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Adversarial examples remain a critical concern for the robustness of deep learning models, 
showcasing vulnerabilities to subtle input manipulations. While earlier research focused on 
generating such examples using white-box strategies, later research focused on gradient-based 
black-box strategies, as models’ internals often are not accessible to external attackers. This 
paper extends our prior work by exploring a gradient-free search-based algorithm for adversarial 
example generation, with particular emphasis on differential evolution (DE). Building on top 
of the classic DE operators, we propose five variants of gradient-free algorithms: a single-

objective approach (GADE), two multi-objective variations (NSGA-IIDE and MOEA/DDE), and two 
many-objective strategies (NSGA-IIIDE and AGE-MOEADE). Our study on five canonical image 
classification models shows that whilst GADE variant remains the fastest approach, NSGA-IIDE 
consistently produces more minimal adversarial attacks (i.e., with fewer image perturbations). 
Moreover, we found that applying a post-process minimization to our adversarial images, would 
further reduce the number of changes and overall delta variation (image noise).
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1. Introduction

Modern applications increasingly rely on machine learning models for automated decision-making based on observed data pat-

terns.

Despite early challenges in processing high-dimensional but semantically low-level multimedia data (such as raw pixel values 
in images) [2], the computational surge and increasing popularity of deep learning has enabled the direct learning of associations 
between input data and output labels. Ever since so-called deep convolutional neural networks outperformed hand-crafted methods 
in the 2012 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [3], deep learning models have become mainstream in 
computer vision, but also in many other applied machine learning domains, such as natural language processing and music information 
retrieval.

Deep learning models have been lauded for yielding high-accuracy predictions and thus, have become attractive candidates for 
integration in real-life systems that may be safety-critical (e.g. vision components in self-driving cars). At the same time, they have 
been criticized for making intolerable and sometimes incomprehensible prediction errors, jeopardizing safety. As has been shown in 
the machine learning world, they are e.g. inherently vulnerable to so-called adversarial attacks, in which perceptually small changes 
to input data can cause very different, erroneous model predictions [4,5].

Adversarial examples have been extensively investigated in the literature, where the idea is to introduce subtle changes in the data 
(e.g., changing the pixels in a target image) that do not change the ground truth but make a Deep Learning model predict incorrect 
output. Existing approaches to adversarial example generation can be classified into white-box and black-box methods. White-box 
approaches [6–11] require access to the model under test (i.e. the model architecture, neuron weight values, and gradients). Black-

box strategies [12–16], instead, only require access to model inputs and outputs. These approaches are considered more realistic as 
it reflects what external attackers can obtain [16], e.g., in the case of remote API access.

In this domain, Lin et al. [16] introduced the Black-box Momentum Iterative Fast Gradient Sign Method (BMI-FGSM) to approximate 
the gradient, based on a few data points. These points are obtained by mutating existing images (seeds) with evolutionary algo-

rithm (EA), and differential evolution (DE) in particular. Their results showed that BMI-FGSM outperforms white-box and black-box 
approaches previously proposed in the literature.

In spite of these undisputed results, we observe that BMI-FGSM requires thousands of iterations to successfully generate adversarial 
attacks, despite the usage of gradient-based methods. In our previous work [17], we compared the state-of-the-art BMI-FGSM to our 
single and multi-objective black-box attack methods, across five image recognition models. This experiment was run across a small set 
of images (50), to which we discovered the following. Our single-objective approach performed well in quickly creating adversarials, 
whilst the multi-objective approach would take slightly longer but create adversarial examples with fewer perturbations.

Through this comparative analysis, we established that employing pure black-box attacks using differential evolution was con-

siderably faster than previous adversarial example generation. Further to this, we were able to generate adversarial examples with 
significantly fewer perturbations (pixel changes).

Therefore, this paper maintains its focus on black-box strategies targeting deep neural network (DNN) models for image recog-

nition. We investigate the usage of DE alone—i.e., without employing gradient-based methods—as the core technique to generate 
adversarial attacks in a black-box fashion. In particular, we utilize five customized operators for DE that introduce perturbations in 
the target images. Notably, we focus on DE as meta-heuristics due to their reported superiority over gradient-based approaches, as 
observed in recent studies [18].

This work extends the previous by adding a second multi-objective variant MOEA/D1 [19] (MOEA/DDE), along with two many-

objective variants, NSGA-III2 [20] (NSGA-IIIDE) and AGE-MOEA3 [21] (AGE-MOEADE). These additions, particularly the many-

objective variants utilized as part of our multi-objective solution, expand the scope of our investigation.

Additionally, we expand our tests, sampling an extra 100 images from the 2012 ImageNet validation dataset. This culminates in 
a total of 150 images, with that being the original 50 images and the new 100. We have continued sampling from this particular 
dataset, as it is the validation data released in conjunction with the data, on which the models under test have been trained.

Subsequently, our exploration delves into the application of post-processing techniques on generated adversarial examples. We 
employed a randomized minimization algorithm designed to gradually revert the changes applied to the original images while pre-

serving the adversarial capabilities in fooling the targeted DNNs. The goal of this algorithm is to generate a set of less noticeable 
changes, whilst maintaining a flipped prediction.

We thus focus on the following two research questions:

RQ1 : How do various black-box evolutionary algorithms perform in generating adversarial examples?

RQ2 : How effective is post-processing at improving the quality of our adversarial examples, by minimizing pixel color delta variation?

2. Related work

White-box testing [6–11] has been extensively researched, but needs internal model access, which is not always realistic in 
practice. Therefore, we will adopt a black-box testing approach instead, which purely focuses on modifying a system’s input (in our 

1 https://pymoo .org /algorithms /moo /moead .html.
2 https://pymoo .org /algorithms /moo /nsga3 .html.
2

3 https://pymoo .org /algorithms /moo /age .html.
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case, an image) to trigger undesired changes in the system’s output (in our case, the object classification for the input image). We 
will employ evolutionary strategies for this; beyond images, these have e.g. been proposed on credit scoring models [22] and speech 
audio [23,24].

In literature, various black-box attacks on image recognition DNNs have been proposed [12,13,16]. Nguyen et al. [12] generate 
random images that are noise to humans, but are misclassified as actual objects by a DNN. In our case, we will seek more adversarial 
examples, where input is kept as close to the original as possible, and thus human-recognizable.

Zhou et al. [13] proposed a hybrid black-box approach that combines EAs with the bisection method. The images are mutated 
by injecting full black or white pixels. Instead, Chan and Cheng [25] introduced a black-box approach that adds Gaussian noise to 
large portions of the images. Besides, their work targets object detection models rather than image recognition. In contrast, our paper 
investigates the adversarial example generation in a multi-objective variant where both (1) the model misclassification and (2) the 
number of changed pixels are taken into account.

Several works explicitly focused on minimizing perturbations, such that fewer modifications to an image would already lead to 
different system output. One example of this is the work by Suzuki et al. [14], which proposes a Discrete Cosine Transform-based 
method for modifying images. While such perturbations parametrically are small, they still will affect many pixels at once. A similar 
consideration holds for the work by Sun et al. [15], focusing on minimum visibility of the modification from a perceptual perspective, 
but not explicitly constraining the number of pixels to modify.

On the other end of the extreme, one may search for attacks that modify as few pixels as possible (and as such will naturally not 
stand out, when compared to the total amount of pixels in an image). For example, Su et al. [26] propose a single-pixel adversarial 
attack using DE, executed against the classical CIFAR-104 [27] and ImageNet object classification datasets. Comparing the results on 
these two datasets, a high success rate is reported for CIFAR-10, but this success rate is much lower for ImageNet, where single-pixel 
attacks mainly succeed in situations where the model’s original classification of the image was already quite low. This may have to 
do with the difference in search space; the test images in CIFAR-10 are much smaller (32 × 32 = 1024 pixels) than those in ImageNet 
(224 × 224 = 50, 176 pixels).

A stronger, yet compact attack is proposed by Lin et al. [16], who combined DE [28] and the Fast Gradient Sign Method [29]

for black-box adversarial sample generation. Executing a single-objective attack called Black-box Momentum Iterative Fast 
Gradient Sign Method (BMI-FGSM), to generate an efficient and effective perturbation that is similar to the benign input. 
Their approach utilizes double-step size and candidate reuse whilst approximating the gradient direction. An initial gradient sign 
population is generated using DE. The input is then gradually modified using gradient sign approximation until an adversarial example 
is created that is visibly the same as the original input, but now classified as something different. Lin et al. [16] showed that BMI-

FGSM successfully generates adversarial examples for large models, outperforming other state-of-the-art white-box and black-box 
approaches.

While Lin et al. [16] showed that black-box approaches based on Evolutionary Algorithms (EAs) can be very competitive with 
their white-box alternatives, existing approaches have various drawbacks. First, BMI-FGSM requires a large number of iterations (in 
the order of thousands) and population size (hundreds of individuals). In other words, attackers need to query the model under attack 
many times, increasing the chances of detection. Second, BMI-FGSM combines multiple techniques, making its implementation less 
trivial and introducing more hyper-parameters to tune. Finally, the generated attacks are not minimal, i.e., the prediction flip is 
achievable but requires changing all pixels in the original image (or seed).

Deepfool by Moosavi-Dezfooli et al. [29] sits in a grey area, as it discusses gradient approximation in their approach, but does 
not specifically define a black or white-box approach. Moreover, they do not show many examples of complex image perturbations 
and focus solely on comparisons between itself and the Fast Gradient Sign Method (FGSM) [5] on the MNIST and CIFAR-10 datasets. 
Similar to our approach, they attempt to create a minimal adversarial example. However, their approach is effectively a gradient 
descent algorithm with an adaptive step size. Additionally, when validated against the ILSVRC2012 (the dataset used in this paper), 
they report an increasingly higher error rate.

With these approaches in mind, we have decided on a black-box approach, which does not require an understanding of the model’s 
inner workings. We simply need to understand the input required and craft it accordingly whilst monitoring the output for discrete 
changes.

In this paper, we extend our previous work [17], wherein we showed a black-box approach, based purely on DE, could produce 
adversarial examples with minimal perturbations applied, whilst taking considerably less time than existing methods. We introduce 
three more multi-objective approaches to compare their effectiveness in generating minimal adversarial examples. Furthermore, we 
introduce a post-processing approach that reduces the noticeability of our adversarial examples by adjusting the applied changes 
back towards their original image RGB values.

3. Approach

Without loss of generality, an image classifier 𝑓 is a mathematical function/model 𝑓 ∶ 𝐼 ⟶ 𝐿 × ℝ𝑛, which takes as input an 
image 𝑖 ∈ 𝐼 and returns a label 𝑙 ∈ 𝐿 and a confidence vector conf ∈ ℝ𝑛, which contains the probabilities associated with all labels 
𝑙 ∈𝐿 in descending order. Here, 𝑖 is an image of size 224 ×224 pixels, where each pixel in the image is represented by an RGB integer 
3

4 https://www .tensorflow .org /datasets /catalog /cifar10.
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value in the range 0 to 256. The first element conf1 is the probability associated with the most likely (predicted) label 𝑙, while the 
remaining entries in conf2… conf𝑛 are related to the other possible labels ∈ 𝐿.

We can now reformulate adversarial attack generation as a search problem:

Definition 1. Let 𝑓 ∶ 𝐼 ⟶ 𝐿 ×ℝ𝑛 be a trained model that takes as input an image 𝑖 ∈ 𝐼 and returns a predicted label 𝑙 ∈ 𝐿 and a 
confidence vector conf ∈ℝ𝑛. Let 𝑚 ∶ 𝐼 ⟶ 𝐼 be a transformation function that mutates (i.e. applies changes to) an image 𝑖 ∈ 𝐼 . The 
problem is finding a mutated image 𝑚(𝑖) such that 𝑓 (𝑚(𝑖)) ≠ 𝑓 (𝑖), with the constraints that both 𝑖 and 𝑚(𝑖) share the same correct 
label (same ground truth/oracle).

Attack generation strategies can be targeted or un-targeted. The former aims to flip the prediction to a specific label or classification 
outcome, while the latter aims to lead the model toward producing any incorrect outcome.

In this paper, we focus on un-targeted attack generation: for demonstrating the vulnerability of a machine learning model, it 
is sufficient to generate mutated images 𝑚(𝑖) that flip the predicted output to any other label than the ground truth label. Since a 
classification model returns both the label and the corresponding confidence level, we can use the latter to guide the search toward 
the flipped prediction. More precisely, given a classification model 𝑓 ∶ 𝐼 ⟶ 𝐿 ×ℝ𝑛, a seed image 𝑖, and its mutated variant 𝑚(𝑖), 
we optimize the following objective:

min𝑂1 ={
𝑓 (𝑚(𝑖))conf

1 − 𝑓 (𝑚(𝑖))conf

2 if 𝑓 (𝑖)𝑙1 = 𝑓 (𝑚(𝑖))𝑙1
−𝑓 (𝑚(𝑖))conf

1 if 𝑓 (𝑖)𝑙1 ≠ 𝑓 (𝑚(𝑖))𝑙1
(1)

In other words, this objective aims to reduce the confidence for the most likely prediction/label (𝑓 (𝑚(𝑖))conf

1 ), while increasing the 
confidence for the second-most-likely prediction (𝑓 (𝑚(𝑖))conf

2 ). Therefore, the overall goal is to reduce the difference between the top-2 
labels until the model 𝑓 flips the prediction to a different label (condition 𝑓 (𝑚(𝑖))𝑙𝑎𝑏𝑒𝑙1 ≠ 𝑓 (𝑚(𝑖))𝑙𝑎𝑏𝑒𝑙1 ). In general, Equation (1) takes 
values in [-1,1]. A zero value indicates that the models assign equal confidence scores to the top-2 labels. A negative value indicates 
that the model 𝑓 flips the prediction to a different label, whose confidence level corresponds to the absolute value of Equation (1).

We can expand this to a multi-objective problem where both “fooling” the model and reducing the number of perturbations (at 
the pixel level) are equally important:

Problem Definition 1. The problem is finding a mutated image 𝑚(𝑖) such that 𝑓 (𝑚(𝑖)) ≠ 𝑓 (𝑖) and that minimizes the distance 𝑑(𝑖, 𝑚(𝑖)), 
with the constraints that both 𝑖 and 𝑚(𝑖) share the same correct label (same ground truth).

Beyond flipping the prediction outcome by optimizing for 𝑂1, we now also need an additional objective to guide the search 
towards minimizing the difference between the original image 𝑖 and its mutated counterpart 𝑚(𝑖).

Therefore, our second objective counts the number of pixels that differ between the seed image 𝑖 and the mutated image 𝑚(𝑖):

min 𝑂2 = 𝜋(𝑚(𝑖[𝑎, 𝑏]) ≠ 𝑖[𝑎, 𝑏]) (2)

= |{𝑖[𝑎, 𝑏] ∈ 𝑖 ∶ 𝑖[𝑎, 𝑏] ≠𝑚 (𝑖[𝑎, 𝑏])}| (3)

where 𝑖[𝑎, 𝑏] and 𝑚 (𝑖[𝑎, 𝑏]) denote the pixel values in row 𝑎 and column 𝑏 for the two images 𝑖 and 𝑚(𝑖), respectively.

These two objectives are conflicting. A simple solution for 𝑂1 may include changing all pixels in the original figure 𝑖 so that the 
object is no longer recognizable for the model 𝑓 . However, such a solution would not be optimal for 𝑂2. Vice versa, a new image 
with zero alteration would be optimal for 𝑂2 but not flip the prediction as sought by 𝑂1.

Given our objectives’ conflicting nature, it is impossible to find one single solution that optimizes them all. In other words, the 
problem is inherently multi-objective, and the goal is to find the set of optimal trade-offs between 𝑂1 and 𝑂2.

In our context, a solution (image perturbation) 𝑥 is said to dominate another solution 𝑦 (denoted with 𝑥 <𝑝 𝑦) if and only if (1) 𝑥

is better than 𝑦 w.r.t. one of the objective (e.g., 𝑂1) and it is not worse than 𝑦 for the other objectives. Among all possible solutions, 
we are interested in finding a set of solutions 𝑥∗ that are not dominated by any other solution:

𝑂(𝑥∗) <𝑝 𝑂(𝑦) ∀𝑦 ≠ 𝑥∗ ∈ Ω(𝑖) (4)

where Ω(𝑖) denotes the set of all possible perturbations that can be applied to the seed image 𝑖. All the solutions that are not dominated 
by any other solutions are said to form a Pareto optimal set. The corresponding objective vectors (containing the values of two objectives 
𝑂1 and 𝑂2) are said to form a Pareto front (or frontier).

3.1. Single and multi-objective differential evolution

To find adversarial attacks, we apply our differential evolution (DE) approach in two ways. Firstly, we apply GADE, a traditional 
single-objective variant (to optimize 𝑂1). Secondly, we apply multi-objective variants (NSGA-IIDE, NSGA-IIIDE, MOEA/DDE, AGE-
MOEADE) to optimize 𝑂1 and 𝑂2. All our variants are based on their respective traditional environmental selection operators, which are 
4

detailed below.
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All variants iteratively evolve a pool of 𝑁 randomly generated adversarial attacks, called population. In each iteration, 𝑁 offspring 
attacks are generated from the population using variation operators. Then, the population for the next iteration is obtained by 
combining the previous population and the offspring attack, forming a pool 𝑄 of 2 ×𝑁 attacks and selecting the 𝑁 top individuals. 
The environmental selection of these individuals is specific to each algorithm and represents the main difference between the single-

and multi-objective problems.

• In GADE [30] (single-objective), the environmental selection is applied by selecting the best 𝑁 individuals among the parent and 
the offspring solutions/attacks according to the main objective 𝑂1. This mechanism is elitist since the best attacks can survive 
across the generations until new better solutions are found.

• In NSGA-IIDE, the environmental selection is performed by applying the fast non-dominated sorting algorithm NSGA-II [31], which 
ranks the solutions in 𝑄 into sub-dominated fronts based on the dominance relation. For solutions within the same front, the 
selection is further made considering the crowding distance, which aims to promote solutions in the less-crowded areas of the 
front.

• MOEA/DDE [19] is a decomposition-based evolutionary algorithm [19] that breaks down multi- or many-objective problems into 
several single-objective sub-problems through sum scalarization. It initializes a set of predetermined search directions (or ref-

erence vectors) evenly spread across objective space. These directions are obtained by normalizing the objective scores of the 
individual in the population and applying systematic approaches (e.g., [32]) to create uniformly distributed directions, each with 
different weights. During the search, MOEA/DDE promotes solutions that are closer to those reference directions, optimizing for 
both optimality and diversity.

• NSGA-IIIDE [20] is a many-objective extension to NSGA-II. Like its predecessor, NSGA-IIIDE uses the non-dominated sorting 
algorithm. Next, it utilizes the reference points defined in the starting parameters, to find a solution with the smallest perpendicular 
distance to the reference directions in the normalized objective space. The reference points are generated using the Das and Dennis 
systematic approach [32], which are uniformly distributed in the objective space, thus promoting diversity in the generated 
solutions.

• AGE-MOEADE [21], the algorithm executes similarly to NSGA-II, but with a modified crowding distance formula. Non-dominated 
fronts are sorted using the non-dominated sorting procedure (like in NSGA-II), whereby the first front is utilized to normalize 
the object scores and estimate Pareto front geometry. This geometry (or curvature 𝑝) is estimated using heuristics and used to 
measure both the diversity and proximity of the generated solutions using the 𝑝-norm.

In the following, we detail (1) the encoding schema, (2) how we initialize the initial population, and (3) the variation operator.

3.1.1. Encoding schema

As mentioned before, an adversarial attack is produced by altering a seed image 𝑖. Instead of representing/encoding an adversarial 
attack as a completely new image, we only encode the changes to be applied, also called the mask. In particular, given the seed image 
𝑖, we encode a solution/attack as a list of pixels to change: 𝑋 =

[
𝑥1,… , 𝑥𝑘

]
. Each entry 𝑥𝑗 in 𝑋 is a tuple [𝑎, 𝑏, 𝑣𝑎𝑙𝑢𝑒𝑗 ], where 𝑎 and 

𝑏 determine the position of the pixel to change (i.e., 𝑎 is the row index and 𝑏 is the column index), while 𝑣𝑎𝑙𝑢𝑒𝑗 indicates the new 
pixel value in RGB notation.

3.1.2. Initialization

We first begin our initialization by generating an initial pool of adversarial attacks. To this aim, we create 𝑁 attacks by creating 
an empty mask 𝑋 = [] and adding some changes using the add operator, one of three alternative variation operators described below.

3.1.3. Variation operator

Given a parent attack 𝑋, we design three types of operators that add, delete, or change entries in 𝑋. Each operator is applied with 
probability 1/3.

The add operator randomly inserts one entry in 𝑋 with probability 𝑃 = 1; a second entry is added with probability 𝑃 = 0.5; the 
third one with probability 𝑃 = 0.25; and so on until no other element is added. To add a new element/entry 𝑥 in 𝑋, this operator 
randomly selects one pixel from the original seed image 𝑖 with position 𝑟𝑜𝑤𝑗 and 𝑐𝑜𝑙𝑗 and draws three random (noise) values 𝛿(𝜇, 𝜆)
from a Gaussian distribution with mean 𝜇 and standard deviation 𝜆, that will be applied to the respective R, G and B channels. Hence, 
the new entry 𝑥 will be equal to 

[
𝑟𝑜𝑤𝑗, 𝑐𝑜𝑙𝑗 , 𝑣𝑎𝑙𝑢𝑒𝑗 + 𝛿(𝜇,𝜆)

]
.

The delete operator simply deletes one entry/tuple from the mask 𝑋. However, this operator is applied only if 𝑋 contains at least 
two entries. This operator plays a critical role in our multi-objective formulation as it allows to remove spurious pixel changes that 
do not contribute to changing the prediction results of the model 𝑓 under test.

The change operator selects an entry from the mask 𝑋 and modifies the pixels values using the traditional differential operator. 
Given a parent mask to mutate 𝑋 and a donor mask 𝑌 , a new solution 𝑋′ is formed by using the following formula:

𝑋′[𝑎, 𝑏] =
{

𝑅1[𝑎, 𝑏] + 𝐹 ⋅
(
𝑅2[𝑎, 𝑏] − 𝑌 [𝑎, 𝑏]

)
if 𝑟 < 𝐶𝑅

𝑋[𝑎, 𝑏] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5)

where 𝑟 ∈ [0, 1] is a randomly generated number; 𝑅1 and 𝑅2 are other solutions within the population. There are various variants 
5

of the differential operator that differ in how 𝑅1, 𝑅2, and the donor solution 𝑌 are selected. In this paper, we use the standard
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Algorithm 1: Post-processing matrix mutation.

Input:

𝑌 = original image from ImageNet ILSVRC2012 validation dataset

𝑋 = change matrix from RQ1

𝑌 ∗ = 𝑌 with change matrix applied

Output: 𝑋∗ ⊂𝑋

1 𝑋∗ ←𝑋

2 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 100, 000
3 𝑠𝑡𝑜𝑝_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 30
4 for max_iterations do

5 𝑥𝑗 = randomly selected item from matrix 𝑋∗

6 while prediction(𝑌 ) ≠ prediction(𝑌 ∗) do

7 original_pixel = 𝑌 [𝑥𝑗 ][𝑎, 𝑏]
8 current_pixel = 𝑋∗[𝑥𝑗 ]
9 diff = 𝑌 [𝑥𝑗 ][𝑣𝑎𝑙𝑢𝑒𝑗 ]∕100 ∗ 20 ⊳ Take 20% of the original pixels color value

10 𝑌 ∗[𝑥𝑗 ][𝑣𝑎𝑙𝑢𝑒𝑗 ] = 𝑌 ∗[𝑥𝑗 ][𝑣𝑎𝑙𝑢𝑒𝑗 ] + diff

11 if prediction(𝑌 ) == prediction(𝑌 ∗) then

12 𝑠𝑡𝑜𝑝_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 − 1
13 if 𝑠𝑡𝑜𝑝_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 0 then

14 end ⊳ Stop the algorithm

15 𝑌 ∗[𝑥𝑗 ] = current_pixel ⊳ Resets pixel to before we started modifying it
16 end while

17 if 𝑌 ∗[𝑥𝑗 ][𝑣𝑎𝑙𝑢𝑒𝑗 ] >= original_pixel[𝑣𝑎𝑙𝑢𝑒𝑗 ] then

18 𝑌 ∗[𝑥𝑗 ] = original_pixel

19 𝑋∗.𝑟𝑒𝑚𝑜𝑣𝑒(𝑥𝑗 )
20 end while

21 if prediction(𝑌 ) ≠ prediction(𝑌 ∗) then

22 𝑠𝑡𝑜𝑝_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 30 ⊳ Reset stop_counter

DE/rand/1 variant, where rand indicates that the donor 𝑌 is randomly selected, while 1 indicates there is only one donor solution. 
Finally, the other solutions 𝑅1 and 𝑅2 are always randomly selected from the population.

In Equation (5), 𝐹 ∈ [0, 2] is called scaling factor and has a typical value in the range 0.5 - 1.0. It establishes the amplification of 
the new solution 𝑋′ from the original solution 𝑋 based on the differential values of the donor solution 𝑌 . Hence, 𝐹 balances both 
exploration and exploitation. Finally, 𝐶𝑅 ∈ [0, 1] is the crossover rate and determines how many pixels in 𝑋 will be changed.

If the pixel 𝑋[𝑎, 𝑏] differs from the original seed solution, Equation (5) may remove this change if 𝑅1[𝑎, 𝑏], 𝑅2[𝑎, 𝑏], and 𝑌 [𝑎, 𝑏]
are identical to the original seed image. To prevent this case, we apply a small tweak in our context compared to the traditional 
differential operator. We set the pixel 𝑅1[𝑎, 𝑏] = [0, 0, 0] (in RGB notation) if 𝑅1[𝑎, 𝑏] is identical to the pixel of the initial image/seed. 
The same is done for 𝑅2[𝑎, 𝑏] and 𝑌 [𝑎, 𝑏]. Notice that this tweak is applied only if 𝑋[𝑎, 𝑏] differs from the original seed’s pixel in row 
𝑎 and column 𝑏.

3.2. Post processing

To post-process the generated adversarial attacks, we take a previously generated mask 𝑋 and modify the contents, whilst main-

taining a flipped prediction. Each element (𝑥𝑗 ) in 𝑋 is a tuple [𝑎, 𝑏, 𝑣𝑎𝑙𝑢𝑒𝑗 ], where 𝑎 and 𝑏 represent the location of the pixel in the 
original image, and 𝑣𝑎𝑙𝑢𝑒𝑗 signifies the color applied to that pixel.

Our process involves selecting a pixel from 𝑋 (𝑥𝑗 ) and gradually mutating 𝑣𝑎𝑙𝑢𝑒𝑗 towards the original pixels values, whilst ensuring 
that our prediction remains flipped. If, during this color mutation process, 𝑣𝑎𝑙𝑢𝑒𝑗 reverts to its original value, 𝑥𝑗 is removed from 𝑋, 
thus reducing the number of changes we apply to the adversarial example. The color mutation is applied in a loop, increasing 20% 
at a time. If, at any point during the loop, the prediction becomes un-flipped, we then revert 𝑣𝑎𝑙𝑢𝑒𝑗 to the previous working value in 
the loop and seek a new 𝑥𝑗 ∈𝑋 to minimize.

To ensure a suitable time for post-processing to further minimize our adversarial examples, we run a loop with an arbitrarily chosen 
100, 000 iterations. The loop will continue until it reaches the total number of iterations. We also apply a stop_counter variable. 
This has an initial value of 30, which gradually decreases on failed pixel mutations and is reset upon successful pixel mutations. This 
process is detailed in Algorithm 1.

4. Study design

To answer RQ1, we run each of our five approaches against five different, well-known, deep-learning computer vision models from 
the Keras python library. We chose VGG-16 and VGG-19 which are both classified as “very deep” convolutional neural networks 
for large-scale image recognition5 [33], that got a canonical status due to their strong performance in the ImageNet benchmark 
6

5 https://keras .io /api /applications /vgg/.

https://keras.io/api/applications/vgg/
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Algorithm 2: Dataset Acquisition.

Input:

Ω = A set of 1000 randomly selected images from ImageNet ILSVRC2012 validation dataset

𝑓 = the model under test

Output: Ω∗ ⊂Ω
1 Classes = ∅

Ω∗ = ∅
for 𝜔 ∈Ω do

2 while |Ω∗| < 150 do

3 𝑖 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑡(𝜔, 224 × 224);
4 if 0.8 ≤ 𝑓 (𝑖)conf

1 ≤ 0.9 then

5 if 𝑓 (𝑖)𝑙𝑎𝑏𝑒𝑙1 ∉ Classes then

6 if 𝑓 (𝑖)𝑙𝑎𝑏𝑒𝑙1 ≡𝐺𝑟𝑜𝑢𝑛𝑑𝑇 𝑟𝑢𝑡ℎ(𝑖) then

7 Ω∗ = Ω∗ ∪ {𝑖};

8 Classes = Classes ∪ {𝑓 (𝑖)𝑙𝑎𝑏𝑒𝑙1 };

9 224x224

challenges.6 VGG-16 was one of the best-performing models in the 2014 ILSVRC challenge and achieved 92.7% top-5 test accuracy on 
the ImageNet dataset. VGG-16 and VGG-19 both consist of 3x3 convolutional layers stacked on top of each other in increasing depth, 
with VGG-16 having 16 convolutional layers, and VGG-19 being ‘deeper’ with 19 convolutional layers. Furthermore, ResNet50,

ResNet101 and ResNet152 all are based on deep residual learning for image recognition7 [34]. As input, the models take images 
of size 224 × 224 × 3 pixels, with 𝐿 (the collection of possible target labels) encompassing 1000 different object classes.

In RQ1, we ran each image, model, and approach combination a total of 10 times. This resulted in ≈ 37, 500 test runs in total, the 
majority of which would generally result in the creation of an adversarial example. To now answer RQ2, we sample from this set of 
test runs, randomly selecting an adversarial example from each of the image, model, and approach combinations. It should be noted 
that post-processing was not executed against all combinations due to an adversarial not always being found during RQ1. With our 
adversarials selected, we execute post-processing 10 times against each adversarial image to create an aggregated set of results.

In our experiments, we use the ImageNet pre-trained weights released by the original authors after training on the ILSVRC2012 
training set, as released through Keras [35]. Note that despite these details, we consider all models as a black box, given the fact 
that our approach (and the baseline) does not need access to the model internals.

4.1. Dataset

For our experiments, we sample 150 images from the ImageNet ILSVRC2012 validation dataset [3]. As such, this data contains 
verified ground truth labels, that were obtained in similar fashion to the labels on which the models under test were trained. Thus, 
in choosing to keep sampling from the ILSVRC2012 validation dataset, we are certain that this data should not be out-of-distribution 
for the model, while at the same time can assume the models have not yet seen our testing data during training time.

To ensure unbiased pre-formatting, we perform the same steps to resize images during dataset acquisition as when running our 
main experiment. By utilizing the Pillow8 Python library, we resize using bi-linear interpolation. This ensures samples are resized 
as close to the original as possible.

As for the prediction confidence, if the correct ground-truth label is predicted with confidence between 0.8 and 0.9, we consider 
the image to be a valid image for our experiments: as the ground-truth label is recognized with high confidence, we can be confident 
it is visually distinguishable and not ambiguous w.r.t. other classes. Concerning this, an image with too high confidence (e.g., greater 
than 0.9) may be too obviously one particular image class, and flipping may be difficult as a consequence. By retaining only one 
image per object class, we also ensure a reasonably diverse set of images.

Algorithm 2 helps to outline this information. We first draw an initial pool of images for the input by selecting 1000 random images 
from the ImageNet validation data folder. After pre-processing the images to have a 224 × 224 input size, (line 3 in Algorithm 2) we 
then choose whether to drop or retain the image, based on the prediction confidence by the VGG-19 model (condition in line 4) and 
class uniqueness (condition in line 5).

4.2. Implementation and parameter settings

We have implemented the various DE-based approaches in Pymoo v0.6.0 [36], using Python 3.10 and Keras 2.12.2. Pymoo [36]

is an open-source framework that allows us to easily adapt the original search algorithms to our DE approach. Runs are evaluated 
inside a Docker container on an AMD EPYC 7713 64-Core Processor running at 2.6 GHz and with 256 available CPUs. We had 3 

6 https://image -net .org /challenges /LSVRC /index .php.
7 https://keras .io /api /applications /resnet.
7

8 https://pypi .org /project /Pillow/.

https://image-net.org/challenges/LSVRC/index.php
https://keras.io/api/applications/resnet
https://pypi.org/project/Pillow/
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Nvidia A40 GPUs each with 48 GB GDDR6 running CUDA version 11.6 available to us. The Dockerfile in our implementation can be 
rebuilt on any system, easily modifying the CUDA container for a different system.

4.2.1. Parameter settings

We set our approaches, both single- and multi-objective DE, to evolve a population size of 20 over a maximum of 600 generations. 
In the case of MOEA/DDE and NSGA-IIIDE, we were also required to supply reference directions. For MOEA/DDE, we used Das and 
Dennis’s systematic approach [32] for generating well-spaced reference points, as done in the original paper [20]. For MOEA/DDE, we 
use uniform sampling on the unit simplex. For both algorithms, we set the number of partitions (‘n_partitions’) equal to 20, i.e., 
identical to the population size. For the parameter settings, we have chosen the same values as suggested in the literature [37,31]. 
Further to this, when an adversarial example is found, we allow the test to run for a further 20 generations before killing it and 
returning the results. This allows the test to continue the search for a better adversarial example, if one may exist.

We use the variation operators as described in Section 3 with a crossover rate 𝐶𝑅 = 0.9 and scaling factor 𝐹 = 0.8, which are 
the recommended values in the literature [37]. For all algorithms, solutions/attacks are selected for reproduction using the binary-

tournament selection [31]. For GADE, the binary selection is based on the single-objective value to optimize (i.e., 𝑂1). Instead, in the 
multi-objective approaches, the selection relies on dominance to decide which solution wins each tournament round. Finally, we 
opted for a relatively small population size 𝑝 = 20 (smaller than 𝑝=100 used in other studies [16,37]) as suggested in the literature 
from problems with expensive objective computation [38].

4.3. Evaluation criteria

In our previous work [17], we concluded that the single-objective approach GADE was able to create adversarial examples quicker 
than our multi-objective NSGA-IIDE. However, NSGA-IIDE would create adversarial examples with fewer perturbations. To answer 
our first research question, we analyze our multi-objective approaches to see how they compare against each other. As mentioned 
earlier in the paper, we utilized AGE-MOEADE and NSGA-IIIDE as multi-objective problems.

We execute GADE, NSGA-IIDE, NSGA-IIIDE, MOEA/DDE and AGE-MOEADE against each image in our dataset. For every image, we run 
each algorithm 10 times, to account for their random nature. As a consequence, with 150 images, the end result is a total of 37,500 
test runs (7500 for each method). For each of the executions, a new random seed was generated and stored for future replications, 
together with the results of the generated attacks.

For the main evaluation, we consider two performance metrics: (1) the success rate, indicating the percentage out of the 10 runs 
for which our methods were capable of causing a change in prediction output, and (2) how many pixels needed modification (i.e., 
how many tuples are in mask 𝑋) in the best solution. For the comparison, we considered the best solution/attack. With GADE, this 
is the attack with the smallest number of perturbations (changed pixels). Our multi-objective solutions, however, provide a set of 
Pareto-optimal solutions. For our analysis, among all solutions/attacks that lead to flipping the prediction (i.e., those with negative 
values for the first objective 𝑂1), we have chosen the one with the lowest number of changed pixels (second objective 𝑂2).

To further visualize the effectiveness of our approaches, we also consider the run-time, along with the number of generations 
required for generating an adversarial example. As stated in the Parameter Settings 4.2.1, we allow a total of 600 generations for 
each test run. On top of this, we also record the run-time. This is a simple calculation, taking the time between the start and end of 
a single test run.

To assess the significance of the differences among our approaches, we use the Friedman test [39], following the guidelines [40–42]

for comparing meta-heuristics across a collection of independent benchmark problems (images in our context). We employed the 
Friedman test —a non-parametric counterpart to ANOVA— because it is suitable for unreplicated block designs and it does not 
require data to adhere strictly to a normal distribution. For this test, we use the confidence level 𝛼 = 0.95.

While the Friedman test reveals whether some approaches (DE variants) statistically differ, it does not pinpoint the specific 
combinations (DE variants) for which such a significant difference holds. To gain a deeper understanding of which approach(es) 
outperform, we utilized the Nemenyi [43] post-hoc test. This test assesses treatment disparities by determining the average rank of 
each DE variant across multiple problems [43] (images in our case). The significance between two DE variants (e.g., NSGA-IIIDE and

MOEA/DDE) is established if their respective average ranks differ by at least the provided critical distance (𝐶𝐷) [43,41].

To evaluate the effectiveness of our post-processing approach, we observe two performance metrics. (1) the overall color difference 
applied by the original adversarial example compared to the post-process adversarial and (2) the number of elements in the mask. For 
the comparison, we obtain the color difference by utilizing the OpenCV9 Python library. The absdiff method from OpenCV takes two 
images as its input, to output the overall RGB channel difference between the two images. This gives us two values, start_diff, which 
is the difference between the original image and the adversarial example. As well as end_diff, which is the difference between the 
original image and the post-process adversarial. Finally, we compare the size of the original adversarial examples mask (start_mask) 
to the post-process adversarial mask (end_mask).

5. Empirical evaluation

In this section, we discuss the results of our research questions separately.
8

9 https://github .com /opencv /opencv -python.

https://github.com/opencv/opencv-python
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Fig. 1. Success rate of each approach for all 150 images over all 5 models.

Fig. 2. Results of the Friedman test and of the Nemenyi post-hoc procedure.

5.1. Results for RQ1

Fig. 1 compares all five approaches with regard to their ability to flip a model’s prediction. The box plot represents the success rate 
for the total number of executions. Where each image, model, and approach was executed 10 times. As expected from our previous 
work, we see that GADE is extremely effective at flipping the prediction of an image.

To better understand the results of our experiment, we turn now to Fig. 2, which displays the results of the Friedman test and of the 
Nemenyi post-hoc procedure. These statistical tests confirm the results shown in Fig. 1, as we see statistically significant superiority of

GADE in flipping an image’s prediction, i.e., generating a successful adversarial attack. The Friedman test reveals a significant p-value 
< 0.05, while Nemenyi test suggests that the single-objective DE variant is statistically better than all other meta-heuristics in the 
comparison.

Interestingly, we observe that MOEA/DDE is a strong contender when flipping a model prediction. This is evident in Fig. 1 wherein 
9

the median success rate for MOEA/DDE and GADE are identical (100% success rate), with the former showing only a lower first and second 
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Fig. 3. Adversarial example generation results for Image ‘ILSVRC2012_val_00030959.JPEG’.

quartile. However, whilst we observe that MOEA/DDE performs well during prediction flips, we also note that it is less successful in 
other aspects of our test.

For example, Fig. 2b displays MOEA/DDE as significantly worse than all other approaches w.r.t. the number of pixel changes applied. 
10

This is also evident when looking at Fig. 3, in which we visibly see the number of changes applied by the various approaches. 
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Fig. 4. Changes applied by each approach to each model.

Furthermore, we also observe a statistically better performance of NSGA-IIDE w.r.t. its ability to apply minimal (i.e., fewer) pixel 
changes.

When we consider the run-time along with the number of generations (our maximum being 600), we notice that GADE performs 
considerably well. It is also worth noticing that MOEA/DDE requires markedly fewer generations compared to the other multi-objective 
approaches. However, it has a high run-time associated with this. As a result of each iteration of MOEA/DDE being more expensive 
than for other DE variants due to the computational cost of its internal environmental selection strategy.

In order to comprehend the impact of these outcomes, we will now conduct an in-depth look at the VGG-19 specific results. We 
have chosen VGG-19, due to it having been the baseline for image selection, as mentioned earlier in Section 4.1.

To better understand the type of attacks generated by our multi-objective approaches, Fig. 3 shows the results of a randomly 
chosen image in our dataset (‘ILSVRC2012_val_00030959.JPEG’). This image was successfully flipped by all five approaches and was 
originally ground-truthed as ‘bison’(165), with a confidence value of 0.8631084. Here, the confidence value represents the model’s 
prediction confidence, where 1.0 is the highest obtainable value (i.e., the model is 100% certain about the prediction).

With Fig. 3, we are able to witness the transition from the original image, to the final image with the mask applied. As previously 
demonstrated in Fig. 2b, we can observe that NSGA-IIDE generated the smallest mask size, with MOEA/DDE having a considerably 
larger mask. This is increasingly apparent in the final image for each approach, where the changes applied by MOEA/DDE are more 
pronounced.

Finally, given that our goal is minimal adversarial example generation, we observe the overall applied changes by each approach. 
Fig. 4 displays each model tested, along with the changes applied by each approach over the 150 test images. This box plot affirms 
our previous observations, in which NSGA-IIDE generated the least number of changes in an adversarial example, followed by GADE.

MOEA/DDE generated the largest number of changes, but with quite a broad distribution. While AGE-MOEADE and NSGA-IIIDE are our 
middle ground for applied changes.

5.2. Results for RQ2

When investigating the masks generated by our approaches, it is visible in Fig. 3 that they tend to work towards a dark-colored 
pixel 𝑅𝐺𝐵(0, 0, 0). In some cases, this can lead to less subtle adversarial examples. Therefore, we applied post-processing to our 
adversarial examples to observe whether this technique could prove useful in the minimal attack generation process.

Table 1 displays the results of our post-processing against the ‘Welsh springer spaniel’ image (ILSVRC2012_val_00022868). Here 
we witness the start and end specific values of color difference and mask size. These values for our original adversarial example, 
along with our post-process adversarial, allow us to observe the reduction obtained by running post-processing. Lastly, we note the 
post-processing time required in reaching this further minimized adversarial example, along with the number of repetitions taken.

What we witness from these results, is that post-processing can drastically reduce the amount of change in our adversarial examples. 
More importantly, for MOEA/DDE, which, as mentioned previously generated an extremely large number of changes, post-processing 
yields a considerably smaller number of changes, rivaling that of other approaches.

NSGA-IIDE continues to be the best-performing model w.r.t. minimal perturbation; however, this is likely due to the size of the 
original mask. A smaller mask results in a smaller search space for the post-processing approach, leading to fewer repetitions and 
quicker post-processing. It is interesting, that despite the smaller mask size of NSGA-IIDE, we are still able to observe a reduction of 
11

nearly half the original changes. For example, by obtaining the overall reduction percentage between start_diff and end_diff :
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Table 1

Original adversarial example (start) and post-process adversarial (end) execution data.

ILSVRC2012_val_00022868

start end start end run-

Approach diff diff mask mask time reps

GADE 7438 1086 28 3 34 85

NSGA-IIDE 4719 549 16 2 18 47

NSGA-IIIDE 4875 1268 20 5 19 48

AGE-MOEADE 12884 2692 48 9 44 102

MOEA/DDE 1550187 415 6098 3 4893 7739

Fig. 5. Changes applied after post-processing.

reduction = end_diff − start_diff

start_diff
× 100 (6)

We ascertain a reduction of 42.86% over the color our original adversarial example applied versus the post-process adversarial. 
By utilizing the same Equation (6), but for start/end_mask, we produce a mask reduction of 40%.

Further evidence can be observed through Fig. 5, which displays the median mask size after post-processing was applied. Here, 
we take the median values for the 10 runs of each image, model, and approach combination, where an original adversarial was 
successfully generated.

To complement this, we also take note of Fig. 6. Here, we observe the median run-time for the same examples as Fig. 5. As 
displayed in Table 1, run-time is heavily correlated to the original mask size.

Finally, we observe in Fig. 7 the overall mask reduction, together with the original and final adversarial examples. We display here 
the changes from the MOEA/DDE approach against the ‘ILSVRC2012_val_00022868’ (Welsh springer spaniel) in the ResNet101 model.

6. Threats to validity

Several threats to validity can be identified for our study. In the next subsections, we discuss the threats and how we addressed 
them.

6.1. Construct validity

While we assume our adversarial examples have perceptually visible changes, but these changes are small enough not to change 
the object of focus (i.e., the ground truth) for an image, we do not formally validate this in human experiments. Thus, it is possible 
that found adversarial examples may be degraded to the extent that a change in ground truth label would be needed and justifiable. 
However, in our current experiments, we already see many prediction flips happening when changing less than 200 (so less than 
0.3%) out of 50,176 pixels, making it unlikely that the object of focus would be completely obscured by the mutations. Next to this, 
we validated the model’s initial ground-truth label against the data supplied by the ImageNet website. Despite this, the model may 
have an erroneous initial prediction, and even if it would be correct in comparison to the ground truth, plausible labels beyond the 
12

indicated ground truth may exist if the visual scene is complex or semantically ambiguous [44]. Thus, while we frame our technique 
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Fig. 6. Median post-processing run-time.

Fig. 7. Post-processing reduction for Image ‘ILSVRC2012_val_00022868’.

as one creating adversarial attacks, it cannot be guaranteed that we necessarily push the model towards being wrong. Still, the aspect 
about adversarial attacks that keeps holding is that subtle changes lead to different prediction outcomes; as such, a flip in output 
prediction is still an indicator of the model not giving robust predictions.

6.2. Internal validity

While our image selection procedure yielded a random draw of images from 150 unique classes, the ILSVRC2012 classes seman-

tically are not uniformly distributed (e.g. having multiple classes with sub-species of dogs). Future sampling strategies could seek to 
do more explicitly mitigate this.

Furthermore, as noted in Section 4.1, our image selection remained limited to the ImageNet ILSVRC2012 validation dataset. 
13

Although this may seem like a limiting choice, we could assume the models under test had not seen the images during training. 
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Coupled with this, the images closely aligned to the training data, in both acquisition and ground-truth labeling procedure. As such, 
they should not be out-of-distribution for the models under test, while it is ambiguous whether this may be the case for other, 
externally obtained images of the learned object categories.

We do recognize that in practical applications, the intention should very likely be that models should robustly be capable of 
recognizing a broad variety of images exemplifying the object categories they were trained to recognize. As such, for future work, it 
will be interesting to possibly include such images obtained from other datasets.

However, this will then also require further explicitization of requirements on a model and subsequent performance assertions. If
VGG-19 e.g. should be more than a prediction program trained to recognize exemplars of 1000 object categories that are similar to 
what was in ImageNet ILSVRC2012, how much more would it be? Should it be considered the same artefact if retrained with more 
diverse data? Should it be capable of generalizing to object categories that are similar to the 1000 categories it was trained on? But if 
so, how would this generalization be defined? As we pointed out in earlier work [45], questions like these tend to be under-specified 
in machine learning contexts, while more explicit articulation will be essential for developing more robust models together with 
stronger testing mechanisms.

6.3. External validity

Currently, our approach was only tested against (the state-of-the-art) BMI-FGSM [17]. It will be worthwhile to also test it against 
further attack approaches, such as the one-pixel attack [26]. Furthermore, beyond our current set of DNN models, more canonical 
models exist that can be studied, such as Inception-v3 [46].

6.4. Conclusion validity

In some runs, our multi-objective approaches fail to find an adversarial example; further optimizations with regard to population 
and generation size may be required.

7. Conclusion and future work

In this study, we have introduced three new approaches based on pure differential evolution, along with a post-processing tech-

nique. We anticipate that this study will contribute to the efficient generation of concise adversarial examples, facilitating their use 
in the subsequent training of Deep Neural Networks (DNNs).

The approaches, namely MOEA/DDE, AGE-MOEADE, and NSGA-IIIDE, each execute customized differential operators for generating 
adversarial examples. Our post-processing approach utilizes random search in an image change space to optimize for a less noticeable 
adversarial example.

Our empirical study with multiple DNN models for image recognition showed that (1) a single-objective approach is the most 
efficient way of generating adversarial examples. (2) NSGA-IIDE is the optimal solution for generating adversarial examples with 
minimal perturbations. (3) By applying a post-processing approach, we can reduce the overall amount of changes and delta variation 
for our adversarial examples. This process was effective on all approaches, proving surprisingly effective on MOEA/DDE where the 
initial amount of changes was considerably higher than others.

In our future work, it will be worthwhile to explicitly look at the potential difficulty of images due to semantic ambiguity, which 
already can show in the initial classification confidence of a model [44]. Furthermore, we intend to extend our comparison to DNN 
models with different input/output criteria.

Moreover, in this study, we utilized many-objective approaches as multi-objective algorithms. In future work, it would be inter-

esting to utilize our many-objective methods with a third objective. As we have seen in this work, we typically reduce our pixel color 
(RGB) value to black (0,0,0). By optimizing the color delta variation (image noise), we could produce better minimal adversarial 
examples without the need for post-processing.
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