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Abstract. The prospects of active wake deflection control to mitigate wake-induced power losses in wind farms
have been demonstrated by large eddy simulations, wind tunnel experiments, and recent field tests. However, it
has not yet been fully understood how the yaw control of wind farms should take into account the variability in
current environmental conditions in the field and the uncertainty in their measurements. This research investi-
gated the influence of dynamic wind direction changes on active wake deflection by intended yaw misalignment.
For this purpose the wake model FLORIS was used together with wind direction measurements recorded at an
onshore meteorological mast in flat terrain. The analysis showed that active wake deflection has a high sensi-
tivity towards short-term wind directional changes. This can lead to an increased yaw activity of the turbines.
Fluctuations and uncertainties can cause the attempt to increase the power output to fail. Therefore a methodol-
ogy to optimize the yaw control algorithm for active wake deflection was introduced, which considers dynamic
wind direction changes and inaccuracies in the determination of the wind direction. The evaluation based on real
wind direction time series confirmed that the robust control algorithm can be tailored to specific meteorological
and wind farm conditions and that it can indeed achieve an overall power increase in realistic inflow conditions.
Furthermore recommendations for the implementation are given which could combine the robust behaviour with
reduced yaw activity.

1 Introduction

In recent years, more and more wind turbines have been in-
stalled in ever larger wind farms. On the one hand, this has
advantages in logistics, network connection, maintenance,
and the utilization of the limited suitable locations. On the
other hand, this leads to situations where turbines are con-
siderably more affected by harmful wake conditions. Down-
stream turbines are experiencing higher turbulence, which
is generally associated with larger fatigue loads, and lower
wind speeds, which results in a lower energy yield. In or-
der to counteract this, different strategies are being inves-
tigated that try to reduce these negative wake effects. One
approach to achieve this is active wake deflection by in-

tended yaw misalignment, which was already investigated
by Medici and Dahlberg (2003) in a wind tunnel experiment.
While conventional, so-called greedy turbine control seeks
to optimize the operation of the individual turbines without
taking into account the mutual effects on the other turbines,
active wake deflection is the attempt to alter the trajectory of
turbine wakes in order to improve the inflow conditions of
downstream turbines. If two turbines are interacting through
a wake, the deflection is achieved by deliberately introduc-
ing a yaw misalignment of the rotor of the upstream turbine
with respect to the wind direction. The rotor then generates a
thrust force component that is perpendicular to the wind di-
rection, which laterally deflects the wake. The goal is that the
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power gain of downstream turbines is higher than the power
loss of the misaligned upstream turbine. More recent wind
tunnel experiments (Bastankhah and Porté-Agel, 2015; Cam-
pagnolo et al., 2016) and large eddy simulations (LESs) (Ge-
braad et al., 2014) demonstrated the potential of such wake
steering strategies for increasing the overall energy yield.
Additionally, Vollmer et al. (2016) investigated the influence
of different atmospheric stabilities on active wake deflection
in an LES study and analysed multiple sources that con-
tribute to the uncertainty in the estimation of the deflected
wake position. However, in both wind tunnel tests and con-
ventional high-fidelity computational fluid dynamics (CFD)
simulations the inflow enters through a defined area, thus
realistic dynamical changes in the wind direction are often
not adequately reproduced. Fluctuating wind conditions and
a high sensitivity towards the wind direction make it difficult
to take appropriate account of wakes in wind farm control in
an uncontrolled environment like the free field.

The contribution of this article continues the investigations
of Seifert (2015) and extends it by using methods of stochas-
tic programming (Birge and Louveaux, 2011) to take better
account of the uncertainties occurring in the field. This is
done to derive a robust control strategy for the yawing of tur-
bines, which is evaluated below. First results were published
in the final report of BMWi-funded research project Com-
pactWind (Ahrens et al., 2016) and presented at WindTech
2017 (Rott et al., 2017). The stochastic programming ap-
proach was also pursued in Quick et al. (2017) for optimizing
yaw angles for wake deflection while considering yaw errors
only. In contrast this paper takes into account wind direction
dynamics and measurement inaccuracy.

The objectives of this paper are (1) to analyse the impact
of dynamical wind direction changes on active wake deflec-
tion strategies, (2) to introduce a methodology to optimize
the yaw angle adjustment in a wind farm by taking these
fluctuations and measurement uncertainties into account and
(3) to propose open-loop control algorithms for active wake
deflection in a wind farm.

2 Methods

In this paper, a quantitative analysis of wind direction vari-
ability and its effect on active wake deflection is carried
out. Therefore, first the employed model for wake deflection
(Sect. 2.1) and an analytical description of the statistics of
wind direction variability (Sect. 2.2) are introduced. Based
on this, an optimization of the yaw angle adjustments of all
turbines in a wind farm with respect to the relative change
in the power output of the farm is established (Sect. 2.3) and
evaluated for a fictitious reference wind farm (Sect. 2.4).

2.1 Wake deflection model

The investigation in this article is based on the FLOw
Redirection and Induction in Steady state (FLORIS) model

(Gebraad et al., 2016), which has been especially devel-
oped for active wake deflection at the Delft University
of Technology and the National Renewable Energy Lab-
oratory (NREL; https://github.com/wisdem/floris, last ac-
cess: 8 November 2018). For a more elaborate description
of control-oriented models in general, see Boersma et al.
(2017). The comparatively low computational complexity of
the steady-state models makes it possible to perform opti-
mization algorithms and validations on the basis of large
datasets.

FLORIS extends the popular Jensen wake model (Jensen,
1983) to a more detailed wake description, containing three
zones: a near wake zone, a far wake zone, and a mixing zone
(see Fig. 1).

These three wake zones each contain their own set of pa-
rameters for wake recovery and expansion, increasing the
model’s flexibility and fidelity. Furthermore, FLORIS uses
the simplified analytical model from Jiménez et al. (2009)
which determines the wake deflection as a function of the tur-
bine’s thrust force and yaw angle. For multiple wake overlap
situations, the sum of squares approach for the superposition
of wake deficits is followed, first suggested by Katic et al.
(1986).

In short, FLORIS predicts the time-averaged steady-state
conditions of the flow and each turbine’s power capture as a
function of each turbine’s axial induction (i.e. a parameteri-
zation of the generator torque and blade pitch angles), yaw
angle, and atmospheric conditions inside a given farm. The
applicability of the model has been demonstrated in high-
fidelity simulations (e.g. Gebraad et al., 2016), wind tunnel
tests (Schreiber et al., 2017), and even to some degree field
tests (Fleming et al., 2017).

2.2 Statistical analysis of wind direction measurements

The analyses in this article were carried out on the basis
of measurements at a meteorological mast (referred to as a
met. mast hereafter). In Bromm et al. (2018), measurements
from the same device were used. As described there, the to-
tal height of the met. mast is 91.5m. The wind direction was
measured by a wind vane of type 4.3150.00.212 (manufac-
tured by Thies GmbH) at a height of 89.4m. The wind vane
was installed on a boom at the met. mast approx. 1m above
the main structure of the met. mast. As small disturbance
could be introduced from wind directions around 134◦ since
another boom was located at a distance of 1.65m in that di-
rection, to which the highest cup anemometer at a height of
91.5m was attached. For the evaluation this possible distur-
bance was not considered, since this wind direction rarely
appeared in the dataset and the effect should be marginal.

The wind direction angle can be expressed in radians ϕ ∈
[0,2π ) or in degrees ϕ ∈ [0◦,360◦) interchangeably. Both
representations are used in this article. Formulas are gener-
ally written using radians, while illustrations are presented
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Figure 1. A schematic visualization of the wake model in FLORIS, containing three discrete wake zones. Furthermore, active wake deflection
by purposely misaligning the turbine rotor with the flow is shown (cf. Fig. 4a in Gebraad et al., 2016).
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Figure 2. Exemplary 5 min time series of wind direction measure-
ments recorded at an onshore test site in northern Germany sampled
at 1 Hz resolution.

in degrees using the standard conventions, i.e. 0◦ represents
north and the rotation is clockwise.

The wind direction ϕ ∈ [0,2π ) as input variable is a deci-
sive parameter for the successful application of active wake
deflection. In the field, however, the wind direction can
change continuously and sometimes abruptly, as can be seen
in the example in Fig. 2.

The turbulent changes in the wind direction are in con-
trast to the slowly reacting yaw mechanism of utility-scale
wind turbines. The deviation between the wind direction and
the yaw angle of the turbine is usually averaged over several
minutes and a threshold for the deviation is used to keep the
turbine from constantly yawing (Burton et al., 2011). This
has the effect that the turbine is in standstill mode most of
the time (Kim and Dalhoff, 2014). Although the details of
the yaw control depend on the manufacturer, and is com-
monly kept confidential, in our experience the yaw angle
remains constant for about 5 to 10 min in most cases be-
fore the yaw control corrects the yaw angle according to the
changed wind direction. For this reason, we have studied the

statistics of 5 min wind direction time series from 1Hz mea-
surement data denoted as 8t ∈ {(ϕ1, . . .,ϕ300) ∈ R300

|ϕτ ∈

[0,2π ),τ = 1, . . .,300}, where the variable t ∈ N indexes
successive time series. Figure 2 depicts an exemplary time
series 8t from which a histogram is derived in Fig. 3. A
probability density function of a normal distribution (in red)
with the same mean value (284.78◦) and standard deviation
(4.60◦) as the measurement data is fitted to the histogram.
Since a histogram depends very much on the binning, we
added a quantile–quantile plot in Fig. 3b, which is commonly
used to compare distributions. Here, the measurement data
are compared with the fitted normal distribution. The mea-
surement data are sorted by their values and plotted against
the respective quantiles of the normal distribution. The better
the distributions match, the more the values lie on the straight
red line.

For the exemplary time series, both representations
demonstrate the similarity to the normal distribution reason-
ably well, which agrees with the findings of Gaumond et al.
(2014) that wind direction behaviour is normally distributed
within one averaging period, although Gaumond investigated
10 min time series. However, it should be noted that con-
ventional stochastic tools for the analysis of directional data
are not generally valid, whereas circular statistics consider
that, for example, ϕ and ϕ+ k · 2π for any k ∈ Z are identi-
cal angles on a standard circle. For example, the von Mises
(or Tikhonov) distribution is typically used as an approxi-
mation of a wrapped normal distribution. Further, the direc-
tional mean ϕDM ∈ [0,2π ) differs from the arithmetic mean.
It is defined as the angle of the sum of all unit vectors of the
wind directions ϕτ ,τ ∈ N (see Eq. 1) , but in programming
commonly the four quadrant inverse tangent (atan2) operator

www.wind-energ-sci.net/3/869/2018/ Wind Energ. Sci., 3, 869–882, 2018
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Figure 3. (a) Histogram of exemplary 5 min wind direction measurements in blue with the fitted Gaussian normal distribution in red,
(b) quantile–quantile plot of the exemplary 5 min wind direction measurements in blue with the normal distribution reference represented by
the dashed red line.

is used for the computation:

ϕDM = arg

(∑
τ

exp
(√
−1 ·ϕτ

))

= atan2

(∑
τ

sin(ϕτ ),
∑
τ

cos(ϕτ )

)
. (1)

Nevertheless, since the wind direction distributions during a
short time period include a relatively small sector compared
to the whole circle, the differences between the normal dis-
tribution and a wrapped normal distribution are negligible.
Therefore, and since it is comparatively less complex, we use
the standard tools as mentioned above. But, since each angle
can be expressed in multiple ways, we shift the transition
angle at 360◦/0◦ of each 5 min time series to its respective
opposite angle of ϕDM. This can be achieved by the modulo
operator (see Eq. 2), where ϕraw refers to the original raw
data.

ϕ = (ϕraw+π −ϕDM mod 2π )−π +ϕDM (2)

In this way, we can apply the conventional calculation for the
mean value and the standard deviation of the wind direction
data ϕ. The validity of the assumption of an underlying nor-
mal distribution for 5 min wind direction data series is statis-
tically tested in Sect. 3.1

2.3 Approach for optimization of yaw angles

In order to optimize the yaw settings of the turbines in a
wind farm, we assume that the total power output of a wind
farm consisting of n wind turbines corresponds to the sum of
the individual power outputs of the wind turbines. Conduc-
tion losses are therefore ignored. The turbines’ power is esti-
mated by FLORIS for a set of environmental conditions and
control variables, i.e. the axial induction factor aj and the
yaw angle γj of each individual turbine j = 1, . . .,n. With

0 = {γj ∈ [0,2π )|j = 1, . . .,n} we denote the set of yaw an-
gles of all turbines. We assume that the turbines run at a
constant axial induction factor of aj = 1

3 for all j and the
power output Pj of each turbine is normalized with respect
to the power output of a turbine in undisturbed inflow condi-
tions, since we are focussing on the influence of the yaw an-
gle on the relative change of turbine power. Therefore, both
aj and the wind speed are omitted in the following equa-
tions. Pj depends on its own control variable γj , the wind
direction and the yaw angles of all other turbines due to the
aerodynamic interaction in the wind farm. Hence, we denote
Pj = Pj (γ1, . . .,γn,ϕ).

Next we introduce two different optimizations of the yaw
angles which differ in the description of the wind direc-
tion variability. Firstly, we are neglecting wind direction
changes within the investigated time period. The optimiza-
tion problem formulated in Eq. (3) aims at finding the set of
optimal yaw angles 0opt(ϕ)= {γ opt

1 (ϕ), . . .,γ opt
n (ϕ)}, which

maximizes the power output of the wind farm for the pre-
scribed wind direction ϕ. We will refer to this as the conven-
tional optimization in the following.

find

0opt(ϕ)= argmax0
n∑
j=1

Pj (γ1, . . .,γn,ϕ)

for the wind direction ϕ

(3)

Secondly, the optimization of the yaw angles is formulated
more robust towards wind direction dynamics and uncertain-
ties in the measurements. Instead of considering only one
wind direction, the new problem description aims at finding
the set of optimal yaw angles for a distribution of wind di-
rections weighting the results for every individual wind di-
rection by its probability of occurrence. This is achieved in
Eq. (4) by a probability density function ρ(ϕ), which repre-
sents wind directional variation and uncertainties stochasti-
cally. We will refer to this approach as the robust optimiza-

Wind Energ. Sci., 3, 869–882, 2018 www.wind-energ-sci.net/3/869/2018/



A. Rott et al.: Robust optimization 873

tion in the following.

find

0opt(ρ(ϕ))= argmax0
2π∫
0
ρ(ϕ)

n∑
j=1

Pj (γ1, . . .,γn,ϕ)dϕ

for a probability density function ρ(ϕ).

(4)

This formulation is a generalization of the conventional op-
timization, which is obtained when we insert the dirac delta
function for the probability density function.

To solve the integral in Eq. (4) the cost function is dis-
cretized. For the calculation we have chosen a step size of
1◦, which corresponds reasonably well with the measuring
accuracy of wind vanes and still gives a good representation
of the distribution.

A number of algorithms can be used for the computation
of these kinds of optimization problems, including the in-
tuitive game theoretic approach presented in Marden et al.
(2012). This algorithm has the benefit that it works on com-
plex, nonlinear problems and does not depend on any gra-
dients, but unfortunately it converges relatively slowly. For
this research, therefore, we used the pattern search algorithm
(Audet and Dennis, 2002), which has similar properties but
we experienced a faster convergence speed.

2.4 Test case

In order to evaluate the control strategies derived from the
conventional and the robust optimization, a case study is per-
formed for a reference test wind farm. It consists of nine
NREL 5-MW turbines (Jonkman et al., 2009) with a rotor
diameter of 126 m in a grid layout (see Fig. 4). The turbines
are situated relatively close to each other, such that strong
wake effects occur, as the active wake deflection is of special
interest for such situations.

With this layout the distances between adjacent turbines
are 3D horizontally, 4D vertically, and 5D diagonally. These
values are comparable to the dense spacing in the offshore
wind farm Lillgrund (Papatheou et al., 2015).

The focus of the investigation is to determine the sen-
sitivity of the control strategies with regard to wind direc-
tion variability and uncertainty. In order to perform this in-
vestigation with realistic data, wind direction measurements
from a met. mast at 91.5m height at a near-coastal test
site in Brusow, northeastern Germany, were used as input.
The surrounding area was mostly flat, but some complex-
ity was added by a nearby forest. For more details we re-
fer to Bromm et al. (2018). Of the available measurements,
only data with a 5 min average wind speed between 3.5 and
14 ms−1 were used, since power optimization is only of in-
terest when the turbines operate above cut-in and below rated
wind speed. This corresponds to 87 % of the data collected
between 30 June and 22 November 2016, which gives a to-
tal of N = 35586 of 5 min time series. Figure 5 illustrates a
wind rose of the data showing the frequencies of occurrence
of the directions.

0D 3D 6D

0D

4D

8D

Figure 4. Layout of the reference wind farm. The reference turbine
(T32) is marked in red.

Figure 5. Wind rose of 1 Hz measurement data recorded at a met.
mast in Brusow, north-eastern Germany.

3 Results

In this section, the method for investigating the statistical
properties of wind direction changes using measurement data
is examined (Sect. 3.1). In Sect. 3.2 the two methods for yaw
angle optimization were applied to the reference wind farm
and in Sect. 3.3 open-loop control algorithms are derived

www.wind-energ-sci.net/3/869/2018/ Wind Energ. Sci., 3, 869–882, 2018
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from the optimizations and are evaluated using the measure-
ment data.

3.1 Stochastic properties of wind direction
measurements

As mentioned in Sect. 2.2, we analysed the stochastic proper-
ties of 5 min time series of 1 Hz wind direction measurements
denoted as 8t . Specifically, we want to verify the hypothesis
that 8t can be approximated statistically by a normal dis-
tribution as indicated by Fig. 3. Therefore, we performed a
Kolmogorov–Smirnov test on the subject (Chakravarti and
Laha, 1967). In this fitting test, the empirical distribution of
8t is compared to a normal distribution and a critical value is
calculated. This value, together with the chosen significance
level, determines whether to accept or reject the hypothesis.
In our case, 70.58 % of the measurements used for this inves-
tigation passed the test for a significance level of 5 %. From
this we draw the conclusion that in most cases 5 min wind di-
rection time series can be reasonably represented by normal
distributions. For normally distributed data, the mean value
and the standard deviation are sufficient to describe the dis-
tribution completely, so the standard deviation is of particular
importance for our measurements. For 95 % of the used data
the standard deviation was between 0.67 and 12.67◦, with an
average of 5.26◦. For a slightly shorter period, measurements
of atmospheric stability were also possible. A histogram of
the standard deviations of the wind direction divided into the
stability classes from this period is presented in Sect. 4.

However, the dynamics of the wind direction are not the
only uncertainty factor in rotor alignment. In addition, there
are inaccuracies in the determination of the wind direction
and the alignment of the turbine. Such types of measurement
errors are commonly assumed to be independent and nor-
mally distributed (Murcia et al., 2015). For a random variable
that is based on two or more independent distributions, its
distribution can be determined by the convolution of the in-
dividual distributions. In the case of normal distributions, the
convolution results again in a normal distribution, in which
the variances in the underlying distributions are added arith-
metically.

For these reasons, a normal distribution is chosen for the
probability density function of the measured wind direction
in the robust optimization, which represents the assumed un-
certainty and variability in the wind direction. This is in ac-
cordance with (Gaumond et al., 2014), who used a range of
wind directions together with weightings corresponding to
normal distributions as model input for similar wake models
to take into account the variability of 10 min wind direction
time series, and thus could improve the agreement of model
results with measurements.

Since the support of the normal distribution is unrestricted,
we limit the range to ϕ± 2σ , in order to cover the majority
(≈ 95.45%) of the occurring events. The advantage of using
a normal distribution is that the robustness of the optimiza-

tion is governed by only one variable, i.e. the chosen stan-
dard deviation σ of the distribution, which we will refer to
as the robustness parameter. For completeness it should be
mentioned that the wind direction measurement by nacelle
anemometry is commonly subject to a bias as well. Such an
offset has a clearly degrading effect on active yaw deflection
control and should be reduced by proper calibration of the
wind vane. For this purpose several practical procedures are
available as for instance demonstrated by Mittelmeier et al.
(2017) and Mittelmeier and Kühn (2018). For the analysis,
we assume in our analysis that a wind direction bias is negli-
gible.

3.2 Results of the yaw angle optimizations

The solutions of the conventional and the robust optimization
are the optimal yaw angles of all the turbines for all wind di-
rections. In Fig. 6 the results of the yaw schedule of only one
turbine (T32) is displayed for four cases. In the following, we
will refer to this turbine as the reference turbine. It is located
in the centre of the southernmost row of the wind farm and it
is highlighted in red in Fig. 4. Different robustness parame-
ters, σ = 0, 4, and 8◦, were chosen and the results are com-
pared to the baseline yaw schedule, which is the case when
there is no intentional yaw misalignment, represented by the
grey diagonal line. The black plot refers to the conventional
optimization corresponding to σ = 0◦. The blue and red plots
demonstrate the results of the robust optimization with σ = 4
and σ = 8◦, respectively.

In Fig. 6 it can be seen that the deviations from the baseline
become smaller with increasing robustness parameter. In the
black plot (σ = 0◦), the yaw angles have relatively large de-
viations in the wind sector from roughly 70 to 290◦. In seven
distinct situations the yaw angle rapidly changes from a pos-
itive to a negative misalignment, which means that the yaw
angle rotates contrary to the wind direction. This increases
the overall yawing activity of the turbine and it is generally
undesirable and should therefore be used with caution. These
situations correspond to the angles at which at least one tur-
bine is in the full wake of the reference turbine. In the re-
maining wind direction sector (290 to 70◦) there is no yaw
misalignment, since in these situations the wake of the ref-
erence turbine does not affect the other turbines in the wind
farm.

In the blue plot (σ = 4◦), the yaw misalignment is re-
duced compared to the first case. This applies in particular
for wind directions where the downstream wind turbine is
further away (e.g. at around 159◦ T11 and 201◦ T13). The
number of fluctuations, where the yaw misalignment rapidly
changes from positive to negative, is reduced to five. This
correspond to the angles at which one of the directly neigh-
bouring turbines is in the full wake of the reference turbine.

In the red plot (σ = 8◦), the deviations from the baseline
decrease further. Only at angles around 90 and 270◦, for
which the turbines affected by the wake of the reference tur-
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Figure 6. Optimized yaw angles of the centre turbine in the south-
ernmost row (T32) for three different robustness parameters σ = 0,
4, and 8◦. In addition, directions are marked and named accordingly,
at which neighbouring turbines are located downstream.

bine are the closest, the yaw angle visibly rotates contrary
to the wind direction. The other fluctuations are smoothed
out to plateau-like segments. At these plateaus the reference
turbine maintains a nearly constant yaw angle for a wind
sector of about ±7 to ±9◦ around the direction of maxi-
mum interaction. In these special situations, the orientation
of the reference turbine points almost exactly to the adjacent
downstream turbine. This ensures that the wake is deflected
to the correct direction (away from the downstream turbine)
without adjusting the yaw angle, even if the wind direction
changes within the specified sector. We hereinafter refer to
this special case as passive wake deflection. It will be further
discussed in Sect. 4.

We elaborate an exemplary case to better understand the
impact of wind directional variation and uncertainty on ac-
tive wake deflection for the different robustness parameters.
For this purpose, we select an arbitrary wind direction that
is assumed to predominate at the moment and to which the
turbines adjust according to the respective optimization. We
call this wind direction the estimated wind direction ϕest.
Then we analyse how performance of the different optimized
yaw settings changes when the actual wind direction deviates
from the estimated wind direction. As an illustrative exam-
ple we choose ϕest = 172◦, which is a situation where strong
wake effects occur. The optimized yaw angles of the turbines
are determined by the robust optimization for the robustness
parameters σ = 0, 4, and 8◦. The resulting yaw angles of all

turbines in the reference wind farm for this particular case
are displayed in Fig. 7.

For a better comparison of the optimized yaw angles to
the baseline, the yaw angles according to the baseline are
depicted in each of the four illustrations in Fig. 7 by a grey
line.

Again, it can be seen that the deviation becomes smaller
with increasing robustness parameters. However, the results
of the robust optimization with σ = 4 and 8◦ appear unex-
pected at first in regard to two aspects.

Firstly, the yaw angles of the northernmost turbines (T11,
T12, T13) slightly deviate from the inflow direction, al-
though there are no downstream turbines to consider. The
observed small positive offset is opposite to the negative yaw
misalignment of the other turbines. The reason for this is that
the robust optimization considers all inflow directions around
the estimated wind direction in its objective function. The
turbines in the northernmost row align themselves towards
inflow directions from where less wake effects occur, so they
can produce more power in these situations. Consequently,
the power output is reduced for inflow direction in the op-
posite direction. However, the relative power loss is smaller,
since in this case the turbines already produce less power due
to the stronger wake effects.

Secondly, the optimized yaw angle of the T31 differs
slightly from the optimized yaw angle of the turbines T32
and T33. This is due to the location of this turbine at the
edge of the wind farm. If the wind would turn anticlockwise,
the wakes of the turbines T32 and T33 affect the rest of the
wind farm, e.g. T12. This is not the case with T31, so this
turbine does not have to take this into account and applies a
larger yaw misalignment.

In order to further analyse the results of the optimizations,
we look in detail at the reference turbine T32. The set points
for the yaw angle of the reference turbine (T32) are displayed
in Fig. 8, which is an enlarged part of Fig. 6 for angles around
ϕest.

The yaw angle of the reference turbine according to
the conventional optimization (σ = 0◦) is γ = 189◦, which
equals an intentional misalignment of 17◦. The robust opti-
mization with σ = 4◦ results in a yaw angle γ = 186◦ and the
robust optimization with σ = 8◦ gives a yaw angle γ = 177◦.

For these settings, we can now calculate the power out-
put of the reference wind farm for different wind directions
with the help of FLORIS. The normalized power differ-
ence Pdiff(ϕ)= Popt(ϕ)−Pbaseline(ϕ)

maxϕ (Pbaseline(ϕ)) for the robustness parame-
ters σ = 0, 4, and 8◦are displayed in Fig. 9.

The graph illustrates the power gain of the robust opti-
mizations and how it is affected if the wind direction ϕ devi-
ates from ϕest. All three yaw settings achieve power increase
close to ϕest, which is the design point for the optimization in
this case. As expected, at the design point the conventional
optimization (σ = 0◦) has the highest gain of the optimiza-
tions, but it also has the largest drop further away from ϕest.
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Figure 7. Illustration of the yaw angles of the reference wind farm for an estimated wind direction ϕest = 172◦ according to the different
optimizations.
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Figure 8. Optimized yaw angles of the reference wind turbine for
ϕest.

While the robust optimization with σ = 4◦ is only slightly
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Figure 9. Normalized power gain of the conventional optimization
(black) and of the robust optimization (blue and red) compared to
the baseline (grey) for ϕest = 172◦.
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below the conventional optimization at the design point, it
performs better in the outer regions (e.g. around 160 or 185◦).
For the robust optimization with σ = 8◦ the maximum gain
is lower, but the losses in the outer regions (e.g. around 160
or 185◦) are strongly reduced.

For wind directions above roughly 191◦ the power differ-
ence Pdiff becomes positive again for all robustness parame-
ters. This is due to the fact that the turbines that follow the
baseline (γj = ϕest for j = 1, . . .,n) get large yaw misalign-
ments and thus the power output Pbaseline is significantly re-
duced. In summary, the graphs show that for all three cases,
a deviation of the wind direction from the estimated wind di-
rection can lead to significant power losses, rather than power
increases.

3.3 Evaluation of control algorithms

In this section, the following four time-dependent yaw con-
trol algorithms are introduced and evaluated with the help of
FLORIS on the basis of wind direction measurements.

1. Greedy yaw control: this reference control is derived
from the baseline, it refers to the situation that every
individual turbine tries to locally maximize its power
output by yawing directly into the wind direction with-
out any intentional yaw misalignment. The term greedy
control was introduced by Marden et al. (2012) in the
scope of induction-based wind farm control.

2. Conventional wake deflection: this active wake deflec-
tion control scheme applies the yaw angles calculated
by the conventional optimization (σ = 0◦). For a given
ϕest the yaw control algorithm uses the precalculated
yaw angle of the conventional optimization in the form
of a look-up table.

3. Robust wake deflection (σ = 4◦): the open-loop control
of the robust wake deflection works in the same way as
the conventional wake deflection, but this time the yaw
angle settings of the turbines from the robust optimiza-
tion with σ = 4◦ are used.

4. Robust wake deflection (σ = 8◦): analogous to the case
before, but σ = 8◦.

In the next step we are extending our evaluation of the
four abovementioned control strategies based on the actual
time series from the wind direction measurements. Two test
cases, A and B, are each analysed for three different robust-
ness parameters (σ = 0, 4, 8◦). The evaluation process and
the test cases are described in the following and illustrated in
Fig. 10.

First, the 1 Hz wind direction data ϕ was split up in 5 min
time series 8t ∈ R300, t = 1, . . .,N , with N = 35586, in the
same manner as it was done in Sect. 2.2. For test case A the
estimated wind direction is defined as the mean wind direc-
tion of the time series ϕest =8t , indicated by the ·-operator,

and passed as input to the open-loop control schemes. For
test case B, an additional Gaussian error θ with a stan-
dard deviation of 4◦ is added to the mean wind direction
ϕest =8t+θ to simulate additional inaccuracies like, for ex-
ample, measurement uncertainties, yaw deviations through
the thresholds of the yaw control, and alignment errors. The
output of the optimized wake deflection are the optimized
yaw angles, γ opt

j (ϕest)= fj (ϕest), of all turbines j = 1, . . .,n.
The function fj represents the yaw schedule of the j th tur-
bine according to Sect. 3.2. To evaluate the success of the
control strategy we compare it to the baseline, which is
the greedy yaw control. Therefore, the estimated wind di-
rection is also passed to the greedy yaw control scheme,
γ

greedy
j (ϕest)= ϕest, for all j . Next, the output of both control

schemes γj and the next time series of wind direction 8t+1
are passed to FLORIS and the average power outputs, Popt
and Pgreedy, for the 5 min of wind direction data are computed
for the optimized and the greedy yaw control. This step sim-
ulates that the yaw mechanism of the turbines does not con-
stantly correct the yaw angle and can only react retroactively
to changes in the wind direction. Also, according to Gau-
mond et al. (2014), the wind direction distribution as model
input gives a better agreement with measured data. Therefore
we use the empiric distribution for every time series.

Finally, the power output for the optimized wake deflec-
tion Popt is compared to the power output of the greedy yaw
control Pgreedy and the results Popt

Pgreedy
are displayed in Fig. 11

and Fig. 12 for test case A and B, respectively. Additionally,

the average power gain Pgain =
Popt
Pgreedy

− 1 is displayed in the
figures.

Figures 11 and 12 illustrate the relative power change
(y axis) over the estimated wind direction (x axis) in a scat-
ter plot, where one dot represents one 5 min time series 8t
each. As mentioned before, this evaluation has been carried
out for the three different active wake deflection controls with
robustness parameters of σ = 0, 4, and 8◦. Therefore, both
figures consist of three graphs each.

Starting with test case A, the upper graph of Fig. 11a dis-
plays the result of the conventional wake deflection. It can be
seen that the relative power change is highly scattered around
the neutral value of 1. This happens mainly for wind direc-
tions with strong wake effects. In these cases, both relatively
large power gains and losses occur. A surplus in performance
is achieved if the wake deflection works as intended, indi-
cated by a value above 1.0. A value below 1.0 means a power
loss, which arises when the fluctuations in the wind direction
or inaccuracy in its determination are too large. Overall, an
average relative performance gain of 0.6% was achieved in
this test case.

In the middle graph the result of the robust wake deflection
for σ = 4◦ is presented in blue, while the result of the upper
graph is displayed in black in the background. In the com-
parison one can see that the spread decreases slightly. Fewer
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Figure 10. Evaluation process of the control schemes with wind direction measurements. Red boxes mark the steps in which the measured
data are used as input.

Figure 11. Test case A: evaluation of the relative power gain over
the estimated wind direction ϕest from the measured time series of
5 min averaged wind direction during approx. 5 months. The yel-
low plot marks the median of the power gain for the respective
wind direction and the dashed yellow plot above and below the me-
dian are the upper and lower quartiles, respectively. (a) Conven-
tional wake deflection (black), (b) and (c) robust wake deflection
for σ = 4 (blue) and σ = 8◦ (red), respectively.

Figure 12. Test case B: evaluation of the relative power gain over
the estimated wind direction ϕest from the measured time series of
5 min averaged wind direction during approx. 5 months. The yel-
low plot marks the median of the power gain for the respective
wind direction and the dashed yellow plot above and below the me-
dian are the upper and lower quartiles, respectively. (a) Conven-
tional wake deflection (black), (b) and (c) robust wake deflection
for σ = 4 (blue) and σ = 8◦ (red), respectively.
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Table 1. Summarized power gains for test cases A and B and the
different robustness parameters.

Power gain σ = 0◦ σ = 4◦ σ = 8◦

Test case A 0.6 % 1.44 % 1.39 %
Test case B −0.49 % 0.61 % 1.05 %

extreme cases occur, both in terms of performance increase
and losses. Moreover, the centre of the distribution is shifted
towards a power increase resulting in a higher average rela-
tive performance gain of 1.44%. Similar to before, the lower
graph illustrates the difference between the robust wake de-
flection with σ = 8◦ (in red) to the conventional wake deflec-
tion (in black). The scattering of the values decreases further
here, while the average relative performance gain is 1.39%.

Figure 12 depicts the results of test case B in the same
manner as before. An additional Gaussian error was added
to the estimated wind direction in this case simulating mea-
surement noise. As a consequence, lower values are achieved
on average for each wake deflection approach. Although this
is hard to see in the upper graph, the average relative per-
formance gain is reduced to −0.49%. This example proves
that the active wake deflection can fail its objective on aver-
age if uncertainties are not taken properly into account in the
control strategy.

The introduction of additional uncertainties also affects
the robust wake deflection, but the effects are not as strong
as with the conventional wake deflection. The robust wake
deflection with σ = 4◦, presented in the middle graph still
reaches a positive average relative performance gain of
0.61%. As expected the robust wake deflection with the
highest robustness parameter (σ = 8◦) proves to be less af-
fected by the given additional uncertainties. In the lower
graph results have the smallest change in performance and
achieve the best average value of 1.05% in this scenario.

The achieved results of the robust control algorithms for
the different robustness parameters are summarized for test
cases A and B in Table 1.

4 Discussion

The evaluation of the yaw angle optimization and of the as-
sociated yaw control algorithms are based on real dynamic
wind direction measurements, but for the calculation of the
wake losses and the power output, a simplified steady-state
wake model is used, which approximates the average wake
flow. In addition, we have limited our investigation to the
partial load range, which we consider to be the most impor-
tant. In this case, we assumed a constant thrust coefficient of
the turbines for the analysis. Furthermore, we have assumed
that all uncertainties that occur can be estimated by a normal
distribution. This assumption proved to be sufficient in the
evaluation, but individual sources of uncertainty can still be

Figure 13. Histogram of the changes of the mean values of succes-
sive wind direction time series 18t with a fitted t distribution.

further investigated. The deviations of the mean values from
successive wind direction time series denoted by 18t , for
example, seem to be well described by a t distribution (see
Fig. 13). This finding could be used for the selection of the
weightings in the optimization to improve the optimization.
We have decided against this at this point, since an important
aspect of this yaw control is its relative simplicity. By inte-
grating a further distribution (by convolution with the normal
distribution) the robustness could no longer be described by
the robustness parameter alone.

Hence the work here is intended to serve as a proof of
concept and as the basis for further investigations. Following
this research, qualitative investigations based on LESs and
free field experiments are proposed. When LESs are used
one should take care that they properly reproduce real wind
direction dynamics.

The relative power gain used here as a key performance
indication must not be confused with a pure increase in the
annual energy production (AEP). For a reliable estimation of
the AEP, a time series of both wind speed and direction of
an average entire year together with the wind turbine power
curve and availability as well the wind farm layout have to be
available. The direct use of the commonly applied Weibull
distribution of the mean wind speed would be insufficient.
Since in this paper we wanted to focus on comparing the ef-
ficiency of the different control strategies in the partial load
range, we used the relative power increase instead of the
AEP.

In this study, the robustness parameter was deliberately set
to a fixed value for the entire evaluation period in order to
demonstrate its influence and effects. A meaningful refine-
ment of the algorithm would be to utilize a variable robust-
ness parameter and adapt it to the ambient conditions, e.g. the
mean wind speed, turbulence intensity, and atmospheric sta-
bility. Observations and LESs (Vollmer et al., 2016) indicate
that with a stable stratification and associated low turbulence
intensity, considerably lower wind direction changes occur.
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Figure 14. (a) Histogram of 5 min standard deviations of the wind direction separated in the categories of atmospheric stabilities stable,
neutral and unstable. (b) Normalized histogram of the data.
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Figure 15. Exemplary illustration of the yaw angle set points of the
reference turbine T32 according to the passive wake deflection.

This is supported by stability measurements during the mea-
surement campaign for this evaluation. In the period from
26 July to 22 November 2016, the Monin–Obuhkov length
(MOL) could be derived from measurements of a meteo-
rological measuring station at the location. The classifica-
tion from MOL into stability classes was done according to
Bromm et al. (2018) and the histogram of the 5 min standard
deviations of the wind directions divided into the stabilities
unstable, neutral, and stable is shown in Fig. 14a. Figure 14b
shows the respective empirical probability for each bin.

The histogram shows two pronounced maxima. One by ap-
prox. 1◦ and the second by approx. 5.25◦. It appears that the
distribution consists of two composite distributions. The first,
with the focus around 1◦, is dominated by measurements in
stable atmospheric estimation and the second, with the focus
around 5.25◦, mainly consists of neutral ones. The higher the
standard deviation gets, the more likely it is to have unstable
stratification, as can be seen in Fig. 14a.

The presented results are potentially of significant impor-
tance for implementing active wake deflection in the field.
The simplicity of the presented open-loop robust control al-
gorithm makes it easy to integrate it into a real yaw con-
trol system, which offers the possibility to obtain further in-
sights with the assistance of field campaigns. For this pur-

pose, the wind farm layout and the turbine characteristics
must be known for the calculations with the wake model;
in addition, the global alignment of the turbines should be as
correct as possible and the wind measurements must be rel-
atively reliable. If these requirements are met, the optimized
yaw schedules can be calculated for the individual turbines
and the robust wake deflection can be used. In principle, the
robust wake deflection is even a decentralized control system,
since each turbine follows its own optimized yaw set points
independently of the others. However, in practice a wind
farm regularly undergoes topology changes. This means that
turbines change their status and are switched off if necessary.
In such a case, the optimized wake deflection of at least the
adjacent turbines should be deactivated for the correspond-
ing wind direction sector and the greedy control should be
used. A straightforward adjustment would be, for example,
the switch to the greedy control for these turbines in the re-
spective wind sector.

Given the industry’s interest in easy and robust solutions,
a particular implementation could be the so-called passive
wake deflection. This means that the yaw angle of an up-
stream turbine is set to a constant value for certain wind di-
rection sectors. “Passive” in this context refers to the strongly
reduced yaw activity in comparison to the large yaw ampli-
tude in the case of the conventional yaw angle optimization
discussed in Sect. 3.2. This idea is derived from the example
in Fig. 8 and is further illustrated in Fig. 15.

In this case, according to the robust optimization with
σ = 8◦, the yaw angle of the reference turbine for a wind
direction sector from ϕest = 170 to ϕest = 188◦ remains be-
tween γ = 175 and γ = 178◦. The adjustment of the control
would be to fix the yaw angle for such sectors to a constant
value, e.g. γ = 176.5◦. Within such a sector, the orientation
of the turbine would be directed almost exactly to the next
neighbouring downstream turbine. The wake deflection is not
particularly strong in such a case, but the advantage is that
the wake for all wind directions within this sector is auto-
matically deflected away from the downstream turbine, mak-
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ing the application very reliable. Another benefit of such an
implementation of the robust control would be the possibil-
ity to significantly reduce the yawing activities of the turbine
by keeping the intended yaw misalignments relatively small;
this may be possible if integrated correctly into the existing
yaw control. This is in contrast to the increased yaw activ-
ity, which is associated with the conventional wake deflection
control (σ = 0◦, see Fig. 6).

The consideration of the aerodynamic interactions in wind
farm control has some critical requirements that must be met
as best as possible. This includes the absolute orientation of
the wind turbine and a bias in the measurements. While the
absolute orientation of the wind turbine is not important for
turbine control, it plays a decisive role in wind farm con-
trol, as it is required to derive the aerodynamic interactions
of the turbines. A bias in wind direction measurement has
negative implications for both wind turbine and wind farm
control. For this reason, the risk of a significant bias needs
to be minimized. Therefore, great care must be taken dur-
ing installation and alignment of the wind vane. If possible,
additional measuring instruments for determining the wind
direction should be considered, such as nacelle-mounted li-
dar or the consideration of blade loads for the determination
of the inflow as described in Bottasso and Riboldi (2014).

5 Conclusions

The aim of this research was to demonstrate the influence
of dynamic wind direction changes on active wake deflec-
tion and to present its potential to increase the energy yield
of a wind farm in a realistic environment if wind direction
dynamics and associated measurement uncertainties are con-
sidered properly. Therefore, we first examined the stochas-
tic properties of wind direction measurements and confirmed
that a normal distribution is a useful approximation. Next, we
demonstrated that the high sensitivity towards wind direction
changes poses a risk for the successful application of active
wake deflection. To cope with these fluctuations and uncer-
tainties, a robust optimization approach for the yaw angles
of all wind turbines in a wind farm as a function of the wind
direction and the wind direction variability was introduced.
The method takes dynamic wind direction changes and im-
precision in the determination of the wind direction into ac-
count within a statistical framework in the optimization.

The results indicate that, in an evaluation of different open-
loop control algorithms with real wind direction time series,
the robust optimization can successfully increase the perfor-
mance of a reference wind farm, while the conventional op-
timization neglecting wind directional dynamics and uncer-
tainties can lead to a decrease in power output compared to
greedy control without any attempt of wake steering.

The introduced robustness parameter σ , i.e. the standard
deviation of the combined normal distribution of the wind
direction and the associated measurement uncertainty, is a

useful quantity to tailor the robust control to specific mete-
orological and wind farm influences. If a larger robustness
parameter – similar to the analysis example of σ = 8◦ – is
appropriate, the yaw control algorithm might be simplified to
the so-called passive wake deflection. In such an approach,
the yaw angle is kept constant in a certain angular sector,
which significantly eases the implementation and reduces the
required yaw activity to achieve favourable wake steering.
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