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Abstract
Analysing single-cell RNA sequencing data is be-
coming an increasingly tedious task as the size of
data sets grows. As a proposed solution, recent dis-
coveries suggest that these data sets can be bina-
rized without losing much information. This in turn
should allow for memory and time efficient meth-
ods of storage and computation. Numerous analy-
ses techniques require cell clustering as a prelim-
inary procedure, which suggests the need to eval-
uate binary representation performance under that
context. In this work we present a comparison be-
tween binary clustering results and the state-of-the-
art, with a focus on similarity metric choice and
the impact on intermediate steps of the procedure
(i.e. similarity matrices and kNN graphs). The
method was evaluated on single-cell transcriptomic
data sets, utilizing a combination of R and C++ as
an evaluation framework. Through these means we
found that some of the similarity metrics operat-
ing on continuous input can possibly be reproduced
with similarity metrics operating on binary input.

1 Introduction
Single-cell RNA sequencing (scRNA-seq) is a powerful tool
utilized in studying heterogeneity of cell populations. The
method facilitates the examination of transcriptome for each
individual cell in the population, which lead to discoveries
previously unachievable. Specifically, scRNA-seq found its
extensive use in studying diversity of cancer cells [1–3], as
well as bringing insight into early embryo development [4,5]
and emerging plenteous cell atlases projects [6–8], which
contribute to understanding the cell biology of living organ-
isms and disease development.

Numerous analyses techniques require cell clustering as a
preliminary procedure. Recent years saw a 100-fold increase
in the number of cells in scRNA-seq datasets [9], which re-
sulted in an increase of time and memory requirements, in-
cluding for the clustering process. As a solution, a change
has been proposed to the representation of expression matrix
- the magnitude of a count could be disregarded and only the
absence or presence of a gene could be useful enough infor-
mation on its own [10]. This idea of a cell clustering algo-
rithm which operates on a binarized input will be referred to
as binary cell clustering. Further analyses [9] prove that with
larger datasets, the sparsity increases, which leads to more
relative information being stored in the presence or absence
of a count, rather than its magnitude. Initial experiments with
the binary representation [9] show a 17-fold decrease in stor-
age requirements, while preserving close to perfect correla-
tion in quality of cell type identification on recent datasets.
Thus, binary cell clustering already shows promising results
at an early development stage, which suggests a need for fur-
ther investigation into its potential optimisations.

As the clustering task is based on cell-to-cell transcriptome
similarity, a numerical method is needed in order to decide
the resemblance between two arbitrary cells. The choice of

such a similarity metric can have a big impact on the qual-
ity of cell type identification, which was proven in multiple
existing evaluations for single-cell clustering [11–13]. How-
ever, none of the studies seem to specifically target clustering
with binarized input. Furthermore, existing evaluations keep
their focus on the quality of final results - namely, the cor-
respondence of clustering labels to the ground truth. Since
the binary cell clustering is still a novel idea, analysing only
the end outcomes might not be enough to discover all impli-
cations coming from the input change. Instead, we suggest
taking a closer look at the comparison of similarity metrics
with binary and non-binary input and the immediate follow-
ing outcomes: 1) similarity matrices and 2) kNN graphs. As
such, the main question in this work is: how similar are bi-
nary similarity metrics to continuous similarity metrics when
applied on scRNAseq data ?

The problem was tackled with empirical data analysis. To
the extent of our knowledge, there were no viable frameworks
implementing binary cell clustering. As such, an entire clus-
tering pipeline (Fig. 1) has been developed in the process
alongside an evaluation framework which quantified the qual-
ity of results. Furthermore, the research involved two meth-
ods of comparison between binary and non-binary clustering
- one for similarity matrices and one for kNN graphs.

We will first discuss the methodological approach, fol-
lowed by the presentation and analysis of the results obtained
with experiments. Afterwards, we will reflect on technical
limitations and provide directions for future research of the
topic. A short chapter will also be dedicated to ethical as-
pects of our work. A summary of key conclusions can be
found in the very end of the document.

2 Methodology
2.1 Similarity metrics
It should first be noted that, formally, a similarity metric
is a function that has the four properties: reflexivity, non-
negativity, symmetry and triangle inequality. Some of the
functions in this work do not posses all four characteristics.
However, for the simplification purposes, they will still be re-
ferred to as ’similarity metrics’. Furthermore, similarity met-
rics that operate on a continuous scRNAseq dataset will be
referred to as ’continuous metrics’. Metrics that operate on
binary scRNAseq dataset will be referred to as ’binary met-
rics’.

2.2 Continuous metrics
In an attempt to gather a list of most popular and best per-
forming continuous similarity metrics for non-binarized cell
clustering, previous evaluations on that topic were consid-
ered. However, it seems that there is no agreement among
researchers, neither with regards to which metrics perform
best, nor to which of them are worth evaluating in the first
place. Watson et al. [11] gathered 17 similarity metrics and
showed that their performance is highly dependent on dataset
characteristics. Skinnider et al. [12] also evaluated 17 met-
rics, with a clear recommendation for proportionality-based
ones. Kim et al. [13] only included 5 metrics, arguing that
correlation-based metrics outperform true distance metrics.



Figure 1: Binary cell clustering pipeline assumed for the C++ implementation

Figure 2: Venn diagram presenting continuous similarity metrics
used in existing evaluations.

We chose different metrics based on their frequency of
occurrence in aforementioned papers (Fig. 2). Four metrics
were included in all three papers, seven more were included
in both Watson and Skinnider. Both Watson and Skinnider
defined Jaccard and Hamming as operating on binarized in-
put. As that would yield trivial results in our context, these
two metrics were excluded, ending up with nine continuous
metrics in total.

2.3 Binary metrics

The research on binary similarity metrics, especially in the
context of clustering, seems to be sparse. There is insufficient
empirical analysis to easily extract a list that could be suitable
for binary cell clustering.

The main issue is that, when combined with kNN algo-
rithm, binary metrics often produce equal results. As calcu-
lating a similarity matrix is an expensive operation, knowing
which metrics would produce same results was crucial to de-
crease time required for computation. We first discuss the
problem of ’metric duplicates’ in detail, followed by the pro-
cess of extraction of the final list.

xi = 1 xi = 0
yi = 1 a b a+ b
yi = 0 c d c+ d

a+ c b+ d p = a+ b+ c+ d

Table 1: Frequency table for two binary sequences x and y

Identifying monotonic binary metrics
Two binary metrics can yield exact same results even if they
share differences when applied to non-binary data. This
issue, however, is not as trivial as it may seem, as we can
differ two possibilities for that situation to happen:

(I) Metrics yield the same output

An example could include Canberra distance and Manhat-
tan distance. By definition, Canberra is a weighted variant
of Manhattan distance with formal mathematical definition
given as follows:

DManhattan =

n∑
i=1

|xi − yi|

DCanberra =

n∑
i=1

|xi − yi|
|xi|+ |yi|

When the input is binary however, Canberra’s definition
simply collapses into regular Manhattan:

DBinary Canberra =

n∑
i=1

|xi − yi|

and always produces the same result.

(II) Metrics yield different output, but kNN ordering
remains the same - metrics are monotonic.

As an example, we can construct cell-to-cell similarity ma-
trix for the following data:

1 0 1 0 1
0 0 0 1 0
1 0 0 1 1
0 1 0 0 1
0 0 1 0 0





where each row in the matrix represents data for a single
cell. Furthermore, we can use two binary metrics, Simple
Matching and Rogers & Tanimoto, defined as:

SSimple Matching =
a+ d

a+ b+ c+ d

SRogers & Tanimoto =
a+ d

a+ 2b+ 2c+ d

where a, b, c, d are true positives, false positives, false neg-
atives and true negatives, accordingly (Table 1). When ap-
plied, similarity matrices present as follows:

MSimple Matching =


1 0.2 0.6 0.4 0.6
0.2 1 0.6 0.4 0.6
0.6 0.6 1 0.4 0.2
0.4 0.4 0.4 1 0.4
0.6 0.6 0.2 0.4 1



MRogers & Tanimoto =


1 0.11 0.43 0.25 0.43

0.11 1 0.43 0.25 0.43
0.43 0.43 1 0.25 0.11
0.25 0.25 0.25 1 0.25
0.43 0.43 0.11 0.25 1


As can be seen, nearest neighbours of each cell have the

same ordering for both Simple Matching and Rogers & Tan-
imoto. More formally, computing Spearman’s Rank Correla-
tion row-wise for their similarity matrices, produces 1 in each
row. Spearman’s Rank correlation of two metric ’duplicates’
will always be 1 for any binary sequence - the ’duplicates’ are
monotonic.

Extracting metric list
There exist multiple papers listing, evaluating and describ-
ing properties of binary metrics. Most of them, however,
lacked information about monotonicity relation. Todeschini
et al. [14] published in 2012 a review of 51 binary simi-
larity coefficients for binary chemoinformatics data. Out of
51, seven turned out to have perfect Pearson correlation with
other metrics and thus were excluded from further evaluation.

For the remaining 44, authors measured pairwise Spear-
man’s Rank Correlation ρ, revealing monotonicity. Based
on Todeschini et al.’s work, an arrangement was created (Ta-
ble 5), containing seven groups where coefficients express a
high (ρ > 0.97) correlation, and thus are treated as dupli-
cates. Each group was assigned an arbitrarily chosen ’rep-
resentative’. The groups contained 30 coefficients in total,
leaving out 14 which don’t express high correlation with
none other from the initial list. Furthermore, Cole I, Cole
II and Dice II were excluded due to their lack of symmetry:
s(x, y) ̸= s(y, x), leaving out a total of 18 binary metrics in
the final list (Table 6).

2.4 Comparing similarity matrices
We can measure the resemblance of two matrices with Spear-
man’s Rank Correlation. For each unique pair (b, d) of bi-
nary metric b and continuous metric d, the similarity matrix

Name/Reference cells genes sparsity

Baron et al. [15] 1886 1440 85.7%

Darmanis et al. [16] 466 1669 61.6%

Fletcher et al. [17] 616 3806 70.9%

Lawlor et al. [18] 638 7444 65.4%

PBMC dataset [19] 3500 272 84.4%

Pollen et al. [20] 366 1287 68.8%

Romanov et al. [21] 2881 3046 81.0%

Tasic et al. [22] 1809 7484 61.5%

Table 2: scRNAseq datasets used in this work.

is computed, resulting in B : matrix of binary dataset and
D : matrix of continuous dataset. Both matrices are of the
same size n × n, with B1, B2, . . . , Bn and D1, D2, . . . , Dn

representing rows in corresponding matrices. For each
i ∈ {1, . . . , n}, Spearman’s Rank Correlation ρ(Bi, Di)
was calculated, producing measurements ρ1, ρ2, . . . , ρn, one
for each row. Finally, we computed: 1) mean value ρ̂ of
ρ1, ρ2, . . . , ρn, representing overall quality of matching be-
tween b and d and 2) standard deviation ρSD of ρ1, ρ2, . . . , ρn,
representing how varying the matching quality is over all
cells. Fig. 3 presents the entire process. For simplification
purposes, ρ̂ will be referred to as ”mean Spearman” or a ”ma-
trix matching” between binary metric b and continuous met-
ric d. Standard deviation ρSD will be referred to as ”matrix
matching inaccuracy”.

2.5 Comparing kNN graphs
Taking a step further in the clustering pipeline, a compari-
son between kNN graphs can be drawn in a similar manner
to similarity matrices. The kNN graphs were compared in
their adjacency list representation. Instead of Spearman’s
Rank Correlation, we used Jaccard index to compare the
rows. Furthermore, the experiment was repeated for k ∈
{3, 5, 10, 15, 20, 30}. Fig. 4 presents the process. For sim-
plification purposes, mean cell-wise Jaccard index for kNN
graphs Ĵ will be referred to as ”mean Jaccard” or a ”graph
matching” between binary metric b and continuous metric d.
The standard deviation of Jaccard index across the cells JSD
will be referred to as ”graph matching inaccuracy”.

2.6 Datasets
Metric pairs were evaluated on 8 datasets available through
R’s scRNAseq package [23]. Data used in this work is a subset
of data evaluated in [9]. Small size of datasets was imposed
due to technical limitations (Section 5). Table 2 summarizes
key information about datasets used in this work.



Figure 3: Computation flow for comparing similarity matrices.

Figure 4: Computation flow for comparing kNN graphs.

2.7 Implementation
The entire binary cell clustering pipeline was developed in
C++, which was motivated by the requirement to operate on
a data type that physically implements bit sequence in com-
puter memory, as well as time and memory efficiency con-
siderations. The Boost C++ library [24] was used to phys-
ically access the bits in computer memory and IGraph [25]
provided utility methods for creating the kNN graphs and ap-
plying community detection algorithms. Code repository is
public and available at Bitbucket.org.

In order to compare the results for binary and non-binary
cell clustering, a suitable implementation was also required
for the latter. Conveniently, alongside the paper [12], Skin-
nider also published an R package, dismay [26] that com-
putes similarity matrix for each metric listed in their evalua-
tion. The package was also further used in Watson et al. [11].
To maintain consistency, dismay’s implementation was used
for each of the 9 continuous metrics in this work. C++ and R
code was integrated together using the RCpp package [27].

3 Results & Discussion
Based on the matrix and graph comparison results, further
analysis was carried out. For each binary metric b - continu-
ous metric d pair (b, d), computed quantities include:

• For similiarity matrices:

– ρ̂: mean of cell-wise Spearman’s Rank Correlation,
referred to as ”matrix matching”

– ρSD: standard deviation of cell-wise Spearman’s
Rank Correlation, referred to as ”matrix matching
inaccuracy”

• For kNN graphs, k ∈ {3, 5, 10, 15, 20, 30}:

– Ĵ : mean of cell-wise Jaccard score, referred to as
”graph matching”

– JSD: standard deviation of cell-wise Jaccard score,
referred to as ”graph matching inaccuracy”

Furthermore, the highest matching for a particular contin-
uous metric d across all binary metrics is referred to as ”opti-
mal matching”.

It is worth noticing that dismay was not capable of com-
puting ZI-Kendall metric for two of the datasets, producing
”NA” as output. No other artifacts were recorded.

3.1 Not all continuous similarity metrics have a
matching binary counterpart

It seems that not all continuous metrics can be consistently re-
produced with binary counterparts (Fig. 6). Correlation met-
rics (Spearman, Weighted Rank, Kendall & ZI-Kendall), ex-
cluding Pearson, found at least one near-perfect (ρ̂ > 0.95)
matrix matching in each dataset. Reproducing Pearson, Co-
sine & Canberra produced mixed results. In some datasets,

https://bitbucket.org/jtheunisz/binaryclustering


Figure 5: Matrix matching ρ̂ between each metric pair for DarmanisBrain dataset. Other computed quantities are not included, but could be
presented in the same way. This figure does not provide any conclusions by itself. Its purpose is to help the reader visualize the results of

matrix & graph comparison study.

Figure 6: Lowest and upper bounds of the optimal matrix matching
for each continuous similarity metric across all datasets.

Figure 7: Lowest and upper bounds of the optimal graph matching
for each continuous similarity metric across all datasets.

the metrics found a very high (ρ̂ > 0.94) optimal matrix
matching, but this behaviour was not consistent across differ-
ent inputs. Optimal matrix matchings for Euclidean and Man-
hattan distance were significantly lower than for any other
continuous metric.

3.2 Optimal matchings stay consistent across
datasets

Optimal matchings seem to stay consistent with different
inputs - if b is an optimal matching for d in one dataset,
it is highly likely to also be close to optimal in a differ-
ent dataset. For instance, weighted rank metric consistently
ranked Matthew’s Correlation, Sokal Sneath III and Mount-
ford amongst its top five most optimal matrix matchings (Ta-
ble 3). This behaviour, to a certain degree, was observable
with all continuous metrics in both matrix and graph match-
ings. However, some exceptions to this rule have also been
observed. For instance, Sorgenfrei was the optimal matrix
matching for Euclidean distance in Tasic dataset, but it was
excluded from the top five in almost all other datasets (in Ro-
manov, it placed 4th). This perhaps indicates that the choice
of optimal matching could be related to dataset characteris-
tics, but the diversity of datasets was insufficient to discover
the true pattern.

3.3 kNN graphs are not reproducible with binary
metrics

Despite promising results for matrix matchings (Fig. 6), none
of the continuous metrics found a high-quality, consistent
graph matching with any of the binary metrics (Fig. 7). This
observation could be explained by multiple factors, includ-
ing insufficient size of datasets or their relatively low spar-
sity. However, it is also worth noticing that Spearman’s rank
correlation is much less punishing for the order mismatch of



Dataset 1 2 3 4 5

Baron
Matthew’s Correlation

0.9983
Sokal Sneath III

0.9953
Sokal Sneath V

0.9718
Rogot Goldberg

0.9613
Kulczynski

0.9572

Darmanis
Matthew’s Correlation

0.9983
Sokal Sneath III

0.9892
Peirce I
0.9757

Mountford
0.9645

Sokal Sneath V
0.9488

Fletcher
Sokal Sneath III

0.9950
Matthew’s Correlation

0.9949
Mountford

0.9865
Sokal Sneath V

0.9572
Peirce I
0.9389

Lawlor
Sokal Sneath III

0.9932
Matthew’s Correlation

0.9928
Mountford

0.9901
Sokal Sneath V

0.9811
Baroni Urbani Buser

0.9279

PBMC
Matthew’s Correlation

0.9963
Sokal Sneath III

0.9923
Mountford

0.9595
Sokal Sneath V

0.9573
Rogot Goldberg

0.9353

Pollen
Matthew’s Correlation

0.9903
Sokal Sneath III

0.9896
Mountford

0.9756
Peirce I
0.9466

Sokal Sneath V
0.9318

Romanov
Matthew’s Correlation

0.9975
Sokal Sneath III

0.9969
Mountford

0.9693
Sokal Sneath V

0.9676
Sorgenfrei

0.9340

Tasic
Mountford

0.9768
Sokal Sneath III

0.9734
Matthew’s Correlation

0.9710
Jaccard
0.9315

Sokal Sneath V
0.9279

Table 3: Top five optimal matrix matchings for weigthed rank similarity metric across different datasets. Table cells include the name of
binary metric with its corresponding ρ̂ value.

nearest neighbours than Jaccard score, because it depends on
the magnitude of rank difference, while Jaccard penalizes ev-
ery rank difference in the same manner.

Clearly, graph matching increases for higher matrix match-
ing (Fig. 8). However, there seems to be a non-linear relation-
ship between the two (Fig. 9). This confirms that high matrix
matching is a necessary, but insufficient requirement for high
graph matching between binary and continuous metrics. We
can also observe that graph similarity tends to increase for
higher k (Fig. 9). This, perhaps, indicates that differences in
neighbour ordering happen more often for the closest (lower
k) neighbours.

3.4 Matching accuracy within cells

Matrix matchings with a high cell-wise Spearman mean
tend to have lower cell-wise Spearman standard deviation
(Fig. 11). This implies that the high quality of matrix match-
ing is reflected among all cells. For the graph matching, there
has been insufficient high quality results to show increasing
cell-wise accuracy. However, a similar trend was observed
with low quality graph matchings reflecting the low quality
over all cells (Fig. 11).

3.5 Dataset characteristic impact

In an attempt to predict matrix and graph matching quality on
larger datasets, we plotted these quantities against the three
data characteristics considered in this work - cell count, gene
count and sparsity. However, the results were too varied to
draw any specific conclusion. There seems to be no pattern
between matching quality and the mentioned characteristics
for datasets chosen in this work. It does seem very likely that
this is caused by insufficient diversity of datasets, as distance
metric performance in cell-clustering was shown to be depen-
dant from the input features [11].

Figure 8: Relation between matrix matching and graph matching in
PBMC dataset. Each point represents a result for a single

continuous metric-binary metric pair.

Figure 9: Best exponential curve fit for relation between matrix
matching and graph matching across all datasets. Each point

represents a result for a single continuous metric-binary metric pair.



Figure 10: Minimal (left) and maximal (right) matrix matchings of each of the metric pair across all datasets.

Figure 11: Inaccuracy of matrix matching (top) and graph matching
(bottom) vs. their overall quality. Each dot symbolizes a metric pair

in particular dataset. Lines of best fit plotted in blue.

3.6 Noteable matchings
Aiming to summarize the results, for each of the continuous
metrics we tried to find the most suitable binary metrics that
can consistently reproduce their results. We found the mini-
mal and maximal matrix matchings for each of the metric pair
across all datasets (Fig. 10) and chose pairs with highest and
most consistent scores. Discovered metric pairs are summa-
rized in Table 4. We hope that the following list can serve as
a useful reference for future evaluations on larger datasets.

4 Responsible Research
There is an ongoing crisis of result reproducibility in scien-
tific research, with more than 70% of researchers trying and
failing to reproduce another researcher’s experiments [28].
To overcome this issue, we consulted Stodden et al.’s article
[29], which presents six recommendations for reproducible
research in computational science. Adhering to these recom-
mendations, we made all of our code and datasets publicly
available at Bitbucket.org. Incremental changes in research
progress were documented with version-control system (Git).
All data is accessible in non-proprietary .csv format. Code
repository also contains a manual discussing the computing
environment and software version used for implementation.

5 Conclusions and Future Work
In this work, we aimed to answer how close can we get with
binary similarity metrics to the output produced by continu-
ous similarity metrics, when applied on scRNAseq data. We
discovered that reproducing similarity matrices is possible,
but high resemblance of kNN graphs is not achievable.

Each continuous metric have its set of matching binary
metrics, which achieve the highest resemblance of results.
These matchings seem to stay consistent across different
datasets. Furthermore, highest consistent resemblance was
achieved for correlation-based metrics and lowest for true dis-
tance metrics. Best performing metric matchings also stay
more accurate in quality across different cells.

The relationship between matrix similarity and kNN graph
similarity is non-linear. In order to achieve high kNN graph
resemblance, binary similarity matrix has to be very close to
its counterpart computed with continuous metric. This is a
necessary, but insufficient requirement. kNN graphs also be-
come more similar for higher k, suggesting that mismatches
between binary and continuous metrics happen more often for
closest cell neighbours.

https://bitbucket.org/jtheunisz/binaryclustering


Continuous metric Binary metric(s) ρ̂min ρ̂max

Spearman’s Rank Correlation Sokal Sneath III 0.952 0.995

Matthew’s Correlation 0.948 0.997

Mountford 0.930 0.986

Weighted Rank Correlation Sokal Sneath III 0.973 0.997

Matthew’s Correlation 0.971 0.998

Mountford 0.934 0.990

Kendall Rank Correlation Sokal Sneath III 0.964 0.996

Matthew’s Correlation 0.962 0.997

Mountford 0.938 0.986

Zero-inflated Kendall Baroni Urbani Buser 0.947 0.986

Pearson’s Correlation Matthew’s Correlation 0.795 0.948

Sokal Sneath III 0.794 0.949

Mountford 0.786 0.926

Canberra distance Sokal Sneath V 0.824 0.967

Jaccard 0.796 0.984

Goodman Kruskal 0.794 0.984

Cosine similarity Sorgenfrei 0.803 0.951

Jaccard 0.802 0.938

Goodman Kruskal 0.798 0.938

Kulczynski 0.779 0.951

Sokal Sneath V 0.772 0.953

Euclidean distance Sokal Sneath III 0.603 0.889

Matthew’s Correlation 0.597 0.888

Manhattan distance Simple matching 0.512 0.919

Table 4: Sets of binary metrics with highest similarity of results for each of the continuous metrics. ρ̂min, ρ̂max are lowest and highest matrix
matchings found across the datasets.

The quality of matrix and graph matching seems to be in-
dependent from dataset characteristics. However, we believe
that these results could change for larger and sparser datasets.
The size especially could have a major influence on graph
similarity, due to the change of proportion between k and
all possible neighbours. Unfortunately, conducting evalua-
tion for larger datasets is limited for technical reasons. As the
size for similarity matrix grows quadratically with the number
of cells, evaluating bigger datasets requires large amount of
computer memory. Regular machines have inadequate com-
putational capabilities for such evaluation.

As such, we recommend future researchers of this topic
to equip themselves with machines that are capable of han-
dling large amounts of data. For the most recent scRNAseq
datasets (> 100.000 cells), a supercomputer might be neces-
sary to obtain results in feasible time. We also believe that the
implementation of evaluation framework could be improved.
Our experience shows that most of the memory errors were

caused during the computation of similarity matrix for a con-
tinuous similarity metric using R. This also proved to be the
most time consuming part of the empirical studies. Perhaps,
some of the memory problems could be mitigated by devel-
oping this part of implementation in a different programming
language, such as C or C++.
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A Binary metrics

GROUP METRIC GROUP METRIC

1

Simple Matching (SM)

5

Jaccard-Tanimoto (JT)

Rogers-Tanimoto (RT) Jaccard (Ja)

Sokal-Sneath II (SS2) Gleason (Gle)

Austin-Colwell (AC) Sokal-Sneath (SS1)

Consonni-Todeschini I (CT1)
6

Sokal-Sneath III (SS3)

Consonni-Todeschini II (CT2) Consonni-Todeschini V (CT5)

Driver-Kroeber (DK)
7

Sokal-Sneath IV (SS4)

Forbes (For) Harris-Lahey (HL)

Fossum in Holiday (Fos) 8 Russel-Rao (RR)

Consonni-Todeschini IV (CT4) 9 Kulczynski (Kul)

2

Peirce I (Pe1) 10 Simpson (Sim)

Maxwell-Pilliner (MP) 11 Braun-Blanquet (BB)

Michael (Mic) 12 Baroni-Urbani-Buser I (BUB)

Dennis in Holiday (Den) 13 Faith (Fai)

dispersion in Choi et al. (dis) 14 Mountford (Mou)

Cohen (Coh) 15 Rogot-Goldberg (RG)

Peirce II (Pe2) 16 Goodman-Kruskal (GK)

3
Sorgenfrei (Sor) 17 Hawkins-Dotson (HD)

Dice I (Di1) 18 Consonni-Todeschini III (CT3)

4

Pearson-Heron (Phi) 19 Cole I (Co1)

Yule I (Yu1) 20 Cole II (Co2)

Yule II (Yu2) 21 Dice II (Di2)

Table 5: Arrangement of binary metrics based on their mutual Spearman’s Rank Correlation (ρ) as in [14]. Metrics in a single group with
mutual ρ > 0.97. Metrics included in this work shown in bold. Metric names presented with abbreviation in brackets consistent with [14].



No. Name Definition

1 Simple matching SSM = a+d
p

2 Jaccard SJac =
a

a+b+c

3 Matthew’s Correlation SMCC = ad−bc√
(a+b)(a+c)(c+d)(b+d)

4 Sorgenfrei SSor =
a2

(a+b)(a+c)

5 Peirce I SPe1 = ad−bc
(a+b)(c+d)

6 Sokal Sneath III SSS3 = 1
4 (

a
a+b +

a
a+c +

d
b+d + d

c+d )

7 Sokal Sneath V SSS5 = ad√
(a+b)(a+c)(c+d)(b+d)

8 Russel-Rao SRR = a
p

9 Kulczynski SKul =
1
2 (

a
a+b +

a
a+c )

10 Szymkiewicz-Simpson SSim = a
min(a+b,a+c)

11 Braun-Blanquet SBB = a
max(a+b,a+c)

12 Baroni-Urbani-Buser SBUB =
√
ad+a√

ad+a+b+c

13 Faith SFai =
a+0.5d

p

14 Mountford SMou = 2a
ab+ac+2bc

15 Rogot-Goldberg SRG = a
2a+b+c +

d
2d+b+c

16 Hawkins-Dotson SHD = 1
2 (

a
a+b+c +

d
d+b+c )

17 Goodman-Kruskal SGK = 2min(a,d)−b−c
2min(a,d)+b+c

18 Consonni-Todeschini III SCT3 = ln(1+a)
ln(1+p)

Table 6: Full binary metric list used in this work with their corresponding definitions. a, b, c, d, p are defined as in Table 1. Some
amendmentments have been made with regards to Todeschini et al. [14]: 1) ”Jaccard-Tanimoto” was renamed to ”Jaccard” 2) ”Phi-Heron”

was renamed to ”Matthew’s Correlation” 3) ”Sokal Sneath IV” was renamed to ”Sokal Sneath V”.
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