a MATLAB license and a dedicated PC.
These items are expensive and do not provide a neat embedded solution. In order to realize this, the software
that is currently written in MATLAB, could be programmed into a microcontroller. In addition to this, the
buttons currently used inside the program could be replaced by physical buttons.

The device could be modified in order to simplify the operation. A linear movement system could move
the valve in one direction (impression in figure 6.1), or multiple valves could be connected. The first option
has more moving parts, the second option requires a movement of the load cell between each nozzle. This
last problem could be solved if the load cell (or other sensor) is integrated into the valve suspension. Thus, at
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this point in time, requirement S3 is not satisfied. In both cases, the software needs to be updated to support
these new features.

Figure 6.1: Device with linear movement system. Picture provided by Roel van der Plas

If the FSRs also need basic testing, multiple pressures could be selected when using a configurable pres-
sure regulator. As long as the averages are taken over a longer period of time, the calibration should be able
to reach a 5% error margin. This would mean the system can calibrate both types of sensors, and only one
calibration device is needed. As this is not yet implemented, requirement C1 and C2 are not satisfied.

In order to provide real-time feedback of the air pulse to the system, a sensor could be mounted to a
new valve mount to sense the air as it is protruded from the nozzle (schematically shown in figure 6.2). The
difficulty with this is the fact that the valve switching also produces a relatively large amount of force that is
measured as well. A first attempt at this was made, as can be seen in figure 6.3. Unfortunately the results
showed a large peak from the mechanical switching of the valve, but no significant output of the force of the
air pulse.

In the final setup in this thesis, no static force is exerted on the sensors (i.e. a preload). When a small
preload is present on a PZT PE sensor, the sensors’ sensitivity could improve and the impact of this change
could be investigated [5].
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A
Load cell measurement data

F (Hz) average t1 %dev t2 %dev t3 %dev t4 %dev t5 %dev

0.5 697.7 699.1 0.2 696.3 0.2 688.6 1.3 705.8 1.2 698.8 0.2
1 686.5 685.1 0.2 682.4 0.6 679.8 1.0 695.6 1.3 689.5 0.4
2 678.3 677 0.2 672.3 0.9 674.7 0.5 685.3 1.0 682.1 0.6
3 447.4 445.6 0.4 442 1.2 443.3 0.9 455.1 1.7 450.9 0.8
4 669.9 670 0.0 663.8 0.9 668.9 0.1 675.9 0.9 670.9 0.1
5 512.5 511 0.3 508.4 0.8 516.4 0.8 514.5 0.4 512.2 0.1
6 442.5 442 0.1 444.2 0.4 435.4 1.6 443 0.1 447.7 1.2
7 735.1 729.6 0.8 733.9 0.2 741.9 0.9 727.1 1.1 743.1 1.1
8 656.2 661 0.7 651.1 0.8 657.9 0.3 653.4 0.4 657.4 0.2
9 495.6 495.5 0.0 491 0.9 503 1.5 489.8 1.2 498.5 0.6

10 480.1 470.6 2.0 479.5 0.1 477.8 0.5 488.3 1.7 484.5 0.9
11 455.7 453.8 0.4 456.5 0.2 456.2 0.1 455.4 0.1 456.4 0.2
12 411.6 412.5 0.2 412.7 0.3 406.1 1.3 414.4 0.7 412.2 0.2

Table A.1: Average FFT peak values for different frequencies. The measured values (t1, t2, ...) are shown together with the percent
deviation between the average and the measured result.
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B
Total system costs

Brand Type Type number Unit price Amount Total price
Pneumatics

Festo Pressure regulator LR-1/4-D-7-MINI 42,06 1 42,06
Festo Valve VUVS-LK25-M32C-AD-G14-1B2-S 50,22 1 50,22

Stanley Air tube Spiral hose 6x8mm , 5m 10,70 2 21,40
Stanley Quick Connector (F) <> 1/4" (M) UNI 1/4M 5,37 2 10,74
Stanley Quick Connector (M) <> 1/4" (M) 1/4M 3,72 2 7,44

Optional
Gamma Air compressor CP-6 81,82 1 81,82

Electronics
Temna Power supply 72-10500 138,72 1 138,72

NXP Microcontroller MBED NXP LPC1768 49,95 1 49,95
TI ADC EVAL BOARD ADS1015 12-BIT ADC 8,72 1 8,72

POWERPAX Power supply SW4309 15,72 1 15,72
Infinion MOSFET IRFZ44NPBF 0,70 1 0,70

Analog Devices Instrumentation amplifier AD620ANZ 9,55 1 9,55
Connectors ODU 5P F 6,00 1 6,00

Case Case MB6W 18,03 1 18,03
Various Wires - 2,00 1 2,00
Various Various passives (diodes/caps/resistors) - 2,00 1 2,00

Construction
Konsta Board MDF 122x61 12mm 4,29 1 4,29
Konsta Beam 210x60x40mm 3,30 1 3,30
Konsta Beam 210x44x18mm 2,70 1 2,70
Konsta Beam 210x12x12mm 2,29 1 2,29

Gamma Bolts M10x120mm 4pcs 5,78 1 5,78
Gamma Nuts M10 4pcs 2,14 1 2,14
Gamma Screws Various 3,00 1 3,00

Laserbeest PMMA 3mm clear 53,94 1 53,94

Control system
MATLAB License 2018b 2000,00 1 2000,00

HP Computer EliteBook 745 G3 P4T40EA 698,35 1 698,35

Total (ex. VAT) 3186,92

Table B.1: Total system cost (date of creation: 12-12-2018)
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C
User Manual

C.1. Before Starting

Ensure the following cables are plugged into the right position before attempting to start a measurement. The
connector position are labeled on the case of the microcontroller:

• Sensor plate connection

• Load cell connector

• Valve connector

• Mini-USB connector

• 24V power connector

• -5V, +5V power connector

C.2. Quick Start Guide

• Start the program Momo_PESP_Tester.mlapp

• Make sure the workspace circle is green before continuing. In the case the circle remains red, refer to
the troubleshooting page

• Make sure the valve is positioned on the load cell position, using the lower of the two holes in the mount

• Press the Run Full Test button

• Once the status bar states that the measurement is done for a sensor, the valve should be repositioned
to the next sensor. Use the upper hole in the mount for the piezoelectric sensors.

• Press the continue button to continue the full test

• At the end of the full test, each pass/fail indicator will light up either green or red along with the scaling
factor

• The measurement data and its scaling factor are automatically saved by the program

43



44 C. User Manual

C.3. Program Overview

Figure C.1: The configuration panel inside the MATLAB program

• Main window
Three buttons:

– Run Full Test: Run the full test

– Continue: Continue the full test after the valve is put on the right position

– Abort: Abort all actions and close the connection
Progress indicators:

– Workspace: If the default save location is found, the circle will be green, else it will be red

– Connection MCU: If the connection is being made with the microcontroller, the circle is orange. If
the connection is successfully made , the circle will be green. If the connection is failed, the circle
will be red

– Measurement: If the program is busy doing the data processing, the circle will be orange. If the
data is successfully processed, the circle will be green

– Testing Sensor Plate: After the full test, each circle (representing the piezoelectric sensors on the
DUT), will be either green if the sensor passed the test, or red if the sensor failed the test

– Status bar: The current status of the program is shown in the status bar

• Tabs

– Measuring: There are three plots which can be used to look at the current measurement. A plot
of the raw data, a plot of the filtered data and the frequency response of the raw data.

– Analyzing: This tab is used to analyze a full test. The tab is automatically opened after a full test
or a data set can be imported manually after which a plot is shown with all the measurements.
The autoscale button can be pressed to automatically scale all the sensors. This can be undone by
resetting the autoscale. Resetting the axis results in a zoomed out plot of the data, in case the user
has zoomed into the measurement.

– Configuration Panel This tab is used to modify the default settings. The duration of each mea-
surement and the sampling frequency used can be changed in the general settings field. In the
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case multiple UART connections are made, the right serial connection to the microcontroller must
be chosen. The save location and the description can be set in the save field. Additional config-
uration to the test system is made by selecting the type of test, the valve frequency, amount of
times the valve needs to open and close and the option to change the input signal to the loadcell
to either a step or a pulse. The single or continues test can be run, its parameters can be changed
in their respective window. The log window can be used to detect any errors or follow the progress
of the program.

C.4. Troubleshoot

• E101: No serial port found in the list
Open the configuration panel. If there is no serial port selected, try to remove the USB cable to the mi-
crocontroller and plug it into another USB port. Click on the Search button to look for new serial ports.
In case no serial ports are found, consider installing the newest serial port drivers for your operating
system

• E102: Could not start the connection
Remove the USB cable to the microcontroller and close the program. Reconnect the USB cable and
start the program

• E103: Error with communication with the MCU
Remove the USB cable to the microcontroller and close the program. Reconnect the USB cable and
start the program

• E105: Error with saving data
Open the configuration panel. Change the save directory by clicking on the Open button found in the
save field

• E107: Error with reading data from the MCU
Remove the USB cable to the microcontroller and close the program. Reconnect the USB cable and
start the program

If any of the problems persists or if other errors are showing up, please contact the developer of the software
in order to solve the problem.



D
MATLAB code

D.1. Steel beam FFT plots
1 % Plot FFT's of 6 sensors using steel beam setup
2 close all;
3 Fs = 100; % Sampling frequency
4
5 % Create new arrays containing only the 5Hz part
6 sensor_F_1_part = sensor_NF_1(1290:1572);
7 sensor_F_2_part = sensor_NF_2(1290:1572);
8 sensor_F_3_part = sensor_NF_3(1290:1572);
9 sensor_F_4_part = sensor_NF_4(1290:1572);

10 sensor_F_5_part = sensor_NF_5(1290:1572);
11 sensor_F_6_part = sensor_NF_6(1290:1572);
12
13 Np = numel(sensor_F_1_part);
14 zeropad = 2^(nextpow2(Np)); % Zero°pad to nearest power of 2
15
16 % Calculate FFT of all 6 sensors
17 fftF_1 = abs(fft(sensor_F_1_part, zeropad)/zeropad);
18 fftF_1 = fftF_1(1:zeropad/2);
19 fftF_1(2:end°1) = 2*fftF_1(2:end°1);
20
21 fftF_2 = abs(fft(sensor_F_2_part, zeropad)/zeropad);
22 fftF_2 = fftF_2(1:zeropad/2);
23 fftF_2(2:end°1) = 2*fftF_2(2:end°1);
24
25 fftF_3 = abs(fft(sensor_F_3_part, zeropad)/zeropad);
26 fftF_3 = fftF_3(1:zeropad/2);
27 fftF_3(2:end°1) = 2*fftF_3(2:end°1);
28
29 fftF_4 = abs(fft(sensor_F_4_part, zeropad)/zeropad);
30 fftF_4 = fftF_4(1:zeropad/2);
31 fftF_4(2:end°1) = 2*fftF_4(2:end°1);
32
33 fftF_5 = abs(fft(sensor_F_5_part, zeropad)/zeropad);
34 fftF_5 = fftF_5(1:zeropad/2);
35 fftF_5(2:end°1) = 2*fftF_5(2:end°1);
36
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D.2. Curve fitting 47

37 fftF_6 = abs(fft(sensor_F_6_part, zeropad)/zeropad);
38 fftF_6 = fftF_6(1:zeropad/2);
39 fftF_6(2:end°1) = 2*fftF_6(2:end°1);
40
41 % Create frequency axis
42 f_axis = linspace(0, Fs/2, zeropad/2);
43
44 figure;
45 subplot(321)
46 plot(f_axis, 20*log10(fftF_1));
47 title('Sensor 1')
48 xlabel('Frequency [Hz]')
49 ylabel('FFT amplitude [dB]')
50 xlim([0 25])
51 grid minor
52 subplot(322)
53 plot(f_axis, 20*log10(fftF_2));
54 title('Sensor 2')
55 xlabel('Frequency [Hz]')
56 ylabel('FFT amplitude [dB]')
57 xlim([0 25])
58 grid minor
59 subplot(323)
60 plot(f_axis, 20*log10(fftF_3));
61 title('Sensor 3')
62 xlabel('Frequency [Hz]')
63 ylabel('FFT amplitude [dB]')
64 xlim([0 25])
65 grid minor
66 subplot(324)
67 plot(f_axis, 20*log10(fftF_4));
68 title('Sensor 4')
69 xlabel('Frequency [Hz]')
70 ylabel('FFT amplitude [dB]')
71 xlim([0 25])
72 grid minor
73 subplot(325)
74 plot(f_axis, 20*log10(fftF_5));
75 title('Sensor 5')
76 xlabel('Frequency [Hz]')
77 ylabel('FFT amplitude [dB]')
78 xlim([0 25])
79 grid minor
80 subplot(326)
81 plot(f_axis, 20*log10(fftF_6));
82 title('Sensor 6')
83 xlabel('Frequency [Hz]')
84 ylabel('FFT amplitude [dB]')
85 xlim([0 25])
86 grid minor

D.2. Curve fitting
1 %% Curve fitting
2
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3 clear all;
4 close all;
5 clc;
6
7 load('deconvolutieunit12_50gram.mat');
8
9 deconv_raw = diff(sensor_NF);

10 % manualy set sample values with visible ringing
11 deconv_raw = °deconv_raw(1614:2200);
12
13 % manually determine f and tau from raw data plot
14 dt = 1/2500;
15 N = length(deconv_raw);
16 t = (0:N°1)*dt;
17 N1 = N;
18 tau = 0.05;
19 f = 99;
20
21 figure();
22 plot(t, deconv_raw)
23 hold on;
24
25 impulse_fit = 2000*sin(2*pi*f*t).*exp(°t/tau);
26 plot(t, impulse_fit);
27 grid minor
28 xlabel('Time (s)')
29 ylabel('ADC value')
30 title('Ringing curve°fit')

D.3. Dome on dome result
1 clear;
2 close all;
3 % Create arrays of measurements per type fixation
4 epoxy = [load('epoxy_1hz.mat', 'sensor_NF_1'); load('epoxy_2hz.mat',...
5 'sensor_NF_1'); load('epoxy_4hz.mat', 'sensor_NF_1'); ...
6 load('epoxy_8hz.mat', 'sensor_NF_1'); ...
7 load('epoxy_16hz.mat', 'sensor_NF_1')];
8
9 lijm = [load('lijm_1hz.mat', 'sensor_NF_1'); load('lijm_2hz.mat',...

10 'sensor_NF_1'); load('lijm_4hz.mat', 'sensor_NF_1'); ...
11 load('lijm_8hz.mat', 'sensor_NF_1'); ...
12 load('lijm_16hz.mat', 'sensor_NF_1')];
13
14 tape = [load('tape_1hz.mat', 'sensor_NF_1'); load('tape_2hz.mat',...
15 'sensor_NF_1'); load('tape_4hz.mat', 'sensor_NF_1'); ...
16 load('tape_8hz.mat', 'sensor_NF_1'); ...
17 load('tape_16hz.mat', 'sensor_NF_1')];
18
19 % Array with fixation names
20 materials = [epoxy lijm tape];
21 mats_str = ["Epoxy" "Super glue" "Tape"];
22
23 % Test frequencies
24 freqs = [1 2 4 8 16];
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25
26 x = linspace(0, 2.125, 255);
27 padding = 1000;
28 Fs = 120;
29
30 ticks = °25:5:25;
31 for i = 1:3
32 for j = 1:5
33 % Remove DC bias from data
34 materials(j, i).dcbias = mean(materials(j, i).sensor_NF_1);
35
36 % Zeropad data to obtain better FFT resolution
37 sensor_padded = [materials(j, i).sensor_NF_1 ° materials(j, i).dcbias; zeros(

padding,1)];
38
39 Np = numel(sensor_padded);
40 if mod(Np, 2) == 1
41 Np = Np+1;
42 end
43 % Take single sided FFT of measurements
44 fft1 = abs(fft(sensor_padded)/Np);
45 fft1 = fft1(1:Np/2);
46 fft1(2:end°1) = 2*fft1(2:end°1);
47
48 % Put FFTs in a single array
49 materials(j, i).ffts = fft1;
50
51 end
52 end
53
54 % Initialize array to hold subplot handle
55 h = zeros(15,1);
56
57 % Frequency axis
58 f = linspace(0, Fs/2, Np/2);
59
60 % Hard way to determine the order in the subplots
61 k = [1 4 7 10 13 2 5 8 11 14 3 6 9 12 15];
62 m = 1;
63 figure
64 for i = 1:3
65 for j = 1:5
66 % Create multiple subplots
67 h(m) = subplot(5, 3, k(m));
68 plot(f, materials(j, i).ffts)
69 xlim([0 20])
70 grid minor;
71 title(['Material: ', num2str(mats_str(i)),'; Frequency: ', num2str(freqs(j)), '

Hz']);
72 xlabel('Frequency (Hz)')
73 ylabel('FFT magnitude')
74 m = m + 1;
75 end
76 end



50 D. MATLAB code

D.4. FFT peak finder
1 clear all;
2 close all;
3 clc;
4 % Load measurement files
5 [filename,folder] = uigetfile('*.mat',...
6 'Select One or More Files', ...
7 'MultiSelect', 'on');
8
9 filename = char(filename);

10 [row, col] = size(filename);
11
12 % Put all measurements in one matrix
13 data = [];
14 for n=1:row
15 load([folder filename(n, :)]);
16 data = [data, fourier_NF];
17 end
18
19 % Find peaks of measuments
20 pks = [];
21 for n=1:row
22 [pks_tmp, locs_tmp] = findpeaks(data(:,n), 'MinPeakHeight', 300);
23 pks = [pks, pks_tmp];
24
25 end
26
27 figure;
28 plot(pks)
29 ax = gca;
30 title('FFT peaks at 5 Hertz, 90 seconds apart, 3 hour load cell test')
31 ax.XGrid = 'on';
32 ax.YGrid = 'on';
33 ax.YMinorGrid = 'on';
34 xlabel('Measurements')
35 ylabel('FFT peak at 5 Hertz')
36 ylim([475 525]); xlim([0 130]); xticks([0:5:row])
37 hold on
38 % Find mean and standard deviation
39 y = mean(pks);
40 sd = std(pks);
41 upper_sd = y+sd; lower_sd = y°sd;
42 % Plot horizontal lines of mean and std. dev.
43 line([1, row],[y,y], 'Color', 'r')
44 line([1, row], [upper_sd, upper_sd], 'Color', 'g', 'LineWidth', 0.9);
45 line([1, row], [lower_sd, lower_sd], 'Color', 'g', 'LineWidth', 0.9);
46 legend('Measured FFT peaks', 'Mean', [char(177) '1 standard deviation'])

D.5. Sensor plate frequency response
1 close all;
2
3 % Test frequencies
4 freqs = [0.5 1 2 3 4 5 6 7 8 9 10 11 12];
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5
6 % Sensor plate result corrected with the calculated ratios
7 d1 = sensors_freqs_d1 .* ratios;
8
9 figure;

10 hold on
11 set(gca, 'XScale', 'log');
12 xlabel('Frequency (Hz)')
13 ylabel('FFT value [dB]')
14 xlim([0.5 20])
15 % Plot result in dB on a logarithmic axis
16 for i = 1:6
17 semilogx(freqs, 20*log10(d1(:,i)));
18 end
19 grid minor
20 legend('Sensor 1', 'Sensor 2', 'Sensor 3', 'Sensor 4', 'Sensor 5', 'Sensor 6', '

Location', 'SouthEast')

D.6. Deconvolution
1 %% Manual deconvolution
2
3 % load measurement
4 load('C:\Users\tlefe\Google Drive\BAP\Code en Metingen\Matlab\Metingen\Loadcell/1211

_093728_Loadcell_fs2500_Sloadcell_G8x_f5_n20.mat')
5
6 % plot raw measurement
7 figure();
8 N = length(sensor_NF);
9 t = (0:N°1)*dt;

10 subplot(221);
11 plot(t, sensor_NF);
12 ylim([°750 2750])
13 grid minor
14 hold on;
15 xlabel('Time (s)')
16 ylabel('ADC value')
17 title('Raw load cell measurement')
18
19 % deconvolve via fft
20 impulse_fit = cos(2*pi*99*t).*exp(°t/0.05);
21 deconv = ifft(fft(sensor_NF) ./ fft(impulse_fit'));
22 N = length(deconv);
23 t = (0:N°1)*dt;
24 subplot(222);
25 plot(t, real(deconv));
26 ylim([°250 3500])
27 grid minor
28 xlabel('Time (s)')
29 ylabel('ADC value')
30 title('Load cell measurement deconvoluted')
31
32 % fft of deconvolved signal
33 dN = length(deconv);
34 f_res = 1/max(N*dt);



52 D. MATLAB code

35 f = (0:N°1) * f_res ° 1250;
36 subplot(223);
37 plot(f, 20*log10(abs(fftshift(fft(deconv)))));
38 xlim([0 500]);
39 grid minor
40 xlabel('Frequency (Hz)')
41 ylabel('Amplitude (dB)')
42 title('FFT of deconvoluted signal')
43
44 % Filter deconvoluted signal
45 fs = 2500;
46 fc = [4, 18]; %from LTSpice simulation
47 [B1,A1] = butter(2, fc(2)/(fs/2), 'low');
48 [B2,A2] = butter(1, fc(1)/(fs/2), 'high');
49
50 data_filtered = filter(B2,A2,(filter(B1,A1,deconv)));
51 subplot(224)
52 plot(t,data_filtered, 'linewidth',1);
53 grid minor
54 title('Filtered with 2nd°order 20Hz LPF and 1st°order 4Hz HPF')
55 xlabel('Time (s)')
56 ylabel('ADC value')



E
Momo PE Sensor Plate Tester - MATLAB

code

1 %% Global properties to be used and to be part of the struct 'app'
2 properties (Access = public)
3 % Properties for connection
4 s % Serial Object
5 nDatabits = 8; % 2+(n*6) with n the amount of sensors reading

simultaneously
6
7 % Properties for storing measurement data
8 tempData % Temporary place to store data, which will be put in

incomingData
9 incomingData % Data that is coming in from the serial USB port

10 rawData % Used for doing a full test to store each sensor
measurement

11 allMeasurements % Used for doing a full test to store all sensor
measurement

12 sensor_NF % Used to store all the data processed non filtered data
13 sensor_F % Used to store all the data processed filtered data
14 fourier_NF % Used to store all the FFT of the non filtered data
15 x_scale % Time axis for the data plots
16 f_scale % Frequency axis for Fourier plots
17
18 % Properties to handle stops/continues between each function
19 sensorReady % If the nozzle is aligned with the dome
20 stopContinuousTest % Stops the continuous test
21 emergencyStop % Stop full test
22
23 % Temporary struct to load the .mat into, so won't lose the last measurement
24 temp
25
26 % Properties to save all data from analyzing into seperate properties to avoid

overwrite issues
27 a_enableSensor = '1111111' % On/Off for each sensor, default is all on
28 a_incomingData
29 a_description
30 a_x_scale
31 a_f_scale

53
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32 a_scaleFactor
33 a_sensor_NF
34 a_sensor_F
35 a_fourier_NF
36 a_Fvalve
37 a_Nvalve
38 a_fs
39 a_date
40 a_folder
41 end
42
43 % Private Functions
44 methods (Access = private)
45
46 %% Initializes the basic parameters for a connection:
47 % ° buffersize based on the sample frequency and the duration
48 % ° baudrate at 921600 to ensure a sample frequency of 2500 is possible
49 function bufferSize = initializeConnection(app, Fs, duration)
50 bufferSize = ceil(duration * Fs * app.nDatabits);
51
52 app.s = serial(app.SelectserialportDropDown.Value);
53 app.s.BaudRate = 921600;
54 app.s.InputBuffersize = bufferSize*8;
55 end
56
57 %% Initializes all basic properties and indicators
58 function initializeVariables(app, bufferSize)
59 app.stopContinuousTest = 0;
60 app.sensorReady = 0;
61 app.emergencyStop = 0;
62 app.incomingData = [];
63 app.rawData = zeros(bufferSize, 8);
64 app.sensor_NF = [];
65 app.sensor_F = [];
66 app.fourier_NF = [];
67 app.f_scale = [];
68 app.x_scale = [];
69 app.allMeasurements = [];
70 app.a_scaleFactor = [1, 1, 1, 1, 1, 1];
71 app.ConnectionMCULamp.Color = [1 0.65 0];
72 LampArray = [app.Test_Lamp1, app.Test_Lamp2, app.Test_Lamp3, ...
73 app.Test_Lamp4, app.Test_Lamp5, app.Test_Lamp6];
74 for i = 1:6
75 set(LampArray(i), 'Color', [0.94 0.94 0.94]);
76 end
77 app.MeasurementLamp.Color = [1 0.65 0];
78 end
79
80 %% Determines the gain parameter based on user input [based on MCU]
81 function gain = determineGain(app, gainValue)
82 if(strcmp(gainValue, '16x'))
83 gain = 0;
84 elseif(strcmp(gainValue, '8x'))
85 gain = 1;
86 elseif(strcmp(gainValue, '4x'))
87 gain = 2;
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88 elseif(strcmp(gainValue, '2x'))
89 gain = 3;
90 elseif(strcmp(gainValue, '1x'))
91 gain = 4;
92 else
93 gain = 10; % If there were any errors with the user input
94 end
95 end
96
97 %% Before starting a connection, all the necessary parameters/settings need to

be valid
98 % Gain parameter to ensure a valid gain factor in the MCU
99 % A valid serial port connected before attempting to start a connection

100 % A valid save location in the case autosave is selected (full test and
continuous are true by default)

101 % Abort measurement in the case the gain could not be determined, or if no
serial port was selected

102 function userConfigStatus = checkUserConfig(app, determinedGain,
selectedAutoSave, selectedFolder)

103 userConfigStatus = true;
104
105 if(determinedGain == 10)
106 updateLog(app, '[E100]|Measurement has been aborted: Gain could not be

determined');
107 app.StatusLabel.Text = 'Status: [E100]|Measurement has been aborted:

Gain could not be determined';
108 userConfigStatus = false;
109 enableRunButtons(app);
110 end
111
112 if(isempty(app.SelectserialportDropDown.Value))
113 updateLog(app, '[E101]|Measurement has been aborted: Serial port not

found');
114 app.StatusLabel.Text = 'Status: [E101]|Measurement has been aborted:

Serial port not found';
115 userConfigStatus = false;
116 enableRunButtons(app);
117 end
118
119 if(selectedAutoSave == true && selectedFolder == "")
120 updateLog(app, '[E105]|Error with save variables to the selected folder

');
121 app.StatusLabel.Text = 'Status: [E105]|Error with save variables to the

selected folder';
122 app.WorkspaceLamp.Color = 'red';
123 userConfigStatus = false;
124 enableRunButtons(app);
125 end
126
127 if(~exist(selectedFolder, 'dir'))
128 updateLog(app, '[E106]|Measurement has been aborted: Could not find

save location');
129 app.StatusLabel.Text = 'Status: [E106]|Measurement has been aborted:

Could not find save location';
130 app.WorkspaceLamp.Color = 'red';
131 userConfigStatus = false;
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132 enableRunButtons(app);
133 end
134 end
135
136 %% Tries to open the serial port
137 function serialOpenStatus = openSerialPort(app)
138 try
139 fopen(app.s);
140 serialOpenStatus = true;
141 app.ConnectionMCULamp.Color = 'green';
142 catch e
143 updateLog(app, '[E102]|Measurement has been aborted: Could not connect

to serial port, try again');
144 updateLog(app, e.message);
145 enableRunButtons(app);
146 serialOpenStatus = false;
147 instrreset;
148 p = instrhwinfo('serial');
149 app.SelectserialportDropDown.Items = p.AvailableSerialPorts;
150 app.ConnectionMCULamp.Color = [1 0.65 0];
151 end
152 end
153
154 %% Once the connection with the serial port is made, the input buffer is being

emptied
155 %% after which the parameters are send to the MCU and the MCU will start

reading the ADC values
156 %% the values are then send to MATLAB and stored
157 function communicateMCU(app, bufferSize, fs, sensor, duration, gain,

valveFrequency, valveTimes, loadcellPulse)
158 app.MeasurementLamp.Color = [1 0.65 0];
159 updateLog(app, ['MCU: Sensor: ', num2str(sensor), ', Duration: ', num2str(

duration), ...
160 ', Gain: ' num2str(2^(4°gain)) ' (', num2str(gain), '), Frequency: ',

num2str(valveFrequency), ', Times: ', num2str(valveTimes)]);
161 updateLog(app, ['MATLAB: inputData size is: ' num2str(bufferSize) ', buffer

size: ' num2str(bufferSize*8) ' bytes, pulse: ' num2str(loadcellPulse)
]);

162 updateLog(app, 'Write variables:');
163
164 % Flush input buffer before reading again
165 while(app.s.BytesAvailable ~=0)
166 bytesAvailable1 = app.s.BytesAvailable;
167 flushinput(app.s);
168 bytesAvailable2 = app.s.BytesAvailable;
169 updateLog(app, [num2str(bytesAvailable1) 'bytes still in input buffer,

buffer flush, still ' num2str(bytesAvailable2) ' in the input
buffer']);

170 end
171
172 % Writing arguments
173 data = [fs str2num(sensor) duration gain valveFrequency valveTimes

loadcellPulse];
174 fprintf(app.s, '%d %d %f %d %f %d %d\n', data, 'async');
175



57

176 % Reading data (Current maxDataStream value is arbitrary chosen, based on
max values of 2000/3000Hz)

177 maxDataStream = 30000; % Amount of data the buffer needs to hold
178 nMaxTimes = floor(bufferSize/maxDataStream);
179 remainderBufferSize = bufferSize°nMaxTimes*maxDataStream;
180 app.incomingData = [];
181
182 updateLog(app, ['maxDataStream is: ' num2str(maxDataStream) ', ' num2str(

ceil(bufferSize/maxDataStream)) 'x, remainder ' num2str(
remainderBufferSize)])

183 updateLog(app, 'Read variables:')
184
185 for m = 1:nMaxTimes
186 tempData = fread(app.s, maxDataStream);
187 app.incomingData = [app.incomingData;tempData];
188 updateLog(app, ['Amount of data in iteration ' num2str(m) ' is: '

num2str(numel(tempData))])
189 end
190
191 if(remainderBufferSize ~= 0)
192 tempData = fread(app.s, remainderBufferSize);
193 app.incomingData = [app.incomingData;tempData];
194 updateLog(app, ['Amount of data in iteration ' num2str(m+1) ' is: '

num2str(numel(tempData))])
195 end
196
197 updateLog(app, 'Done with reading data MCU')
198 end
199
200 %% If an error occurs during any communication with the MCU, status information

will be given
201 function errorCommunication(app, e)
202 disp(e.message);
203 updateLog(app, '[E103]|Error with communication with the MCU');
204 updateLog(app, e.message);
205 app.StatusLabel.Text = 'Status: [E102]|Check log for more details';
206 fclose(app.s);
207 enableRunButtons(app);
208 app.ConnectionMCULamp.Color = 'red';
209 end
210
211 %% Processes all the data [ASCII] to [NUM], applies a low pass filter and FFT
212 function processData(app, measurementType, sampleFrequency, incomingData,

iteration, Fvalve, Nvalve)
213 app.rawData(:,iteration) = incomingData;
214 % Each datastream starts with a 10 (defined newline '\n'), look for the

first index of the data stream
215 % Take second data stream as the first one still contains the value stored

in the ADC register from previous time
216 for startIndex = 1:10
217 if incomingData(startIndex) == 10
218 break
219 end
220 end
221
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222 % Determine how many datastreams there are by dividing the amount of data
in the array, by the amount of data per datastream

223 % Two edge cases: datastream suddenly starts and datastream suddenly ends
224 % Deal with these two cases by subtracting 2 datastreams (or use a floor

and subtract 1)
225 nDataRange = floor(numel(incomingData)/app.nDatabits)°1;
226 sensor_NF = zeros(nDataRange,1);
227
228 % ASCII to numbers, base of ASCII is 48 (ASCII 48 = NUM 0), check ASCII

table for more information
229 % Datastream always ends with |13|10| °> used as reference
230 % Index 0: '10', Index 1: sign +/°, Index 2°6: data, Index 7: carrier

return
231 for dataStream = 1:(numel(sensor_NF))
232 % First sensor
233 sensor_NF(dataStream) = (incomingData(startIndex+2)°48)*10000+(

incomingData(startIndex+3)°48)*1000+(incomingData(startIndex+4)°48)
*100+(incomingData(startIndex+5)°48)*10+(incomingData(startIndex+6)
°48)*1;

234 if incomingData(startIndex+1) == '°'
235 sensor_NF(dataStream) = sensor_NF(dataStream) * °1;
236 end
237
238 %Go to the next data stream
239 startIndex = startIndex + app.nDatabits;
240 end
241
242 % Creating the x°axis for the graph
243 x_scale = linspace(0,(nDataRange/sampleFrequency),nDataRange);
244
245 % Applying a filter to each sensor, with passband frequency 25Hz
246 sensor_F = lowpass(sensor_NF,25,sampleFrequency);
247
248 % Display the peak of the sample frequency in the FFT
249 startSample = 1*sampleFrequency;
250 endSample = min((Nvalve/Fvalve+1)*sampleFrequency, size(sensor_NF,1));
251
252 % Applying FFT on the non filtered signal
253 T = 1/sampleFrequency; % Sampling period
254 L = numel(sensor_NF(startSample:endSample)); % Length of signal
255
256 % FFT function gives the double sides spectrum, convert it into single

spectrum
257 DSFourierData = fft(sensor_NF(startSample:endSample), 2^nextpow2(L)); %

Double sided FFT
258 DSFourierData = abs(DSFourierData/numel(DSFourierData)); %Normalized,

positive
259 fourier_NF = DSFourierData(1:numel(DSFourierData)/2+1); %Single sided FFT
260 fourier_NF(2:end°1) = 2*fourier_NF(2:end°1);
261 f_scale = sampleFrequency*(0:(numel(DSFourierData)/2))/numel(DSFourierData)

;
262
263 % Determines the most dominant frequency and its peak, and the second most

dominant frequency and its peak
264 maxValue = zeros(2,1);
265 indexMaxValue = maxValue;
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266 temp = fourier_NF;
267 for i=1:2
268 [maxValue(i) indexMaxValue(i)] = max(temp);
269 temp(indexMaxValue(i)) = 0;
270 end
271
272 updateLog(app, ['Frequency with highest peak ' num2str(f_scale(

indexMaxValue(1))) 'Hz, with a peak of ' ...
273 num2str(maxValue(1))]);
274 updateLog(app, ['Frequency with second highest peak ' num2str(f_scale(

indexMaxValue(2))) 'Hz, with a peak of ' ...
275 num2str(maxValue(2))]);
276
277 % Assign variables based on type of measurement
278 if(strcmp(measurementType, 'Single'))
279 assignSingleVariablest(app, x_scale, sensor_NF, sensor_F, f_scale,

fourier_NF);
280 elseif(strcmp(measurementType, 'Full'))
281 assignMultipleVariables(app, iteration, x_scale, sensor_NF, sensor_F,

f_scale, fourier_NF);
282 else
283 updateLog(app, '[E104]|Could not save variables, error in assigning

variables');
284 end
285
286 % Plot the variables
287 plotVariablesMeasurement(app, x_scale, sensor_NF, sensor_F, f_scale,

fourier_NF)
288 app.ConnectionMCULamp.Color = 'green';
289 end
290
291 %% When a new .mat full test file is loaded, all sensor checkboxes are checked
292 function enableSensorCheckboxes(app)
293 app.Sensor1CheckBox.Enable = true;
294 app.Sensor2CheckBox.Enable = true;
295 app.Sensor3CheckBox.Enable = true;
296 app.Sensor4CheckBox.Enable = true;
297 app.Sensor5CheckBox.Enable = true;
298 app.Sensor6CheckBox.Enable = true;
299 app.Loadcell1CheckBox.Enable = true;
300 app.Loadcell2CheckBox.Enable = true;
301 app.GraphDropDown.Enable = true;
302 app.PeriodsCheckBox.Enable = true;
303 end
304
305 %% Assigns variables from single and continuous test
306 function assignSingleVariablest(app, x_scale, sensor_NF, sensor_F, f_scale,

fourier_NF)
307 % Put the variables in the struct so it can be used across functions
308 app.x_scale = x_scale;
309 app.sensor_NF = sensor_NF;
310 app.sensor_F = sensor_F;
311 app.f_scale = f_scale;
312 app.fourier_NF = fourier_NF;
313 app.allMeasurements = [app.allMeasurements, sensor_NF];
314
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315 % Assigning a variable for each property in the struct so it can be read
out in the workspace

316 assignin('base', 'incomingData', app.incomingData);
317 assignin('base', 'allMeasurements', app.allMeasurements);
318 assignin('base', 'x_scale', app.x_scale);
319 assignin('base', 'sensor_NF', app.sensor_NF);
320 assignin('base', 'sensor_F', app.sensor_F);
321 assignin('base', 'fourier_NF', app.fourier_NF);
322 assignin('base', 'f_scale', app.f_scale);
323 end
324
325 %% Assigns variables from full test
326 function assignMultipleVariables(app, iteration, x_scale, sensor_NF, sensor_F,

f_scale, fourier_NF)
327 % Put the variables in the struct so it can be used across functions
328 app.x_scale = x_scale;
329 app.sensor_NF(:,iteration) = sensor_NF;
330 app.sensor_F(:,iteration) = sensor_F;
331 app.f_scale = f_scale;
332 app.fourier_NF(:,iteration) = fourier_NF;
333
334 % Assigning a variable for each property in the struct so it can be read

out in the workspace
335 assignin('base', 'incomingData', app.rawData);
336 assignin('base', 'x_scale', app.x_scale);
337 assignin('base', 'sensor_NF', app.sensor_NF);
338 assignin('base', 'sensor_F', app.sensor_F);
339 assignin('base', 'fourier_NF', app.fourier_NF);
340 assignin('base', 'f_scale', app.f_scale);
341 end
342
343 %% Assigns variables from analyzing
344 function assignAnalyzeVariables(app)
345 % Put the variables in the struct so it can be used across functions
346 assignin('base', 'a_x_scale', app.a_x_scale);
347 assignin('base', 'a_f_scale', app.a_f_scale);
348 assignin('base', 'a_sensor_NF', app.a_sensor_NF);
349 assignin('base', 'a_sensor_F', app.a_sensor_F);
350 assignin('base', 'a_fourier_NF', app.a_fourier_NF);
351 end
352
353 %% Plot the data from each measurement to the GUI
354 function plotVariablesMeasurement(app, x_scale, sensor_NF, sensor_F, f_scale,

fourier_NF)
355 % Plotting all the graphs
356 plot(app.UIAxes_NF,x_scale,sensor_NF)
357 xlim(app.UIAxes_NF, 'auto')
358 ylim(app.UIAxes_NF, 'auto')
359 plot(app.UIAxes_F,x_scale,sensor_F)
360 xlim(app.UIAxes_F, 'auto')
361 ylim(app.UIAxes_F, 'auto')
362 plot(app.UIAxes_FFT, f_scale, fourier_NF)
363 xlim(app.UIAxes_FFT, [0 20])
364 ylim(app.UIAxes_FFT, 'auto')
365 app.MeasurementLamp.Color = 'green';
366 end
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367
368 %% Determines the best gain based on the highest value from the last

measurement
369 function gain = determineBestGain(app, data)
370 factor = 1.1;
371 bits = ceil(log(max(data)*factor)/log(2));
372 gain = bits ° 11;
373 if(gain<0)
374 gain = 0;
375 end
376 updateLog(app, ['Highest peak has value ' num2str(max(data)) ', based on

this and factor 1.1, the best gain is ' num2str(2^(4°gain))]);
377 end
378
379 %% Analyzes the full data, either after finishing the full test or when the

user loads a full test .mat file
380 function analyzeFullTestData(app, sampleFrequency, sensorNumber, gain, Fvalve,

...
381 Nvalve, folder, type, today)
382 maxFFTValue = ones(6,1);
383
384 % Process data to put into table
385 for i = 1:6
386 [maxFFTValue(i), indexMaxFFTValue] = max(app.a_fourier_NF(:,i));
387 frequencyFFTMaxValue = app.a_f_scale(indexMaxFFTValue);
388 if(i == 1)
389 app.UITable2.Data = [{sprintf('%0.4f', frequencyFFTMaxValue) ...
390 sprintf('%0.2f', maxFFTValue(i)) sprintf('%0.2f', mean(app.

a_sensor_NF(:,i))) '1'}];
391 else
392 app.UITable2.Data = [app.UITable2.Data;{sprintf('%0.4f',

frequencyFFTMaxValue) ...
393 sprintf('%0.2f', maxFFTValue(i)) sprintf('%0.2f', mean(app.

a_sensor_NF(:,i))) '1'}];
394 end
395 end
396
397 % Assign data
398 assignAnalyzeVariables(app);
399
400 % Process data into graph
401 updateAnalyzeAxes(app);
402
403 % Peak value of the FFT normalised to the amount of times the valve opens
404 normalizedFFTMaxValue = maxFFTValue/app.a_Nvalve;
405 testSensorsIndicators(app, normalizedFFTMaxValue);
406
407 app.TabGroup2.SelectedTab = app.AnalyzingTab;
408 enableSensorCheckboxes(app);
409
410 % If no scale factor has been determined, it will be determined now
411 if(app.a_scaleFactor == [1, 1, 1, 1, 1, 1])
412 updateLog(app, 'Scale factor will be determined now');
413 maxFFTValue = ones(6,1);
414 app.a_scaleFactor = ones(6,1);
415
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416 for i = 1:6
417 [maxFFTValue(i), ~] = max(app.a_fourier_NF(:,i));
418 end
419
420 referenceValue = max(maxFFTValue);
421
422 for i = 1:6
423 app.a_scaleFactor(i) = referenceValue/maxFFTValue(i);
424 end
425
426 scaleFactor = app.a_scaleFactor;
427 incomingData = app.a_incomingData;
428 x_scale = app.a_x_scale;
429 sensor_NF = app.a_sensor_NF;
430 sensor_F = app.a_sensor_F;
431 f_scale = app.a_f_scale;
432 fourier_NF = app.a_fourier_NF;
433 description = app.a_description;
434
435 % Filename
436 fileName = [today '_' type '_fs' num2str(sampleFrequency) '_S'

sensorNumber '_G' gain '_f' num2str(Fvalve) '_n' num2str(Nvalve) '
_cmp.mat'];

437
438 % Foldername
439 if ~exist(folder, 'dir')
440 app.stopContinuousTest = 1;
441 enableRunButtons(app);
442 disp(folder);
443 updateLog(app, '[E105]|Error with auto saving variables to the

selected folder, no variables are saved');
444 app.StatusLabel.Text = 'Status: [E105]|Error with auto saving

variables to the selected folder, no variables are saved';
445 return;
446 end
447
448 if(path ~= 0)
449 save(strcat(folder, '/',fileName), 'description', 'incomingData', '

x_scale', 'sensor_NF', 'sensor_F', 'f_scale', 'fourier_NF', '
scaleFactor');

450 updateLog(app, '° ° ° Measurement saved ° ° °');
451 end
452 end
453 end
454
455 %% Saves all the important variables to a .mat file
456 function autoSaveVariables(app, sampleFrequency, sensorNumber, gain, Fvalve,

...
457 Nvalve, folder, type, today)
458 % Assigning
459 incomingData = app.incomingData;
460 x_scale = app.x_scale;
461 sensor_NF = app.sensor_NF;
462 sensor_F = app.sensor_F;
463 f_scale = app.f_scale;
464 fourier_NF = app.fourier_NF;
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465 description = app.DescriptionEditField.Value;
466
467 % Filename
468 fileName = [today '_' type '_fs' num2str(sampleFrequency) '_S' sensorNumber

'_G' gain '_f' num2str(Fvalve) '_n' num2str(Nvalve) '.mat'];
469
470 % Foldername
471 if ~exist(folder, 'dir')
472 app.stopContinuousTest = 1;
473 enableRunButtons(app);
474 disp(folder);
475 updateLog(app, '[E105]|Error with auto saving variables to the selected

folder, no variables are saved');
476 app.StatusLabel.Text = 'Status: [E105]|Error with auto saving variables

to the selected folder, no variables are saved';
477 return;
478 end
479
480 if(path ~= 0)
481 save(strcat(folder, '/',fileName), 'description', 'incomingData', '

x_scale', 'sensor_NF', 'sensor_F', 'f_scale', 'fourier_NF');
482 updateLog(app, '° ° ° Measurement saved ° ° °');
483 end
484 end
485
486 %% Creates a plot when the continuous test is finished each time and saves the

plot as .png
487 function savePlotContinuous(app, sensorNumber, Fvalve, ...
488 Nvalve, type, Fs, gain, folder, today)
489 % Make a figure of the plots and upload it
490 % Raw data
491 plotFigure = figure('units','normalized','outerposition',[0 0 1 1]);
492 subplot(1,2,1)
493 plot(app.x_scale, app.sensor_NF);
494 title(['Raw data: sensor ' sensorNumber ', valve Frequency ' num2str(Fvalve

) ', times ' num2str(Nvalve)])
495 xlabel('Time (s)')
496 ylabel('ADC Output Value')
497 grid on;
498 grid minor;
499
500 subplot(1,2,2)
501 plot(app.f_scale, app.fourier_NF)
502 title('FFT of non filtered data')
503 xlabel('Frequency (Hz)')
504 ylabel('|Y(f)|')
505 xlim([0 50]);
506 grid on;
507 grid minor;
508
509 % Save figure
510 fileName = [today '_' type '_fs' num2str(Fs) '_S' sensorNumber '_G' gain '

_f' num2str(Fvalve) '_n' num2str(Nvalve)];
511 saveas(plotFigure, [strcat(folder,'/',fileName) '.png']);
512 close(plotFigure);
513 end
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514
515 %% Diable the following buttons if a test is started
516 function disableRunButtons(app)
517 app.Single_Run.Enable = false;
518 app.Full_Run.Enable = false;
519 app.Continuous_Run.Enable = false;
520 app.Continuous_Stop.Enable = false;
521 app.Full_Continue.Enable = false;
522 end
523
524 %% Enable/disable the following buttons when a test is finished
525 function enableRunButtons(app)
526 app.Single_Run.Enable = true;
527 app.Full_Run.Enable = true;
528 app.Continuous_Run.Enable = true;
529 app.Continuous_Stop.Enable = false;
530 app.Full_Continue.Enable = false;
531 end
532
533 %% Updates the log window
534 function updateLog(app, message)
535 try
536 app.UITable.Data = [{datestr(now, 'HH:MM:SS') message}; app.UITable.

Data;];
537 catch e
538 disp(e.message);
539 end
540 end
541
542 % Updates the analyze axes depending on various settings
543 function updateAnalyzeAxes(app)
544 checkBoxes = [app.Sensor1CheckBox.Value app.Sensor2CheckBox.Value app.

Sensor3CheckBox.Value app.Sensor4CheckBox.Value ...
545 app.Sensor5CheckBox.Value app.Sensor6CheckBox.Value app.

Loadcell1CheckBox.Value app.Loadcell2CheckBox.Value app.
PeriodsCheckBox.Value];

546
547 TableData = app.UITable2.Data;
548 scaleFactor = ones(8,1);
549 for i = 1:6
550 scaleFactor(i) = str2double(TableData(i,4));
551 end
552
553 if (app.GraphDropDown.Value == "Raw")
554 data = app.a_sensor_NF;
555 xaxis = app.a_x_scale;
556 xlim(app.UIAxes, 'auto')
557 title(app.UIAxes, strcat(app.a_date, " | fs: ", num2str(app.a_fs), "Hz

| Valve freq.: ", num2str(app.a_Fvalve), ...
558 "Hz | Valve times open: ", num2str(app.a_Nvalve), "x | Raw data"),

'Interpreter', 'none')
559 maxLine = max(app.a_sensor_NF(:));
560 xlabel(app.UIAxes, 'Time (s)')
561 ylabel(app.UIAxes, 'ADC Output Value');
562 elseif(app.GraphDropDown.Value == "Filtered");
563 data = app.a_sensor_F;
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564 xaxis = app.a_x_scale;
565 xlim(app.UIAxes, 'auto')
566 title(app.UIAxes, strcat(app.a_date, " | fs: ", num2str(app.a_fs), "Hz

| Valve freq.: ", num2str(app.a_Fvalve), ...
567 "Hz | Valve times open: ", num2str(app.a_Nvalve), "x | Filtered

data"), 'Interpreter', 'none')
568 maxLine = max(app.a_sensor_F(:));
569 xlabel(app.UIAxes, 'Time (s)')
570 ylabel(app.UIAxes, 'ADC Output Value');
571 elseif(app.GraphDropDown.Value == "FFT");
572 data = app.a_fourier_NF;
573 xaxis = app.a_f_scale;
574 xlim(app.UIAxes, [0 20])
575 title(app.UIAxes, strcat(app.a_date, " | fs: ", num2str(app.a_fs), "Hz

| Valve freq.: ", num2str(app.a_Fvalve), ...
576 "Hz | Valve times open: ", num2str(app.a_Nvalve), "x | FFT raw data

"), 'Interpreter', 'none')
577 maxLine = 0;
578 xlabel(app.UIAxes, 'Frequency (Hz)');
579 ylabel(app.UIAxes, '|Y(f)|');
580 end
581
582 cla(app.UIAxes);
583 for i = 1:9
584 if(checkBoxes(i) == 1)
585 if(i == 9)
586 peakPeriod = 1/app.a_Fvalve;
587 line(app.UIAxes, [1 1],[maxLine*1.1 °maxLine*1.1], 'Color','

black');
588 hold(app.UIAxes, 'on');
589 for k = 1:app.a_Nvalve
590 try
591 line(app.UIAxes, [1+peakPeriod*k 1+peakPeriod*k],[

maxLine*1.1 °maxLine*1.1], 'Color','black');
592 catch e
593 disp(e.message);
594 end
595 end
596 else
597 plot(app.UIAxes, xaxis, data(:,i)*scaleFactor(i));
598 hold(app.UIAxes, 'on');
599 end
600 end
601 end
602 hold(app.UIAxes, 'off');
603 end
604
605 %% Calculate the mean from 3 intervals, when it is 0, when it is 1 (first part

and second part)
606 %% Difference between 0 and 1 must be substantial, and first part/second part

should result in same mean
607 function statusPass = verifyMeasurementLC(app, sampleFrequency, duration,

rawData)
608 xStart = 0; % [sec]
609 xSwitch = 1; % [sec] switch from off to on
610 xEnd = duration; % [sec]
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611 xMid = (xEnd°xSwitch)/2+xSwitch; % [sec]
612 varRange = 0.1; % [sec]
613
614 index1 = ceil((xStart+varRange)*sampleFrequency); % Start of the

measurement
615 index2 = ceil((xSwitch°varRange)*sampleFrequency); % Time the valve

switches, min delta time
616 index3 = ceil((xSwitch+varRange)*sampleFrequency); % Time the valve

switches, plus delta time
617 index4 = ceil((xMid)*sampleFrequency); % Mid period when the

valve is on
618 index5 = ceil((xEnd°varRange)*sampleFrequency); % End of the

measurement
619 updateLog(app, ['Index1:5 : ' num2str(index1) ' ' num2str(index2) ' '

num2str(index3) ' ' num2str(index4) ' ' num2str(index5)]);
620
621 meanT1 = mean(rawData(index1:index2));
622 meanT2 = mean(rawData(index3:index4));
623 meanT3 = mean(rawData(index4:index5));
624 updateLog(app, ['Means: ' num2str(meanT1) ' ' num2str(meanT2) ' ' num2str(

meanT3)]);
625
626 conditionLimit1 = 100; % Difference between meanT2 and meanT3
627 conditionLimit2 = 100; % Difference between meanT1 and av(meanT2,meanT3)
628
629 if(abs(meanT2°meanT3)<conditionLimit1 && abs(meanT2°meanT1)>conditionLimit2

)
630 statusPass = true;
631 updateLog(app, 'Both conditions are met, measurement will go on');
632 else
633 statusPass = false;
634 updateLog(app, 'One of the conditions is not met, measurement will be

redone');
635 end
636 end
637
638 %% Look if the FFT is 'good' enough, else redo the measurement
639 %% The dominant frequency should be close to the valve frequency
640 function statusPass = verifyMeasurementPE(app, valveFrequency, f_scale,

rawDataFFT)
641 [maxFFTValue indexMaxFFTValue] = max(rawDataFFT);
642 frequencyFFTMaxValue = f_scale(indexMaxFFTValue);
643 varRange = 0.1; % [Hz]
644
645 % If measurement is wrong, redo the measurement, else save the data and

go on
646 if(abs(frequencyFFTMaxValue°valveFrequency)<varRange)
647 statusPass = true;
648 updateLog(app, 'Condition is met, measurement will go on');
649 else
650 statusPass = false;
651 updateLog(app, 'Condition not met, measurement will be redone');
652 end
653 end
654
655 %% Color the sensor indicators either red or green
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656 function testSensorsIndicators(app, normalizedMaxFFTValue)
657 LampArray = [app.Test_Lamp1, app.Test_Lamp2, app.Test_Lamp3, ...
658 app.Test_Lamp4, app.Test_Lamp5, app.Test_Lamp6];
659 minimumValueFFT = 40;
660 for i = 1:6
661 if(normalizedMaxFFTValue(i) > minimumValueFFT)
662 set(LampArray(i), 'Color', 'green');
663 else
664 set(LampArray(i), 'Color', 'red');
665 end
666 end
667 end
668 end
669
670
671 methods (Access = private)
672
673 % Code that executes after component creation
674 function startupFcn(app)
675 %% This callback is executed at the program startup
676 %% Disconnect and delete all instrument objects, looks for all available

serial ports
677 %% Determines if the workspace exists
678
679 % Clean up the command window, workspace is not cleared to prevent any loss

of data
680 clc;
681
682 % Disconnect and delete all instrument objects
683 instrreset;
684
685 % Status updates
686 app.UITable.Data = [{datestr(now, 'HH:MM:SS') 'Program started'}];
687 app.StatusLabel.Text = 'Status: Program is in idle mode';
688
689 % Initializations
690 % Instrument Control Toolbox and serial port drivers required
691 warning off MATLAB:subscripting:noSubscriptsSpecified
692 p = instrhwinfo('serial');
693 app.SelectserialportDropDown.Items = p.AvailableSerialPorts;
694
695 % Checks if the default save location is present, default save location is

the 'Metingen' folder
696 folder = ['Metingen'];
697 if ~exist(folder, 'dir')
698 updateLog(app, 'Default save location is not found, consider changing

your workspace');
699 app.WorkspaceLamp.Color = 'red';
700 else
701 app.LocationEditField.Value = [pwd '\' folder];
702 app.WorkspaceLamp.Color = 'green';
703 end
704 end
705
706 % Button pushed function: Single_Run
707 function Single_RunPushed(app, event)
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708 %% This callback is executed when the user presses on the Single run button
709 %% Does one test with the parameters in the configuration panel
710
711 % Clean up the command window
712 clc;
713
714 % User configuration parameters
715 selectedSensor = app.Single_Sensor.Value;
716 selectedDuration = app.General_Duration.Value;
717 selectedGain = app.Single_Gain.Value;
718 selectedFs = app.General_SampleFrequency.Value;
719 selectedFvalve = app.ValveFrequency.Value;
720 selectedNvalve = app.ValveTimes.Value;
721 selectedAutoSave = app.Single_AutoSave.Value;
722 selectedType = app.TypeDropDown.Value;
723 selectedFolder = app.LocationEditField.Value;
724 if(app.PulseonloadcellSwitch.Value == "On")
725 selectedLoadcellPulse = 1;
726 else
727 selectedLoadcellPulse = 0;
728 end
729
730 % Standard initialisations
731 updateLog(app, '° ° ° Running single measurement now ° ° °');
732 app.StatusLabel.Text = 'Status: Running single measurement now';
733 disableRunButtons(app);
734 determinedBufferSize = initializeConnection(app, selectedFs,

selectedDuration);
735 initializeVariables(app, determinedBufferSize);
736 determinedGain = determineGain(app, selectedGain);
737 connectionStatus = openSerialPort(app);
738 today = datestr(now, 'mmdd_HHMMSS');
739
740 % Checks if all the configuration parameters are correct and if the

connection with the MCU could be made
741 if(checkUserConfig(app, determinedGain, selectedAutoSave, selectedFolder)

== false ...
742 || connectionStatus == false)
743 return;
744 end
745
746 % First part of the code is about the communication with the MCU and data

transfer
747 % Asynchronous writing arguments, synchronous reading data
748 try
749 communicateMCU(app, determinedBufferSize, selectedFs, selectedSensor,

selectedDuration, ...
750 determinedGain, selectedFvalve, selectedNvalve,

selectedLoadcellPulse);
751 fclose(app.s);
752 catch e
753 errorCommunication(app, e);
754 return;
755 end
756
757 % Second part of the code is about processing the data
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758 % First checks if data was sent to the program before processing it
759 if(size(app.incomingData) == 0)
760 updateLog(app, '[E107]|Error receiving data from the MCU, received no

data');
761 app.StatusLabel.Text = 'Status: [E107]|Error receiving data from the

MCU, received no data';
762 enableRunButtons(app);
763 app.MeasurementLamp.Color = 'red';
764 return;
765 end
766
767 % Processing the raw data [ASCII] into values [NUM]
768 processData(app, 'Single', selectedFs, app.incomingData, 1, selectedFvalve,

selectedNvalve);
769
770 % Autosave if selected, check if the directory is right
771 if(selectedAutoSave == true)
772 try
773 autoSaveVariables(app, selectedFs, selectedSensor, selectedGain,

selectedFvalve, ...
774 selectedNvalve, selectedFolder, selectedType, today);
775 catch e
776 updateLog(app, e.message);
777 enableRunButtons(app);
778 app.WorkspaceLamp.Color = 'red';
779 return;
780 end
781 end
782
783 % End of measurement
784 enableRunButtons(app);
785 updateLog(app, '° ° ° Single test has finished ° ° °');
786 app.StatusLabel.Text = 'Status: Single test has finished';
787 end
788
789 % Button pushed function: Full_Run
790 function Full_RunPushed(app, event)
791 %% This callback is executed when the user presses on the Full run button
792 %% Does a test on all seven sensors (1LC, PE) with the parameters in the

configuration panel
793
794 % Clean up the command window
795 clc;
796
797 % User configuration parameters
798 selectedDuration = app.General_Duration.Value;
799 selectedFs = app.General_SampleFrequency.Value;
800 selectedFvalve = app.ValveFrequency.Value;
801 selectedNvalve = app.ValveTimes.Value;
802 selectedType = app.TypeDropDown.Value;
803 selectedFolder = app.LocationEditField.Value;
804 selectedLoadcellPulse = 0;
805
806 % Standard initialisations
807 updateLog(app, '° ° ° Running full measurement now ° ° °');
808 app.StatusLabel.Text = 'Status: Running full measurement now';
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809 disableRunButtons(app);
810 determinedBufferSize = initializeConnection(app, selectedFs,

selectedDuration);
811 initializeVariables(app, determinedBufferSize);
812 connectionStatus = openSerialPort(app);
813 today = datestr(now, 'mmdd_HHMMSS');
814
815 % Checks if all the configuration parameters are correct and if the

connection with the MCU could be made
816 if(checkUserConfig(app, 1, true, selectedFolder) == false ...
817 || connectionStatus == false)
818 return;
819 end
820
821 % First part of the code is about the communication with the MCU and data

transfer
822 % Predefined arrays to quickly determine settings for each iteration
823 sensors = [app.Full_Loadcell.Value app.Full_Sensor1.Value app.Full_Sensor2.

Value app.Full_Sensor3.Value ...
824 app.Full_Sensor4.Value app.Full_Sensor5.Value app.Full_Sensor6.Value

app.Full_Loadcell.Value];
825 orderSensor = ['7', '1', '2', '3', '4', '5', '6', '7'];
826 orderPlots = [7, 1, 2, 3, 4, 5, 6, 8];
827
828 % Asynchronous writing arguments, synchronous reading data
829 % Between each measurement, the sensor values are being processed and saved

in the local workspace
830 try
831 % Goes through 8 possible iterations
832 for i = 1:8
833 statusPass = false;
834 determinedGain = 4; % Start with a gain of 1, then look for the

appropriate gain
835
836 % If the sensor is selected, it will go through this if statement
837 if (sensors(i) == true)
838 app.Full_Continue.Enable = true;
839 if(orderSensor(i) == '7')
840 updateLog(app, ['Press continue to start measuring the

loadcell']);
841 else
842 updateLog(app, ['Press continue to start measuring sensor '

orderSensor(i)]);
843 end
844
845 % Waiting for the continue button to be pressed
846 % In the future the button will be replaced by a signal that

the nozzle is on top of the dome
847 while(app.sensorReady ~= 1)
848 pause(1);
849 if(app.emergencyStop == 1)
850 enableRunButtons(app);
851 fclose(app.s);
852 updateLog(app, '° ° ° Full test has been aborted ° ° °'

);
853 return;
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854 end
855 end
856
857 % Start measuring, will continue to do so until all

requirements have been met
858 while(statusPass ~= true && app.emergencyStop ~= 1)
859 % Information about the arguments and data
860 communicateMCU(app, determinedBufferSize, selectedFs,

orderSensor(i), selectedDuration, determinedGain,
selectedFvalve, selectedNvalve, selectedLoadcellPulse);

861
862 % Data processing of the incoming information
863 if(size(app.incomingData) == 0)
864 updateLog(app, '[E107]|Error receiving data from the

MCU, received no data');
865 app.StatusLabel.Text = 'Status: [E107]|Error receiving

data from the MCU, received no data';
866 enableRunButtons(app);
867 fclose(app.s);
868 app.MeasurementLamp.Color = 'red';
869 return;
870 end
871
872 processData(app, 'Full', selectedFs, app.incomingData,

orderPlots(i), selectedFvalve, selectedNvalve);
873
874 % Check if the data received has a good shape and is not

distorted, loadcell: check step function, PE: check FFT
875 if(orderSensor(i) == '7')
876 statusPass = verifyMeasurementLC(app, selectedFs,

selectedDuration, app.sensor_NF(:,orderPlots(i)));
877 else
878 statusPass = verifyMeasurementPE(app, selectedFvalve,

app.f_scale, app.fourier_NF(:,orderPlots(i)));
879 end
880
881 % Check if the selected gain is too high/too low, adjust if

needed
882 bestGain = determineBestGain(app, app.sensor_NF(:,

orderPlots(i)));
883 if(determinedGain == bestGain && statusPass == true)
884 % Done with reading, waiting for a signal to read the

next sensor
885 app.sensorReady = 0;
886 if(orderSensor(i) == '7')
887 updateLog(app, ['Done reading loadcell']);
888 else
889 updateLog(app, ['Done reading sensor ' orderSensor(

i)]);
890 end
891 else
892 statusPass = false;
893 determinedGain = bestGain;
894 updateLog(app, ['Redoing the measurement, trying now

with gain: ' num2str(2^(4°determinedGain))]);
895 end
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896
897 % To make it interruptable to make a emergency stop
898 pause(1);
899 if(app.emergencyStop == 1)
900 enableRunButtons(app);
901 fclose(app.s);
902 updateLog(app, '° ° ° Full test has been aborted ° ° °'

);
903 return;
904 end
905 end
906 end
907 end
908
909 % Information about stopping the connection
910 fclose(app.s);
911 catch e
912 errorCommunication(app, e);
913 return;
914 end
915
916 % End of measurement
917 enableRunButtons(app);
918 updateLog(app, '° ° ° Full test has finished ° ° °');
919 app.StatusLabel.Text = 'Status: Full test has finished';
920
921 % Switches to the analyze tab and shows all the measurements
922 % Saves all current variables as different ones to avoid overwriting
923 % Uses these variables to do analyzing
924 app.a_description = app.DescriptionEditField.Value;
925 app.a_incomingData = app.incomingData;
926 app.a_x_scale = app.x_scale;
927 app.a_f_scale = app.f_scale;
928 app.a_sensor_NF = app.sensor_NF;
929 app.a_sensor_F = app.sensor_F;
930 app.a_fourier_NF = app.fourier_NF;
931 app.a_date = today;
932 app.a_folder = selectedFolder;
933 app.a_fs = selectedFs;
934 app.a_Fvalve = selectedFvalve;
935 app.a_Nvalve = selectedNvalve;
936 app.a_scaleFactor = [1,1,1,1,1,1];
937 assignin('base', 'scaleFactor', app.a_scaleFactor);
938
939 % After the measurement and data processing is done, the data is being

analyzed by the program
940 analyzeFullTestData(app, selectedFs, '1234567', '1x', selectedFvalve, ...
941 selectedNvalve, selectedFolder, selectedType, today);
942 end
943
944 % Button pushed function: Full_Continue
945 function Full_ContinuePushed(app, event)
946 %% This emulates a ready signal when nozzle is on top of the dome
947 app.sensorReady = 1;
948 app.Full_Continue.Enable = false;
949 end
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950
951 % Button pushed function: Continuous_Run
952 function Continuous_RunPushed(app, event)
953 %% This callback is executed when the user presses on the Continuous run

button
954 %% Keeps doing a test with the parameters in the configuration panel
955
956 % Clean up the command window
957 clc;
958
959 % User configuration parameters
960 selectedSensor = app.Continuous_Sensor.Value;
961 selectedDuration = app.General_Duration.Value;
962 selectedInterval = app.Continuous_Interval.Value;
963 selectedGain = app.Continuous_Gain.Value;
964 selectedFs = app.General_SampleFrequency.Value;
965 selectedFvalve = app.ValveFrequency.Value;
966 selectedNvalve = app.ValveTimes.Value;
967 selectedType = app.TypeDropDown.Value;
968 selectedFolder = app.LocationEditField.Value;
969 if(app.PulseonloadcellSwitch.Value == "On")
970 selectedLoadcellPulse = 1;
971 else
972 selectedLoadcellPulse = 0;
973 end
974
975 % Standard initialisations
976 updateLog(app, '° ° ° Running continuous measurement now ° ° °');
977 app.StatusLabel.Text = 'Status: Running continuous measurement now';
978 disableRunButtons(app);
979 app.Continuous_Stop.Enable = true;
980 determinedBufferSize = initializeConnection(app, selectedFs,

selectedDuration);
981 initializeVariables(app, determinedBufferSize);
982 determinedGain = determineGain(app, selectedGain);
983 connectionStatus = openSerialPort(app);
984 runtimeAmount = 0;
985
986 % Checks if all the configuration parameters are correct and if the

connection with the MCU could be made
987 if(checkUserConfig(app, determinedGain, true, selectedFolder) == false ...
988 || connectionStatus == false)
989 return;
990 end
991
992 % First part of the code is about the communication with the MCU and data

transfer
993 % Asynchronous writing arguments, synchronous reading data
994 while(app.stopContinuousTest ~= 1)
995 % Initialisations for each measurement
996 initializeVariables(app, determinedBufferSize);
997 today = datestr(now, 'mmdd_HHMMSS');
998 runtimeAmount = runtimeAmount + 1;
999 updateLog(app, ['° ° ° Continuous measurement ' num2str(runtimeAmount)

' ° ° °']);
1000
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1001 try
1002 communicateMCU(app, determinedBufferSize, selectedFs,

selectedSensor, selectedDuration, ...
1003 determinedGain, selectedFvalve, selectedNvalve,

selectedLoadcellPulse);
1004
1005 % Second part of the code is about processing the data
1006 % First checks if data was sent to the program before processing it
1007 if(size(app.incomingData) == 0)
1008 updateLog(app, '[E107]|Error receiving data from the MCU,

received no data');
1009 app.StatusLabel.Text = 'Status: [E107]|Error receiving data

from the MCU, received no data';
1010 enableRunButtons(app);
1011 fclose(app.s);
1012 app.MeasurementLamp.Color = 'red';
1013 return;
1014 end
1015
1016 % Processing the raw data [ASCII] into values [NUM]
1017 processData(app, 'Single', selectedFs, app.incomingData, 1,

selectedFvalve, selectedNvalve);
1018
1019 % Autosave if selected, check if the directory is right
1020 autoSaveVariables(app, selectedFs, selectedSensor, selectedGain,

selectedFvalve, ...
1021 selectedNvalve, selectedFolder, selectedType, today);
1022 savePlotContinuous(app, selectedSensor, selectedFvalve, ...
1023 selectedNvalve, selectedType, selectedFs, selectedGain,

selectedFolder, today)
1024
1025 % Wait for the given interval, unless the stop button is pressed
1026 logHistory = app.UITable.Data;
1027 app.UITable.Data = [{datestr(now, 'HH:MM:SS') ['° ° ° Waiting for '

num2str(selectedInterval) ' seconds ° ° °']};app.UITable.Data
];

1028
1029 for i = 1:ceil(selectedInterval)
1030 if(app.stopContinuousTest~=1)
1031 pause(1);
1032 app.UITable.Data = [{datestr(now, 'HH:MM:SS') ['° ° °

Waiting for ' num2str(selectedInterval°i) ' seconds °
° °']};logHistory];

1033 else
1034 break;
1035 end
1036 end
1037 catch e
1038 errorCommunication(app, e);
1039 instrreset;
1040 initializeConnection(app, selectedFs, selectedDuration);
1041 app.UITable.Data = [{datestr(now, 'HH:MM:SS') '° ° ° Attempting to

restart ° ° °'}; app.UITable.Data];
1042 fopen(app.s);
1043 disableRunButtons(app);
1044 app.Continuous_Stop.Enable = true;
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1045 end
1046 end
1047
1048 % End of measurement
1049 fclose(app.s);
1050 enableRunButtons(app);
1051 updateLog(app, '° ° ° Continuous test has finished ° ° °');
1052 app.StatusLabel.Text = 'Status: Continuous test has finished';
1053 end
1054
1055 % Button pushed function: Continuous_Stop
1056 function Continuous_StopPushed(app, event)
1057 %% When the user presses on the stop button, the continuous test will stop

as soon as possible
1058 app.stopContinuousTest = 1;
1059 disableRunButtons(app);
1060 updateLog(app, 'Stop button is pressed, measuring will stop soon');
1061 end
1062
1063 % Button pushed function: OpendataButton
1064 function OpendataButtonPushed(app, event)
1065 %% This callback is executed when the user presses on the Open data button
1066 %% This is used to manually analyze full tests by opening the .mat file
1067
1068 % Clean up the command window
1069 clc;
1070
1071 % The user needs to select a .mat file
1072 app.MomoPESPTesterUIFigure.Visible = 'off';
1073 selectedFolder = app.LocationEditField.Value;
1074 if(selectedFolder == "")
1075 selectedFolder = pwd;
1076 end
1077 [filename,folder] = uigetfile([selectedFolder '\*.mat'],...
1078 'Select a full test');
1079 app.MomoPESPTesterUIFigure.Visible = 'on';
1080
1081 % The program tries to read the .mat file and extracts all the necesssary

information
1082 filename = char(filename);
1083 try
1084 app.temp = load([folder filename(1,:)]);
1085 [~, column] = size(app.temp.sensor_NF);
1086 if(column < 7)
1087 updateLog(app, 'Error opening file, possibly not a full test');
1088 return;
1089 end
1090
1091 dateIndex1 = 1;
1092 dateIndex2 = 11;
1093 [fsIndex1, fsIndex2] = regexpi(filename(1,:),'_fs.*_S');
1094 [valveFrequencyIndex1, valveFrequencyIndex2] = regexpi(filename(1,:), '

x_f.*_n');
1095 date = filename(1, dateIndex1:dateIndex2);
1096 if(contains(filename, 'cmp') == 1)
1097 [timesIndex1, timesIndex2] = regexpi(filename(1,:), '_n.*_cmp');
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1098 else
1099 [timesIndex1, timesIndex2] = regexpi(filename(1,:), '_n.*.mat');
1100 end
1101
1102 app.a_incomingData = app.temp.incomingData;
1103 app.a_x_scale = app.temp.x_scale;
1104 app.a_f_scale = app.temp.f_scale;
1105 app.a_sensor_NF = app.temp.sensor_NF;
1106 app.a_sensor_F = app.temp.sensor_F;
1107 app.a_fourier_NF = app.temp.fourier_NF;
1108 app.a_date = date;
1109 app.a_folder = folder;
1110 app.a_fs = str2num(filename(1, fsIndex1+3:fsIndex2°2));
1111 app.a_Fvalve = str2num(filename(1, valveFrequencyIndex1+3:

valveFrequencyIndex2°2));
1112 app.a_Nvalve = str2num(filename(1, timesIndex1+2:timesIndex2°4));
1113
1114 if(isfield(app.temp, 'scaleFactor') == 1)
1115 app.a_scaleFactor = app.temp.scaleFactor;
1116 updateLog(app, 'Scale factor found, it won''t be recalculated');
1117 else
1118 app.a_scaleFactor = [1,1,1,1,1,1];
1119 updateLog(app, 'Scale factor not found, all scale factors are

determined now');
1120 end
1121
1122 if(exist('app.temp.description') == 1)
1123 app.a_description = app.temp.description;
1124 else
1125 app.a_description = '';
1126 end
1127
1128 analyzeFullTestData(app, app.a_fs, '1234567', '1x', app.a_Fvalve, ...
1129 app.a_Nvalve, folder, 'FullTest', date)
1130 catch e
1131 disp(e.message)
1132 end
1133 end
1134
1135 % Value changed function: Sensor1CheckBox
1136 function Sensor1CheckBoxValueChanged(app, event)
1137 %% If the user unchecked/checked a sensor button in the analyzing tab,
1138 %% a new plot is made with the selected sensors
1139 updateAnalyzeAxes(app)
1140 end
1141
1142 % Value changed function: Sensor2CheckBox
1143 function Sensor2CheckBoxValueChanged(app, event)
1144 %% If the user unchecked/checked a sensor button in the analyzing tab,
1145 %% a new plot is made with the selected sensors
1146 updateAnalyzeAxes(app)
1147 end
1148
1149 % Value changed function: Sensor3CheckBox
1150 function Sensor3CheckBoxValueChanged(app, event)
1151 %% If the user unchecked/checked a sensor button in the analyzing tab,
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1152 %% a new plot is made with the selected sensors
1153 updateAnalyzeAxes(app)
1154 end
1155
1156 % Value changed function: Sensor4CheckBox
1157 function Sensor4CheckBoxValueChanged(app, event)
1158 %% If the user unchecked/checked a sensor button in the analyzing tab,
1159 %% a new plot is made with the selected sensors
1160 updateAnalyzeAxes(app)
1161 end
1162
1163 % Value changed function: Sensor5CheckBox
1164 function Sensor5CheckBoxValueChanged(app, event)
1165 %% If the user unchecked/checked a sensor button in the analyzing tab,
1166 %% a new plot is made with the selected sensors
1167 updateAnalyzeAxes(app)
1168 end
1169
1170 % Value changed function: Sensor6CheckBox
1171 function Sensor6CheckBoxValueChanged(app, event)
1172 %% If the user unchecked/checked a sensor button in the analyzing tab,
1173 %% a new plot is made with the selected sensors
1174 updateAnalyzeAxes(app)
1175 end
1176
1177 % Value changed function: Loadcell1CheckBox
1178 function Loadcell1CheckBoxValueChanged(app, event)
1179 %% If the user unchecked/checked a sensor button in the analyzing tab,
1180 %% a new plot is made with the selected sensors
1181 updateAnalyzeAxes(app)
1182 end
1183
1184 % Value changed function: GraphDropDown
1185 function GraphDropDownValueChanged(app, event)
1186 %% If the user unchecked/checked a sensor button in the analyzing tab,
1187 %% a new plot is made with the selected sensors
1188 updateAnalyzeAxes(app)
1189 end
1190
1191 % Value changed function: PeriodsCheckBox
1192 function PeriodsCheckBoxValueChanged(app, event)
1193 %% If the user unchecked/checked a sensor button in the analyzing tab,
1194 %% a new plot is made with the selected sensors
1195 updateAnalyzeAxes(app)
1196 end
1197
1198 % Button pushed function: ResetScaleButton
1199 function ResetScaleButtonPushed(app, event)
1200 %% If the user clicks on the reset scale button, the scale factors will be

reset,
1201 %% a new plot is made with scale 1
1202 analyzeFullTestData(app, app.a_fs, '1234567', '1x', app.a_Fvalve, ...
1203 app.a_Nvalve, app.a_folder, 'FullTest', app.a_date)
1204 end
1205
1206 % Button pushed function: AutoscaleButton
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1207 function AutoscaleButtonPushed(app, event)
1208 %% If the user clicks on the auto scale button, the scale factors will be

automatically calculated,
1209 %% a new plot is made with calculated scales
1210
1211 % Process data to put into table
1212 currentDataTable = app.UITable2.Data;
1213 maxFFTValue = ones(6,1);
1214 for i = 1:6
1215 [maxFFTValue(i), ~] = max(app.a_fourier_NF(:,i));
1216 end
1217
1218 referenceValue = max(maxFFTValue);
1219
1220 for i = 1:6
1221 currentDataTable(i,4) = cellstr(num2str(referenceValue/maxFFTValue(i)))

;
1222 end
1223
1224 app.UITable2.Data = currentDataTable;
1225
1226 % Process data into graph
1227 updateAnalyzeAxes(app)
1228 end
1229
1230 % Button pushed function: ResetAxesButton
1231 function ResetAxesButtonPushed(app, event)
1232 %% If the user clicks on the reset axes button, the axes limit are reset to

these values
1233 if(app.GraphDropDown.Value == "FFT")
1234 xlim(app.UIAxes, [0 20]);
1235 ylim(app.UIAxes, 'auto');
1236 else
1237 xlim(app.UIAxes, 'auto');
1238 ylim(app.UIAxes, 'auto');
1239 end
1240 end
1241
1242 % Button pushed function: SaveButton
1243 function SaveButtonPushed(app, event)
1244 %% If the user clicks on the save button, all important variables are saved

into a .mat file
1245 %% Each property is assigned a variable so it can be read out in the

workspace
1246
1247 % Assigning properties to variables
1248 incomingData = app.incomingData;
1249 x_scale = app.x_scale;
1250 sensor_NF = app.sensor_NF;
1251 sensor_F = app.sensor_F;
1252 f_scale = app.f_scale;
1253 fourier_NF = app.fourier_NF;
1254 selectedFs = app.General_SampleFrequency.Value;
1255 description = app.DescriptionEditField.Value;
1256 frequency = app.ValveFrequency.Value;
1257 openTimes = app.ValveTimes.Value;
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1258 selectedFolder = app.LocationEditField.Value;
1259
1260 % If no location is chosen or if it does not exist, the current directory

is chosen
1261 if(selectedFolder == "" || ~exist(selectedFolder, 'dir'))
1262 selectedFolder = pwd;
1263 end
1264
1265 % Check if the single test, continuous or full test tab is active to

determine the sensors and gain
1266 if (app.TabGroup3.SelectedTab == app.SingleTestTab)
1267 gain = app.Single_Gain.Value;
1268 if(app.Single_Sensor.Value == '7')
1269 sensorNumber = 'loadcell';
1270 else
1271 sensorNumber = app.Single_Sensor.Value;
1272 end
1273 elseif(app.TabGroup3.SelectedTab == app.ContinuousTestTab)
1274 gain = app.Continuous_Gain.Value;
1275 if(app.Continuous_Sensor.Value == '7')
1276 sensorNumber = 'loadcell';
1277 else
1278 sensorNumber = app.Continuous_Sensor.Value;
1279 end
1280 elseif (app.TabGroup3.SelectedTab == app.FullTestTab)
1281 Sensors = [app.Full_Sensor1.Value app.Full_Sensor2.Value app.

Full_Sensor3.Value app.Full_Sensor4.Value app.Full_Sensor5.Value
app.Full_Sensor6.Value];

1282 sensorNumber = '';
1283 for i = 1:6
1284 if (Sensors(i) == true)
1285 sensorNumber = [sensorNumber num2str(i)];
1286 end
1287 end
1288 gain = '1x';
1289 end
1290
1291 % Filename
1292 today = datestr(now, 'mmdd_HHMMSS');
1293 type = app.TypeDropDown.Value;
1294 fileName = [today '_' type '_fs' num2str(selectedFs) '_S' sensorNumber '_G'

gain '_f' num2str(frequency) '_n' num2str(openTimes)];
1295
1296 % Opening dialog box to let the user chose their save location
1297 app.MomoPESPTesterUIFigure.Visible = 'off';
1298 [name, path] = uiputfile('*.mat', 'File Selection', [selectedFolder '/'

fileName]);
1299
1300 if(path ~= 0)
1301 save(strcat(path,name), 'description', 'incomingData', 'x_scale', '

sensor_NF', 'sensor_F', 'f_scale', 'fourier_NF');
1302 app.UITable.Data = [{datestr(now, 'HH:MM:SS') '° ° ° Measurement saved

° ° °'};app.UITable.Data];
1303 if(app.LocationEditField.Value == "")
1304 app.LocationEditField.Value = path;
1305 app.WorkspaceLamp.Color = 'green';
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1306 updateLog(app, 'Save location has been updated to your most recent
one');

1307 end
1308 end
1309
1310 app.MomoPESPTesterUIFigure.Visible = 'on';
1311 end
1312
1313 % Button pushed function: SearchButton
1314 function SearchButtonPushed(app, event)
1315 %% Button to search for serial ports in the case the MCU was disconnected

while running this app
1316
1317 % (Instrument Control Toolbox required and serial port drivers)
1318 p = instrhwinfo('serial');
1319 app.SelectserialportDropDown.Items = p.AvailableSerialPorts;
1320 end
1321
1322 % Button pushed function: AbortButton
1323 function AbortButtonPushed(app, event)
1324 %% If the user presses on the abort button, the processes inside MATLAB

will stop as soon as possible
1325 app.emergencyStop = 1;
1326 updateLog(app, 'Abort button has been pressed, measurement will stop soon')

;
1327 app.stopContinuousTest = 1;
1328 enableRunButtons(app);
1329 return;
1330 end
1331
1332 % Value changed function: Loadcell2CheckBox
1333 function Loadcell2CheckBoxValueChanged(app, event)
1334 %% If the user unchecked/checked a sensor button in the analyzing tab,
1335 %% a new plot is made with the selected sensors
1336 updateAnalyzeAxes(app)
1337 end
1338
1339 % Button pushed function: OpenButton
1340 function OpenButtonPushed(app, event)
1341 %% If the user clicks on the open button,
1342 %% a dialog box will open to change the default save location
1343 app.MomoPESPTesterUIFigure.Visible = 'off';
1344 if(app.LocationEditField.Value == "" || ~exist(app.LocationEditField.Value)

)
1345 folder = uigetdir(pwd);
1346 else
1347 folder = uigetdir(app.LocationEditField.Value);
1348 end
1349
1350 app.MomoPESPTesterUIFigure.Visible = 'on';
1351 if(folder ~= 0)
1352 app.LocationEditField.Value = folder;
1353 app.WorkspaceLamp.Color = 'green';
1354 updateLog(app, 'Save directory is succesessfully changed');
1355 end
1356 end
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1357 end
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Momo PE Sensor Plate Tester - Mbed code

1 #include "mbed.h"
2 #include "Adafruit_ADS1015.h"
3 #include "USBSerial.h"
4
5 #define SERIAL_BAUD_RATE 921600
6 #define I2C_RATE 400000
7
8 DigitalOut valve(p23); // Pin to control the valve opening/closing
9 I2C SP(p28, p27); // Sensor Plate, SDA ° SCL

10 I2C LC(p9, p10); // Load cell, SDA ° SCL
11 Serial pc(USBTX, USBRX); // tx, rx
12
13 // ADC
14 Adafruit_ADS1015 piezo_electric_adc(&SP, 0x4B); // SP ADC 1
15 Adafruit_ADS1015 piezo_electric_adc2(&SP, 0x4A); // SP ADC 2
16 Adafruit_ADS1015 loadcell_adc(&LC, 0x48); // LC ADC
17 adsGain_t pga_table[]= {GAIN_SIXTEEN,GAIN_EIGHT,GAIN_FOUR,GAIN_TWO,GAIN_ONE};
18 uint8_t scaleTable[] = {1, 2, 4, 8, 16};
19
20 // Sensor value and its scale factor index
21 int loadcellValue = 0;
22 int electricValue = 0;
23 uint8_t scaleFactor_LC = 1;
24 uint8_t scaleFactor_PE = 1;
25
26 // Read Configuration
27 float sampleFrequency = 2500;
28 float duration = 0.0;
29 uint8_t channel_electric = 0;
30 uint8_t sensorNumber = 0;
31 uint8_t variableGain = 0;
32
33 // Valve Configuration
34 float valveFrequency = 1;
35 int nValveOpen = 1;
36 uint8_t loadcellPulse = 0;
37
38 // Variables for periodic tasks
39 Ticker s_PE; // Task for PE
40 Ticker s_LC; // Task for LC
41 Timer t;
42 bool ready = false;
43
44 // Test Variables
45 float tempTimer = 0;;
46
47 // Reads the ADC from the sensor
48 void getSingleElectric()
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49 {
50 // Invalid input
51 if (sensorNumber > 5) {
52 return;
53 }
54
55 // 6 PE sensors are split between 2 ADC’s, 3 PE sensors for each ADC
56 channel_electric = sensorNumber%3;
57
58 if (sensorNumber < 3) {
59 // It uses the first ADC
60 electricValue = piezo_electric_adc.readADC_Differential(channel_electric)*scaleFactor_PE;
61 } else {
62 // It uses the second ADC
63 electricValue = piezo_electric_adc2.readADC_Differential(channel_electric)*scaleFactor_PE;
64 }
65 }
66
67 // As long as the timer has not reached the duration, it will continue reading and writing data [PE]
68 void read_adc_PE()
69 {
70 if (t.read() > duration) {
71 t.stop();
72 ready = false;
73 s_PE.detach();
74 } else if(ready == true) {
75 // Get the current value in the ADC
76 getSingleElectric();
77
78 // Data is written through UART in ASCII
79 // Datastream starts with sign (+/°), then 5 data digits, then carriage return and new line
80 pc.printf("%+.5d\r\n", electricValue);
81 }
82 }
83
84 // Reads the ADC from the load cell
85 void getLoadcellValue()
86 {
87 loadcellValue = loadcell_adc.readADC_Differential(0)*scaleFactor_LC;
88 }
89
90 // As long as the timer has not reached the duration, it will continue reading and writing data [LC]
91 void read_adc_LC()
92 {
93 if (t.read() > duration) {
94 t.stop();
95 ready = false;
96 s_LC.detach();
97 } else if(ready == true) {
98 getLoadcellValue();
99

100 // Data is written through UART in ASCII
101 // Datastream starts with sign (+/°), then 5 data digits, then carriage return and new line
102 pc.printf("%+.5d\r\n", loadcellValue);
103 }
104 }
105
106 // Basic open and closing the valve
107 // Opens and closes based on the valve frequency and amount of times it should open/close
108 void valve_open()
109 {
110 for(int i = 0; i<nValveOpen*2; i++) {
111 valve = !valve;
112 wait(1/(valveFrequency*2));
113 }
114 }
115
116 // Basic open and closing the valve for load cell
117 // Should be a step function, the signal should be high till the end of the measurement
118 void loadcell_valve_open()
119 {
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120 valve = !valve;
121 wait(duration°0.5);
122 valve = !valve;
123 }
124
125 // The main process
126 int main()
127 {
128 // Initializing settings
129 SP.frequency(I2C_RATE);
130 LC.frequency(I2C_RATE);
131 NVIC_SetPriority(TIMER3_IRQn, 0); // Set ticker interrupt priorities as highest
132 pc.baud(SERIAL_BAUD_RATE);
133 valve = 1;
134
135 while (1) {
136 if(ready != true) {
137 // Waits for the MATLAB program to send the user configuration before reading out
138 pc.scanf("%f %d %f %d %f %d %d", &sampleFrequency, &sensorNumber, &duration, &variableGain, &

valveFrequency, &nValveOpen, &loadcellPulse);
139 sensorNumber = sensorNumber ° 1; // Sensor values in MCU are from 0°6, [0°5: sensor plate, 6:

loadcell]
140
141 if(sensorNumber < 6) {
142 // Calls the function read_adc_PE (callback) periodicaly with interval provided as second

argument (in micro seconds)
143 s_PE.attach_us(&read_adc_PE, 1000000/sampleFrequency);
144
145 // Set the gain factor of the PGA
146 piezo_electric_adc.setGain(pga_table[variableGain]);
147 piezo_electric_adc2.setGain(pga_table[variableGain]);
148 scaleFactor_PE = scaleTable[variableGain];
149
150 // Parameters are read, and MCU is ready to operate
151 ready = true;
152 t.reset();
153 t.start();
154
155 // MCU already starts reading the values, but the valve will open after a delay of 1 sec (

arbitrary chosen)
156 wait(1);
157
158 // Starts opening/closing the valve
159 valve_open();
160 } else if(sensorNumber == 6) {
161 // Calls the function read_adc_LC (callback) periodicaly with interval

provided as second argument (in micro seconds)
162 s_LC.attach_us(&read_adc_LC, 1000000/sampleFrequency);
163
164 // Set the gain factor of the PGA
165 loadcell_adc.setGain(pga_table[variableGain]);
166 scaleFactor_LC = scaleTable[variableGain];
167
168 // Parameters are read, and MCU is ready to operate
169 ready = true;
170 t.reset();
171 t.start();
172
173 // MCU already starts reading the values, but the valve will open after a delay of 1 sec (

arbitrary chosen)
174 wait(1);
175
176 // Based on the user settings, a pulse or a step is put on the load cell
177 if(loadcellPulse == 1){
178 valve_open();
179 } else {
180 loadcell_valve_open();
181 }
182 }
183 }
184 }
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185 }


