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Abstract

High penetration of renewable energy sources brings both opportunities and challenges for Smart Grid operation. Due to their

high contribution to energy consumption, aggregated load flexibility of small residential and service sector consumers has a

potential to address the intermittency challenge of distributed generation. Predicting aggregated load flexibility of this consumer

sector involves access to sensitive smart meter data, raising data collection and sharing concerns. Federated Learning, a decen-

tralized machine learning technique that uses data distributed on user devices to construct an aggregated, global model, offers

potential solutions to tackling this challenge. This paper explores the potential of using Federated Learning for flexibility predic-

tion in Smart Grids through an analysis of its opportunities and implications for different stakeholders involved, as well as the

challenges faced. The analysis shows that Federated Learning is a promising approach for building privacy-preserving energy

portfolios of aggregated demand data.

1 Introduction

Power systems are large-scale, complex socio-technical sys-

tems that are continually in transition. Traditionally built as

centralized systems, societal and technological changes drive

modern power systems to become more decentralized. This

transition is further supported by advancements in, and the

incorporation of smart Information and Communication Tech-

nologies (ICT), resulting in Smart Grids. Such a decentralized

energy system requires novel intelligent energy management

techniques.

In an energy system with volatile, non-dispatchable produc-

tion, these techniques rely on flexibility of energy consumers

and prosumers to perform demand response (DR) and load

shifting [1]. Flexibility refers to the extent to which these stake-

holders can adapt their energy demand in response to changes.

Reynders et al. [2] outline and discuss various definitions and

quantification methods for flexible energy.

Advancements in smart home technologies empower small

consumers and prosumers to become proactive members of

the system and trade their flexibility in energy markets, which

can render financial benefits [3]. Participation in demand

response services and forming energy communities bring resi-

dential and service sector consumers at the core of the energy

transition. Currently, DR programs are mainly focused on

energy-intensive industrial and commercial consumers, as typ-

ical residential and service sector consumers are too small to

individually participate in these programs [4]. However, due

to their high contribution to electricity consumption, there is a

large potential when considering their aggregated load flexibil-

ity [5]. Load flexibility aggregation for residential and service

sector consumers comes with challenges regarding data collec-

tion and privacy preservation, as it involves collecting sensitive

consumer data conform national and international directives on

data collection and processing such as GDPR [6].

Another challenge lies in understanding demand heterogene-

ity of small residential and service sector consumers, as most

existing models are based solely on residential load and do not

include the service sector [7]. Therefore, service sector con-

sumers’ flexibility is not properly reflected in current models.

To address these challenges, methods to predict aggregated

load flexibility, while attaining data integrity and privacy in a

decentralized energy system should be considered.

Federated Learning (FL), a decentralized Machine Learning

(ML) technique [8], offers a solution to tackle these chal-

lenges. FL can enable different stakeholders to create global

representative models without sharing raw data, addressing the

challenges of data privacy [9]. In Smart Grids, FL can be used

to create local energy flexibility models of different consumer

and prosumer categories and to aggregate these into global

models, without exchanging local data.

The main objective of this paper is to further explore the

application of FL for load flexibility prediction (more specif-

ically, demand response) of small-sized consumers in Smart
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Grids through an analysis of its opportunities, challenges and

implications for different stakeholders.

2 Load flexibility prediction using Federated
Learning: A stakeholder analysis

This section gives an overview of FL and analyses the potential

of using this technique for addressing the challenges faced by

stakeholders involved in aggregating load flexibility of small

residential and service sector consumers and prosumers.

2.1 An overview of Federated Learning

Capable of discovering complex patterns from raw data, ML

techniques are used for load flexibility prediction in Smart

Grids. However, due to privacy concerns and data ownership,

collecting all required data becomes challenging [10]. Feder-

ated Learning, a class of ML, capable of learning a single

model across distributed devices, offers a solution to this.

In FL none of the original data samples needs to be shared

among different devices, thus offering potential benefits in low-

ering bandwidth requirements, data ownership and preserving

privacy of its users.

The term and general concept of FL has originally been

introduced in 2016 by McMahan et. al. [8] in order to learn

keyboard suggestions on mobile phones [11]. Since then, it has

been applied in many other domains. For Deep Learning [12],

Federated Stochastic Gradient Descent (FedSGD) [13] and

Federated Averaging (FedAVG) [8] are well-known variants

for FL. FL can also be used for other types of machine learning

models, such as Support Vector Machines [14].

FL aims to provide a solution to the problem of learning

a global model from distributed data sets that should remain

local, on nodes (data owners) with sufficient computation

power to fit local models. In the context of this paper, the nodes

are consumers and prosumers. For these data owners, the main

opportunity therefore lies in maintaining data privacy whilst

enabling local contributions to a shared model. This means all

individual nodes can reap the benefits of each others contri-

butions to the global model and at the same time keep their

personal data private. From a model owner perspective (e.g. an

energy aggregator), computation is now partially offloaded to

local nodes, which opens up opportunities for cost reduction.

Despite the applicability of FL in the energy domain, current

research on this topic is limited [15, 16].

The following subsections discuss the potential implica-

tions of using FL by different stakeholders that participate

in aggregated small residential and service sector demand

response.

2.2 Consumers and prosumers

Aggregating load flexibility can enable small residential and

service sector consumers and prosumers to jointly participate

in energy markets through DR programs, which can bring them

financial benefits. As the main concern lies in data privacy (as

some consumers are reluctant to share private information with

centralized ML models used by aggregators) [17], FL offers

a potential solution to this, as private consumer and prosumer

data can stay on their devices, without the need to be shared

with other stakeholders. Therefore, using FL could potentially

increase the willingness of small consumers and prosumers to

participate in aggregated DR.

2.3 Aggregators

This aggregated flexibility can be used by aggregators to create

energy portfolios, and trade them in energy markets [18, 19].

Depending on their business model, aggregators with differ-

ent roles face a number of challenges. Information exchange is

identified as one of these challenges, as different stakeholders

need access to aggregator’s data to enable accurate load fore-

casting [20]. The privacy-preserving property of FL offers a

potential opportunity to address this challenge, as stakeholders

involved do not have to share data with each other. Another

challenge lies in data availability, as aggregators’ access to

data generated by smart energy devices is not guaranteed and

can be incomplete, questioning data integrity [18]. To tackle

this challenge, aggregators can use global flexibility models

(potentially hosted on their own devices) generated for spe-

cific consumer and prosumer categories to get an estimation

of offered flexibility.

2.4 Distribution System Operators

High penetration of renewable energy sources (RES) brings

both opportunities and challenges for Distribution System

Operators (DSOs) when it comes to grid planning and opera-

tion. Load flexibility prediction of small residential and service

sector consumers’ demand reponse is a promising approach to

deal with variability and uncertainty of RES. To have an impact

on network planning and RES integration, small consumer flex-

ibility should be considered on an aggregated level [21]. From

the perspective of DSOs, FL can offer a number of opport-

nunities to integrate small residental and service sector DR into

grid operation planning, and better respond to uncertainties and

non-dispatchability of RES. Global FL models that aggregate a

large number of small residential and service sector consumers

on geographically distant locations, can be used by DSOs to

better understand the DR of this sector. This knowledge can be

used to gain insight into local flexibility, when data is unavail-

able or insufficient, and help make better plans for future grid

investments and planning.

2.5 Policy and decision makers

As mentioned before, another challenge lies in the lack of

representative service sector models, which can lead to signif-

icant misestimations for RES integration [7]. FL can be used

to construct global models of different consumer categories

(e.g. residential, service sector) and subcategories (e.g. offices,

supermarkets, schools) to better use their potential in demand

response and RES integration. These models can support pol-

icy and decision makers to get better insight into future energy

transition scenarios.

2
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Fig. 1 An example application of using Federated Learning within a Smart Grid. A local community (e.g. an energy neutral

village) typically consists of multiple consumers, producers and prosumers, which in turn consists of multiple devices that may

require a different type of model. Data is typically distributed unevenly over multiple devices and influenced by different user

behavior, system behavior and other environmental influences.

In this section, the potential of using FL for aggregated load

flexibility prediction is discussed with respect to the stake-

holders involved. However, despite its promising benefits, FL

comes with challenges that need to be addressed. The next

section outlines these challenges and gives guidelines and

recommendations to address them.

3 Addressing the challenges of Federated
Learning: Guideliness and recommendations

Fig. 1 provides an abstract example application of using FL

within the energy domain and illustrates some of the challenges

as discussed further in the following subsections. Most variants

use a single central server to aggregate all changes to the global

model from multiple clients. However, as the ecosystem grows

in complexity and local communities become more indepen-

dent, it is likely to assume that multiple of these central servers

(or model aggregators) may exist for the purpose of improv-

ing scalability or to abstract the global model at a certain level.

This might especially be relevant in the energy domain which

consists of multiple (competing) stakeholders and communities

that may heaviliy rely on self-organization.

3.1 Data Distribution

Many ML techniques often have the underlying assumption

that training data is sampled Independent, and is Identically

Distributed (IID) in order to obtain an unbiased estimate of

the gradient that is being approximated [22, 23]. A major

challenge in FL, therefore, is the use of non-IID, statistically

heterogeneous, and vertically distributed data.

Solutions have been proposed such as, item reparametriza-

tion of existing models to help them converge in the hetero-

geneous scenario [24], sharing a small IID subset of the data

globally, or using proxy data [22].

3.2 Communication Efficiency

Communication is a primary bottleneck of distributed com-

putation, especially the case of FL that often requires many

rounds of sharing updates from resource-constrained nodes. It

is therefore key to balance the size of model updates, com-

munication frequency, sparsity and model performance, which

remains an open problem [23].

3.3 Privacy and Security

Providing that none of the data samples are shared among

the devices, it seems intuitive to assume that this protects the

privacy of the user. However, sensitive information can still

become compromised during the updates of the model.

For instance, in the work of [25], a Generative Adversarial

Network (GAN) is trained to generate the original samples as

used to train the model of other users. Alternatively, the (aggre-

gated) gradients, that are shared from users to a central server

(and other users through updates of the global model), may

compromise sensitive information about the private training

data being used [26].

Apart from the original input, aggregated gradients can also

be used to classify the presence of specific properties (not

present in the input features) using a separate trained classi-

fier [27]. Potential solutions to these attacks include the Double

Blind Collaborative Learning algorithm [28], which uses ran-

dom matrix sketching for the parameters on the central server

side to obscure the information between model updates.

3.4 Model Bias, Fairness and Personalization

FL also poses challenges in reducing unwanted bias and

increasing fairness in the model [29]. Global models might be

biased towards specific users and may achieve poor accuracy

on an individual level. For instance, devices with poor con-

nectivity in rural areas might not be able to participate in the

federated learning scheme as often. This increases the risk of
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biasing the global model towards devices within an urban area

which may have a very different energy profile.

Potential solutions to these problems include Model Agnos-

tic Meta Learning [30] or Agnostic Federated Learning [31].

The latter uses a mixture of client distributions to optimize the

central model for any target distribution. An alternative is to

use clustering in order to match the best global model to spe-

cific users, which is similar to what is done for energy demand

prediction for electric vehicle networks [15].

The key challenge is to find a way to use generic informa-

tion from the global model (e.g., by learning typical usage

profiles over time) while adapting it to a particular situation

(e.g., by including personal preferences and local differences

in the environment). For this purpose, one could also consider

using methods similar to Meta-Learning [32, 33] or Transfer

Learning [34, 35] to adapt pretrained models to a particular sit-

uation. Or using local and global representations to account for

the heterogeneity in the data [36].

4 Conclusion

Due to their high contribution to energy consumption, aggre-

gating load flexibility of small residential and service sector

consumers has a potential to address the intermittency chal-

lenge of distributed generation. However, predicting aggre-

gated load flexibility of this consumer sector involves access

to sensitive smart meter data, raising data collection and shar-

ing concerns. With its privacy-preserving properties for data

aggregation, FL offers a potential solution to tackle this chal-

lenge. The analysis discussed potential benefits for stakehold-

ers involved, potentially resulting in higher consumer participa-

tion in demand response programs, and getting a better insight

in residential and service sector flexibility. This paper shows

that, given the need for privacy preservation, increased scala-

bility and the shift towards decentralization, FL is a promising

approach to support privacy-preserving data aggregation.

Using FL comes with challenges that need to be addressed.

As using such models can potentially incentivise consumers to

share their data, aggregators should start investigating methods

to model the value of those contributions to a global model,

and define billing and pricing models on top of that. Further-

more, as more consumers participate, security measures have to

be researched, as there is a possibility for influx of potentially

harmful data. Finally, as decentralized approaches for flexibil-

ity prediction become more prominent, the future work should

also focus on how to share different models and adapt them for

various applications.
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