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Part I

Introduction



What is Entropy?

The general concept of entropy is elusive and hard to define rigorously,
even though its instances occur a lot in sciences and applications. Depending
on the context, the word ‘entropy’ might actually have different meanings. For
example, entropy is seen in statistical thermodynamics, in particular, it appears
in the somewhat infamous Second Law of Thermodynamics saying that

The total entropy of any isolated thermodynamic system tends to increase
over time, approaching a maximum value.

Very often ‘entropy’ is intuitively linked to some form of complexity. For in-
stance, entropy - more precisely, combinatorial entropy - can be used to describe
the complexity of large strings of symbols. That is, if the string of bits forming
a digital file has large entropy, then it is impossible to achieve a good lossless
compression ratio for such a file.

In this thesis we study entropy and its relation to complexity in the context
of dynamical systems.

Entropy and Dynamical Systems

One way to make the term ‘entropy’ mathematically precise is to introduce
it as a certain invariant for studying dynamical systems of a topological or
probabilistic origin. For a given group Γ, a Γ-dynamical system is a pair (X, π),
where X is a ‘space’ and π is a representation of Γ in the group Aut(X) of
automorphisms of X. Of course, the group Aut(X) of automorphisms of X
depends on the underlying structure of the space X. When X is a topological
space, we call the pair (X, π) a topological dynamical system, and when X is
a probability space we call (X, π) a measure-preserving system. The collection
of all topological dynamical systems for a fixed group Γ forms a category, and,
similarly, we have the category of measure-preserving dynamical systems. The
crucial consequence of any meaningful definition of entropy of a dynamical
system is that entropy is an invariant, i.e., it remains constant on isomorphism
classes of systems in a given category. In the category of topological dynamical
systems, mathematicians are mainly interested in the topological entropy. In
the category of measure-preserving systems, the Kolmogorov-Sinai entropy is
used instead.

Originally, the study of dynamical systems was focused on the special case
in which Γ is the group Z of integers, and the original definitions of entropy
were given for the case Γ = Z accordingly. Entropy of a measure-preserving Z-
system was defined by A. Kolmogorov, and later it was modified by Ya. Sinai,
leading to what we know today as the Kolmogorov-Sinai entropy. This concept
proved to be useful immediately by giving a negative answer to an open problem
of isomorphism of Bernoulli shifts. The entropy of a topological Z-dynamical
system was defined by R. L. Adler, and later an equivalent definition was given
by R. Bowen. It was later shown in [Pal76] by G. Palm that both topological
and Kolmogorov-Sinai entropies of Z-systems are in fact instances of a more
general entropy defined on what he called abstract dynamical lattices.
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Later, the original definitions of the topological and the Kolmogorov-Sinai
entropies were extended for amenable group actions using the lemma of D. S.
Ornstein and B. Weiss. The corresponding generalization of the work of G.
Palm to representations of amenable groups is discussed later in the thesis.

Entropy and Kolmogorov Complexity

Entropy is often seen as a certain measure of complexity. The appropri-
ate mathematical definition of complexity was suggested by A. Kolmogorov in
[Kol65], and it is known today as Kolmogorov complexity. Informally speaking,
a decompressor is a computer program that takes finite binary words as the
input and produces finite words as the output. The Kolmogorov complexity of
a finite word ω with respect to a fixed decompressor A is defined as the length
of the shortest binary program that serves as the input to A such that the word
ω is printed as the output. It turns out that there exist optimal decompressors,
i.e., decompressors that allow for (essentially) shorter descriptions of words as
compared to any other decompressor. When such an optimal decompressor A∗

is fixed, we simply talk about Kolmogorov complexity without referring to A∗

explicitly. The ‘optimality’ of A∗ has many consequences - so, for instance,
a long periodic word would have small Kolmogorov complexity relative to its
size.

Figure 1. A fragment of the Mandelbrot set

For another example, consider the image in Figure 1 depicting a fragment
of the Mandelbrot set. This image would take approximately 2 million bits if
stored as plain data, but there is a much shorter computer program that can
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generate this picture using the mathematical definition of the Mandelbrot set.
It follows that the Kolmogorov complexity of the image above is much lower
than 2 million. On the other hand, words without any regularities are expected
to have large Kolmogorov complexity and are considered to be most random.

The bridge between the entropy of dynamical systems and the Kolmogorov
complexity of the trajectories was built by A. A. Brudno in a series of papers
[Bru74] and [Bru82], where he showed that for every N-dynamical system its
Kolmogorov-Sinai entropy equals the Kolmogorov complexity of the orbit of
almost every point. However, Brudno obtained his results long before the en-
tropy theories for amenable group actions were developed, and some important
tools needed to generalize these results became available only recently. Most
importantly, when the acting group is amenable, we need a generalization of the
classical pointwise ergodic theorem. E. Lindenstrauss proved in [Lin01] that
the pointwise ergodic theorem and the Shannon-McMillan-Breiman theorem do
indeed hold under some mild restrictions on the Følner sequence. A ‘weighted’
version of the pointwise ergodic theorem for general amenable group actions,
which will be used as well, was developed by P. Zorin-Kranich in [ZK14].

Our second major aim in this thesis is to present these generalizations,
using the tools that became available recently. We prove in [Mor15b] that the
original results of A. Brudno can be extended under certain assumptions to
a large class of computable groups, and in [Mor15c] we prove that his later
results can also be extended, but at the cost of introducing more restrictions.

Overview

The thesis is structured as follows. We devote Part II to the general pre-
liminaries on amenable groups, dynamical systems and computability theory.
We begin by defining amenable groups in Chapter 1, giving some examples
and basic properties. We discuss topological dynamical systems in Chapter
2, and measure-preserving systems in Chapter 3. Chapter 4 is devoted to the
notions of computability and Kolmogorov complexity. We will define, among
others, computable groups and computable Følner monotilings of computable
amenable groups. The results of this chapter will be of importance in the last
part of the thesis.

Part III concerns the theory of entropy of amenable group actions. In
Chapter 5 we will define the Kolmogorov-Sinai and the topological entropy of
dynamical systems for amenable group actions using the lemma of Ornstein and
Weiss from Chapter 1, provide some examples and prove some basic properties.
We close the third part with a chapter based upon [Mor15a], where we present
the first major result of this thesis, namely the generalization of the work of
G. Palm for amenable group actions in the language of measurement functors.

We establish the link between entropy theory and complexity in Part IV by
proving two theorems of Brudno in Chapter 7. Here we rely on the tools from
the previous chapters such as the Shannon-McMillan-Breiman theorem and the
theorem on (weighted) pointwise convergence of ergodic averages. This chapter
is based on [Mor15b] and [Mor15c].
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Almost every chapter is closed with a ‘Remarks’ section, where some ad-
ditional comments, explanations and references are provided. We do not use
this material in the main part of the text.





Part II

Preliminaries





CHAPTER 1

Amenable Groups

As we have already mentioned in the introduction, the theory of dynamical
systems was originally focused on studying dynamical systems with a single
transformation, i.e., Z-systems. So, for instance, the key theorems such as the
Birkhoff pointwise convergence theorem and the Shannon-McMillan-Breiman
theorem were first proved in this setting. It turns out that one can generalize
many of these classical results to the much more general case of amenable group
actions. The class of amenable groups includes the standard examples, such as
the groups Zd for d ≥ 1, together with many others.

This chapter is structured as follows. We begin with the definitions in
Section 1.1, give some examples and state some basic properties in Section 1.2.
We devote Section 1.3 to the notion of a Følner monotiling of an amenable
group which is originally due to B. Weiss, that plays a crucial role later in the
thesis. In general, one does not know whether an arbitrary amenable group has
a Følner monotiling, but the existence of a quasi-tiling is always guaranteed
by the results of D. S. Ornstein and B. Weiss. The presence of quasi-tilings
in an arbitrary amenable group is extremely useful, e.g. this fact is used in
the proof of the Ornstein-Weiss lemma. We will discuss this result in Section
1.4, and we will rely on it later in the definitions of topological (Section 5.3),
Kolmogorov-Sinai (Section 5.1) and Palm (Section 6.3) entropies. We close the
chapter with Section 1.5, containing some additional comments and remarks.

1.1. Definition

There are a few equivalent ways of defining an amenable group. In this
subsection we give the definition using Følner sequences. We stress that all the
groups that we consider when talking about amenability are at most countably
infinite and discrete.

Let Γ be a group with the counting measure |·|. A sequence of finite sets
(Fn)n≥1 is called

1) a left (right) weak Følner sequence if for every finite set K ⊆ Γ one
has

|Fn4KFn|
|Fn|

→ 0

(
resp.

|Fn4FnK|
|Fn|

→ 0

)
;

15
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2) a left (right) strong Følner sequence if for every finite set K ⊆ Γ
one has ∣∣∂l

K(Fn)
∣∣

|Fn|
→ 0

(
resp.

|∂r
K(Fn)|
|Fn|

→ 0

)
,

where

∂l
K(F ) := K−1F ∩K−1F c

(
resp. ∂r

K(F ) := FK−1 ∩ F cK−1
)

is the left (right) K-boundary of F ;

3) a (C-)tempered sequence if there is a constant C such that for every
j one has ∣∣∣∣∣∣

⋃
i<j

F−1
i Fj

∣∣∣∣∣∣ < C |Fj | .

One can show that a sequence of sets (Fn)n≥1 is a weak left Følner sequence
if and only if it is a strong left Følner sequence (see [CSC10, Section 5.4]), hence
we will simply call it a left Følner sequence. The same holds for right Følner
sequences. If we call a sequence of sets a ‘Følner sequence’ without qualifying
it as ‘left’ or ‘right’, we always mean a left Følner sequence. A sequence of sets
(Fn)n≥1 which is simultaneously a left and a right Følner sequence is called a
two-sided Følner sequence. A group Γ is called amenable if it admits a
left Følner sequence. If Γ is infinite, for every Følner sequence (Fn)n≥1 we have
|Fn| → ∞ as n → ∞. If, on the other hand, Γ is finite, then for every Følner
sequence (Fn)n≥1 we have Fn = Γ for all sufficiently large n.

For finite sets F,K ⊆ Γ the sets

intl
K(F ) := F \ ∂l

K(F ) (resp. intr
K(F ) := F \ ∂r

K(F ))

are called the left (right) K-interior of F respectively. It is clear that if a
sequence of finite sets (Fn)n≥1 is a left (right) Følner sequence, then for every
finite K ⊆ Γ one has∣∣intl

K(Fn)
∣∣ / |Fn| → 1 (resp. |intr

K(Fn)| / |Fn| → 1) .

1.2. Examples

We begin with the most basic examples. It is clear that all finite groups
are amenable.

Example 1.2.1. Consider the group Zd for some d ≥ 1. Consider the
sequence (Fn)n≥1 in Zd given by

Fn := [0, 1, 2, . . . , n− 1]d.

It is easy to see that (Fn)n≥1 is a tempered two-sided Følner sequence.

The simplest non-abelian example of an infinite amenable group is the
discrete Heisenberg group, which we discuss next.
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Example 1.2.2. Consider the group UT3(Z), i.e., the discrete Heisenberg
group H3. By definition,

UT3(Z) :=


1 a c

0 1 b
0 0 1

 : a, b, c ∈ Z

 .

To simplify the notation, we will denote a matrix1 a c
0 1 b
0 0 1

 ∈ UT3(Z)

by the corresponding triple (a, b, c) of its entries. Then the products and in-
verses in UT3(Z) can be computed by the formulas

(a, b, c)(x, y, z) = (a+ x, b+ y, c+ z + ya),

(a, b, c)−1 = (−a,−b, ba− c).

The sequence (Fn)n≥1 defined by

Fn := {(a, b, c) ∈ UT3(Z) : 0 ≤ a, b < n, 0 ≤ c < n2}
for all n ≥ 1 is a two-sided Følner sequence (this follows from a straightforward
computation, see [LSV11] for the details). In order to check the temperedness
of (Fn)n≥1, note that for every n > 1⋃

i<n

F−1
i Fn ⊆ F−1

n Fn,

where

F−1
n ⊆ {(a, b, c) : −n < a, b ≤ 0,−n2 < c < n2}.

It is easy to see that for every n > 1

F−1
n Fn ⊆ {(a, b, c) : −n < a, b < n,−3n2 < c < 3n2}.

Since |Fn| = n4 for every n, the sequence (Fn)n≥1 is tempered.

Amenable groups enjoy some useful properties, which we state without
proofs below. For the proofs we refer to [CSC10, Chapter 4].

Proposition 1.2.3. Suppose that G,K are amenable groups and that the
sequence

1→ G
ı→ F

π→ K → 1

is exact. Then the group F is amenable as well.

We will discuss a related result in the context of Følner monotilings later
in Section 1.5.3. It follows from Proposition 1.2.3 that the group UTd(Z) is
amenable for all d ≥ 2. We will return to the question about ‘nice’ Følner
sequences in UTd(Z) later in Section 7.2.

Proposition 1.2.4. Every group which is the limit of an inductive system
of amenable groups is amenable.
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Hence the group Q is amenable. In fact, it follows from Proposition 1.2.4
that all abelian groups are amenable.

1.3. Følner Monotilings

The purpose of this section is to discuss the notion of a Følner monotiling,
that was introduced by B. Weiss in [Wei01]. However, we have to introduce
both ‘left’ and ‘right’ monotilings, while the original notion introduced by Weiss
is a ‘left’ monotiling.

A left monotiling [F,Z] in a discrete group Γ is a pair of a finite set
F ⊆ Γ, which we call a tile, and a set Z ⊆ Γ, which we call a set of centers,
such that {Fz : z ∈ Z} is a covering of Γ by disjoint translates of F . Similarly,
given a right monotiling [Z, F ] we require that {zF : z ∈ Z} is a covering of
Γ by disjoint translates of F . A left (right) Følner monotiling is a sequence
of monotilings ([Fn,Zn])n≥1 (resp. ([Zn, Fn])n≥1) such that (Fn)n≥1 is a left
(resp. right) Følner sequence in Γ. A left Følner monotiling ([Fn,Zn])n≥1 is
called symmetric if for every k ≥ 1 the set of centers Zk is symmetric, i.e.
Z−1
k = Zk. It is clear that if ([Fn,Zn])n≥1 is a symmetric Følner monotiling,

then ([Zn, F−1
n ])n≥1 is a right Følner monotiling.

We begin with a basic example.

Example 1.3.1. Consider the group Zd for some d ≥ 1 and the Følner
sequence (Fn)n≥1 in Zd given by

Fn := [0, 1, 2, . . . , n− 1]d.

Furthermore, for every n let

Zn := nZd.
Here nZd stands for the subgroup of Zd, consisting of d-tuples of integers which
are divisible by n. It is easy to see that ([Fn,Zn])n≥1 is a symmetric Følner
monotiling of Zd.

A less trivial example is given by Følner monotilings of the discrete Heisen-
berg group UT3(Z). We will return to the Følner monotilings of UTd(Z) for
d > 3 later in Section 7.2.

Example 1.3.2. Consider the group UT3(Z), i.e., the discrete Heisenberg
group H3. By definition,

UT3(Z) :=


1 a c

0 1 b
0 0 1

 : a, b, c ∈ Z

 .

For every n ≥ 1, consider the subgroup

Zn := {(a, b, c) ∈ UT3(Z) : a, b ∈ nZ, c ∈ n2Z}.

This is a finite index subgroup, and it is easy to see that for every n the finite
set

Fn := {(a, b, c) ∈ UT3(Z) : 0 ≤ a, b < n, 0 ≤ c < n2}
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is a fundamental domain for Zn. As we have already mentioned, (Fn)n≥1 is
a two-sided Følner sequence. We conclude that ([Fn,Zn])n≥1 is a symmetric
Følner monotiling.

In what follows we will need the following simple proposition, which tells
us that the sets of centers of a Følner monotiling have positive density.

Proposition 1.3.3. Let ([Fn,Zn])n≥1 be a left Følner monotiling of Γ such
that e ∈ Fn for every n, where e ∈ Γ is the neutral element. Then for every
fixed k

(1.3.1)

∣∣intl
Fk

(Fn) ∩ Zk
∣∣

|Fn|
→ 1

|Fk|

and

(1.3.2)
|Fn ∩ Zk|
|Fn|

→ 1

|Fk|

as n → ∞. If, additionally, (Fn)n≥1 is a two-sided Følner sequence, then for
every fixed k

(1.3.3)

∣∣∣intl
Fk

(Fn) ∩ intr
F−1
k

(Fn) ∩ Zk
∣∣∣

|Fn|
→ 1

|Fk|
as n→∞.

Proof. Observe first that, under the initial assumptions of the theorem,
for every set A ⊆ Γ, k ≥ 1 and g ∈ Γ we have

g ∈ intl
Fk

(A)⇔ Fkg ⊆ A

and

g ∈ intr
F−1
k

(A)⇔ gF−1
k ⊆ A.

Let k ≥ 1 be fixed. For every n ≥ 1, consider the finite set An,k := {g ∈ Zk :

Fkg ∩ intl
Fk

(Fn) 6= ∅}. Then the translates {Fkz : z ∈ An,k} form a disjoint

cover of the set intl
Fk

(Fn). It is easy to see that

Γ = intl
Fk

(Fn) t ∂l
Fk

(Fn) t intl
Fk

(F c
n).

Since An,k∩intl
Fk

(F c
n) = ∅, we can decompose the set of centers An,k as follows:

An,k = (An,k ∩ intl
Fk

(Fn)) t (An,k ∩ ∂l
Fk

(Fn)).

Since (Fn)n≥1 is a Følner sequence,∣∣Fk(An,k ∩ ∂l
Fk

(Fn))
∣∣

|Fn|
=
|Fk| ·

∣∣An,k ∩ ∂l
Fk

(Fn)
∣∣

|Fn|
→ 0
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and
∣∣intl

Fk
(Fn)

∣∣ / |Fn| → 1 as n→∞. Then from the inequalities∣∣intl
Fk

(Fn)
∣∣

|Fn|
≤
∣∣Fk(An,k ∩ ∂l

Fk
(Fn))

∣∣
|Fn|

+

∣∣Fk(An,k ∩ intl
Fk

(Fn))
∣∣

|Fn|

≤
∣∣Fk(An,k ∩ ∂l

Fk
(Fn))

∣∣
|Fn|

+ 1

we deduce that

(1.3.4)
|Fk| ·

∣∣An,k ∩ intl
Fk

(Fn)
∣∣

|Fn|
→ 1

as n → ∞. It remains to note that An,k ∩ intl
Fk

(Fn) = Zk ∩ intl
Fk

(Fn) and
the first statement follows. The second statement follows trivially from the

first one. To obtain the last statement, observe that
∣∣∣intr

F−1
k

(Fn)
∣∣∣ / |Fn| → 1 as

n→∞ since (Fn)n≥1 is a right Følner sequence, thus

lim
n→∞

∣∣intl
Fk

(Fn) ∩ Fn ∩ Zk
∣∣

|Fn|
= lim
n→∞

∣∣∣intl
Fk

(Fn) ∩ intr
F−1
k

(Fn) ∩ Zk
∣∣∣

|Fn|
=

1

|Fk|
.

1.4. Lemma of Ornstein and Weiss

In the classical definitions of the topological and the Kolmogorov-Sinai
entropies the following elementary lemma is used.

Lemma 1.4.1 (Subadditivity lemma). Let (an)n≥1 be a sequence of non-
negative numbers such that, for every n,m ≥ 1, am+n ≤ am + an. Then the
limit

lim
n→∞

an
n

exists and equals inf
n≥1

an
n .

Proof. Let a := inf
n≥1

an
n . Given ε > 0, there is N such that aN

N < a + ε.

Now, for all n ≥ N , we have n = sN+r, where the integers s, r are nonnegative
and r < N . Using subadditivity, we see that

an ≤ asN + ar ≤ saN + ar.

Dividing both sides by n, we see that

an
n
≤ sN

n

aN
N

+
ar
n
≤ (a+ ε) +

ar
n
.

Since ε is arbitrary, this shows that lim sup
n≥1

an
n ≤ a, hence the limit lim

n→∞
an
n

exists and equals a.

For general amenable groups this result is replaced by the following lemma.
For a set X we let

P0(X) := {A ⊆ X : A finite}
be the set of all finite subsets of X.
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Proposition 1.4.2 (Ornstein-Weiss lemma). Let f : P0(Γ) → R≥0 be a
function from the set of finite subsets of an amenable group Γ to the set of
non-negative reals satisfying the following conditions

a) f is monotone, i.e. f(F1) ≤ f(F2) holds for any two finite subsets
F1 ⊆ F2 ⊆ Γ;

b) f is subadditive, i.e. f(F1∪F2) ≤ f(F1)+f(F2) holds for any two finite
subsets F1, F2 ⊆ Γ;

c) f is right-invariant, i.e. f(Fg) = f(F ) holds for all finite F ⊆ Γ and
g ∈ Γ.

Then for every Følner sequence (Fn)n∈N of Γ the limit

lim
n→∞

f(Fn)

|Fn|
in R≥0 exists and is independent of the choice of Følner sequence.

For the proofs we refer to [LW00, Theorem 6.1], [Kri07] or [Gro99, Section
1.3].

1.5. Remarks

1.5.1. Equivalent Definitions of Amenability. A few equivalent def-
initions of amenability can be given. Let Γ be a group, which we assume to be
at most countable and discrete. A finite mean is a finitely supported func-
tion λ : Γ → R≥0. Of course, finite means belong to `1(Γ;R). A non-negative
linear functional λ : `∞(Γ;R) → R is called a mean if λ(1) = 1. A mean
λ : `∞(Γ;R)→ R is called left-invariant if for all x ∈ Γ and f ∈ `∞(Γ;R) we
have λ(Lxf) = λ(f). Here L· denotes the left-regular representation, i.e. for
all x, y ∈ Γ we have

(Lxf)(y) = f(x−1y).

We summarize some useful equivalent definitions of amenability in the fol-
lowing proposition. For the proofs we refer to [CSC10, Chapter 4].

Proposition 1.5.1. Let Γ be an at most countable group. The following
assertions are equivalent:

(i) There exists a left-invariant mean λ : `∞(Γ;R)→ R;

(ii) For every finite subset S ⊆ Γ and every ε > 0 there exists a finite mean
λ such that ‖λ− Lxλ‖`1(Γ;R) < ε for all x ∈ S;

(iii) For every finite subset S ⊆ Γ and every ε > 0 there exists a non-empty
finite set A ⊆ Γ such that, for all x ∈ S,

|xA4A|
|A|

< ε;

(iv) There exists a Følner sequence (Fn)n≥1 in Γ, i.e. Γ is amenable.

(v) Every affine action of Γ on a nonempty convex compact subset of a
Hausdorff topological vector space admits a fixed point.
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1.5.2. Two-sided Følner Sequences. We have made a clear distinction
between the left and the right Følner sequences in our definitions, while in the
definition of a regular Følner monotiling (Section 7.2) we will require that the
Følner sequence is two-sided. However, every amenable group admits a two-
sided Følner sequence. For the proof we refer to [BCRZ14, Section 2.2] and
[OW87, Chapter I. §1, Proposition 2]. It is not clear, on the other hand, if
one can construct a two-sided Følner sequence that would tile the group from
a left/right Følner sequence tiling the group.

1.5.3. Existence of Følner Monotilings. One of the main results in
[Wei01] is the following:

Proposition 1.5.2. Suppose that G,K are amenable groups that both ad-
mit Følner monotilings and that the sequence

1→ G
ı→ F

π→ K → 1

is exact. Then the group F admits a Følner monotiling as well.

We discuss a ‘computable’ version of this result later in Theorem 4.5.2.
It is clear that all finitely generated abelian groups admit Følner monotilings.
Furthermore, all countable abelian groups admit Følner monotilings as well
(any such group Γ is an increasing union

⋃
n≥1

Γn of finitely generated subgroups

obtained by adding one extra generator at each step, so, given a sufficiently
invariant set F ⊆ Γn which tiles Γn, one can cover the whole group Γ by
disjoint translates of F ). In particular, the group Q admits a Følner monotiling,
even though we do not have a nice formula for it. This result, together with
Proposition 1.5.2, yields the following:

Proposition 1.5.3. Any countable solvable group admits a Følner monotil-
ing.

1.5.4. Non-amenable Groups and Sofic Groups. Not all countable
groups are amenable, even if we restricted to the finitely generated ones. A
basic example of a non-amenable group is the free group F2 on two generators.
However, this group is an example of a sofic group, which have recently become
important in the sofic entropy theory. We refer to [CSC10, Section 7.5] for the
definition of a sofic group, and to [Bow10] for the introduction to the sofic
entropy theory.



CHAPTER 2

Topological Dynamical Systems

A large part of the theory of dynamical systems is devoted to studying
topological dynamical systems, i.e. the systems coming from continuous ac-
tions of groups on topological spaces. In this setting one studies, among oth-
ers, the problem of isomorphism of topological dynamical systems; topological
recurrence; the structure theory of topological dynamical systems, such as the
Furstenberg distal structure theorem, and so on.

We will not go deep into topological dynamics in this thesis since our main
object of interest is entropy. In this chapter we will present the basic prerequi-
sites that are needed to talk about entropy for topological dynamical systems.
Also, we will not impose restrictions on the groups acting on topological spaces
unless it is stated otherwise; but later we will restrict ourselves to amenable
group actions when defining the topological entropy.

In Section 2.1 we will discuss the definitions and prove some basic proper-
ties, among others the notion of a factor. We say a bit more about factors and
related category-theoretic questions in Section 2.3. Section 2.2 is devoted to
the basic examples. We will follow a ‘categorical’ view on the subject by using
the language of category theory.

2.1. Definition

Let Top be the category of compact Hausdorff topological spaces with sur-
jective continuous maps as morphisms. Then, clearly, for every topological
space X ∈ Top the group Aut(X) is the group of homeomorphisms from X to
X.

Let Γ be a discrete group, X ∈ Top and π : Γ → Aut(X) be a group
homomorphism. This defines a left action of Γ on X by setting

γ · x := πγ(x).

The pair

X = (X, π)

is called a topological dynamical system. When we want to stress that the
acting group is Γ, we will sometimes say that this is a topological Γ-system.
When we work with a topological Γ-system X = (X, π) and the representation π
is fixed, we will often write γ instead of πγ to denote the morphism πγ : X→ X
for γ ∈ Γ. This coincides with the standard notation in the theory of dynamical
systems, and typically does not cause any confusion.
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Let us define the category TopΓ. The objects are, by definition, pairs (X, π),
with X being a compact Hausdorff topological space and π : Γ→ Aut(X) being
a group homomorphism. Let X = (X, π),Y = (Y, ρ) be topological dynamical
systems. We define Hom(X,Y) as the set of all morphisms φ : X → Y such
that ργ ◦ φ = φ ◦ πγ for all γ. That is, we require that the diagram

X
φ // Y

X

πγ

OO

φ
// Y

ργ

OO

commutes for all γ. Then Y is called a factor of X, and φ is called a (topo-
logical) factor map.

A subsystem of a topological dynamical system (X, π) is a nonempty
closed subset Y ⊆ X which is Γ-invariant, i.e.

πγ(x) ∈ Y

holds for all x ∈ Y, γ ∈ Γ. Clearly, any subsystem Y ⊆ X becomes a topologi-
cal dynamical system (Y, π) by restricting the action of Γ to Y. A topological
dynamical system X = (X, π) is called minimal if it does not have proper
subsystems. A simple argument using Zorn’s lemma gives the following propo-
sition.

Proposition 2.1.1. Let (X, π) be a topological dynamical system. Then
there exists a minimal subsystem Y ⊆ X.

Many interesting examples of dynamical systems are Z-systems. In this
case we adapt the notation slightly and write (X;ϕ) instead of (X, π), where
ϕ := π1 is a homeomorphism X→ X.

2.2. Examples

In this section we collect some elementary examples of topological dynam-
ical systems. Later we will show how to compute the topological entropy for
some of these examples.

Example 2.2.1. Let R/Z be the unit torus written additively, and let α ∈
R/Z be fixed. Let Rα : R/Z→ R/Z be the transformation

x 7→ x+ α for all x ∈ R/Z.

The dynamical system (R/Z;Rα) is called a torus rotation. It is easy to show
using Dirichlet’s principle that that (R/Z;Rα) is minimal if and only if α ∈ R/Z
is irrational.

Example 2.2.2. Let G be a compact abelian group and g ∈ G be a fixed
element. Let Rg : G→ G be the transformation

x 7→ x+ g for all x ∈ G.
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The dynamical system (G;Rg) is called a compact group rotation. One can
show [EFHN15, Theorem 3.4] that the following assertions are equivalent:

(i) (G;Rg) is minimal;

(ii) {gn}n≥1 is dense in G;

(iii) {gn}n∈Z is dense in G.

Example 2.2.3. Let (R/Z)2 be the two-dimensional torus and α ∈ R/Z be
fixed. Consider the transformation ϕ : (R/Z)2 → (R/Z)2 given by

(x, y) 7→ (x+ α, x+ y) for all (x, y) ∈ (R/Z)2.

The topological dynamical system ((R/Z)2;ϕ) is called the skew-shift. One
can show [Fur81, Lemma 1.25] that the skew-shift is minimal.

Example 2.2.4. Let Λ be a finite alphabet and Γ be a discrete, at most
countably infinite group. We define a compact Hausdorff space

X := ΛΓ,

carrying the product topology. Consider the representation π of Γ in Aut(X)
given by

(g · ω)(x) := ω(xg) for all x, g ∈ Γ, ω ∈ X.

The dynamical system (X, π) is called the right shift over Γ with alphabet Λ.
Any subsystem Y ⊆ X is called a subshift.

2.3. Factors

2.3.1. Coproducts. There exists a ‘natural’ structure of category on the
collection of factors of a fixed system X ∈ TopΓ. First, we need to remind
the reader of the notion of a coproduct from category theory. It is a ‘dual’
notion to the notion of product. Let C be a category, and let {Xλ}λ∈Λ be a
family of objects of this category indexed by a set Λ. The coproduct of this
family is a pair of an object X ∈ C and a collection of morphisms {πλ}λ∈Λ,
πλ : Xλ → X such that for any object Y ∈ C and a collection of morphisms
{ρλ}λ∈Λ, ρλ : Xλ → Y there exists a unique morphism φ : X → Y such that
φ ◦ πλ = ρλ for all indices λ ∈ Λ. A standard argument then shows that
coproducts are unique up to a unique isomorphism when they exist. We write∐
λ∈Λ

Xλ to denote the coproduct of the family {Xλ}λ∈Λ.

We give a couple of examples of coproducts. Consider the category Set
of sets with maps between sets being the morphisms. Then the disjoint union⊔
λ∈Λ

Xλ of these sets together with the maps πλ : Xλ →
⊔
λ∈Λ

Xλ, which are the

canonical set inclusions, is, up to a unique isomorphism, the coproduct of a
family {Xλ}λ∈Λ of sets. Verifying the universal property is straightforward. It
is also not difficult to show that in the categories Ab of abelian groups and
Vectk of vector spaces over a fixed field k the notion of a coproduct coincides
with that of a direct sum.
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2.3.2. Poset of Factors. For the moment, let D be a category and let A
be a fixed object of D. We define the category Fac(A) as follows. Let S be the
collection of all epimorphisms φ : A → B in D. Given arrows φ : A → B and
ψ : A → C in S, we say φ and ψ are equivalent as factor maps if there is an
isomorphism ζ : B→ C such that ζ ◦φ = ψ. We define Obj(Fac(A)) as the col-
lection of isomorphism classes of elements of S modulo this equivalence relation.
We define a preorder on Obj(Fac(A)) as follows. For [φ], [ψ] ∈ Obj(Fac(A)) we
say that [φ] ≥ [ψ] if there exists a morphism ζ such that ψ = ζ ◦ φ. This
definition is independent of the choice of the representatives φ and ψ. Given ψ
and φ, such ζ is unique because φ is an epimorphism. Furthermore, ζ is an epi-
morphism because ψ is an epimorphism as well. Given [φ], [ψ] ∈ Obj(Fac(A)),
we let

Hom([φ], [ψ]) :=

{
{≥} : [φ] ≥ [ψ]

∅ : otherwise.

This makes Fac(A) a poset category, i.e. a category satisfying the following
additional assertions for all objects [φ], [ψ] ∈ Obj(Fac(A)):

a) there exists at most one morphism from [φ] to [ψ];

b) if Hom([φ], [ψ]) and Hom([ψ], [φ]) are nonempty, then [φ] = [ψ].

We call this category the category of factors of A. This is a ‘dual’ notion to
the standard notion of the category of subobjects (see [Gol84] for the details).

2.3.3. Factors of Topological Dynamical Systems. Now, let TopΓ

be the category of topological Γ-systems. By definition, all morphisms in this
category are epimorphisms. Let X = (X, π) ∈ TopΓ be a fixed topological
dynamical systems, and let Fac(X) be the associated category of factors. We
want to prove that Fac(X) can be identified with the set of all Γ-invariant
subtopologies on X, and that the ‘≥’ relation of factors is simply the set-
theoretic relation ‘⊇’ of topologies.

If φ : X → Y, ψ : X → Z are equivalent as factor maps, then the corre-
sponding subtopologies on X coincide. Conversely, if φ : X → Y, ψ : X → Z
are factor maps such that the corresponding subtopologies on X coincide, then
φ and ψ are equivalent as factor maps. Indeed, it is clear that the fibers
φ−1(y), y ∈ Y of points are precisely the minimal proper closed sets in X with
respect to the subtopology of Y. The same holds for fibers ψ−1(z), z ∈ Z. Since
the subtopologies coincide, each fiber φ−1(y) is in fact a fiber ψ−1(z) for some
uniquely determined z ∈ Z. This defines a bijection ζ : Y → Z, and it is easy
to see that ζ is a homeomorphism and Γ-intertwining.

Given a Γ-invariant subtopology V on X, we define an equivalence relation
∼ on X by saying that two points x, y ∈ X are equivalent if and only if for
all open sets V ∈ V we have x, y ∈ V or x, y /∈ V . Then the quotient space
X/∼, endowed with the induced action of Γ, is a factor of X. Finally, given
[φ], [ψ] ∈ Obj(Fac(X)), it is clear that [φ] ≥ [ψ] if and only if the subtopology
corresponding to [φ] is finer than the subtopology corresponding to [ψ].
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In what follows we will need to understand the coproducts in Fac(X). We
describe a coproduct of two factors first. So let φ : X→ Y and ψ : X→ Z be
representatives of [φ], [ψ] ∈ Fac(X). Consider the factor W of X obtained by

1) lifting the topologies of Y and Z to subtopologies on X via maps φ and
ψ;

2) taking the intersection of these subtopologies, obtaining a new compact
topology on X;

3) gluing points that are not separated by this topology to define a quotient
map χ : X→W and taking the induced action of Γ on W.

Then W ∈ TopΓ is a topological dynamical system and [χ] ∈ Fac(X) is the
coproduct of [ψ] and [φ]. A similar construction applies to infinite coproducts.





CHAPTER 3

Measure-preserving Dynamical Systems

Another classical part of the theory of dynamical systems is studying
measure-preserving dynamical systems, i.e. measure-preserving actions of groups
on probability spaces, which are often assumed to be standard. Just like
in topological dynamics, one studies the problem of isomorphism, (measure-
theoretic) recurrence and the structure theory. Of course, there are interesting
new problems, which are specific to measure-preserving dynamics, as well. One
of the main examples is given by ergodic theorems, which say that we can ‘av-
erage’ measure-preserving actions of sufficiently nice groups. Another example
is the Shannon-McMillan-Breiman theorem, which connects the Kolmogorov-
Sinai entropy of an ergodic measure-preserving system to the amount of infor-
mation in the sense of Shannon that one obtains by observing the time evolution
of a system.

This chapter is structured as follows. Our first goal is to define the category
Prob of standard probability spaces. We do so in several steps. In Section 3.1
we introduce measure-preserving maps between probability spaces and measure
algebras of probability spaces. Measure-preserving maps will essentially play
the role of the morphisms in Prob. The measure algebra Σ(X) of a probability
space (X,B, µ) is the quotient of B modulo null sets. The main reason to
restrict ourselves to standard probability spaces is that this restriction allows to
define morphisms of probability spaces by defining morphisms of the associated
measure algebras.

We begin Section 3.2 by introducing abstract measure algebras and mor-
phisms between them. With this terminology, we complete the definition of
the category Prob of standard probability spaces at the end of Section 3.2.
We introduce the category ProbΓ of measure-preserving dynamical systems on
standard probability spaces in Section 3.3. At the end of this section we show
that the category Fac(X) of factors of a measure-preserving system X is iso-
morphic to the category of Γ-invariant σ-complete subalgebras of the measure
algebra Σ(X) of X. This fact will be used later in Section 6.3.

We discuss ergodic theorems for amenable groups actions and their weighted
versions in Section 3.4. Finally, some additional remarks are provided in Sec-
tion 3.5. The connection of measure-preserving and topological dynamics is
discussed in Section 3.5.1, where we state the Krylov-Bogolyubov theorem, as-
serting that every topological dynamical system over an amenable group can be

29



30 3. MEASURE-PRESERVING DYNAMICAL SYSTEMS

endowed with an invariant probability measure, making it a measure-preserving
system.

3.1. Probability Spaces

3.1.1. Measure-preserving Maps. Let X := (X,B, µ) and Y = (Y, C, ν)
be probability spaces and ϕ : X → Y be a measurable map. We say that ϕ is
measure-preserving if for every measurable set C ∈ C we have

µ(ϕ−1(C)) = ν(C).

If ϕ : X → X is measure-preserving, we say that the measure µ is invariant
under ϕ. Similarly, if we are given a group Γ of measure-preserving transfor-
mations of X, we say that µ is invariant under Γ.

We give now some basic examples. First of all, recall the torus rotation
from Example 2.2.1.

Example 3.1.1. Let R/Z be the unit torus written additively, and let α ∈
R/Z be fixed. Let Rα : R/Z→ R/Z be the transformation

x 7→ x+ α for all x ∈ R/Z.

Since the Lebesgue measure on R/Z is translation-invariant, Rα is a measure-
preserving map.

Example 3.1.2. Let G be a compact abelian group and g ∈ G be a fixed
element. Let Rg : G→ G be the transformation

x 7→ x+ g, for all x ∈ G.
Then, similar to the torus rotation case, Rg is a measure-preserving transfor-
mation.

Example 3.1.3. Let (R/Z)2 be a two-dimensional torus and α ∈ R/Z be
fixed. Consider the transformation ϕ : (R/Z)2 → (R/Z)2 given by

(x, y) 7→ (x+ α, x+ y) for all (x, y) ∈ (R/Z)2.

It is easy to see that ϕ is, in fact, an affine transformation on the compact
abelian group (R/Z)2, and hence it is measure-preserving.

Our last example is the ‘Bernoulli shift’ transformation.

Example 3.1.4. Let Λ = {1, 2, . . . , k} be a finite alphabet and let p =
(p1, p2, . . . , pk) be a probability vector. Let

X := ΛZ

be the measurable space carrying the Borel structure coming from the product
topology. We define a probability measure µ on X via defining it on cylinder
sets as follows:

µ({ω : ωi1 = pj1 , ωi2 = pj2 , . . . , ωik = pjk}) :=

k∏
l=1

pjl
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for all indices i1 < i2 < · · · < ik and all k ∈ N. It is easy to see that the shift
transformation ϕ : X→ X defined by

(ϕω)(k) := ω(k + 1) for all ω ∈ X, k ∈ Z

is measure-preserving.

3.1.2. Measure Algebras and Maps. Let X = (X,B, µ) and Y =
(Y, C, ν) be probability spaces. If ϕ,ψ : X → Y are measure-preserving maps,
we say that ϕ and ψ are equivalent if for µ-a.e. x ∈ X we have ϕ(x) = ψ(x).
We denote the equivalence class of a measure-preserving map ϕ : X → Y in
the set of all measure-preserving maps from X to Y by [ϕ]. If ϕ : X → Y
and ψ : Y → X are measure-preserving maps, we say that ψ is an essential
inverse of ϕ if

ψ ◦ ϕ = idX µ-a.e.

and

ϕ ◦ ψ = idY ν-a.e.

A measure-preserving map ϕ is called essentially invertible if it admits an
essential inverse.

We claim that the ‘almost everywhere’ equivalence class of a measure-
preserving map ϕ is essentially determined by the map ϕ−1 : C → B between
the corresponding σ-algebras. To make this precise, we need to introduce the
measure algebras of the underlying probability spaces. Let X := (X,B, µ) be
a probability space. We want to identify those measurable sets in B which are
‘essentially the same’. Let

N (X) := {A ∈ B : µ(A) = 0}

be the σ-ideal of null sets of X. The measure algebra of X is the pair

Σ(X) := (B/N (X), µ̃)

of the quotient Boolean algebra B/N (X) and the function µ̃ : B/N (X)→ [0, 1],

which is induced by the measure µ on B. The quotient Boolean algebra B/N (X)
is the set of equivalence classes of sets in B modulo the equivalence relation

A ∼ B ⇔ µ(A4B) = 0.

The equivalence class of a set A ∈ B in B/N (X) is denoted by [A], but we
will often ignore this distinction and write A to denote the equivalence class
of A in B/N (X). The Boolean algebra operations ∨ , ∧ and ·c on B/N (X) are
induced by taking union, intersection and complement of sets in B respectively.
Additionally, the Boolean algebra B/N (X) is σ-complete in the sense that any

countable subset of B/N (X) has the least upper and the greatest lower bound.
More precisely, we have ∨

i≥1

[Ai] =

⋃
i≥1

Ai


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and

∧
i≥1

[Ai] =

⋂
i≥1

Ai

 .
One can show that the algebra B/N (X) is complete as well (see [EFHN15,

Corollary 7.8] for the proof), but we will not need this fact. The function
µ̃ : B/N (X)→ [0, 1] is induced by µ, that is

µ̃([A]) := µ(A) for all A ∈ B,

and this definition is clearly independent of the particular choice of a represen-
tative in [A]. It is easy to see that µ̃ is σ-additive in the sense that for every
sequence ([An])n≥1 of elements of B/N (X) such that µ(An∩Am) = 0 whenever
n 6= m we have

µ̃(
∨
n≥1

[An]) =
∑
n≥1

µ̃([An]).

For convenience, we will often use Σ(X) to denote both the underlying Boolean
algebra B/N (X) and the measure algebra itself. We will also write µ instead of

µ̃.
Let Σ(X) and Σ(Y) be the measure algebras of the probability spaces X =

(X,B, µ) and Y = (Y, C, ν) respectively. Given a measure-preserving map ϕ :
X → Y of the probability spaces X = (X,B, µ) and Y = (Y, C, ν) respectively, it
is easy to see that the map ϕ−1 : C → B induces a map ϕ∗ : C/N (Y)→ B/N (X)
of the corresponding measure algebras, satisfying the following conditions for
all A,B ∈ C/N (Y):

a) ϕ∗(A ∨ B) = ϕ∗(A) ∨ ϕ∗(B);

b) ϕ∗(Ac) = (ϕ∗(A))c;

c) µ(ϕ∗(A)) = ν(A).

For the reasons that will be clear later, we call ϕ∗ a homomorphism of measure
algebras.

A natural question is if the map ϕ is completely determined by ϕ∗. The
following lemma gives us one implication. The proof is straightforward.

Proposition 3.1.5. Let (X,B, µ), (Y, C, ν) be probability spaces and ϕ,ψ :
X → Y be measure-preserving maps. Let ϕ∗, ψ∗ : Σ(Y) → Σ(X) be the corre-
sponding homomorphisms of measure algebras. If ϕ and ψ are equivalent, then
ϕ∗ = ψ∗.

In general, the converse of this lemma does not hold (see [EFHN15, Ex-
ample 6.7] for a counterexample). However, the converse holds if we restrict
ourselves to standard probability spaces.
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3.2. Standard Probability Spaces

3.2.1. Abstract Measure Algebras. An abstract measure algebra
is a pair (M, µ), whereM is a σ-complete Boolean algebra and µ :M→ [0, 1]
satisfies the following assertions

a) µ(1) = 1;

b) µ(a) = 0 if and only if a = 0;

c) µ is σ-additive in the sense that for every sequence (xn)n≥1 of elements
of M such that xn ∧ xm = 0 whenever n 6= m we have

µ(
∨
n≥1

xn) =
∑
n≥1

µ(xn).

It will be essential later to have a metric space structure on abstract mea-
sure algebras.

Proposition 3.2.1. Let (M, µ) be an abstract measure algebra and ρ be
the metric on M defined by

(3.2.1) ρ(a, b) := µ(a4b).
Then (M, ρ) is a complete metric space.

Proof. We sketch a proof from [GH09]. Verifying that ρ is a metric is
trivial, we proceed to proving the completeness. Let (pn)n≥1 be a Cauchy
sequence in (M, ρ). Choose a subsequence (pnk)k≥1 such that for every k ≥ 1

ρ(pnk , pnk+1
) <

1

2k
.

For every i ≥ 1, let ri :=
∞∨
k=i

pnk . Define

p :=
∧
i≥1

ri.

Then the subsequence (pnk)k≥1 converges to p, and hence so does (pn)n≥1.

A measure algebra (M, µ) is called separable if the corresponding metric
space (M, ρ) is separable. Classical examples of separable abstract measure
algebras are given by the measure algebras of ‘nice’ probability spaces.

Example 3.2.2. Let X be a Polish space, B be the Borel σ-algebra and
µ be a probability measure on X. Then the measure algebra Σ(X) of the
probability space X = (X,B, µ) is an abstract measure algebra, and we only
need to prove that it is separable. Given a countable basis (Un)n≥1 of the
topology on X, we take all finite intersections of sets in (Un)n≥1 and obtain a
countable ∩-stable system (Vn)n≥1. We have σ((Vn)n≥1) = B, and hence (see
e.g. [EFHN15, Lemma B.15]) ([Vn])n≥1 is dense in the measure algebra Σ(X).

We want to follow the ‘categorical view’, hence we need to define the arrows
in our category of measure algebras. A morphism Φ : (M, µ) → (N , ν)
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of abstract measure algebras is a map Φ : M → N satisfying the following
assertions for all a, b ∈M:

a) Φ(a ∨ b) = Φ(a) ∨ Φ(b);

b) Φ(ac) = (Φ(a))c;

c) µ(Φ(a)) = ν(a).

It is easy to show that every morphism of abstract measure algebras is nec-
essarily injective (as the map of the Boolean algebras). Furthermore, it is an
isometry and a σ-homomorphism (i.e. it respects countable meets of elements).
We denote the set of all morphisms between abstract measure algebras (M, µ)
and (N , ν) by Hom((M, µ), (N , ν)). The category of separable abstract mea-
sure algebras, with the corresponding sets of morphisms defined above, will be
denoted by SMAlg. Given a group Γ, SMAlgΓ will, as usual, denote the category
of representations of Γ on SMAlg with Γ-intertwining algebra homomorphisms
as morphisms.

Example 3.2.3. Let (M, µ) be an abstract measure algebra. Let N ⊆M
be a σ-complete Boolean subalgebra. Then (N , µ) is an abstract measure
algebra and the identity map ı : N → M is a morphism of abstract measure
algebras.

Having the notion of a morphism of abstract measure algebras, we can talk
about isomorphism of measure algebras. The following theorem (see [Fur81,
Proposition 5.1] for a slightly different formulation of this result) simplifies
checking if two abstract measure algebras are isomorphic.

Proposition 3.2.4. Two measure algebras (M, µ) and (N , ν) are isomor-
phic if and only if M contains a dense Boolean subalgebra M0 and N contains
a dense Boolean subalgebra N0 such that there is a bijection Φ : M0 → N0

satisfying the following assertions for all a, b ∈M0:

a) Φ(a ∨ b) = Φ(a) ∨ Φ(b);

b) Φ(ac) = (Φ(a))c;

c) µ(Φ(a)) = ν(a).

Furthermore, if such a bijection Φ : M0 → N0 exists, then it extends to an
isomorphism of the measure algebras uniquely.

Proof. One implication is trivial. Conversely, suppose thatM0 ⊆M,N0 ⊆
N and Φ :M0 → N0 satisfy the assertions of the theorem. Since M0 is dense
inM, for every a ∈M there is a sequence (an)n≥1 inM0 converging to a, i.e.

lim
n→∞

µ(an4a) = 0.

The sequence (an)n≥1 is Cauchy and Φ is an isometry, hence the sequence
(Φ(an))n≥1 is Cauchy as well. We let

Φ(a) := lim
n≥1

Φ(an),
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and it is easy to see that this defines an extension of Φ to an isomorphism of
measure algebras M and N .

We have seen that the measure algebras of ‘nice’ probability spaces are
separable. The converse is true as well.

Proposition 3.2.5 (Realization). Let (M, µ) be a separable measure alge-
bra. Then (M, µ) is isomorphic to the measure algebra Σ(X) = (B/N (X), ν) of

some probability space X = (X,B, ν), where X is a compact metric space and
B is the Borel σ-algebra.

Proof. Let (an)n≥1 be a dense subalgebra in M such that an 6= am for
n 6= m (if the measure algebra is finite the statement of the theorem is trivial).
Let X := {0, 1}N, endowed with the product topology, and B be the Borel
σ-algebra. For every n ≥ 1, define the cylinder set

Bn := {ω ∈ X : ω(n) = 1}.
There exists a unique Borel probability measure ν on X such that, for every
N ≥ 1,

ν(Bn1 ∩Bn2 ∩ · · · ∩Bnk) := µ(an1 ∧ an2 ∧ · · · ∧ ank)

for all indices n1, . . . , nk such that 1 ≤ n1 < n2 < · · · < nk ≤ N . Let

Σ(X) := (B/N (X), ν)

be the measure algebra of X. Let M0 := (an)n≥1 and B0 ⊆ Σ(X) be the
countable algebra generated by ([Bn])n≥1. It is clear that the map

an 7→ [Bn], ∀n ≥ 1

is a bijection Φ0 :M0 → B0 of Boolean algebras, satisfying the requirements of
Proposition 3.2.4. Then Φ0 extends to an isomorphism Φ of measure algebras.

3.2.2. Category of Standard Probability Spaces. In the previous
section we have seen that the measure algebras of probability spaces on Polish
spaces are separable, and, conversely, that each separable abstract measure
algebra is in fact isomorphic to the measure algebra of a ‘nice’ probability
space. However, not all probability spaces with separable measure algebras are
‘nice’ enough for our purposes, and we refer once again to [EFHN15, Example
6.7] for a counterexample. The correct definition of a ‘nice’ probability space
is that of a standard probability space.

A measurable space (X,B) is called a standard Borel space if there is
a Polish topology O on X such that B = σ(O). A probability space (X,B, µ)
is called a Borel probability space if (X,B) is a standard Borel space. A
probability space X = (X,B, µ) is called a standard probability space if
there is a Borel probability space Y = (Y, C, ν) and an essentially invertible
measure-preserving map ϕ : X → Y . It follows immediately that the measure
algebra of a standard probability space is separable.

First, we state the following proposition [EFHN15, Proposition 6.10], which
gives the converse to Proposition 3.1.5.
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Proposition 3.2.6. Let (X,B, µ), (Y, C, ν) be standard probability spaces
and ϕ,ψ : X → Y be measure-preserving maps. If ϕ∗ = ψ∗, then ϕ and ψ are
equivalent.

Combining [EFHN15, Theorem 12.10] and [EFHN15, Theorem F.9], we
deduce the following theorem. It tells us that, given standard probability spaces
X and Y, each morphism Φ : Σ(Y) → Σ(X) of the corresponding abstract
measure algebras is in fact of the form ϕ∗ for some almost uniquely determined
measure-preserving map ϕ.

Theorem 3.2.7 (Von Neumann). Let X = (X,B, µ) and Y = (Y, C, ν) be
standard probability spaces. Let Φ : Σ(Y) → Σ(X) be a morphism of measure
algebras. Then there is a µ-a.e. unique measure-preserving map ϕ : X → Y
such that ϕ∗ = Φ.

We can now define the category Prob of standard probability spaces. We
let Obj(Prob) be the collection of standard probability spaces. Given standard
probability spaces X and Y in Obj(Prob), we let

Hom(X,Y) := {[ϕ] : ϕ : X → Y a measure-preserving map}.
It is easy to see that this indeed defines a set of morphisms. In fact, this
is an instance of a quotient category, and we leave the details to the reader.
Combining Proposition 3.1.5, Proposition 3.2.6 and Theorem 3.2.7 we see that,
for all X,Y ∈ Obj(Prob),

(3.2.2) Hom(X,Y) = {Φop : Φ ∈ Hom(Σ(Y),Σ(X))}.
Here the superscript op in Φop means that, even though Φ is a morphism from
Σ(Y) to Σ(X), the direction of Φ as a morphism between standard probability
spaces is the opposite. Therefore, the equality in Equation (3.2.2) should be un-
derstood as follows: each equivalence class of measure-preserving maps from X
to Y determines a unique morphism of measure algebras in Hom(Σ(Y),Σ(X)),
and, conversely, each morphism of measure algebras in Hom(Σ(Y),Σ(X)) de-
termines a unique equivalence class of measure-preserving maps from X to Y.

We will typically ignore the distinction between a measure-preserving map
ϕ : X → Y and its equivalence class [ϕ] ∈ Hom(X,Y). We will also sometimes
write ϕ−1 (instead of ϕ∗) to denote the corresponding morphism of measure
algebras to comply with the standard notation in ergodic theory.

3.3. Measure-preserving Dynamical Systems

3.3.1. Definition. Let Γ be a discrete group, X ∈ Prob be a standard
probability space and π : Γ→ Aut(X) be a group homomorphism. The pair

X = (X, π)

is called a measure-preserving dynamical system. When we want to stress
that the acting group is Γ, we will sometimes say that this is a measure-
preserving Γ-system. When we work with a measure-preserving Γ-system
X = (X, π) and the representation π is fixed, we will often write γ instead of
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πγ to denote the morphism πγ : X→ X for γ ∈ Γ. We will write γ−1 to denote
the corresponding automorphism of the measure algebra Σ(X). This coincides
with the standard notation in dynamical systems, and typically does not cause
any confusion. The representation of Γop in Aut(Σ(X)) induced by π will be
denoted by π∗, thus

(Σ(X), π∗) ∈ SMAlgΓop .

The objects of the category ProbΓ are, by definition, pairs (X, π), with
X being a standard probability space and π : Γ → Aut(X) being a group
homomorphism. Let X = (X, π),Y = (Y, ρ) be measure-preserving dynamical
systems. We define Hom(X,Y) as the set of all morphisms φ : X → Y such
that ργ ◦ φ = φ ◦ πγ for all γ. That is, we require that the diagram

X
φ // Y

X

πγ

OO

φ
// Y

ργ

OO

commutes for all γ. Then Y is called a factor of X, and φ is called a factor
map.

Similar to topological dynamics, many interesting measure-preserving sys-
tems are Z-systems. In this case we adapt the notation and write (X;ϕ) instead
of (X,π), where ϕ := π1 is an essentially invertible measure-preserving map.
For instance, Examples 3.1.1 and 3.1.3 of measure-preserving transformations
from Section 3.1.1 give us measure-preserving dynamical systems, which we
call the torus rotation and the skew-shift respectively.

3.3.2. Continuous Models. The morphisms in the category of measure-
preserving Γ-systems are, by definition, equivalence classes of measure-preserving
maps (or, equivalently, ‘opposites’ of the morphisms of the corresponding mea-
sure algebras). It is sometimes more convenient to work with ‘continuous mod-
els’ of measure-preserving dynamical systems on topological spaces, where Γ
acts by measure-preserving homeomorphisms and the morphisms that we are
interested in are continuous, intertwining, measure-preserving maps. Fortu-
nately, since all underlying probability spaces are standard, such models do
always exist. Combining [Gla03, Theorem 2.15] and the results above, we de-
duce the following theorem.

Theorem 3.3.1. Let Γ be a discrete at most countable group. Let X,Y ∈
ProbΓ be measure-preserving Γ-systems on standard probability spaces X =
(X,B, µ) and Y = (Y, C, ν) respectively. Let ϕ : X → Y be a morphism.
Then there exist

1) measure-preserving Γ-systems X′ and Y′ on compact metric spaces X ′

and Y ′, endowed with Borel probability measures µ′ and ν′ respectively,
where Γ acts on X ′ and Y ′ by homeomorphisms;

2) a continuous and surjective factor map ϕ′ : X′ → Y′;
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3) isomorphisms ψ1 : X→ X′ and ψ2 : Y → Y′

which make the diagram

X′

ϕ′

��

X

ϕ

��

ψ1oo

Y′ Y
ψ2

oo

in the category ProbΓ commute.

Proof. For the complete proof we refer to [Gla03, Theorem 2.15] and
[Fur81, Theorem 5.15]. The main idea is to model X and Y on compact metric
spaces via Proposition 3.2.5, but with a special choice of the dense sets in the
corresponding measure algebras. With this special choice, the action of Γop

on the measure algebras of X and Y induces an action of Γ on X ′ and Y ′ by
measure-preserving homeomorphisms. The continuous factor map ϕ′ is induced
by the morphism ϕ∗ : Σ(Y) → Σ(X) of measure algebras, it is intertwining
w.r.t. the action of Γ on X ′ and Y ′ and measure-preserving. Finally, Theorem
3.2.7 tells us that there are measure-preserving maps ψ1, ψ2, induced by the
corresponding isomorphisms of measure algebras.

A similar statement can be proved for a countable family of factors of X.
Furthermore, given X ∈ ProbΓ we will abuse the notation slightly and write
πγ · x or even γ · x for x ∈ X and γ ∈ Γ to denote the action of Γ on X as
if X was a continuous model already. Since all essential statements in ergodic
theory are ‘a.e.’ statements and Theorem 3.3.1 gives an a.e. isomorphisms,
this does not typically cause any confusion.

3.3.3. Ergodicity. Let X = (X, π) be a measure-preserving Γ-system on
a probability space X = (X,B, µ). We say that X is ergodic (or that the
measure µ on X is ergodic) if, for all A ∈ Σ(X),

γ−1A = A for all γ ∈ Γ

implies that A = 0 or A = 1. That is, X is ergodic if only the trivial sets are
essentially invariant under Γ.

We want to state a few equivalent definitions of ergodicity. A function
f ∈ L2(X) is called Γ-invariant if, for all γ ∈ Γ,

f ◦ πγ = f

as elements of L2(X). We let

fixπ := {f ∈ L2(X) : f is Γ-invariant}.
It is clear fixπ ⊆ L2(X) is a closed, Γ-invariant subspace containing the subspace
of constant functions. We let P : L2(X) → fixπ be the orthogonal projection
onto fixπ.

Proposition 3.3.2. Let X be a measure-preserving Γ-system on a proba-
bility space X = (X,B, µ). The following assertions are equivalent:
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(i) X is ergodic;

(ii) dim fixπ = 1;

(iii) for every f ∈ L2(X),

Pf =

∫
fdµ.

For the proof we refer the reader to [Gla03, Theorem 3.10] and to [EFHN15,
Theorem 8.10].

3.3.4. Category of Factors. First of all, we show that every invariant, σ-
complete subalgebra of the measure algebra of a system X ∈ ProbΓ determines a
factor of X. This statement is the ‘measure algebra translation’ of the standard
definition of factors as invariant sub-σ-algebras.

Proposition 3.3.3. Let Γ be a discrete at most countable group. Let X =
(X, π) be a measure-preserving Γ-system on a standard probability space X =
(X,B, µ). Let M ⊆ Σ(X) be a σ-complete, Γ-invariant Boolean subalgebra
of Σ(X). Then there is a factor ϕ : X → Y, where Y = (Y, ρ) is a measure-
preserving system on Y ∈ Prob, and an isomorphism Φ : (M, π∗)→ (Σ(Y), ρ∗),
which make the diagram

(Σ(X), π∗)

(M, π∗)

ı

OO

Φ
// (Σ(Y), ρ∗)

ϕ∗
ff

in the category SMAlgΓop commute.

Proof. The proof follows from [Gla03, Theorem 2.15] and the fact that
morphisms in the category of standard probability spaces are the opposites of
morphisms of the underlying measure algebras.

Now, let ProbΓ be the category of measure-preserving Γ-systems. It is easy
to see that all morphisms in this category are epimorphisms. Let X = (X, π) ∈
ProbΓ be a fixed measure-preserving dynamical systems, and let Fac(X) be the
associated category of factors. We want to prove that Fac(X) can be identified
with the set of all Γ-invariant σ-complete Boolean subalgebras of Σ(X). We
refer to Section 2.3 for the abstract definition of the category Fac(X).

Let φ : X → Y, ψ : X → Z are equivalent factors, where ‘equivalence’ is
understood in the sense of Section 2.3. Then the corresponding subalgebras
ϕ∗(Σ(Y)), ψ∗(Σ(Z)) ⊆ Σ(X) coincide. Conversely, if φ : X → Y, ψ : X → Z
are factors such that the corresponding subalgebras of Σ(X) coincide, then φ
and ψ are equivalent. Finally, given a Γ-invariant σ-complete subalgebra V of
Σ(X), we use Proposition 3.3.3 to obtain a factor.

To understand the coproducts in Fac(X), we begin by describing a coprod-
uct of two factors first. So let ϕ : A→ X and ψ : A→ Y be representatives of
[ϕ], [ψ] ∈ Fac(A) with corresponding measure subalgebras ϕ∗Σ(X) and ψ∗Σ(Y)
of the measure algebra Σ(A) of A. Consider the factor Z of A obtained by
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1) intersecting the measure subalgebras ϕ∗Σ(X) and ψ∗Σ(Y), obtaining a
measure subalgebra of Σ(A);

2) using Proposition 3.3.3 to get a factor map χ : A→ Z with correspond-
ing measure algebra (ϕ∗Σ(X)) ∩ (ψ∗Σ(Y)).

Then Z ∈ Prob and [χ] ∈ Fac(A) is the coproduct of [ψ] and [ϕ]. A simi-
lar construction applies to arbitrary infinite coproducts (not necessarily just
countable ones!).

3.4. Ergodic Theorems

One of the reasons why Følner sequences are of interest in this work is that
they are ‘good’ for averaging group actions. We denote the averages by

Eg∈F :=
1

|F |
∑
g∈F

.

The simplest ergodic theorem for amenable group actions is the mean er-
godic theorem.

Theorem 3.4.1 (Mean ergodic theorem). Let X = (X, π) be a measure-
preserving Γ-system, where the group Γ is amenable and (Fn)n≥1 is a left Følner
sequence. Then for every f ∈ L2(X) we have

lim
n→∞

Eg∈Fnf ◦ πγ−1 = Pf,

where the convergence is understood in L2(X)-sense. If the system X is ergodic,
then

lim
n→∞

Eg∈Fnf ◦ πγ =

∫
fdµ.

We refer for the proof to [Gla03, Theorem 3.33] However, it is not good
enough for our purposes, because we will need pointwise convergence of the
ergodic averages. Unlike the mean ergodic theorem, it is known that not every
Følner sequence is good for the pointwise convergence of ergodic averages. The
following important theorem was proved by E. Lindenstrauss in [Lin01].

Theorem 3.4.2. Let X = (X, π) be a measure-preserving Γ-system, where
the group Γ is amenable and (Fn)n≥1 is a tempered left Følner sequence. Then

for every f ∈ L1(X) there is a Γ-invariant f ∈ L1(X) such that

lim
n→∞

Eg∈Fnf(g · ω) = f(ω)

for µ-a.e. ω ∈ X. If the system X is ergodic, then

lim
n→∞

Eg∈Fnf(g · ω) =

∫
fdµ

for µ-a.e. ω ∈ X.
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We will need a weighted variant of this result. A function c on Γ is called a
good weight for pointwise convergence of ergodic averages along a tempered
left Følner sequence (Fn)n≥1 in Γ if for every measure-preserving system X =
(X, π) and every f ∈ L∞(X) the averages

Eg∈Fnc(g)f(g · ω)

converge as n→∞ for µ-a.e. ω ∈ X.
We will use a special case of the Theorem 1.3 from [ZK14].

Theorem 3.4.3. Let Γ be a group with a tempered Følner sequence (Fn)n≥1.
Then for every ergodic measure-preserving system X = (X, π) and every f ∈
L∞(X) there exists a full measure subset X̃ ⊆ X such that for every x ∈ X̃
the map g 7→ f(g · x) is a good weight for the pointwise ergodic theorem along
(Fn)n≥1.

3.5. Remarks

3.5.1. Krylov-Bogolyubov Theorem. Let X = (X, π) be a topological
Γ-system on a compact metric space X, where the group Γ is discrete amenable.
Let B be the Borel algebra. Then the set M1(X) of Borel probability measures
on X is a compact convex subset of the dual C(X)′, endowed with weak-*
topology. The action of Γ on X induces a left affine action of Γ on M1(X) by

(γ · µ)(A) := µ(π−1
γ A) for all A ∈ B, γ ∈ Γ.

It follows from Proposition 1.5.1 that there is a fixed point µ ∈ M1(X), i.e. there
exists an invariant measure. Furthermore, one can show [Gla03, Theorem 4.2]
that the set of extreme points of M1(X) is precisely the set of ergodic measures
on X. Since the set of extreme points of M1(X) is nonempty due to the Krein-
Milman theorem, we deduce that each topological dynamical system can be
endowed with an ergodic measure.





CHAPTER 4

Computability and Kolmogorov Complexity

The goal of this chapter is to provide the preliminaries on computability
and complexity which will become essential in Part IV of the thesis.

We define computable functions and computable sets in Section 4.1. We
take an ‘informal’ approach, calling a function computable if there is an al-
gorithm that takes an argument as the input and produces the value of the
function as the output. There are various ways to make this precise, for in-
stance, via recursive functions or via Turing machines. We will not discuss these
details here, since an intuitive understanding of an ‘algorithm’ would suffice.
However, it is already apparent from this definition that not every function
f : N→ N is computable, because there are only countably many algorithms.

Very often we work with countable ‘structures’ that admit operations which
are computable in certain sense. To formalize this idea, we introduce the no-
tion of a computable space in Section 4.2. We define the category CompSpc of
computable spaces by introducing appropriate morphisms between computable
spaces. Once the notion of computability is available, we can proceed and de-
fine computable groups in Section 4.3, which are the groups where the mul-
tiplication operation is computable. Of course, classical groups such as the
groups Zd and the matrix groups (say, with rational entries) are computable
when endowed with a certain natural indexing. Taking the notion of a Følner
monotiling from Section 1.3, we introduce its computable version in Section
4.4 and provide some examples. We will see that the discrete Heisenberg group
H3 admits a computable Følner monotiling, and, in general, that every group
UTd(Z) of upper-triangular matrices of dimension d ≥ 2 with integer entries
does as well. As we will show later, these computable monotilings enjoy par-
ticularly nice regularity properties, hence the main theorems of the thesis from
Chapter 7 hold for these groups.

At the end of the chapter we define plain Kolmogorov complexity and
Kolmogorov complexity on word presheaves in Section 4.6 and 4.7 respectively.
The first of these notions is classical and dates back to the work of Kolmogorov,
while the second is suggested by the author in order to generalize the theorems
of Brudno on entropy and complexity.

43
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4.1. Computable Functions and Computable Sets

In this section we will discuss the standard notions of computability that
are used in this work. We refer to Chapter 7 in [Hed04] for details, more
definitions and proofs.

For a natural number k a k-ary partial function is any function of the
form f : D → N ∪ {0}, where D, the domain of definition, is a subset
of (N ∪ {0})k for some natural k. A k-ary partial function is called com-
putable if there exists an algorithm which takes a k-tuple of nonnegative inte-
gers (a1, a2, . . . , ak), prints f((a1, a2, . . . , ak)) and terminates if (a1, a2, . . . , ak)
is in the domain of f , while yielding no output otherwise. A function is called
total, if it is defined everywhere.

The term algorithm above stands, informally speaking, for a computer
program. One way to formalize it is through introducing the class of recursive
functions, and the resulting notion coincides with the class of functions com-
putable on Turing machines. We do not focus on these questions in this work,
and we will think about computability in an ‘informal’ way.

A set A ⊆ N is called recursive (or computable) if the indicator function
1A of A is computable. It is easy to see that finite and co-finite subsets of N
are computable. Furthermore, for computable sets A,B ⊆ N their union and
intersection are also computable. If a total function f : N → N is computable
and A ⊆ N is a computable set, then f−1(A), the full preimage of A, is com-
putable. The image of a computable set via a total computable bijection is
computable, and the inverse of such a bijection is a computable function.

A sequence of subsets (Fn)n≥1 of N is called computable if the total
function 1F· : (n, x) 7→ 1Fn(x) is computable. It is easy to see that a total
function f : N → N is computable if and only if the sequence of singletons
({f(n)})n≥1 is computable in the sense above.

It is very often important to have a numeration of elements of a set by
natural numbers. A set A ⊆ N is called enumerable if there exist a total
computable surjective function f : N → A. If the set A is infinite, we can
also require f to be injective. This leads to an equivalent definition because
an algorithm computing the function f can be modified so that no repetitions
occur in its output. Finite and cofinite sets are enumerable. It can be shown
(Proposition 7.44 in [Hed04]) that a set A is computable if and only if both
A and N \ A are enumerable. Furthermore, for a set A ( N the following are
equivalent:

(i) A is enumerable;

(ii) A is the domain of definition of a partial recursive function.
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4.2. Computable Spaces and Word Presheaves

The goal of this section is to introduce the notions of computable space,
computable function between computable spaces and word presheaf over com-
putable spaces. The complexity of sections of word presheaves and asymptotic
complexity of sections of word presheaves are introduced in this section as well.

An indexing of a set X is an injective mapping ı : X → N such that
ı(X) is a computable subset. Given an element x ∈ X, we call ı(x) the index
of x. If i ∈ ı(X), we denote by xi the element of X having index i. A
computable space is a pair (X, ı) of a set X and an indexing ı. Preimages
of computable subsets of N under ı are called computable subsets of (X, ı).
Each computable subset Y ⊆ X can be seen as a computable space (Y, ı|Y ),
where ı|Y is the restriction of the indexing function. Of course, the set N with
identity as an indexing function is a computable space, and the computable
subsets of (N, id) are precisely the computable sets of N in the sense of Section
4.1.

Let (X1, ı1), (X2, ı2), . . . , (Xk, ık), (Y, ı) be computable spaces. A (total)
function f : X1 × X2 × · · · × Xk → Y is called computable if the function

f̃ : ı1(X1)× ı2(X2)× · · · × ık(Xk)→ ı(Y ) determined by the condition

f̃(ı1(x1), ı2(x2), . . . , ık(xk)) = ı(f(x1, x2, . . . , xk))

for all (x1, x2, . . . , xk) ∈ X1 × X2 × · · · × Xk is computable. This definition
extends the standard definition of computability from Section 4.1 when the
computable spaces under consideration are (N, id). A computable function f :
(X, ı1)→ (Y, ı2) is called a morphism between computable spaces. This yields
the definition of the category of computable spaces. Let (X, ı1), (X, ı2) be
computable spaces. The indexing functions ı1 and ı2 ofX are called equivalent
if id : (X, ı1)→ (X, ı2) is an isomorphism (i.e., a bijective morphism). It is clear
that the classes of computable functions and computable sets do not change if
we pass to equivalent indexing functions.

Given a computable space (X, ı), we call a sequence of subsets (Fn)n≥1

of X computable if the function 1F· : N × X → {0, 1}, (n, x) 7→ 1Fn(x) is
computable. We will also need a special notion of computability for sequences
of finite subsets of (X, ı). A sequence of finite subsets (Fn)n≥1 of X is called
canonically computable if there is an algorithm that, given n, prints the
set ı(Fn) and halts. One way to make this more precise is by introducing the
canonical index of a finite set. Given a finite set A = {x1, x2, . . . , xk} ⊂ N, we

call the number I(A) :=
k∑
i=1

2xi the canonical index of A. Hence a sequence

of finite subsets (Fn)n≥1 of X is canonically computable if and only if the
total function n 7→ I(ı(Fn)) is computable. It is easy to see that the following
assertions are equivalent:

(i) The sequence of finite sets (Fn)n≥1 is canonically computable;
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(ii) The sequence of finite sets (Fn)n≥1 is computable and the total function

n 7→ max{m : m ∈ ı(Fn)}
is computable.

(iii) The sequence of finite sets (Fn)n≥1 is computable and the total function

n 7→ |Fn|
is computable.

Of course, a canonically computable sequence of finite sets is computable, but
the converse is not true due to the fact that there is no effective way of de-
termining how large a finite set with a given computable indicator function is.
It is easy to see that the class of canonically computable sequences of finite
sets does not change if we pass to an equivalent indexing. The proof of the
following proposition is straightforward:

Proposition 4.2.1. Let (X, ı) be a computable space. Then

a) If (Fn)n≥1, (Gn)n≥1 are computable (resp. canonically computable) se-
quences of sets, then the sequences of sets (Fn ∪Gn)n≥1, (Fn ∩Gn)n≥1

and (Fn \Gn)n≥1 are computable (resp. canonically computable).

b) If (Fn)n≥1 is a canonically computable sequence of sets and (Gn)n≥1 is
a computable sequence of sets, then the sequence of sets (Fn ∩Gn)n≥1 is
canonically computable.

Let (X, ı) be a computable space and Λ be a finite alphabet. A word
presheaf FΛ on X consists of

1) A set FΛ(U) of Λ-valued functions defined on the set U for every com-
putable subset U ⊆ X;

2) The restriction mapping ρU,V : FΛ(U) → FΛ(V ) for each pair U, V of
computable subsets such that V ⊆ U , that takes functions in FΛ(U) and
restricts them to the subset V .

It is easy to see that the standard ‘presheaf axioms’ are satisfied: ρU,U is the
identity on FΛ(U) for every computable U ⊆ X, and for every triple V ⊆ U ⊆
W we have that ρW,V = ρU,V ◦ ρW,U . Elements of FΛ(U) are called sections
over U , or words over U . We will often write s|V for ρU,V s, where s ∈ FΛ(U)
is a section.

4.3. Computable Groups

In this section we provide the definitions of a computable group and a
few related notions, connecting results from algebra with computability. This
section is based on [Rab60].

Let Γ be a countable group with respect to the multiplication operation ∗.
An indexing ı of Γ is called admissible if the function ∗ : (Γ, ı)×(Γ, ı)→ (Γ, ı)
is a computable function in the sense of Section 4.2. A computable group is
a pair (Γ, ı) of a group Γ and an admissible indexing ı.
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Of course, the groups Zd and UTd(Z) possess ‘natural’ admissible index-
ings. More precisely, for the group Z we fix the indexing

ı : n 7→ 2|n|+ 1n≥0,

which is admissible. Here 1n≥0 equals 1 if n ≥ 0 and is zero otherwise. Next,
it is clear that for every d > 1 the group Zd possesses an admissible indexing
function such that all coordinate projections onto Z, endowed with the indexing
function ı above, are computable. Similarly, for every d ≥ 2 the group UTd(Z)
possesses an admissible indexing function such that for every pair of indices
1 ≤ i, j ≤ d the evaluation function sending a matrix g ∈ UTd(Z) to its (i, j)-
th entry is a computable function to Z. We leave the details to the reader. It
does not matter which admissible indexing function of Zd or UTd(Z) we use as
long as it satisfies the conditions above, so from now on we assume that this
choice is fixed.

The following lemma from [Rab60] shows that in a computable group taking
the inverse is also a computable operation.

Lemma 4.3.1. Let (Γ, ı) be a computable group. Then the function inv :
(Γ, ı)→ (Γ, ı), g 7→ g−1 is computable.

(Γ, ı) is a computable space, and we can talk about computable subsets of
(Γ, ı). A subgroup of Γ which is a computable subset will be called a com-
putable subgroup. A homomorphism between computable groups that is
computable as a map between computable spaces will be called a computable
homomorphism. The proof of the proposition below is straightforward.

Proposition 4.3.2. Let (Γ, ı) be a computable group. Then the following
assertions holds

1) Given a computable set A ⊆ Γ and a group element g ∈ Γ, the sets
A−1, gA and Ag are computable;

2) Given a computable (resp. canonically computable) sequence (Fn)n≥1 of
subsets of Γ and a group element g ∈ Γ, the sequences (gFn)n≥1, (Fng)n≥1

are computable (resp. canonically computable).

It is interesting to see that a computable version of the ‘First Isomorphism
Theorem’ also holds.

Theorem 4.3.3. Let (G, ı) be a computable group and let (H, ı|H) be a
computable normal subgroup, where ı|H is the restriction of the indexing func-
tion ı to H. Then there is a compatible indexing function ı′ on the factor
group G/H such that the quotient map π : (G, ı) → (G/H, ı

′) is a computable
homomorphism.

For the proof we refer the reader to the Theorem 1 in [Rab60].

4.4. Computable Monotilings

Let (Γ, ı) be a computable group. A left Følner monotiling ([Fn,Zn])n≥1

of Γ is called computable if the following assertions hold:
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a) (Fn)n≥1 is a canonically computable sequence of finite subsets of Γ;

b) (Zn)n≥1 is a computable sequence of subsets of Γ.

First of all, let us show that the regular symmetric monotiling ([Fn,Zn])n≥1

of Zd from Example 1.3.1 is computable.

Example 4.4.1. Consider the group Zd for some d ≥ 1. We remind
the reader that it is endowed with an admissible indexing such that all the
coordinate projections Zd → Z are computable. Then the Følner sequence
Fn = [0, 1, 2, . . . , n − 1]d is canonically computable. Indeed, since the coordi-
nate projections are computable, there is an algorithm that determines whether
a given tuple (x1, . . . , xd) belongs to Fn. Since |Fn| = nd, it suffices to find first
nd tuples (x1, . . . , xd) that belong to Fn, which can also be done ‘computably’.
Furthermore, the corresponding sets of centers equal nZd for every n, hence
([Zn, Fn])n≥1 is a computable symmetric Følner monotiling.

Next, we return to Example 1.3.2.

Example 4.4.2. Consider the group UT3(Z) and the monotiling ([Fn,Zn])n≥1

from Example 1.3.2 given by

Zn = {(a, b, c) ∈ UT3(Z) : a, b ∈ nZ, c ∈ n2Z}

and

Fn = {(a, b, c) ∈ UT3(Z) : 0 ≤ a, b < n, 0 ≤ c < n2}

for every n ≥ 1. We define the projections π1, π2, π3 : UT3(Z) → Z as follows.
For every g = (a, b, c) ∈ UT3(Z) we let

π1(g) := a,

π2(g) := b,

π3(g) := c.

The functions π1, π2, π3 are computable. By definition, for every (n, g) ∈ N ×
UT3(Z)

1Z·(n, g) = 1⇔ (π1(g) ∈ nZ) ∧ (π2(g) ∈ nZ) ∧ (π3(g) ∈ n2Z),

hence the sequence of sets (Zn)n≥1 is computable. It is also trivial to show that
the sequence (Fn)n≥1 is canonically computable. It follows that ([Fn,Zn])n≥1

is a computable symmetric Følner monotiling.

It is useful to have a computable way of determining which set in a Følner
sequence is ‘invariant enough’. The following propositions tells us that it is
always possible for canonically computable Følner sequences. We will use this
result later in Section 4.5.

Proposition 4.4.3. Let (Fn)n≥1 be a canonically computable Følner se-
quence in a computable group (Γ, ı). Let Ki be the set of the first i elements of
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Γ with respect to the indexing ı. Then there is a computable function i 7→ mi

such that

(4.4.1) max
g∈Ki

|Fmi4gFmi |
|Fmi |

<
1

2i

for all i ≥ 1.

Proof. For every i we let Ki be the finite set defined above. We let mi be
the first index such that ((4.4.1)) holds for all g ∈ Ki (such mi exists because
(Fn)n≥1 is a Følner sequence).

In general, checking temperedness of a given canonically computable Følner
sequence is not trivial. Lindenstrauss in [Lin01] proved that every Følner se-
quence has a tempered Følner subsequence. Furthermore, the construction of
a tempered Følner subsequence from a given Følner sequence is ‘algorithmic’.
We provide his proof below, and we will use this result later in this section
when discussing Følner monotilings of UTd(Z) for d > 3.

Proposition 4.4.4. Let (Fn)n≥1 be a canonically computable Følner se-
quence in a computable group (Γ, ı). Then there is a computable function i 7→ ni
such that the subsequence (Fni)i≥1 is a canonically computable tempered Følner
subsequence.

Proof. We define ni inductively as follows. Let n1 := 1. If n1, . . . , ni
have been determined, we set F̃i :=

⋃
j≤i

Fnj . Take for ni+1 the first integer

greater than i+ 1 such that∣∣∣Fni+1
4F̃−1

i Fni+1

∣∣∣ ≤ 1∣∣∣F̃i∣∣∣ .
The function i 7→ ni is total computable. It follows that∣∣∣∣∣∣

⋃
j≤i

F−1
nj Fni+1

∣∣∣∣∣∣ ≤ 2
∣∣Fni+1

∣∣ ,
hence the sequence (Fni)i≥1 is 2-tempered. Since the Følner sequence (Fn)n≥1

is canonically computable and the function i 7→ ni is computable, the Følner
sequence (Fni)i≥1 is canonically computable and tempered.

In case of the discrete Heisenberg group UT3(Z) we were able to give simple
formulas for the sequences (Fn)n≥1 and (Zn)n≥1, in particular, checking the
computability was trivial. This is no longer the case when d > 3, and we will
need the following lemma to check the computability of the sequence (Zn)n≥1.

Proposition 4.4.5. Let (Γ, ı) be a computable group. Let ([Fn,Zn])n≥1

be a left Følner monotiling of Γ such that (Fn)n≥1 is a canonically computable
sequence of finite sets and e ∈ Fn for all n ≥ 1. Then the following assertions
are equivalent:
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(i) There is a total computable function φ : N2 → Γ such that

Zn = {φ(n, 1), φ(n, 2), . . . }
for every n ≥ 1.

(ii) The sequence of sets (Zn)n≥1 is computable.

Proof. The implication (ii)⇒(i) is clear. For the converse, note that to
prove computability of the function 1Z· we have to devise an algorithm that,
given n ∈ N and g ∈ Γ, decides whether g ∈ Zn or not. Let φ : N2 → Γ
be the function from assertion (i). Then the following algorithm answers the
question. Start with i := 1 and compute eφ(n, i), h1,nφ(n, i), . . . , hk,nφ(n, i),
where Fn = {e, h1,n, . . . , hk,n} is the list of all (pairwise distinct) elements of
Fn. This is possible since (Fn)n≥1 is a canonically computable sequence of
finite sets. If g = eφ(n, i), then the answer is ‘Yes’ and we stop the program.
If g = hj,nφ(n, i) for some j, then the answer is ‘No’ and we stop the program.
If neither is true, then we set i := i+ 1 and go to the beginning.

Since Γ = FnZn for every n, the algorithm terminates for every input.

4.5. Group Extension Lemma

In this section we introduce a ‘technical’ notion of a normal Følner monotil-
ing and prove the group extension lemma due to Weiss.

We call a Følner monotiling ([Fn,Zn])n≥1 normal if

a) |Fn|
logn →∞ as n→∞;

b) e ∈ Fn for every n.

Lemma 4.5.1 (Normalization). Let (Γ, ı) be a computable group and ([Fn,Zn])n≥1

be a computable Følner monotiling. Then there is a computable function r· :
N → Γ and a computable function n· : N → N such that ([Fnir

−1
ni , rniZni ])i≥1

is a computable normal Følner monotiling.

Proof. Let ri be the first element of the set Fi for every i when we view
Fi as a subset of N via the indexing mapping ı. Then (Fnr

−1
n )n≥1 is a Følner

sequence such that e ∈ Fnr−1
n for every n, and ([Fnr

−1
n , rnZn])n≥1 is a Følner

monotiling. It is clear that we can pick the function n· such that the growth
condition is satisfied as well.

The following theorem, whose proof is essentially due to B. Weiss [Wei01],
shows that the class of computable groups admitting computable normal Følner
monotilings is closed under group extensions.

Theorem 4.5.2. Let

1→ (E, ıE)
id→ (F, ıF )

ψ→ (G, ıG)→ 1

be an exact sequence of computable groups such that id, ψ are computable homo-
morphisms. Suppose that ([Ek,Qk])k≥1, ([Gm,Sm])m≥1 are computable normal
Følner monotilings of the groups (E, ıE) and (G, ıG) respectively. Then there
is a computable normal Følner monotiling ([Fl,Rl])l≥1 in the group (F, ıF ).
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Proof. We begin by describing an auxiliary construction that provides us
with ‘computable’ sections of computable sets in F over G. Let T ⊆ F be a
computable set. Let 1T be the characteristic function of T . Now we construct
a characteristic function of a computable section T ′ of T as follows:

1T ′(n) :=

{
1 if 1T (n) = 1 and ((∀ l < n ψ(n) 6= ψ(l)) ∨ (n = e));

0 otherwise.

That is, T ′ is the set of the first members of each E-coset in T except for the
coset eE, on which we pick e instead if e ∈ T . Since the functions 1T , ψ are
computable, it is easy to see that 1T ′ is computable as well. In particular, the
function x 7→ ψ−1(x)′ from G to F is computable.

Let l ∈ N be fixed. Let Kl = {f1, f2, . . . , fl} ⊂ F be the set of the first l
elements of F with respect to the indexing ıF . We will describe an algorithm
that yields a tile Fl ⊂ F such that for all g ∈ Kl we have

|Fl4gFl|
|Fl|

≤ 1

l
.

It is easy to see that such a sequence (Fl)l≥1 is a canonically computable
Følner sequence. We will use Proposition 4.4.5 to show that the corresponding
sequence of centers (Rl)l≥1 is computable, and it will be clear from the proof
that the monotiling ([Fl,Rl])l≥1 is normal as well.

Consider the finite set ψ(Kl) ⊂ G. Then the maximum Il ≥ l of the indices
of elements of ψ(Kl) is a computable function of l. We let Ql := {g1, g2, . . . , gIl}
be the finite set of the first Il elements of G. Let m· : i 7→ mi be the computable
function from the Proposition 4.4.3 applied to (G, ıG) and (Gm)m≥1, then the
function m∗· : l 7→ max(mIl , 2l) is a computable function.

Let Gm∗l be the corresponding Følner tile in G. Consider its preimage

ψ−1(Gm∗l ), which is a computable subset of F . We note that the sequence of

sets l 7→ ψ−1(Gm∗l ) is computable because the sequence of sets (Gm)m≥1 is

computable and the functions ψ,m∗· are computable. Let Tl ⊂ ψ−1(Gm∗l ) be

the computable section of ψ−1(Gm∗l ) over G as defined above, then ψ is bijective
as a map from Tl to Gm∗l . Observe further that the sequence of finite sets l 7→ Tl
is canonically computable. B. Weiss proved that if U is a sufficiently invariant
monotile in E, then TlU is a sufficiently invariant monotile in F . Below we
examine his construction closely.

Let G◦m∗l
:= {t ∈ Gm∗l : Qlt ⊂ Gm∗l } ⊂ G be the part of Gm∗l that stays

within Gm∗l when shifted by elements of Ql. It is clear that T ◦l := ψ−1(G◦m∗l
)′ ⊂

Tl, and that the sequence of finite sets l 7→ T ◦l is canonically computable. For
all x ∈ Kl and t ∈ T ◦l we deduce that

xt = λl(x, t)ρl(x, t),

where λl(x, t) ∈ Tl and ρl(x, t) ∈ E. The functions λ·(·, ·) and ρ·(·, ·) are
uniquely determined by this condition and are partial computable. Consider
the finite subset

Pl := {ρl(x, t) : x ∈ Kl, t ∈ T ◦l }.
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The maximum index Jl of elements of this set is a computable function of l.
Let k· : i 7→ ki be the computable function from the Proposition 4.4.3 applied
to (E, ıE) and (Ek)k≥1, then the function k∗· : l 7→ max(kJl ,m

∗
l ) is computable.

Consider the Følner tile Ek∗l , and let E◦k∗l
:= {s ∈ Ek∗l : Pls ⊂ Ek∗l } be the part

of Ek∗l that stays in Ek∗l when shifted by elements of Pl. We claim that the tile

Fl := TlEk∗l

is ‘invariant enough’. Observe that

KlT
◦
l E
◦
k∗l
⊂ TlEk∗l .

By definition, the set G◦m∗l
is large enough:∣∣∣G◦m∗l ∣∣∣ ≥

(
1− 1

2l

) ∣∣Gm∗l ∣∣ ,
hence

|T ◦l | ≥
(

1− 1

2l

)
|Tl| .

Similarly, ∣∣∣E◦k∗l ∣∣∣ ≥
(

1− 1

2l

) ∣∣Ek∗l ∣∣ ,
and it follows that ∣∣∣T ◦l E◦k∗l ∣∣∣ ≥

(
1− 1

2l

) ∣∣TlEk∗l ∣∣ .
We deduce that for every g ∈ Kl

|Fl4gFl|
|Fl|

=

∣∣Fl4g−1Fl
∣∣

|Fl|
≤ 1

l
,

and this shows that Fl is ‘invariant enough’. We have obtained a canonically
computable Følner sequence l 7→ Fl.

It remains to prove that for each l the set Fl is a tile and that the sequence
of centers (Rl)l≥1 is computable. Let φE , φG be computable functions from the
Proposition 4.4.5 applied to groups (E, ıE), (G, ıG) respectively. Let θ : N2 → F
be the total computable function (n, i) 7→ ψ−1(φG(n, i))′, i.e. we compute
φG(n, i) first and then pick an element in its fiber in F . It is clear that

{φE(k∗l , i)θ(m
∗
l , j)}i,j≥1

is a set of centers for the tile Fl. If ν : N→ N2 is any computable bijection, then
the total computable function φF : (n, i) 7→ φE(k∗n, ν1(i))θ(m∗n, ν2(i)) satisfies
the conditions of Proposition 4.4.5, and the proof is complete.
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4.6. Plain Kolmogorov Complexity

Finally, we can introduce the Kolmogorov complexity for finite words. Let
A be a computable partial function defined on a domain D of finite binary
words with values in the set of all finite words over a finite alphabet Λ. The
set of all finite binary words, denoted by {0, 1}∗, is defined as

{0, 1}∗ :=
⋃
n≥0

{0, 1}n,

and, similarly, the set of all finite Λ-words, denoted by Λ∗, is defined as

Λ∗ :=
⋃
n≥0

Λn.

Of course, we have defined computable functions on subsets of (N ∪ {0})k
with values in N ∪ {0} above, but this can be easily extended to (co)domains
of finite words over finite alphabets. We can think of A as a ‘decompressor’
that takes compressed binary descriptions (or ‘programs’) in the domain, and
decompresses them to finite words over the alphabet Λ. The Kolmogorov
complexity of a finite word ω with respect to A is defined as follows:

K0
A(ω) := inf{l(p) : A(p) = w},

where l(p) denotes the length of the description. If some word ω0 does not admit
a compressed version, then we let K0

A(ω0) = ∞. The average Kolmogorov
complexity with respect to A is defined by

K
0

A(ω) :=
K0
A(ω)

l(ω)
,

where l(ω) is the length of the word ω. Intuitively speaking, this quantity tells
how effective the compressor A is when describing the word ω.

Of course, some decompressors are intuitively better than some others.
This is formalized by saying that A1 is not worse than A2 if there is a constant
c such that for all words ω

(4.6.1) K0
A1

(ω) ≤ K0
A2

(ω) + c.

A theorem of Kolmogorov [Kol65] says that there exists a decompressor A∗

that is optimal, i.e. for every decompressor A there is a constant c such that
for all words ω we have

K0
A∗(ω) ≤ K0

A(ω) + c.

An optimal decompressor is not unique, so from now on we let A∗ be a fixed
optimal decompressor.

The notion of Kolmogorov complexity can be extended to words defined
on finite subsets of N, and this will be essential in the following sections. More
precisely, let X ⊆ N be a finite subset, ıX : X → {1, 2, . . . , cardX} an increas-
ing bijection, Λ a finite alphabet, A a decompressor and ω ∈ ΛY a word defined
on some set Y ⊇ X, Y ⊆ N. Then we let

(4.6.2) KA(ω,X) := K0
A(ω ◦ ı−1

X ).
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and

(4.6.3) KA(ω,X) :=
K0
A(ω ◦ ı−1

X )

cardX
.

We call KA(ω,X) the Kolmogorov complexity of ω over X with respect to
A, and KA(ω,X) is called the mean Kolmogorov complexity of ω over X
with respect to A. If a decompressor A1 is not worse than a decompressor A2

with some constant c, then for all X,ω above

KA1
(ω,X) ≤ KA2

(ω,X) + c.

If X ⊆ N is an infinite subset and (Fn)n≥1 is a sequence of finite subsets of
X such that cardFn → ∞, then the asymptotic Kolmogorov complexity
of ω ∈ ΛX with respect to (Fn)n≥1 and a decompressor A is defined by

K̂A(ω) := lim sup
n→∞

KA(ω|Fn , Fn).

The dependence on the sequence (Fn)n≥1 is omitted in the notation. It is easy
to see that for every decompressor A and ω ∈ ΛX

(4.6.4) K̂A∗(ω) ≤ K̂A(ω).

From now on, we will (mostly) use the optimal decompressor A∗ and write

K(ω,X), K(ω,X) and K̂(ω) omitting an explicit reference to A∗.
When estimating the Kolmogorov complexity of words we will often have to

encode nonnegative integers using binary words. We will now fix some notation
that will be used later. When n is a nonnegative integer, we write n for the
binary encoding of n and n for the doubling encoding of n, i.e., if

blbl−1 . . . b0

is the binary expansion of n, then n is the binary word

blbl−1 . . . b0

of length l + 1 and n is the binary word

blblbl−1bl−1 . . . b0b0

of length 2l + 2. We denote the length of the binary word w by l(w), and it
is clear that l(n) ≤ blog nc + 1 and l(n) ≤ 2blog nc + 2. We write n̂ for the

encoding l(n)01n of n, i.e., the encoding begins with the length of the binary
word n encoded using doubling encoding, then the delimiter 01 follows, then
the word n. It is clear that l(n̂) ≤ 2blog(blog nc + 1)c + blog nc + 5. This
encoding enjoys the following property: given a binary string

x̂1x̂2 . . . x̂l,

the integers x1, . . . , xl are unambiguously restored. We will call such an en-
coding a simple prefix-free encoding (see [LV08, Section 1.11.1] for more
information on prefix codes).
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4.7. Kolmogorov Complexity on Word Presheaves

We have introduced Kolmogorov complexity of words supported on sub-
sets of N in the previous section, now we want to extend this by introducing
complexity of sections. Let (X, ı) be a computable space and let FΛ be a word
presheaf over (X, ı). Let U ⊆ X be a finite set and ω ∈ FΛ(U). Then we define
the Kolmogorov complexity of ω ∈ FΛ(U) by

(4.7.1) K(ω,U) := K(ω ◦ ı−1, ı(U))

and the mean Kolmogorov complexity of ω ∈ FΛ(U) by

(4.7.2) K(ω,U) := K(ω ◦ ı−1, ı(U)).

The quantities on the right hand side here are defined in the Equations (4.6.2)
and (4.6.3) respectively (which are special cases of the more general definition
when the computable space X is (N, id)).

Let (Fn)n≥1 be a sequence of finite subsets of X such that cardFn →
∞. Then we define asymptotic Kolmogorov complexity of a section ω ∈
FΛ(X) along the sequence (Fn)n≥1 by

K̂(ω) := lim sup
n→∞

K(ω|Fn , Fn).

The dependence on the sequence (Fn)n≥1 is omitted in the notation for K̂, but
it will be always clear from the context which sequence we take.

Let (Fn)n≥1 be a sequence of finite subsets of X such that cardFn →∞ as
n→∞. Then we define asymptotic Kolmogorov complexity of the word
presheaf FΛ along the sequence (Fn)n≥1 by

K̃(FΛ) := lim sup
n→∞

max
ω∈FΛ(Fn)

K(ω, Fn).

The dependence on the sequence is omitted in the notation, but it will always
be clear from the context which sequence we take. If A′ is some decompressor,
then it follows from the optimality of A∗ that

K̃(FΛ) ≤ K̃A′(FΛ).

We close this section with an interesting result on the invariance of the
asymptotic Kolmogorov complexity of sections. It says that the asymptotic
Kolmogorov complexity of a section ω ∈ FΛ(X) does not change if one passes
to an equivalent indexing.

Theorem 4.7.1 (Invariance of asymptotic complexity). Let ı1, ı2 be equiv-
alent indexing functions of a set X. Let (Fn)n≥1 be a sequence of finite subsets
of X such that

a) (Fn)n≥1 is a canonically computable sequence of sets in (X, ı1);

b) cardFn
logn →∞ as n→∞.

Let ω ∈ FΛ(X). Then

lim sup
n→∞

K(ω|Fn ◦ ı−1
1 , ı1(Fn)) = lim sup

n→∞
K(ω|Fn ◦ ı−1

2 , ı2(Fn)),
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i.e. asymptotic Kolmogorov complexity of ω does not change when we pass to
an equivalent indexing.

Proof. Since the indexing functions ı1, ı2 are equivalent, there is a com-
putable bijection φ : ı2(X) → ı1(X) such that φ(ı2(x)) = ı1(x) for all x ∈ X.
Furthermore, the sequence (Fn)n≥1 is canonically computable in (X, ı2).

Let n be fixed. By the definition,

K(ω|Fn ◦ ı−1
1 , ı1(Fn)) =

K0
A∗((ω|Fn ◦ ı

−1
1 ) ◦ ı−1

ı1(Fn))

cardFn
,

where ω|Fn ◦ ı−1
1 is seen as a word on ı1(Fn) ⊆ N and ω̃1 := (ω|Fn ◦ ı−1

1 ) ◦
ı−1
ı1(Fn) is a word on {1, 2, . . . , cardFn} ⊆ N. Let p1 be an optimal description

of (ω|Fn ◦ ı−1
1 ) ◦ ı−1

ı1(Fn). Similarly, ω̃2 := (ω|Fn ◦ ı−1
2 ) ◦ ı−1

ı2(Fn) is a word on

{1, 2, . . . , cardFn}. It is clear that ω̃1 is a permutation of ω̃2, hence we can
describe ω̃2 by giving the description of ω̃1 and saying how to permute it to
obtain ω̃2. We make this intuition formal below.

We define a new decompressor A′. The domain of definition of A′ consists
of the programs of the form

(4.7.3) l01p,

where l is the doubling encoding of an integer l and p is an input for A∗. The
decompressor works as follows. Compute the subsets ı1(Fl) and ı2(Fl) of N.
Let φ be the element of SymcardFn such that the diagram

ı1(Fn)

ıı1(Fn)

��

ı2(Fn)

ıı2(Fn)

��

φ
oo

{1, 2, . . . , cardFn} {1, 2, . . . , cardFn}
φ

oo

commutes. Compute the word ω′ := A∗(p), and if cardFl 6= l(ω′) the algorithm
terminates without producing output. Otherwise, the word ω′ ◦ φ is printed.
It follows that there is a constant c such that the following holds: for all l ∈ N
and for all words ω′ of length cardFl we have

K0
A∗(ω

′ ◦ φ) ≤ K0
A∗(ω

′) + 2 log l + c,

where φ is the permutation of {1, 2, . . . , cardFl} defined above.
Finally, consider the program p′ := n01p1, then A′(p′) = ω̃2. We deduce

that K0
A∗(ω̃2) ≤ K0

A∗(ω̃1) + 2 log n + c. The statement of the theorem follows
trivially.

To simplify the notation below, we adopt the following convention. We
say explicitly what indexing function we use when introducing a computable
space, but later, when the indexing is fixed, we often omit the indexing function
from the notation and think about computable spaces as computable subsets
of N. Words defined on subsets of a computable space become words defined
on subsets of N.



Part III

Entropy Theory for Actions of
Amenable Groups





CHAPTER 5

Kolmogorov-Sinai and Topological Entropies

The term entropy originated in physics in the works of R. Clausius, N.
L. S. Carnot and L. Boltzmann. Later, C. E. Shannon in [Sha48] introduced
entropy in the information theory as a means of measuring the amount of
information coming from a data source. The Kolmogorov-Sinai entropy, which
is an adaptation of the Shannon entropy for studying dynamical systems, was
originally introduced for Z-systems. It is an important invariant - i.e. it remains
constant on isomorphism classes of dynamical systems - and enjoys other useful
properties. The topological entropy was defined later for Z-systems by R. L.
Adler, mimicking the Kolmogorov-Sinai entropy. Later, both notions of entropy
were extended to amenable group actions, relying on the lemma of Ornstein and
Weiss from Section 1.4. For actions of amenable groups, both types of entropy
enjoy very nice properties: for instance, entropy decreases when passing to a
factor of a system, entropy is additive in a sense that entropy of the product
of two systems is the sum of entropies, and so on.

This chapter is structured as follows. First, we discuss the Kolmogorov-
Sinai entropy. In Section 5.1.2 we define the Kolmogorov-Sinai entropy, prove
the most basic properties that will be used later and provide some basic ex-
amples. In Section 5.2 we state the Shannon-McMillan-Breiman theorem and
some of its consequences. Next, we proceed to topological entropy. We provide
the definitions in Section 5.3 and prove some basic properties of the topological
entropy. In Section 5.4 we give some basic examples. We close the chapter with
Section 5.5, where we provide some additional remarks and sketch a proof of
the Kolmogorov-Sinai generator theorem (Proposition 5.1.4).

5.1. Kolmogorov-Sinai Entropy

5.1.1. Shannon Entropy of a Partition. To introduce the Kolmogorov-
Sinai entropy of measure-preserving systems for amenable group actions we
need to remind the reader of the notion of the Shannon entropy first.

Let η0 : [0, 1]→ R≥0 be the continuous extension of the function

t 7→ −t log(t)

defined on (0, 1]. Here, as usual, log is the binary logarithm. It is easy to
see that η0 is strictly concave. Let P ( `1(N;R) be the closed subset of all

59
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probability vectors. We define the function η∞ : P→ [0,∞] by

η∞((pn)n≥1) :=
∑
n≥1

η0(pn).

Lemma 5.1.1. η∞ is concave, i.e. for all p = (pn)n≥1, q = (qn)n≥1 ∈ P
and for all α ∈ (0, 1)

η∞(αp+ (1− α)q) ≥ αη∞(p) + (1− α)η∞(q).

Proof. This follows from the concavity of η0.

Let α = {A1, . . . , An} be a finite measurable partition of a probability
space X = (X,B, µ). The function ω 7→ α(ω), mapping a point ω ∈ X to
the atom of the partition α containing ω, is defined almost everywhere. The
information function of α is defined as

Iα(ω) := −
n∑
i=1

1Ai(ω) logµ(Ai) = − log(µ(α(ω))).

Then Iα ∈ L∞(X). The Shannon entropy of a partition α is defined by

HSh(α) : = −
n∑
i=1

µ(Ai) log(µ(Ai)) = η∞((µ(Ai)
n
i=1)) =

=

∫
Iαdµ

The Shannon entropy of a finite measurable partition is always a nonnegative
real number.

Let α, β be two finite measurable partitions of X. Then

α ∨ β := {A ∩B : A ∈ α,B ∈ β}
is a finite measurable partition of X as well, which we call the join of α and β.
If for every atom A ∈ α there exists an atom B ∈ β such that µ(A\B) = 0, i.e.
A ⊆ B modulo null sets, then we say that α is finer than β, or that α refines
β, and write α ≥ β.

The following lemma summarizes a few crucial properties of the Shannon
entropy.

Lemma 5.1.2. Let X be a probability space and α, β be finite measurable
partitions. The following assertions hold:

a) If α is finer than β, then

HSh(β) ≤ HSh(α);

b) HSh(α ∨ β) ≤ HSh(α) +HSh(β).

Proof. The first statement is easily proved using subadditivity of the
function η0. The second statement is less trivial, we refer to [Gla03, Proposition
14.16] or [Dow11, Corollary 1.6.8] for the proof. Later in Chapter 6, Proposition
6.3.1 we will prove a slightly more general version of this ‘subadditivity’ result.
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5.1.2. Entropy of Measure-preserving Systems. Let X = (X, π) be
a measure-preserving Γ-system on a probability space X = (X,B, µ), where the
discrete amenable group Γ acts on X. The goal is to define the ‘dynamical’
entropy of a partition with respect to the action of Γ. First, for every element
g ∈ Γ and every finite measurable partition α we define a finite measurable
partition g−1α by

g−1α := {g−1A : A ∈ α}.
Next, for every finite subset F ⊆ Γ and every finite measurable partition α we
define the partition

αF :=
∨
g∈F

g−1α.

Let (Fn)n≥1 be a Følner sequence in Γ and α be a finite measurable partition
of X. Then the limit

hProb(α, π) := lim
n→∞

HSh(αFn)

|Fn|
exists. The limite is a nonnegative real number independent of the choice of
a Følner sequence due to Ornstein-Weiss lemma (see Proposition 1.4.2, the
assertions of the lemma are easily checked using Lemma 5.1.2). The limit
hProb(α, π) is called the Kolmogorov-Sinai entropy of α with respect to
π. We define the Kolmogorov-Sinai entropy of a measure-preserving system
X = (X, π) by

hProb(X) := sup{hProb(α, π) : α a finite measurable partition of X}.

The first basic property of the Kolmogorov-Sinai entropy is that it decreases
when one passes to factors.

Proposition 5.1.3. Let X = (X, π) and Y = (Y, ρ) be measure-preserving
Γ-systems and ϕ : X→ Y be a factor map. Then

hProb(Y) ≤ hProb(X).

Proof. Let α be an arbitrary finite measurable partition of Y. Then ϕ−1α
is a finite measurable partition of X, and, additionally,

hProb(α, ρ) = hProb(ϕ
−1α, π).

Since α is arbitrary, taking the supremum over all such α on both sides com-
pletes the proof of the statement.

Computing the supremum in the definition of the Kolmogorov-Sinai en-
tropy might be very nontrivial. Fortunatelly, there is a result which simplifies
this computation. Given a measure-preserving Γ-system X = (X, π), a finite
measurable partition α of X = (X,B, µ) is called a generator for the system
X if, up to null sets, we have

σ(
∨
g∈Γ

g−1α) = B.
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Proposition 5.1.4. Let X = (X, π) be a measure-preserving Γ-system. If
α is a generator for the system X, then

hProb(X) = hProb(α, π).

For the sketch of the proof we refer the reader to Section 5.5.2.

Example 5.1.5. We return now to Example 3.1.4. Let Λ = {1, 2, . . . , k}
be a finite alphabet and let p = (p1, p2, . . . , pk) be a probability vector. Let

X := ΛZ

be the measurable space carrying the Borel structure coming from the product
topology, and the transformation ϕ : X → X be the left shift. Consider the
partition α = (A1, A2, . . . , Ak), where for every i = 1, . . . , k

Ai = {ω ∈ X : ω(0) = pi}.

It is easy to see that α is a generating partition. Using Proposition 5.1.4, we
conclude that

hProb(X) = −
k∑
i=1

pi log pi.

5.2. Shannon-McMillan-Breiman Theorem

We will need the Shannon-McMillan-Breiman theorem for amenable group
actions. For the proof see [Lin01].

Theorem 5.2.1. Let X = (X, π) be an ergodic measure-preserving system
and α be a finite partition of X. Assume that (Fn)n≥1 is a tempered Følner

sequence in Γ such that |Fn|logn → ∞ as n → ∞. Then there is a constant

h′Prob(α, π) such that

(5.2.1)
IαFn (ω)

|Fn|
→ h′Prob(α, π)

as n→∞ for µ-a.e. ω ∈ X and in L1(X).

Integrating both sides of the Equation (5.2.1) with respect to µ, we deduce
that

hSh(αFn)

|Fn|
→ hProb(α, π) = h′Prob(α, π).

as n→∞. The Shannon-McMillan-Breiman theorem has the following impor-
tant corollary that will be used in the proof of Theorem 7.3.5 ([Gla03, Corollary
14.36]).

Corollary 5.2.2. Let X = (X, π) be an ergodic measure-preserving system
on a space X = (X,B, µ), and let (Fn)n≥1 be a tempered Følner sequence in Γ

such that |Fn|logn → ∞ as n → ∞. If α is a finite partition, then, given ε > 0

and δ > 0, there exists n0 such that the following assertions hold:
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a) For all n ≥ n0

2−|Fn|(hProb(α,π)+ε) ≤ µ(A) ≤ 2−|Fn|(hProb(α,π)−ε)

for all atoms A ∈ αFn with the exception of a set of atoms whose total
measure is less than δ.

b) For all n ≥ n0

2−|Fn|(hProb(α,π)+ε) ≤ µ(αFn(ω)) ≤ 2−|Fn|(hProb(α,π)−ε)

for all but at most δ fraction of elements ω ∈ X.

Proof. By Theorem 5.2.1,
I
αFn

(ω)

|Fn| → hProb(α, π) for a.e. ω and hence

also in measure. Thus, given ε, δ > 0 as above, there is n0 such that for all
n ≥ n0 we have

µ{ω ∈ X :

∣∣∣∣IαFn (ω)

|Fn|
− hProb(α, π)

∣∣∣∣ ≥ ε} < δ.

It is now clear that both assertions follow.

5.3. Topological Entropy

5.3.1. Topological Entropy of Covers. Let α = {A1, . . . , An} be a
finite open cover of a topological space X. The topological entropy of a
cover α is defined by

HTop(α) := log min{cardβ : β ⊆ α a subcover}.

Here log denotes, as usual, the binary logarithm. The entropy of a cover is
always a nonnegative real number. We say that a finite open cover α is finer
than a finite open cover β if for every B ∈ β there exists A ∈ α such that
A ⊆ B. If α, β are two finite open covers, then

α ∨ β := {A ∩B : A ∈ α,B ∈ β}

is a finite open cover as well. It is clear that α ∨ β is finer than α and β.

Lemma 5.3.1. Let X ∈ Top be a topological space and α, β be finite open
covers. The following assertions hold:

a) If α is finer than β, then

HTop(β) ≤ HTop(α);

b) HTop(α ∨ β) ≤ HTop(α) +HTop(β).

Proof. The proof follows trivially from the definitions.
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5.3.2. Topological Entropy of Dynamical Systems. Given a topo-
logical dynamical system X = (X, π), where the discrete amenable group Γ
acts on the topological space X on the left by homeomorphisms, we can also
define the (dynamical) entropy of a cover. For every element g ∈ Γ and every
finite open cover α we define a finite open cover g−1α by

g−1α := {g−1A : A ∈ α}.
Next, for every finite subset F ⊆ Γ and every finite open cover α we define a
finite open cover

αF :=
∨
g∈F

g−1α.

Let (Fn)n≥1 be a Følner sequence in Γ and α be a finite open cover. The limit

hTop(α, π) := lim
n→∞

HTop(α
Fn)

|Fn|
exists. The limit is a nonnegative real number independent of the choice of a
Følner sequence due to the lemma of D. S. Ornstein and B. Weiss (see Proposi-
tion 1.4.2, the assertions of the lemma are easily checked using Lemma 5.3.1).
The limit hTop(α, π) is called the topological entropy of α with respect
to π. Finally, the topological entropy of a topological system X = (X, π) is
defined by

hTop(X) := sup{hTop(α, π) : α a finite open cover of X}.
Similar to the Kolmogorov-Sinai entropy, the topological entropy decreases

along arrows.

Proposition 5.3.2. Let X = (X, π),Y = (Y, ρ) be topological Γ-systems.
Let ϕ : X→ Y be a factor map. Then

hTop(Y) ≤ hTop(X).

Proof. Let α be an arbitrary finite open cover of Y. Then ϕ−1α is a finite
open cover of X, and, additionally,

hTop(α, ρ) = hTop(ϕ
−1α, π).

Taking the supremum over all finite covers, we complete the proof.

Let X ∈ TopΓ. We say that a finite open cover α of X is a topological
generator of X if, for every open cover β of X, there exists a finite subset
F ⊆ Γ such that ∨

f∈F

f−1α ≥ β.

In place of the Kolmogorov-Sinai generator theorem, we will use the fol-
lowing result to compute the topological entropy.

Proposition 5.3.3. Let X ∈ TopΓ and α be a topological generator of X.
Then

hTop(X) = hTop(α, π).
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Proof. We begin with an argument similar to the proof of the Kolmogorov-
Sinai generator theorem in Section 5.5.2. The group Γ admits a Følner sequence
(Fn)n≥1 such that

a) Γ =
⋃
n≥1

Fn;

b) the sequence (Fn)n≥1 is monotone increasing.

We fix this Følner sequence and use the independence of the entropies on the
choice of a Følner sequence. Furthermore, it is easy to see that if (Fn)n≥1 is a
Følner sequence and E ⊆ Γ is a finite set, then (EFn)n≥1 is a Følner sequence
as well.

For every k ≥ 1

hTop(α
Fk , π) = lim

n→∞

HTop

( ∨
g∈Fn

g−1
∨

h∈Fk
h−1α

)
|Fn|

=

= lim
n→∞

HTop

( ∨
g∈Fn,h∈Fk

(hg)−1α

)
|Fn|

= lim
n→∞

HTop

( ∨
f∈FkFn

f−1α

)
|Fn|

=

= lim
n→∞

HTop

( ∨
f∈FkFn

f−1α

)
|FkFn|

= hTop(α, π),

where in the last equality we use the independence of hTop(α, π) on the choice
of the Følner sequence once again.

Let β be an arbitrary finite open cover of X. There exists a finite set F ⊆ Γ
such that αF ≥ β, hence there exists k ≥ 1 such that αFk ≥ β. Thus for every
n ≥ 1 we have (αFk)Fn ≥ βFn . This implies that

hTop(β, π) = lim
n→∞

HTop

( ∨
g∈Fn

g−1β

)
|Fn|

≤ lim
n→∞

HTop

( ∨
g∈Fn

g−1αFk

)
|Fn|

=

= hTop(α
Fk , π) = hTop(α, π).

Since β is arbitrary, the proof is complete.

We use the topological generator theorem to compute the topological en-
tropy of subshifts.

5.4. Examples

Our main objects of interest in this work are subshifts, so we will now study
the topological entropy of a subshift.

Example 5.4.1. Let Γ be an amenable group, Λ = {1, 2, . . . , k} be a finite
alphabet and X ⊆ ΛΓ be a subshift. For every set F ⊆ Γ, let FΛ(F ) := {ω|F :
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ω ∈ X} be the set of all restrictions of the words in X to the set F . We want
to prove that

hTop(X) = lim
n→∞

log cardFΛ(Fn)

|Fn|
.

Consider the finite open cover

αΛ := {A1, . . . , Ak}, Ai := {ω ∈ X : ω(e) = i} for i = 1, . . . , k.

of X. Then αΛ is a generating cover. Indeed, the cylinder sets in X form the
basis of the topology, hence for every finite open cover β there is a (possibly
infinite) open cover γ consisting of cylinder sets such that γ ≥ β. We pick a
finite subcover γ′ ⊆ γ, then γ′ ≥ β as well. Since all elements of the finite open
cover γ′ are cylinder sets, we can find a finite set F ⊆ Γ such that αFΛ ≥ γ′,
and hence αFΛ ≥ β.

It remains to observe that for every finite set F ⊆ Γ the equality

HTop(α
F
Λ ) = log cardFΛ(F )

holds, and the proof is complete.

In some simple cases, this proposition allows to compute the entropy of a
subshift immediately.

Example 5.4.2. Let Λ be a finite alphabet and Γ be a group. We define
a compact Hausdorff space

X := ΛΓ,

carrying the product topology. Let X = (X, π) be the right shift transformation
from Example 2.2.4. Then it is easy to see that

hTop(X) = log k.

5.5. Remarks

5.5.1. Logarithm in the Shannon Entropy. In the definition of the
Shannon entropy in Section 5.1 we have requested that the logarithm in the
definition of the function η0 is the binary logarithm. Very often another base
is chosen instead. For our purposes using binary logarithm is the most appro-
priate definition because of the connection with the Kolmogorov complexity.

5.5.2. Kolmogorov-Sinai Generator Theorem. A proof of the clas-
sical generator theorem can be found in [Gla03, Theorem 14.33]. We will
now sketch a slight adaption of this proof for general amenable groups for
the reader’s convenience. Note that any amenable group Γ admits a Følner
sequence (Fn)n≥1 such that

a) Γ =
⋃
n≥1

Fn;

b) the sequence (Fn)n≥1 is monotone increasing.
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We fix this Følner sequence and use the independence of the entropies on the
choice of a Følner sequence. Furthermore, it is easy to see that if (Fn)n≥1 is a
Følner sequence and E ⊆ Γ is a finite set, then (EFn)n≥1 is a Følner sequence
as well.

First of all, we state the following proposition. The proof for arbitrary
amenable groups is a straightforward modification of [Gla03, Proposition 14.22].

Proposition 5.5.1. Let X = (X, π) ∈ ProbΓ, where Γ is an arbitrary
amenable group. For two finite partitions α, β of X we have

hProb(α, π) ≤ hProb(β, π) +HSh(α|β).

Here HSh(α|β) ∈ R≥0 is the entropy of the partition α relative to the
partition β. Intuitively speaking, it is a measure of the amount of information
we obtain from observing α, once we know the outcome of β. Furthermore,
one can show [Gla03, Proposition 14.16] that

HSh(α|β) = HSh(α ∨ β)−HSh(β).

If β is finer than α, then HSh(α|β) = 0. In general, one can define the condi-
tional entropy HSh(α|C) of a partition α relative to a subalgebra C ⊆ B. Then,
if α is C-measurable, HSh(α|C) = 0 (see [Gla03, Proposition 14.18]). We refer
to [Gla03, Chapter 14, Section 2] and [Dow11] for a rigorous treatment of the
relative Kolmogorov-Sinai entropy.

We are now able to sketch the proof of the generator theorem.

Proposition 5.5.2. If α is a generator for the dynamical system X then

hProb(X) = hProb(α, π).

Proof. For every k ≥ 1

hProb(α
Fk , π) = lim

n→∞

HSh

( ∨
g∈Fn

g−1
∨

h∈Fk
h−1α

)
|Fn|

= lim
n→∞

HSh

( ∨
g∈Fn,h∈Fk

(hg)−1α

)
|Fn|

=

= lim
n→∞

HSh

( ∨
f∈FkFn

f−1α

)
|Fn|

= lim
n→∞

HSh

( ∨
f∈FkFn

f−1α

)
|FkFn|

= hProb(α, π),

where in the last equality we use the independence of hProb(α, π) on the choice
of the Følner sequence once again. Let β be an arbitrary finite partition. Then,
for every n ≥ 1, we have by Proposition 5.5.1

hProb(β, π) ≤ hProb(αFn , π) +HSh(β|αFn) = hProb(α, π) +HSh(β|αFn)

As n tends to infinity, HSh(β|αFn) tends to zero because α is a generator (see
[Gla03, Theorem 14.28]).
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5.5.3. Entropy of Subshifts and Dimension. A classical result of H.
Furstenberg [Fur67] asserts that the topological entropy of a subshift X ⊆
ΛZ equals the Hausdorff dimension of the subshift X as a metric space. A
generalization of this result to Zd-subshifts was considered in [Sim15]. We will
now briefly explain this result.

Let X be a metric space. The s-dimensional Hausdorff measure of X is
defined by

µs(X) := lim
ε→0

inf
U

∑
U∈U

diam(U)s,

where diam(U) is the diameter of U . U here runs over covers of X of diameter
less or equal to ε. The Hausdorff dimension of X is

dim(X) := inf{s ≥ 0 : µs(X) = 0}.

Given a subshift X ⊆ ΛZd where the group Zd is endowed with the standard
Følner sequence (Fn)n≥1, we define a metric ρ on X by setting, for all x, y ∈ X,

ρ(x, y) := 2−|Fn| where n ≥ 1 is the largest integer such that x|Fn = y|Fn .
After these preparations, we can now state

Proposition 5.5.3. Let X ⊆ ΛZd be a subshift, endowed with the metric
defined above. Then

hTop(X) = dim(X).

We refer to [Sim15] for more details.

5.5.4. Sofic Entropy. We have mentioned in Section 1.5.4 that not all
countable groups are amenable, and that finitely generated free groups Fn
give a counterexample. The entropy theory that we have developed so far
does not carry over to the actions of such groups. A substitute is the sofic
entropy theory, which gives entropy for sofic group actions. The measure-
theoretic sofic entropy is developed in [Bow10], and the topological sofic entropy
is developed in [KL11]. When the acting group is amenable, the sofic measure-
preserving entropy coincides with the classical ‘amenable’ Kolmogorov-Sinai
entropy. However, in general sofic entropy does not enjoy some of the useful
properties such the monotonicity when passing to factors.



CHAPTER 6

Measurement Functors and Palm Entropy

In the previous chapters we have discussed the topological and the Kolmogorov-
Sinai entropies for amenable group actions. A natural question is whether
there is a common generalization of these theories. Such a generalization for
Z-systems was indeed discovered by Günther Palm in his PhD dissertation.
The goal of his research was finding a generalization of these theories in the
language of functional analysis.

We review his approach briefly. To every topological dynamical system on
a topological space K one can associate the corresponding Koopman represen-
tation on the Banach lattice C(K) of continuous functions. Similarly, to every
measure-preserving dynamical system on a probability space X one can asso-
ciate the corresponding Koopman representation on the Banach lattice L1(X)
of integrable functions. These classical lattices are nowadays called Banach
lattices of observables. Taking the set of closed Banach lattice ideals of these
lattices, one retrieves the collection of closed and measurable sets respectively,
and also the dynamics on the underlying spaces by using some appropriate
duality theorems. Both types of lattices are examples of Banach lattices with
quasi-interior points (see Section 6.4.1 for the definition). It is well-known that
the set of closed ideals of a Banach lattice is in fact a distributive lattice un-
der some natural lattice operations. It is easy to see that an action of Z on
a Banach lattice with quasi-interior point induces an action on its distributive
lattice of closed ideals. For this action, Palm introduced a concept of entropy
that coincides with the classical notions of entropy when the underlying Banach
lattices with quasi-interior points are the classical lattices of observables. For
the details we refer to [Pal76]. In this work, however, we significantly deviate
from the original approach for the following reasons.

Firstly, we have not seen much usage of Banach lattices with quasi-interior
points in the theory of dynamical systems so far. It is not clear why these
lattices should be the proper setup for a ‘very general entropy theory’, since
they appear to be a pure functional analysis phenomenon. Unfortunately, rep-
resentation results such as the Kakutani representation theorem [Sch74] do not
answer all the relevant questions. For instance, the entropy is defined by look-
ing at the induced action on the distributive lattice of closed lattice ideals.
However, the structure of this lattice of ideals is in general not very well de-
scribed through representation results. Thus the structure of the lattices of

69
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open (measurable) sets becomes substantially more obscure when we pass to
the lattice of observables.

Secondly, in both topological and Kolmogorov-Sinai entropy theories, the
entropy of a system is greater or equal than the entropy of its factors, i.e.,
entropy decreases along the arrows of the category. However, we were not able
to prove this statement in the setting of Palm’s theory - there is no notion of
a factor to start with - and there is a ‘structural’ counterexample at the level
of distributive lattices that we shall provide at the end of this chapter. Hence,
the structure of an abstract distributive lattice is not sufficient, and the addi-
tional structure that we see when considering lattices of closed ideals of Banach
lattices with quasi-interior points is obscure. Therefore, we chose to shift the
focus away from Banach lattices and search for a way to impose additional
structure on lattices via an explicit ‘functorial’ correspondence instead.

Finally, the theories of entropy for general discrete amenable group actions
based on the Ornstein-Weiss lemma were not even developed at the time of
Palm’s work. These considerations have lead to the abstract approach described
in this chapter. The chapter is based on [Mor15a].

6.1. Category of Measured Lattices with Localization

6.1.1. Definitions. For convenience we use the term distributive lat-
tice for distributive lattices with 0 (‘bottom’) and 1 (‘top’) such that 0 6= 1.
The set of all finite subsets of a set X is denoted by P0(X). When talking about
lattice embeddings of distributive lattices, we assume that these embeddings
respect the top and bottom elements. Let V be a distributive lattice. A finite
subset α ∈ P0(V ) is called a cover if supα = 1. Clearly, lattice embeddings
map covers to covers. The set of all covers of V is denoted by CovV . The
set of all distributive sublattices of V is denoted by Lat(V ). The set of all
distributive sublattices of V containing a given cover α is denoted by Latα(V ).

We will now prepare the key ingredients for the definition of the category
of measured lattices with localization. A function m : V → R≥0 is called a
measurement function if it satisfies the following conditions:

a) m(0) = 0,m(1) 6= 0;

b) m(a) = 0⇒ m(a ∨ b) = m(b) for all b ∈ V .

Measurement functions tell us how big or ‘likely’ the elements of V are. A
function Ω : CovV → Lat(V ) is called a localization function if for every
cover α ∈ CovV the sublattice Ω(α) ⊆ V contains α. Later we will think of
Ω(α) as ‘the smallest subsystem which realizes α’.

The category ML of measured lattices with localization is defined as
follows. Objects of the category ML are all triples (V,m,Ω), where

a) V is a distributive lattice;

b) m : V → R≥0 is a measurement function;

c) Ω : CovV → Lat(V ) is a localization function.
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To complete the definition of the category of measured lattices with localization
we also need to describe the arrows. Let V = (V,m1,Ω1),W = (W,m2,Ω2) be
a pair of distributive lattices with localization. Let Φ : W → V be a lattice
embedding such that

a) Φ preserves the measurement function, i.e. m1(Φ(a)) = m2(a) for all
elements a ∈W ;

b) Φ preserves the localization function, i.e. Ω1(Φ(α)) = Φ(Ω2(α)) for all
covers α ∈ CovW .

Then we call Φop a morphism between V and W and write Hom(V,W)
for the collection of all morphisms obtained this way. The superscript ‘op’
in Φop above indicates that even though Φ is a mapping from W to V , the
morphism of lattices determined by Φ points in the opposite direction. We will
typically define morphisms by defining corresponding lattice embeddings, so
we write ‘op’ to avoid confusion about direction of morphism. We have chosen
to ‘switch the arrows’ so that the arrows in ML have the same direction as the
arrows in some category C that is being ‘represented’ on ML (see Section 6.2).
Note that all morphisms in ML are epimorphisms.

Let W ⊆ V be a sublattice of a measured distributive lattice with localiza-
tion (V,m,Ω). We call W a local sublattice of the lattice V if Ω(CovW ) ⊆
Lat(W ), that is, if for every cover α ∈ CovW the corresponding localization
Ω(α) is actually a sublattice of W ⊆ V . Hence if W ⊆ V is a local sublat-
tice, we obtain a measured lattice with localization (W,m,Ω) from (V,m,Ω)
by restricting the functions m and Ω. We denote by LocLat(V) the set of local
sublattices of V = (V,m,Ω), and by LocLatα(V) the set of local sublattices
containing a cover α ∈ CovV . Both of these sets are nonempty, since they con-
tain at least V . Intuitively speaking, we are only interested in local sublattices
of a lattice V because they correspond to ‘subsystems’ in the category ML. If
V = (V,m,Ω) is a measured lattice with localization, we will often write CovV

to denote the set CovV of covers of V .
We now provide the classical examples of lattices with localization. These

are not the simplest examples possible, but are the most important ones for the
purposes of this work. We will also return to these examples when discussing
measurement functors at the end of Section 6.2.

6.1.2. Topological lattices. Consider the category Top of nonempty
compact Hausdorff spaces with surjective continuous maps as morphisms. Ob-
jects of this category are the pairs X = (X,U), where U is a compact Hausdorff
topology on a set X. The nonempty collection of open sets U is a distributive
lattice under the operations of set union and intersection. The measured lat-
tice with localization (U ,m,Ω) associated with X can now be introduced. The
measurement function m is defined by

m(A) :=

{
1 if A is a nonempty;

0 otherwise.
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The localization function Ω maps an open cover α ∈ CovU to the smallest
topology generated by α. We denote by X the lattice (U ,m,Ω) obtained this
way. It is easy to see that every morphism φ : X → Y in Top induces a mor-
phism φ : X→ Y by taking preimages of open sets. Hence the correspondence
X 7→ X is in fact a covariant functor M0

Top between Top and ML.

6.1.3. Measure lattices. Now we consider the category Prob of standard
probability spaces with equivalence classes of measure-preserving maps as mor-
phisms. Objects of this category are triples X = (X,B, µ), and M := Σ(X) is
the measure algebra of a standard probability space X. The nonempty collec-
tion of equivalence classes of measurable sets M is a distributive lattice under
operations of union and intersection. We introduce the measured lattice with
localization (M,m,Ω), associated with X. The measurement function is de-
fined by m(a) := µ(a) for all a ∈M. The localization function Ω takes a cover
α ∈ CovM and maps it to the smallest σ-complete Boolean algebra containing
α. We denote by X the lattice (M,m,Ω) obtained this way. Every morphism
φ : X→ Y in Prob induces a morphism φ : X→ Y by taking preimages of mea-
surable sets. Hence the correspondence X 7→ X is in fact a covariant functor
M0

Prob between Prob and ML.

6.1.4. Representations on the Category of Lattices with Local-
ization. Now consider the associated category of representations MLΓ, and
call it the category of abstract dynamical lattices. The objects of MLΓ are
pairs (V, π) of a measured distributive lattice with localization V = (V,m,Ω)
and a representation π of Γ in Aut(V). To simplify the notation we will of-
ten write (V,m,Ω;π) in place of ((V,m,Ω), π) to denote abstract dynamical
lattices. Given (V, π) ∈ Obj(MLΓ) we write LocLat(V, π) to denote the set of
all Γ-invariant local sublattices W of V , and similarly we write LocLatα(V, π)
to denote the set of all local Γ-invariant sublattices of V containing a cover
α ∈ CovV . Every Γ-invariant local sublattice W ⊆ V yields an abstract dy-
namical lattice W = (W,m,Ω; ρ), where we take ρ to be the restriction of the
representation π to W . If ı : W → V is the inclusion mapping for lattices W
and V as above, then ıop ∈ HomΓ(V,W) is a factor map. Conversely, every
factor W of V corresponds to a Γ-invariant local sublattice of V . We will now
make this relation between sublattices and factors more precise by introducing
some language from category theory.

The sets of Γ-invariant local sublattices LocLat(V, π) and LocLatα(V, π)
have canonical structures of small categories. We will now explain this struc-
ture for LocLatα(V, π) and define the category Facα(V, π) (with obvious mod-
ifications in the definition of Fac(V, π)). The set of objects Obj(Facα(V, π))
is by definition LocLatα(V, π). For two objects X,Y ∈ Obj(Facα(V, π)) with
corresponding Γ-invariant local sublattices X,Y ⊆ V we set

Hom(X,Y) :=

{
ıop if Y

ı
⊆ X is a sublattice

∅ otherwise.
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So in particular for any two objects X,Y ∈ Obj(Facα(V, π)) the set of
morphisms consists of at most one arrow, and it might be empty. Thus a final
object in a subcategory D of Facα(V, π) is a Γ-invariant local sublattice of V
containing α that is contained in any other lattice in D. Furthermore, there can
be only one final object. Category Facα(V, π) is a full subcategory of Fac(V, π).
Finally, it is easy to see that Fac(V, π) that we have just defined is in fact the
category of factors of (V, π) in the sense of Section 2.3.

6.1.5. Products and Coproducts of Local Sublattices. Let (V, π) be
an abstract dynamical lattice and Fac(V, π) be the category of its Γ-invariant
local sublattices. Firstly, we have a look at the products in Fac(V, π). Let X,Y
be Γ-invariant local sublattices of V. Let

Z :=
⋂
{W : W is a local invariant sublattice of V containing X and Y}.

An intersection of any family of invariant local sublattices is local and
invariant as well, and checking the universal property is straightforward. Hence
Z = X

∏
Y. Secondly, we want to understand the coproducts of sublattices.

Let {Xλ}λ∈Λ be a family of local invariant sublattices of V. Let

W :=
⋂
λ∈Λ

Xλ.

Once again W is a local invariant sublattice and the universal property is also
satisfied. Hence W =

∐
λ∈Λ

Xλ.

6.2. Measurement Functors

Now we can introduce the notion of a measurement functor. Let C be a
category and let CΓ be the associated category of representations. A covariant
functor M : CΓ → MLΓ is called a measurement functor if it satisfies the
following condition for every object (A, π) ∈ Obj(CΓ):

If M(A, π) = (A, π) ∈ Obj(MLΓ), then for every cover α ∈
CovA the corresponding localization Ω(α) within the lattice

A is precisely the minimal sublattice containing α that can
be realized by the functor.

We explain what these requirements mean. The objects of the category CΓ

are pairs (A, π), where A ∈ Obj(C) and π : Γ → Aut(A) is a group homomor-
phism. So, for every object (A, π) ∈ Obj(CΓ) applying the functor M yields a
dynamical lattice

M(A, π) = (A, π) ∈ Obj(MLΓ).

Here A ∈ Obj(ML) is a measured lattice with localization, and π is a represen-
tation of Γ in the group Aut(A).

Morphisms in Hom((A, π), (B, ρ)) are those morphisms ψ in Hom(A,B)
that satisfy ψ ◦ πγ = ργ ◦ ψ for all γ ∈ Γ. For every such ψ ∈ HomΓ(A,B) the
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functor M defines a Γ-equivariant morphism M(ψ) : A → B. This means that
M(ψ) ◦ πγ = ργ ◦M(ψ) for every γ ∈ Γ, i.e. the diagram

A
M(ψ) // B

A

πγ

OO

M(ψ)
// B

ργ

OO

commutes.
Now we explain the main condition. For that we need to introduce some

language first. Let M be a covariant functor as above, (A, π) ∈ Obj(CΓ),
M(A, π) = (A, π) and let α ∈ CovA be a cover. Then A is a measured lattice

with localization, and Facα(A, π) is the associated category of Γ-invariant local
sublattices of A containing α. Some of these sublattices are coming from factors
of the system (A, π) via applying M - for example A itself - while others may
not. To make this precise, consider the categories Fac(A, π), Fac(A, π) of factors

of A and A respectively. Observe that the functor M induces a functor M̃ :
Fac(A, π) → Fac(A, π) in the following manner. Given an epimorphism φ :
A → B in CΓ, it is mapped to the equivalence class of epimorphism [M(φ)]
in Fac(A, π), and this definition is independent of the representative of φ in
[φ] ∈ Fac(A, π). In this definition we are only using that the functor M preserves
commutative diagrams, in particular, that it preserves isomorphisms. We define
the subcategory

SpFacM(A, π) ⊆ Fac(A, π)

of spacial sublattices w.r.t. the functor M as the range of M̃. In general this
subcategory is not full, i.e. there can be Γ-equivariant lattice embeddings that
are not spacial. Since the category Fac(A, π) is in fact the category of local
Γ-invariant sublattices of A (via the identification that was explained at the
end of Section 6.1.4), we can talk about the subcategory of spacial sublattices

SpFacM
α (A, π) ⊆ SpFacM(A, π)

containing the cover α, which is a full subcategory of SpFacM(A, π).
This language allows us to explain what the main requirement says. Namely,

for every object (A, π) ∈ Obj(CΓ) we consider its image M(A, π) = (A, π),
where A = (A,m,Ω) is a measured lattice with localization, and require that
for every cover α ∈ CovA the lattice Ω(α) is the final object in the category

SpFacM
α (A, π).

Hence Ω(α) is the spacial sublattice canonically embedded in any other
spacial sublattice containing α via a spacial (i.e. corresponding to a factor in
CΓ) morphism. In particular, this requirement shows that Ω(α) does depend
on the representation π, since it is Γ-invariant w.r.t. π.

Examples 6.2.1. We will now provide some trivial examples of spacial and
non-spacial sublattices. For simplicity we will take Γ to be trivial and work
in the category Prob. Let X = (X,M, µ) be the probability space on the set
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X := {a, b, c} withM := P(X) being the Boolean algebra of all subsets of X and
µ be the uniform probability distribution. We consider the measured lattice
with localization X associated to X that was given in Section 6.1.3. Consider
the sublattice V := {0, {a, b}, {b}, {b, c}, 1} of M. Then V is not a spacial
sublattice because it is not a Boolean algebra. Conversely, any subalgebra of
M defines a factor of X in Prob and thus is an example of a spacial sublattice.

Given a covariant functor M : CΓ → MLΓ, the main condition in the
definition of a measurement functor is rather nontrivial, and it is not clear
whether the final object exists in the category SpFacM

α (A, π). When it exists,
we know that it is unique. We now provide an abstract condition that simplifies
the verification of the second requirement.

Proposition 6.2.2 (Coproduct stability condition). Let M : CΓ → MLΓ

be a covariant functor. Let (A, π) ∈ CΓ, (A, π) = M(A, π), and let α ∈ CovA.
Suppose the following holds:

1) the category Fac(A, π) is small and admits infinite coproducts;

2) if {Xλ}λ∈Λ is a collection of objects in Fac(A, π) such that for every

index λ ∈ Λ the object M̃(Xλ) is in SpFacM
α (A, π), then the image of the

coproduct M̃(
∐
λ∈Λ

Xλ) is in SpFacM
α (A, π) as well.

Then M̃(
∐
λ∈Λ

Xλ) is the final object in category SpFacM
α (A, π), where {Xλ}λ∈Λ

is the set of all objects in Fac(A, π) such that M̃(Xλ) is in SpFacM
α (A, π) for all

indices λ.

Proof. The second condition implies that M̃(
∐
λ∈Λ

Xλ) is indeed in SpFacM
α (A, π),

i.e. it is a Γ-invariant spacial local sublattice of A, containing α.

To show that M̃(
∐
λ∈Λ

Xλ) is the final object in SpFacM
α (A, π), we need to

show that for every Z ∈ SpFacM
α (A, π) there is a spacial morphism ψ : Z →

M̃(
∐
λ∈Λ

Xλ). By the definition of the category of spacial sublattices, we have

Z = M̃(X0) for some factor X0 of A. Then X0 belongs to the collection of
factors {Xλ}λ∈Λ from the statement of the theorem, and so there is a morphism

ψ0 : X0 →
∐
λ∈Λ

Xλ in category Fac(A, π). Then M̃(ψ0) : Z → M̃(
∐
λ∈Λ

Xλ) is the

spacial morphism as required.

In the language of lattices this implies that M̃(
∐
λ∈Λ

Xλ) is a spacial sublattice

containing α, and it is embedded in any other spacial sublattice with this
property.

This proposition has the following corollary, whose proof is straightforward.

Corollary 6.2.3. Let M : CΓ → MLΓ be a covariant functor satisfying
the conditions of Proposition 6.2.2. Then M is a measurement functor if and
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only if for every (A, π) ∈ Obj(CΓ) with the corresponding abstract dynamical
lattice (A, π) = M(A, π) and the localization function Ω we have for every cover

α ∈ CovA that Ω(α) = M̃(
∐
λ∈Λ

Xλ), where {Xλ}λ∈Λ is the set of all objects in

Fac(A, π) such that M̃(Xλ) is in SpFacM
α (A, π) for all indices λ.

There is always a trivial measurement functor M0 : CΓ → MLΓ that maps
a representation (A, π) of Γ to a trivial representation (V0, id) of Γ. Here
V0 = (V,m,Ω) is a measured lattice with localization with V = {0, 1}, m(1) =
1,m(0) = 0 and Ω({0, 1}) = V . We now want to understand the measurement
functors arising from topological and measure-preserving dynamical systems.

6.2.1. Topological Dynamics. Consider the category Top of compact
Hausdorff spaces with surjective continuous maps as morphisms and the as-
sociated category TopΓ, which is just the category of topological dynamical
systems. Objects of TopΓ are pairs (A, π), where A is a compact topological
space and π : Γ→ Aut(A) is a homomorphism from Γ to the group of homeo-
morphisms of A. We will describe the construction of a measurement functor
MTop : TopΓ → MLΓ that eventually leads to the definition of topological en-
tropy.

Given (A, π) as above, A is a nonempty topological space A = (K,U) with
a compact topology U on a set K, define MTop(A, π) := (U ,m,Ω;π). Here U is
the distributive lattice of open sets with 0 being the empty set and 1 being the
whole space K, m takes the value 1 on all a ∈ U , a 6= 0 and m(0) = 0. A finite
cover α ∈ CovU is then simply a finite cover of K by open sets. We define the
group homomorphism π by

πγ : U 7→ π−1
γ U for all U ∈ U , γ ∈ Γ.

For every α ∈ CovU , we let Ω(α) be the minimal Γ-invariant topology V ⊆ U on
K that contains the family of open sets α. Note that this topology is compact
and has a basis of open sets

{πγ1
a1 ∩ πγ2

a2 ∩ · · · ∩ πγnan},

where n runs through N, γ1, . . . , γn run over Γ, a1, . . . , an run over α. This
topology is in general not Hausdorff. We describe the action of MTop on mor-
phisms. Let (A, π) and (B, ρ) in TopΓ be topological dynamical systems with
A = (K,U),B = (L,V) such that

MTop(A, π) = (U ,mA,ΩA;π), MTop(B, ρ) = (V,mB ,ΩB ; ρ).

Let φ : A → B be a Γ-equivariant morphism, that is a surjective continuous
map φ : K → L commuting with the action of Γ, then we define morphism
MTop(φ) as follows. Consider the distributive lattice embedding Φ : V → U ,
a 7→ φ−1a for a ∈ V. Then by the surjectivity of φ the set Φ(a) is nonempty
if and only if a is nonempty, thus mA(Φ(a)) = mB(a). Let α ⊆ V be an open
cover. Then ΩB(α) is the minimal Γ-invariant topology V ′ ⊆ V on L that
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contains the family of open sets α, and we have Φ(ΩB(α)) = φ−1V ′ ⊆ U . The
topology φ−1V ′ has the basis

{Φ(ργ1
a1 ∩ ργ2

a2 ∩ · · · ∩ ργnan) : n ∈ N, γ1, . . . , γn ∈ Γ,

a1, . . . , an ∈ α}.

Similarly, ΩA(Φ(α)) is the topology with basis sets of the form

πγ1
(Φa1) ∩ πγ2

(Φa2) ∩ · · · ∩ πγn(Φan).

The map φ is Γ-equivariant, so

πγ1
(Φa1) ∩ πγ2

(Φa2) ∩ · · · ∩ πγn(Φan) =

= Φ(ργ1
a1 ∩ ργ2

a2 ∩ · · · ∩ ργnan)

and hence the topologies coincide. This shows that Φop ∈ HomΓ((A, π), (B, ρ)).
The fact that MTop(φ◦ψ) = MTop(φ)◦MTop(ψ) is also easily verified. Hence,

MTop is a well-defined covariant functor.
We explain briefly how one can use Proposition 6.2.2 to verify the main

condition in the definition of a measurement functor. First of all, Fac(A, π) is
a small category. Secondly, if one follows all the steps in the construction of
the coproduct of two factors, one notes that the resulting subtopology contains
a given cover α if both factors do. Thus we can apply Proposition 6.2.2 and

Corollary 6.2.3, since Ω(α) defined above coincides with M̃(
∐
λ∈Λ

Xλ) from the

proposition.

6.2.2. Measure-preserving Dynamics. Let us return to the category
Prob of standard probability spaces with equivalence classes of measure-preserving
maps as morphisms and the associated category ProbΓ. In what follows, a
measurement functor MProb : ProbΓ → MLΓ is constructed that can be used
to define the Kolmogorov-Sinai entropy. Given a probability-preserving dy-
namical system (X, π), where the standard probability space X = (X,B, µ)
has the measure algebra M := Σ(X) and the probability measure µ, define
MProb(X, π) := (M,m,Ω;π). Here M carries the structure of a distribu-
tive lattice with 0 being the empty set and 1 being the whole space X, and
m(a) := µ(a) for all a ∈ M. We define group the homomorphism π by
πγ : U 7→ π−1

γ U for U ∈ M, γ ∈ Γ. A finite cover α ∈ CovM is a finite
cover of X by measurable sets modulo null sets, so for ΩM(α) we take the min-
imal Γ-invariant σ-complete Boolean subalgebra of M on X that contains α.
Note that this subalgebra equals the closure cl(A0), for A0 being the algebra
of unions of sets of the form

n⋂
i=1

πγiai ∩
n+m⋂
i=n+1

πγia
c
i ,

where n,m ∈ N, γ1, . . . , γn+m ∈ Γ, a1, . . . , an+m ∈ α.
Let (X, π), (Y, ρ) ∈ ProbΓ be probabilistic dynamical systems such that

MProb(X, π) = (A,mA,ΩA;π), MProb(Y, ρ) = (B,mB ,ΩB ; ρ).
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Let φ : X → Y be a Γ-equivariant morphism, then we define the morphism
MProb(φ) as follows. Consider the measure algebra embedding Φ : B → A,
a 7→ φ−1a for a ∈ B. Then mA(Φ(a)) = mB(a), since φ is measure-preserving.
For a finite cover α ∈ CovB the Boolean algebra ΦΩB(α) equals Φcl(B0). Here

B0 is the algebra of unions of sets of the form
n⋂
i=1

πγiai ∩
n+m⋂
i=n+1

πγia
c
i , where

n,m ∈ N, γ1, . . . , γn+m ∈ Γ, a1, . . . , an+m ∈ α. But cl(ΦB0) = Φcl(B0) because
Φ is an isometry; so Φcl(B0) coincides with the closure of the algebra ΦB0,
which is just ΩA(Φα).

It is also easy to see that the functor MProb respects composition of mor-
phisms, thus it is a covariant functor. The main condition in the definition of
a measurement functor follows from a similar application of Proposition 6.2.2
and Corollary 6.2.3.

6.3. Palm Entropy

6.3.1. Entropy of Abstract Dynamical Lattices. In this subsection
we let

V = (V,m,Ω;π)

be an arbitrary abstract dynamical lattice in MLΓ with a representation π of a
discrete amenable group Γ. Since morphisms in ML are defined as opposites of
the corresponding lattice embeddings (Section 6.1.1), the representation π of Γ
determines (canonically) a left action of Γop on V by lattice embeddings. Also,
the representation π is fixed throughout the largest part of this subsection,
hence we suppress π in the notation when possible and write gx, g ∈ Γ, x ∈ V
for the action of Γop. In particular, we have the identity (fg)x = g(fx) for all
f, g ∈ Γ and x ∈ V . For an arbitrary Γ-invariant sublattice W of V we have
CovW ⊆ CovV .

Since V is a distributive lattice, it is equipped with a partial ordering
relation≤. To describe how covers are related to each other we need an ordering
of covers as well. We cannot get a useful partial ordering relation on the set
of covers in general, but there is a ‘natural’ relation that is not antisymmetric.
Namely, the set CovV is equipped with a quasiorder relation � defined by

β � α ⇐⇒ ∀ b ∈ β ∃ a ∈ α such that a ≥ b.

This coincides with the definition from the theory of topological entropy, where
an open cover U is said to be finer than an open cover V if for every open set
A ∈ U there is an open set B ∈ V such that A ⊆ B. If α � β, we say that α is
finer than β, or that α refines β.

Given covers α, β ∈ CovW we define the join of these covers by

α ∨ β := {a ∧ b : a ∈ α, b ∈ β} ∈ CovW .

The binary operation ∨ is associative and commutative, hence we can also talk
about joins of finite sets of covers. It is easy to see that

(6.3.1) α ∨ β � α ∀α, β ∈ CovV .



6.3. PALM ENTROPY 79

Similar to the remark made above, we cannot call a join of covers a supremum,
but it is easy to see that γ � (α ∨ β) if and only if γ � α and γ � β1.
Furthermore,

(6.3.2) α ∨ β � α ∀α, β ∈ CovV .

For an element f ∈ Γ and a cover α ∈ CovW define fα := {fx : x ∈
α} ∈ CovW . This yields an action of Γop on the set of covers CovW , hence
for all f, g ∈ Γ we have (fg)α = g(fα). Given a finite subset F ⊂ Γ define
αF :=

∨
f∈F fα ∈ CovW . It is clear that the action of Γop on CovW preserves

the preorder relation �. Furthermore, β � g−1α if and only if gβ � α. Also,
for all covers α, β ∈ CovW and g ∈ Γ

gα ∨ gβ = {ga ∧ gb : a ∈ α, b ∈ β} =

= g{a ∧ b : a ∈ α, b ∈ β} = g(α ∨ β).

Let α ∈ CovV , and let W ∈ Latα(V ) be a Γ-invariant sublattice containing
α. Our goal now is to define the entropy of a cover α relative to the sublattice
W . Define the total mass of a cover α by

S(α) :=
∑
a∈α

m(a).

Since α is a cover, there exists an element a ∈ α with m(a) > 0, hence S(α) is
always strictly positive. Define

(6.3.3) h∗(α) := −
∑
a∈α

m(a)

S(α)
log

m(a)

S(α)
.

By a standard convention, we assume that 0 · log 0 = 0. Then h∗(α) is always
a nonnegative real number.

For a cover α ∈ CovV we denote the number of nonzero elements of α by

N(α) := |{a ∈ α : m(a) 6= 0}| .

Then N(α) ≥ 1 and N(gα) = N(α) for every g ∈ Γ. Furthermore, h∗(α) ≤
logN(α). Given a cover α ∈ CovV and an invariant sublattice W ∈ Latα(V )
as above, we define

(6.3.4) ĥW (α) := sup{h∗(β) : β ∈ CovW such that β � α,N(β) ≤ N(α)}.

Of course,

h∗(α) ≤ ĥW (α) ≤ logN(α).

Finally, the function h·(·) with values in R≥0 can be introduced. It will
be used together with the Ornstein-Weiss Lemma to define the entropy of a

1It follows from this remark that α ∨ β is in fact a product of α and β in a suitably
defined ‘quasi-order category’ (CovV ,�).
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dynamical lattice ((V,m,Ω), π) in Proposition 6.3.2. Given a cover α ∈ CovV
and an invariant sublattice W ∈ Latα(V ) as above, let
(6.3.5)

hW (α) := inf{
n∑
j=1

ĥW (βj) : n ∈ N, β1, . . . , βn ∈ CovW such that

n∨
j=1

βj � α}.

Since α ∈ CovW ,

0 ≤ hW (α) ≤ ĥW (α) ≤ logN(α),

thus hW (α) is always a nonnegative real number. Hence we can define a func-
tion fα,W : P0(Γ) → R≥0 by fα,W (F ) := hW (αF ). We are now able to prove
the main proposition.

Proposition 6.3.1. For each cover α ∈ CovV and each invariant sublattice
W ∈ Latα(V ) the function fα,W satisfies the conditions of the Ornstein-Weiss
lemma (Proposition 1.4.2).

Proof. (i) Let us show that fα,W is monotone, i.e. for two arbitrary
finite subsets F1 ⊆ F2 ⊂ Γ implies that fα,W (F1) ≤ fα,W (F2). Indeed, let
F3 = F2 \ F1, then αF2 = αF1 ∨ αF3 � αF1 by equation ((6.3.2)). Thus

hW (αF1) = inf{
n∑
j=1

ĥW (βj) : n ∈ N, β1, . . . , βn ∈ CovW such that

n∨
j=1

βj � αF1}

≤ inf{
n∑
j=1

ĥW (βj) : n ∈ N, β1, . . . , βn ∈ CovW such that

n∨
j=1

βj � αF1 ∨ αF3}

= hW (αF2).

(ii) Now we show that fα,W is subadditive, i.e. fα,W (F1∪F2) ≤ fα,W (F1)+
fα,W (F2) holds for two arbitrary finite subsets F1, F2 ⊂ Γ. For that observe
that αF1 ∨ αF2 � αF1∪F2 , hence hW (αF1∪F2) ≤ hW (αF1 ∨ αF2) by a mono-
tonicity argument. Thus it suffices to show that for any two α, β ∈ CovW the
inequality hW (α ∨ β) ≤ hW (α) + hW (β) holds.

Indeed, for any k, l ∈ N and sequences of covers (β′i2)ki2=1, (β
′′
i3

)li3=1 in CovW

such that
k∨

i2=1

β′i2 � α and
l∨

i3=1

β′′i3 � β the sequence of covers β′1, β
′
2, . . . , β

′
k, β
′′
1 , β

′′
2 , . . . , β

′′
l

is also in CovW and its join refines α ∨ β. Hence

hW (α ∨ β) ≤ hW (α) + hW (β).

(iii) Finally, we prove that fα,W is right-invariant, i.e. fα,W (Fg) = fα,W (F )
holds for every finite F ( Γ and every element g ∈ Γ. Observe that∨

f∈Fg

fα =
∨
f∈F

(fg)α = g

∨
f∈F

fα

 .

Hence it suffices to show that hW (gα) = hW (α) holds for arbitrary α ∈
CovV , g ∈ Γ and W being arbitrary Γ-invariant sublattice containing α.
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Indeed,

hW (gα) = inf{
n∑
j=1

ĥW (βj) : n ∈ N, β1, . . . , βn ∈ CovW such that

n∨
j=1

βj � gα}

= inf{
n∑
j=1

ĥW (g(g−1βj)) : n ∈ N, β1, . . . , βn ∈ CovW such that

n∨
j=1

(g−1βj) � α}

hence it suffices to show that ĥW (gα) = ĥW (α) for every α ∈ CovV , g ∈ Γ and
W arbitrary Γ-invariant sublattice containing α. Indeed,

ĥW (gα) = sup{h∗(β) : β ∈ CovW such that β � gα,N(β) ≤ N(gα)} =

= sup{h∗(g(g−1β)) : g−1β ∈ CovW such that g−1β � α,N(β) ≤ N(α)},

thus we only need to show that h∗(gα) = h∗(α) for any α ∈ CovV , g ∈ Γ. This
in turn follows from the definition of a morphism in the category ML, more
precisely we use that morphisms preserves measurement function.

Now we are ready to define the dynamical entropy of a cover α ∈ CovV
relative to a sublattice W containing α.

Proposition 6.3.2 (Entropy of a cover relative to sublattice). Consider
an abstract dynamical lattice (V,m,Ω;π) with a representation π of a discrete
amenable group Γ, and let (Fn)n∈N be a Følner sequence in Γ. Then for all
α ∈ CovV and all invariant sublattices W ∈ Latα(V ) the limit

(6.3.6) lim
n→∞

hW (αFn)

|Fn|
=: hW (α, π)

exists, is nonnegative and is independent of the Følner sequence (Fn)n.

Proof. Follows from Proposition 6.3.1 and Proposition 1.4.2.

Now we mimic the definitions of both Kolmogorov-Sinai and topological
entropies and define the entropy hML of a dynamical lattice (V,m,Ω;π) by

hML(V,m,Ω;π) := sup{hΩ(α)(α, π) : α ∈ CovV }.

This notion of entropy enjoys a very useful monotonicity property that we
will use in the next section to prove some of the key results.

Proposition 6.3.3. Let A = (W,mW ,ΩW ) and B = (V,mV ,ΩV ) be mea-

sured lattices with localization with representations π, ρ of Γ. Let (A, π)
ψ→

(B, ρ) be a morphism in HomΓ(A,B). Then hML(A, π) ≥ hML(B, ρ).
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Proof. Let ψ = Φop, where Φ is the corresponding embedding. Then

hML(W,mW ,ΩW ;π) =

= sup{hΩW (α)(α, π) : α ∈ CovW } ≥ sup{hΩW (Φ(α))(Φ(α), π) : α ∈ CovV } =

(∗)
= sup{hΦ(ΩV (α))(Φ(α), π) : α ∈ CovV }

(∗∗)
= sup{hΩV (α)(α, ρ) : α ∈ CovV } =

= hML(V,mV ,ΩV ; ρ).

Apart from the equality (∗∗), the proof is rather straightforward. In the equal-
ity (∗) we use that ΩW (Φ(α)) = Φ(ΩV (α)) by the definition of morphisms
in ML. In the proof of (∗∗) we have used that mW (Φ(a)) = mV (a) for all
a ∈ α ∈ CovV and that the morphism Φ is a lattice homomorphism intertwin-
ing the action of Γ. Hence the entropy of α computed with respect to Ω(α) in
the lattice V equals the entropy of Φ(α) computed with respect to Φ(Ω(α)) in
the lattice W .

This result admits a categorical interpretation.

Corollary 6.3.4. The correspondence hML : (A, π) 7→ hML(A, π) ∈ [0,∞]
is a covariant functor from MLΓ to the poset category [0,∞] of extended positive
reals.

Proof. Objects of [0,∞] are extented positive reals. For x, y ∈ [0,∞] the
set Hom(x, y) consists of exactly one arrow ≥ if and only if x ≥ y, and is empty
otherwise. Then the statement follows from the previous proposition and the
transitivity of the ≥ relation on the poset [0,∞].

6.3.2. Entropy of Representations on Abstract Categories. Let C
be a category, CΓ be the associated category of representations of a discrete
amenable group Γ, and M : CΓ → MLΓ be a measurement functor. We define
the entropy of the representation (A, π) ∈ CΓ associated with the measurement
functor M by

(6.3.7) h((A, π),M) := hML(M(A, π)).

An important property of topological and Kolmogorov-Sinai entropy is that
it decreases when passing to factors. One of the main results of this chapter is
that our abstractly defined entropy also does decrease when moving down the
arrows.

Proposition 6.3.5 (Left Entropic Inequality). Let (A, π)
ψ→ (B, ρ) be a

morphism in HomΓ(A,B). Then h((A, π),M) ≥ h((B, ρ),M).

Proof. Suppose M(A, π) = (A, π), M(B, ρ) = (B, ρ). Here A = (W,mW ,ΩW ),
B = (V,mV ,ΩV ) are measured lattices with localization and M(ψ) = Φop :
A → B is the image of morphism ψ. Then the statement follows immediately
from Proposition 6.3.3.
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In the notation for the entropy of (A, π) ∈ CΓ we always say explicitly what
measurement functor we use. It is natural to ask how different measurement
functors can be compared, i.e., what could be the ‘arrows’ between measure-
ment functors. And if there is a morphism between two different measurement
functors, do we also get monotonicity of the corresponding entropies?

To answer these questions we recall first the standard notion of a natural
transformation between functors. So let for the moment C,D be two arbitrary
categories and F ,G : C → D be covariant functors. A family of morphisms
α = {αX}X∈Obj(C) in D, where αX : F(X) → G(X) for every X ∈ Obj(C), is
called a natural transformation between functors F and G if for every morphism
φ : X→ Y in C the diagram

F(X)

αX

��

F(φ) // F(Y)

αY

��
G(X)

G(φ)
// G(Y)

commutes. Then we write α : F → G, i.e. we call α an arrow between functors.
This can be justified by defining the functor category [C,D] whose objects are
covariant functors from C to D and whose arrows are natural transformations2.
Given functors F ,G,H with natural transformations α : F → G and β : G → H,
we see that γ = {βXαX}X∈Obj(C) is a natural transformation between F and
H. We call a natural transformation α : F → G a natural equivalence if αX

is an isomorphism for every X ∈ Obj(C).
We return back to the main topic, so now C is some category and CΓ is the

associated category of representations of a discrete amenable group Γ. Then
the collection of all measurement functors from CΓ to MLΓ is a full subcategory
of [CΓ,MLΓ]. We denote the category of measurement functors from CΓ to MLΓ

by [CΓ,MLΓ]M. Observe that for a nontrivial3 category C the categories CΓ and
[CΓ,MLΓ]M are also nontrivial. Indeed, there is always a trivial measurement
functor M0. It is easy to see that the entropy measured with respect to the
functor M0 is identically zero on CΓ.

We now prove the second key ‘monotonicity’ result.

Proposition 6.3.6 (Right Entropic Inequality). Let α : M → N be a
natural transformation between measurement functors M,N : CΓ → MLΓ. Then
for every object (A, π) ∈ CΓ we have h((A, π),M) ≥ h((A, π),N). If α is a
natural equivalence, then h((A, π),M) = h((A, π),N).

Proof. Let M(A, π) = (A, π), N(A, π) = (B, ρ) where A = (W,mW ,ΩW ),
B = (V,mV ,ΩV ) are measured lattices with localization endowed with repre-
sentations π, ρ of Γ respectively.

2There is a subtlety here: the collection of all natural transformations between functors
is not necessarily a small set, so the ‘category of functors’ is not necessarily locally small.

3I.e. nonempty.
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Then by definition h((A, π),M) = hML(A, π) and h((A, π),N) = hML(B, ρ).
Since α is a natural transformation, we obtain a morphism α(A,π) : (A, π) →
(B, ρ) in the category MLΓ. Then the statement follows from Proposition 6.3.3.

Of course, we have not used the commutative diagram from the definition
of a natural transformation in this proof4, but we will have to use it in order
to derive much stronger results, giving a better functorial interpretation of
entropy, below.

Given categories CΓ and [CΓ,MLΓ]M, we can define a product category
CΓ × [CΓ,MLΓ]M as follows. Objects of CΓ × [CΓ,MLΓ]M are all pairs (A,M),
where A is in CΓ and M is a measurement functor in [CΓ,MLΓ]M. The collection
of morphisms between objects (A,M) and (B,N) is given by the collection of
all pairs (φ, α), where φ : A → B and α : M → N. Given morphisms (φ, α) :
(A,M) → (B,N) and (ψ, β) : (B,N) → (C,L), we define their composition
componentwise by (ψφ, βα) : (A,M)→ (C,L).

Given the category CΓ× [CΓ,MLΓ]M, one naturally obtains an evaluation
bifunctor ev (the construction, however, is not specific to the categories CΓ

and MLΓ). On objects, it is given as

(A,M)
ev7−→ M(A),

where (A,M) is in CΓ × [CΓ,MLΓ]M. For objects (A,M), (B,N) the functor
works on the corresponding morphisms by

(φ, α)
ev7−→ αBM(φ),

where (φ, α) is a morphism in Hom((A,M), (B,N)).
We claim that this is indeed a covariant functor, i.e., it respects composition

of morphisms. That is, if (φ, α) : (A,M)→ (B,N) and (ψ, β) : (C,N)→ (C,L),
we want that

(6.3.8) ev((ψφ), (βα))
def
== αCβCM(ψφ) = βCN(ψ)αBM(φ).

Applying the definition of the natural transformation α to the morphism
φ, we conclude that the diagram

M(A)

αA

��

M(φ) // M(B)

αB

��
N(A)

N(φ)
// N(B)

commutes, hence we obtain identity αBM(φ) = N(φ)αA. Applying the defini-
tion of the natural transformation α to the morphism ψφ, we deduce that the

4I.e. it would suffice to have an infranatural transformation of measurement functors.
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diagram

M(A)

αA

��

M(ψφ) // M(C)

αC

��
N(A)

N(ψφ)
// N(C)

commutes, hence we obtain the identity N(ψφ)αA = αCM(ψφ). Substituting
these identities in the equation ((6.3.8)), we get

βCN(ψ)αBM(φ) = βCN(ψ)N(φ)αA = βCN(ψφ)αA = βCαCM(ψφ),

which shows that ev is indeed a covariant functor.
Combining these results, we arrive at

Corollary 6.3.7. Entropy is a (bi)functor:

CΓ × [CΓ,MLΓ]M
h(·,·)−→ [0,∞].

Proof. This follows immediately, since ((A, π),M) 7→ h((A, π),M) is a
composition of the evaluation bifunctor ev : CΓ × [CΓ,MLΓ]M → MLΓ and
hML : MLΓ → [0,∞], which was show to be a functor in Corollary 6.3.4.

It is interesting to observe that one can derive the corollary above in a
more general - though also completely informal - setting. Consider some cat-
egory of physical systems PhysSys, some category of observables Obs and the
associated category of measurement functors [PhysSys,Obs]M, which is just
some full subcategory of [PhysSys,Obs]. Then evaluation ev : (A,M) 7→ M(A)
is still a bifunctor from PhysSys × [PhysSys,Obs]M to Obs. Suppose further-
more that we are given a poset of complexity values CompVal and a functor
h̃ : Obs→ CompVal. Then the ‘complexity’ defined via (A,M) 7→ h̃(M(A)) is a
(bi)functor from PhysSys× [PhysSys,Obs]M to CompVal.

6.3.3. Comparison with the Classical Notions of Entropy. In this
subsection we intend to compare the entropies defined via the measurement
functors MProb and MTop (introduced in Section 6.2) with the classical notions
of Kolmogorov-Sinai and topological entropy for amenable group actions.

Proposition 6.3.8. Let X = (X,B, µ) be a standard probability space with
measure algebra M := Σ(X), (X, π) ∈ Obj(ProbΓ) be a measure-preserving Γ-
system, with Γ being discrete amenable. Denote by hProb(X, π) the Kolmogorov-
Sinai entropy of the system (X, π). Then

hProb(X, π) = h((X, π),MProb).

Proof. Recall that the classical entropy of a finite partition α of X with
respect to a probability measure µ is defined as

(6.3.9) hProb(α, π) = lim
n→∞

1

|Fn|
HSh(αFn),
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where HSh(β) = −
∑
b∈β

µ(b) logµ(b) and (Fn)n is a Følner sequence. Then the

classical Kolmogorov-Sinai entropy of the system (X, π) is given by

(6.3.10) hProb(X, π) = sup{hProb(α, π) : α finite partition of X}.

Let (X, π) = MProb(X, π) be the abstract dynamical lattice associated to the
system (X, π), where X = (M, µ,Ω) is the measured lattice with localization.
We view the measure algebraM as a distributive lattice. The measure µ plays
the role of a measurement function, and for a cover α ∈ CovM the localization
Ω(α) is the smallest Γ-invariant measure subalgebra ofM containing the family
of sets α.

Observe that if α ∈ CovM is a cover, then there exists a partition α′ ∈
CovΩ(α) with α′ � α and Ω(α′) = Ω(α). We call any such α′ a generat-
ing disjoint refinement of α. It is essential in this observation that Ω(α) is
a subalgebra containing α, it allows to find the required refinement without
leaving the sublattice Ω(α). So, since α′ � α and Ω(α′) = Ω(α), the inequality
hΩ(α′)(α

′) ≥ hΩ(α)(α) holds. Hence

h(V,m,Ω) = sup{hΩ(α)(α,Γ) : α ∈ CovM} =

= sup{hΩ(α)(α,Γ) : α is a partition of X}.

It follows that it is enough to show that for all partitions α of X and all invariant
measure subalgebras W of M containing α we have h∗(α) = hW (α), since,
clearly, h∗(α) = hµ(α) for partitions. For any partition α and any invariant
measure subalgebra W containing α it follows by the pigeonhole principle that

ĥW (α) = h∗(α). For an arbitrary cover β ∈ CovW there is a non-growing
disjoint refinement β′ ∈ CovW , i.e. a partition β′ such that β′ � β and

N(β′) ≤ N(β). Then, clearly, ĥW (β′) ≤ ĥW (β).
It is obvious that for any partition α and any invariant measure subalgebra

W containing α we have

hW (α) = inf{
n∑
j=1

ĥW (βj) :

n∨
j=1

βj � α, n ∈ N,∀j βj ∈ CovW } ≤ h∗(α).

Now, pick any sequence (βj)
n
j=1 of covers in CovW such that

n∨
j=1

βj � α,

and consider the respective non-growing disjoint refinements (β′j)
n
j=1. Then

n∑
j=1

ĥW (β′j) ≤
n∑
j=1

ĥW (βj) and it follows that it suffices to take the infinum over

the sequences (βj)
n
j=1 of partitions of X. It only remains to observe that for

such α, (βj)
n
j=1

h∗(α) ≤ h∗(
n∨
j=1

βj) ≤
n∑
j=1

h∗(βj)

by the standard monotonicity and subadditivity properties of hµ on partitions.
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Now we prove a similar statement for topological dynamical systems and
the measurement functor MTop.

Proposition 6.3.9. Let X = (X,U) be in Top, and let (X, π) ∈ Obj(TopΓ)
be topological Γ-system, where Γ is discrete amenable. Denote by hTop(X, π)
the topological entropy of the system (X, π). Then

hTop(X, π) = h((X, π),MTop).

Proof. Recall that the topological entropy of a finite open cover α of X
is defined as

(6.3.11) hTop(α, π) = lim
n→∞

1

|Fn|
HTop(α

Fn),

where HTop(α) = log min{|β| : β ⊆ α is a subcover} and (Fn)n is a Følner
sequence. Then the topological entropy of the system (X, π) is

(6.3.12) hTop(X, π) = sup{hTop(α, π) : α finite open cover of K}.

Let (X, π) = MTop(X, π) be the abstract dynamical lattice associated to
system (X, π), where (V,m,Ω) is the measured lattice with localization. Dis-
tributive lattice V is the lattice of open subsets of X, m is equal to 1 everywhere
except for the empty set, m(∅) = 0, and for an open cover α we have defined
Ω(α) as the smallest Γ-invariant topology containing family of open sets α.

Let α be a finite open cover, and let W be any invariant topology, contain-

ing α. It is clear that h∗(α) = logN(α) and ĥW (α) = logN(α) as well. For a
minimal subcover α′ of α one concludes α′ � α and α′ ⊆W , so

hW (α) = inf{
n∑
i=1

ĥW (βi) :

n∨
i=1

βi � α, n ∈ N,∀i βi ∈ CovW } ≤

≤ ĥW (α′) = HTop(α)

Now, pick an arbitrary sequence (βi)
n
i=1 of covers in CovW such that

n∨
i=1

βi � α. Then

HTop(α) ≤ HTop(

n∨
i=1

βi) ≤
n∑
i=1

HTop(βi) ≤
n∑
i=1

ĥW (βi)

by the standard monotonicity and subadditivity properties of H. It follows
that HTop(α) = hW (α) and the proof of the statement is complete.

6.4. Remarks

6.4.1. The Construction of Palm. In this section we explain the orig-
inal construction of Palm for Banach lattices with quasi-interior point. For
more details on Banach lattice theory we refer the reader to [Sch74]. For sim-
plicity, we will now sketch the original work of Palm [Pal76] and not discuss its
generalizations to amenable group actions. In this section we use the original
notation of Palm.
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Let E be a Banach lattice. An element u ≥ 0 of E is called a quasi-interior
point if the principal ideal Eu is dense in E. The principal ideal Eu is defined
as

Eu := {x ∈ E : |x| ≤ λu for some λ > 0}.
An abstract dynamical system is a triple (E, u, T ), where E is a Banach lattice
with quasi-interior point u and T : E → E is a Banach lattice automorphism
satisfying Tu = u.

A dynamical lattice is a triple (V,m, f), where

1) V is a distributive lattice with 0 and 1;

2) m : V → R≥0 satisfies m(0) = 0 and m(a) = 0 ⇒ m(a ∨ b) = m(b) for
all a, b ∈ V ;

3) f : V → V is a lattice homomorphism such that m(a) = 0⇒ m(f(a)) =
0 for every a ∈ V .

Now, let (E, u, T ) be an abstract dynamical system. We let

1) V be the lattice of all closed lattice ideals in E;

2) m : V → R≥0 be the function I 7→ sup{‖x‖ : x ∈ I ∩ [0, u]};
3) f : V → V be the lattice automorphism I 7→ {T (I)}, i.e., the closed

lattice ideal generated by T (I).

The triple (V,m, f) is called the dynamical lattice of closed ideals associated to
(E, u, T ).

In topological dynamics, we have E = C(X), where X is a compact Haus-
dorff space, u := 1 and T := Tϕ a Koopman operator with ϕ ∈ Aut(X). Then
V is the distributive lattice of open sets. For every a ∈ V , m(a) = 1 iff a 6= ∅
and m(∅) = 0. The lattice automorphism f is given by ϕ−1.

In measurable dynamics, we have E = L1(X), where X = (X,B, µ) is a
probability space, u := 1 and T := Tϕ a Koopman operator with ϕ ∈ Aut(X).
Then V is isomorphic the measure algebra Σ(X). For every a ∈ V , m(a) = µ(a).
The lattice automorphism f is given by ϕ−1.

The main distinction between the Palm’s notion of entropy and ours is the
absence of localization in the original work. Given a cover α ∈ CovV we define

ĥ(α) := sup{h∗(β) : β ∈ CovV such that β � α,N(β) ≤ N(α)}.
Given a cover α ∈ CovV , let

h(α) := inf{
n∑
j=1

ĥ(βj) : n ∈ N, β1, . . . , βn ∈ CovV such that

n∨
j=1

βj � α}.

The entropy of a cover α ∈ CovV with respect to the lattice homomorphism
f is defined as

h(α, f) := lim inf
n→∞

h(αn)

n
,

and the entropy of an abstract dynamical lattice (V,m, f) is given by

h(V,m, f) := sup{h(α, f) : α ∈ CovV }.
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One can show that if (E, u, T ) is a topological or a measure-preserving ab-
stract dynamical system, then h(V,m, f) equals the topological or the Kolmogorov-
Sinai entropy respectively.

6.4.2. Failure of Monotonicity. We will now show that if one takes
Palm’s original notion of the entropy of a measured distributive lattice without
localization, then, in general, entropy of a sublattice can be bigger than the
entropy of a whole lattice. We take Γ to be trivial, this is not essential for our
purposes. So consider measured distributive lattice V = (V,m), where V is
the distributive lattice of all subsets of {a, b, c}, and µ is a probability measure
taking value very close to 1 on atom b. Then by the properties of Palm’s
entropy we have

h̃(V) := sup{h(α) : α ∈ CovV } ≈ 0,

since V is very close to a singleton in the category Prob.
Now, let W = (W,m) be the sublattice of V consisting of the subsets

∅, {a, b}, {b}, {b, c}, {a, b, c}
and carrying the induced measurement function. Then W is no longer an object
of Prob, it is closer to a topological system on {a, b, c} with W being the lattice
of opens. It is straightforward to see that such system has Palm’s entropy

h̃(W) := sup{h(α) : α ∈ CovW } ≈ 1,

which is attained at the cover α := {{a, b}, {b, c}}.
We call this counterexample ‘structural’ because of its nature: within a

representation of a probabilistic system V as a measured lattice there exists a
sublattice W, which is not of a probabilistic origin. This has lead us to the idea
of introducing the localized entropy h·(·). If one was to compute the localized
entropy hW (α) with W,α as above, one would also find that hW (α) ≈ 1; but
not if one takes hV (α) instead. The reason is once again ‘structural’: V is the
minimal spacial sublattice containing α, while W is not spacial at all.

The notion of a factor of an abstract dynamical system is missing in the
original work of Palm. Thus the question remains if there is such a notion
of factor so that the Palm’s entropy for abstract dynamical systems would
decrease ‘along the arrows’.

6.4.3. Extending Sofic Entropy. This work was partially motivated by
a recent paper [KL11], where an ‘operator algebra’ approach was used to define
sofic measure-theoretic and sofic topological entropies. The arguments share
many similarities, thus it appears natural to ask whether Palm’s approach can
give a common generalization for sofic entropies. However, at the moment it is
not clear if such a common generalization exists.
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CHAPTER 7

The Theorems of Brudno

Originally, entropy in mathematics was introduced by C. E. Shannon as a
certain measure of the amount of information coming from a data source. In
particular, the well-known ‘lossless coding theorem’ implies that, under certain
assumptions on a compression algorithm and a data source, entropy of the data
source equals the optimal compression ratio attainable with the compression
algorithm. Later, the notion of Shannon entropy was modified by A. N. Kol-
mogorov and Ya. G. Sinai in order to study measure-preserving dynamical
systems (see Section 5.1).

In Chapter 4 we discussed Kolmogorov complexity, which is an alternative
notion of the amount of information. A natural question is whether one can
adapt Kolmogorov complexity for studying dynamical systems as well. For
N-systems, some answers to these questions were given by A. A. Brudno in
his papers [Bru74] and [Bru82]. In the first article, the relation of topological
entropy and Kolmogorov complexity for subshifts was studied, while the second
paper focused on Kolmogorov-Sinai entropy and Kolmogorov complexity for
subshifts and more general measure-preserving N-systems. The goal of this
chapter is to provide the generalizations of these theorems of Brudno on entropy
and Kolmogorov complexity beyond the known case of subshifts on Z. The
presentation of these results is based on [Mor15b] and [Mor15c].

This chapter is structured as follows. The first theorem of Brudno for
subshifts over groups admitting computable Følner monotilings is proved in
Section 7.1. Next, we proceed to the second theorem. Our goal is to prove a
generalization of the second theorem of Brudno for subshifts over groups which
posses particularly nice computable symmetric Følner monotilings, which we
call regular. This requirement is stronger than normality, namely we require
that the Følner sequence is tempered and two-sided and that the corresponding
sets of centers are ‘good’ for taking pointwise ergodic averages. The notion of
a regular Følner monotiling is introduced in Section 7.2, where we also provide
some examples. The main theorem is proved in Section 7.3.

7.1. The First Theorem

The goal of this section is to prove the following:

Theorem 7.1.1. Let (Γ, ı) be a computable group with a fixed computable
normal Følner monotiling ([Fn,Zn])n≥1. Let X = (X,Γ) be a subshift on Γ

93
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and FΛ be the associated word presheaf on Γ. Then

K̃(FΛ) = hTop(X),

where the asymptotic complexity of the word presheaf FΛ is computed along the
sequence (Fn)n≥1.

The proof is split into two parts, establishing respective inequalities in
Theorems 7.3.5 and 7.3.7. We now use Example 5.4.1, which we now recall.

Proposition 7.1.2. Let X be a subshift of ΛΓ. Then

hTop(X) = lim
n→∞

log cardFΛ(Fn)

|Fn|
.

We will now establish the first inequality. The proof is essentially the same
as the original one from [Bru74].

Theorem 7.1.3. In the setting of Theorem 7.3.1 we have

(7.1.1) hTop(X) ≤ K̃(FΛ)

Proof. By the definition, we have to show that

lim
n→∞

log cardFΛ(Fn)

|Fn|
≤ lim sup

n→∞
max

ω∈FΛ(Fn)
K(ω, Fn).

Suppose that K̃(FΛ) < t for some t ≥ 0. Then there exists n0 such that for
all n ≥ n0 and all ω ∈ FΛ(Fn) the inequality K(ω, Fn) ≤ t |Fn| holds. There
are at most 2t|Fn|+1 valid binary programs for the decompressor A∗ of length
at most t |Fn|, hence cardFΛ(Fn) ≤ 2t|Fn|+1. Taking the logarithm shows that
for all n ≥ n0 we have

log cardFΛ(Fn)

|Fn|
≤ t+

1

|Fn|
,

and this completes the proof.

The proof of the second inequality requires more work. The proof we
provide is based on the idea of the proof of Lemma 5.1 from [Sim15].

Theorem 7.1.4. In the setting of Theorem 7.3.1 we have

(7.1.2) hTop(X) ≥ K̃(FΛ)

Proof. By the definition, we have to show that

lim sup
n→∞

max
ω∈FΛ(Fn)

K(ω, Fn) ≤ lim
n→∞

log cardFΛ(Fn)

|Fn|
.

The alphabet Λ is finite, so we encode each letter of the alphabet Λ using
precisely blog card Λc + 1 bits. We fix this encoding. Then binary words of
length N (blog card Λc+ 1) are unambiguously interpreted as Λ-words of length
N . We will now describe a decompressor A! that will be used to prove the
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theorem. The decompressor is defined on the domain of binary programs of
the form

(7.1.3) p = k̂n̂N̂L̂̂lw1w2 . . .wN v̂i1̂i2 . . . îs.

Here k̂, n̂, N̂, L̂, l̂ are the simple prefix-free encodings of the natural numbers
k, n,N,L, l. The binary words w1,w2, . . . ,wN have all length L. The words

î1, î2, . . . , îs encode some natural numbers i1, i2, . . . , is that are required to be
less or equal to N . Finally, v is a binary word of length l. Observe that
programs of the form (7.1.3) are indeed unambiguously interpreted.

The decompressor A! works as follows. First, given k, n above, the finite
sets

Fk, Fn, intl
Fk

(Fn), intl
Fk

(Fn) ∩ Zk ⊆ N

are computed. We let Ik,n := intl
Fk

(Fn) ∩ Zk and compute the set

∆k,n := Fk
(
intl

Fk
(Fn) ∩ Zk

)
⊆ Fn.

We treat N binary words w1,w2, . . . ,wN of length L as encodings of Λ-words
w1, w2, . . . , wN of length Fk. If L 6= |Fk| (blog card Λc+ 1) the algorithm
terminates without producing output. The words w1, w2, . . . , wN form the
dictionary that we will use to encode parts of the words. We require that
s =

∣∣intl
Fk

(Fn) ∩ Zk
∣∣ and

l = |Fn \∆k,n| (blog card Λc+ 1) ,

and the algorithm terminates without producing output if this does not hold.
Otherwise, the binary word v of length l is seen as a binary encoding of the
Λ-word v of length |Fn \∆k,n|.

We will now compute a Λ-word ω defined on Fn. The set intl
Fk

(Fn) ∩ Zk
is ordered as a subset of N. For j-th element gj ∈ intl

Fk
(Fn) ∩ Zk we require

that ω|Fkgj ◦ ı
−1
Fkgj

= wij , where j = 1, 2, . . . , s. That is, we require that

the restriction of ω to the subset Fkgj coincides with ij-th element of the
dictionary for every j. It is clear that this determines the restriction ω|∆k,n

,

and it remains to describe ω|Fn\∆k,n
. We require that ω|Fn\∆k,n

◦ ı−1
Fn\∆k,n

= v.

The decompressor A! prints the Λ-word ω ◦ ı−1
Fn

.
Fix k ≥ 1 and ε > 0. Let n0 be such that for all n ≥ n0 we have

|Fn \∆k,n|
|Fn|

≤ ε.

Let ω ∈ FΛ(Fn). We use the following program to encode ω. We let N :=
cardFΛ(Fk), L := |Fk| (blog card Λc+ 1) and w1, w2, . . . , wN be the list of
words υ ◦ ı−1

Fk
for υ ∈ FΛ(Fk) (say, in lexicographic order). For every gj ∈

intl
Fk

(Fn) ∩ Zk and every x ∈ Fk note that

ω|Fkgj (xgj) = (gj · ω)|Fk(x),

where gj · ω ∈ X by invariance. Hence we let ij be the index of the word (gj ·
ω)|Fk◦ı

−1
Fk

in the dictionary w1, w2, . . . , wN for every j = 1, 2, . . . ,
∣∣intl

Fk
(Fn) ∩ Zk

∣∣.
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Finally, we let v be the remainder ω|Fn\∆k,n
◦ ı−1

Fn\∆k,n
and l be the length of

the binary encoding of the word v. It is clear that the program (7.1.3) with
the parameters determined above does describe ω|Fn .

It remains to estimate the length of p. It is easy to see that

l(p) ≤ l(k̂) + l(n̂) + l(N̂) + l(L̂) + l(̂l) + cardFΛ(Fk) |Fk| (blog card Λc+ 1) +

+ |Fn \∆k,n| (blog card Λc+ 1) + |Ik,n| l(N̂),

and taking the limit as n→∞ we see (using Proposition 1.3.3) that

lim sup
n→∞

max
ω∈FΛ(Fn)

K(ω, Fn) ≤ ε (blog card Λc+ 1) +

+
2blog(blog cardFΛ(Fk)c+ 1)c+ blog cardFΛ(Fk)c+ 5

|Fk|
.

Since k, ε are arbitrary, the conclusion follows.

It is clear that the Theorem 7.1.1 now follows from Theorem 7.3.5 and
Theorem 7.3.7.

7.2. Regular Følner monotilings

For the purposes of this work we need to introduce special Følner monotil-
ings where one can ‘average’ along the intersections Fn ∩ Zk for every fixed k
and n→∞. This, together with some other requirements, leads to the follow-
ing definition. We call a left Følner monotiling ([Fn,Zn])n≥1 regular if the
following assumptions hold:

a) the sequence (Fn)n≥1 is a tempered two-sided Følner sequence;

b) for every k ∈ N the function 1Zk ∈ `∞(Γ) is a good weight for pointwise
convergence of ergodic averages along the sequence (Fn)n≥1;

c) |Fn|
logn →∞ as n→∞;

d) e ∈ Fn for every n.

From the definition of a regular Følner monotiling and the preceeding re-
sults we can immediately derive the following proposition.

Theorem 7.2.1. Let ([Fn,Zn])n≥1 be a regular Følner monotiling. Then
for every measure-preserving Γ-system X = (X, π) on a space X = (X,B, µ),
every f ∈ L∞(X) and every k ≥ 1 the limits

|Fk| lim
n→∞

Eg∈Fn1Zkf(g · ω) = lim
n→∞

Eg∈Fn∩Zkf(g · ω) =

= lim
n→∞

Eg∈intl
Fk

(Fn)∩intr

F
−1
k

(Fn)∩Zkf(g · ω)

exist and coincide for µ-a.e. ω ∈ X.

Proof. Existence of the limit on the left hand side follows from the defini-
tion of a good weight and the definition of a regular Følner monotiling, equality
of the limits follows from Proposition 1.3.3.
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Of course, our motivating example for the notion of a regular Følner
monotiling is the Example 1.3.1. Below we explain why the corresponding
indicator functions 1Zk are good weights for every k. Checking the remaining
conditions for the regularity of the Følner monotiling ([Fn,Zn])n≥1 is straight-
forward.

Example 7.2.2. Let Γ be an amenable group with a fixed tempered Følner
sequence (Fn)n≥1, H ≤ Γ be a finite index subgroup. Let F ⊆ Γ be a fun-
damental domain for left cosets of H. Then [F,H] is a left monotiling of Γ.
Furthermore, the indicator function 1H is a good weight. To see this, consider
the ergodic system X := (Γ/H, π), where Γ acts on the left on the finite set
Γ/H with the normalized counting measure | · |· by

g(fH) := gfH, f ∈ F, g ∈ Γ.

Let f := 1eH ∈ L∞(Γ/H) and x := eH ∈ Γ/H. Then 1H(g) = f(g · x) for all
g ∈ Γ and the statement follows from Theorem 3.4.3 1.

We are now able return to some of the examples of the computable monotil-
ings from the previous sections and prove the regularity.

Example 7.2.3. Consider the group Zd for some d ≥ 1. Since Zn = nZd is
a finite index subgroup, we conclude that ([Zn, Fn])n≥1 is a computable regular
symmetric Følner monotiling.

Next, we return to the monotiling of the discrete Heisenberg group.

Example 7.2.4. Consider the group UT3(Z) and the monotiling ([Fn,Zn])n≥1

from Example 1.3.2 given by

Zn = {(a, b, c) ∈ UT3(Z) : a, b ∈ nZ, c ∈ n2Z}
and

Fn = {(a, b, c) ∈ UT3(Z) : 0 ≤ a, b < n, 0 ≤ c < n2}
for n ≥ 1. Zn is a finite index subgroup with a fundamental domain Fn, so it
follows that ([Fn,Zn])n≥1 is a computable regular symmetric Følner monotil-
ing.

In this last example we will demonstrate, referring to the work [GS02] for
details, that the groups UTd(Z) for d > 3 have computable regular symmetric
Følner monotilings as well.

Example 7.2.5. Let an integer d > 3 be fixed. Let uij be the matrix
whose entry with the indices (i, j) is 1, and where all the other entries are
zero. Let Tij := I + uij for all 1 ≤ i, j ≤ d. Let p be a prime number. For

every m ∈ N consider the subgroup Zm of UTd(Z) generated by T p
m(j−i)

ij for

all indices (i, j), i < j. Then Zm is an enumerable subset. There exists a total
computable function φ : N2 → UTd(Z) such that

Zm = {φ(m, 1), φ(m, 2), φ(m, 3), . . . }

1One can also prove this directly without referring to Theorem 3.4.3
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for all m ≥ 1.
Zm is finite a index subgroup of UTd(Z) for every m. The fundamental

domain ρm for Zm can be written as

ρm :={T kd−1,d

d−1,d · · ·T
k1,d

1,d :

ld−1,d(m) ≤ kd−1,d ≤ Ld−1,d(m), . . . , l1,d(m) ≤ k1,d ≤ L1,d(m)},

where

li,j(m) = −bp
m(j−i)

2
c, Li,j(m) = bp

m(j−i) + 1

2
c.

It is clear that the sequence of sets m 7→ ρm is canonically computable. Fur-
thermore, it is shown in [GS02] that (ρm)m≥1 is a two-sided Følner sequence.
Computablity of the Følner monotiling ([ρm,Zm])m≥1 follows from Proposition
4.4.5.

The fact that the Følner monotiling ([ρm,Zm])m≥1 is symmetric is clear
since Zm is a subgroup for every m. The fact that for each m the function
1Zm is a good weight along a tempered subsequence of (ρm)m≥1 follows from
Example 7.2.2. It is clear that we can ensure the growth conditions by picking
a subsequence (ni)i≥1 computably such that ([ρni ,Zni ])i≥1 is a computable
regular symmetric Følner monotiling.

7.3. The Second Theorem

We recall that by a subshift (X,Γ) we mean a closed Γ-invariant subset
X of ΛΓ, where Λ is the finite alphabet of X. The left action of the group Γ
on X is given by

(g · ω)(x) := ω(xg) ∀x, g ∈ Γ, ω ∈ X.

The words consisting of letters from the alphabet Λ will often be called Λ-
words. Of course, we can assume without loss of generality that Λ = {1, 2, . . . , k}
for some k. When an invariant probability measure µ is fixed on X, we will
often denote by X = (X, µ,Γ) the associated measure-preserving system. We
can associate a word presheaf FΛ to the subshift (X,Γ) by setting

(7.3.1) FΛ(F ) := {ω|F : ω ∈ X}.

That is, FΛ(F ) is the set of all restrictions of words in X to the set F for every
computable F .

The main result of this section is

Theorem 7.3.1. Let (Γ, ı) be a computable group with a fixed computable
regular symmetric Følner monotiling ([Fn,Zn])n≥1. Let (X,Γ) be a subshift
on Γ, µ ∈ M1

Γ(X) be an ergodic measure and X = (X, µ,Γ) be the associated
measure-preserving system. Then

K̂(ω) = hProb(X)

for µ-a.e. ω ∈ X, where the asymptotic complexity is computed with respect to
the sequence (Fn)n≥1.
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The proof is split into two parts, establishing respective inequalities in
Theorems 7.3.5 and 7.3.7. From now on, we follow more or less the strategy of
the Brudno’s original paper [Bru82].

Given a subshift X ⊆ ΛΓ with an invariant measure µ on the alphabet
Λ = {1, . . . , k}, we define the partition

αΛ := {A1, . . . , Ak}, Ai := {ω ∈ X : ω(e) = i} for i = 1, . . . , k.

Then αΛ is, clearly, a generating partition. We will use the Kolmogorov-Sinai
generator theorem (see Section 5.5.2), which we recall below.

Proposition 7.3.2. Let X ⊆ ΛΓ be a subshift, µ be an invariant measure
on X, X = (X, µ,Γ) be the associated measure-preserving system and αΛ be the
partition defined above. Then

hµ(αΛ,Γ) = hProb(X).

Given a word ω ∈ X and a finite subset F ⊆ Γ, we will set

XF (ω) := {σ ∈ X : σ|F = ω|F },

i.e., XF (ω) is the cylinder of all words in X that coincide with ω when restricted
to F . Note that

(7.3.2) XF (ω) =

∨
g∈F

g−1αΛ

 (ω) = αFΛ (ω),

i.e. the cylinder set XF (ω) is precisely the atom of the partition αFΛ that
contains ω.

The alphabet Λ is finite, so we encode each letter of the alphabet Λ using
precisely blog card Λc+1 bits. Then binary words of length N (blog card Λc+ 1)
are unambiguously interpreted as Λ-words of length N .

7.3.1. Part A. The first step is proving that the Kolmogorov complexity
of a word over Γ is shift-invariant. In the proof below it will become appar-
ent why we need a computable structure on the group and why we require
the Følner sequence to be computable. In the proof below we view Γ as a
computable subset of N such that the multiplication is computable.

Theorem 7.3.3 (Shift invariance). Let (Γ, ı) be a computable amenable
group with a fixed canonically computable right Følner sequence (Fn)n≥1 such

that |Fn|logn →∞ as n→∞. Let (X,Γ) be a subshift and ω ∈ X be a word on Γ.

Then for every g ∈ Γ

K̂(ω) = K̂(g · ω),

where the asymptotic complexity is computed with respect to the sequence (Fn)n≥1.

Proof. We will prove the following claim: for arbitrary g ∈ Γ

K̂(g · ω) = lim sup
n→∞

K0
A∗((g · ω)|Fn ◦ ı−1

Fn
)

|Fn|
≤ K̂(ω).
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It is trivial to see that the statement of the theorem follows from this claim.
Speaking informally, our idea behind the proof of the claim is that the sets Fn
and Fng

−1 are almost identical for large enough n. The word (g · ω)|Fn∩Fng−1

can be encoded using the knowledge of the word ω|Fn and the computable action
by g that ‘permutes’ a part of the word ω|Fn . To encode the word (g · ω)|Fn
we also need to treat the part outside the intersection. We use the fact that
our Følner sequence is computable, i.e. there is an algorithm that, given n,
will print the set Fn. But then we also know the remainder Fn \Fng−1, which
is endowed with the ambient numbering of Γ ⊆ N. Hence we can simply list
additionally the

∣∣Fn \ Fng−1
∣∣ corrections we need to make, which takes little

space compared to |Fn|. Together this implies that the complexity of (g ·ω)|Fn
can be asymptotically bounded by the complexity of ω|Fn . Below we make this
intuition formal.

Recall that A∗ is a fixed asymptotically optimal decompressor in the def-
inition of Kolmogorov complexity K. We now introduce a new decompressor
A† on the domain of programs of the form

(7.3.3) s01w01n01m01p,

where s is a doubling encoding of a nonnegative integer s, and w is a binary
encoding of a Λ-word υ of length s, hence l(w) = s(blog card Λc+ 1). Next, n
and m are doubling encodings of some natural numbers n,m. The remainder
p is required to be a valid input for A∗. Observe that programs of this form
(Equation (7.3.3)) are unambiguously interpreted.

The decompressor A† is defined as follows. Let g := gm be the element
of the computable group (Γ, ı) with index m, and let F := Fn be the n-th
element of the canonically computable Følner sequence (Fn)n≥1. We compute
the set D := F \ Fg−1, which is seen as a subset of N with induced ordering.
Further, we compute the word ω̃1 := A∗(p). The increasing bijection ıF : F →
{1, 2, . . . , |F |} maps the subsets F ∩ Fg−1 and Fg ∩ F of F to subsets Y1, Y2

of {1, 2, . . . , |F |}. The right multiplication Rg on Γ is computable and restricts

to a bijection from F ∩ Fg−1 to Fg ∩ F , so let R̃g be the bijection making the
diagram

F ∩ Fg−1 ıF //

Rg

��

Y1

R̃g

��
Fg ∩ F ıF // Y2

commute. The output of A† is produced as follows. For x ∈ Y1 ⊆ {1, 2, . . . , |F |}
we set ω̃2(x) := ω̃1(R̃g(x)), and the algorithm terminates without producing

output if R̃g(x) > l(ω̃1) for some x. It is left to describe ω̃2 on the remain-
der Y0 := {1, 2, . . . , |F |} \ Y1. We let ω̃2|Y0

:= υ ◦ ıY0
, where ıY0

: Y0 →
{1, 2, . . . , cardY0} is an increasing bijection. The algorithm prints nothing and
terminates if cardY0 6= s, otherwise the word ω̃2 is printed.
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Let (g ·ω)|Fn ◦ ı−1
Fn

be the word on {1, 2, . . . , |Fn|} that we want to encode,

where g ∈ Γ has index m. Let pn be an optimal description for ω|Fn ◦ ı−1
Fn

with

respect to A∗. Let υ be the word (g · ω)|Fn\Fng−1 ◦ ı−1
Fn\Fng−1 . To encode the

word (g · ω)|Fn ◦ ı−1
Fn

using A†, consider the program

p̃n := s01w01n01m01pn,

where w is the binary encoding of the Λ-word υ and s =
∣∣Fn \ Fng−1

∣∣. It is

trivial to see that A†(p̃n) = (g · ω)|Fn ◦ ı−1
Fn

.
The length of the program p̃n can be estimated by

l(p̃n) ≤
∣∣Fn \ Fng−1

∣∣ (log card Λ+1)+2 log
∣∣Fn \ Fng−1

∣∣+c+2 log n+2 logm+l(pn),

where c is some constant. By the definition of complexity of sections

K̂(g · ω) = lim sup
n→∞

K0
A∗((g · ω)|Fn ◦ ı−1

Fn
)

|Fn|
.

Using that the optimal decompressor A∗ is not worse than A† (Equation
(4.6.1)), we conclude that

K0
A∗((g · ω)|Fn ◦ ı−1

Fn
) ≤ K0

A†((g · ω)|Fn ◦ ı−1
Fn

) + C ≤
≤
∣∣Fn \ g−1Fn

∣∣ · (log card Λ + 1) + 2 log
∣∣Fn \ Fng−1

∣∣+ 2 log n+ l(pn) + C ′

for some constants C,C ′ independent of n and ω. Taking the limits yields

lim sup
n→∞

K0
A∗((g · ω)|Fn ◦ ı−1

Fn
)

|Fn|
≤ lim sup

n→∞

K0
A∗(ω|Fn ◦ ı

−1
Fn

)

|Fn|
.

This completes the proof of the claim, and therefore the proof of the theorem.

Of course, in the proof above we have not used that X is closed. From now
on we will omit explicit reference to the sequence (Fn)n≥1 when talking about

K̂. The proof of the following proposition is essentially the same to the original
one in [Bru82].

Proposition 7.3.4. Let (Γ, ı) be a computable amenable group with a fixed

canonically computable right Følner sequence (Fn)n≥1 such that |Fn|logn → ∞ as

n→∞. Let (X,Γ) be a subshift. For every t ∈ R≥0 the sets

Et := {ω ∈ X : K̂(ω) = t},

Lt := {ω ∈ X : K̂(ω) < t},

Gt := {ω ∈ X : K̂(ω) > t}

are measurable and shift-invariant.

Proof. Invariance of the sets above follows from the previous proposition.
We will now prove that the set Lt is measurable, the measurability of other
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sets is proved in a similar manner. Observe that

Lt := {ω : K̂(ω) < t} =
⋃
k≥1

⋃
N≥1

⋂
n>N

{ω : K0
A∗(ω|Fn ◦ ı−1

Fn
) < (t− 1

k
) |Fn|},

and the sets {ω : K0
A∗(ω|Fn ◦ı

−1
Fn

) < (t− 1
k ) |Fn|} are measurable as finite unions

of cylinder sets.

We are now ready to prove the Kolmgorov complexity of almost every
word dominates the Kolmogorov-Sinai entropy of an ergodic subshift. The
proof below is a slight adaption of the original one from [Bru82].

Theorem 7.3.5. Let (Γ, ı) be a computable group with a canonically com-

putable tempered two-sided Følner sequence (Fn)n≥1 such that |Fn|logn →∞. Let

(X,Γ) be a subshift on Γ, µ ∈ M1
Γ(X) be an ergodic Γ-invariant probability

measure, and X = (X, µ,Γ) be the associated measure-preserving system. Then

K̂(ω) ≥ hProb(X) for µ-a.e. ω.

Proof. Suppose this is false, and let

R := {ω : K̂(ω) < hProb(X)}

be the measurable set of words whose complexity is strictly smaller than the
entropy hProb(X). By the assumption, µ(R) > 0. The measure µ is ergodic
and the set R is invariant, hence µ(R) = 1. For every i ≥ 1 let

Ri := {ω : K̂(ω) < hProb(X)− 1

i
},

then R =
⋃
i≥1

Ri and the sets Ri are measurable and invariant for all i. It

follows that there exists an index i0 such that µ(Ri0) = 1. For every l ≥ 1
define the set

Ql := {ω : K0
A∗(ω|Fi ◦ ı−1

Fi
) <

(
hProb(X)− 1

i0

)
|Fi| for all i ≥ l},

then Ql is a measurable set for every l ≥ 1 and Ri0 =
⋃
l≥1

Ql. Let 1 > δ > 0

be fixed. The sequence of sets (Ql)l≥1 is monotone increasing, hence there is
l0 such that for all l ≥ l0 we have µ(Ql) > 1− δ.

Let ε < min( 1
i0
, 1 − δ) be positive. Let n0 := n0(ε) ≥ l0 such that for all

n ≥ n0 we have the decomposition X = An tBn, where µ(Bn) < ε and for all
ω ∈ An the inequality

(7.3.4) 2−|Fn|(hProb(X)+ε) ≤ µ(αFnΛ (ω)) ≤ 2−|Fn|(hProb(X)−ε)

holds. Such n0 exists due to Corollary 5.2.2. For every l ≥ n0, we partition
the sets Ql in the following way:

QAl := Ql ∩Al;
QBl := Ql ∩Bl.
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It is clear that for every l ≥ n0

µ(QBl ) < ε;

µ(QAl ) ≥ 1−δ − ε > 0.

By the definition of the set QAl , for all l ≥ n0 and all ω ∈ QAl we have

K0
A∗(ω|Fl ◦ ı

−1
Fl

) ≤ |Fl| (hProb(X)− 1

i0
).

This allows, for every l ≥ n0, to estimate the cardinality of the set of all
restrictions of words in QAl to Fl as∣∣{ω|Fl : ω ∈ QAl }

∣∣ ≤ 2|Fl|(hProb(X)− 1
i0

)+1,

which can be seen by counting all binary programs of length at most |Fl|(hProb(X)−
1
i0

). Combining this with Equation (7.3.4), we deduce that

µ(QAl ) ≤ 2|Fl|(hProb(X)− 1
i0

)+1 · 2−|Fl|(hProb(X)−ε) ≤ 2|Fl|(ε−
1
i0

)+1.

This implies that µ(QAl ) → 0 as l → ∞, since |Fl| → ∞ and ε − 1
i0
< 0. This

contradicts to the estimate

µ(QAl ) ≥ 1− δ − ε
for all l ≥ n0 above.

7.3.2. Part B. In this part of the proof we shall derive the converse
inequality (that the Kolmogorov complexity of almost every word is less or
equal than the Kolmogorov-Sinai entropy), which is technically more difficult
to prove. We begin with a preliminary lemma.

Lemma 7.3.6. Let X = (X, µ,Γ) be an ergodic measure-preserving system,
where the group Γ admits a regular symmetric Følner monotiling ([Fn,Zn])n≥1.
Let (βk)k≥1 be a sequence of finite partitions of X, where βk = {Bk1 , Bk2 , . . . , BkMk

}
for all k ≥ 1. For all k ≥ 1, h ∈ Γ, m ∈ {1, 2, . . . ,Mk} let

(7.3.5) πk,hn,m(ω) := Eg∈Fn∩Zk1Bkm((gh) · ω)

and

(7.3.6) π̃k,hn,m(ω) := Eg∈intl
Fk

(Fn)∩intr

F
−1
k

(Fn)∩Zk1Bkm((gh) · ω).

Then the following assertions hold:

a) For µ-a.e. ω ∈ X the limit

πk,hm (ω) := lim
n→∞

πk,hn,m(ω) = lim
n→∞

π̃k,hn,m(ω)

exists for all k ≥ 1, m ∈ {1, 2, . . . ,Mk} and h ∈ Γ.

b) For µ-a.e. ω ∈ X and all k ≥ 1 there exists h := hk(ω) ∈ F−1
k such that

−
Mk∑
m=1

πk,hm (ω) log πk,hm (ω) ≤ HSh(βk).
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Proof. The first assertion follows from the definition of a regular Følner
monotiling, Theorem 7.2.1 and countability of Γ.

For the second assertion, observe that for µ-a.e. ω, all k ≥ 1 and all
m ∈ {1, 2, . . . ,Mk}

1

|Fk|
∑

h∈F−1
k

πk,hm (ω) = lim
n→∞

Eg∈Fn1Bkm(g · ω),

since, for every k ≥ 1, [Zk, F−1
k ] is a right monotiling,

(intl
Fk

(Fn) ∩ intr
F−1
k

(Fn) ∩ Zk)F−1
k ⊆ Fn

for all n ≥ 1 and ∣∣∣(intl
Fk

(Fn) ∩ intr
F−1
k

(Fn) ∩ Zk)F−1
k

∣∣∣
|Fn|

→ 1

as n→∞.
Using ergodicity of X, we deduce that for µ-a.e. ω, all k ≥ 1 and all

m ∈ {1, 2, . . . ,Mk}
1

|Fk|
∑

h∈F−1
k

πk,hm (ω) = lim
n→∞

Eg∈Fn1Bkm(g · ω) = µ(Bkm),

and the second assertion follows by the concavity of the entropy.

We are now ready to prove the converse inequality. The proof is based
on essentially the same idea of ‘frequency encoding’, but the technical details
differ quite a bit.

Theorem 7.3.7. Let (Γ, ı) be a computable group with a fixed computable
regular symmetric Følner monotiling ([Fn,Zn])n≥1. Let (X,Γ) be a subshift
on Γ, µ ∈ M1

Γ(X) be an ergodic measure and X = (X, µ,Γ) be the associated

measure-preserving system. Then K̂(ω) ≤ hProb(X) for µ-a.e. ω.

Proof. We will now describe a decompressor A! that will be used to en-
code restrictions of the words in X. The decompressor A! is defined on the
domain of the programs of the form

(7.3.7) p := s01t01f101 . . . fL0110r01w01N.

Here s, t, r are doubling encodings of some natural numbers s, t, r. Words
f1, . . . , fL, where we require that L = (card Λ)|Fs|, are doubling encodings of
nonnegative integers f1, . . . , fL. The word w encodes a Λ-word υ of length r.
The word N encodes2 a natural number N . Observe that this interpretation is
not ambiguous. Let

{ω̃1, ω̃2, . . . , ω̃L}
be the list of all Λ-words of length |Fs| ordered lexicographically.

2We stress that we use a binary encoding here and not a doubling encoding.
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The decompressor A! works as follows. From s and t compute the finite
subsets

Fs, Ft, intl
Fs(Ft) ∩ intr

F−1
s

(Ft)

of N. Compute the finite set

Is,t := intl
Fs(Ft) ∩ intr

F−1
s

(Ft) ∩ Zs

of centers of monotiling [Fs,Zs]. Next, for every h ∈ Is,t compute the tile
Th := Fsh ⊆ Ft centered at h. We compute the union

∆s,t :=
⋃

h∈Is,t

Th ⊆ Ft

of all such tiles.
We will construct a Λ-word σ on the set Ft, then σ̃ := σ ◦ ı−1

Ft
yields a word

on {1, 2, . . . , |Ft|}. The word σ is computed as follows. First, we describe how
to compute the restriction σ|∆s,t

. For every h ∈ Is,t the word σ ◦ ı−1
Th

is a word

on {1, 2, . . . , |Fs|}, hence it coincides with one of the words

ω̃1, ω̃2, . . . , ω̃L

introduced above. We require that the word ω̃i occurs exactly fi times for every
i ∈ {1, . . . , L}. This amounts to saying that the word σ|∆s,t

has the collection
of frequencies f1, f2, . . . , fL. Of course, this does not determine σ|∆s,t

uniquely,
but only up to a certain permutation. Let FΛ,p be the set of all Λ-words on ∆s,t

having collection of frequencies f1, f2, . . . , fL. If
L∑
j=1

fj 6= |Is,t| the algorithm

terminates and yields no output, otherwise FΛ,p is nonempty. The set FΛ,p is
ordered lexicographically (recall that ∆s,t is a subset of N). It is clear that

(7.3.8) cardFΛ,p =
|Is,t|!

f1!f2! . . . fL!

Thus to encode σ|∆s,t
it suffices to give the index NFΛ,p

(σ|∆s,t
) of σ|∆s,t

in
the set FΛ,p. We require that NFΛ,p

(σ|∆s,t
) = N , and this together with the

collection of frequencies f1, f2, . . . , fL determines the word σ|∆s,t
uniquely. If

N > cardFΛ,p, the algorithm terminates without producing output.
Now we compute the restriction σFt\∆s,t

. Since Ft \∆s,t is a finite subset
of N, we can simply list the values of σ in the order they appear on Ft \∆s,t.
That is, we require that

σ|Ft\∆s,t
◦ ı−1
Ft\∆s,t

= υ,

and the algorithm terminates without producing output if r 6= card(Ft \∆s,t).
For all k ≥ 1, let

{ω̃k1 , ω̃k2 , . . . , ω̃kMk
}

be the list of all Λ-words of length |Fk| ordered lexicographically. Here Mk =
(card Λ)|Fk| for all k. For all k ≥ 1 and i ∈ {1, . . . ,Mk} define the cylinder sets

Bki := {ω ∈ X : ω|Fk ◦ ı
−1
Fk

= ω̃ki },
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and let βk := {Bk1 , Bk2 , . . . , BkMk
} be the corresponding partition of X into

cylinder sets for every k. We apply Lemma 7.3.6 to the system X = (X, µ,Γ)
and the sequence of partitions (βk)k≥1. This yields a full measure subset X0 ⊆
X such that for all ω ∈ X0 and all k ≥ 1 there is an element h′ := hk(ω) ∈ F−1

k

such that

(7.3.9) −
M∑
m=1

πk,h
′

m (ω) log πk,h
′

m (ω) ≤ HSh(βk).

Let ω ∈ X0, k ≥ 1 be arbitrary fixed and h′ := hk(ω) ∈ F−1
k be the group

element given by Lemma 7.3.6. Because of the shift-invariance of Kolmogorov

complexity we have K̂(h′ · ω) = K̂(ω). We will show that

K̂(ω) = K̂(h′ · ω) ≤ HSh(βk)

|Fk|
,

then, since HSh(βk) = HSh(αFkΛ ) for all k ≥ 1, taking the limit as k → ∞
completes the proof of the theorem.

For the moment let n be arbitrary fixed. Observe that for all i ∈ {1, . . . ,Mk}

π̃k,h
′

n,i (ω) =
1

|Ik,n|
∑
h∈Ik,n

1Bki (h · (h′ · ω)),

i.e. |Ik,n| π̃k,h
′

n,i (ω) equals the number of times the translates of the word ω̃ki
along the set Ik,n appear in the word (h′ ·ω)|∆k,n

. It follows by the definition of

the algorithm A! that the following program describes the word (h′ ·ω)|Fn ◦ ı−1
Fn

:

p := k01n01f101 . . . fMk
0110r01w01N

Here fi is the doubling encoding of |Ik,n| π̃k,h
′

n,i (ω) for all i ∈ {1, . . . ,Mk}. The

binary word w encodes the word υ = (h′ · ω)|Fn\∆k,n
◦ ı−1
Fn\∆k,n

of length r and

N encodes the index of (h′ · ω)|∆k,n
in the set FΛ,p.

We will now estimate the length l(p) of the program p above. We begin
by estimating the length of the word f101 . . . fMk

. Observe that

fj ≤ |Ik,n| ≤
|Fn|
|Fk|

for every j = 1, . . . ,Mk,

hence l(f101 . . . fMk
) = o(|Fn|). Next, we estimate the length of the word w.

Since (Fn)n≥1 is a Følner sequence, we conclude that l(w) = o(|Fn|). It is

clear that l(n) ≤ 2blog nc+ 2 = o(|Fn|), since |Fn|logn →∞. Finally, we estimate

l(N). Of course, l(N) ≤ log
|Ik,n|!

f1!f2!...fMk ! + 1. We use Stirling’s approximation to

deduce that

log
|Ik,n|!

f1!f2! . . . fMk
!
≤ −

Mk∑
j=1

fj log
fj
|Ik,n|

+ o(|Fn|).
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Hence we can estimate the length of p by

l(p) ≤ o(|Fn|)−
Mk∑
j=1

fj log
fj
|Ik,n|

.

Since fi = |Ik,n| π̃k,h
′

n,i (ω) for every i = 1, . . . ,Mk, we deduce that

l(p) ≤ o(|Fn|)− |Ik,n|
Mk∑
j=1

π̃k,h
′

n,j (ω) log π̃k,h
′

n,j (ω).

Dividing both sides by |Fn| and taking the limit as n → ∞, we use Lemma
7.3.6 and Proposition 1.3.3 to conclude that

lim sup
n→∞

K0
A!((h

′ · ω)|Fn ◦ ı−1
Fn

)

|Fn|
≤ HSh(βk)

|Fk|
.

By the optimality of A∗ we deduce that

K̂(h′ · ω) = lim sup
n→∞

K0
A∗((h

′ · ω)|Fn ◦ ı−1
Fn

)

|Fn|
≤ HSh(βk)

|Fk|
and the proof is complete.

7.4. Remarks

7.4.1. The First Theorem of Brudno for Arbitrary Amenable
Groups. As far as we know, no work generalizing the theorems of Brudno
beyond the groups Z and Zd has been published yet. However, it was pointed
out to us by A. Shen after publishing the preprints [Mor15b], [Mor15c] that An-
drei Alpeev considered the generalization of the results of S. G. Simpson from
[Sim15] in his master thesis ‘Entropy and Kolmogorov complexity for subshifts
over amenable groups’. One of the main theorems of that thesis asserts that the
first theorem of Brudno holds for subshifts over arbitrary computable amenable
groups. However, that work has not been published yet and is only available
in Russian. The advantage of working with computable Følner monotilings as
we do in this thesis is that the proof of the first theorem of Brudno becomes
essentially simple, but it is not clear whether computable Følner monotilings
exist for all computable amenable groups.

7.4.2. Regularity and Subsequential Ergodic Theorems. Suppose
that ([Fn,Zn])n≥1 is a left Følner monotiling. Proposition 1.3.3 asserts that
for every fixed k ∣∣intl

Fk
(Fn) ∩ Zk

∣∣
|Fn|

→ 1

|Fk|
as n → ∞, which implies ‘positive density’ of the set Zk. However, even
for Z-actions the pointwise convergence along positive density subsequences
might fail, we refer to [Kre85, §8.2, Section 2] for the details. This is why
in the definition of a regular Følner monotiling ([Fn,Zn])n≥1 we require that
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for every k ≥ 1 the indicator function 1Zk is a good weight for the pointwise
convergence of ergodic averages.



Summary

This thesis is dedicated to studying the theory of entropy and its relation to
the Kolmogorov complexity. Originating in physics, the notion of entropy was
introduced to mathematics by C. E. Shannon as a way of measuring the rate
at which information is coming from a data source. There are, however, a few
different ways of telling how much information there is: an alternative approach
to quantifying the amount of information is the Kolmogorov complexity, which
was proposed by A. N. Kolmogorov.

The Shannon entropy is the key ingredient in the definition of the Kolmogorov-
Sinai entropy of a measure-preserving systems. Roughly speaking, the Kolmogorov-
Sinai entropy is the expected amount of information in ‘Shannon sense’ that
one obtains per unit of time by observing the evolution of a measure-preserving
system. In topological dynamics, the topological entropy takes place of the
Kolmogorov-Sinai entropy. For metrizable systems, the topological entropy
measures the exponential growth rate of the number of distinguishable partial
orbits of length n as n tends to infinity. Originally defined for Z-actions, the
‘classical’ theories of entropy were later extended to actions of amenable groups.
We provide a necessary background on amenable groups, topological/measure-
preserving dynamics and the entropy theory in Chapters 1, 2, 3 and 5.

The main focus of this thesis is extending the following results. First of all,
a common generalization of the topological and the Kolmogorov-Sinai entropy
theories for Z-systems was suggested by G. Palm. We provide an abstract
generalization of the work of Palm for actions of discrete amenable groups in
the language of measurement functors in Chapter 6.

Secondly, we investigate the connection of entropy and Kolmogorov com-
plexity. Originally, the equality between the topological entropy and a certain
quantity measuring maximal asymptotic Kolmogorov complexity of the trajec-
tories was established by A. A. Brudno for subshifts over Z. Later, he proved
the equality of the Kolmogorov-Sinai entropy and the asymptotic Kolmogorov
complexity of almost every trajectory for ergodic subshifts over Z. We provide
a generalization of these results as follows. Firstly, in Chapter 4 we give a back-
ground on computability and Kolmogorov complexity and, further, introduce
computable Følner monotilings, which are central in our extensions of Brudno’s
results. We treat the ‘first’ and the ‘second’ theorems of Brudno in Chapter 7.
The first theorem is generalized for subshifts over computable groups admitting
computable Følner monotilings, while the second theorem is proved under the
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assertion of regularity of the monotiling, which we introduce in Chapter 7 as
well.



Samenvatting

Het doel van dit proefschrift is het bestuderen van entropie en de relatie
tussen entropie en Kolmogorov complexiteit. Het begrip van entropie, dat oor-
spronkelijk uit de natuurkunde komt, is geintroduceerd in de wiskunde door
C. E. Shannon als een maat van de informatiedichtheid gegenereerd door een
informatiebron. Er zijn nog een paar andere manieren om te bepalen hoeveel
informatie er is. Kolmogorov complexiteit, geintroduceerd door A. N. Kolmo-
gorov, is een alternatieve benadering tot dit probleem.

De Shannon entropie wordt gebruikt om de Kolmogorov-Sinai entropie van
een dynamisch systeem met een invariante maat te definieren. In grote lijnen,
de Kolmogorov-Sinai entropie is de verwachte hoeveelheid informatie (volgens
Shannon) die we per tijdseenheid krijgen door waarneming van het gedrag
van het systeem. De topologische entropie speelt dezelfde rol in de studie van
topologische dynamische systemen. Als het systeem metriseerbaar is, meet
de topologische entropie de exponentiële groei van het aantal onderscheidbare
trajecten van lengte n in het systeem als n → ∞. De ‘klassieke’ theorieën
van entropie zijn oorspronkelijk ontwikkeld voor Z-groepsacties, en zijn later
uitgebreid voor de groepsacties van amenable groepen. In Hoofdstukken 1, 2,
3 en 5 wordt de benodigde achtegrond informatie met betrekking tot amenable
groepen, dynamische systemen en entropie gegeven.

Dit proefschrift is vooral gericht op de uitbreiding van de volgende resul-
taten. Ten eerste, een gemeenschappelijke generalisatie van de topologische en
de Kolmogorov-Sinai entropie theorieën voor Z-systemen is ontwikkeld door G.
Palm. We geven een abstracte generalisatie van de resultaten van Palm voor
groepsacties van discrete amenable groepen, waarvoor we het begrip van maat
functoren ontwikkelen.

Ten tweede, onderzoeken we de relatie tussen entropie en Kolmogorov com-
plexiteit. De gelijkheid tussen de topologische entropie en een bepaalde maat
van ‘maximale asymptotische Kolmogorov complexiteit’ van de trajecten voor
Z-subshiften is bewezen door A. A. Brudno. Later toonde hij ook de gelijk-
heid tussen de Kolmogorov-Sinai entropie en de asymptotische Kolmogorov
complexiteit aan voor bijna elk traject van een ergodische Z-subshift. We ont-
wikkelen een generalisatie van deze resultaten als volgt. Ten eerste geven we
de achtegrond in berekenbaarheid en Kolmogorov complexiteit in Hoofdstuk 4.
We introduceren ook de berekenbare Følner monobetegelingen, die we later in
onze uitbreidingen van de resultaten van Brudno gebruiken. We behandelen de
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‘eerste’ en de ‘tweede’ stelling van Brudno in Hoofdstuk 7. De eerste stelling
wordt veralgemenizeerd voor subshifts op berekenbare groepen die een bereken-
bare Følner monobetegeling hebben. De tweede stelling wordt bewezen voor
ergodische subshifts op de berekenbare groepen die een reguliere berekenbare
Følner monobetegeling hebben, die we in Hoofdstuk 7 intoduceren.
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