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Judith Uwihirwe I Markus Hrachowitz I Thom A. Bogaard

Landslide precipitation thresholds in Rwanda

Abstract Regional empirical-statistical thresholds indicating the
precipitation conditions initiating landslides are of crucial impor-
tance for landslide early warning system development. The objec-
tives of this research were to use landslide and precipitation data
in an empirical-statistical approach to (1) identify precipitation-
related variables with the highest explanatory power for landslide
occurrence and (2) define both trigger and trigger-cause based
thresholds for landslides in Rwanda, Central-East Africa. Receiver
operating characteristics (ROC) and area under the curve (AUC)
metrics were used to test the suitability of a suite of precipitation-
related explanatory variables. A Bayesian probabilistic approach,
maximum true skill statistics and the minimum radial distance
were used to determine the most informative threshold levels
above which landslide are high likely to occur. The results indicat-
ed that the event precipitation volumes E, cumulative 1-day rain-
fall (RD1) that coincide with the day of landslide occurrence and
10-day antecedent precipitation are variables with the highest
discriminatory power to distinguish landslide from no landslide
conditions. The highest landslide prediction capability in terms of
true positive alarms was obtained from single rainfall variables
based on trigger-based thresholds. However, that predictive capa-
bility was constrained by the high rate of false positive alarms and
thus the elevated probability to neglect the contribution of addi-
tional causal factors that lead to the occurrence of landslides and
which can partly be accounted for by the antecedent precipitation
indices. Further combination of different variables into trigger-
cause pairs and the use of suitable thresholds in bilinear format
improved the prediction capacity of the real trigger-based
thresholds.

Keywords Landslide . Precipitation thresholds . Trigger-based
thresholds . Trigger-cause-based thresholds

Introduction
Landslides are one of the world’s most widely occurring natural
hazards, causing high number of human casualties and consider-
able economic damage (Nadim et al., 2006; Petley 2012; Froude
and Petley 2018). Global landslide fatalities have been increasing
following the increase in population density (Petley 2012), changes
in seasonal rainstorm pattern and human activities (Froude and
Petley 2018). Rainfall is likely to be one of the major triggers of
landslide-induced fatalities in mountainous areas as it is the case
in many tropical African countries including Rwanda (Monsieurs
et al. 2018b, c). However, a bias in geographical distribution of
studies on landslides induced by climate factors including but not
limited to changes in seasonal rainfall was found with a major gap
in Africa (Gariano and Guzzetti 2016). To reduce rainfall-induced
landslide casualties, empirical and physically based dynamic
models to forecast landslide hazards have been proposed and
adopted to define rainfall induced-landslide early warning thresh-
olds. These thresholds indicate the minimum rainfall, groundwa-
ter levels, soil moisture contents and other hydrological conditions

potentially linked to landslide initiation at local, regional and
global scales. The physical, process-based models aim to under-
stand and describe the dynamic processes responsible for land-
slide initiation. They typically combine slope stability and
hydrological models in which dynamic hydrological processes
are used to evaluate slope failure probabilities (Anderson and
Lloyd 1991; Montgomery and Dietrich 1994; van Beek 2002;
Rosso et al. 2006; Kuriakose et al. 2009). However, physically
based dynamic models require high-resolution spatio-temporal
data, which are largely unavailable in most of the areas world-
wide. Applications of this type of models are thus highly limited to
few regions with sufficient data and typically to local scales only
(Aleotti 2004).

Due to their less detailed data requirements, empirical-
statistical models have been widely adopted to define the precip-
itation induced-landslide early warning thresholds at local
(Crozier 1999; Prenner et al. 2018), national (Robbins 2016;
Peruccacci et al. 2017), regional (Monsieurs et al. 2018a) and global
scales (Caine 1980; Guzzetti et al. 2008). The empirical-statistical
models typically relate precipitation characteristics, such as ante-
cedent precipitation, cumulative event precipitation, precipitation
intensity and precipitation duration or combination thereof to the
occurrence of landslides. Despite the considerably lower data
requirements of empirical-statistical threshold models, landslide
initiation thresholds still remain poorly explored and defined
throughout Africa (Gariano and Guzzetti 2016). This is due to
the lack of accurate and complete landslide inventories and insuf-
ficient spatio-temporal resolution of the available precipitation
data (Monsieurs et al. 2018c, b). The recent efforts by LIWEAR
(Landslide Inventory for the central section of the Western branch
of the East African Rift) as part of NASA’s GLC (Global Landslide
Catalogue) to systematically document landslides may partially
solve the landslide data scarcity in Africa (Monsieurs et al.
2018c). Despite that, however, many landslide events are likely to
be missed in the inventory due to the fact that for Africa mostly
only newspapers, government reports and other media are used as
a source for landslide inventory. While the reliance on these data
sources is likely to result in a bias towards large and/or impactful
landslides that may involve casualties and economic damage, this
landslide inventory can nevertheless serve as basic starting point
to define rainfall thresholds for landslide initiation in African
countries.

Despite the limited research devoted to landslides in Africa, a
number of landslide initiation rainfall thresholds have been pro-
posed in the past (Piller 2016; Monsieurs et al. 2018a, 2019). Those
thresholds are mainly inferred from empirical methods which are
based on statistical analysis of historical rainfall characteristics
and landslides inventories to distinguish the landslide conditions
from no-landslide conditions. However, many limitations, con-
straints and uncertainties associated with empirical thresholds
have been highlighted (Peres et al. 2017; Prenner et al. 2018;
Bogaard and Greco 2018). Some limitations are due to the fact
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that empirical thresholds are mainly based on the rainfall event
during which a landslide occurred, which is in reality the actual
landslide trigger. Hereafter, these thresholds are therefore referred
to as landslide trigger-based thresholds with various timescales
depending on rainfall intensity, volume or event duration. Such
landslide trigger-based thresholds include the intensity-duration
(I-D) (Caine 1980; Guzzetti et al. 2007, 2008; Ma et al. 2015; Hong
et al. 2017; Roccati et al. 2018), event-duration (E-D) and event-
intensity (E-I) (Peruccacci et al. 2017; Robbins 2016). The landslide
trigger-based thresholds have been increasingly recognised to ne-
glect the causal hydrological processes that predispose the slope to
failure (Peres et al. 2017; Bogaard and Greco 2018; Mostbauer et al.
2018). To include this, a number of researchers considered the
possible hydrological causes in terms of antecedent precipitation,
catchment storage, soil moisture indices and or soil water status
prior to the landslide triggering event or storm (Crozier 1999;
Glade 2000; Aleotti 2004; Ciavolella et al. 2016; Mostbauer et al.
2018). These temporally variable hydrological conditions define
the hydrological predisposition of a region to landslide occurrence
and are thus, besides its geomorphological predisposition the root
cause of landslide occurrence in a region. These hydrological
conditions are defined prior to the landslide triggering conditions
and then combined to make landslide trigger-cause-based
thresholds.

The concept of the landslide trigger-cause framework was re-
cently proposed by Bogaard and Greco (2018) and has been
adopted using either in situ observed or modelled soil moisture
to define the landslide hydro-meteorological thresholds (e.g.
Mirus et al. 2018a, b; Prenner et al. 2018). Similar concepts were
also adopted in other studies (e.g. Crozier 1999; Glade 2000;
Aleotti 2004; Ciavolella et al. 2016; Mostbauer et al. 2018; Prenner
et al. 2019). Mirus et al. (2018b) used the prior in situ soil satura-
tion as a cause and the recent cumulated rainfall as trigger to
define bilinear thresholds for landslide warning in Portland. The
concept of bilinear thresholds was proposed by Mirus et al. (2018a)
based on its predictive capacity as compared with the more com-
monly used univariate linear thresholds. One of the constraints of
the hydro-meteorological/cause-trigger concept is indeed that one
has to explore a wide range of combinations of explanatory vari-
ables which may be different based on landslide pre-disposing and
triggering factors. The objective of this research is to use landslide
and precipitation data in an empirical-statistical approach to de-
fine cause-trigger-based thresholds for landslides in Rwanda. Spe-
cifically, in this paper we aim to:

i. identify precipitation-related variables with the highest explan-
atory power for landslide occurrence in Rwanda

ii. quantify both, landslide trigger-based and cause-trigger-based
thresholds as first step towards robust landslide early warning
systems in Rwanda>

Study area description
Rwanda is a landlocked country geographically located between 1–
3° S and 28–31° E in Central-Eastern Africa, characterised by
tropical climate and pronounced relief. It is bounded by Uganda
on the North, Burundi in the South, Tanzania on the East and
Democratic Republic of Congo on the West (Fig. 1). It is topo-
graphically dominated by the volcanic highlands located over the

North and Western regions and lowlands in the Savannah region
located in east and southeast of the country as shown in Fig. 2. The
highland region receives abundant rainfall with a long-term mean
> 1200 mm year−1 while this reduces to < 1000 mm year−1 in the
savannah region (Fig.1). The country has two rainy seasons, the
longer one extending from March through mid-May and the
shorter one from mid-September to mid-December. Among the
factors known to influence rainfall in Rwanda are subtropical
anticyclones, tropical cyclones, monsoons, El Niño Southern Os-
ci l lation (ENSO), large water bodies and topography
(Ngarukiyimana et al. 2017). Those factors expose Rwanda to
variable weather, associated with frequent extreme rainfall events
and the prolonged wet season that lead to flooding and landslide
hazards.

The geo logy of Rwanda cons i s t s o f Precambr ian
metasedimentary rocks mainly quartzite, sandstones and shales
intruded by granites. Granitic-gneisses and migmatites are domi-
nants in eastern Rwanda while Neogene and Quaternary volcanic
deposits are dominants in northwest and southwest. The western
Rift consists of alluvium and lake sediments of Quaternary age.
The main lithological units in landslide area include mica schists
and pegmatite rocks (Fig. 3) which are unstable due to rapid
weathering, easy splitting along the joints and bedding planes
and loss of strength induced by the high content of mica. Despite
limited research on the impact of tectonic and seismic movement
on landslides in Rwanda, the country is located in a tectonic
region whose epicentre is located in Kivu Lake bordering the
western part of Rwanda and Democratic Republic of Congo. The
northwest part of the country is occupied by a volcanic chain
which is seismically active. This makes Rwanda, especially the
western and northwest regions, susceptible to earthquakes men-
tioned as one of the landslide causes in the East African Rift by
Monsieurs et al. (2018c).

In part of Mukungwa catchment (756 km2) located in north-
western part of Rwanda, active and inactive landslides were re-
corded. The recorded landslides were classified as rotational slide
(34%), flow (26%), translational slide (17%), fall (15%) and com-
plex type of mass movement (7%) and involving mainly debris and
earth materials. The typical landslide areal extent varied from
2.8 × 101 to 4.4 × 105 m2 with an intensity of failure volume esti-
mated between 1.3 × 101 and 5.8 × 106 m3 associated with a total
landslide mobilization rate of about 21 mm year−1. The main type
of soils involved in mass movement is largely Umbric and Haplic
acrisols (Dewitte et al. 2013) characterised by high clay content in
deep layers acting as an impermeable layer and thus, creating
perched ground water and high pore water pressure in the over-
laying soil layers. Rwanda has undergone significant land use
changes over the last decades (Nambajimana et al. 2020) which
may have also induced change in landslide intensity. The Landsat-
8 and sentinel images (1990–2016), accessed from the regional
centre for mapping resources and development (http://
opendata.rcmrd.org/search?q=RWANDA%20LANDSAT%20), in-
dicated a forest land decrease from about 43 to 14% while agricul-
tural land raised from about 25 to 53%.

Landslide data
The available data includes the Rwanda landslide inventory par-
tially provided by the LIWEAR project and rainfall time series
provided by Rwanda meteorological agency.
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Fig. 1 Location of the study area, with spatial distribution of mean annual rainfall and recorded landslides from 2006 to 2018 (red dots). In the side panel, mean monthly
rainfall per regions is shown for the 2006–2018 period

Fig. 2 Elevation map of the study area, isohyets (mm) and recorded landslides from 2006 to 2018 (red dots)
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Landslides inventory
Part of the landslide inventory for Rwanda was accessed from the
NASA global landslide catalogue (https://data.nasa.gov/Earth-Sci-
ence/Global-Landslide-Catalog/h9d8-neg4) uploaded mainly by
the LIWEAR project. The catalogue was extended through compi-
lation of other rainfall-induced landslides as reported from local
newspapers, blogs, technical reports and field observations. For
the catalogue extension, we followed the global landslide inventory
methods using standard indices adopted by Kirschbaum et al.
(2012), Bach et al. (2010) and Monsieurs et al. (2018c). Seven
elements were recorded for each landslide: (i) Landslide location
(e.g. Village, cell, sector, district or town); (ii) time of occurrence
(date); (iii) triggering event (e.g. rainfall); (vi) landslide type based
on Hungr et al. (2014) classification and depending on the avail-
ability of background information; (v) latitude and longitude with
relative locational accuracy; (vi) information about the impact
(number of fatalities, injuries and damages); (vii) the accessible
source of information was also mentioned with links to online
source of information. Only hazardous (fatal and highly damag-
ing) landslides are mostly reported while non-hazardous ones are
likely to be missed. Based on the inventory, about 99% of land-
slides occurred from 2006 while the remaining occurred far before
2006. Therefore, 2006 was taken as the threshold year and land-
slides that occurred between 2006 and 2018 were used for this
study.

Rainfall and representative rain gauges
We used daily rainfall time series recorded from 35 rain gauges in
Rwanda over a period of 13 years from 2006 to 2018. The rainfall
dataset was accessed from Rwanda Meteorology Agency. Among
the 35 rain gauges, representative rain gauges were selected to

identify the rainfall conditions for each or multiple landslide.
The representative rain gauges were selected based on their
weights (W) estimated based on the cumulated rainfall event (E)
until the landslide day, the distance between rain gauge and
landslide (d) and duration D (days) firstly proposed by Melillo
et al. (2018) using Eq. (1).

W ¼ E2

d2D
ð1Þ

The number of rain gauges to be weighted for each landslide
was chosen based on their location inside the buffer radius around
the landslide location. The higher the weight, the higher the chance
for the rain gauge to represent the rainfall conditions responsible
for the landslide. Based on the highest weights (W) proposed by
Melillo et al. (2018), 22 rain gauges out of 35 were found to be
representative for the rainfall conditions responsible for the land-
slide occurrence. A single dataset of rainfall conditions from 22
rain gauges was made to pinpoint the landslide triggering condi-
tions from non-triggering conditions.

Methodology

Definition of landslide rainfall conditions
The landslide conditions were divided into 4 categories based on
their timescale. The first category considers the entire rainfall
event during which one or more landslides occurred and is re-
ferred as the maximum probable rainfall event (MPRE). The sec-
ond, third and fourth categories respectively consider the
accumulation of very recent rainfall over the last 3 days (RD3),
2 days (RD2) and 1 day (RD1) with the last day coinciding with the
day of landslide occurrence. The RD3, RD2 and RD1 for each day

Fig. 3 Geology and lithological units of Rwanda and landslides (red dots) distribution
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during the 2006–2018 study period were calculated, irrespective of
a landslide occurring or not. MPRE was here defined as individual
periods of days with recorded rain ≥ 1 mm day−1 interrupted by
dry periods of at least two dry days. The rainfall event E (mm/E)
was then computed as the accumulated rainfall during each MPRE
which is equivalent to the event duration D (day). The event
intensity (mm day−1) was then computed as a ratio of E and D.
Landslide causal conditions were represented by the Antecedent
Precipitation Index (API) considered as a proxy for soil moisture
accumulation. The API was calculated as a cumulative rainfall
occurring over a predefined time periods prior to the landslide
triggering conditions. For this study, time periods of T = 30, 10 and
5 days were considered to define the API30, API10 and API5,
respectively. A decay coefficient k = 0.95 was used to estimate
APIT(t) for each day t over the study period according to the Eq.
(2).

APIT tð Þ ¼ R tð Þ þ kR t−1ð Þ þ k2R t−2ð Þ þ k3R t−3ð Þ � � � � � R t−Tð Þ ð2Þ

where R is the daily rainfall (mm day−1), k is the decay coeffi-
cient (−), t is the individual day and T is the antecedent accumu-
lation period (day) (30, 10 and 5 days) prior to the starting day of
the rainfall triggering conditions (MPRE, RD3, RD2 and RD1).

Quantification of landslide explanatory precipitation variables
The landslide explanatory precipitation variables which include
the landslide causal (pre-disposing) and triggering conditions
were explored using receiver operating characteristic (ROC) curves
(Hong et al. 2017; Postance and Hillier 2017; Mirus et al. 2018a;
Prenner et al. 2018). The ROC is a graphical representation created
by plotting the false positive rate (FPR) of wrongly predicted
landslides against the true positive rate (TPR) of correctly predict-
ed landslides. The ROC curves are made of a suite of possible
threshold levels at which a balance between each threshold’s true
positive rate and the corresponding false positive rate is evaluated.
The area under the ROC curve (AUC) is used as an indicator of the
variable performance, where a perfect test variable would result in
an AUC = 1. The AUC indicates the capacity of the considered test
variable to correctly distinguish landslide from no-landslide con-
ditions. Thus, the AUC was used on the one hand as a statistical
metric to compare the tested precipitation variables against ran-
dom guessing, i.e. AUC = 0.5. On the other hand, it was used to
find precipitation-related variable with the highest explanatory
power for landslide. The true positive rate (TPR) associated with
each threshold level on ROC curves is calculated with Eq. (3).

TPR ¼ TP
TPþ FN

ð3Þ

The false positive rate (FPR) is calculated by Eq. (4).

FPR ¼ FP
FPþ TN

ð4Þ

where TP are true positives, i.e. the number of landslides correctly
predicted by the threshold; FN are false negatives, and thus the
number of landslides that occurred in reality but that were not pre-
dicted, i.e. the number of landslide triggered by rainfall conditions
below the defined threshold. FP are false positives, i.e. incorrect

predictions of landslide occurrence by the threshold model while in
reality, there was no landslide reported. TN are true negatives, i.e. are
correct predictions of no landslide occurring.

Threshold definition techniques
Since the AUC only indicate which precipitation variable or combina-
tion of variables that can significantly distinguish landslide from no
landslide and the ROC curves indicating all possible thresholds and
their respective balance of TPR and FPR, it is also necessary to define
the optimum threshold levels above which landslide are high likely to
occur.We used 3 different techniques to do that: Bayesian probabilistic
approach (Prob), maximum true skill statistic (TSS) and minimum
radial distance (Rad). The Bayes’ theorem defines the conditional
probability of an event A (here: landslide occurrence) given an event
B, here represented by different precipitation variables as introduced
in the “Definition of landslide rainfall conditions” section. To reduce
the high rainfall data scattering, specific magnitude-frequency distri-
butions for each rainfall variable were defined using bins. Based on the
extent of the dataset, bins of 5 mm were used for E, RD and API while
2 mm day−1 and 2 days were used for event intensity and event
duration respectively. The specific magnitude-frequency pairs were
then converted into probabilities based on Bayes’ terminologies. The
Bayes’ prior probability of an event A, P(A) stands for the global
probability of landslide to occur regardless of the event B. If
NAT denotes the total number of landslide conditions (≈ total number
of landslides) and NBT the total number of rainfall events (landslide +
no landslide conditions) recorded over the predefined period (here
2006–2018), P(A) is calculated with Eq. (5).

P Að Þ ¼ NAT

NBT

ð5Þ

If we define also NBSas the number of events B with specific
magnitude (e.g. 20 mm ≤ E < 25 mm), the prior probability for an
event B denoted as P(B) is thus expressed with Eq. (6) and indi-
cates the probability to have an event B regardless of whether
landslide occurs or not.

P Bð Þ ¼ NBS

NBT

ð6Þ

The conditional probability P(A|B) expressed in Eq. (7) indi-
cates the probability for landslide occurrence given the specific
magnitude of rainfall variable.

P AjBð Þ ¼ P BjAð Þ � P Að Þ
P Bð Þ ð7Þ

The conditional probability P(B|A) is the probability to have
rainfall of a specific magnitude BS given that landslide occurs and
is calculated by Eq. (8) or (9).

P BjAð Þ ¼ P Bð Þ � P AjBð Þ
P Að Þ ð8Þ

P BjAð Þ ¼ NAS

NAT

ð9Þ

Landslides 17 & (2020) 2473



With NAS denoting the number of landslides that occur within a
specific rainfall magnitude BS (e.g. number of landslide that occurs
when rainfall intensity was between 8 and 10 mm day−1 8 ≤ I< 10),
the probabilistic threshold values are defined by comparing the prior
P(A) to the posterior probability P(A|B) (Berti et al. 2012; Robbins
2016; Peres et al. 2017). If the posterior landslide probabilities P(A|B)
differ from the prior landslide probability P(A), the rainfall variable
(B) has a significant effect on landslide occurrence (A). Contrary,
when P(A|B) is objectively smaller or equal to P(A), there is no
significant effect of variable B. The probabilistic threshold value for
a variable B to initiate landslide (A) is objectively taken as the specific
magnitude or level at which the posterior probability distribution
curve P(A|B) goes beyond the prior probability distribution curve of
P(A) as shown on Fig. 4. The cumulative probability curve
cumP(B|A) indicates the probability to have landslides below and
above the threshold level of B, respectively. This is equivalent to the
false negative (FNR) and true positive rates (TPR) on the ROC curve
as expressed by Eqs. (10)–(12).

FNR ¼ cumP BjAð Þ ð10Þ

or

FNR ¼ FN
FNþ TP

ð11Þ

TPR ¼ 1−cumP BjAð Þ ð12Þ

The threshold definition based on the maximum true skill
statistics TSS (e.g. Ciavolella et al. 2016; Peres et al. 2017) and the
minimum radial distance Rad (Postance and Hillier 2017; Mirus
et al. 2018a) has been particularly used in landslide studies. The
true skill statistics is expressed as a balance between the true
positive rate and false positive rate as indicated on Eq. (13) and
its maximum value indicates the optimum threshold. For a perfect
threshold, the TSS would be a unity, i.e. with zero false positive
rate. On the ROC curve, the radial distance (Eq. (14)) indicates the
relative distance from the defined threshold to the optimum point
whose TPR is a unit and FPR is zero. Thus, the minimum radial
distance would be zero for a perfect threshold (Postance and
Hillier 2017).

TSS ¼ TPR−FPR ð13Þ

Rad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FPR2 þ TPR−1ð Þ2
q

ð14Þ

Fig. 4 Probabilistic threshold definition: on X axis is the magnitude of event intensity I; on Y primary axis: the red constant curve is the prior landslide probability P(A);
the black axis represents the conditional probability to have landslide given a specific magnitude of I (P(A|B)). On secondary Y axis: the light green axis is the cumulative
probability to have an event intensity I of specific magnitude given that landslide occurs cumP(B|A); the blue axis represents the cumulative probability of I regardless of
landslide occurrence or not (cumP(B)). The dark green sphere and 2 vertical lines indicate the specific magnitude or level at which P(A|B) goes beyond P(A) and this
represents the probabilistic threshold intensity which is between 8 and 10 mm day−1. The dark green horizontal lines indicate the resulting false negative rate equivalent
to the Cum P(B|A) represented by the light green curve
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Cause-trigger-based thresholds definition and implication for landslide
prediction
The cause-trigger-based thresholds were defined by combining the
best performing thresholds selected from one of the techniques
described in the “Threshold definition techniques” section. Ac-
cording to Postance and Hillier (2017), the ideal landslide warning
threshold is the one leading to the maximum positive alarms (TP),
minimum failed alarms (FN) and also with minimum number of
false alarms (FP). Based on these criteria, the most realistic thresh-
old was selected among the ones defined either by Bayesian prob-
abilistic approach, maximum true skill statistics or minimum
radial distance. These thresholds were plotted on both axis of
landslide triggering and causal variables in Y, X pairs as I-API30,
I-API10, I-API5, E-API30, E-API10, E-API5, RD1-API30, RD1-API10,
RD1-API5, RD2-API30, RD2-API10, RD2-API5, RD3-API30, RD3-
API10 and RD3-API5. To evaluate the performance of the newly

adopted method, a confusion matrix for each pair was performed
and the resulting rate of positive alarms, false alarms, failed alarms
and true negatives was quantified.

Results and discussion

Landslide explanatory rainfall variables and thresholds
A total number of 9353 MPRE from 34,438 rainy days (RD) that
include landslide and no landslide conditions were recorded in
Rwanda from 2006 to 2018. From this MPRE and RD catalogue, 59
MPRE and 60 RD (≈ total number of landslides) were highlighted
as conditions responsible for the occurrence of one or more land-
slides recorded in the inventory. The area under the curve (AUC) of
each variable of the MPRE and RD in Fig. 5 indicated the proba-
bility of all test variables to correctly distinguish landslide from no-
landslide conditions. The AUC was highest for entire rainfall events

Fig. 5 Receiver operating characteristic (ROC) curves for a MPRE variables, b RD1 variables, c RD2 variables and d RD3 variables; variable significance based on the area
under the curve (AUC) and the optimum thresholds defined using Bayesian probabilistic approach (triangle shaped marker); maximum true skill statistics (rectangle-shaped
marker) and the minimum radial distance (sphere-shaped marker). Once two or more techniques revealed similar threshold with similar TPR and FPR, only one symbol is
used. The figure also indicates corresponding true positive rate (TPR) and false positive rate (FPR) for each threshold level
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E and the cumulated 1-day rainfall RD1 as compared with other
landslide triggering precipitation variables. This suggests that in
the study region the cumulated rainfall received on the day of a
landslide has more impact to trigger landslides than previously
recorded rainfall. It also indicates that shorter timescale triggering
conditions are more relevant for landslide occurrence than longer
timescales. Even though, rainfall event volumes E have also scored
higher at distinguishing landslide from no-landslide conditions, it
is critical to note that E has variable timescales that should be
normalised by the event duration D and thus ending up with event
intensity I as the most informative test variable. The overall per-
formance of antecedent precipitation indices (API), here consid-
ered as landslide cause, indicates that the cumulated rainfall over
10 days (API10) prior to the landslide triggering conditions has the
most influential effect on landslide occurrence as compared with
longer (30 days) and shorter (5 days) antecedent periods. On the
one hand, this can be attributed to the hydro-geotechnical prop-
erties of soil-like hydraulic conductivity, permeability and soil
texture that contribute to subsequent interplay between infiltra-
tion, evaporation and drainage and thus the drawdown of the
longer antecedent precipitation (API30) period. On the other hand,
this may indicate the lags in water flow to reach the critical layer of
the regolith for shorter periods like API5. The ROC curves in Fig. 5
indicate the possible threshold levels for each tested variable and
the respective balance of TPR and FPR. The optimum threshold
levels above which landslide is high likely to occur are presented
with different symbols on the curve depending on the technique
used. The detailed information of the defined optimum thresholds
is summarised in Table 1. The maximum true skill statistics (TSS)
indicated that landslide is high likely to occur when the cumulated
rainfall volume E goes beyond 29.9 mm/E and this threshold level
resulted to about 93% of correct predictions of landslide, i.e. true
positive alarms and about 41% of false alarms. A similar threshold
was obtained based on Prob, indicating the highest probability for
landslides to occur beyond 30–35 mm/E with a mean value of
32.5 mm/E. However, the minimum radial distance (Rad) approach
revealed a higher threshold level of about 45.9 mm/E associated
with quite lower positive alarms (76.3%) in favour of a lower rate of
false alarms (26.2%). From TSS, Prob and Rad, the critical event
duration was inferred to be around 4 days which would lead to the
normalised eventEn thresholds of about 7.5mmday−1, 8.1mmday−1

and 11.5 mm day−1 respectively. These thresholds are similar to the
defined event intensity thresholds of 7.9 mm day−1, between 8 and
10 mm day−1 and 10.1 mm day−1 respectively from TSS, Prob and
Rad. Based on daily rainfall (RD) variables in Table 2, the optimum
threshold levels above which landslide are high likely to occur were
12.5 mm day−1(Prob), 20.9 mm day−2 (Rad) and 27.0 mm day−3

(TSS and Rad) for RD1, RD2 and RD3 respectively. The optimum
API threshold levels were also defined as indicated on Fig. 4 and
Tables 1 and 2. The most informative thresholds were 45.5 mm
(Prob), 23.6 mm (Rad) and 7.7 mm (Rad) for API 30, API10 and API5
respectively prior to the landslide triggering event (MPRE). The
API thresholds for RD variables are also presented in Table 2. It has
to be understood that the API thresholds indicate the levels below
which no influence of antecedent precipitation would be expected
to contribute to the landslide triggering conditions. However, it has
to be noted that API thresholds are very sensitive to the timescale
of the triggering conditions. Shorter timescale triggering condi-
tions like RD1require higher threshold levels of API as comparedTa
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with RD2 or MPRE. This shows that relying on trigger-based
thresholds for landslide early warning could lead to biased results
rather than relying more on API’s thresholds. Thus, shorter time-
scale triggering conditions should be preferred as confirmed based
on AUC.

Landslide trigger and trigger-cause-based thresholds and implication
for landslide prediction
The results of bilinear combinations of explanatory variables show
that in some cases, a single variable threshold can be sufficient to
predict landslides (Figs. 6 and 7), horizontal blue lines). Based on

Fig. 6 Bilinear relation between landslide trigger represented by event intensity I and cause represented by antecedent precipitation indices of different timescales. a
Thirty days prior to the triggering event intensity. b Ten days prior to the triggering event intensity. c Five days prior to the triggering event intensity. d Implication for
warning based on the rate of true warnings (TPR) represented by green triangles on a, b and c; rate of false alarms (FPR) represented by red cross on a, b and c; rate of
failed alarms (FNR) represented by red dots on a, b and c; true negative rate (TNR) or no landslide represented by black cross on a, b and c

Fig. 7 Bilinear relation between landslide trigger represented by 1-day rainfall (RD1) and cause represented by antecedent precipitation indices (API) of different
timescales. a Thirty days prior to the triggering rainfall. b Ten days prior to the triggering rainfall. c Five days prior to the triggering rainfall. d Implication for warning
based on the rate of true warnings (TPR) represented by green triangles on a, b and c; rate of false alarms (FPR) represented by red cross on a, b and c; rate of failed
alarms (FNR) represented by red dots on a, b and c; true negative rate (TNR) or no landslide represented by black cross on a, b and c
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the maximum TSS threshold (Fig. 5, Tables 1 and 2), 91.5% of the
landslides are correctly predicted once an event intensity thresh-
old level of 7.9 mm day−1 is exceeded. Similarly, 93.5% of the
landslides are highly likely to occur when the rainfall event E
exceeds 30.0 mm while 71.7% of the landslides are highly likely
to occur when daily rainfall (RD1) exceeds 12.5 mm day−1. These
threshold levels are all trigger-based as they only refer to the recent
rainfall/event during which one or more landslides occur. Howev-
er, these trigger-based thresholds should be constrained by rela-
tively high rates of false alarm (FPR) of about 52%, 41% and 30%
for I, E and RD1 respectively. Moreover, it should be noted that
many landslides occur not only due to the trigger itself but rather
due to a combination of trigger and cause, the latter represented
by API. For example in Fig. 6a, it can be seen that only 23.7% of the
observed landslides, which is equivalent to about 26% of the
correctly predicted landslides using event intensity (I) threshold,
was due to the triggering event while the remaining 74% of the
predicted landslides were due to the combined effect of both I and
API. As pointed out in the “Landslide explanatory rainfall vari-
ables and thresholds” section, the API thresholds indicate the
critical level below which the impact of antecedent precipitation
is considered unimportant for landslide predictions. On the con-
trary, once the API threshold is exceeded, its contribution should
be counted as one of the landslide causal factor and thus resulting
into trigger-cause-based thresholds. The top left and right panels
of Figs. 6 and 7 indicate the improved prediction capacity of the
trigger-based threshold once combined with a cause-based thresh-
old. For example Fig. 6 indicates that the prediction capacity
(TPR) of the event intensity threshold increased by about 44%,
27% and 30% once combined with API as trigger-cause-based
thresholds in a bilinear format as I-API30, I-API10 and I-API5
respectively. Figure 7 indicates also an improved prediction rate
of RD1 trigger-based threshold by about 15%, 35% and 12% once
combined as RD1-API30, RD1-API10 and RD1-API5 respectively.
Therefore, the concept of bilinear thresholds (Mirus et al. 2018a)
or trigger-cause-based thresholds does not only minimise the false
alarm rates but can also be utilised to quantify the impact of each
and both landslide triggering and causal condition to the landslide
occurrence. Figures 6 and 7 show the resulting rate of true alarms
(TPR), false alarms (FPR), failed alarms (FNR) and true negative
rate (TNR) from different trigger-cause-based thresholds. This
approach should further be explored to be utilised for API-based
landslide early warning system development.

Lastly, as pointed out in the introductory part of this article, the
landslide inventory used for this research relied largely on the
information from newspapers, government reports and other me-
dia where many landslide events are likely to be missed. While the
reliance on these data sources is likely to result in a bias towards
large and/or impactful landslides that may involve casualties and
economic damage, this landslide inventory is the most compre-
hensive currently available in Rwanda.

Conclusion
This research aimed to use landslide and precipitation data in an
empirical-statistical approach to define both trigger and trigger-
cause-based thresholds for landslide initiation in Rwanda and to
quantify their predictive performance. The findings of this study
indicated that the normalised event E and the cumulative 1-day
rainfall (RD1) that coincide with the landslide day are the most

informative explanatory variables to distinguish landslide from no
landslide conditions. Among the antecedent precipitation indices,
10-day rainfall prior to the landslide triggering conditions was the
most informative to distinguish between landslide and no-
landslide conditions based on its AUC. API5 was too short while
API30 was too long. This underlines the critical role of hydrology
(infiltration, storage, evaporation/drainage) and particularly the
timing of pore pressure changes in the subsurface profile. It was
also generally observed that all used threshold definition tech-
niques, Bayesian probabilistic approach, maximum true skill sta-
tistic and minimum radial distance, resulted in quite similar
threshold values. The highest landslide prediction capability (rate
of positive alarms) was obtained using a single rainfall variable, so
a trigger-based threshold. However, that predictive capability si-
multaneously resulted in a high rate of false alarms. Constraining
the trigger-based threshold with a causal variable in a bi-linear
framework as proposed by Mirus et al. 2018a improved the overall
prediction capacity by reducing the number of false alarms. The
findings indicated also that the concept of trigger-cause-based
thresholds in bilinear format could not only be useful to minimise
the false alarms but also to explore the impact of each or combined
triggering and causal conditions on landslide occurrence.
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