
 
 

Delft University of Technology

Trends and gaps in photovoltaic power forecasting with machine learning

Alcañiz, A.; Grzebyk, D.; Ziar, H.; Isabella, O.

DOI
10.1016/j.egyr.2022.11.208
Publication date
2022
Document Version
Final published version
Published in
Energy Reports

Citation (APA)
Alcañiz, A., Grzebyk, D., Ziar, H., & Isabella, O. (2022). Trends and gaps in photovoltaic power forecasting
with machine learning. Energy Reports, 9, 447-471. https://doi.org/10.1016/j.egyr.2022.11.208

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.egyr.2022.11.208
https://doi.org/10.1016/j.egyr.2022.11.208


Energy Reports 9 (2023) 447–471

h
2

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

Review article

Trends and gaps in photovoltaic power forecastingwithmachine
learning
Alba Alcañiz ∗, Daniel Grzebyk, Hesan Ziar, Olindo Isabella
Photovoltaic Materials and Devices Group, Delft University of Technology, Mekelweg 4, Delft, 2628 CD, The Netherlands

a r t i c l e i n f o

Article history:
Received 12 April 2022
Received in revised form 7 November 2022
Accepted 30 November 2022
Available online xxxx

Keywords:
Machine learning (ML)
Deep learning (DL)
PV power forecasting
Solar energy prediction

a b s t r a c t

The share of solar energy in the electricity mix increases year after year. Knowing the production of
photovoltaic (PV) power at each instant of time is crucial for its integration into the grid. However,
due to meteorological phenomena, PV power output can be uncertain and continuously varying, which
complicates yield prediction. In recent years, machine learning (ML) techniques have entered the world
of PV power forecasting to help increase the accuracy of predictions. Researchers have seen great
potential in this approach, creating a vast literature on the topic. This paper intends to identify the
most popular approaches and the gaps in this discipline. To do so, a representative part of the literature
consisting of 100 publications is classified based on different aspects such as ML family, location of
PV systems, number of systems considered, features, etc. Via this classification, the main trends and
gaps can be highlighted while offering advice to researchers interested in the topic.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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. Introduction

Photovoltaic (PV) energy has the potential to become a major
ource of electricity worldwide (International Energy Agency,
021). This renewable energy is abundant, affordable, and easily
calable (Fthenakis et al., 2008), with the unique ability to cover
ost market segments from small household systems to utility-
ize power plants (International Energy Agency, 2020). In 2020,
V provided nearly 3.7% of the electricity demand in the world, a
roportion that is rapidly increasing every year.
PV follows a rapid growth path, but there are challenges asso-

iated with it. Due to the variable nature of weather, the energy
upplied by PV modules can be intermittent (Notton et al., 2018).
his complicates market equilibrium, reserve capacity planning,
nd electricity market bidding. Large-scale PV penetration entails
major challenge for electric system operators since it hinders

he effective management of the grids. Ineffective management
ay lead to voltage instability and increased volatility of the
rid (Kawabe and Tanaka, 2015).
These issues can be solved with an accurate estimation of the

ower produced by PV sources (Shivashankar et al., 2016). Accu-
ate forecasts decrease energy yield uncertainty, therefore reduc-
ng generation-load mismatch in the power grid, and are essential
o ensure PV economic integration (Wan et al., 2016). Solar yield
orecasting is an important factor facilitating energy transition
nd one of the key challenges for massive PV integration.
However, achieving a precise solar power prediction can be

xtremely difficult considering not only the chaotic nature of
eather systems but also uncertainties related to the PV systems’
omponents and location (Wan et al., 2016). The most mature
ethods rely on physical equations, which usually need detailed
ystem information and are not able to model all uncertain-
ies related to field works (Mayer and Gróf, 2020). Given these
hortcomings, a new family of approaches is gaining popularity:
achine learning algorithms.
In recent years, the number of manuscripts that use machine

earning (ML) techniques for PV power prediction has increased
xponentially, as depicted in Fig. 1. Considering this rapid de-
elopment and the high amount of literature, it is hard to keep
rack of previous works performed and the recommendations to
ollow. For this reason, several review papers have already been
ublished on the topic that sum up the progress done so far.
Table 1 summarizes the reviews done on PV power forecasting

here ML techniques have been discussed. Most publications
ocused on PV power forecasting, although a few also included
rradiance estimation methods. A brief explanation of the focus
f these reviews is provided so the readers can refer to those
eferences in case the topic is of their interest.

Since the first review in 2013, each review has focused on
different aspect of PV power forecasting, showing how ML
ethods have gained importance and providing a hint at how

he main trends have evolved. However, what is lacking from
ur perspective is an extensive classification of the published
iterature to highlight what has and has not been done in this
iscipline. Overall, we want to distinguish from previous reviews
n the following points:

1. This work has been limited to scientific articles published
from 2015 until 2020. By limiting the time period, we can
better identify the trends while covering a considerable
percentage of the literature, instead of selecting the most
cited papers in a wider period. The literature was selected
first by choosing recent and most cited papers on the topic
and then tracking back the relevant publications referenced

in them.

448
Fig. 1. Number of documents published on PV power forecasting using ML from
2000 until 2021 as of mid-2022. The data was obtained via an advanced liter-
ature search including ML techniques and photovoltaic forecasting in Clarivate
Web of Science (Clarivate Analytics, 2022).

2. This paper focuses specifically on (1) machine learning
employed for (2) PV power forecasting. There are other
methods available to predict the PV power, which have
been reviewed for instance by Raza et al. (2016), but the
focus of this work is on machine learning only. In addition,
the considered literature employs only direct PV power
forecasting, i.e., the objective is to forecast the PV power
produced, not the irradiance (Massaoudi et al., 2021).

3. The 100 reviewed publications on PV power forecasting
are classified into: ML family, location, climate, number of
systems, timespan, forecast horizon and choice of features.
To the best of our knowledge, no previous review has
performed such an extensive categorization, neither has
classified by climate nor ML family.

4. A section is devoted to discussing special methodologies
employed for PV power forecasting, such as online fore-
casting or global optimization. The intention is to introduce
these alternatives that are gaining strength, include some
recent examples and refer the reader to corresponding
reviews.

5. Finally, we provide recommendations based on the exten-
sive analysis performed. The objective is to be a refer-
ence for new researchers that want to explore the world
of PV power forecasting, and a sea of ideas for future
developments for familiarized researchers.

The structure of the review is as follows. Section 2 focuses on
the ML algorithms by classifying them into families. Section 3
explains the highlighted special approaches from the literature.
Sections 4, 5 and 6 continue the classification based on system
characteristics, forecast horizon and employed features, respec-
tively. Recommendations are given in Section 7, before conclud-
ing in Section 8. Overall, we aim to cover all the choices that a
researcher needs to make when developing a PV power forecast
model. An overview of them can be seen in Fig. 2.

2. Machine learning families

This work starts by classifying the 100 reviewed publications
into ML families. Appendix A: Reviewed literature provides a
summary of the main characteristics of all documents. Previous
reviews mention only the most relevant algorithms, sometimes
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Table 1
Previous reviews on PV power forecasting using ML techniques.
Ref Topic

Inman et al. (2013) Theoretical basis for most promising methods for solar forecasting. Large focus on irradiance prediction
Ulbricht et al. (2013) Classification of solar forecasting solutions
Ren et al. (2015) Wind and solar forecasting with ensemble methods

Antonanzas et al. (2016) ML and physical methods have the same importance. Focus on economics in forecasting and the
difference between point and regional forecasts

Gandoman et al. (2016) PV power forecasting under cloudy weather
Raza et al. (2016) Special emphasis on ML algorithms such as ANN (Artificial Neural Network)
Barbieri et al. (2017) Very short-term PV power forecasting with cloud modelling
Das et al. (2018) Short-term direct PV power forecasting
Sobri et al. (2018) Most popular methods for PV power forecasting: advantages and limitations
van der Meer et al. (2018) Solar power and load probabilistic forecasting
Mosavi et al. (2019) ML applied to energy systems

Yang (2019) Provide a set of reporting rules called ROPES to assist scientists in the evaluation of their methods and
set guidelines for future research

Ahmed et al. (2020) Cloud imaging and online PV power forecasting. Methods for pre- and post-processing of data
Massaoudi et al. (2021) PV power forecasting using deep learning techniques
Mellit et al. (2020) Focus only on ML techniques
Pazikadin et al. (2020) ANNs for solar power generation forecasting
Rajagukguk et al. (2020) Deep learning algorithms for solar irradiance and power forecasting
Feng et al. (2021) Taxonomical review on the integration of PV using artificial intelligence
Gupta and Singh (2021) Direct and indirect ML-based PV power forecasting
Fig. 2. Choices that a researcher needs to make when developing an ML-based PV power forecast model. Note that post-processing is a topic not extensively covered
n this review.
Fig. 3. Amount of times that an ML algorithm from a certain family has been employed in the literature. Bar areas without a specific algorithm indicate algorithms
from the ML family different from the most popular ones within it. For colour references refer to the web version of this article.
disregarding promising but not so extensively used approaches.
To avoid that, we have grouped the algorithms by their similarity
in form or function, following the classification performed by
Brownlee (2021). There may be some differences with respect
to other works, since there are several classification criteria, and
some algorithms belong to more than one category. The distinc-
tive characteristics of each group are explained in Appendix B:
ML families, while Table 2 offers a graphical summary of it.
449
Fig. 3 shows the number of times that an ML algorithm from
a certain family has been employed. In this bar graph, the most
popular algorithms and their occurrence have been indicated
within their corresponding family.

As one can see, and in accordance with literature (Raza et al.,
2016), Artificial Neural Networks (ANN) are the most popular
family of algorithms in PV power forecasting problems, with
Feed-Forward Neural Networks (FFNN), Multi-Layer Perceptron
(MLP), and Back-Propagation Neural Network (BPNN) being the



A. Alcañiz, D. Grzebyk, H. Ziar et al. Energy Reports 9 (2023) 447–471
Table 2
Machine learning families and their main characteristics.
Source: Figures from Brownlee (2021).
most popular algorithms within it. The popularity of ANNs lies
in their structure which makes them very flexible. Almost tied in
second place, one can find the instance-based and Deep Learning
(DL) families. From the former family, Support Vector Regres-
sion (SVR) is the proposed approach from several groups given
its good performance (Abuella and Chowdhury, 2017; Nageem
and Jayabarathi, 2017; Zhou et al., 2018; Alfadda et al., 2017),
making it the most popular algorithm amongst the reviewed
publications. Within DL, Long–Short Term Memory (LSTM) was
applied 17 times in the reviewed literature, achieving excellent
results in general. Other DL algorithms whose popularity is in-
creasing considerably in the last few years are Extreme Learning
Machines (ELM) and Convolutional Neural Networks (CNN). The
latter shows excellent performance (Huang and Kuo, 2019) and
is the recommended option when dealing with image data.
450
In the next Section 2.1, we will dive deeper into each family in
order to explain the advantages and drawbacks that can explain
the reported trends from the previous figure. These arguments
will be supported in Section 2.2, where the findings of selected
literature that compare several algorithms are explained. The last
Section 2.3 addresses a different application of ML algorithms,
which consists of performing pre-processing on the data using
ML techniques.

2.1. Key features and trends

This section provides a brief overview of each family by ex-
plaining the advantages and drawbacks. Moreover, based on the
impressions by the authors after the extensive literature review
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Fig. 4. Graphical difference between MARS and LR to depict the higher flexibility
of the former.

performed, we provide our opinions on how will the popularity
trends evolve with time.

Starting with the first family, linear regression (LR) is the
ost common algorithm in the regression family. Although it
oes not show the best performance (Li et al., 2016a; Mishra
t al., 2020; Semero et al., 2018; Ferlito et al., 2017; Lee et al.,
018), it is valued by its simple implementation and ease of
nterpretation (Touati et al., 2017; Do et al., 2016). It is sometimes
mployed as a benchmark (Touati et al., 2017; Ramsami and Oree,
015; Kuzmiakova et al., 2017; Rosato et al., 2017). However,
one of the groups proposed it as an option to forecast the PV
ower. The main limitation of this algorithm lies in the fact that
t builds a hyperplane to make the predictions, while this is a too
trong reduction of the problem of PV power forecasting.
A recently applied regression algorithm that has shown excel-

ent results is Multivariate Adaptive Regression Splines (MARS).
his algorithm improves the simple linear regression by includ-
ng hinge functions, which allow for more flexibility to fit the
ata while keeping the interpretability (Friedman, 1991), as seen
raphically in Fig. 4. MARS is the algorithm proposed by some
roups (Li et al., 2016a; Ferlito et al., 2017; Massidda and Mar-
ocu, 2017), and we think that, because of its interpretability,
t will play an important role in the future. Currently, inter-
retability may only seem relevant when discussing high-stakes
redictions that deeply impact human lives (Gosiewska et al.,
021), such as healthcare and criminal justice. However, the
egative effects of lack of interpretability have already reached
nvironmental aspects by stating that highly polluted air was
afe to breathe (Rudin, 2019). A similar situation may arise in
he future after an incorrect ML prediction in a grid with high
enewable energy penetration.

Regularization algorithms aim at solving the overfitting prob-
em of regression ones. Overfitting occurs when the hyperplane is
oo specific and focuses only on the training data, so it is unable
o generalize to unseen data. Regularization solves this issue by
aking sure that the hyperplane stays ‘‘simple enough’’ to be
ble to generalize. The problem with regularization algorithms
s that they still fit a hyperplane, which is unable to explain the
omplex relationship between meteorological conditions and PV
ower output. Moreover, overfitting of LR is an issue when the
mount of training data is not large enough, but since we are in
he era of big data, overfitting of LR is not present anymore. This
xplains the lack of popularity of regularization algorithms. This
amily was probably a good actor a decade ago, but it has been
isplaced by more powerful algorithms.
A similar situation occurs with Bayesian algorithms. Consider-

ng the origins of ML, the idea of fitting a probabilistic distribution
451
function to the data seemed the way forward. This approach
works well on small datasets and it can provide uncertainty
measurements (Sit, 2019). However, some of the probabilistic
distributions assume independency between features, which is
unrealistic in real life.

The two main members in the instance-based family are k-NN
and SVR. Least Squares-SVR (LS-SVR) is just a simplification in the
learning procedure of the SVR which makes the solving process
more efficient without any effect on accuracy.

The popularity of k-NN lies in its ease of use and flexibility to
adapt to the data. It is the most popular classification algorithm
and identifies clusters of data based on the nearest neighbours.
For forecast applications, the algorithm identifies in the training
dataset the cluster that resembles the most to each test condition
and creates a forecast value based on that. An identified disadvan-
tage from this explanation is the need to store the whole training
set, and that the prediction times may be longer than for other
algorithms.

In the case of SVR (and LS-SVR), there are facing opinions in
the literature. Some defend it as the algorithm of choice (Abuella
and Chowdhury, 2017; De Felice et al., 2015; Rana et al., 2015;
Pan et al., 2020), while others report similar or worse results
with respect to other algorithms (Huang and Kuo, 2019; Li et al.,
2016a; Wang et al., 2018; Sheng et al., 2020; Carrera and Kim,
2020). The reason for this disagreement, according to the authors’
opinion, is the difficulty of optimization of SVR. SVR has a wide
range of parameters, and the performance of the algorithm is
highly sensitive to them (Pawar et al., 2020), so results are jeop-
ardized if the optimum set is not found. Moreover, like k-NN,
SVR also relies on similarity to the training samples, so it is not
suitable for large datasets (Wang et al., 2018), which may be a
limitation in the future. However, with the help of LS-SVR and
the popularity seen so far, we think that SVR will be around for
some more years.

The working principle of decision trees is promising due to
its flexibility and interpretability, but it presents a huge disad-
vantage: overfitting. While overfitting solutions did not improve
the main limitation of regression algorithms, there is an optimum
amendment for decision trees: ensemble algorithms. Therefore, in
our opinion decision trees will be every time more irrelevant, and
they will only be indirectly used through ensemble algorithms.

We think that ensemble algorithms, together with SVR and
MARS, will be the only algorithms able to compete with the
hegemony of ANNs and DL that is currently present. Ensemble
algorithms come at a loss of interpretability with respect to deci-
sion trees, but, as opposed to SVR, the difference in performance
when the parameters are optimized or not is not that big. This
family is a high appeal for new researchers wanting to use ML
algorithms.

ANNs are the main protagonist in ML. They are very powerful
and able to model any non-linearity relation (Cross et al., 1995).
However, they have the same implementation drawback as SVR:
the optimal configuration and learning algorithm are hard to
obtain (Li et al., 2016a). This can explain some of the lower
performance achieved by some researchers with respect to other
algorithms (Li et al., 2016a; Sharadga et al., 2020; Zhang et al.,
2018; Hossain et al., 2017).

In the explored literature, most proposed algorithms belong
to the deep learning family. This is not shown in the graph, since
there we included all the algorithms applied in each publication.
However, a high percentage of the publications focus on and pro-
pose an algorithm of the DL family. These multi-layer ANNs have
the benefit of including the impact of historical trends, which
increases the accuracy of the predictions. The ANNs’ drawback
of optimal configuration is still present, and interpretability is

challenging. However, people are exploring solutions to these
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Table 3
Hybrid algorithms employed in the literature.
Combination Objective Ref.

LSTM + CNN Combine the temporal ability of LSTM with the feature extraction abilities of CNN Lee et al. (2018), Suresh et al.
(2020), Wang et al. (2019b),
Lee et al. (2018), Lin et al.
(2020) and Li et al. (2016b)

DL + LSTM/DL Combine the feature learning of the DL algorithm (an AutoEncoder) with the forecasting
ability of LSTM/DL algorithm

Alkandari and Ahmad (2020)

DL + LSTM Combine the feature learning of a DL (AutoEncoder) with the temporal ability of LSTM Gensler et al. (2017)
CNN + SVM Combine the feature extraction ability of CNN with the forecasting ability of SVM Zang et al. (2018)

DL + LSTM Increase the accuracy of the forecast Wen et al. (2019) and Jung
et al. (2020)

LS-SVM + ANN Increase the accuracy of the forecast De Giorgi et al. (2016)
Ensemble + SVM Combine several SVM to increase the accuracy Zhou et al. (2018)

Ensemble + ANN Create a probabilistic forecast Cervone et al. (2017)

Ensemble of LSTM, SVR,
ANN, LR, decision tree

Increase the accuracy of the forecast Chen and Koprinska (2020)

Ensemble of ANN, SVR,
ELM

Increase the accuracy of the forecast Nayak and Heistrene (2020)

Ensemble of
instance-based, ANN

Increase the accuracy of the forecast Lin et al. (2020)
issues, and we think that the popularity of this family has only
begun and that it will gain more ground in the coming years.

Two algorithms use fuzzy logic in the explored literature:
uzzy k-means clustering and Adaptive Neuro Fuzzy Inference
ystem. In the first, fuzzy logic is integrated into k-NN, while in
he second, it is integrated with ANN. Some researchers may not
ave made a different group for these algorithms, but we wanted
o highlight them. We think that the flexibility introduced by
uzzy logic can be very powerful, but it may not be advantageous
nough. These algorithms are harder to interpret, therefore they
ompete with DL approaches, which are more popular and with
lready demonstrated accuracy. Hence we think that, despite
eing promising, fuzzy algorithms will not be relevant in the
uture.

The final step in complexity can be taken with hybrid algo-
ithms. Most of them focus on increasing the accuracy of the
orecast by combining the abilities of two or more ML algorithms.
he main drawback is the increase in complexity and consequent
ecrease in interpretability. Table 3 gives an overview of the
ombination structures from the reported literature. One can
ighlight how ensembles are being applied to strong algorithms,
uch as ANN, to overcome overfitting and increase the accuracy.
ore examples of hybrid DL methods for PV power forecasting
an be found in the review by Sobri et al. (2018) and Massaoudi
t al. (2021). We think that the development of this family will
ontinue as researchers mix and match the ML algorithms as
hey deem necessary to apply an improvement or overcome a
rawback.

.2. Algorithms comparison

To compare the performance of different ML algorithms, they
eed to be fairly analysed. The prediction results not only depend
n the algorithm employed, but also on the amount of data, the
olving method, the location, the metric, etc. Therefore, in this
ubsection, we are going to present the most relevant studies
hich have compared the performance of several ML models
nder the same conditions. Some metrics will be needed for this
ask, which are defined in Appendix C: Metrics.

We would like to highlight three papers that compare a wide
ange of algorithms belonging to different ML families. Ferlito
t al. forecasted the power of a 1 kW grid-connected PV system
ith 11 models of different complexity and belonging to the
egression, instance-based, decision trees, neural networks, and
452
ensemble families (Ferlito et al., 2017). They found that the best-
performing algorithm and optimum dataset length depended on
the training and testing years. For example, the Cubist algorithm
(ensemble) showed the best performance in a highly variable year
such as 2010 with Root Mean Squared Error (RMSE) of around
93 W, while Random Forest (ensemble) had lower prediction
errors than other methods in the year 2011. They reported that
non-linear models showed up to 2% superior performance with
respect to linear ones. Chen et al. implemented 7 base learners
from different families and combined their outputs through sev-
eral ensemble strategies (Chen and Koprinska, 2020). One of the
ensembles was identified as the best model, while LSTM was the
most accurate base learner, showing competitive results. Finally,
Carrera et al. trained 15 ML algorithms to predict the power of a
South Korean solar farm (Carrera and Kim, 2020). One can observe
the reported RMSE for all algorithms in Fig. 5. In the graph, the
red lines represent the medians while the green triangles indicate
the means. They reported that ensemble algorithms were the
best performing ones, except in terms of bias when Elastic Net
(regularization family) outperformed the rest.

The study performed by Sharadga et al. compares different
ANN models (Sharadga et al., 2020). The ranking between models
depended not only on the type of ANN but also on the training
algorithm, on the number of hours ahead forecasting and on the
metric. However, recurrent neural networks generally outper-
formed feed-forward ones. Li et al. reported that the algorithm
with the lowest RMSE was MARS (Li et al., 2016a). Although
the ranking of these models differed depending on the metric
employed, MARS was in the top three position independently on
the metric employed and outperformed more complex models
such as SVR or ANN in certain metrics.

In Lin et al. (2018), several ANN, SVR and their hybridized
forms were compared. In general, the hybrid models outper-
formed their simpler versions. Without hybridization, RMSE and
Mean Absolute Percentage Error (MAPE) showed that BPNN was
better than other ANNs. When hybridized, the rank of these
models was clearer in both metrics: hybrid Radial Basis Function
ANN was the best followed by hybrid BPNN, hybrid Elman and
hybrid SVR.

Massaoudi et al. proposed a novel ensemble method and com-
pared it to other algorithms (Massaoudi et al., 2019). They re-
ported that the proposed method showed the best performance
both in terms of RMSE and MAE. Finally, in Lin and Pai (2016),
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Fig. 5. Forecasting accuracy of several ML methods using 10-fold cross-validation in terms of RMSE.
Source: Figure from Carrera and Kim (2020).
hey ranked the models in terms of both RMSE and MAPE. The
roposed modified Least-Squares SVR (LS-SVR) model showed the
est performance, followed by ANNs.
All these studies show that it is difficult to recommend an

lgorithm, even a family of algorithms, that is superior. However,
t would be useful to create a set of guidelines for researchers to
elp with decision-making. The personal recommendation of the
uthors for new researchers is ensemble algorithms, because of
heir accuracy/interpretation ratio. They are also a good option
hen dealing with a limited amount of data. If the amount of
ata is high enough and the researcher is experienced, algorithms
uch as SVR, LSTM and ELM are recommended. However, it is
mportant to be careful with the optimization of the parameters.

.3. Data preparation

This subsection describes ML-based pre-processing strategies
hat reduce the computational cost or complexity of the prob-
em without decreasing the accuracy. Pre-processing can also be
chieved with non-ML-based methods, but here we focus on ML-
ased ones. The focus is also on modifications of the input data
nce cleaning and normalization are achieved.
It is important to keep in mind that pre-processing requires

uman resources. The trade-off between the increase in accuracy
nd the time employed needs to be considered before diving
nto these strategies. However, these resources are most needed
uring the training process, so we consider them worthy of their
enefits when making predictions. We think that the trend will
e to keep applying data-processing algorithms, however, it is
ard to tell whether these will be ML-based ones or not. It
ost likely depends on the pre-processing step. For instance, k-
N is dominant for clustering procedures, but there are several
pproaches for feature selection.
Post-processing techniques such as reforecasting (Chu et al.,

015) or corrections (Yin et al., 2020) can also be employed to
mprove the performance. However, due to its limited use in the
xplored literature, it was not possible to review them, which can
e considered a gap that still needs to be explored.
The most common pre-processing step is to reduce the num-

er of features employed, to keep only the relevant ones. These
ethods are referred to as feature selection and are explained in
453
Section 2.3.1. An alternative way to reduce the input data is to
group by similarity, explained in Section 2.3.2. A third strategy is
to decompose the input data, explained in Section 2.3.3.

2.3.1. Feature selection
Feature selection or dimensionality reduction consists of se-

lecting the most relevant features for an ML model in order to
decrease the dimensionality of the problem (Guyon and Elisseeff,
2003). By doing this, the performance of the model is increased,
the computational cost is reduced, and a better understanding
of the underlying process is gained. There are several methods
available which perform dimensionality reduction. It can even be
done by manual inspection (Rosiek et al., 2018; Almeida et al.,
2015; Baharin et al., 2016), or with correlation-based strate-
gies (Abuella and Chowdhury, 2017; Wang et al., 2018; Van Tai,
2019; Han et al., 2019). However, it is more effective to employ
more complex strategies.

One of the most famous methods for dimensionality reduction
is Principal Component Analysis, which was applied in Kuzmi-
akova et al. (2017) and Pierro et al. (2017). This technique reduces
the dimension of the dataset by creating linear combinations
of the features that have maximal variance and are mutually
uncorrelated. An alternative is to employ ML models used for
prediction such as Elastic Net (regularization family) (Massaoudi
et al., 2019), Gradient Boost Regression Trees (ensemble) (Mas-
saoudi et al., 2019; Isaksson and Conde, 2018), or SVR (Lee et al.,
2019) to perform feature selection. These methods exploit the fact
that some ML models assign a weight to each feature, thus its
importance is known. Features with weights smaller than a cer-
tain threshold are removed for feature selection. The threshold is
chosen by the user and depends on the algorithm. For instance, in
each split of a gradient boost regression tree, the chosen feature
to split on is the one that maximizes the reduction of a certain
kind of error (Ratanamahatana and Gunopulos, 2010) (refer to
Appendix B: ML families for details on how ensemble algorithms
work). By the end of the tree, the divisions are less relevant. Thus,
by cutting trees below a certain split (the threshold), one can
identify the most important features.

Even though these techniques may not seem relevant at first,
they can help boost the performance considerably. In Shang and
Wei (2018), feature selection reduced the RMSE of the proposed
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Fig. 6. k-NN applied to several PV systems spread over Germany. Each colour
represents a different cluster and small dots represent the individual PV plants.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
Source: Figure from Wolff et al. (2016).

odel from an average of 5.7% to 4.6%. Similarly, in Isaksson
nd Conde (2018) the applied feature selection method increased
he performance of k-Nearest Neighbour (k-NN, instance-based
amily) by 2%. Alfadda et al. showed how the error evolves as
eatures are incrementally included in the model (Alfadda et al.,
017). They reported that when all features were considered,
he RMSE was higher than when a few were left out. Lee et al.
bserved a decrease in performance when considering redundant
ariables in their forecast model (Lee et al., 2019). They reported
n average hourly MAPE of 68.2%, compared with a 107.1% MAPE
hen considering all features.
Overall, the reader is strongly advised to employ a feature

election technique when dealing with a high number of input
arameters. Apart from the already mentioned benefits, feature
election can highlight features with high predictive power that
re superfluous analytically. However, one also has to be critical
f the results, since the selected features could denote errors in
he input data. It is recommended to make use of solar engi-
eering knowledge and previous literature to validate the results
btained (refer to Section 6 for the classification of features). In
ase an unexpected feature is selected, one should explore the
nput data and make an informed decision.

.3.2. Clustering
When the amount of input data is large, the algorithms be-

ome computationally expensive. This data is often repeated and
ot all of it is needed. For instance, similar weather conditions
ield similar PV power output. The data can be filtered with
lustering algorithms such as k-NN and grouped by meteorolog-
cal characteristics or PV systems. Since cloudy days are harder
o forecast than sunny ones, some researchers have developed
different model per type of weather (Baharin et al., 2016;
ang et al., 2020; Li et al., 2015) or season (Yin et al., 2020).

patial clustering of PV plants is commonly applied to forecast
istributed generation (Pierro et al., 2017; Wolff et al., 2016), see
ig. 6.
Some authors integrated clustering methods into their algo-

ithms and considered them a hybrid. Despite having employed
different criterion here, so these algorithms are not considered
hybrid, it is still worth explaining them. Lin et al. developed an
lgorithm that clustered the data depending on the weather con-
itions, found similarity of the input data to each of these groups,

nd used the information on similarity to help the forecasting
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algorithm with the prediction (Lin et al., 2018). The methodology
developed by Wang et al. (2018) clusters the data into groups,
trains a forecasting model for each group, and creates an average
between the forecasts depending on the similarity to each group.

2.3.3. Time-series decomposition
Another strategy to simplify the learning process of ML algo-

rithms is to decompose the input signal into several frequency
series so that each series has better outlines and behaviours. The
most commonly employed algorithm to achieve this is Wavelet
Decomposition, applied in the works (Mishra et al., 2020; Wang
et al., 2017; Raza et al., 2018; Li et al., 2020; Eseye et al., 2018;
Soufiane et al., 2020). In Shang and Wei (2018), the effect of
decomposing the time series was a reduction of the RMSE from
5.9% to 4.6%. More information on this topic can be found in the
review of Ahmed et al. (2020).

3. Special approaches

This section introduces variations that several groups have
made to the standard forecasting methodology. We focus on these
novel methodologies since they are gaining popularity, and we
discuss the advantages and possible difficulties that each one may
present.

Probabilistic forecasts
A way to introduce flexibility to the prediction method is to

provide a probabilistic forecast. This method is not novel, but it
is still worth mentioning due to its ability to help grid operators
when managing the grid and considering the energy reserve.

There are three main methods to generate a probabilistic
forecast: ensemble algorithms, uncertainty estimation, and quan-
tile regression (Panamtash et al., 2021). Ensemble algorithms,
which generate probabilistic intervals intrinsically, are used in
Cervone et al. (2017), Panamtash et al. (2021), Alessandrini et al.
(2015), Ni et al. (2017) and Takeda (2017). They are generally
computationally intensive, affecting their practical implementa-
tion. The second method modifies point forecasting algorithms
to provide an estimation of the error distribution, using paramet-
ric (Pierro et al., 2017; Panamtash et al., 2021) or non-parametric
methods (Rana et al., 2015; Almeida et al., 2015). With this
methodology, prediction intervals are usually estimated via a
normal distribution, which is not reliable for all values (Pierro
et al., 2017). Finally, examples of probabilistic quantile regression
forecasts can be found in Panamtash et al. (2021) and Alessandrini
et al. (2015). Quantile regression is a regression algorithm where
each quantile is separately modelled and a different prediction is
fitted within each partition. Despite its extended use, this method
does not report as good results as the other two (Panamtash et al.,
2021).

Amongst these studies, we want to highlight the work per-
formed by Rana et al. (2015) where the interval forecasts are in
2D, providing not only a range of expected values in power but
also in time. A graphical explanation of the difference between
point (non-probabilistic), interval (probabilistic in power) and
2D-interval (probabilistic in power and time) forecasts is shown
in Fig. 7. This method can provide even more flexibility to the
forecast, which can be especially useful for risk management
applications.

More information on PV power probabilistic forecasting can be
found in the reviews (van der Meer et al., 2018; Panamtash et al.,
2021).

Meta-heuristic algorithms
As previously mentioned, some algorithms; such as SVR or

ANN, are hard to optimize and that can have negative effects.
To overcome this disadvantage, several groups have improved
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Fig. 7. Graphical explanation of the difference between point, interval and 2-D forecasts.
Source: Figure redrawn from Rana et al. (2015).
he performance of an ML algorithm by using optimizers to find
he optimum set of parameters. Global optimizers are required
or the process to cover all possibilities. Amongst these tech-
iques, we want to highlight the meta-heuristic algorithms. These
re ML global optimization algorithms, suitable for non-linear
arameters.
In the reviewed literature, several groups have employed

eta-heuristic algorithms for optimization in PV power fore-
asting problems, such as Shuffled Frog Leaping Algorithm (As-
ari et al., 2017), Ant Colony Optimization (Pan et al., 2020)
r Multiverse Optimization (Li et al., 2019b). The most popular
ptimization algorithms are Genetic Algorithm (GA), inspired
y the theory of evolution (Semero et al., 2018; Lin and Pai,
016; Chu et al., 2015; Eseye et al., 2018; Asrari et al., 2017);
nd Particle Swarm Optimization (PSO), inspired by bird flocks’
otion (Semero et al., 2018; Shang and Wei, 2018; Eseye et al.,
018; Li et al., 2019b).
The use of these algorithms can considerably improve the

erformance. Eseye et al. (2018) reduced the Normalized Mean
bsolute Error (NMAE) of BPNN from 1.3% to 1.2% using GA and
o 1.0% using PSO, and the NMAE of SVR from 0.8% to 0.7% with
A and to 0.5% with PSO. This increase in performance comes
gain at a cost of simplicity, but we think that global optimizers
re required if the objective is to keep decreasing the errors and
mploying complex algorithms.
More information on this topic can be found in the review of

hmed et al. (2020).

nline forecasting
One last forecasting approach worth mentioning is online

orecasting. In online training mode, the algorithm updates the
eights for each training phase for each batch of results (Theodor-

dis and Koutroumbas, 2009). The main advantages are that the
raining dataset required is minimum and that the algorithm
an rapidly adapt to major changes in the environment. Its main
rawback is the continuous need for training.
This method was applied in Ferlito et al. (2017) with several

L algorithms. The results showed that the RMSE of offline
raining was higher than that of online, and that the ranking
f the algorithms depended on the training method. Al-Dahidi
t al. (2020) also developed a probabilistic very short-term model
hich was ready to be used for online or real-time applications.

n Sheng et al. (2020), an online adaptive learning framework
as implemented so that the model could adjust to the complex
ynamics of the weather. The model could selectively accumulate
r forget knowledge to respond to climate changes. Similarly, the
odels proposed in Golestaneh et al. (2016) and Agoua et al.

2019) could be used for online predictions, which can be es-
ecially suitable for Internet-of-Things systems (Kraemer et al.,
020).
More information on online PV power forecasting can be found

n the review by Ahmed et al. (2020).
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4. System characteristics

This section focuses on the main characteristics of the PV sys-
tems employed, namely location, number of systems and times-
pan.

4.1. Location

Fig. 8 represents the number of publications whose studied
systems are located in each country. Most of them are in Eu-
rope and no PV system has been forecasted in South America.
The country in which more systems are located is the USA (13
studies) closely followed by Australia (12), Italy (10) and China
(9). Considering the intensity of solar energy across the globe,
areas located at latitudes 45 degrees from the equator have
a tremendous opportunity for harnessing solar energy (Ahmed
et al., 2020). Regions such as the Middle East, most of Aus-
tralia and the deserts are suitable for large-scale PV installations.
However, most of the reviewed literature focuses on areas with
relatively small solar intensity (except for Australia), not on these
high-potential zones.

Characterizing the PV systems’ location by country is not
representative of the weather conditions that they are subjected
to. Therefore, we have classified the reviewed papers by type of
climate, as reported in Fig. 9. The Köppen climate classification
has been employed for this purpose (Chen and Chen, 2013) since
it divides the globe with a single metric into five categories:
tropical, dry, mild temperate, continental and polar.

Around half of the forecasted systems from the reviewed
publications are in mild temperate climates. Roughly 25% of the
systems are in dry climates, while only 8 are located in trop-
ical and 10 in snow climates. No system is in polar climate
since mostly the Arctic, Antarctica and tops of mountains are
representative of this climate.

Some studies have been left out from one or both figures
since they consider more than one system under different cli-
mates or countries. Do et al. (2016) forecasted two French PV
systems, one in Guadeloupe (geographically in North America,
tropical climate) and the other in Lille (Europe, mild temperate
climate). They found that due to the seasonal variation of the
mild temperate climate, a longer training duration for the system
in Lille is needed than for the one in Guadeloupe (6 months
instead of 3). However, once the model is trained, the algorithm
shows higher performance in the temperate climate than in the
tropical one. Zhang et al. (2015) forecasted the PV power of three
distant PV systems: San Diego, USA; Braedstrup, Denmark; and
Catania, Italy. Although the three systems are in a mild temperate
climate, they presented diverse daily weather distribution. These
influenced the modelling parameters and features that yielded
the best forecasting result. Golestaneh et al. (2016) trained ELM
in two PV systems located in Australia (mild temperate) and Sin-
gapore (tropical). They found that the climate conditions of each
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Fig. 8. World map with the countries highlighted depending on the number of studies published on the topic. Only the mainland has been coloured. Since some
countries’ contribution might not be visible on the map, the raw data is; 14 studies: Australia, USA; 10 studies: Italy; 9 studies: China; 5 studies: Germany, South
Korea; 4 studies: India; 3 studies: Malaysia, Taiwan; 2 studies: Belgium, Cyprus, Japan, Jordan, Oman, Spain; 1 study: Croatia, Denmark, Egypt, France, Netherlands,
Norway, Poland, Portugal, Qatar, Russia, Singapore, South Africa, Sweden, UK. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Fig. 9. World map indicating the major Köppen territories in different colours (Chen and Chen, 2013) and the number of systems in each region. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
location affected the optimum parameters of the model. Han et al.
(2019) forecasted the PV power from two systems in USA and
China and found that the station in the USA was easier to forecast.
Similar results were found for four systems spread around the
world by Soufiane et al. (2020). Even when considering systems
in the same country, such as what Lin et al. and Chen et al.
did with two Australian systems, differences are found in the
optimum hyperparameters (Lin et al., 2020) and the ranking of
the ML algorithms (Chen and Koprinska, 2020). In Sheng et al.
(2020) these climatic differences were considered, so an adaptive
456
learning algorithm was implemented for two different systems,
able to adjust to different climates and periods. Jung et al. and
Lee et al. focused on several sites spread over South Korea (Lee
et al., 2018; Jung et al., 2020), but since the country is under mild
temperate and cold climates, the studies were left out of Fig. 9.

As just presented, the performance of a PV system is condi-
tioned by the type of climate. Depending on its location, cer-
tain features are more important than others and the optimum
parameters of the model are affected. This high bias for mild
temperate climates entails a problem of generalization. If most
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Fig. 10. Number of publications as a function of the number of systems considered in each one.
f the forecasted systems are in mild temperate climates, when a
ystem operator located in another type of climate tries to employ
he developed model, the performance will most probably be
ower because of the lack of generalization.

.2. Number of systems

The next classification considers the number of systems used
n each publication, Fig. 10. Most studies used data from only one
ystem, while 10% considered more than 10 systems to forecast
he PV power.

When more than 5 PV systems were employed, their PV power
roduction was generally aggregated to perform a regional fore-
ast. This was the case of the 16 PV systems employed by Lin and
ai (2016), the 136 by Agoua et al. (2019), the 137 by Wang et al.
2019c) and the 65 by De Felice et al. (2015). In this last study,
he systems were differentiated between the North and South of
taly before being aggregated. The systems in the South of Italy
howed better performance than those in the North, which was
ttributed to lower weather variability in the southern part of the
ountry (De Felice et al., 2015).
Wolff et al. (2016) grouped 921 PV systems depending on

heir location and then divided the clusters into sub-clusters
epending on the system specifications. In the end, 10% of each
ub-cluster was randomly selected, resulting in a test set of 92 PV
ystems. The predictions obtained from these single PV systems
ere employed to produce a regional forecast. When considering
he difference between the single site and regional forecasts, the
rrors in the latter were lower due to averaging effects.
Spatial clustering was also applied in the 1985 PV systems by

ierro et al. (2017) to test two different averaging approaches. In
he first approach, the power generation was calculated for each
luster and then averaged to obtain the regional prediction. In the
econd approach, the regional prediction was directly obtained by
nputting the data from each cluster centroid. The second model
ave slightly better results.
Exceptions to the regional approach were the forecasts per-

ormed in 71 systems by Lee et al. (2018) and in 21 PV systems
y Gensler et al. (2017). In the latter, each facility was consid-
red individually and the forecasting error was higher or lower
epending on the target system. Unfortunately, the origins of
his unpredictability were not reported. Another exception is the
tudy by Jung et al., whose objective was to evaluate the most
uitable locations for PV plants in a wide area considering terrain
nd weather conditions (Jung et al., 2020). They concluded that
‘the data from one site might not adequately capture the circum-
tances at other sites with different geographical and topological
eatures’’.
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There is one study which has been left out of Fig. 10, the
publication by Takeda (2017). This study did not employ any spe-
cific PV system, but rather installed PV capacity. By making use
of the monthly installed PV capacities for each type of supplier
and weather data, the hourly PV power was estimated for several
prefectures in Japan.

4.3. Timespan

In this section, the systems are classified by timespan, defined
as the time period of input data employed to develop a model.
A summary of the timespan of the reviewed studies is shown
in Fig. 11. Most studies employ a timespan of one year. How-
ever, a long timespan is essential for accurate training, since the
algorithm needs enough data to identify the seasonal variation
throughout the year. This is especially important for places having
mild temperature climates (Do et al., 2016) where most of the
systems are located. It is hence recommended to employ more
than one year of data so that the training data covers all seasons.
Moreover, a high amount of data is generally required to train a
complex algorithm (Wang et al., 2019a).

The main limitation of this requirement is the high computa-
tional power required. This gets worse as the time resolution of
the input data increases. Training algorithms with such a large
amount of data can be unfeasible. Possible solutions could be
to use reinforcement or online learning. Alternatives employed
in literature are, instead of using the first months of the year,
selecting the first period of each month as training data (Wang
et al., 2017; Paulescu et al., 2017), or random days along the
period (Ramsami and Oree, 2015; Zhang et al., 2018).

These models may also require to be retrained in order to
forecast the PV power of unseen systems. Since it is not desirable
to repeat the whole training process for each new system, the
works (Wolff et al., 2016; Graditi et al., 2016) proposed selecting
a few representative days for each new PV system and training
the algorithm with this reduced number of samples. This way the
generalization to new systems would be done faster.

5. Forecast horizon

The forecast horizon is the time interval into the future for
which PV power is predicted. It differs depending on the require-
ments of the decision-making process for which the PV power
is forecasted (Wan et al., 2016). This significantly affects the
performance and choice of the prediction algorithm (Antonanzas
et al., 2020).

There is no standard classification on how to divide the fore-
cast horizons (Raza et al., 2016; Barbieri et al., 2017; Ahmed
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Fig. 11. Number of publications as a function of the timespan employed for PV power predictions.
et al., 2020; Mishra et al., 2020). In this review, we define four
categories: long-term for predictions longer than a week; day-
ahead when forecasting between one week and 5 h; hour-ahead
for predictions between 15 min and 5 h; and nowcasting for
forecasts smaller than 15 min. These horizons can be related to
energy markets: auction (day-ahead), intraday (hour-ahead) and
balancing (nowcasting).

Long-term predictions are generally employed for mainte-
nance scheduling, pilot installations and better bankability stud-
ies. The two latter objectives deal with PV plants before construc-
tion, hence they are usually obtained through physical methods.
However, with the use of ML techniques, a forecast of the pur-
chased PV power for the following years on a monthly basis can
be reported (Lin and Pai, 2016; Takeda, 2017).

In the day-ahead energy market, the economic dispatch prob-
lem is solved by knowing how much electricity will be pro-
duced by PV sources, which determines the day-ahead price.
Trading outside cross-border zones also occurs in this market
segment (Poplavskaya et al., 2020). Day-ahead forecasting can
also be used for Internet-of-Things (Kraemer et al., 2020). When
knowing the harvestable energy, the demand can be adjusted to
match the power availability.

Since weather conditions can change during the day, the pre-
dictions may not be as accurate as desired or unplanned outages
can occur. In the case of these events, energy can be traded
in the intraday markets (Ortner and Totschnig, 2019). With the
increased share of renewable energy sources, these markets have
gained importance as a complement to day-ahead markets (Ma-
ciejowska et al., 2019). Hour-ahead predictions obtain a higher
accuracy so that final remarks can be made on the PV power
output to account for recent errors.

The accuracy of these predictions may still not be perfect, or
some last minutes changes may occur so that the demand does
not meet the supply. To avoid PV power curtailment and system
instability, nowcasting can be employed. Nowcasting is defined
as predicting the present or very near future (here considered as
15 min or less). This technique can be employed to provide last
minutes corrections which are used by utility operators to bring
spinning reserves online (Rosiek et al., 2018). Nowcasting can also
be employed for early anomaly detection (Torabi et al., 2017).

An overview of the forecasting ranges and their main applica-
tions is shown in Table 4.

Following this criterion, like in previous sections, the analysed
literature has been classified as shown in Fig. 12. A fifth group
has been included for studies that forecast the PV power in time
458
Table 4
Classification of the time horizons employed in this review and their most
common application.
Category Time horizon Application

Long-term More than one week Maintenance scheduling
Pilot installations
Bankability studies

Day-ahead 5 h to one week Economic dispatch
Day-ahead price determination

Hour-ahead or
intra-day

15 min to 5 h Unplanned outages compensation
Unit commitment

Nowcasting Less than 15 min Power balance
Electricity market clearing
Early anomaly detection

horizons belonging to more than one category. The results show
that most publications focus on day-ahead forecasting, while only
a few belong to the nowcasting and long-term categories. Given
that the forecast depends on the application, the authors do not
recommend any specific category.

Some researchers studied the behaviour of ML models under
different time horizons. Generally, they found that the higher the
time horizon, the higher the error (Eseye et al., 2018; Paulescu
et al., 2017; Li et al., 2018; Chang and Lu, 2020; Li et al., 2016b).
De Giorgi et al. (2016) found that LS-SVR achieved an NMAE of
around 6% when predicting the PV power 1 h ahead, and the value
increased to around 21% when predicting 12 h ahead. They stated
that when predicting longer times, the PV power peaks were
underestimated, while the valleys were overestimated. Similarly,
in Pierro et al. (2017) an RMSE of 5%–7% was obtained for the
intra-day forecast (1 to 4 h) while this value increased to 7% and
7.5% for one and two-day forecasts, respectively. One exception
was found in Massidda and Marrocu (2017), where the day-
ahead forecasting had a higher accuracy than when estimating
15 min, 1 h and 3 h ahead. They claimed this was obtained for
the day-ahead prediction because of compensation along the day.

The forecast horizon also affects the ranking of algorithms. In
Sharadga et al. (2020) the performance of several algorithms was
tested under one-, two- and three-hour ahead forecasting for a
20 MW grid-connected PV station in China. For one- and two-
hour ahead, LSTM showed the best performance with RMSE of
0.841 and 1.102 MW, while ANN achieved 0.961 and 1.395 MW
respectively. However, for three-hour ahead forecasting, ANN
achieved lower (1.805 MW) RMSE than LSTM (1.824 MW). Similar
results were obtained in Wolff et al. (2016).
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Fig. 12. Number of publications as a function of the forecast category that they belong to. A new group has been included for publications which belong to more
than one category.
Fig. 13. Number of times that each feature has been employed for predictions in the publications reviewed.
. Choice of features

In this section, the inputs employed for PV power forecasting,
alled features in a machine learning model, are explored. In
ig. 13, the most common features have been depicted as a
unction of the number of publications in which they have been
mployed. Here, the irradiance bar includes several forms such as
lane of array or diffuse irradiance.
As expected from a physics-based approach, irradiance and

emperature are the most important features. However, none of
hese two features is essential for ML predictions. Several works
ave been performed which rely only on previous PV power
utputs, such as Sharadga et al. (2020), Li et al. (2015), Asrari et al.
2017), Chang and Lu (2020) and Li et al. (2019a). These methods
re more flexible to apply in practice. The use of previous PV
ower measurements in combination with weather data can con-
iderably increase the performance of the algorithms (De Giorgi
t al., 2016). It is also important to consider that some of the ML
ethods consider previous PV power values intrinsically (such as
STM).
459
One surprising fact from a solar engineering perspective is
the large number of papers that employ humidity as a feature.
According to Fig. 13, this parameter is more popular than cloud
coverage, which is usually essential for accurate physical pre-
dictions. Researchers in Li et al. (2019b) found that humidity is
negatively correlated with PV power. An increase in moisture
implies an increase in the absorption, reflection and refraction of
sunlight, hence it reduces the radiation received by PV panels.

One would think that the larger the number of features, the
better. However, as already mentioned in Section 2.3.1, extra
variables can be detrimental to the model’s performance and can
increase the demand for computational power. For instance, in
Kraemer et al. (2020) pressure was detrimental to the ML model,
while humidity and rainfall did not influence performance. Fea-
ture selection identifies the most relevant features for each par-
ticular model. Literature results show that the choice of features
depends on the feature selection algorithm employed (Touati
et al., 2017; Massaoudi et al., 2019), on location and even on spe-
cific events. For instance, in Kuzmiakova et al. (2017), wind speed
was not as relevant in November as in the rest of the months
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ue to exceptional hurricane-force winds. Similar results were
eported by Abuella and Chowdhury (2017), who showed that
he correlation between parameters has seasonal dependency. On
he importance of location, Touati et al. (2017) provided a good
xample. They predicted the PV power output of a system located
n Qatar, a desert-like climate. The results from the feature selec-
ion algorithm showed that dust was one of the most relevant
eatures, while it was not employed in any of the other studies
ncluded in this review.

To conclude, there is no optimum set of features for all cases.
hen in presence of a new model, the reader is recommended

o check previous literature and gather as many relevant features
s possible. Fig. 13 can give a hint about the latter. Despite some
odels being able to identify relevant features (such as the ones
xplained in Section 2.3.1, and some DL algorithms (Massaoudi
t al., 2021)), it is still recommended to do at least feature
xploration. The use of less important features (e.g., sunshine du-
ation) is not recommended unless no more relevant features are
vailable, since they can still provide the information indirectly.

se of 2D features
A special mention needs to be made in this section regarding

he use of 2D features. A source of uncertainty in PV power
redictions is cloud coverage information. Rapidly changing cloud
overage has a significant influence on PV modules output and is
big challenge in solar yield forecasting. Cloudy days are harder
o forecast than sunny ones (Ferlito et al., 2017; Sharadga et al.,
020; De Giorgi et al., 2016; Rosiek et al., 2018; Baharin et al.,
016; Wolff et al., 2016).
To overcome this, some groups have centred their efforts on

mploying satellite images to make an accurate estimation of
loud movement. This approach, which is extensively used for
rradiance forecasting, is now gaining popularity for the pre-
iction of PV power. Examples are the works by Wolff et al.
2016), Rosiek et al. (2018) and Pierro et al. (2017). However,
atellite images have either high temporal or high spatial res-
lution but never both Dev et al. (2016), while both charac-
eristics are required for PV power prediction, especially in the
hort-term (Pazikadin et al., 2020).
An alternative method to satellite imaging is employing sky

mages. Ground-based sky imagers are gaining popularity since
hey have both high temporal and high spatial resolution. Sky
mages were employed in Anagnostos et al. (2019) to detect the
loud type. These images can also be employed for comprehend-
ng cloud movement, as in Zhang et al. (2018) and Sun et al.
2019). Chu et al. (2015) uniquely used these images in their
ork. First, they employed an ANN to forecast the PV power,
s done by other researchers. Then, applying simpler methods
ogether with sky images, they re-forecasted the PV power to
ncrease the accuracy. The main disadvantage of sky images is
hat they are local, hence cannot be employed for wide-area
orecasting.

For more information on satellite and sky imaging, the reader
s referred to the reviews by Ahmed et al. (2020) and Feng et al.
2021).

In this section, we have not discussed the origin of the weather
ata. The input data can come from different sources such as
umerical weather predictions or neighbouring PV systems. The
eader is referred to Antonanzas et al. (2016) and Feng et al.
2021) if more information on the topic is yearned for.

. Outlook

This section presents the main recommendations given to the
eaders based on the discussion performed in previous sections.
achine learning algorithms

460
Starting with the ML algorithms, we have seen in Section 2
that there is a wide range of families to choose from. Some
algorithms are too simple to properly forecast the PV power
output, but most of them can yield reasonable results. Indeed,
linear regression approaches are unable to correctly model the
non-linearities of PV power forecasting, but once this step is
overcome, the difference in performance between MARS and a
DL hybrid algorithm is not that high (Li et al., 2016a; Ferlito et al.,
2017). In these cases, developing a model that would be applied
in practice is more relevant. This can imply that the algorithm
is interpretable, that the requirements in terms of training data
are not high, that the model is not computationally expensive,
and that it is flexible enough to be adapted to unseen PV systems
with different characteristics and climates.

Generalization
Regarding the last point, most ML methods are usually tested

on a few systems under the same climate so their capacity to
adapt to unseen PV plants is unknown. This can be an issue when
these models are put into practice.

Starting with the number of PV systems (Section 4.2) most
researchers motivate their study by contributing to improved
generator dispatch, power quality effects mitigation, and reducing
secondary reserve capacity (Theocharides et al., 2018), but if
their results are not validated for multiple systems, they are not
reliable enough for upscaling. This hinders the practical use of
the developed methods since they are not fully tested or verified
under different conditions. Moreover, there is a need for more
regional forecast studies, which will provide the basis for grid
management.

A similar issue is found with the location of PV systems (Sec-
tion 4.1). Most studies focus on systems located in the same
climate and country. We are still missing a study which employs
PV systems from different places on the earth, which analyses the
differences in performance between the climates and can adapt
to any type of PV system. One of the barriers to achieving this is
that large-scale data acquisition is costly and might be difficult for
research institutions. Lack of coordination between researchers
and the industry might result in an unnecessarily long search for
optimal solutions and little implementation.

Data acquisition
Another issue related to data acquisition is its availability

and quality. There is generally enough available data, but fre-
quently not with the desired resolution. This affects, for instance,
the choice of the forecast horizon. Nowcasting is currently the
most demanded forecast horizon because of cloud-related insta-
bility (Antonanzas et al., 2016), but the amount of data available
with the required time resolution is limited. This explains the
small percentage of studies focusing on this forecast horizon (see
Fig. 12). Similarly, the lack of sky images and high-resolution
cloud coverage information is a major concern.

Data quality is another important factor, even more than the
chosen algorithm. Incorrect data will negatively affect the algo-
rithm, without consideration of its complexity (Escalante, 2005).
This is also the main source of error in complex physical fore-
casting models. Unless the objective of the forecasting model
is to predict the power produced by a specific PV plant with
a meteorological station nearby, we recommend not using local
weather parameters such as wind speed and direction. These
lowly correlated parameters (Li et al., 2017) can only add noise
if they are not measured on-site. Other highly correlated features
with lower spatial sensitivity such as temperature will not be so
detrimental to the model.

It is also important to keep in mind that up to two hours
ahead the previous PV power is more important than numerical
weather predictions (Abuella and Chowdhury, 2017). Although
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Fig. 14. Metrics as a function of the number of times employed in the literature explored in this review.
e recommend PV power as a feature, with only that the accuracy
f the predictions is very limited, especially during cloudy days.
rom our point of view, the best approach is to complement
revious PV power and clear-sky irradiance with cloud move-
ent extracted from images. Unfortunately, the use of imaging is
urrently limited by the low geographical resolution of satellites
nd the small coverage and price of ground-based sky images.

etrics
Due to the extensive literature covering metrics for PV power

orecasting (Yang, 2019; Antonanzas et al., 2020; Zhang others,
015; Armstrong and Collopy, 1992) this is not a focus of this
ork. Appendix C: Metrics describes the main metrics for com-
leteness. However, we still want to provide our insights based
n Fig. 14, which represents the popularity of the main metrics.
RMSE is by far the most popular measure, commonly preferred

n many disciplines as it provides good sensitivity (Armstrong
nd Collopy, 1992). Other popular metrics are MAE and its nor-
alizations. Although not included, visual inspection is also an

mportant representation commonly employed by researchers.
Although it can be considered for comparison purposes, pop-

larity should not be the determining factor when choosing a
etric. The most suitable metric depends on the characteristics
f the system such as geographic location, the forecast timescales
nd the objective of the study (Zhang others, 2015; Armstrong
nd Collopy, 1992). All these factors complicate the existence
f a standard metric or group of metrics. As a general recom-
endation, it is important to employ more than one measure
f prediction error and to make an analysis of the type of error
ade. This will display the flaws of the proposed approach for

urther improvement. We also recommend the use of normalized
etrics for easier comparison and understanding.

look into the future
To finalize, we would like to give our view on future develop-

ents in the field. We believe that in the near future ML-based
ethods for PV power forecasting will be more extended at the

ndustry level. There are currently some factors hindering their
pplication in real life, such as robustness and interpretability.
hese can affect the choice of the algorithm and could distance
rom highly potential models such as neural networks, which
ave lower robustness due to their inherent randomness and are
461
hard to optimize (Li et al., 2016a). We think that interpretability
strategies such as explainable AI will most likely gain ground
since in practice model decisions need to be justified. Probabilis-
tic approaches will most likely also be important, especially in
the day-ahead time frame, since they provide flexibility to the
predictions. We also hope that the time and spatial resolution of
satellite images will increase fast enough so that they can be more
highly employed in the near future.

There are some other aspects to take into consideration re-
garding the expansion of this field. For instance, the velocity at
which PV capacity is deployed. Grid limitations as well as admin-
istrative regulations slow down the installation of new facilities.
The lower the importance of PV in the electricity generation, the
lower the demand for accurate forecasts. Storage development
will probably also affect the deployment in practice of AI since
in presence of large and cheap storage solutions, supply–demand
balancing will become easier, and there will be fewer incentives
to have accurate prediction solutions.

Overall, it is important to keep in mind that no model is
going to yield 100% accurate predictions: not only because it is
unfeasible to collect all the necessary data, but also because of
errors in the data collection which are swept along in all the
phases of the prediction. The most important concern should be
to focus on the application one is willing to achieve, and give the
best possible result knowing that there will be some uncertainty
in it.

8. Conclusion

In this review, we have provided an overview of the state
of the art of PV power forecasting employing machine learning
techniques. The main contribution of this work with respect to
previous ones published on the topic is the extensive catego-
rization of the literature. We have classified according to the
characteristics of the PV systems employed for forecasting, as well
as the forecast horizon and input features. This has highlighted
gaps that have not been reported previously, such as the lack of
studies in certain parts of the world or the focus on day-ahead
predictions.

The literature has also been classified according to the fore-

casting technique employed, giving special emphasis on grouping
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he ML algorithms into categories. We have given an overview
f all ML families, instead of focusing on the most popular algo-
ithms, in order to provide alternatives to researchers wanting
o deviate from the standard. A special mention has been made
f alternative approaches such as cloud imaging and probabilistic
orecasting.

One of the limitations of this study is the specific range of
ears that it focuses on. By looking from 2015 until 2020, we are
ot covering the most up-to-date literature and we are neither
ooking at long-term trends. The process employed to obtain that
iterature was also biased by the most cited papers. However, the
arge number of publications considered reduces this bias.

Finally, the outlook has summarized the main outcomes of
ach section while providing recommendations to everyone in-
erested in the field. Although the objective was to make a review
s impartial as possible, the authors’ opinions and point of view
eeded to be expressed across the paper, especially in this last
ection. This could lead to researchers being misled, but it can
lso be a valuable contribution to the field.
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ppendix A. Reviewed literature

See Table A.1.

ppendix B. ML families

This appendix provides the main distinctive characteristics of
ach of the 10 ML families considered in this work. The objective
s not to provide a detailed explanation, but an overview of the
ifferences between families.
Regression
With their origin in statistics, regression methods have been

he starting point of machine learning thus they have been
dopted as part of the discipline (Theodoridis and Koutroumbas,
009). This group is mainly composed of the linear regression
ethod and its variations. It is important to distinguish between

egression and auto-regressive methods. The main differences are
ow the linear coefficients are obtained and that auto-regressive
ethods include an error term.
The equation below depicts an example of the estimation of

he PV power P̂ (t) at time step t , using a simple linear regression
model. Here we consider only the irradiance I (t − 1) and the
emperature T (t − 1) at the previous time step as inputs to the
odel.(
t, −→α

)
= α0 + α1I (t − 1) + α2T (t − 1) (B.1)

The coefficients of the linear regression model α⃗ = [α0, α1, α2],
ike in most machine learning algorithms, are found by minimiz-
ng the loss function L between estimated and real PV power
462
P (t). The loss function can take several forms, being the quadratic
loss amongst the most popular ones.

min
−→α

(∑
t

L
(̂
P
(
t, −→α

)
− P (t)

))
(B.2)

It is also relevant to highlight the Multivariate Adaptive Re-
gression Splines (MARS) algorithm in this family. This approach
improves the linear regression by including hinge functions (Fried-
man, 1991). They allow non-linear relations between the input
and the output, which increases flexibility at a cost of complex-
ity (Li et al., 2016a).

Regularization
A common issue encountered when solving machine learning

problems is data overfitting. This phenomenon occurs when the
algorithms fit the testing set so much that they are unable to fit
unseen data. To solve this issue, regularization techniques were
developed in order to limit the size of the parameters to be
optimized. This method is generally applied to linear regression
models.

For instance, the normalization of the linear regression algo-
rithm from Eq. (B.1) can be applied by limiting the size of the
coefficients α⃗. This is imposed by adding a penalization term R(α⃗)
o the function to be minimized. Hence, the objective function
n Eq. (B.2) becomes Eq. (B.3). When the algorithm performs the
inimization, it is motivated to keep the coefficients low.

in
−→α

(∑
t

L
(̂
P
(
t, −→α

)
− P (t)

)
+ R

(
−→α
))

(B.3)

Depending on how the penalization of the parameters is de-
ined, one encounters several algorithms: Least Absolute Shrink-
ge and Selection Operator, 1-norm (absolute value) penalization;
idge Regression, 2-norm (root squared value) penalization; and
lastic Net, 1-norm and 2-norm penalizations.
Bayesian algorithms
Bayesian algorithms use Bayes’ theorem as a basis to de-

elop their models (Brownlee, 2021). Bayes’ theorem relates the
robability of a certain event to the knowledge a priori of con-
itions related to that event. In terms of the previous example,
ayes’ theorem finds p (P|I, T ), which is the probability to pro-

duce the PV power P given a certain irradiance I and temperature
T (time dependencies have been removed for easier understand-
ing). p (P|I, T ) is related to the prior, which is the distribution of
the PV power p(P) before knowing the meteorological conditions,
and to the likelihood, which is the probability to measure certain
weather conditions knowing the produced PV power p (I, T |P).
q. (B.4) depicts this relation, where p(I, T ) is the distribution
f meteorological conditions, obtained via normalization of the
roduct of probabilities.

(P|I, T ) =
1

p (I, T )
p (P) p (I, T |P) (B.4)

Depending on the distribution assumed for the terms of Bayes’
theorem, different Bayesian algorithms arise. If the probability
distribution of the produced PV power is assumed to be Gaussian,
we encounter the Gaussian process regression (Schulz et al.,
2018). If independence between features is also assumed, we
encounter the Gaussian Naïve Bayes algorithm (Cervone et al.,
2017; Brownlee, 2021). However, this last assumption is strong
and unlikely in real data.

Instance-based
These algorithms find important points within the training

data set that describe the problem at hand (Brownlee, 2021). One
of the most known algorithms inside this block is the k-Nearest
Neighbour (k-NN). In presence of a new input, k-NN looks at the
k nearest neighbours of the input in order to decide the output.

The main character in this family is the Support Vector Ma-
chine (SVM). This algorithm identifies the most relevant data
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Table A.1
Summary of the main characteristics of the reviewed literature. Below the table, one can find the meaning of the abbreviations.
Ref. Country Köppen Features ML algorithms

Abdel-Nasser and Mahmoud (2019) Egypt B pow LR dt FFNN LSTM
Abuella and Chowdhury (2017) Australia B pow irr ta h cc r ws wd p t LR SVR MLP dr
Agoua et al. (2019) France C pow irr ta h wd bay regu ELM
Al-Dahidi et al. (2020) Jordan B pow irr ta h ws t FFNN ELM
Alessandrini et al. (2015) Italy C pow irr ang ta cc regr FFNN ens
Alfadda et al. (2017) USA C pow ta h cc ws wd t LR regu SVR
Alkandari and Ahmad (2020) – – irr ta h r ws wd LSTM DL hyb
Almeida et al. (2015) Spain C irr ta h cc ws wd p dt dr
Alomari et al. (2019) Jordan B pow irr ta t BPNN
Anagnostos et al. (2019) Germany C irr ang tpv cc MLP
Asrari et al. (2017) USA C pow FFNN GA opt
Baharin et al. (2016) Malaysia A irr ta h ws SVR dr
Carrera and Kim (2020) South Korea C irr ang ta h cc r ws wd p LR regu k-NN SVR dt ens
Cervone et al. (2017) Italy C pow irr ang ta cc BPNN ens hyb
Chang and Lu (2020) Taiwan C pow SVR BPNN ANN DL
Chen and Koprinska (2020) Australia – pow LR SVR dt FFNN LSTM ens hyb
Chu et al. (2015) USA B pow k-NN FFNN GA
Das others (2017) Malaysia A pow irr ta ws SVR BPNN
De Felice et al. (2015) Italy C irr ta SVR
De Giorgi et al. (2016) Italy C pow irr ta tpv LS-SVR DL hyb
Do et al. (2016) – – pow ta cc regr FFNN
Eseye et al. (2018) China D pow irr ta h cc ws p SVR BPNN pre GA PSO
Ferlito et al. (2017) Italy C pow irr ta cc LR MARS k-NN SVR dt ANN ELM ens
Gensler et al. (2017) Germany C MLP LSTM DL hyb
Golestaneh et al. (2016) – – pow ELM
Graditi et al. (2016) Italy C irr tpv MLP LSTM pre
Gulin et al. (2017) Croatia C irr ta h ws wd p MLP
Han et al. (2019) – – pow ta h p SVR LSTM dr
Hossain et al. (2017) Malaysia A pow irr ta tpv ws SVR FFNN ELM
Huang et al. (2016) USA D irr ang tpv bay SVR FFNN
Huang and Kuo (2019) Taiwan C pow irr ta SVR dt MLP LSTM CNN ens
Isaksson and Conde (2018) Sweden D pow irr ta h cc r ws wd p regu k-NN BPNN ens dr
Jung et al. (2020) South Korea – irr ta h cc rwsr ws t LSTM DL
Kazem and Yousif (2017) Oman B irr ta SVR FFNN MLP DL
Konstantinou et al. (2021) Cyprus B pow LSTM
Kraemer et al. (2020) Norway D ang ta h cc r p ANN DL ens
Kumar and Kalavathi (2018) India A pow irr ta h rwsr ws p FFNN fuz
Kuzmiakova et al. (2017) USA D ta h cc ws p regr LSTM ens dr
Lee et al. (2019) South Korea D ang ta tpv h cc rwsr ws wd SVR dt FFNN DL ens dr
Lee et al. (2018) South Korea – pow irr ta h rwsr ws LR regu regu SVR ens hyb
Lee and Kim (2019) South Korea D irr ta h cc t BPNN LSTM
Li et al. (2019b) Australia B irr ta h SVR ANN PSO opt
Li et al. (2016a) China C ta h r ws p LR MARS k-NN SVR dt FFNN
Li et al. (2015) China C pow BPNN ELM
Li et al. (2020) Australia B pow irr ta h ws MLP DL LSTM DL pre
Li et al. (2018) South Africa B pow ta h BPNN DL
Li et al. (2016b) USA C pow ang ta ws wd SVR FFNN
Li et al. (2019a) Belgium C pow SVR BPNN ANN DL LSTM
Lin and Pai (2016) Taiwan C pow LS-SVR ANN GA
Lin et al. (2018) Australia B pow irr ta h ws LS-SVR BPNN ANN DL hyb pre
Lin et al. (2020) Australia – pow irr ta r ws ANN hyb
Maitanova et al. (2019) Germany C pow ta h cc r LSTM opt
Majumder et al. (2020) USA – pow SVR ANN ELM opt
Massaoudi et al. (2019) Australia B pow irr ta h ws wd t bay regu k-NN ens dr
Massidda and Marrocu (2017) Germany C irr ta cc ws p MARS
Mishra et al. (2020) USA D pow ang ta h cc ws p LR regu LSTM pre opt
Nageem and Jayabarathi (2017) India A irr ta h ws p t SVR
Nayak and Heistrene (2020) India B irr SVR dt ANN ELM hyb
Ni et al. (2017) Singapore A pow irr ta tpv ws wd ELM
Ogliari et al. (2018) Italy C irr ta cc rwsr ws wd p t hyb
Pan et al. (2020) Australia B irr ta h wd t SVR opt
Panamtash et al. (2021) USA A pow BPNN
Paulescu et al. (2017) Italy C irr ta cc LR regr fuz
Pawar et al. (2020) Australia C irr SVR
Pierro et al. (2017) Italy C pow irr ang ta h ws k-NN MLP pre dr
Pujić et al. (2020) Denmark C irr ta h cc ws wd p LR k-NN SVR FFNN ens
Ramsami and Oree (2015) UK C irr ta h rwsr ws wd p LR FFNN ANN dr
Rana et al. (2015) Australia C pow irr ta h ws SVR MLP
Raza et al. (2018) Australia C pow irr ta h ws FFNN ANN DL pre
Rosato et al. (2017) Italy C pow LR ANN fuz
Rosiek et al. (2018) Spain C irr ang ta h ws wd p BPNN pre dr
Semero et al. (2018) China D irr ta tpv h cc p LR BPNN fuz dr GA PSO
Shang and Wei (2018) USA B MLP BPNN ANN fuz pre dr PSO

(continued on next page)
463
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Table A.1 (continued).
Ref. Country Köppen Features ML algorithms

Sharadga et al. (2020) China C pow MLP ANN LSTM DL fuz pre
Sheng et al. (2020) – – irr ta h ws t bay SVR ANN ELM opt
Soufiane et al. (2020) – – pow ANN pre
Sun et al. (2019) USA C pow cc CNN
Suresh et al. (2020) Poland C irr ta tpv ws LR CNN hyb
Takeda (2017) Japan C pow irr ta ws ens
Tang et al. (2016) USA C irr ta h ws ANN ANN ELM
Theocharides et al. (2018) Cyprus B irr ang ta h ws wd SVR dt FFNN
Torabi et al. (2017) Portugal C pow irr BPNN
Touati et al. (2017) Qatar B irr ta tpv h ws LR dt dr
Van Tai (2019) Russia D irr tpv ws LR FFNN fuz dr
Wang et al. (2019b) Australia B irr ta h ws wd LSTM CNN hyb
Wang et al. (2018) Australia B irr ta h cc r ws wd p SVR BPNN LSTM DL hyb dr
Wang et al. (2020) USA B irr ta k-NN BPNN LSTM
Wang et al. (2017) Belgium C pow regr SVR BPNN CNN pre
Wang et al. (2019c) USA C pow CNN
Wang et al. (2016) China C irr ta h rwsr ws p LR regr MLP ANN
Wen et al. (2019) Australia B irr ta h ws t SVR MLP hyb
Wolff et al. (2016) Germany C pow irr ta cc SVR
Yadav et al. (2018) India A irr tpv ANN
Yang et al. (2020) Netherlands C pow ANN opt
Yin et al. (2020) China D irr ta h ws SVR BPNN ELM
Yousif et al. (2017) Oman B irr ta SVR MLP DL
Zang et al. (2018) China C pow irr ta ws bay SVR BPNN CNN ens hyb pre
Zhang et al. (2015) – – irr ang ta tpv cc ws k-NN LS-SVR ANN
Zhang et al. (2018) Japan C pow cc MLP LSTM CNN
Zhou et al. (2018) China C pow tpv t SVR pre

The five Köppen categories are: A—tropical, B—dry, C—mild temperate, D—continental and E—polar.
The abbreviations for the features are: pow—PV power; irr—irradiance; ang—solar angles; ta—air temperature; tpv—PV temperature; h—humidity; cc—cloud coverage;
r—rainfall; ws—wind speed; wd—wind direction; p—pressure; t—time. Be aware that only the most relevant features have been mentioned, but some authors have
included more.
The abbreviations for the ML algorithms have been mentioned in the text. If one or more algorithms from a certain family have been employed and are not
one of the popular algorithms, the abbreviation of the family is mentioned. The abbreviations correspond to: regr—regression; regu—regularization; bay—Bayesian
algorithms; dt—decision trees; ens—ensemble algorithms; ANN—Artificial Neural Networks; DL—Deep Learning; fuz—fuzzy algorithms; hyb—hybrid algorithms. In the
next appendix, the main characteristics of each family are briefly mentioned.
Fig. B.1. Schematic example of Support Vector Regression applied for the
prediction of the PV power as a function of the transformed irradiance.

points during training and employs this subset for prediction
(Bishop, 2006). The method was originally developed for clas-
sification problems, but it was recently extended for regression
under the name of Support Vector Regression (SVR).

Fig. B.1 exemplifies the use of SVR to predict the PV power P̂
as a function of the kernel of the irradiance φ(I). The kernel is a
ransformation made to the input so that a linear relationship can
e found between the transformed input and output. This linear
elationship is found by minimizing the margin of tolerance ϵ

o that all the points fall within the line with the margin. The
oints that are within the borders of the margin of tolerance
etermine the parameters of the linear relationship and are called
he support vectors.

A simplification in the learning procedure of the SVR leads to
he Least-Squares SVR (LS-SVR), making the solving process more
464
Fig. B.2. Example decision tree for PV power prediction.

efficient. This results in a lower computational cost, without any
effect on accuracy.

Decision trees
The algorithms in this class predict using a tree-like model

of decisions. The data space is recursively partitioned depending
on its value, and a simple prediction model is then fitted within
each partition (Loh, 2011). Fig. B.2 shows a very simple decision
tree that predicts the PV power as a function of irradiance. The
difference between the models within this family lies in their
underlying algorithms which determine for example the type of
prediction model fitted within each partition (Loh, 2011).

Ensemble algorithms
Ensemble algorithms combine many weak learners (also called

predictors) into one strong learner (Brownlee, 2021). A weak
learner is defined as one whose performance is slightly better
than random chance. For instance, random forests and gradient
boosts regression trees are made of a combination of decision
trees. An example of their structure can be seen in Fig. B.3, where
the result of three different decision trees is combined to improve
the estimation of the output. One can also combine deterministic
forecasts to create a probabilistic one. This is the working method
of the Analog Ensemble. This algorithm starts by producing a
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Fig. B.3. Schematic of random forest, where the output of three different decision trees is combined to improve the prediction.
Fig. B.4. MLP or FFNN structure for a PV power forecasting problem.
hort-term deterministic forecast with training data. When new
ata is provided, a deterministic forecast is computed, and its
esult is compared to the most similar past forecasts. These are
hen combined to generate a bias-adjusted probabilistic forecast.

Artificial neural networks
Artificial Neural Networks (ANN) were inspired by the synap-

ic connections in the nervous system, hence their name (Wang,
003). An ANN consists of an input layer of nodes (neurons),
everal hidden layers and a final layer of output neurons (Cross
t al., 1995). The nodes are interconnected via a set of weights
uch that signals can travel through them (Fausett, 2006). The
utput of each node is the result of an activation function, applied
o the aggregated weighted values of the node’s input (Wang,
003; Dongare et al., 2008). The purpose of the activation function
s to introduce nonlinearity to the structure so its flexibility is
ncreased, making this configuration very powerful (Cross et al.,
995). They have an implementation drawback since the opti-
al configuration and learning algorithm are hard to obtain a
riori (Li et al., 2016a).
The weights assigned to each node are modified by experi-

nce while training. The most common method to train these
tructures is using back-propagation (Gardner and Dorling, 1998),
ence these ANN are referred to as back-propagation neural
etworks (BPNN).
If the nodes of the ANN never form a cycle, the ANN is called

feed-forward neural network (FFNN) or multilayer perceptron
MLP) (Gardner and Dorling, 1998). This is the first and simplest
ype of ANN (Wang, 2003). Fig. B.4 shows graphically its struc-
ure for a PV power forecasting problem. All the nodes are fully
onnected between consequent layers and the information flows
rom the input to the hidden and finally the output.

Several characteristics can be tuned to create different types of
NN (Tch, 2017), such as applying a different activation function
465
in each node, implemented by the Radial Basis Function and
generalized regression ANNs.

Deep learning
Deep Learning (DL) is a subset of ML, in particular a subset of

ANNs. These ANNs are characterized by having a deeper number
of processing layers (Shrestha and Mahmood, 2019) so that their
problem-solving capacity is increased, and have higher extraction
capabilities (Wang et al., 2019a). Famous examples of the use
of DL are face recognition (Jamil et al., 2001) and autonomous
driving (Kocić et al., 2019). This increased complexity requires
huge amounts of data which implies a high computational time
and a hard, sometimes impossible, interpretability (Chen and
Meng, 2020).

One example is the Recurrent Neural Network (RNN). These
structures, as opposed to FFNN, are characterized by having at
least one loop (Chang and Lu, 2020; Shrestha and Mahmood,
2019), for instance, by making that each hidden cell receives its
output with a fixed delay (Tch, 2017), vide Fig. B.5. If furthermore,
the hidden layer is upgraded by including ‘‘memory’’ cells, we
encounter the long–short term memory (LSTM) RNN.

An issue of FFNNs is their time-consuming learning process
due to slow training algorithms applied several times (Ding et al.,
2015). This problem was solved for single-hidden layers by Huang
et al. with the Extreme Learning Machine (ELM) (Bin Huang
et al., 2006). The algorithm reduces the computational burden of
FFNN by selecting the hidden nodes randomly and calculating the
output weights only once.

Another DL structure very popular especially when dealing
with images is Convolutional Neural Network (CNN). Its name
originates from the use of the mathematical operation of convo-
lution. CNNs are made of several layers, including convolutional,
pooling and fully connected ones.

Fuzzy algorithms
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Fig. B.5. Recurrent deep learning neural network structure. For colour references refer to the web version of this article.
Fig. B.6. Comparison between k-means and fuzzy k-means clustering, where the association to a group is defined by a probability rather than a certainty. For colour
eferences refer to the web version of this article.
The algorithms in this category employ fuzzy logic methods
o forecast the PV power. Fuzzy logic can be understood as an
xtension of binary logic. In the latter, the only possible values
re 0/False or 1/True. Fuzzy code extends this logic by considering
hat the components take values between 0 and 1, which can be
nterpreted as a probability of a fact occurring. By making use
f this logic, Takagi and Sugeno developed a model (Takagi and
ugeno, 1985) which has been employed to modify several ML
lgorithms. Two algorithms belonging to this group have been
pplied for PV power forecasting: fuzzy k-means clustering and
daptive Neuro Fuzzy Inference System.
k-means clustering is a highly employed unsupervised ML

lgorithm that divides the space into k groups or clusters where
ach element of the space has an assigned group. When fuzzy
ogic is applied to this method, the elements can belong simulta-
eously to more than one cluster up to some degree (Theodoridis
nd Koutroumbas, 2009), as represented in Fig. B.6. Fuzzy logic
an also be integrated into ANN yielding to the Adaptive Neuro
uzzy Inference System (Jang, 1993; Konstantinou et al., 2021).
ecause of the use of fuzzy logic, this method is more flexible
han standard ANN.

Hybrid algorithms
Hybrid algorithms combine two or more ML methods to im-

rove their performance, and sometimes to reduce the extensive
ata and computational requirements (Massaoudi et al., 2021).
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These algorithms can be combined by concatenating two fore-
casting algorithms, optimizing the parameters of the forecasting
model, or modifying the input data so it is more easily inter-
pretable. The third case is not considered a hybrid in this work,
but a pre-processing step.

Appendix C. Metrics

Metrics are employed to measure how close predicted values
are to real ones. The most basic metric is the error, defined as
the difference between real and forecasted values. This measure
can be made unit free through normalization by the nominal
capacity of the power plant, the real value (percentage error) or
the average of the real values, among others.

Time series are not practical to work with, since they do not
provide a single value and hence are hard to compare. Some
transformations can be applied to this error to express it as one
figure, such as:

– Averaging, giving place to the Mean Bias Error (MBE) or
simply Bias

– Taking the absolute and averaging, Mean Absolute Error
(MAE)

– Squaring and averaging, Mean Squared Error (MSE)
– Squaring, averaging, and taking the square root, Root Mean

Squared Error (RMSE)
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Table C.1
Most employed metrics for PV power forecasting with their equations and main characteristics.
Metric Equation Main characteristics

Error xi − x̂i Time series

NMBE
1
x

∑
i

(
x̂i − xi

)
N

Measure of central tendency
Indicated over and under estimations

NMAE
1
x

∑
i

⏐⏐xi − x̂i
⏐⏐

N
Measure of average error
Same importance to all values

NMSE
1

x2

∑
i

(
x̂i − xi

)2
N

Measure of average of the squares of the errors
Higher importance to outliers

NRMSE
1
x

√∑
i

(
xi − x̂i

)2
N

Measure of average error
Higher importance to outliers

MAPE
1
N

∑
i

⏐⏐⏐⏐ xi − x̂i
xi

⏐⏐⏐⏐ Measure of prediction accuracy as a percentage of the error

R2 1 −

∑
i

(
x̂i − xi

)2∑
i (x − xi)2

Measure of variability
Represents how the model fits the observed data

Skill score 1 −
RMSEproposed
RMSEreference

Represents an improvement over the reference model (persistence, usually)

Correlation

∑
i (xi − x)

(
x̂i − x̂

)
√∑

i (xi − x)2
∑

i

(
x̂i − x̂

)2 Measure of linear relationship between variables

CRPS
1
N

∑
i

∫
∞

−∞

(
F f
i (x) − F 0

i (x)
)2

dx Measure of the difference between the real value and the prediction interval

Kurtosis
1
N

∑
i

(
x̂i − x̂

)4
σ 4 Measure of asymmetry of the distribution

Skewness
1
N

∑
i

(
x̂i − x̂

)3
σ 3 Measure of sharpness of the distribution
c
a
n
a
t
t
d
a

e
v

All these metrics can be further normalized, giving Normalized
ean Bias Error (NMBE) and equivalent measures (NMAE, NMSE
nd NRMSE). When the MAE is normalized by the real value of the
ata series, it gives the Mean Absolute Percentage Error (MAPE),
hich is a special case of NMAE. Normalization gives unit-free
rrors and allows for comparison of the performance of PV power
lants of different nominal power.
Each of these metrics gives different information about the

ype of error performed. MBE indicates over- and underestima-
ions, but positive errors are cancelled by negative ones. MAE
escribes the quantitative error of the forecasts, giving the same
mportance to all values (Rosiek et al., 2018). This last fact is
ometimes undesirable in real applications of PV power since
arger errors are the most costly. MSE and RMSE solve this issue
t a cost of giving higher importance to outliers. Between the two,
MSE is preferred since the scale remains intact.
Other measures that are not so straightforward to derive but

lso extensively employed for PV power forecasting are the coef-
icient of determination or R-squared (R2), the skill score (SS) and
he correlation. R2 indicates the variability between real and pre-
icted values; it represents how well future outcomes are likely
o be predicted (Rosiek et al., 2018). The skill score compares the
rror of the proposed method with reference to the error of a
tandard method (such as persistence). Correlation determines
he forecast performance even if any systematic correction or
e-scaling has occurred.

There is a separate group of metrics which are specific to
robabilistic PV power forecasting. These measure the error made
n prediction intervals, not on single points. The most employed
etric in this category is the Continuous Ranked Probability Score

CRPS), which computes the difference between the real value
nd the prediction interval (Carney and Cunningham, 2006). It
467
ombines deterministic outcomes with probabilistic predictions,
nd it is equivalent to MAE for deterministic forecasts. An alter-
ative to CRPS is the measure of kurtosis and skewness, which
re usually computed together. They represent how different
he shape of the prediction is with respect to a normal dis-
ribution. While the skewness measures the asymmetry of the
istribution, the kurtosis computes its sharpness (Theodoridis
nd Koutroumbas, 2009).
Table C.1 shows each of the mentioned metrics with their

quation and main characteristics. Here, xi are the measured
alues, x̂i are the predicted values, x is the average true prediction

value, N represents the number of samples, F f
i (x) is the cumula-

tive distribution function (CDF) of the ith probabilistic forecast,
F 0
i (x) is the CDF of the ith observation and σ is the variance of
the prediction distribution.
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