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Clutter-Contaminated Signal Recovery in Spectral
Domain for Polarimetric Weather Radar

Jiapeng Yin , Marc Schleiss , and Xuesong Wang

Abstract— The use of spectral polarimetric filters in the
range-Doppler domain shows great promise for clutter mitigation
in weather radar applications. One limitation of these filters is
that they cannot deal with situations in which ground clutter
and precipitation overlap. In this letter, we propose a new signal
recovery technique based on kriging in the spectral domain to
recover the precipitation in clutter-contaminated areas. Using
synthetic radar data, we test our new method and compare its
performance to that of Gaussian model adaptive processing and
bilinear interpolation. Our results indicate that kriging is the
most accurate and robust technique out of the three.

Index Terms— Clutter-contaminated, ground clutter (GC),
kriging, signal recovery, spectral-polarimetry, weather radar.

I. INTRODUCTION

POLARIMETRIC Doppler weather radar is a very effective
remote sensing tool for gaining insights into the dynamics

and microphysics of precipitation [1]. The prerequisite of
using weather radar data is sufficient measurement accuracy,
which needs to calibrate the radar system [2] and remove the
clutter [3], [4]. Spectral polarimetric signal processing also
appears to be very promising for clutter identification and miti-
gation. Two examples of this are the recently proposed double
spectral linear depolarization ratio (MDsLDR) filter [3] and
the object-orientated spectral polarimetric (OBSpol) filter [4].
Compared with the MDsLDR filter, the OBSpol filter has the
advantage that it does not require cross-polar measurements
(often not available), thus making it more broadly applicable.

The main limitation of spectral polarimetric filters such
as MDsLDR and OBSpol is that they cannot deal well
with cases in which clutter and precipitation overlap. When
this occurs, the spectral polarimetric filters tend to keep the
clutter-contaminated precipitation, resulting in biased esti-
mates. Techniques such as the Clutter Environment ANalysis
using Adaptive Processing (CLEAN-AP) [5] and Gaussian
model adaptive processing (GMAP) [6] were proposed to solve
this problem by trying to recover the precipitation signal that
is embedded into ground clutter (GC). However, GMAP is

Manuscript received November 16, 2020; revised January 21, 2021 and
February 22, 2021; accepted February 23, 2021. Date of publication March 12,
2021; date of current version December 20, 2021. This work was sup-
ported in part by the Postdoctoral International Exchange Program under
Grant 48132 and in part by the Science and Technology Innovation Pro-
gram of Hunan Province under Grant 2020RC2042. (Corresponding author:
Jiapeng Yin.)

Jiapeng Yin and Xuesong Wang are with the College of Electronic Sci-
ence and Technology, National University of Defense Technology, Changsha
410073, China (e-mail: jiapeng.yin@hotmail.com; wxs1018@vip.sina.com).

Marc Schleiss is with the Department of Geoscience and Remote Sens-
ing, Delft University of Technology, 2628 CN Delft, Netherlands (e-mail:
m.a.schleiss@tudelft.nl).

Digital Object Identifier 10.1109/LGRS.2021.3063355

Fig. 1. Flowchart of the signal recovery techniques.

based on the assumption that the spectral shapes of clutter
and precipitation are Gaussian, which may not always be the
case in practice [7]. Many versions of GMAP also assume
that GC occupies a fixed spectral width over the whole range
domain, which is not necessarily true for frequency modulation
continuous wave radars where spectral leakage means GC
tends to have larger spectral widths in the range bins near
the radar [8].

To alleviate these problems, we propose an alternative and
more flexible approach to signal recovery than GMAP. Our
method starts by detecting and removing clutter-contaminated
bins in the range-Doppler domain using the OBSpol filter
and subsequently recovers the precipitation with the help of
kriging [9] in areas where rainfall and GC overlap. The method
is applied to synthetic clutter-contaminated precipitation mea-
surements and performance is assessed by calculating the root
mean square error and correlation coefficient of reflectivity,
radial velocity, and spectrum width. Results show that signal
recovery based on kriging is more stable and robust than
GMAP, especially in cases where there is a lot of weak
precipitation or overlap between precipitation and GC.

II. METHODOLOGY

A. General Approach

The clutter detection and removal technique is divided
into three main steps as shown in Fig. 1. The input is the
raw range-Doppler spectrogram and the output is the filtered
spectrogram where the clutter has been removed and the
precipitation recovered.

1) The OBSpol filter is applied to the raw range-Doppler
spectrogram to generate a binary filtering mask for the
clutter contaminated areas. Note that the OBSpol filter
offers the option to apply a narrow notch filter around
the central bins at 0 ms−1 to mitigate GC. This notch
filter is not really required here as GC will be identified
in Step 2.
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2) In the case of GC, spectral polarimetric variable thresh-
olding in combination with the central bin removal is
applied to identify the clutter-contaminated precipitation
bins remaining after the OBSpol filter. Normally, GC has
larger power intensity, if the removal of GC is not suf-
ficient, the residual clutter will strongly affect accuracy
during signal reconstruction. The removal of the central
bins around 0 ms−1 guarantees that most of the GC
with large intensity is removed. The spectral polarimetric
variable thresholding is done by following the procedure
in [10] and calculating the standard deviation SDs Zdr

of the spectral differential reflectivity over a 3×3 sliding
window in the range-Doppler spectrogram.
Clutter-contaminated precipitation bins are identified
iteratively for each range. For a given range r , if the fil-
tering binary mask (obtained after Step 1) does not con-
tain 0 ms−1, the range is declared free of GC; otherwise
clutter is identified by comparing the SDs Zdr (r, v) val-
ues to a fixed threshold of 2 dB (for more details about
the effects of this threshold, the reader is referred to
the sensitivity analysis). The clutter detection starts with
the bin where v corresponds to 0 ms−1, moving toward
larger velocities until SDs Zdr (r, v) is smaller than the
prescribed threshold. All the clutter-contaminated bins in
the spectrogram are regarded as areas “to-be-recovered.”

3) Different signal recovery techniques are applied to
the filtered spectrograms to estimate the values
of the spectral reflectivity in the “to-be-recovered”
bins. Specifically, three different techniques are used
(bilinear interpolation, GMAP, and kriging).

B. Signal Recovery Techniques

The different signal recovery techniques considered in this
work are bilinear interpolation, kriging, and GMAP. The first
two methods are implemented in the range-Doppler domain
while GMAP is applied iteratively for each range.

1) Bilinear Interpolation: This is a simple non-parametric
method that makes no assumption about the structure and
distribution of the data. The version used in this letter is imple-
mented in the function “interp.surface()” of the R package
“fields” [11]. Its main purpose is to serve as a benchmark
against which the performance of more advanced recovery
techniques can be evaluated.

2) Kriging: The second method for recovering the
clutter-contaminated precipitation signal is ordinary kriging
applied on the spectral reflectivity and implemented using
the R package “gstat” [12]. The sample variogram was
estimated and fitted automatically using the “automap” [13]
package. Since the covariance structure might be different
along the range and Doppler dimensions, geometric anisotropy
is used. The direction of principal variation and anisotropy
ratio is determined with the help of the “intamap” [14]
package. By default, anisotropy is ignored unless the esti-
mated ratio between the major and minor axis is larger
than 10%.

3) GMAP: The version of GMAP that is used in this letter
is slightly different from the original one in [6] where windows
are adapted depending on the signal to clutter ratio. The

Fig. 2. Range-Doppler spectrogram of IDRA. (a) Raw. (b) OBSpol filtered.
(c) Synthetic precipitation centered at 0 ms−1. (d) Synthetic GC-contaminated
precipitation centered 0 ms−1.

version of GMAP that we used has a fixed window (i.e.,
Hamming window) applied to the raw IQ data. The main
problem with this approach is that in order for GMAP to
estimate a Gaussian spectrum and recover the precipitation
signal, a minimum number of clutter-free bins need to be
available at each range. As a result, GMAP may not be
applicable for all ranges. The default solution in this case
is to ignore the problematic bins (i.e., do not recover the
precipitation in them).

C. Performance Evaluation

To assess the performance of the recovery techniques
described above, measurements from a scanning Doppler
polarimetric X-band radar named IDRA [3] are considered.
IDRA rotates horizontally at the speed of 1 round/min at a
fixed elevation angle of 0.5◦. Its range and Doppler velocity
resolutions are 30 m (512 samples) and 3.8 cm/s (512 sam-
ples), respectively.

The IDRA data are used to generate synthetic spectro-
grams in which GC overlaps with precipitation, as shown
in Fig. 2. Fig. 2(a) shows the raw range-Doppler spectrogram
at 13:00 UTC on August 22, 2014 which includes both
precipitation and GC. Fig. 2(b) shows the spectrogram after
applying the OBSpol filter. Since, in this case, GC does not
overlap with precipitation, no further processing is necessary.
Using this ideal case, we generate a synthetic spectrogram for
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Fig. 3. Probability density functions for S Ds Zdr of precipitation and GC.

testing the signal recovery algorithm for the case where GC
and precipitation are overlapping. This is done by identifying,
for each range, the Doppler bin with the maximum value
in Fig. 2(b) and shifting it to 0 ms−1 as shown in Fig. 2(c).
The GC with Doppler velocity within ± 0.3 ms−1 in Fig. 2(a)
is then added to the shifted precipitation to create a syn-
thetic GC-contaminated precipitation spectrogram as shown
in Fig. 2(d). The latter is given as input to the signal recovery
techniques. In total, 84 synthetic spectrograms (corresponding
to a full PPI scan) were generated in this way.

The performance of the recovery algorithm is assessed
by computing the root mean square error (RMSE) δX and
correlation coefficient (CC) ρX of the reflectivity Zhh , mean
Doppler velocity v̄ and spectral width σv for each of the
84 spectrograms assuming the truth is given by the shifted
synthetic precipitation as shown in Fig. 2(c)

δX =
√√√√ 1

N

N∑
n=1

(
X̂rn − Xrn

)2
(1)

and

ρX = 1

N − 1

N∑
n=1

(
X̂rn − μX̂

σX̂

)(
Xrn − μX

σX
) (2)

where X̂rn and Xrn are the estimated and true values of X
for the nth range bin; μX̂ and μX stand for their mean values
and σX̂ and σX for their standard deviations. This is done for
each variable X of interest (i.e., Zhh , v̄ and σv ). Note that for
reflectivity, the metrics are calculated using the values in dB.

III. RESULTS

A. Separation of Precipitation and Clutter

The first part focuses on the identification and separation of
GC and precipitation in the range-Doppler domain based on
SDs Zdr thresholding in combination with central bin removal.

The SDs Zdr is calculated over overlapping windows of size
3×3. Its probability density functions for GC and precipitation
are displayed in Fig. 3. They were computed by combining five
randomly selected spectrograms in which precipitation and GC
were manually obtained. The peak value of the precipitation
part is around 1 dB which is significantly smaller than that
of the GC. The intersection point is around 3.5 dB which
means that the optimal threshold for separation lies somewhere
between 1 and 3.5 dB. Based on these results, we selected
a threshold of 2 dB, corresponding to a false-positive rate

Fig. 4. Illustration of different signal recovery techniques. Range-Doppler
spetrogram: (a) bilinear; (b) GMAP; (c) kriging; (d) Doppler spectrum of
Range bin 220 [the dashed line in (c)].

of 0.5% and a false-negative rate of 37%. As is mentioned in
Section II-A, any residual clutter will strongly affect accuracy
during signal reconstruction, so it is better to remove too
much than too little. For the GC removal, the central 4 bins
are removed, in combination with 2-dB SDs Zdr thresholding.
Note that the central 4 bins are the 4 bins in the spectrogram
closest to 0 ms−1 (for a fixed range), which are the most likely
to contain GC with the largest intensity.

More details about the sensitivity of the results to the
selected thresholds are given in Section III-C.

B. Signal Recovery

Using 2-dB SDs Zdr thresholding combined with cen-
tral 4 bins removal, the “to-be-recovered” bins in the
range-Doppler domain are determined and the remaining bins
are used to interpolate the precipitation signal in the missing
bins. Fig. 4 shows some examples of recovered spectrograms
for the three different recovery techniques (bilinear, GMAP,
and kriging). It shows that GMAP and kriging outperform
bilinear interpolation with δZhh of 1.90 dB (bilinear), 0.77 dB
(GMAP) and 0.71 dB (kriging); and ρZhh of 0.90, 0.97 and
0.98. For comparison purposes, note that values of RMSE and
correlation for the contaminated signal are 4.14 dB and 0.83,
respectively. Similar results are obtained for the mean Doppler
velocity v̄ and spectral width σv .

To get more insights into the workings of the different
recovery techniques, the Doppler spectrum of range 220 (i.e.,
6.6 km from the radar) is displayed in Fig. 4(d). Since in
this example, the spectrum is not Gaussian, GMAP does not
perform well.
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Fig. 5. RMSE and CC of different recovery techniques applied to reflectivity (a) and (d), mean Doppler velocity (b) and (e) and spectral width
(c) and (f). (On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the “+” symbol.)

Next, we summarize the results obtained by applying the
recovery techniques to the 84 spectrograms of the PPI. The
threshold of SDs Zdr for GC identification was fixed to 2 dB,
and the number of central bins to be removed was set to
4. Performance is summarized by boxplots of RMSE and
correlation coefficients for Zhh , v̄ and σv in Fig. 5. Since all
boxplots look similar, only the ones for Zhh will be discussed.
For comparison, note that the uncorrected, GC-contaminated
reflectivity has a median error of more than 3 dB. By applying
the signal recovery techniques, this bias can be reduced to
about 1 dB. Among all considered techniques, kriging has the
lowest RMSE (0.68 dB) and highest CC (0.99), followed by
GMAP (RMSE 0.83 dB and CC 0.99) and bilinear interpola-
tion (1.06 dB and CC 0.98). Note that GMAP has a smaller
median error than bilinear interpolation but also a slightly
larger spread.

To get more insights into the distribution of the errors,
scatterplots of true versus recovered reflectivity values are
shown in Fig. 6. They show that when Zhh is larger than
20 dBZ, the influence of GC is limited. Note that this is
not general but specific to the IDRA case used in this work.
As expected, the largest errors (in dB scale) occur for low
reflectivity values. Bilinear interpolation tends to have more
bias for larger values than kriging and GMAP.

C. Parameter Sensitivity Analysis

The sensitivity of the methods to the chosen model para-
meters is assessed according to a two-step procedure. First,
the number of central bins removed during filtering is varied
from 2 to 10 (with steps of 2). Then, for the optimal number
of central bins, different SDs Zdr thresholds are explored for
each method. To completely assess the recovery methods,
precipitation without GC contamination is also considered.
The data used are the same, namely 84 spectrograms of one
PPI. As expected, Fig. 7(a) shows that when there is no GC
contamination, the error increases as more central bins are
removed. Conversely, for the case with GC, the error decreases
with the number of bins removed. Overall, the removal of 6
central bins seems to lead to a good tradeoff.

Fig. 6. Scatterplots of reflectivity values for different recovery methods:
true reflectivity versus (a) contaminated values, (b) bilinear interpolation,
(c) GMAP, and (d) kriging.

Next, the number of central bins removed is set to 6 and
the sensitivity to the choice of the SDs Zdr threshold is
investigated using different values between 1 and 4 (in steps
of 0.2). As can be seen in Fig. 5, the boxplots of δZhh for the
whole PPI are rather symmetric. Therefore, only the median
values are reported. The results of GMAP and kriging are
shown in Fig. 8(a).

As we move toward larger thresholds, the RMSE values
first decrease, then increase and stabilize for larger thresholds.
For kriging, the minimum is reached for a threshold of about
2 dB. When the SDs Zdr threshold is large, which means that
the SDs Zdr thresholding has no effect on clutter removal,
the performance of kriging and GMAP tend to be the same,
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Fig. 7. RMSE of Zhh as a function of the number of central bins removed
for cases (a) without GC-contamination and (b) with GC-contamination. Note
that no S Ds Zdr thresholding is applied.

Fig. 8. Sensitivity analysis of different numbers of central bin removal on
signal recovery performance. (a) Median of δZhh . (b) GMAP failure rate.

which is consistent with the results shown in Fig. 7(b). In addi-
tion, for thresholds below 1.6 dB, the performance of GMAP
rapidly deteriorates. This is due to the high failure rate of
GMAP as more and more precipitation gets labeled as clutter
and not enough bins remain for the spectrum interpolation,
as indicated in Fig. 8(b). By contrast, kriging considers the
whole range-Doppler spectrogram for signal recovery, which
is more robust.

Based on these facts, the optimal parameter selection for
GC identification is 2 dB SDs Zdr thresholding in combination
with central 6 bins removal. In this case, the RMSE of the
kriging method applied to GC-contaminated Zhh data and
cases without GC are 1 and 0.5 dB. Overall, the results indicate
that signal recovery based on kriging is more stable and robust
than GMAP.

IV. CONCLUSION

Different spectral methods for recovering clutter-
contaminated radar signals have been investigated, including
bilinear interpolation, GMAP, and a new method based on
kriging. The signal recovery methods can act as a follow-up
process to spectral polarimetric filters, which integrate clutter

identification and signal recovery. Synthetic radar data in
which precipitation and GC overlap were generated to
quantify the performance of these techniques and discuss
their sensitivity to the choice of the underlying parameters.
The results show that kriging provides the best estimates of
reflectivity, radial velocity, and spectrum width, and is also
the most robust technique.

One advantage of the kriging approach is that it can recover
large areas without making too many assumptions about the
shape of the clutter and precipitation in the spectral domain.
This can be of advantage for other types of clutter as well, such
as wind turbine clutter (WTC), for which GMAP would not
perform well [6]. The key issue for WTC is to define good
methods to reliably identify the clutter in the spectrogram,
which is not trivial and requires more research. One promising
possibility could be to use a threshold on the spectral width,
which tends to be larger in clutter-contaminated areas due to
the rotation of the blades. In addition, since clutter identifica-
tion is related to signal recovery performance, more accurate,
and robust clutter identification in the spectral domain is
required.
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