

Delft University of Technology

Robust Long-Term Aircraft Heavy Maintenance Check Scheduling Optimization under
Uncertainty

van der Weide, Tim; Deng, Q.; Santos, Bruno F.

DOI
10.1016/j.cor.2021.105667
Publication date
2021
Document Version
Final published version
Published in
Computers & Operations Research

Citation (APA)
van der Weide, T., Deng, Q., & Santos, B. F. (2021). Robust Long-Term Aircraft Heavy Maintenance Check
Scheduling Optimization under Uncertainty. Computers & Operations Research, 141, Article 105667.
https://doi.org/10.1016/j.cor.2021.105667

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cor.2021.105667
https://doi.org/10.1016/j.cor.2021.105667

Computers & Operations Research 141 (2022) 105667

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Robust long-term aircraft heavy maintenance check scheduling optimization
under uncertainty
Tim van der Weide, Qichen Deng ∗, Bruno F. Santos
Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands

A R T I C L E I N F O

Keywords:
Scheduling
Min–max optimization
Genetic algorithm
Robustness optimization
Aircraft maintenance

A B S T R A C T

Long-term heavy maintenance check schedules are crucial in the aviation industry since airlines need them
to prepare the required maintenance tools, workforce, and aircraft spare parts. However, most airlines adopt
a manual approach to plan the heavy maintenance check schedules in current practice. This manual process
relies on the experience of their maintenance planners, and the resulting heavy maintenance schedules need
frequent adjustment because of uncertainty. This paper applies a genetic algorithm (GA) to generate robust
aircraft heavy maintenance check schedules. It aims to reduce the workload and the frequency of revising
heavy maintenance schedules considering uncertainties associated with heavy maintenance check duration
and aircraft daily utilization. A major European airline case study shows that the GA finds robust and efficient
multi-year aircraft heavy maintenance schedules for a fleet of 45 aircraft in 30 min. Compared with the current
approach followed by the airline, the algorithm reduces the total number of heavy maintenance checks by 7%
while increasing utilization by 4.4%, which could potentially lead to a reduction of direct annual maintenance
costs between $122.5K and $612.5K. Furthermore, when testing the robustness of the 4-years maintenance
check schedules produced, a Monte Carlo analysis has shown that all aircraft could be maintained before
their check due date for 41% of the episodes simulated, compared to 0.27% of the episodes for the single
deterministic scenario approach.
1. Introduction

The spending of global maintenance, repair, and overhaul (MRO)
represented 9%–10% of total operational costs of commercial air-
lines (IATA’s Maintenance Cost Task Force, 2019), and heavy air-
craft maintenance accounts for more than 70% of these costs and
requires the most amount of resources involved in aircraft maintenance.
Therefore, it is beneficial for airlines to keep introducing innovations
concerning the scheduling of aircraft maintenance and value efficiency,
reducing maintenance operation costs in the long term and coping with
augmenting demand for aircraft maintenance.

Regular aircraft maintenance is necessary to assure airworthiness,
keep the aircraft reliable, and provide assurance of flight safety. Air-
lines usually group aircraft maintenance tasks into letter checks: A-,
B-, C-, and D-checks. In particular, A- and B-checks belong to light
maintenance, while C- and D-check are considered heavy maintenance.
Each letter check has a different duration, frequency, and set of tasks
associated with (Gopalan and Talluri, 1998). During the letter checks,
the aircraft stays in the hangar for maintenance. Light maintenance
may need one or two days to finish, while heavy maintenance can last
for a few weeks.

∗ Corresponding author.
E-mail address: q.deng@tudelft.nl (Q. Deng).

The frequency of a letter check is determined by the maximum
interval between two checks, in the units of calendar days (DY), flight
hours (FH), and flight cycles (FC), stated in the maintenance plan-
ning document (MPD). The maintenance planners allocate aircraft to
maintenance slots at specific days to perform maintenance before its
usage parameters (i.e., DY, FH, and FC) reach the limits, in which one
maintenance slot is one day of availability of a hangar for performing
aircraft maintenance. The deadline for a maintenance check for an
aircraft is thus dependent on the start date of its previous maintenance
check execution, aircraft utilization, and maximum interval. Overall,
aircraft maintenance check scheduling (AMCS) is to determine when
and what type of maintenance check should be performed on an aircraft
given a planning horizon. It is a typical combinatorial optimization
problem (Boere, 1977).

A long-term (usually 3–5 years) heavy aircraft maintenance check
schedule is crucial for an airline in the aviation industry. Firstly, it gives
stability to the short-term maintenance plans, since the scheduling of
the heavy maintenance checks (C-/D-checks) influences the light main-
tenance checks such as A-/B-checks (Witteman et al., 2021). Therefore,
a robust heavy maintenance check schedule can allow stable planning
vailable online 4 January 2022
305-0548/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2021.105667
Received 19 February 2021; Received in revised form 13 August 2021; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

December 2021

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:q.deng@tudelft.nl
https://doi.org/10.1016/j.cor.2021.105667
https://doi.org/10.1016/j.cor.2021.105667
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2021.105667&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
of light maintenance and the associated resources (e.g., maintenance
tools, workforce, and aircraft spare parts). Secondly, it reduces the time
and effort of constantly reviewing the maintenance plans, including
heavy and, consequently, light maintenance checks. Thirdly, it de-
creases the risk of having heavy maintenance checks scheduled during
the commercial peak periods of the year (e.g., summer, school holidays,
Easter, and Christmas periods), given disruptions and the need to keep
the fleet always airworthy. However, current methods to the long-term
AMCS are mostly computer-aid manual approaches, heavily relying on
the experience of maintenance planners (Deng et al., 2021). The initial
schedule has to be continuously updated due to the uncertainties from
aircraft utilization, unscheduled maintenance tasks, and maintenance
activities. Each revision can last for a few days or a week and result
in a backlog and impact maintenance costs and quality of service.
Considering the influences of uncertainties in AMCS could offer more
robust schedules where fewer modifications are necessary. It is essential
to plan a robust long-term schedule for aircraft heavy maintenance
checks considering uncertainty, resulting in significant cost savings and
reducing inefficiencies in the execution of the maintenance schedule.

This paper proposes a min–max scenario optimization approach,
combined with a genetic algorithm (GA) methodology, to generate
robust aircraft heavy maintenance schedules. The work extends the
AMCS optimization presented in Deng et al. (2020) by considering the
uncertainties in check duration and daily utilization while computing
the long-term schedule of heavy AMCS (H-AMCS). The contributions
include:

– It is the first research to formulate the stochastic H-AMCS problem
as an integer linear programming (ILP) model.

– It is the first time to address the robust long-term H-AMCS prob-
lem considering uncertainty, proposing a min–max approach to
solve the problem.

– It uses a GA methodology to generate a robust 4-year heavy
maintenance schedule in less than 30 min for a fleet of 40
aircraft. The results of 10 000 test scenarios indicate that more
than 40% of the heavy maintenance checks in the robust schedule
planned by the GA require no adjustment under different sce-
narios, i.e., 40% of the heavy maintenance checks can always
start before the corresponding aircraft reach their utilization limit
regardless of uncertainty from maintenance check duration and
aircraft utilization.

This paper’s outline is as follows: Section 2 gives an overview
of the relevant literature on the current practice of aircraft mainte-
nance scheduling and describes the primary source of uncertainties in
H-AMCS. The robust optimization approach and the integer linear pro-
gramming min–max formulation of the H-AMCS problem is introduced
in Section 3. Section 4 presents a GA methodology adapted for the
H-AMCS. Next, Section 5 shows the min–max approach results when
applied to a case study from a European airline. This section discusses
the algorithm performance analysis and the schedule robustness assess-
ment, followed by a sensitivity analysis on some of the parameters used
to capture uncertainty in our model. The last section concludes this
research and gives an outlook on future work.

2. Literature review

As a part of the AMCS, H-AMCS is also intricate since scheduling
an aircraft heavy maintenance check on a specific date impacts aircraft
utilization in the future and, consequently, the requirements on future
heavy maintenance checks. The long-term H-AMCS has been relying
on a manual scheduling approach according to the experience of main-
tenance planners. In the early 1970s, it took maintenance planning
personnel several weeks to create a maintenance schedule (Boere,
1977). Air Canada developed an aircraft maintenance operations simu-
2

lation model (AMOS) to speed up the planning process, focusing on
improving maintenance efficiency and reducing labor and material
costs. This work formulated the H-AMCS as a discrete integer program-
ming problem and incorporated many detailed operational constraints.
Despite the contribution to H-AMCS formulation, the solution approach
was a priority-based simulation-heuristic, similar to the manual plan-
ning approach. An experienced maintenance planner had to decide the
optimal schedule, shifting checks until a feasible solution was found.
The simulation of aircraft utilization, and together with the introduc-
tion of a lower utilization bound before a new maintenance check can
be scheduled, reduced the time to develop a long-term maintenance
schedule of 5 years from several weeks to several hours (Boere, 1977).

Many maintenance planners have since adopted a similar approach
to the scheduling of long-term maintenance. Simultaneously, some air-
lines and researchers have developed more comprehensive integrated
tools for AMCS, such as the fleet-planner IFS Maintenix tool (IFS, 2019).
However, all the available tools are still relying on the experience of
maintenance planners and manual input. Moreover, none of the tools
considers the uncertainty in planning long-term aircraft maintenance
scheduling to our best knowledge. Thus the maintenance schedules
need to be revised frequently.

On the other hand, there is little literature focusing on long-term
AMCS. Etschmaier and Franke (1969) introduced an out-of-kilter al-
gorithm to minimize maintenance cost, and Bauer-Stämpfli (1971)
developed a dynamic programming (DP) approach for H-AMCS. Both
methods were deemed not suitable by Boere (1977) for the envi-
ronment of Air Canada when developing the previously mentioned
simulation model. Furthermore, the author stated that optimization
techniques were impractical because an optimal solution can become
obsolete with a change in environment and aircraft utilization. More
recently, Yan et al. (2008) formulated a zero–one integer programming
model for the long-term AMCS and demonstrated a case study with
the commercial solver CPLEX. Deng et al. (2020) proposed a DP-based
methodology for the long-term AMCS, adopting the forward induction.
To deal with the challenge of a multi-dimensional action vector, the
authors proposed a priority-based solution to sort the list of aircraft.
Besides, a thrifty algorithm, combined with discretization and state
aggregation, is used to obtain an optimal schedule for the long-term
AMCS.

Since relatively little literature exists on the long-term AMCS, it
is relevant to look into short-term aircraft maintenance scheduling
problems. The short-term scheduling of aircraft maintenance has re-
ceived considerably more attention in literature through the aircraft
maintenance-routing problem. Airlines can see tangible benefits, such
as cost-saving or extra revenue, by optimizing the short-term aircraft
maintenance activities or the corresponding flight schedules in a few
days or weeks. In the short-term aircraft maintenance scheduling, there
are two types of objective functions. First of all, the minimization
of the total maintenance cost. This type of objective function can be
found in Sriram and Haghani (2003), Papadakos (2009) and Ma-
her et al. (2014), where the problem is formulated as an integer
multi-commodity network flow model to minimize total costs of light
maintenance. The second type of objective function is to maximize
aircraft availability (or to minimize aircraft unavailability). For ex-
ample, Kozanidis and Skipis (2010) used a mixed-integer bi-objective
linear programming model to maximize aircraft availability and flight
time for a fleet of fighter aircraft over the considered time-horizon.
Alternatively, Başdere and Bilge (2014) aimed at minimizing the air-
craft unavailability. The objective in Başdere and Bilge (2014) is very
similar to maximizing the utilization of maintenance intervals since it
indirectly decreases the number of maintenance checks in the long-term
and the number of days on the ground.

There are numerous studies on aircraft maintenance routing prob-
lems, such as optimizing aircraft routing and flight departure times
to minimize passenger disruptions (Lan et al., 2006), minimizing the

total expected propagated delay of the aircraft routes (Liang et al.,

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
2015), minimizing the total delay and the number of delayed pas-
sengers (Ahmed et al., 2017), and minimizing the total expected cost
of the propagated delay (Eltoukhy et al., 2018, 2020). Although the
aforementioned research works use simulations or scenarios to capture
the impact of uncertainty or disruption, the main focus is aircraft
routing, and the maintenance requirements are usually incorporated
as constraints. None of them touches the heavy maintenance check
scheduling and thus provides very little insight on planning robust
heavy maintenance check schedules.

From the solution approach perspective, the formulations of mainte-
nance scheduling and aircraft maintenance routing problems discussed
before are typically NP-hard, difficult to solve when they are on a large
scale. Therefore, the primary solution techniques found in the literature
are meta-heuristics, and of which an often encountered example in
scheduling literature is the genetic algorithm (GA). Holland (1992) was
the first introduced GA as an adaptive method based on the genetic
processes of biological organisms. More specifically, the essence of GA
is the theory of evolution, in which populations evolve over many gen-
erations based on survival of the fittest and natural selection. In Yang
and Yang (2012), GA is used to schedule maintenance opportunities
based on an original flight plan. Although the idea of GA is fundamen-
tal, many simulation experiments show the possibility of the algorithm
to come up with feasible maintenance schedules while minimizing
the costs. Quan et al. (2007) used a more complex genetic algo-
rithm to address a multi-objective preventive maintenance scheduling
problem. Kleeman and Lamont (2005) applied GA on multi-objective
scheduling of heavy-maintenance on aircraft engines. Experimental
results show the possibility of a GA to efficiently solve the maintenance
scheduling while obtaining an acceptable solution. However, one of
the main downsides of the GA is the considerable computational effort
required for a more complex, large-scale problem. When considering
the more general Resource-Constrained Project Scheduling Problem
(RCPSP), Elshaer (2017) compares several adaptations of GA intro-
duced in the literature for solving the RCPSP. In the last years, the
main research direction is the hybridization of metaheuristics (Zamani,
2010), which combines cross-over operations from GA with a local
search method. The main difference with a general GA is that it usually
concentrates on the continuous improvement of one primary solution.

When considering the scheduling of aircraft maintenance in litera-
ture, most cases focus on the deterministic problem. However, H-AMCS
is a complex dynamic project and possesses varying degrees of un-
certainty, influencing the execution and creation of a maintenance
schedule. For the long-term H-AMCS, it is therefore essential to identify
these uncertainties and their effect on the maintenance schedule. Sama-
ranayake (2006) recognizes that uncertainty encountered in aircraft
maintenance, particularly from non-routine and unscheduled mainte-
nance, affects the planning and scheduling of aircraft maintenance.
The author realized the importance of non-routine findings and stated
that about 50% to 60% of the maintenance workload results from the
maintenance inspection. A more recent case study in Dinis et al. (2019)
shows that this number can be higher and increases with aircraft age.

The uncertainty in workload due to unscheduled maintenance tasks
or activities prolongs maintenance checks, affecting the start dates and
due dates of subsequent maintenance checks, thus resulting in frequent
adjustments to the initial maintenance schedule. Besides, the deadline
for a maintenance check also depends on the utilization of an aircraft.
Small deviations from expected daily FH and FC can accumulate and,
in the long term, significantly impact aircraft utilization, which also
impacts the due dates of the upcoming maintenance checks. Because
of the uncertainty from maintenance check elapsed time and aircraft
daily utilization, a maintenance check schedule often rapidly becomes
obsolete (Boere, 1977), leading to the need for revisions. Eventually, it
results in a backlog, increasing maintenance costs and the correspond-
ing quality of service. Hence, it is beneficial to look into the stochastic
3

problem to generate more robust schedules.
By far, to our best knowledge, there is no literature available that
addresses the AMCS problem while taking uncertainty into account.
However, when considering the general aircraft maintenance schedul-
ing problems, some papers exist that include various uncertainties. For
example, Mattila and Virtanen (2011) considered the uncertainty in
failure rates and maintenance duration when scheduling maintenance
for a fleet of fighter aircraft. The uncertainty parameters are modeled
with a probabilistic approach and are Gamma distributed. A reinforce-
ment learning approach is applied to find an optimal maintenance
policy. However, the capability of the model to be used in actual
decision making requires the solution of several different problem
instances. Sohn and Yoon (2010) used the random effects Weibull
regression model to take non-constant mean time between failure
(MTBF) and mean time to repair (MTTR) into account for the dynamic
scheduling of preventive maintenance. Overall, the general trend in
scheduling literature is laying increasing emphasis on incorporating
uncertainty in the models.

It can be concluded that, due to the complexity of scheduling
aircraft letter checks, the problem is hard to solve with exact methods.
Therefore the main solution techniques found in the literature are
meta-heuristics. An often encountered solution method is GA, which
provides promising results for similar scheduling problems. From the
literature review, it is also clear that there has been little focus on
long-term H-AMCS. Next to that, the inherently stochastic nature of
maintenance is not considered when creating an initial schedule. A
robust long-term schedule for heavy aircraft maintenance would re-
quire fewer adjustments, reduce the operation costs, and improve the
quality of maintenance service. According to IATA’s Maintenance Cost
Task Force (2019), the MRO spend spans, on average, 9%–10% of the
total operating cost of an airline. Reducing these costs can be very
beneficial in the long-term for airlines. The main uncertainties that
can significantly impact the maintenance schedule and cost are check
duration and aircraft utilization. The goal of developing a scheduling
model that takes these uncertainties into account is, therefore, the
main focus of this research. In this sense, the research’s relevance lies
in filling this gap in the literature by approaching the problem with
a genetic algorithm and creating a general robust scheduling model
framework that takes uncertainty into account.

3. Modeling approach

This section describes the modeling approach proposed to address
the H-AMCS for a heterogeneous fleet under uncertainty. We start by in-
troducing the C-check maintenance problem in Section 3.1, followed by
a list of assumptions for the problem defined in Section 3.2. Section 3.3
introduces the min–max optimization approach proposed to solve the
H-AMCS problem under uncertainty. Section 3.4 describes how scenar-
ios are generated and selected. Lastly, in Section 3.5 we present the
ILP model formulation, including the nomenclature, constraints, and
the objective function that compose the H-AMCS problem.

3.1. Aircraft heavy maintenance check scheduling

The heavy maintenance of aircraft is commonly divided into two-
letter checks, C- and D-checks. In practice, an aircraft undergoes a
C-check every 18–36 months and a D-check every 5–6 years. Besides,
C-checks are usually planned in sequence and have a sequential number
(C1, C2, C3, …). Many airlines already merge D- in C-checks and label
them as ‘‘heavy C-checks’’ to avoid grounding the aircraft twice for
maintenance. That is, having one D-check in every three/four C-checks,
for example, for the aircraft type that has a C-check interval of 24
months:

C1, C2, C3
⏟⏟⏟

, C4, C5, C6
⏟⏟⏟

, C7, … (1)

D-check D-check

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
During these checks, the aircraft stays in a hangar until the tech-
nicians complete all the maintenance tasks. The number of hangars
indicates the maximum possible maintenance checks in parallel. After
a maintenance check, the associated usage parameters (DY/FH/FC) are
all reset to zero, and a new interval restarts, defining the limit for the
following check on the same aircraft.

3.2. Assumptions

In this study, we made several assumptions maintenance scheduling,
as showed in (A.1–A.6), based on Boere (1977) and Deng et al. (2020)
and real-life maintenance practice:

A.1 A heavy maintenance check (C-/D-check) ties up one hangar for
the entire duration of the check;

A.2 An aircraft ages only based on daily flight hours, for which a
probability distribution can be estimated monthly per aircraft
from historical data and calendar days;

A.3 The minimum time step of the maintenance schedule is one
calendar day;

A.4 Location of a hangar does not influence check possibility and
aircraft routing is flexible;

A.5 Other types of letter check can be planned at its due date without
considering resource constraints;

A.6 Additional hangar slots can be added to make a schedule fea-
sible. In practice, this can either be done with extra work, for
instance, at days of the week in each no heavy maintenance work
was planned, or with hiring third party services. In both cases,
creating additional hangar slots is an expensive option.

A.1 indicates that if an aircraft is undergoing a heavy maintenance
check in a hangar, it will stay there until all maintenance tasks are
performed. This is exactly the case in practice since towing the aircraft
that is undergoing heavy maintenance from one hanger to another not
only wastes time and effort but also affects the maintenance works of
other aircraft. A.2 is made because FH and DY are the main usage
parameters to determine the heavy maintenance, and A.3 reflects com-
mon practice in the aviation industry. The reason for having A.4 is that
the planning horizon of H-AMCS is 3–5 years (to include at least one
C-check for each aircraft), but airlines usually plan the flight routes
a few weeks beforehand. Thus, there is no available long-term flight
schedule or route. We add A.5 to take the A-/B-checks into account. If
an aircraft is undergoing an A-/B-check, it will be out of operations
for 1–2 days, impacting the C- and D-check usage parameters since
this aircraft will not be in commercial operation on those days. Like
what airline does in practice, we assume that the A- and B-checks are
scheduled on their estimated due date. This eventually generates fewer
A- and B-checks, providing a conservative approach to estimate the
due dates for the C- and D-checks and, hence, still generate a feasible
C- and D-check schedule. Assumption A.6 ensures that if an aircraft
reached its maximum interval for a C-check, while there is no available
slot, an additional maintenance slot would be created by the MRO to
avoid grounding the aircraft. It replaces the concept of using interval
tolerance, as discussed in Deng et al. (2020).

3.3. Robust optimization

This paper formulates the H-AMCS as a min–max optimization.
According to this approach, we can obtain a robust solution that is
optimal in the worst scenario, and it is feasible to all other scenarios
considered (Ben-Tal and Nemirovski, 1999):

min𝐹 (𝑥, 𝑆) = min
𝑥

max
𝑠𝑛∈𝑆

𝐹 (𝑥, 𝑠𝑛) (2)

where 𝑥 are the decision variables, 𝑆 is the set of scenarios considered,
and 𝐹 is a convex-concave objective function. Each scenario 𝑠 ∈ 𝑆
4

𝑛

contains various realizations of the main sources of uncertainty. Min–
max optimization problems are often NP-hard, even when considering
tractable problems, as shown for several combinatorial problems (Kou-
velis and Yu, 1997). Despite this, it is a common approach to solve
optimization problems in many application domains, including en-
ergy (Ma et al., 2012; Huang et al., 2015), transportation (Venkata
Narasimha et al., 2013; Soylu, 2015), and communication (Chiu et al.,
2012; Lin et al., 2018) systems.

3.4. Scenario generation

To find robust schedules, we use various scenario inputs that in-
corporate uncertainty in maintenance scheduling. In our problem, we
considered uncertainty to be present when estimating:

– The duration of the heavy maintenance checks: the elapsed time
of these checks depends on the number of non-routine tasks
(from aircraft manufacturers) added to these checks before the
maintenance checks start and the unscheduled tasks found during
maintenance inspections. Non-routine tasks include, for instance,
tasks associated with non-critical aircraft systems that are run
until they fail and tasks created after anomalies are detected in
the days before the check.

– the daily utilization of the aircraft in the fleet: the aircraft ages
according to the way it is used while performing flights. This
depends on the airline network and allocation of specific aircraft
to the routes in this network.

The following subsections provide details from the approaches fol-
lowed to model these sources of uncertainty and how we generated
scenarios, described using a maintenance checks duration matrix and a
daily utilization matrix.

3.4.1. Heavy maintenance check duration
Airlines usually plan the heavy maintenance checks for their fleet

for a future time window of 3–5 years. Since aircraft C-check happens
every 18–36 months, a planning horizon of 3–5 years is equivalent to
a maximum of four C-checks that have to be scheduled for each air-
craft (Ackert, 2010). Therefore, a maintenance checks duration matrix
consists of 𝑁 ×4 checks duration, where 𝑁 is the number of aircraft in
the fleet. To generate the scenarios, we assumed that C- and D-check
elapsed times can be estimated from historical data. Data was collected
per different classes of C-checks. That is, the C-checks are typically
performed in cycles, labeled in a sequential way (i.e., for a cycle of 12
checks, it will be C1, C2, C3, …, C12, C1, C2, …) and having different
maintenance tasks associated to them. Therefore, each maintenance
label has a different duration, and historical data has to be collected
per label. When generating the scenarios, we considered the previous
C-check label of each aircraft to determine which checks duration to
consider in the duration matrix for each aircraft. For example, if the
previous C-check label of Aircraft 1 is C1, the four future checks could
be C2, C3, C4, and C5. The elapsed time of C2 would then be randomly
chosen from the historical data of C2, and the same for C3, C4, and C5,
respectively, to fill in the respective aircraft checks duration matrix for
a given scenario.

We randomly generated 10 000 scenarios and randomly selected 𝑛𝑠
of the most critical scenarios generated to be the set of scenarios 𝑆
considered for our min–max optimization approach. We defined the
most critical scenarios as those having check durations that are, on
average, much shorter or much longer than the mean average checks
duration observed in all the scenarios generated. If the check duration is
longer than initially planned when creating a C- and D-check schedule,
it may result in maintenance capacity problems. On the other hand,
if a check is shorter than initially expected, the aircraft comes into
operation earlier, directly affecting the deadline for the next C-check

(coming at an earlier date). Thus, a shorter check duration can lead

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
Fig. 1. Distribution of the average check duration from Monte Carlo simulations with
10 000 runs.

Table 1
Utilization matrix, giving the average daily flight hours per aircraft in each month.

Fleet Jan Feb Mar … Nov Dec

Aircraft 1 10.3 9.9 10.5 … 10.5 11.1
Aircraft 2 9.9 10.1 10.1 … 10.3 11.1
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
Aircraft 𝑁 9.7 9.3 9.5 … 9.6 9.0

to future checks occurring too late in the initial schedule. To select
the most critical scenarios we considered the scenarios outside the
confidence interval (𝑑 − 𝑐 ⋅ 𝜎𝑑 , 𝑑 + 𝑐 ⋅ 𝜎𝑑) for the histogram of the
average durations per interval (Fig. 1), where 𝑐 is based on a predefined
confidence level 𝛼.

3.4.2. Utilization
We define daily aircraft utilization by the average FH per day in a

month. It was assumed that the airline network is equal per each month
of the year over the scheduling horizon. Namely, for each aircraft, the
utilization of a month is constant, but different months have different
constant utilization. A daily utilization matrix is, therefore, an 𝑁× 12
matrices, where 𝑁 is the number of aircraft in the fleet (Table 1).
Critical cases occur when the number of FH observed is more than what
was expected. The extra FH causes the aircraft to reach the maximum
interval earlier and could result in planning checks too late in the initial
schedule.

For each aircraft and month, the mean and standard deviation are
known based on historical data. Resulting in a utilization vector, 𝐔, of
𝑁 × 12 random variables:

𝐔 =
{

𝑈1, 𝑈2, … , 𝑈𝑁
}

(3)

𝑈𝑖 =
{

𝑈 Jan
𝑖 , 𝑈Feb

𝑖 , … , 𝑈Dec
𝑖

}

(4)

We assume that these random variables are jointly normal, and they
can be modeled in a multivariate normal distribution. The multivariate
normal distribution, U ∼ 𝑁(𝜇,𝛴), has mean 𝜇 and covariance matrix 𝛴
as shown in (5) and (6).

𝜇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝜇Jan
1

⋮

𝜇Dec
1

𝜇Jan
𝑁

⋮
Dec

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

(5)
5

⎣

𝜇𝑁 ⎦
𝛴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎Jan,Jan
1,1 𝜎Jan,Feb

1,1 … 𝜎Dec,Dec
1,1

𝜎Jan,Jan
1,2 𝜎Jan,Feb

1,2 … 𝜎Dec,Dec
1,2

⋮ ⋮ ⋱ ⋮

𝜎Jan,Jan
𝑁,𝑁 𝜎Jan,Feb

𝑁,𝑁 … 𝜎Dec,Dec
𝑁,𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(6)

The covariance matrix captures the fact that the daily utilization
of an aircraft depends on the utilization of the other aircraft in the
fleet. If one aircraft is used more than the average, there should be
other aircraft in the fleet that were underused. We follow the idea
of Vershynin (2012) to estimate the covariance matrix with a sample
size 𝑋:

𝛴𝑥 = 1
𝑋

𝑋
∑

𝑖=1
𝑈𝑖 ⊗𝑈𝑖 (7)

Given a mean vector 𝜇, and sample covariance matrix 𝛴, we can re-
produce the aircraft utilization for Monte Carlo simulation. To ensure a
good representation of the possible utilization outcomes, it is necessary
to select matrices consistent with the given mean vector and covariance
matrix and enclose a given proportion of the sample space. Eck et al.
(2015) defines a method of selecting scenarios at a fixed probability
level, 𝛼, for robust network optimization under uncertain demands. In
the multivariate distribution, the points with the same probability can
be found based on the Mahalanobis distance (Mahalanobis, 1936). The
fixed probability level 𝛼 is the same 𝛼 that is used for the confidence in-
terval in Section 3.4.1. However, there is an infinite number of possible
utilization matrices with the corresponding Mahalanobis distance at a
chosen probability level. To select daily utilization matrices, 𝑛 = 100
points are located corresponding to 𝛼. For the daily aircraft utilization,
the critical cases are those with the highest average daily flight hours,
since a higher daily utilization could mean that the aircraft would reach
the limit of the interval before the start date of the maintenance check.
Therefore, the 𝑛𝑠 daily utilization matrices with the highest overall
average daily flight hours are selected.

3.4.3. Scenarios generation
As described earlier, a scenario consists of a duration matrix (𝐷𝑠𝑛)

and a daily utilization matrix (𝑈𝑠𝑛), i.e., 𝑠𝑛 =
{

𝐷𝑠𝑛 , 𝑈𝑠𝑛

}

. Given size 𝑛𝑠
and probability level 𝛼, 𝑛𝑠 duration matrices and 𝑛𝑠 daily utilization
matrices are selected. By combining all possible duration matrices
with all daily utilization matrices, 𝑛𝑠 × 𝑛𝑠 scenarios are generated. In
addition to the generated scenarios, the most expected scenario is also
considered, being composed by the matrices with the average C-checks
duration and average daily utilization per aircraft, as observed in the
historical data. A size of 𝑛𝑠 = 2 therefore results in 2×2+1 = 5 scenarios,
and for 𝑛𝑠 = 3 we would consider ten scenarios.

It is worth mentioning that the historical data have maximum and
minimum values for maintenance check elapsed time and aircraft daily
utilization. Therefore, all data points are generated from a truncated
probability distribution with values between the associated maximum
and minimum for the H-AMCS study.

3.5. Problem formulation

This subsection presents the novel integer linear programming (ILP)
formulation of the H-AMCS problem. We start by introducing the
nomenclature, followed by the objective function and constraints.

3.5.1. Nomenclature
Sets
𝐼 Set of aircraft in the fleet
𝐽 𝑖
𝑘 Set of sequential type 𝑘 checks to consider for aircraft 𝑖

𝑆 Set of scenarios, of size (𝑛𝑠)2 + 1
𝑡0 The first day in planning horizon
𝑇 The final day in planning horizon

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
Parameters
𝑖 Aircraft indicator
𝑗𝑘 Check indicator (of type 𝑘 check)
𝑘 Check type indicator
𝐶E Cost for having an extra slot assigned
𝐶G Daily penalty for grounding an aircraft and waiting for

an available maintenance slot
𝑑𝑘 Minimum time between the start dates of two

consecutive checks
𝑑𝑡𝑖,𝑗𝑘 (𝑠𝑛) Duration of check 𝑗𝑘 for aircraft 𝑖 in scenario 𝑠𝑛
𝐷𝑠𝑛 Aircraft maintenance check duration matrix under

scenario 𝑠𝑛
𝐼 𝑖𝑘-FH Maximum interval in FH for type 𝑘 check, 𝑘 ∈ {A,B,C}

for aircraft 𝑖
𝐼 𝑖𝑘-DY Maximum interval in DY for type 𝑘 check,

𝑘 ∈ {A,B,C,D} for aircraft 𝑖
𝐿𝑘
𝑡 Number of available slots for type 𝑘 check at time 𝑡

𝑁 Fleet size
𝑠𝑛 A realizations of specific C- and D-check elapsed time

and aircraft daily utilization
𝑈𝑠𝑛 Fleet utilization matrix under scenario 𝑠𝑛
𝑈 𝑡
𝑖 (𝑠𝑛) Daily flight hours for aircraft 𝑖 at time 𝑡 under scenario 𝑠𝑛

Decision variables
𝑥𝑡𝑖,𝑗𝑘 𝑥𝑡𝑖,𝑗𝑘 = 1 if a check 𝑗𝑘 (of type 𝑘) starts at 𝑡 for aircraft 𝑖,

0 otherwise
𝑦𝑘𝑖,𝑡(𝑠𝑛) FH since previous type 𝑘 check for aircraft 𝑖 at time 𝑡,

𝑘 ∈ {A,B,C}, for scenario 𝑠𝑛
𝐷𝑘

𝑖,𝑡(𝑠𝑛) DY since previous type 𝑘 check for aircraft 𝑖 at time 𝑡,
𝑘 ∈ {A,B,C,D}, for scenario 𝑠𝑛

𝐸𝑡(𝑠𝑛) 𝐸𝑡(𝑠𝑛) = 1 if extra slot allocated at time 𝑡, for scenario 𝑠𝑛,
0 otherwise

𝑚𝑘
𝑖,𝑡(𝑠𝑛) 𝑚𝑘

𝑖,𝑡 = 1 if aircraft 𝑖 is having a type 𝑘 check at 𝑡, for
scenario 𝑠𝑛, 0 otherwise, 𝑘 ∈ {C,D}

𝑀𝑖,𝑡(𝑠𝑛) 𝑀𝑖,𝑡 = 1 if ∃𝑘, 𝑚𝑘
𝑖,𝑡 = 1, 0 otherwise

3.6. Constraints formulation

Several constraints are involved in the formulation of the H-AMCS
problem. These constraints can be divided into utilization, operational,
and check constraints.

3.6.1. Utilization constraints
An aircraft must undergo a type 𝑘 check before the corresponding

usage parameters (DY and FH) reach the maximum as defined by the
type 𝑘 check interval. If any of the usage parameters aircraft exceeds the
interval, the aircraft has to be grounded, resulting in heavy commercial
revenue losses. Therefore, it is required that all aircraft are maintained
within their respective intervals. Thus, given a time window of 𝑇 , all
aircraft usage parameters should be lower or equal to the interval. This
is formulated in (8) and (9) for the flight hours (𝑦𝑘𝑖,𝑡) and calendar days
(𝐷𝑘

𝑖,𝑡), respectively (D-check has a threshold interval expressed only in
calendar days):

𝑦𝑘𝑖,𝑡(𝑠𝑛) ≤ 𝐼 𝑖𝑘-FH ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 , 𝑘 ∈ {A,B,C} 𝑠𝑛 ∈ 𝑆 (8)

𝐷𝑘
𝑖,𝑡(𝑠𝑛) ≤ 𝐼 𝑖𝑘-DY ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 , 𝑘 ∈ {A,B,C,D} 𝑠𝑛 ∈ 𝑆 (9)

The usage parameters of all aircraft need to be updated every time
step, defined in Eqs. (10) and (11). Note that the FH for an aircraft
is only updated with the average daily average FH for the month of
time step 𝑡 if the aircraft is in commercial operation, i.e., 𝑀𝑖,𝑡 = 0
(𝑚𝑘

𝑖,𝑡 = 0 ∀𝑘). These average daily FH are pre-computed and dependent
on the scenario 𝑠𝑛.

𝑦𝑘 (𝑠) =
[

1 − 𝑚𝑘 (𝑠)
]

𝑦𝑘 (𝑠) +
[

1 −𝑀 (𝑠)
]

𝑈 𝑡(𝑠)
6

𝑖,𝑡+1 𝑛 𝑖,𝑡 𝑛 𝑖,𝑡 𝑛 𝑖,𝑡 𝑛 𝑖 𝑛
∀𝑖 ∈ 𝐼, 𝑡 = 1,… , 𝑇 − 1, 𝑘 ∈ {A,B,C} (10)

𝐷𝑘
𝑖,𝑡+1(𝑠𝑛) =

[

1 − 𝑚𝑘
𝑖,𝑡(𝑠𝑛)

] [

𝐷𝑘
𝑖,𝑡(𝑠𝑛) + 1

]

∀𝑖 ∈ 𝐼, 𝑡 = 1,… , 𝑇 − 1,

𝑘 ∈ {A,B,C,D} (11)

3.6.2. Operational constraints
If an aircraft is being maintained, it occupies one maintenance slot

for the duration of its check. The duration of a specific check 𝑗𝑘 for
aircraft 𝑖, 𝑑𝑡𝑖,𝑗𝑘 (𝑠𝑛), depends on the start time 𝑡 and the scenario 𝑠𝑛. Since
maintenance work is halted during weekends and public holidays, the
number of weekend days and public holidays for a specific check period
also need to be added to the total duration of the check:

𝑑𝑡𝑖,𝑗𝑘 (𝑠𝑛) = number of working days for a check 𝑗

+ weekends + public holidays (12)

Since the binary variables are 𝑚𝑘
𝑖,𝑡 = 1 if aircraft 𝑖 starts maintenance

check 𝑗𝑘 at time 𝑡 for the duration of the check, we have the following
constraint:

∑

𝑡∈
[

𝑡,𝑡+𝑑𝑡𝑖,𝑗𝑘
(𝑠𝑛)

]

𝑚𝑘
𝑖,𝑡(𝑠𝑛) ≥ 𝑑𝑡𝑖,𝑗𝑘 (𝑠𝑛) × 𝑥𝑡𝑖,𝑗𝑘 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖, 𝑡 ∈ 𝑇 , 𝑠𝑛 ∈ 𝑆

(13)

Besides, the number of slots used for type 𝑘 check at 𝑡 should not
exceed the capacity 𝐿𝑘

𝑡 (𝐿𝑘
𝑡 has to be defined beforehand by airlines).

For example, airlines often require that no C-checks are scheduled
during peak periods (i.e., summer and holiday periods). This is because
performing a C-check during these periods will cause a high commercial
revenue loss. During these periods, the available slots can be set to zero.
As indicated in A.6, an airline can create an extra slot, 𝐸𝑡(𝑠𝑛), to a day
if required to maintain all aircraft within their interval. Therefore, the
capacity constraint is defined as.
∑

𝑖∈𝐼
𝑚𝑘
𝑖,𝑡(𝑠𝑛) ≤ 𝐿𝑘

𝑡 + 𝐸𝑡(𝑠𝑛) ∀𝑡 ∈ 𝑇 , 𝑠𝑛 ∈ 𝑆 (14)

3.6.3. Maintenance check constraints
A maintenance cycle consists of several sequential maintenance

checks. These checks are planned subsequently. For example, in H-
AMCS (C-/D-check), after the first check (C1), C2 has to be scheduled
and then C3, and so on. To formulate the maintenance cycle, we
introduced the following to ensures that check 𝑗𝑘 has to be scheduled
before a check 𝑗𝑘 + 1:

𝑥𝑡𝑖,𝑗𝑘 ≥ 𝑥𝑡𝑖,𝑗𝑘+1 ∀𝑡 = 0, 1,… , 𝑇 , ∀𝑖 ∈ 𝐼, 𝑗𝑘 = 0, 1,… (15)

Furthermore, a specific check 𝑗𝑘 can only be scheduled once.
∑

𝑡∈𝑇
𝑥𝑡𝑖,𝑗𝑘 ≤ 1 ∀𝑖 ∈ 𝑖, 𝑗 ∈ 𝐽𝑘

𝑖 (16)

Lastly, we considered that a minimum time between the start dates
of two consecutive type 𝑘 checks may be required due to resource
preparation. Some airlines need it to prepare the maintenance tools
and aircraft spare parts. This can be defined by the airline as 𝑑𝑘. The
respective constraint is described in (17):
∑

𝑖∈𝐼

∑

𝑗𝑘∈𝐽𝑘
𝑖

𝑥𝜏𝑖,𝑗𝑘 ≤ 1 ∀𝜏 ∈
[

𝑡 − 𝑑𝑘, 𝑡 + 𝑑𝑘
]

(17)

3.7. Objective function (Fitness Function)

This paper uses the following objective function, which is also the
proposed fitness function for the genetic algorithm (GA):

minmax𝐹 (𝑥, 𝑠𝑛) (18)

𝑥 𝑠𝑛∈𝑆

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
where

𝐹 (𝑥, 𝑠𝑛) =
𝑇
∑

𝑡=𝑡0

∑

𝑘

∑

𝑖∈𝐼

∑

𝑗∈𝐽𝑖

[

|

|

|

𝐼 𝑖𝑘-FH − 𝑦𝑘𝑖,𝑡(𝑠𝑛)
|

|

|

+ 𝑃 𝑘
𝑖,𝑡(𝑠𝑛)

]

× 𝑥𝑡𝑖,𝑗𝑘

+ 𝐶E

𝑇
∑

𝑡=𝑡0

𝐸𝑡(𝑠𝑛), 𝑥 =
⋃

𝑖,𝑗𝑘 ,𝑡
𝑥𝑡𝑖,𝑗𝑘 (19)

In (19), ||
|

𝐼 𝑖𝑘-FH − 𝑦𝑘𝑖,𝑡(𝑠𝑛)
|

|

|

represents the unused flight hours of aircraft 𝑖,
checks 𝑗𝑘 at time 𝑡. Any violation of utilization constraints is penalized
by 𝑃 𝑘

𝑖,𝑡(𝑠𝑛) proportional to the level of the infeasibility of the schedule:

𝑃 𝑘
𝑖,𝑡(𝑠𝑛) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑦𝑘𝑖,𝑡(𝑠𝑛) ≤ 𝐼 𝑖𝑘-FH and 𝐷𝑘
𝑖,𝑡(𝑠𝑛) ≤ 𝐼 𝑖𝑘-DY

𝑦𝑘𝑖,𝑡(𝑠𝑛)−𝐼
𝑖
𝑘-FH

𝑈 𝑡
𝑖 (𝑠𝑛)

𝐶G, 𝑦𝑘𝑖,𝑡(𝑠𝑛) ≥ 𝐼 𝑖𝑘-FH
[

𝐷𝑘
𝑖,𝑡(𝑠𝑛) − 𝐼 𝑖𝑘-DY

]

𝐶G, 𝐷𝑘
𝑖,𝑡(𝑠𝑛) ≥ 𝐼 𝑖𝑘-DY

(20)

𝐶G is the cost per day when an aircraft has to stay on the ground
waiting for the check. The second part ∑𝑡∈𝑇 𝐸𝑡(𝑠𝑛) × 𝐶E represents the
cost for creating additional slots at time 𝑡. As indicated in A.6, an airline
can assign an extra hangar slot to make a schedule feasible. However,
this requires the need for mechanics to work extra time and can be
costly. Besides, the ratio between 𝐶G and 𝐶E determines the trade-off
between having extra slots or having aircraft being maintained too late.
Since grounding an aircraft means a high commercial revenue loss, in
principle, 𝐶G should be much higher than 𝐶E.

The general idea of (18) is to minimize the total unused flight
hours while having the least violations of utilization constraints and
creating the least extra maintenance slot. The reason is that aircraft
maintenance cost data is often confidential or incomplete and hard to
relate to specific check types. Moreover, the costs of an aircraft being
out of operations are higher than the daily costs of a maintenance
check. Minimizing the total unused flight hours of a fleet exploits the
maintenance intervals between checks, indirectly reducing the number
of maintenance checks in the long-term and, consequently, the days out
of operation in the scheduling horizon. It makes all aircraft the fleet
in commercial operation as long as possible and implicitly reduces the
total costs for maintenance operations and aircraft spare parts. Hence,
it is considered the most suitable objective function for the problem.

Each schedule in the population has to be evaluated to assess how
good the schedule actually is. This evaluation is done according to
the min–max objective function (18) subject to a penalty that captures
violations to the utilization constraints (8) and (9).

In general, a maintenance check schedule with a lower cost is
considered a better candidate. Simulation of multiple schedules (chro-
mosomes) for all scenarios (i,e, ∀𝑠𝑛 ∈ 𝑆) was performed using the
SymPy package (Meurer et al., 2017) in python and provided the
number of flight hours flown at each scheduled check and any penalty
that might have been assigned. An example of the simulator output can
be seen in Fig. 2. Here the fitness is displayed for a fleet of 45 aircraft.
The first entries in the fitness list (0–44) indicate the lost flight hours
per aircraft and any penalty that might have been given, corresponding
to the first part of (19). The slots entry indicates whether extra slots are
needed with the evaluated schedule, corresponding to the second part
of (19). The total entry gives the overall fitness of a maintenance check
schedule.

Each heavy maintenance schedule is assessed against all scenarios
𝑠𝑛 ∈ 𝑆. The one that leads to the highest total cost is considered the
worst-case scenario, and the associated total cost is the fitness of the
schedule. If the maximum number of iterations has been achieved, the
GA stops and returns the schedule corresponding to the lowest total
fitness value.
7

Fig. 2. Example of fitness evaluation for a schedule with a fleet of 45 aircraft.

4. Genetic algorithm

The problem formulated in the previous section is hard to solve for
large instances. Therefore, we adapt a GA for solving H-AMCS for a fleet
of heterogeneous aircraft under uncertainty. The overall procedure of
the GA is illustrated in Fig. 3, following the traditional GA algorithm
structure as described in Kramer (2017). First of all, we generate
several initial aircraft maintenance check schedules (chromosomes),
not necessarily all feasible, using an 𝜖-greedy algorithm. This set of
schedules is the initial population. After that, every initial schedule in
the population is evaluated according to an evaluation function. A set of
individual schedules are then selected (parents) and progress to create
a new set of schedules (a new generation).

Based on several parameters, selecting individual schedules (Par-
ents) for creating a new population occurs. From the combination of
parents, new schedules are created through crossover and mutation,
which form a new population. The fitness of the new population is then
assessed, and the cycle starts again. This iterative process continues un-
til certain stopping criteria are met. To reduce variability in GA output,
we use parallel computing to simulate different, independent runs on a
quad-core workstation. After that, we choose the best outcome from
the independent runs as the final result. This approach, also known
as probability amplification, has been proven effective for job shop
scheduling of two machines and several other scheduling (Sudholt,
2015). The following sub-sections explain in more detail the different
modules of the GA.

4.1. Chromosome representation

To represent a C-check maintenance schedule in the GA, it has to
be encoded in the form of a chromosome. A list of integer numbers
is chosen to represent the schedule. The layout can be seen in Table 2.
The rows represent the C-check schedule of each aircraft (Aircraft 1, …,
Aircraft 𝑁) and are referred to as genes. The columns represent which
C-check is scheduled. C-I indicates the first coming C-check in the cycle
of the aircraft. Meaning that if an aircraft previously had a C8 check,
C-I represents the C9 C-check, C-II for C10, etc. Each integer number in
the gene indicates the starting date for that specific check, measured in
days since the start of the scheduling horizon. The C-I check for Aircraft
1 in Table 2 is, for example, scheduled to start at time step 396 in the
planning horizon, meaning 396 days after the start of the horizon. An
integer number of ‘‘-1’’ indicates that specific check is not scheduled in
the planning horizon.

4.2. Initialization of population

To start searching for near-optimal solutions for H-AMCS with GA,
an initial population has to be generated. This initial population con-
sists of a predetermined number (population size) of varying schedules.
These initial schedules are created with an 𝜖-greedy algorithm, as
presented in Algorithm 1.

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
Fig. 3. Flowchart of a genetic algorithm methodology for heavy aircraft maintenance check scheduling.
Table 2
Chromosome representation of the C-check maintenance schedule.

Tail number C-I C-II C-III C-IV

Aircraft 1 396 1089 −1 −1
Aircraft 2 88 506 1123 −1
Aircraft 3 135 885 1295 −1
Aircraft 4 424 1120 −1 −1
⋮ ⋮ ⋮ ⋮ ⋮
Aircraft 𝑁 𝑡𝑛1 𝑡𝑛2 𝑡𝑛3 𝑡𝑛4

The algorithm simulates the usage parameters for all aircraft in the
fleet over the planning period. The parameters are updated according
to (10) and (11). If at time step 𝑡, an aircraft 𝑖 has to be scheduled for an
A- or B-check, the flight hour parameter, 𝑦C

𝑖,𝑡, is not updated since the
aircraft is being maintained and does not fly on that day. All aircraft
that have usage parameters within 𝜖 (0 < 𝜖 ≤ 1) of their interval at
time step 𝑡 have to be scheduled for a C-check, where 𝜖 is a randomly
generated normally distributed number. This gives a list of aircraft for
which a check has to be scheduled at 𝑡.

Note that the 𝜖-greedy algorithm does not have to generate a feasi-
ble schedule. There can be a situation that many aircraft have C- and
D-checks on the same day, and each of the aircraft is given a random
priority. This priority is used to determine the order of maintenance
check execution. If an aircraft 𝑖 has a type 𝑘 check scheduled at 𝑡,
the usage parameters, 𝑦𝑘𝑖,𝑡 (∀𝑘 ∈ {A,B,C}), and 𝐷𝑘

𝑖,𝑡 (∀𝑘 ∈ {A,B,C,D})
of the aircraft are set to zero for the duration of the check (D-check
has only one usage parameter 𝐷D

𝑖,𝑡). After this, the next aircraft in the
priority order is scheduled until all aircraft from the candidate list have
been planned (creating extra slots if necessary). This process is repeated
for every time step in the planning horizon. Resulting in one initial
maintenance schedule for the entire fleet.

Due to the introduction of 𝜖 and a random scheduling priority, the
algorithm can produce various initial schedules that may or may not be
feasible. Updating the usage parameters and the duration of a type 𝑘
check depends on the scenario used. When running GA with different
scenarios, 𝑠𝑛 ∈ 𝑆, the initial population is generated by running the
𝜖-greedy algorithm, with a uniform randomly chosen scenario. This
process repeats until the population size is reached.

4.3. Parent selection

Based on the fitness values of all heavy maintenance schedules in
the population, several schedules are selected for the mating pool.
From this mating pool, schedules are paired up in parent combinations,
from which new schedules are generated through the crossover. These
new schedules form the next generation. Several selection techniques
have been studied in Goldberg and Deb (1991), where 𝑛-tournament
selection is shown to have good convergence and computational time
8

Algorithm 1 𝜖-greedy algorithm for creating initial heavy maintenance
check (C-/D-check) schedule
1: Initialize 𝐷C

𝑖,0, 𝐷
D
𝑖,0, 𝑦

𝑘
𝑖,0 for all aircraft 𝑖 = 1, 2,… , 𝑁 and for 𝑘 ∈ {A,B,C,D}

⊳ Initial fleet status
2: for ← 1 to 𝑁 do
3: if Aircraft 𝑖 is undergoing a C- and D-check then
4: Aircraft{𝑖}.check ← End date of the C- and D-check
5: else
6: Aircraft{𝑖}.check ← −1
7: end if
8: end for
9: chromosome ← []

10: for 𝑡 ← 1 to 𝑇 do
11: for 𝑖 ← 1 to 𝑁 do
12: if Aircraft{𝑖}.check < 𝑡 then
13: Aircraft{𝑖}.check ← −1
14: end if
15: 𝛥𝑢 ← 𝑈 𝑡

𝑖 (𝑠𝑛)
16: if 𝑦𝑘𝑖,𝑡 ≥ 𝐼𝑘

𝑘−FH ∀𝑘 ∈ {A,B} then
17: 𝑦𝑘𝑖,𝑡 ← 0 ∀𝑘 ∈ {A,B}
18: 𝛥𝑢 ← 0
19: else
20: if Aircraft{𝑖}.check > 0 then
21: 𝑦C

𝑖,𝑡 ← 0 and 𝐷C
𝑖,𝑡 ← 0 ⊳ Aircraft 𝑖 is undergoing a C-check

22: 𝛥𝑢 ← 0
23: end if
24: end if
25: 𝑦𝑘𝑖,𝑡 ← 𝑦𝑘𝑖,𝑡 + 𝛥𝑢
26: 𝐷𝑘

𝑖,𝑡 ← 𝐷𝑘
𝑖,𝑡 + 1 ∀𝑘 ∈ {A,B,C,D}

27: 𝜖 ← randu(1) ⊳ randu(1) function generates a uniformly
distributed random number between 0 and 1

28: if 𝑦C
𝑖,𝑡 ≥ 𝜖 ⋅𝐼 𝑖

C-FH or 𝐷C
𝑖,𝑡 ≥ 𝜖 ⋅𝐼 𝑖

C-DY or 𝐷D
𝑖,𝑡 ≥ 𝜖 ⋅𝐼 𝑖

D-DY and
∑

𝑖∈𝐼

∑

𝑗C∈𝐽C
𝑖

𝑥𝜏𝑖,𝑗C
≤

1 ∀𝜏 ∈
[

𝑡 − 𝑑c, 𝑡
]

then
29: chromosome ← chromosome ∪

{(

𝑖, 𝑡, 𝑡 + 𝑑𝑡
𝑖,𝑗C

(𝑠𝑛)
)}

⊳ Schedule
a C-check for Aircraft 𝑖

30: Aircraft{𝑖}.check ←
{

𝑡 + 𝑑𝑡
𝑖,𝑗C

(𝑠𝑛)
}

31: 𝑦C
𝑖,𝑡 ← 0 and 𝐷C

𝑖,𝑡 ← 0 ⊳ Reset the usage parameters of C-check
to 0 for Aircraft 𝑖

32: if 𝐷D
𝑖,𝑡 ≥ 𝜖 ⋅ 𝐼 𝑖

D-DY then
33: 𝐷D

𝑖,𝑡 ← 0 ⊳ Reset the usage parameters of D-check to 0 for
Aircraft 𝑖

34: end if
35: end if
36: end for
37: end for

return chromosome

complexity properties. The principle of 𝑛-tournament selection is based

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
Fig. 4. Uniform crossover, where offspring is generated by randomly selecting a gene
from one of the parents.

on selecting a set of 𝑛 individuals uniformly at random from the popula-
tion. From the set of 𝑛 individuals, the individual with the best fitness
value is selected for the mating pool. This whole process is repeated
𝑛 times, with replacement. The size of set 𝑛 is a trade-off between
exploitation and exploration, and the most common size is 𝑛 = 2, the
binary tournament selection (Rowe, 2015). Larger sample sizes will
increase the probability that only the best individuals will be selected,
losing some exploration properties. In scheduling literature, Hartmann
(1998) has researched several selection techniques, where tournament
selection with size 𝑛 = 3 performs better than the binary tournament
selection. Therefore, the 3-tournament selection is used in this paper.
To select the best individual from the population, the tournament
selection is combined with an elitist method. The 𝑛 best individuals
from the population are included in the next generation. This way, the
best performing schedules are not lost during crossover or mutation.

4.4. Crossover

From the mating pool, individuals are randomly paired to form
groups of parents. With random probability equal to the crossover
rate, each pair generates two new schedules for the next generation
based on crossover techniques. If no crossover occurs, both individuals
in the parent pair will go through to the next generation. The main
techniques are single-point, two-point, and uniform crossover Rowe
(2015). For this problem, the uniform crossover has been selected. Hu
and Paolo (2009) successfully applied this approach for the aircraft
arrival sequencing and scheduling problem with a similar integer ma-
trix chromosome representation. In the uniform crossover, each gene in
the chromosome is randomly selected from the parents creating a new
chromosome. This is done two times to generate two new schedules
from each parent pair. An example of the uniform crossover operation
can be seen in Fig. 4 for a fleet of five aircraft.

The procedure of generating a new population can be seen in
Algorithm 2. Firstly, several 𝑛best best schedules from the population
are added to the new population. Secondly, each parent pair generates
two new schedules to add to the new population. If a random number
is lower than or equal to the crossover rate, these two schedules are
9

generated by uniform crossover. Otherwise, both individuals from the
parent pair are added to the new population.

Algorithm 2 Crossover Procedure
1: Initialize crossover_rate, mating_pool population
2: New_Population ← []
3: New_Population←New_Population∪

{

best 𝑛best from population
}

4: for parent_pair∈ mating_pool do
5: if randu(1) ≤ crossover_rate then ⊳ randu(1) generates a uniformly

distributed random number between 0 and 1
6: child1 ← uniform_crossover(parent_pair)
7: child2 ← uniform_crossover(parent_pair)
8: else
9:

{

child1, child2
}

← parent_pair
10: end if
11: New_Population←New_Population∪

{

child1, child2
}

12: end for
13: return New_Population

Algorithm 3 Mutation Procedure
1: Initialize population, mutation_rate, scenarios
2: 𝑛check ← Total number of heavy maintenance checks
3: for chromosome ∈ population do
4: if randu(𝑛check) ≤ mutation_rate then
5: 𝑛 ← randu(𝑛check) ⊳ randu(𝑛check) generates a uniformly distributed

random number between 0 to 𝑛check
6: Randomly switch the start dates of 𝑛 maintenance checks in the

chromosome.
7: end if
8: end for

4.5. Mutation

After a new population has been generated by crossover, mutations
(change of start dates of maintenance check) in chromosomes can occur
for some aircraft. The probability that mutation occurs is defined as
the mutation rate. It is most beneficial to schedule the C-checks at the
latest possible date. Therefore, the mutation is not random but follows
the same 𝜖-greedy algorithm presented in Algorithm 1. All aircraft
outside of this subset keep their current schedule (gene). The mutation
procedure is explained in Algorithm 3. An example of the mutation
procedure can be seen in Fig. 5.

4.6. Simulation model and fitness evaluation

Given a heavy maintenance check schedule 𝑥, the ‘‘Simulation
Model’’ shown in Fig. 3 is a model framework using a SymPy package of
Python (Meurer et al., 2017) to calculate the unused FH, the number
of constraints violated, and the number of extra slots created day by
day, from 𝑡0 to 𝑇 according to selected utilization matrix (𝑈𝑠𝑛) and
maintenance check duration matrix (𝐷𝑠𝑛). After that, we can compute
the fitness value according to Eqs. (19) and (20).

4.7. Algorithm detail

The GA methodology for H-AMCS is shown in Algorithm 4. When
it terminates, i.e., the algorithm reaches its pre-defined maximum
iterations, it returns the schedule with the minimum fitness value.

5. Case study

We validate the proposed modeling approach and the GA methodol-
ogy using some randomly generated aircraft maintenance data. Firstly,
the problem is simplified to compare the output of the GA to the
output of an exact method for several test cases (Section 5.1). The
exact method is based on the ILP formulation and solved using the
commercial LP solver CPLEX. Secondly, the ability of the GA to find

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
Fig. 5. An example of the mutation procedure, where 2 aircraft are randomly selected to be rescheduled.
Algorithm 4 GA Methodology
1: Initiate population, scenarios, available slots, fleet
2: Population_Fitness ← [], Output ← []
3: for iteration ∈ [0, Max_Iteration] do
4: fitness_val ← 0
5: for Chromosome ∈ population do
6: checks ← Chromosome
7: fitness_temp ← 0
8: output_temp ← []
9: for Scenario ∈ scenarios do

10: 𝑈𝑠𝑛 , 𝐷𝑠𝑛 ← Scenario ⊳ Utilization and duration matrix based on scenario
11: fitness_val ← Evaluation_Fitness(checks, 𝑈𝑠𝑛 , 𝐷𝑠𝑛) ⊳ Compute fitness value according to Eq. (19)
12: if fitness_val > fitness_temp then
13: fitness_temp ← fitness_val
14: output_temp ← checks
15: end if
16: end for
17: end for
18: Population_Fitness.insert(fitness_temp)
19: Output.insert(output_temp)
20: population ← Crossover(population, crossover_rate) ⊳ Crossover according to Algorithm 2
21: population ← Mutate(population, mutation_rate) ⊳ Mutation according to Algorithm 3
22: end for
23: index ← argmin(Population_Fitness)
24: 𝑥final ← Output[index]
efficient near-optimal solutions is assessed by comparing the outcome
of the GA to results from a dynamic programming (DP) based methodol-
ogy described in Deng et al. (2020) (Section 5.2). 𝐶G is 105 according
to Deng (2019) and 𝐶E is set to 500 according to current practice of
our airline partner. In Section 5.3, we discuss the value of the min–max
optimization approach by assessing the robustness of the schedules pro-
duced with such approach. Lastly, a sensitivity analysis on the effect of
probability level 𝛼 and the number of scenarios on schedule robustness
is performed (Section 5.4). All test runs with GA are performed with a
mutation rate of 0.6, a crossover rate of 0.9, a population size of 20,
using parallel computing on a quad-core workstation. These parameters
were found using grid search (Bergstra and Bengio, 2012). The details
for determining the mutation rate, crossover rate, and population size
can be seen in van der Weide (2020).

5.1. Model validation

From the literature review in Section 2, it is clear that the complex-
ity of AMCS makes it difficult to apply exact methods to large-scale
problems. Therefore, the GA and benchmark model are evaluated for
small-scale test problems. For the test problems, the time step, 𝑡, was set
to be weekly, and only the deterministic scenario is taken into account.
Furthermore, the GA and ILP only consider the flight hour parameter
constraints. The D-check and calendar day parameters were excluded
from the problem formulation. A total of four test cases are created with
varying available slots per week and the number of aircraft in the fleet:
10
• Case 1: 10 aircraft, 1 hangar available
• Case 2: 20 aircraft, 2 hangars available
• Case 3: 30 aircraft, 3 hangars available
• Case 4: 40 aircraft, 3 hangars available

In the ILP model, the number of decision variables depends on the
fleet size 𝑁 and the planning horizon 𝑇 − 𝑡0 + 1 since one day of an
aircraft corresponds to one decision variable. This gives 𝑁

(

𝑇 − 𝑡0 + 1
)

decision variables. Besides, since only C- and D-checks are considered
in this study and D-checks are merged in C-checks, the fleet size 𝑁 ,
the planning horizon 𝑇 − 𝑡0 + 1, the hangar capacity 𝐿C

𝑡 and (8)–(17)
together determine the following number of constraints:

𝑁(𝑇 − 𝑡0 + 1)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Eq. (8)

+2𝑁(𝑇 − 𝑡0 + 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Eq. (9)

+𝑁(𝑇 − 𝑡0 + 1)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Eq. (10)

+2𝑁(𝑇 − 𝑡0 + 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Eq. (11)

+𝑁(𝑇 − 𝑡0 + 1)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Eq. (13)

+𝑁
𝑇
∑

𝑡0

𝐿C
𝑡

⏟⏞⏞⏟⏞⏞⏟
Eq. (14)

+𝑁(𝑇 − 𝑡0 + 1)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Eq. (15)

+𝑁(𝑇 − 𝑡0 + 1)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Eq. (16)

+𝑁(𝑇 − 𝑡0 + 1)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Eq. (17)

= 10𝑁(𝑇 − 𝑡0 + 1) +𝑁
𝑇
∑

𝐿C
𝑡 (21)
𝑡0

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
Table 3
Comparison of computation time and objective value between the GA and the exact method for 4 small test cases.

Planning horizon [years] Case 1 Case 2 Case 3 Case 4

2 3 2 3 2 3 2 3

Computation time exact method [s] 1.3 5.7 3.8 46.1 13.9 352.0 23.4 2271.0
Computation time GA [s] 6.1 7.0 9.2 15.7 18.4 25.2 23.2 36.5
Optimality gap [%] 0.00 0.00 0.00 0.31 0.00 0.39 0.02 0.37
p
p
p
t
b
G
b
s
t
i
s
q

5

t
a
s
d
s
i
s
t

e
e
m
i
b
w

For instance, given a fleet of 40 aircraft and a planning horizon of
4 years, and three hangars for C-checks, the number of decision vari-
ables is more than 5.8 × 104, and the number of constraints is about
7.6 × 105.

The four test cases are run for a planning horizon of two and three
years. The objective value and computation time are compared to assess
the effectiveness of the GA for small test cases. None of the test cases
requires creating extra slots or schedules heavy maintenance checks
later than due dates for both approaches. The outcome comparison
can be seen in Table 3. The computation time for the exact method
increases exponentially when the problem size increases. The GA solves
the problem significantly faster for problems with a longer time horizon
without compromising the quality of the solution obtained. For the
biggest test case of 40 aircraft and a planning horizon of three years,
the computation time difference is already more than 35 min. The
optimality gap, i.e., the difference between the objective function value
of the exact method and the GA, is only 0.37%. For the 2-year planning
horizon cases, the gap is not higher than 0.02%, while for the 3-year
case, the gaps are always below 0.4%, suggesting the efficiency of the
GA.

5.2. 2018–2021 H-AMCS optimization results

To assess the effectiveness of the GA methodology, we perform a
case study using a fleet of maintenance data from a major European
airline (Deng, 2019). The data set contains real maintenance check
information from a heterogeneous fleet of 45 aircraft from the Airbus
A320 family (A319, A320, and A321). The fleet status was obtained on
September 25th 2017, and the planning horizon is maximal five years.
We used the GA to optimize the heavy maintenance check schedule
for 2018–2021. Since heavy maintenance checks (C-/D-checks) have
intervals larger than 18 months, there are at most four C-/D-checks
from September 25th 2017 to December 31st 2021 for each aircraft,
meaning that there are 180 decision variables for the GA.

Several operational constraints were defined to be able to replicate
the test case as presented by the previous authors:

• A maximum of three C- and D-checks can be executed in parallel;
• C-check works pause on weekends and public holidays;
• Due to resource availability reasons, there has to be a minimum

of three days between the start dates of two C-checks (𝑑c = 3);
• During the following commercial peak periods, no C-checks can

be scheduled:

(1) The weeks before and after Easter;
(2) From June 1st to September 30th;
(3) December 18th to January 7th.

Note that for the ILP model, there are at least 6.5 × 104 decision
variables and 8.5 × 105 constraints according to (21), and we had
memory issues running the ILP model on CPLEX. Thus, we compared
the heavy maintenance check schedule created by GA to a schedule
created by the maintenance planners of the airline and a schedule
generated by the dynamic programming based methodology described
in Deng et al. (2020). The comparison was performed only for the
period between the Jan 1st 2018 and the Dec 31st 2021.

The results of the test case 2018–2021 show that the GA clearly out-
performs the airline’s current aircraft maintenance planning approach
11

(Table 4). The GA reduces the total number of C-checks by 9 and
Table 4
C-check optimization results for the test case 2018–2021.

Airline DP-based GA

Average FH 6539 6691 7087
Number of C-checks 96 90 87
Computation time ≥3 days 510 s 1059 s

increases the average flight hours by 8.4% over the planning horizon.
Compared to the optimization results from a DP-based approach, GA
further has three fewer C-checks and increases the average FH by 5.9%.
From a saving and revenue management perspective, since airlines
spend on average $150 K–$350 K on a C-check (Ackert, 2010), 9 fewer
C-check can result in a potential saving of $1.35M–$3.15M for the
considered time horizon. Furthermore, since a C-check lasts about 1–4
weeks in this case study, 9 reduced C-checks are equivalent to about
63–252 days of aircraft availability for commercial operations. This
may generate a considerable amount of revenue for the airline.

The computation time of the GA is over twice as the DP-based ap-
proach. However, this is still significantly better than the computation
time of over three days from the airline. The improvement in aircraft
utilization can be seen when looking at the distribution of flown flight
hours at a C-check in Fig. 6. The distribution of FH at C-checks for the
GA is shifted to the right compared to the airline and DP schedules. The
number of checks scheduled near their deadline, represented as the red
line, is also increased.

The assumption A.6, which considers that A- and B-checks can be
lanned at its due date, is the most significant difference between the
roblem addressed by Deng et al. (2020) and our approach in the
aper. Therefore, we have assessed the impact of this assumption on
he quality of the results obtained. To do that, the schedule created
y the DP-based methodology was run in the simulator used by the
A (i.e., Algorithm 4 with a single scenario). The result was used as a
enchmark against the results obtained by the DP methodology. Fig. 7
hows the difference in flight hours between the result obtained with
he DP methodology and the GA simulator. The maximum difference
s 12.9 flight hours. The average difference is only 1.66 flight hours,
uggesting that assumption A.6 does not have a major impact on the
uality of the solutions obtained with the GA.

.3. Robustness

The previous section concerned the analysis of the effectiveness of
he GA. However, the outcome of the case study was only based on

single deterministic scenario. Fig. 6 shows that many C-checks are
cheduled close to the maximum interval. A small increase in average
aily flight hours or variation in check duration could disrupt the
chedule and result in aircraft being maintained after their maximum
nterval. Therefore, we run our min–max optimization model for the
ame test case but considering multiple scenarios generated according
o the methodology described in Section 3.4.

We considered ten scenarios (i.e., 𝑛𝑠 = 3) and a probability level (𝛼)
qual to 0.8. The summary of the results is presented in Table 5. As
xpected, the robust optimization results in lower utilization and two
ore C-checks than the deterministic optimization. Using ten scenarios

nstead of a single scenario also increases the computation time but just
y 55%. When we compared the results with the schedule obtained
ith the airline’s current planning approach, the robust schedule is

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
Fig. 6. Comparison of FH at C-check between schedules from the airline, the DP-based methodology, and GA.
Fig. 7. Difference between the flown flight hours resulting from the GA simulator and
the DP-based methodology from Deng et al. (2020), using the same schedule.

Table 5
Results of optimization for the case study with the GA, for 10 scenarios and a
probability level of 80%, compared to the results of the GA for the deterministic
scenario.

Deterministic Robust (𝑛𝑠 = 3, 𝛼 = 0.8)

Average flight hours 7087.3 6825.8
Number of C-checks 87 89
Computation time 1059 s 1643 s

even more efficient. There are seven fewer C-checks scheduled, and
the average utilization increases by 4.4%. When taking into account
that an airline spends on average between $70 and $350 thousand on
a C-check (Ackert, 2010), this reduction could lead to an annual cost
saving between $122.5 and $612.5 thousand. Furthermore, the reduced
number of C-checks also results in fewer days for aircraft to be on the
ground for maintenance. In this case, there could potentially result in
100 to 140 days extra in operation over the planning horizon or about
25 to 35 extra days per year for this fleet of 45 aircraft. Considering that
a day of operations of a short-haul aircraft can generate between $75
to $120 thousand in revenue, this could represent $1.8 to $4.2 million
of additional annual revenue.

To evaluate the robustness of the schedule obtained with the min–
max optimization approach, we compare the performance of the sched-
ule with the performance of a schedule based on a single deterministic
scenario. We performed a Monte Carlo simulation analysis with 10 000
runs. In each run, the schedules were assessed with the simulator under
a different maintenance duration and aircraft daily utilization matrices
randomly generated using historical data and the approach described
in Section 3.4.2. This way, the schedules were checked against 10 000
different scenarios to assess the number of times the schedule would
become unfeasible, either because the aircraft reach the end of the
interval before starting the maintenance check or because additional
12
Table 6
Probability for the total days aircraft are maintained past their deadline to lie within
a certain range. ‘‘Days too late’’ refers to the number of days that aircraft already
reach their utilization limit (inspection interval) and have to be grounded until they
get available maintenance slots. The category ‘‘<1’’ includes the maintenance checks
performed on time and before the corresponding aircraft reach their utilization limit.

Days too late Deterministic Robust (𝑛𝑠 = 3, 𝛼 = 0.8)

<1 0.27% 41.12%
1–19 25.90% 55.34%
20–49 58.92% 3.36%
≥50 14.91% 0.18%

slots are necessary to complete the maintenance events scheduled. No
recovery procedures were considered in the simulation, so the schedule
is not adjusted if an aircraft has to be grounded or if extra slots are
needed. In practice, a schedule disruption management system can
be used to avoid grounding an aircraft. Thereafter, we will call the
min–max optimization schedule the robust schedule and the schedule
obtained with one single scenario as the deterministic schedule.

Fig. 8a shows the Monte Carlo simulation results regarding the
number of days aircraft are maintained after their maximum interval
due to higher daily utilization of the aircraft. This would force the
aircraft to be on the ground for these days, waiting for the maintenance
to be performed. The results indicate that uncertainty can significantly
impact the feasibility of the schedule for the deterministic case. On av-
erage, for all the runs computed, an aircraft would have to be grounded
for 32.3 days during the 4 years simulated. On the other hand, only 2.7
days would be needed for the case of the robust schedule.

Based on the distributions, the probability that the total days in
which aircraft are maintained past their deadline lie within a certain
range is computed. In Table 6, it is clear that the min–max optimization
is significantly more robust than optimization using the deterministic
scenario. There is a 41% chance that no conflicts and disruptions occur
for the robust schedule, compared to a chance of 0.27% for the schedule
generated by deterministic optimization.

Fig. 8b shows the Monte Carlo simulation results regarding the
number of extra slots required due to uncertainty in the check duration.
Similar to what we observed in the previous analysis, the distribution
is shifted to the left for the robust schedule. The simulations resulted
in a mean of 2.1 extra slots for the robust schedule compared to 17.2
for the deterministic schedule. Table 7 shows the probabilities for the
number of extra slots to lie within certain ranges, indicating that the
schedule created by the min–max optimization approach is more robust
than the deterministic schedule when regarding available maintenance
slots.

5.4. Sensitivity analysis

We performed a sensitivity analysis to investigate the impact of
the model parameters, 𝑛𝑠 and 𝛼. To do this, we run a Monte Carlo
simulation analysis solving the min–max optimization model for a four

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
Fig. 8. (a) Distribution of total number of days the aircraft in the fleet have to be grounded because of exceeding their maximum interval during the planning horizon for the
deterministic and robust schedules from 10 000 Monte Carlo simulation runs; (b) Distribution of the number of extra slots that are necessary due to uncertainty in check duration
for the deterministic and robust GA optimization, from 10 000 Monte Carlo simulation runs.
Table 7
Probability for the amount of extra slots in the planning horizon to lie within a certain
range.

Extra slots Deterministic Robust (𝑛𝑠 = 3, 𝛼 = 0.8)

<1 0.02% 35.08%
1–9 5.40% 64.71%
10–19 68.30% 0.21%
≥20 26.29% 0%

years test case with 20 aircraft and 2 hangar slots available and varying
these scenario generation parameters. We considered 𝛼 = 0.5, 0.65,
0.8, 0.95 and followed by a fifth case in which we combined different
13
probability factors by randomly sampling one of these values for each
simulation run. A larger probability factor would lead to more critical
scenarios. A smaller factor results in selecting scenarios with aircraft
utilization and maintenance check duration closer to their respective
mean. For the scenario size, 𝑛𝑠 varies between 2 and 7, corresponding
to a total number of scenarios 𝑆 between 5 to 50. The computation
times per run varies between 5 min for 𝑆 = 5 and about 16 min for
𝑆 = 50, on a standard laptop computer. Since 𝑛𝑠 means that we select
the 𝑛𝑠 matrices with the shortest/longest average check duration among
the 10 000 generated elapsed time matrices and the top 𝑛𝑠 among
the 10 000 generated utilization matrices, even if 𝑛𝑠 is large, we only
minimize the worst of all 𝑛𝑠×𝑛𝑠 scenarios in the end. Therefore, it is not
necessary to make 𝑛 a large number. Besides, 𝑛 would be determined
𝑠 𝑠

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
Fig. 9. Contour plots of the average number of constraint violations and flight hours for varying robust optimization parameter settings: (a) Number of constraint violations; (b)
Average FH.
by the decision-makers in the airline in practice to make a trade-off
between computation time and reliability of the results.

We performed 10 000 Monte Carlo simulation runs to simulate
different aircraft utilization and maintenance checks duration for each
combination of robust optimization parameters and stored the average
number of constraint violations. A violation is considered to be one
day that an aircraft has to be grounder or an extra slot that needs
to be added during the planning horizon. A contour plot for this can
be seen in Fig. 9a. The average utilization for each optimization run
has also been recorded. The utilization is defined as the average FH an
aircraft has flown at the start of scheduled C-check. A contour plot of
the average utilization per robust optimization setting can be seen in
Fig. 9b.

Fig. 9 shows that a larger number of scenarios reduces the average
number of constraint violations, thereby making the maintenance check
schedule more robust. This robustness, however, is coupled with a
reduction in the average aircraft utilization. A simulation run using
a single deterministic scenario with the mean aircraft utilization and
check durations would result in an average of 45.8 constraint vio-
lations and average aircraft utilization of 7124 FH. From the plots,
it can be seen that even with only 5 scenarios in the optimization,
the average constraint violations are reduced by 90%, at the cost of
a 2.5% reduction in aircraft utilization. The contour plots also show
that an increasing probability factor makes the schedule more robust
for a smaller number of scenarios. This is most likely, due to the
higher chance of including more critical scenarios in the optimization.
However, this effect is lost when the total number of scenarios increases
since the scenarios can already vary a lot at the same probability
level. In most cases, using scenarios generated from a combination of
𝛼 and 𝑛𝑠 tends to be more robust than from a single probability factor
for a smaller number of scenarios since a combination of probability
factors increases the variability in the scenarios. These conclusions are
confirmed by the analysis presented in Table 8, indicating that an
increase in scenario size reduces the number of constraint violations
on average while decreasing the average aircraft utilization.

Note that from an application perspective, airlines have the flexibil-
ity to use interval tolerance for their fleet or create extra maintenance
capacity when necessary. It is not desirable to have a robust heavy
maintenance check schedule as in the case of 𝑛𝑠 = 7, i.e., a schedule that
results in mean utilization 6344.1 FH and constraint violation 0.87. The
low aircraft utilization and low mean number of constraint violation
indicate that the entire fleet has to be grounded very often for C-/D-
check (a C-/D-check lasts 1–4 weeks), resulting in very low aircraft
availability for commercial operations, and this also makes difficult for
the operations control center (OCC) to plan the flight routes and design
14
Table 8
Sensitivity to a change in scenario size 𝑛𝑠 on utilization and number of constraint
violations.

Scenario size Mean utilization Mean number of
(𝑛𝑠) [FH] constraint violations

2 6873.3 4.27
3 6825.8 3.40
5 6747.2 1.82
7 6344.1 0.87

flight schedules. Therefore, an ideal robust heavy maintenance check
schedule should lead to higher mean aircraft utilization but have as
few constraint violations as possible.

6. Conclusion

This paper is the first to address the long-term heavy aircraft
maintenance check scheduling (H-AMCS) optimization considering un-
certainty in aircraft maintenance check duration and aircraft daily
utilization. A min–max integer linear programming (ILP) optimization
approach is proposed that can consider multiple generated scenarios
to compute robust and efficient heavy maintenance check schedules
for a heterogeneous aircraft fleet. In fact, this is the first research that
formulates the stochastic aircraft maintenance check scheduling as an
ILP optimization model.

The optimization model was solved using an efficient genetic algo-
rithm (GA). The GA was first validated for smaller test cases against
an exact method. The results show that the GA can generate (near-
)optimal solutions for these test cases with a maximum optimality gap
of 0.39%. When the problem size increases, the GA also significantly
reduces computation time compared to the exact benchmark method.
In a case study for a European airline, the GA reduced the total number
of C-checks by 9.4% while increasing the average aircraft utilization by
8.4%, compared with the schedule produced by the airline. However,
Monte Carlo simulations showed that such a deterministic schedule was
very susceptible to changes — only 0.27% of the simulation runs need
no changes to keep the schedule feasible for a 4-year planning hori-
zon. When including various scenarios in the min–max optimization
approach, a more robust schedule could be obtained, in which about
40% of the cases need no changes to the schedule. The robust schedule
is still significantly more efficient than the airline’s current approach,
reducing the total number of C-checks by 7 and increasing the average
aircraft utilization by 4.4%. This could lead to a potential reduction of
direct annual maintenance costs between $122.5 K and $612.5 K.

Computers and Operations Research 141 (2022) 105667T.v.d. Weide et al.
Recommendations for future work could be including other mainte-
nance check types, namely, A-checks, in the optimization model. In that
case, it would give a better estimation of the potential maintenance cost
reduction. Furthermore, a schedule disruption management tool can
be implemented so that the robustness of aircraft maintenance check
schedules are analyzed in more detail, further reducing the need for
revisions and promptly recovering the maintenance activities. Finally,
one could also consider planning the maintenance tasks within each
check. This would provide a more robust fleet maintenance plan, from
maintenance check scheduling to task execution.

CRediT authorship contribution statement

Tim van der Weide: Methodology, Investigation, Formal analy-
sis, Validation, Visualization, Writing – original draft. Qichen Deng:
Conceptualization, Data curation, Investigation, Formal analysis, Super-
vision, Writing – review & editing. Bruno F. Santos: Conceptualization,
Writing – review & editing, Supervision, Project administration.

References

Ackert, S.P., 2010. Basics of Aircraft Maintenance Programs for Financiers.
http://aircraftmonitor.com/uploads/1/5/9/9/15993320/basics_of_aircraft_
maintenance_programs_for_financiers___v1.pdf. (Accessed on September 28, 2017).

Ahmed, M.B., Ghroubi, W., Haouari, M., Sherali, H.D., 2017. A hybrid optimization-
simulation approach for robust weekly aircraft routing and retiming. Transp. Res.
C 84, 1–20.

Başdere, M., Bilge, U., 2014. Operational aircraft maintenance routing problem with
remaining time consideration. European J. Oper. Res. 235 (1), 315–328.

Bauer-Stämpfli, H., 1971. Near optimal long-term scheduling of aircraft overhauls by
dynamic programming. In: AGIFORS Symposium. Benalmadena, Spain.

Ben-Tal, A., Nemirovski, A., 1999. Robust solutions of uncertain linear programs. Oper.
Res. Lett. 25 (1), 1–13.

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305.

Boere, N.J., 1977. Air Canada saves with aircraft maintenance scheduling. Interfaces 7
(3), 1–13.

Chiu, W., Chen, B., Yang, C., 2012. Robust relative location estimation in wireless
sensor networks with inexact position problems. IEEE Trans. Mob. Comput. 11 (6),
935–946.

Deng, Q., 2019. Aircraft Maintenance Check Scheduling Data Set. http://dx.doi.org/10.
4121/uuid:1630e6fd-9574-46e8-899e-83037c17bcef, Dataset.

Deng, Q., Santos, B.F., Curran, R., 2020. A practical dynamic programming based
methodology for aircraft maintenance check scheduling optimization. European J.
Oper. Res. 281, 256–273.

Deng, Q., Santos, B.F., Verhagen, W.J.C., 2021. A novel decision support system for
optimizing aircraft maintenance check schedule and task allocation. Decis. Support
Syst. 146, 113545.

Dinis, D., Barbosa-Póvoa, A., Ângelo Palos Teixeira, 2019. A supporting framework for
maintenance capacity planning and scheduling: Development and application in the
aircraft MRO industry. Int. J. Prod. Econ. 218, 1–15.

Eck, B.J., Fusco, F., Taheri, N., 2015. Scenario generation for network optimization
with uncertain demands. In: World Environmental and Water Resources Congress
2015.

Elshaer, R., 2017. Solving resource-constrained project scheduling problem using
genetic algorithm. J. Al-Azhar Univ. Eng. Sect. 12 (42), 187–198.

Eltoukhy, A.E.E., Wang, Z.X., Chan, F.T.S., 2018. Joint optimization using a leader-
follower Stackelberg game for coordinated configuration of stochastic operational
aircraft maintenance routing and maintenance staffing. Comput. Ind. Eng. 125,
46–68.

Eltoukhy, A.E.E., Wang, Z.X., Chan, F.T.S., Chung, S.H., Ma, H.-L., Wang, X.P., 2020.
Robust aircraft maintenance routing problem using a turn-around time reduction
approach. IEEE Trans. Syst. Man Cybern.: Syst. 50, 4919–4932.

Etschmaier, M., Franke, P., 1969. Long-term scheduling of aircraft overhauls. In:
AGIFORS Symposium. Broadway, Great Britain.

Goldberg, D.E., Deb, K., 1991. A comparative analysis of selection schemes used in
genetic algorithms. Found. Genet. Algorithms 1, 69–93.

Gopalan, R., Talluri, K.T., 1998. The aircraft maintenance routing problem. Oper. Res.
46 (2), 260–271.

Hartmann, S., 1998. A competitive genetic algorithm for resource-constrained project
scheduling. Nav. Res. Logist. 45, 733–750.

Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT
Press, Cambridge, Massachusetts, USA.

Hu, X.-B., Paolo, E.D., 2009. An efficient genetic algorithm with uniform crossover for
15

air traffic control. Comput. Oper. Res. 36, 245–259.
Huang, C., Li, F., Jin, Z., 2015. Maximum power point tracking strategy for large-
scale wind generation systems considering wind turbine dynamics. IEEE Trans. Ind.
Electron. 62 (4), 2530–2539.

IATA’s Maintenance Cost Task Force, 2019. Airline Maintenance Cost
Executive Commentary Edition 2019. https://www.iata.org/contentassets/
bf8ca67c8bcd4358b3d004b0d6d0916f/mctg-fy2018-report-public.pdf. (Accessed
on September 11, 2020).

IFS, 2019. IFS MAINTENIX: Aircraft Fleet Management Software – A New Approach
to Maintenance Planning. https://www.ifs.com/corp/solutions/ifs-maintenix/fleet-
planner/. (Accessed on October 4, 2020).

Kleeman, M.P., Lamont, G.B., 2005. Solving the aircraft engine maintenance schedul-
ing problem using a multi-objective evolutionary algorithm. In: Evolutionary
Multi-Criterion Optimization. Springer, pp. 782–796.

Kouvelis, P., Yu, G., 1997. Robust Discrete Optimization and its Applications. Springer,
Boston, MA.

Kozanidis, G., Skipis, A., 2010. Flight and maintenance planning of military aircraft for
maximum fleet availability. Mil. Oper. Res. 15 (1).

Kramer, O., 2017. Genetic Algorithm Essentials. Springer.
Lan, S., Clarke, J.P., Barnhart, C., 2006. Planning for robust airline operations:

optimizing aircraft routings and flight departure times to minimize passenger
disruptions. Transp. Sci. 40 (1), 15–28.

Liang, Z., Feng, Y., Zhang, X., Wu, T., Chaovalitwongse, W.A., 2015. Robust weekly
aircraft maintenance routing problem and the extension to the tail assignment
problem. Transp. Res. B 78, 238–259.

Lin, Z., Lin, M., Wang, J., Huang, Y., Zhu, W., 2018. Robust secure beamforming for 5G
cellular networks coexisting with satellite networks. IEEE J. Sel. Areas Commun.
36 (4), 932–945.

Ma, J., Qin, J., Salsbury, T., Xu, P., 2012. Demand reduction in building energy systems
based on economic model predictive control. Chem. Eng. Sci. 67 (1), 92–100,
Dynamics, Control and Optimization of Energy Systems.

Mahalanobis, P.C., 1936. On the generalized distance in statistics. http://bayes.acs.unt.
edu:8083/BayesContent/class/Jon/MiscDocs/1936_Mahalanobis.pdf. (Accessed on
October 4, 2020).

Maher, S.J., Desaulniers, G., Soumis, F., 2014. Recoverable robust single day aircraft
maintenance routing problem. Comput. Oper. Res. 51, 130–145.

Mattila, V., Virtanen, K., 2011. Scheduling fighter aircraft maintenance with
reinforcement learning. In: 2011 Winter Simulation Conference (WSC). pp.
2540–2551.

Meurer, A., Smith, C.P., Paprocki, M., Certik, O., Kirpichev, S.B., Rocklin, M., Ku-
mar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger, B.E.,
Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F.,
Curry, M.J., Terrel, A.R., Roucka, S., Saboo, A., Fernando, I., Kulal, S., Cimrman, R.,
Scopatz, A., 2017. SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3,
e103.

Papadakos, N., 2009. Integrated airline scheduling. Comput. Oper. Res. 36, 176–195.
Quan, G., Greenwood, G.W., Liu, D., Hu, S., 2007. Searching for multiobjective preven-

tive maintenance schedules: Combining preferences with evolutionary algorithms.
European J. Oper. Res. 177, 1969–1984.

Rowe, J.E., 2015. Genetic algorithms. In: Springer Handbook of Computational
Intelligence. Springer Berlin Heidelberg, pp. 825–844.

Samaranayake, P., 2006. Current practices and problem areas in aircraft maintenance
planning and scheduling–Interfaced/integrated system perspective. In: Proceedings
of the 7Th Asia Pacific Industrial Engineering and Management Systems Conference.

Sohn, S.Y., Yoon, K.B., 2010. Dynamic preventive maintenance scheduling of the
modules of fighter aircraft based on random effects regression model. J. Oper.
Res. Soc. 61, 974–979.

Soylu, B., 2015. A general variable neighborhood search heuristic for multiple traveling
salesmen problem. Comput. Ind. Eng. 90, 390–401.

Sriram, C., Haghani, A., 2003. An optimization model for aircraft maintenance
scheduling and re-assignment. Transp. Res. A 37 (1), 29–48.

Sudholt, D., 2015. Parallel evolutionary algorithms. In: Springer Handbook of
Computational Intelligence. Springer, pp. 929–959.

Venkata Narasimha, K., Kivelevitch, E., Sharma, B., Kumar, M., 2013. An ant colony
optimization technique for solving min-max Multi-Depot Vehicle Routing Problem.
Swarm Evol. Comput. 13, 63–73.

Vershynin, R., 2012. How close is the sample covariance matrix to the actual covariance
matrix? J. Theoret. Probab. 25 (3), 655–686.

van der Weide, T.M.J., 2020. Long-Term C-Check Scheduling for a Fleet of Hetero-
geneous Aircraft under Uncertainty (Master Thesis). http://resolver.tudelft.nl/uuid:
db953324-f70d-4c2f-a1a7-3c9d318df4f8.

Witteman, M., Deng, Q., Santos, B.F., 2021. A bin packing approach to solve the aircraft
maintenance task allocation problem. European J. Oper. Res. 294, 365–376.

Yan, S., Chen, C.-Y., Yuan, J.-H., 2008. Long-term aircraft maintenance scheduling for
an aircraft maintenance centre: A case study. Int. J. Appl. Manage. Sci. 1 (2),
143–159.

Yang, Z., Yang, G., 2012. Optimization of aircraft maintenance plan based on genetic
algorithm. Physics Procedia 33, 580–586.

Zamani, R., 2010. An accelerating two-layer anchor search with application to the
resource-constrained project scheduling problem. IEEE Trans. Evol. Comput. 14,
975–984.

http://aircraftmonitor.com/uploads/1/5/9/9/15993320/basics_of_aircraft_maintenance_programs_for_financiers___v1.pdf
http://aircraftmonitor.com/uploads/1/5/9/9/15993320/basics_of_aircraft_maintenance_programs_for_financiers___v1.pdf
http://aircraftmonitor.com/uploads/1/5/9/9/15993320/basics_of_aircraft_maintenance_programs_for_financiers___v1.pdf
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb6
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb6
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb6
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb7
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb7
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb7
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb8
http://dx.doi.org/10.4121/uuid:1630e6fd-9574-46e8-899e-83037c17bcef
http://dx.doi.org/10.4121/uuid:1630e6fd-9574-46e8-899e-83037c17bcef
http://dx.doi.org/10.4121/uuid:1630e6fd-9574-46e8-899e-83037c17bcef
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb10
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb10
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb10
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb10
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb10
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb13
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb13
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb13
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb13
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb13
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb18
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb18
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb18
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb19
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb19
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb19
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb21
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb21
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb21
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb21
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb21
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb22
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb22
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb22
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb23
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb23
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb23
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb23
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb23
https://www.iata.org/contentassets/bf8ca67c8bcd4358b3d004b0d6d0916f/mctg-fy2018-report-public.pdf
https://www.iata.org/contentassets/bf8ca67c8bcd4358b3d004b0d6d0916f/mctg-fy2018-report-public.pdf
https://www.iata.org/contentassets/bf8ca67c8bcd4358b3d004b0d6d0916f/mctg-fy2018-report-public.pdf
https://www.ifs.com/corp/solutions/ifs-maintenix/fleet-planner/
https://www.ifs.com/corp/solutions/ifs-maintenix/fleet-planner/
https://www.ifs.com/corp/solutions/ifs-maintenix/fleet-planner/
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb26
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb26
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb26
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb26
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb26
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb27
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb27
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb27
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb28
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb28
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb28
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb29
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb30
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb30
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb30
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb30
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb30
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb31
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb31
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb31
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb31
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb31
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb32
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb32
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb32
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb32
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb32
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb33
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb33
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb33
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb33
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb33
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/MiscDocs/1936_Mahalanobis.pdf
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/MiscDocs/1936_Mahalanobis.pdf
http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/MiscDocs/1936_Mahalanobis.pdf
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb35
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb35
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb35
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb36
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb36
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb36
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb36
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb36
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb37
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb38
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb39
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb39
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb39
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb39
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb39
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb40
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb40
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb40
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb42
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb42
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb42
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb42
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb42
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb43
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb43
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb43
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb44
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb44
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb44
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb45
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb45
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb45
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb46
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb46
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb46
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb46
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb46
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb47
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb47
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb47
http://resolver.tudelft.nl/uuid:db953324-f70d-4c2f-a1a7-3c9d318df4f8
http://resolver.tudelft.nl/uuid:db953324-f70d-4c2f-a1a7-3c9d318df4f8
http://resolver.tudelft.nl/uuid:db953324-f70d-4c2f-a1a7-3c9d318df4f8
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb49
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb49
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb49
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb50
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb50
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb50
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb50
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb50
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb51
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb51
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb51
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb52
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb52
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb52
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb52
http://refhub.elsevier.com/S0305-0548(21)00367-1/sb52

	Robust long-term aircraft heavy maintenance check scheduling optimization under uncertainty
	Introduction
	Literature review
	Modeling approach
	Aircraft heavy maintenance check scheduling
	Assumptions
	Robust optimization
	Scenario generation
	Heavy maintenance check duration
	Utilization
	Scenarios generation

	Problem formulation
	Nomenclature

	Constraints formulation
	Utilization constraints
	Operational constraints
	Maintenance check constraints

	Objective function (Fitness Function)

	Genetic algorithm
	Chromosome representation
	Initialization of population
	Parent selection
	Crossover
	Mutation
	Simulation model and fitness evaluation
	Algorithm detail

	Case study
	Model validation
	2018–2021 H-AMCS optimization results
	Robustness
	Sensitivity analysis

	Conclusion
	CRediT authorship contribution statement
	References

