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Preface

This report has been written for the literature assignment of the Multi-Machine Engineering track
of the Master of Science Mechanical Engineering at the Delft University of Technology. What
began as an interest in combinatorial optimization problems eventually started a strong interest
in deep learning. My interest in combinatorial optimization problems, which originated from a
two-period course in the first year of the master’s program, is what brought me to this assignment
subject. During the assignment, I became increasingly enthusiastic about deep learning.

At the beginning of this assignment, I started reading some papers on the subject and pretty
soon realized that this was going to be a challenging time. Due to little background in machine
learning, I was required to spend a lot of time reading books and watching videos to understand
the fundamentals of deep learning, reinforcement learning, and a combination of these (deep rein-
forcement learning). Some challenges that I encountered during the past fourteen weeks were how
to deal with a large amount of available literature, how to concisely describe the relevant literature,
and how to find a good balance between reviewing the literature while learning about the topic.
I would like to thank my supervisors Dr. Bilge Atasoy and Çiǧdem Karademir for helping me to
get back on track from time to time.

Out of interest and in preparation for a thesis assignment later this academic year, I will shortly
start with the Deep Learning Specialization course offered by DeepLearning.AI.

Bas Bijvoet
Delft, December 2021
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Abstract

Vehicle routing problems (VRPs), a generalization of the traveling salesman problem, are very
extensively studied combinatorial optimization problems for their practical application. Many
solution methods, e.g., exact and heuristic algorithms, are proposed in the last few decades but
require relatively much computation time due to the NP-hard nature of the VRP. Additionally, to
build such algorithms, much expert knowledge is required. The recent developments in a subfield
of machine learning, deep learning, make it possible to solve routing problems in a purely data-
driven manner or assist heuristic methods. This requires less problem-specific knowledge and can
outperform the traditional solution methods in terms of objective value and computation time. In
this literature review, introductions for the vehicle routing problem and machine learning are given
first. Then, an existing categorization for algorithmic machine learning structures is described. The
main body of this report is the review of the recent machine and deep learning methods to solve
static and dynamic routing problems. The reviewed literature is summarized in tables that indicate
the main characteristics of each work. Moreover, the results of several machine and deep learning
based solution methods for the static VRP are compared to each other. Lastly, the challenges and
opportunities for future research of deep learning based solution methods for the vehicle routing
problem are discussed. The main challenges of these methods are scalability, generalization, and
adaptability. Therefore, future research could be focused on addressing these challenges to improve
deep learning methods for practical routing applications.
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1 Introduction

The vehicle routing problem (VRP) is one of the most studied problems in transportation and
operations research, due to its practical applications. The VRP is a generalization of the traveling
salesman problem (TSP), for which the objective is to find the shortest possible tour through a
set of cities and return to the starting city. In the VRP, the objective is to find the optimal set
of routes for a fleet of vehicles to serve a set of customers. The context of the VRP is often that
of delivering goods, which are stored in a depot, to customers with a demand for these goods.
The VRP was introduced by Dantzig and Ramser (1959), who tried to find the optimal routes for
gasoline delivery trucks. Shortly afterward, Clarke and Wright (1964) proposed a greedy heuristic
to solve the VRP, which was more effective than the approach of Dantzig and Ramser (1959).
Thereafter, many other VRP variants and solution methods have been proposed. Since the VRP
(and its variants) is an NP-hard combinatorial optimization problem (COP), solving VRPs with a
large number of customers is challenging. However, with the surge of e-commerce and on-demand
transportation, solving larger-sized VRPs in less time becomes increasingly important. Increasing
transportation efficiency is important for several reasons. The first and foremost reason is that it
is the fastest way to decrease transportation-related greenhouse gas (GHS) emissions. The GHS of
road transport, which accounts for approximately 72% of total transportation-related GHS emis-
sions, is still rising but must be reduced by 60% compared to 1990 levels before 2050 according
to the European Green Deal (EEA, 2020). To achieve climate neutrality, cleaner and more effi-
cient transportation is needed. Cleaner road transportation can be achieved by, e.g., a shift to
electric vehicles (EVs), but will take some time. The faster way is to increase the transportation
efficiency, which can be achieved by better VRP solution methods. Secondly, increased transporta-
tion efficiency will contribute to a higher user experience of transportation services. Thirdly, more
efficient transportation benefits both consumers and businesses by reducing the costs associated
with delivering goods or personal transportation services.

1.1 Background

Traditionally, solving VRPs was tied to the operations research (OR) community who proposed
exact methods, heuristic methods, metaheuristic methods, and several modeling techniques, e.g.,
stochastic programming, robust optimization, and change-constrained programming. To assist
these solution methods, there is a rich history of applied machine learning techniques to increase the
solution quality. Among which, predicting uncertainties in stochastic VRP variants and configuring
algorithms, such as hyper-parameter tuning or cluster customers, are the most popular (Bai et
al., 2021; Soeffker et al., 2021). Since the recent breakthrough of deep reinforcement learning
(DRL) in playing the Atari games (Mnih et al., 2015) and the game of Go (Silver et al., 2016;
2017), the computer science (CS) community has become more interested in solving COP problems
in general, but also specifically in the VRP.

1.2 Objectives

The goal of this literature review is to determine to what extent deep learning can contribute to and
improve over conventional VRP solution methods. To understand the applied methods, one must
have a basic understanding of deep learning, reinforcement learning, and a combination of these
(deep reinforcement learning). Therefore, an introduction to these machine learning concepts will
be given first. Then, to identify the similarities and differences of applied methods, the literature
is categorized based on existing taxonomies. The challenges and advantages of the reviewed deep
learning solution methods will be addressed to indicate the potential of deep learning to solve
VRPs and point out some opportunities for future research.

1.3 Related works

This review aims to provide an overview of the recently proposed deep learning methods to solve
VRPs. Besides the many existing surveys for conventional VRP solution methods, the litera-
ture that reviews machine learning methods to solve the VRP is also increasing. The survey of
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Mazyavkina et al. (2021) gives an overview of reinforcement learning (RL) frameworks as a sole
tool for COPs, whereas Vesselinova et al. (2020) reviewed machine learning methods for COPs for-
mulated on graphs specifically. Bai et al. (2021) reviewed hybrid solution methods that combine
analytical with ML techniques for the VRP. Haydari and Yilmaz (2020) and Farazi et al. (2020)
surveyed deep reinforcement learning (DRL) methods for transportation systems, where the for-
mer specifically focused on autonomous driving and traffic signal control. Hildebrandt et al. (2021)
and Soeffker et al. (2021) focused on the stochastic and dynamic VRP, where the former reviewed
RL methods and the latter prescriptive analytic methods. RL for ride-sharing systems and DRL
methods for demand-driven services are surveyed by Qin et al. (2021) and Zong et al. (2021),
respectively. Where most of the aforementioned reviews focused on a specific subfield of vehicle
routing, the scope of this literature review is a little broader. This literature review aims to identify
the most important deep learning approaches to solve routing problems of different variants. Also,
this literature review categorizes the reviewed works differently, gives a comprehensive overview of
applied algorithms, and the results of reviewed literature will be compared. Additionally, this work
describes the reviewed literature in a little more depth compared to most of the aforementioned
reviews.

1.4 Outline

The remainder of this report is organized as follows. In section 2, the vehicle routing problem
is briefly introduced, including a mathematical formulation, solution method, and categorization.
A machine learning introduction is given in section 3, in which, i.a., reinforcement learning, deep
learning, attention mechanisms, and algorithms will be discussed. Then, in section 4 the literature
on machine and deep learning for static and dynamic routing problems is reviewed. Finally, in
section 5 the challenges and opportunities for future research are discussed and section 6 is the
concluding section.

2 Vehicle routing problem introduction

The vehicle routing problem (VRP) requires the determination of a set of routes to be completed
by a fleet of vehicles to visit a set of customers (vertices) (Toth and Vigo, 2002). The vehicles
start and end in a depot and serve customers by delivering or collecting goods. Often the objective
is to minimize the total route length while satisfying operational constraints. The VRP formu-
lation was first introduced by Dantzig and Ramser (1959) who were concerned with finding the
optimal routes of gasoline trucks to supply gas stations. Since then, the VRP is one of the most
studied combinatorial optimization problems and many exact and approximate solution methods
have been proposed. The VRP is a generalization of the traveling salesman problem in which a
single vehicle must visit all customers through one tour. The VRP is known as an NP-hard com-
binatorial optimization problem. In the following subsections, the mathematical model of a VRP
variant is introduced, a brief overview of conventional solution methods is described, and finally a
categorization for the VRP is discussed.

2.1 Mathematical model for the MCVRP

The VRP is defined on a graph G = (V, E), where V = {v0, ..., vn} is the set of vertices and
E = {(i, j) : (i, j) ∈ V2, i < j} is the set of edges. Vertex v0 corresponds to the depot and
vertices {v1, ..., vn} represent the customers. Each edge (i, j) ∈ E is associated with a cost cij ,
which represent the cost (e.g., distance or travel time) to travel from vertex i to j. Loop arcs
(i, i) are generally not allowed, which can be imposed by setting cii = ∞ for all ∀i ∈ V. If the
cost matrix c is asymmetric (cij ̸= cji), the edges are called directed, otherwise the edges called
undirected. Each customer is associated with a demand di for i = {1, ..., n}. In the capacitated
VRP with multiple vehicles (MCVRP), the customer demand must be satisfied by a vehicle k ∈ K
with capacity C, where K = {1, ...,K}. The load of the vehicle after visiting customer i is denoted
by ui for each i ∈ V \ {0}. In the following formulation, the binary decision variable xijk is 1 if
edge (i, j) ∈ E is traversed by vehicle k ∈ K and is 0 otherwise. The binary decision variable yik
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for each i ∈ V, k ∈ K is 1 if vertex i is served by vehicle k and is 0 otherwise. In this example, the
objective is to minimize the total cost (Toth and Vigo, 2002):

min
∑
i∈V

∑
j∈V

∑
k∈K

cijxijk (2.1)

subject to ∑
k∈K

yik = 1 ∀i ∈ V \ {0}, (2.2)∑
k∈K

y0k = K, (2.3)∑
j∈V

xijk =
∑
j∈V

xjik = yik ∀i ∈ V, k ∈ K, (2.4)

uik − ujk + Cxijk ≤ C − dj ∀i, j ∈ V \ {0}, k ∈ K, i ̸= j, (2.5)

di ≤ uik ≤ C ∀i ∈ V \ {0}, k ∈ K, (2.6)

yik ∈ {0, 1} ∀i ∈ V, k ∈ K, (2.7)

xijk ∈ {0, 1} ∀i, j ∈ V, k ∈ K. (2.8)

Constraints (2.2) and (2.3) ensure that each customer is served by exactly one vehicle and that
exactly K vehicles are leaving the depot, respectively. Constraints (2.4) impose that when a vehicle
enters a vertex, the same vehicle leaves that vertex. Constraints (2.5) and (2.6) are a generalization
of the subtour elimination constraints, proposed by Miller et al. (1960) for the TSP and extended
by Desrochers and Laporte (1991) for the VRP, and impose both the capacity and connectivity
requirements, such that di + dj ≤ C. If xijk = 1, these constraints ensure that ujk ≥ uij + dj .

2.2 Solution methods

The VRP can be solved by a variety of solution methods and in this section several solution
methods will be briefly described. Exact solution methods will result in an optimal solution but
come at the cost of computational time. For large problem instances, it is often not possible to
determine the optimal solution because of time limitations. Therefore, heuristic solution methods
can be used to find a feasible and reasonably good quality solution in less computational time.
However, it is not guaranteed to find the optimal solution and most often the final solution is
a local-optima. Heuristic methods are often problem-specific, whereas metaheuristic methods
are more general solution methods that are applicable to a wider variety of applications. They
provide strategy guidelines and a general structure to design a heuristic for a specific problem.
The solution quality of metaheuristic methods tends to be higher than with heuristic methods but
requires more computational time. For a comprehensive review of solution methods for the VRP
see, e.g., Laporte (2009) and Bräysy and Gendreau (2005a) (for heuristic methods), and Bräysy
and Gendreau (2005b) (for metaheuristic methods).

2.2.1 Exact methods

Exact methods to solve the VRP are only suitable for small-scale problems since the VRP belongs
to the problem difficulty class NP-hard. According to Baldacci et al. (2012), brand-and-cut and
reduced set partitioning algorithms are the most successful exact methods for solving the capaci-
tated VRP (CVRP). Exact methods are not of very much use for ML approaches to solve routing
variants. Hence, the reader is referred to Baldacci et al. (2012) for details on exact methods.

3
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2.2.2 Heuristic methods

Contrasting to exact methods, heuristic methods do not guarantee finding the optimal solution.
However, they typically produce good solutions in shorter computing times. Heuristic methods can
be classified into three categories: constructive, two-phase, and improvement heuristics (Laporte
and Semet, 2002). Construction heuristics build a solution gradually by inserting customers into
a vehicle route or by merging partial routes. The two-phase heuristic decomposes the problem
into two components: clustering of vertices and route construction. This can be done in two
fashions: cluster-first route-second or route-first cluster-second. In the former case, vertices are
feasibly clustered first and then a route is constructed for each of them. In the latter case, a tour is
constructed through all vertices and then divided into feasible vehicle routes. Improvement heuris-
tics attempt to iteratively improve a feasible solution (often initially generated by a construction
heuristic) by exchanging edges or vertices within or between routes. In case edges or vertices are
exchanged within routes, the method is classified as intraroute methods. Exchanging edges or
vertices between routes are interroute methods.

2.2.2.1 Construction heuristics

A very well-known heuristic solution method for the VRP is the Clarke and Wright savings al-
gorithm (Clarke and Wright, 1964). The algorithm is based on a savings computation and starts
with an individual route for every customer (so initially n− 1 routes). The savings are computed
as sij = ci0 + c0j − cij for each i, j ∈ V and ordered decreasingly. The highest saving of two
routes, with one route containing edge (i, 0) and the other route containing (0, j), are merged (if
feasible) by deleting edges (i, 0) and (0, j) and introducing (i, j). This is repeated until no further
improvement is possible. In case a solution is required with a fixed number of vehicles, routes
can be merged even with negative savings until the required number of vehicles is reached. Other
examples of construction heuristics are the nearest neighbor algorithm, the nearest insertion algo-
rithm, and the random order algorithm. The nearest neighbor algorithm starts the first route by
finding the vertex closest to the depot and then adds subsequent vertices closest to the last added
vertex at the end of the route until no vertices can be feasibly added, where after a new route
is started. This procedure is repeated until no unrouted vertices are left. The nearest insertion
algorithm starts a route with two vertices (which can be selected with different methods) and then
adds the vertex closest to any of the vertices in the route in such a way that it minimizes the route
length (it may be placed between two vertices). A new route is started once no feasible insertions
are possible and repeated until no unrouted vertices are left. The random insertion algorithm is
similar to the nearest insertion algorithm but selects random vertices to insert instead of the closest
vertex to any of the vertices in the route.

2.2.2.2 Two-phase heuristics

The sweep heuristic, introduced for the VRP by Wren and Holliday (1972) but commonly con-
tributed to Gillett and Miller (1974), is a cluster-first route-second method. It creates feasible
clusters by rotating a ray centered at the depot, where after routes are created by solving a TSP
for each cluster. Instead of using a Cartesian coordinate system, vertices are represented by polar
coordinates (θi, ρi), where θi is the angle (relative to an arbitrary vertex i∗ for which θ∗i = 0) and
ρi is the ray length. The vertices are ranked in increasing order of θi. Then, an unused vehicle is
assigned to unrouted vertices having the smallest angle (as long its capacity is not exceeded), which
is repeated for multiple vehicles until there are no more unrouted vertices. Thereafter, routes are
constructed by solving the TSP for each vehicle (or cluster). Route-first cluster second methods
are not competitive with other heuristic methods (Laporte and Semet, 2002) for the VRP and
hence are not discussed.

2.2.2.3 Improvement heuristics

Lin (1965) introduced the interroute λ-opt method, where λ edges from a tour are removed, where
after the unconnected vertices are connected in all possible ways. The first identified or most
profitable reconnection is implemented. This procedure is continued until no further improvements
can be made. Thompson and Psaraftis (1993) proposed an intraroute method for exchanging
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vertices between different routes, where a circular permutation of b routes is considered and k
vertices from each route are shifted to the next route.

2.2.3 Metaheuristic methods

Many metaheuristic methods often exploit a local search procedure, which iteratively searches
in the neighborhood of the current solution to improve it. Such a local search procedure often
converges to a local optimum and cannot escape the local optimum. The local optimum found
depends on the starting conditions of the local search. Repeating the local search many times with
random starting conditions may result in multiple local optima and increases the chance that one
local optimum is the global optimum, but is not successful for large and complicated problems
(Hillier and Lieberman, 2014). Therefore, metaheuristic methods allow the local search to escape
local optima and guide the local search in the most promising direction. The escape of local optima
of different metaheuristics is dealt with in different ways.

2.2.3.1 Tabu search

Tabu search, introduced by Glover (1986), is a deterministic metaheuristic that allows non-improving
moves of the local search to escape the local optimum and reapplies the local search in the best
neighborhood of the local optimum. To avoid cycling back to the previous local optimum, a tabu
list of a certain length with prohibited moves (the inverse moves) is maintained. A stopping cri-
terion is used to stop the iterations. The use of an adaptive memory, introduced by Rochat and
Taillard (1995), is a powerful concept to enhance the tabu search algorithm. The tabu search
algorithm is used to solve the VRP by, e.g., Osman (1993) and Taillard et al. (1997).

2.2.3.2 Simulated annealing

Simulated annealing, proposed by Kirkpatrick et al. (1983), is a stochastic metaheuristic that
escapes local optima by allowing non-improving moves of the local search in accordance with
a random process. An improving move (similar to tabu search) is always performed and the
probability of performing a non-improving move depends on the solution quality of that move,
where moves resulting in a much worse solution quality are less like to be performed. A parameter
that influences the probability of performing a non-improving move is changed during the process
to guide the local search in the most promising direction. The stopping criterion is determined
by a schedule of that parameter, indicating how to update the parameter and the number of
iterations per parameter value. The simulated annealing algorithm is used to solve the VRP by,
e.g., Osman (1993) and Chiang and Russell (1996).

2.2.3.3 Large neighbourhood search

The large neighborhood search (LNS) heuristic, proposed by Shaw (1997), starts with an initial
solution, relaxes some vertices (removes vertices from routes), and then re-optimizes (reconstructs)
the routes using a branch and bound procedure. The removal of vertices is stochastic but based
on related features of vertices (such as location, time windows, or the tour it currently is in).
Only if the new solution is better than the previous solution it will be used in the next iteration.
The re-optimization may also be done using other insertion methods. Compared to local search-
based metaheuristics (tabu search and simulated annealing), the LNS heuristic can explore the
solution space more quickly, since it changes the solution per iteration more. The adaptive large
neighborhood search (ALNS), proposed by Ropke and Pisinger (2006), is based on the LNS, but
uses several removal and insertion heuristics and uses statistics acquired during the search to
choose between them at each iteration. The ALNS of Ropke and Pisinger (2006) is embedded in
a simulated annealing metaheuristic. To remove vertices from the solution it uses three removal
heuristics: a stochastic removal heuristic based on feature relation, a random removal heuristic,
and a worst removal heuristic. To re-optimize (and reconstruct) they use two parallel insertion
heuristics (which construct multiple routes simultaneously): a basic greedy insertion heuristic
(which tries at most n possibilities per iteration to insert an unrouted vertex resulting in the
smallest increase of total route length) and a regret insertion heuristic (introduced by Potvin and
Rousseau (1993), which incorporates a sort of look-ahead information by determining the regret
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value that indicates the difference in total route length between the best and second-best insert
location of an unrouted vertex and then inserts the unrouted vertex with the minimum regret value
at its best location. The ALNS keeps track of the performance of each combination of removal
and insertion heuristic and updates their weight parameter during the search, which affects the
probability of selecting a combination of removal and insertion heuristic.

2.2.3.4 Genetic algorithms

Genetic algorithms process a population of trial solutions (rather than a single trial solution as with
tabu search and simulated annealing) in each iteration and are based on the theory of evolution
(Charles Darwin). The members (different VRP solutions) of the population are measured by
their fitness (e.g., total route length), where the members with the highest fitness have a higher
chance of becoming parents. The number of parents and how to choose them from the population
is a design choice and often in accordance with a stochastic policy. Parents are paired at random
and get children who share features of their parents, i.e., a new feasible solution is created from
two other solutions. Some children’s features are mutated to explore new solution regions. The
fitness of each of the children is evaluated and a new population is generated from the children and
previous population. A stopping criterion is used to stop the iterations. The genetic algorithm is
used to solve the VRP by, e.g., Prins (2004) and Baker and Ayechew (2003).

2.3 VRP categorization

According to Pillac et al. (2013), the vehicle routing problem can be classified into four categories
based on the evolution and quality of information (Psaraftis, 1980). Evolution of information
refers to whether the information available changes during route execution, so whether the input
is all known beforehand or whether the input changes over time (i.e., static or dynamic). Quality
of information is related to possible uncertainty of information, i.e., whether all information is
deterministic or whether some information is stochastic. The four categories are:

• static and deterministic (SD):
routes do not change after construction (the problem is solved once) and all information is
known beforehand.

• static and stochastic (SS):
routes do not change after construction (apart from some possible minor changes afterward,
such as detour to depot) and some information is only revealed during the execution of the
routes.

• dynamic and deterministic (DD):
some (or all) information changes during the execution of the routes, e.g., dynamic customers.

• dynamic and stochastic (DS):
some (or all) information is only revealed during the execution of the routes, with stochastic
knowledge on the dynamically revealed information.

Psaraftis et al. (2016) build upon this categorization of Pillac et al. (2013) and proposed a taxonomy
in which the dynamic VRP is classified into eleven categories. Ojeda Rios et al. (2021) stated that
the taxonomy of Psaraftis et al. (2016) contained a rather limited set of solution methods and
extended the taxonomy by providing a more comprehensive classification of the solution methods.
Another popular taxonomy was provided by Eksioglu et al. (2009), which later was adapted by
Braekers et al. (2016). Instead of differentiating between VRP variants with respect to assumptions
and characteristics, many surveys focus on reviewing the solution methods for a specific variant
of the VRP (Braekers et al., 2016). Popular reviews of specific VRP variants are, e.g., Oyola
et al. (2016a; 2016b) and Ritzinger et al. (2016) for the dynamic and stochastic VRP, Bräysy and
Gendreau (2005a; 2005b) for the VRP with time windows, Berbeglia et al. (2007) for the static
pickup and delivery problem, and Montoya-Torres et al. (2015) for the VRP with multiple depots.
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3 Machine learning introduction

A problem may be solved by an algorithm (sequence of instructions), for which the (complex) prob-
lem can be divided into smaller less complex problems. A handcrafted rule-based algorithm then
tries to solve the sub-problems to solve the overall problem. For complex problems, constructing
a rule-based and hierarchical type of algorithm is difficult, but may be able to solve the problem.
However, it requires a lot of knowledge on the specific problem at hand. If the algorithm does
not account for unexpected phenomena, it is bound to fail. Therefore, algorithms with this chain
of rules approach will often not generalize to the complexity of the real world. Generalization,
in this case, refers to the ability to perform well on previously unobserved inputs (Goodfellow
et al., 2016). Without explicitly programming the rules to solve the problem (which requires
problem-specific knowledge and context), one can ‘learn’ a computer to solve the problem using
data to gain knowledge, which is known as machine learning. Besides that machine learning does
not require much problem-specific knowledge, it enables to solve problems that are too difficult to
solve with algorithms designed by humans.

There are three main types of machine learning: unsupervised, supervised, and reinforcement
learning. In unsupervised learning, the goal is to find patterns in data, such as clustering. In
supervised learning, the goal is to make predictions using data, for which a labeled training dataset
is available to train a model that predicts outcomes compared to a provided target. Examples of
supervised learning are regression analysis and classification. In reinforcement learning (RL),
the goal is to make predictions using data as well, but the learning algorithm is not given a
labeled training dataset. An agent interacts with the environment and must discover the highest
rewarding actions. The challenge in reinforcement learning is the trade-off between exploration
and exploitation. Actions that are tried before and returned high rewards are preferred by the RL
agent (exploit). However, in order to select better actions in the future, the RL agent must try
actions that were not selected before (explore) (Bishop, 2006).

In many situations, one wants to minimize (or maximize) an objective function that defines the
quality of a solution, for which gradient-based optimization is often used. Suppose the goal is to
reduce a function f(x), this can be done by moving x a small step in the opposite direction of the
derivative f ′(x). However, when the derivative f ′(x) = 0, it does not provide information about
which direction to move in. These stationary points are called local minima (or local maxima or
saddle points) and make the optimization more difficult. Most functions have multiple inputs,
which all must be considered for gradient-based optimization. Therefore, the derivatives for all
inputs are captured by the gradient, i.e., the gradient is a vector containing all partial derivatives,
denoted by ∇xf(x). If all elements of the gradient are zero, the multidimensional function has
reached a stationary point. A method called gradient descent can be used to minimize objective
function by moving from point x to x′:

x′ = x− α · ∇xf(x), (3.1)

where α > 0 is the learning rate, which determines how much to update the input in the direction
of the gradient. If the learning rate is too large, it may overshoot a local or global minimum. On
the other hand, with a too small learning rate it may take a very long time to converge to a local or
global minimum. The input x is updated most into the direction of the greatest partial derivative.
For better and faster convergence, the inputs should be normalized or scaled, such that each input
feature is represented within the same range of values.

A (deep) neural network is a very powerful machine learning concept. Before introducing the
details of neural networks, an introduction to supervised and reinforcement learning will be given.

3.1 Supervised learning

In supervised learning regression analysis, the goal is to build a model that predicts a scalar value
y ∈ R as its output given an input vector x ∈ Rn. In linear regression, the output is a linear
function of the input. Let ŷ be the output of the model that predicts y and is calculated by:

ŷ = θTx+ b, (3.2)
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where b is an intercept term (often called bias) and θ ∈ Rn is a vector of weight parameters, which
determines how the prediction is affected by the input features. The performance of the prediction
can be quantified by, e.g., the mean squared error. Suppose a training dataset consisting of m
inputs x and values y. The objective function (also called cost or loss function) can be defined as:

J(θ) =
1

m

m∑
i=1

(
ŷi(θ)− yi

)2

. (3.3)

The weight parameters θ and bias b must be determined by the machine learning model. A model
with only weights can also be used if x is augmented with an extra entry equal to 1, such that the
corresponding entry in θ captures the biases. Then, the weight parameters are iteratively updated
to minimize the objective function by:

θt+1 = θt − α · ∇θt
J(θt) (3.4)

= θt − α · 2

m

m∑
i=1

(
ŷi(θt)− yi

)
· xi, (3.5)

where t indicates the iteration. The weights are updated until convergence or for a maximum
number of iterations, where after a trained model can accurately predict the value y with output
ŷ. The model is trained using a training dataset, hence the model is ‘optimized’ for the training
dataset. The challenge is to generalize to new (unseen) inputs. If the model is trained on a large
dataset, it tends to generalize well to new inputs (if the test and training dataset are is identically
distributed and if inputs independent from each other).

Stochastic gradient descent
As mentioned earlier, the machine learning model generally generalizes better when trained on
more data. However, this requires calculating more partial derivatives. All partial derivatives
must be stored, since the average is used to update the model parameters (as in equation (3.5)).
As each input may consist of multiple features, for which a partial derivative must be calculated
each, a lot of calculations must be performed (and stored). This is computationally costly and
time-consuming. The stochastic gradient descent (SGD) method, which is an extension of the
gradient descent method, tackles this problem by selecting a random subset of the training dataset
to be used in each iteration. The subset is called a batch, which consists of randomly selected
instances (data points). At each iteration t ∈ {0, 1, 2, ...}, SGD updates the model parameters as
in equation (3.4).

3.2 Reinforcement learning

The goal in reinforcement learning is to train an agent that interacts with its environment by
taking actions (which change the environment) to maximize the rewards given by the environment
(Sutton and Barto, 2018). This is a sequential decision-making process that can be formulated as
a Markov decision process (MDP) (Bellman, 1957). The interaction between the agent and the
environment is illustrated by Figure 1.

Figure 1: Agent-environment interaction in an MDP. Image retrieved from Sutton and Barto (2018).

At each time step t, the agent observes the environment’s state St ∈ S and selects action At ∈ A.
Action At causes the state to transition to St+1 and the agent receives a rewards Rt+1. The
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joint probability of getting reward r and reaching state s′ given the selected action a in state s is
defined by p(s′, r|s, a) for all s′, s ∈ S, r ∈ R, and a ∈ A. The sequence of the agent-environment
interaction is given by {S0, A0, R1, S1, A1, R2, ...}. The agent’s goal is to maximize the total reward
(called return) it receives. To discount for future rewards and ensure a bounded return, a discount
rate γ is used to determine the discounted return. More specifically, the agent tries to maximize
the expected discounted return, which is defined by:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

=

T∑
k=0

γkRt+k+1

= Rt+1 + γGt+1, (3.6)

where T ̸= ∞ and γ ∈ [0, 1] for episodic tasks, and T = ∞ and γ ∈ [0, 1) for continuing tasks.
The agent’s policy defines how the agent should act at any given time. It is a mapping of the

perceived environmental state to the probabilities of selecting each action. The policy is denoted
by π(a|s) for all a ∈ A and s ∈ S. The expected return from a state s is called the state-value.
The state-value function vπ(s), following a policy π starting in state s is defined by:

vπ(s) = Eπ[Gt|St = s]

= Eπ

[
T∑

k=0

γkRt+k+1|St = s

]
∀s ∈ S, (3.7)

where Eπ[·] denotes the expected value of a variable while following policy π.
Similarly, the action-value function qπ(s, a) is the expected return of taking action a from state

s, and thereafter following policy π:

qπ(s, a) = Eπ[Gt|St = s,At = a]

= Eπ

[
T∑

k=0

γkRt+k+1|St = s,At = a

]
= Eπ [Rt+1 + γvπ(St+1)|St = s,At = a] ∀s ∈ S, a ∈ A. (3.8)

The goal in RL is to find the optimal policy π∗, where π∗ is better than or equal to a policy π′ if
vπ∗ ⩾ vπ′(s) for all s ∈ S. The Bellman optimality equations for the state-value and action-value
function are given by:

v∗(s) = max
a∈A

∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γv∗(s

′)
]
, (3.9)

q∗(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γmax

a′∈A
q∗(s

′, a′)
]
. (3.10)

If v∗(s) is known, the optimal policy can be determined by picking the actions that appear best
after a one-step look-ahead search. If q∗ is known, it is even easier to determine the optimal policy.
A one-step look-ahead search is not needed, since the best actions correspond to the maximum
value of q∗(s, a) for all s ∈ S. Hence, it is not required to know anything about successor states and
their values, i.e., it is not required to know the transition function that defines the dynamics of the
environment. However, solving the Bellman optimality equations requires an exhaustive search,
considering every single possibility, computing their probabilities, and their expected rewards.
Therefore, the Bellman optimality equations are often approximated in practice, for which the
most popular algorithms are given in section 3.5.

RL categorization
Reinforcement learning algorithms can be categorized based on the way the agent is acting: model-
based and model-free. In model-based RL, the agent learns or uses a transition function that
predicts the next state and next rewards given a state-action pair. An example of model-based RL
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is dynamic programming (DP), in which p(s′, r|s, a) is known and used by the agent to produce
simulated experience (the agent takes actions by taking into account expected future situations
before they occur). In model-free RL, the agent does not use a model of the environment and
purely learns through trial and error by interaction with the environment. Examples of model-free
RL are Monte Carlo (MC) and temporal-difference (TD) methods.

Additionally, there are three main types of model-free RL algorithms:

• value-based methods:
the agent learns the state- or action-value function and the policy is based on the state- or
action-values.

• policy-based methods:
the agent does not use a value function to determine the optimal actions but learns the policy
directly.

• actor-critic methods:
both the policy and the value function are learned.

Moreover, the type of agent can be categorized as off-policy or on-policy. The policy that determines
the actions of the agent is called the behavior policy. The policy that learns about the values of
states (and actions) is called the target policy. For an off-policy agent, the target and behavior
policy are different. For an on-policy agent, the target and behavior policy are the same.

3.3 Deep neural networks

A deep neural network (DNN) is a very powerful ML concept to approximate a function that maps
an input to an output. DNNs are used by many ML approaches for solving routing problems. In
this section, the architecture of a single-layer neural network (perceptron) will be introduced first.
Thereafter, the architecture of a DNN is explained.

3.3.1 Perceptron architecture

The perceptron is the most simple neural network (NN), containing an input layer and output
node. The output of the perceptron can, e.g., be a value that predicts the class of an input.
Suppose a training instance with x = [x1, ..., xn] and y ∈ {−1, 1}, where n indicates the number
of features. The architecture of the perceptron is depicted in Figure 2.

Figure 2: Perceptron architecture. Image retrieved from Aggarwal (2018).

The output of the perceptron can be defined as (with model weights w instead of θ):

ŷ = sign
{ n∑

j=1

wjxj + b
}
= sign{w · x+ b}, (3.11)
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where the sign function maps a value to +1 or -1. The weights can be updated with SGD using,
e.g., the error as the objective value: E(x) = y − ŷ. The sign function in this example acts as a
so-called activation function (more examples of activation function will be given later). Similar to
the input augmentation in the example of linear regression, the bias can be captured by adding an
extra input entry to the input. The output of the perceptron then is calculated by:

ŷ = sign
{ n+1∑

j=1

wjxj

}
= sign{w · x}, (3.12)

where this output can for example represent the probability of an input being one class out of two.

3.3.2 Deep neural network architecture

The perceptron is not able to approximate a complex function that maps an input to output, but
deep neural networks are. A deep neural network (DNN) contains 2 or more computational layers.
In a DNN, the layers between the input layer and output layer are called the hidden layers. The
architecture of a deep neural network, with 2 hidden layers, is depicted in Figure 3.

Figure 3: Example of deep neural network architecture. Image retrieved from Aggarwal (2018) (slightly adjusted).

The above-depicted example is also called a feed-forward (FF) network. More specifically, it is a
fully connected feed-forward network, because each neuron in a layer is connected to all neurons in
the next layer. The connections between neurons represent a scalar weight. The output of a hidden
layers is denoted by vector h(i) for i ∈ {1, ..., l}, where l is the number of hidden layers. Each
neuron in the hidden layers uses an activation function denoted by Φ. The most used activation
functions are the sigmoid function (σ), the hyperbolic tangent (tanh), and the rectified linear unit
(ReLu), which are depicted in Figure 4 and defined as:

σ(x) =
1

1 + exp(−x)
, (3.13)

tanh(x) =
exp(2x)− 1

exp(2x) + 1
, (3.14)

ReLu(x) = max{0, x}. (3.15)
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(a) Sigmoid (b) Tanh (c) ReLu

Figure 4: Common activation functions. Images retrieved from Aggarwal (2018).

In the previous example of the perceptron, the output layer contains one output neuron but the
output layer may contain several output neurons. The number of output nodes typically depends
on the problem. For example, if the objective is to determine a probability distribution to classify
the input in of the k classes, the output layer contains k neurons. The probability distribution is
often calculated using the softmax function:

ŷi = softmax(ŷ)i =
exp(ŷi)∑k
j=1 exp(ŷj)

∀i ∈ {1, ..., k}. (3.16)

According to this probability distribution, a decision can be made by, e.g., selecting the output
with the highest probability (greedy selection) or using ϵ-greedy selection, which selects the highest
output with probability 1−ϵ. The calculations of a neural network are often represented by matrix
and vector multiplications. Let W (1) be the weight matrix connecting the input layer to the first
hidden layer. Suppose an input vector x contains n features (the dimension of x is Rn) and the
first hidden layer contains k1 neurons. Then, W (1) ∈ Rk1×n (the matrix has size k1 × n). The
weight matrices connecting two hidden layers, W (i) for i ∈ {2, ..., l}, have dimension ki+1 × ki for
i ∈ {2, ..., l}. The weight matrix connecting the last hidden layer and output layer (W (l+1)) has
dimension ko × kl, where ko is the number of neurons in the output layer. The equations of a FF
neural network transforming the input to the output are defined as:

input to hidden layer: h1 = Φ
(
W (1)x

)
, (3.17)

hidden to hidden layer: h(i) = Φ
(
W (i)h(i−1)

)
∀i ∈ {2, ..., l}, (3.18)

hidden to output layer: ŷ = Φ
(
W (l+1)h(l)

)
, (3.19)

where the activation functions are applied element-wise. The number of neurons must be carefully
chosen, as too many neurons may result in overfitting. Overfitting means that the model performs
well on training data, but generalizes poorly. This may occur when the number of weight parame-
ters is too large compared to the training dataset, resulting in a model that ‘remembers’ the specific
training instances without recognizing the patterns in the training dataset (Aggarwal, 2018).

3.3.3 Training DNNs

The output of a DNN is a function of all weight parameters of the network. Since the output of a
DNN is used to determine the loss and update the model parameters, the influence of all parameters
on the output must be determined. Therefore, to determine the gradient, a backpropagation
algorithm is used which leverages the chain rule. The backpropagation algorithm utilizes dynamic
programming to compute the gradient and consists of two phases: the forward phase and the
backward phase. In the forward phase, the input is mapped into the output, by which the loss
function is calculated and the derivative of the loss function w.r.t. the output. In the backward
phase, the gradient of the loss function w.r.t. to each weight is determined, which is done by using
the chain rule of derivatives.
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The output of a neuron (sometimes called activation value) in the output layer is defined as:

a
(l+1)
1 = Φ

(
w

(l+1)
1,1 a

(l)
1 + w

(l+1)
1,2 a

(l)
2 + ...+ w

(l+1)
1,kl

a
(l)
kl

+ b
(l+1)
1

)
, (3.20)

where w
(l+1)
1,1 , ..., w

(l+1)
1,kl

represent the weights connecting the neurons in the preceding layer (a
(l)
1 , ...,

a
(l)
kl
) to neuron a

(l+1)
1 . Equation (3.20) helps to understand how the activation of a neuron can

be changed. First of all, the activation value can be changed by changing the bias, for which the
change is constant. Secondly, the activation value can be changed by changing the weights, for
which a change of the weight connecting to a neuron with a higher activation value has a bigger
effect. Thirdly, the activation value can be changed by changing the activation values of neurons
in the previous layer. However, the activation values cannot be changed directly, but can only be
changed by changing their weights and bias. The effect of a change of weights and bias determining
the activation value of the neuron in the previous layer on the output neuron can be calculated
with the chain rule (Sanderson, 2017).

Most often the output layer consists of multiple neurons and the goal is not to get the output
of a single output to be as close as possible to its target, but to get all outputs as close as possible
to its target. Therefore, each output neuron should be updated proportionally to the difference of
its output target. Hence, for each output neuron, the most optimal update of its weights and bias
is determined. In a fully connected network, the weights are connected to multiple outputs, and
thus cannot be updated such that it satisfies all output neurons. Therefore, the desired updates
are averaged. This process can also be done for the second to last hidden layer and all the other
hidden layers. Moving backward through the network and repeating this process is referred to as
backpropagation. Ultimately, this entire process is repeated for the entire batch (a subset of the
training dataset) before updating the model parameters. Very deep networks may experience the
vanishing gradient problem, which occurs during the backpropagation. In that case, the updates
of model parameters in earlier layers are very very small.

3.4 Attention mechanisms

An attention mechanism is a very much used concept by DL methods for solving routing problems.
Recurrent neural networks (RNNs) formed the foundation of attention mechanisms. Therefore, in
this section a brief introduction to RNNs will be given, followed by a description of several attention
mechanism architectures.

3.4.1 Recurrent neural networks

An RNN is a specialized neural network for processing sequential data (Goodfellow et al., 2016).
The output of an RNN cell is a function of the preceding outputs and is formed by using the
same network parameters in every step. Equation (3.21) is the basic equation of an RNN that is
iteratively solved to compute a sequence of output values (o1, ..., on) from sequence of input values
(x1, ..., xn). The time step index t does not necessarily indicate a real-world time step, but can
also indicate the position in the sequence.

ht = Φ(xt,ht−1) (3.21)

Figure 5 depicts the process of an RNN that for each time step maps an input sequence x to an
output sequence o. The black square in the left diagram of Figure 5 indicates a delay of a single
time step (from the state at time t to the state at time t + 1) between interactions. The right
side of Figure 5 illustrates the unfolded computational graph. The unfolded graph size depends
on the sequence length, i.e., the input and output sequence have the same length. The unfolded
computational graph can be represented by the forward propagation equations (3.22) - (3.24):
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Figure 5: RNN with connections between hidden states. Left: recurrent connections where the black square indicates
a delay of single time step (from the state at time t to the state at time t + 1) between interactions. Right:
unfolded computational graph where every node is associated with a particular time instance. Image retrieved from
Goodfellow et al. (2016).

ht = Φ(Uxt +Wht−1 + b), (3.22)

ot = V ht + c, (3.23)

ŷt = softmax(ot), (3.24)

where ht is a hidden state at time step t, U is a weight matrix connecting the input to the hid-
den states, W a weight matrix connecting the hidden states to hidden states, V a weight matrix
connecting the hidden states to the output, and b and c are the bias vectors. The weight matrices
and biases are shared by all the connections. The loss function uses ŷ to compare the normalized
probabilities over the output to the target y. The total loss is then defined by the sum of all
losses over all time steps. The run time of this type of RNN scales with the sequence length, i.e.,
the run time is O(n), since the RNN structure is sequential and no parallelization can be applied.
Since the calculated hidden states in the forward pass are needed during the backward pass, the
memory cost is O(n) also. The algorithm used for the backpropagation is called the backpropa-
gation through time (BPTT), which takes into account the sharing of parameters and temporal
length. The vanishing gradient problem arises when RNNs are used on long sequences (for which
the network is very deep), hence it is said that RNNs have a short-term memory. To tackle this
problem, the long short-term memory (LSTM) and gated recurrent unit (GRU) were created. For
details on the LSTM and GRU, see Appendix A.

There are various variants of recurrent neural networks of which two formed the basis for the
sequence to sequence task, including routing problems. These two RNNs are depicted in Figure 6.
The RNN that maps the input sequence to a fixed-length vector is illustrated by Figure 6a. The
RNN that maps a fixed-length vector to a sequence is illustrated by Figure 6b.
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(a) RNN that maps the input sequence to a fixed-size vector. (b) RNN that maps an input vector to a sequence.

Figure 6: RNN variants that formed the basis for sequence to sequence task. Images retrieved from Goodfellow
et al. (2016).

3.4.2 Encoder-decoder architecture

RNNs have the limitation that the output dimension is equivalent to the input dimension. The first
who solved this problem were Cho et al. (2014), where after Sutskever et al. (2014) developed the
model of Cho et al. (2014). These model architectures, illustrated by Figure 7, are contemporary
known as encoder-decoder or sequence-to-sequence models. The general idea is to use two LSTMs,
where the first LSTM (encoder) maps an input sequence to an output vector (similar to Figure 6a)
and the second LSTM (decoder) maps an input vector (which is the output of the first LSTM) to
an output sequence (similar to Figure 6b). The output vector of the encoder is often referred to as
the context vector. This architecture allows to map a sequence to a sequence of different lengths
and formed the foundation of many DRL approaches for solving the VRP.

Figure 7: Encoder-decoder architecture. Image retrieved from Goodfellow et al. (2016).

15



2021.MME.8591

3.4.3 Attention model

Bahdanau et al. (2014) observed that when the input dimension of the encoder is large, the output
of the encoder cannot be summarized properly in a single context vector. To overcome this problem,
Bahdanau et al. (2014) introduced an attention mechanism where the decoder can use any of the
hidden states of the encoder. The encoder maps the input sequence to a sequence of vectors
(the hidden states), after which a neural network is used to determine the most relevant hidden
states for each decoding step. This model is mathematically defined, with encoder hidden states
(e1, ..., en) and decoder hidden states (d1, ...,dm), as:

ui
j = Φ(W1ej +W2di) j ∈ (1, ..., n), (3.25)

aij = softmax(ui
j) j ∈ (1, ..., n), (3.26)

ci =

n∑
j=1

aijej , (3.27)

where ui
j scores to which extent the input around position j and the output at position i match,

a is the attention vector, and c the context vector.

3.4.4 Pointer Network

Despite that the architecture of Bahdanau et al. (2014) makes it possible to efficiently map an input
sequence to an output sequence of different lengths, the length of the output sequence is required
to be fixed a priori. The Pointer Network (PN) of Vinyals et al. (2015b) was the breakthrough
for solving combinatorial optimization problems where the size of the output is both variable and
dependent on the length of the input. In other words, the PN allows predicting a sequence of
outputs that is of equal length of the input, where the length of the input is defined during testing
(instead of that the length must be known during testing). The attention mechanism of the PN is
mathematically be expressed by:

ui
j = Φ(W1ej +W2di) j ∈ (1, ..., n), (3.28)

a = softmax(ui), (3.29)

where ui
j are the pointers to the input elements, and a is the normalized distribution of the vector

ui (with length n). Vinyals et al. (2015b) applied the PN framework to solve the TSP.

3.4.5 Transformer model

In the PN of Vinyals et al. (2015b), the main limitations are the inability to parallelize due to the
sequential computations of RNNs and the loss of information for long sequences due to long path
lengths of information. The Transformer architecture of Vaswani et al. (2017) improves on these
aspects compared to the PN. With an RNN encoder, one element of the input sequence is embedded
after the other. As explained earlier, the hidden state at the current time step has dependencies
on the previous hidden states. In a Transformer encoder, all the input elements are embedded
simultaneously. The embedding is done without RNNs and thus the positional information is lost,
which was previously captured through the sequential nature of the RNN. Therefore, the embedding
is provided with positional encoding. Instead of an attention mechanism where the decoder pays
attention to the hidden states of the encoder (as in the PN), in the Transformer model a mechanism
of self-attention is used. With self-attention, it is defined how relevant an input element is compared
to all other elements of the input sequence. The decoder in the Transformer consists of three main
components. First, a self-attention mechanism that determines the extent to which an element
is related to all other elements in the so-far produced output. Secondly, a multi-head attention
mechanism that combines the self-attention vectors of the encoder and the decoder and determines
how related each self-attention vector is to each other. Third, a feed-forward neural network that
processes the attention vectors. At each time step, the decoder outputs a probability distribution
over the inputs for the next decision. In contrast to attention mechanisms that utilize RNNs,
the Transformer architecture allows for more parallelization, which benefits the computation time.
Additionally, less information is lost, since the maximum path length of the information is reduced
from O(n) to O(1), where n is the input sequence length.
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3.5 DRL algorithms

Deep reinforcement learning combines deep learning and reinforcement learning. The most popular
DRL algorithms applied to solve routing problems are described in this section.

3.5.1 Value-based methods

Traditionally, the state-value function vπ and action-value function qπ were approximated through
continuous iteration. The true value of a state used to be determined by averaging over a lot
of collected rewards that followed a state. However, to encounter states sufficiently often, many
iterations are needed. Similarly, averaging all collected rewards for each action taken in a certain
state will converge to true action value in that state after a lot of iterations. A popular value-based
RL algorithm is the Q-learning algorithm (Watkins and Dayan, 1992), which estimates q∗(s, a) by
creating a table with Q-values for all state-action combinations. This table is iteratively updated
when the agent takes an action and receives a reward. The values in the table represent the
cumulative reward. For large problems, the table can get very large and need many iterations.
Hence, for very large state and action spaces, this type of tabular method is not very efficient. Mnih
et al. (2015) proposed the deep Q-network (DQN) to overcome this bottleneck. The DQN uses a
DNN to approximate the Q-values of state-action pairs. To find a trade-off between exploration
and exploitation, the DQN algorithm uses a ϵ-greedy strategy for selecting an action. Hence,
DQN is an off-policy algorithm. The agent’s experiences are stored in an experience replay buffer,
in which the experience et = (St, At, RT , St+1) for each time step is stored until the buffer is
full. Thereafter, the oldest experience is deleted to store new experiences. The model parameters
(which are initialized randomly) are updated by using a random mini-batch from the experience
replay buffer is sampled. This is done because of three reasons. First, learning from correlated
consecutive experiences is not efficient. Second, this increases the data efficiency, since experiences
are used multiple times to update the weights. Third, it avoids parameter oscillation or divergence
by averaging over many experiences. Additionally, a parallel target DNN is used to evaluate the Q-
value output by the DNN with parameters θ. The parameters of the target DNN θ′ only updated
after several iterations, while θ is updated each iteration. The DNNs are trained by minimizing
the mean squared error between the current and target Q-value using gradient descent.

The target Q-value in DQN is determined using the DNN with parameters θ′ that a greedy
action selection and action evaluation. The action selection and evaluation for the target Q-value
are both based on the DNN with parameters θ′. This could overestimate the Q-value in the learning
process. Therefore, Van Hasselt et al. (2016) proposed the double-DQN (DDQN) algorithm, where
the action selection and evaluation are decoupled. The target Q-value in DQN and DDQN are
calculated by, respectively:

yDQN = r + γmax
a′∈A

Q(s′, a′;θ′), (3.30)

yDDQN = r + γQ
(
s′, argmax

a′∈A
Q(s′, a′;θ);θ′

)
. (3.31)

3.5.2 Policy-based methods

Contrasting to value-based methods, policy-based methods learn a parameterized policy that does
not use a value function to select actions. The parameterized policy πθ(a|s) ∈ (0, 1) indicates the
probability of selecting action a given in state s. REINFORCE is policy gradient (PG) method,
introduced by Williams (1992), which is a Monte Carlo method since it relies on the full trajectory.
The policy parameters using REINFORCE are updated by:

θt+1 = θt + αGt
∇θtπθt(At|St)

πθt
(At|St)

= θt + αGt∇θt
lnπθt

(At|St). (3.32)

This update equation is very intuitively as it increases the current parameters in the direction that
most increases the probability of taking action At again on future visits to state St proportional
to the return, i.e., it updates the parameter vector in the direction corresponding to the actions

17



2021.MME.8591

that yield the highest total expected reward. Secondly, the parameters are updated inversely
proportional to the probability of selecting an action. This causes the agent to keep exploring for
other high-yielding actions, instead of favoring frequently selected actions (which then ultimately
might not even yield the highest reward anymore).

To reduce the variance of the gradient, one can subtract a baseline from the return in REIN-
FORCE. The policy parameters using REINFORCE with baseline are updated by:

θt+1 = θt + α
(
Gt − b(St)

)
∇θt

lnπθt
(At|St). (3.33)

For a detailed overview of many policy gradient methods, the reader is referred to Weng (2018).

3.5.3 Actor-critic methods

Konda and Tsitsiklis (2000) proposed the actor-critic (AC) methods, which combine the benefits
of both value-based and policy-based methods. The actor refers to the learned policy and the
critic refers to the learned value function. Hence, AC methods consist of two models: the critic
that updates the value function parameters and the actor that updates policy parameters in the
direction implied by the critic.

In the advantage actor-critic (A2C) method, the critic learns the advantage value, which indi-
cates how much better a specific action is than the average of all actions from that state.

Mnih et al. (2016) proposed the asynchronous advantage actor-critic (A3C) method, in which
the multiple agents are trained in parallel on multiple instances of the environment. Therefore,
the agents are likely to explore different parts of the environment and experiences are less likely
to be correlated. Therefore, it is not needed to keep an experience replay buffer and sample from
it, which reduces the training time.

For a detailed overview of more actor-critic algorithms, the reader is referred to Weng (2018).

4 Solving routing problems using machine learning

In this section, the reviewed literature on machine and deep learning models for vehicle routing
problems is described. First, categories to classify the algorithmic structures are introduced. The
second subsection describes the literature on static routing problems. The third and fourth subsec-
tion describe the literature on dynamic routing problems. Finally, a concluding subsection provides
several overviews of the reviewed literature.

4.1 Categorization of algorithmic structures

Bengio et al. (2018) surveyed the use of machine learning to solve combinatorial optimization prob-
lems and categorized the learning methods and algorithmic structure. They differentiated between
three types of algorithmic structures (independent from the learning methods (un)supervised and
reinforcement learning). It is mentioned that the distinctions made are sufficiently general such
that the contributions of machine learning to combinatorial optimization can overlap. The three
algorithmic structures are categorized as:

• end-to-end learning (Figure 8a):
machine learning is utilized to output solutions directly from the input. In some end-to-
end learning-based methods, the solution is generated with a constructive approach, where
the solution is constructed from scratch by sequentially connecting the last visited node to
another node in the next step.

• learning to configure algorithms (Figure 8b):
combinatorial optimization algorithms are provided with more information due to machine
learning methods.

• machine learning alongside optimization algorithms (Figure 8c):
machine learning methods guide combinatorial optimization algorithms repeatedly through-
out the solution generation. Generally, these types of algorithms generate the solution by
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improving an initial solution iteratively, where the improvement operators are local search
heuristics guided by ML. This machine learning structure is also called ‘learning to search’.

(a) End-to-end learning (E2E) illustrated.

(b) Learning to configure (L2C) algorithms illustrated.

(c) Machine learning alongside optimiza-
tion illustrated, also called learning to
search (L2S).

Figure 8: Three types of machine learning structures. Images retrieved from Bengio et al. (2018).

The reviewed literature on vehicle routing problems, covered in the following subsections, is first
categorized as static or dynamic. The subsections for static routing problems are categorized by
the algorithmic structures with subparagraphs for the routing variants. It must be noted that some
literature studied multiple routing variants, but each work always has one routing variant that is
most focused on. Additional studied variants of the routing problem by the authors are always
mentioned. The dynamic routing problem is split into two stages, the dispatching and routing
stage according to Zong et al. (2021). The dispatching stage involves the assignment of customers
to vehicles (order matching) and the strategic repositioning of vehicles (fleet management). There-
after, the best route for each vehicle to serve the assigned customers is determined in the routing
stage. Despite these two stages, they are not rigidly separated. However, this categorization helps
to identify the most important challenges in each stage. The dispatching stage is characterized
by a high supply-demand ratio, meaning that the main objective is to optimize the assignment of
demand to supply. Generally, the optimal in-loop routing is computationally cheap to determine,
since the service loop of a vehicle contains few demand requests, such as in taxi or carpooling ser-
vices. The routing stage is characterized by a low supply-demand ratio, meaning that each vehicle
must serve many demand requests. Hence, the in-loop routing is computationally more expensive
due to the NP-hard nature of VRPs. Unless otherwise stated, in this section ‘outperformed’ or
‘provided better results’ refers to outperforming in terms of the objective value.

4.2 Static routing

Several machine learning approaches for static routing variants are presented in this section. The
literature for single-vehicle routing problems is discussed first, followed by the literature for multi-
vehicle routing problems.

4.2.1 End-to-end learning (constructive)

The end-to-end learning approaches are categorized into single-vehicle and multi-vehicle routing
problems. The two different approaches have in common that the problem is formulated as an
MDP, that the solution is generated constructively, and that the vehicles are considered as agents.
Starting from scratch, the routes are constructed by sequentially selecting the next node (customer
or depot) to visit. In the machine learning approaches that solve single-vehicle problems end-to-
end, e.g., (Hottung et al., 2021; Kool et al., 2019; Kwon et al., 2020; Li et al., 2021c; Nazari
et al., 2018; Peng et al., 2019), only one vehicle is active at any time. The vehicle visits the depot
multiple times to construct multiple routes, where the number of routes is not defined a priori. In
the machine learning approaches that solve multi-vehicle problems end-to-end, e.g., (Falkner and
Schmidt-Thieme, 2020; Li et al., 2021b; Zhang et al., 2020a), there are multiple vehicles active at
the same time.
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4.2.1.1 Single-vehicle routing problem

In this paragraph, several machine learning approaches to solve the static single-vehicle routing
problem will be presented. From 2018, the research literature on machine learning for the VRP
has rapidly expanded. Nazari et al. (2018) were the first to apply an attention mechanism to solve
(among other COPs) the VRP. Although they proposed a model that also suits dynamic VRPs,
it will still be presented in this section for two reasons. First, their main focus was on the static
VRP. Secondly, it forms the basis for many other machine learning approaches to static VRPs.
Hence, it is useful to introduce the model of Nazari et al. (2018) first.

All models in this section have several things in common. First of all, all models (except
Nazari et al. (2018) consider static single-vehicle routing problems. Secondly, most approaches
use concepts or ideas from others, i.e., they adapt or extend models from others in the research
community. Therefore, it is convenient to present them in the same section. Thirdly, the same
data distribution for instances is often used to evaluate the models. This makes it possible to easily
compare model performances in terms of route length. Comparing the run times for training and
testing the models is more difficult since computer specifications and the degree of parallelization
heavily affect the run times. Lastly, the main focus of Nazari et al. (2018), Kool et al. (2019), Peng
et al. (2019), Kwon et al. (2020) and Hottung et al. (2021) is on the CVRP.

CVRP
The first who applied an attention mechanism to solve the VRP were Nazari et al. (2018). They
proposed models to solve the TSP, the CVRP, the CVRP with split deliveries (CVRPSD), and
the dynamic and stochastic customer CVRP (DSCCVRP). They assumed a setting with only one
vehicle and one depot. Customer and depot locations were uniformly generated in a unit square
[0, 1]×[0, 1] with discrete customer demands randomly sampled from U(1, 9) (uniformly distributed
with lower and upper bounds 1 and 9, respectively). Their objective was to minimize the total
tour length while ensuring that all demand is satisfied. Their study is a generalization of the
work of Bello et al. (2016), who used the PN with an actor-critic algorithm to solve the TSP.
In contrast to Vinyals et al. (2015b), Bello et al. (2016) used reinforcement learning instead of
supervised learning to solve the TSP. In the TSP, a customer should only be visited once. Bello
et al. (2016) addressed this by introducing additional computation steps (called glimpses proposed
by Vinyals et al. (2015a)) to mask nodes already visited before each decoder step. The encoder in
Nazari et al. (2018) calculates new attention vectors to determine the relevance of each node given
a partially constructed tour at each time step. Their decoder determines a probability distribution
over all possible nodes (masking some infeasible nodes). For the CVRP, a time step corresponds to
a vehicle arrival at a node. For the DSCCVRP, a time step corresponds to either a new incoming
customer or a vehicle arrival at a node. RNNs are especially useful for tasks where the input
order is essential, e.g with text translation tasks. For the VRP, any permutation of the input
nodes is identical to the original input. Therefore, Nazari et al. (2018) omitted the RNN encoder
and created the node embeddings simultaneously, which allows for parallelization. The decoder
outputs a probability distribution for the next node to visit. They used two different decoders, a
greedy decoder (this model is named RL-greedy) and a beam search decoder (RL-BS(·), where (·)
indicates the beam width). Nazari et al. (2018) trained their models using on-policy actor-critic RL
and A3C RL for the CVRP and DSCCVRP, respectively. After training the model for 13.5 hours,
their model outperformed Google’s OR-Tools in more than 60% and several heuristic algorithms in
more than 99% for n = 50 and 100 (number of customers) in terms of total route length. Solving
a single test instance required less than 0.5s.

Kool et al. (2019) use their model to solve several combinatorial optimization problems: TSP,
CVRP, CVRPSD, orienting problem (OP), prize collecting TSP (PCTSP), and stochastic prize
collecting TSP (SPCTSP). Their encoder architecture is inspired by the Transformer model but
without the positional encoding such that the node embeddings are invariant to the input order.
In contrast to the Transformer architecture, Kool et al. (2019) used different weight parameters
for each layer (similar to the GAT model of Veličković et al. (2018)). Their decoder sequentially
produces a probability distribution over feasible nodes. During training, a greedy decoder is used
and the policy is trained using REINFORCE with baseline. The baseline is the total route length
of a greedy roll-out of the best policy so far (which parameters may be updated after every epoch).
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During testing, Kool et al. (2019) used a greedy decoder (AM-greedy) and a sampling decoder
(AM-sampling). The sampling decoder samples 1280 solutions of which the best result is reported.
Results based on 10000 test instances are compared to the LKH3 algorithm (Helsgaun, 2017), which
is mentioned as the state-of-the-art solver, and Nazari et al. (2018) (which report the average tour
length over 1000 test instances). For all tested CVRP sizes, LKH3 provided shorter route lengths
than AM-greedy or AM-sampling but takes significantly more time to solve the test instances.
AM-greedy and AM-sampling outperformed Nazari et al. (2018). Kool et al. (2019) noticed that
their model constructs routes in which the order of stops in individual routes is suboptimal. They
suggested that additional optimization (e.g., beam search, local search, and improving individual
routes with a TSP solver) will improve the solution.

The AM model of Kool et al. (2019) used a static encoder-decoder architecture, i.e., the node
embeddings (attention vectors) are fixed over time. The static embeddings are calculated once per
instance and allow multiple solutions to be sampled per instance. Similar to Nazari et al. (2018),
Peng et al. (2019) used a dynamic encoder-decoder architecture, where the attention vectors are
updated during the solution construction. Since the model is not tested on a dynamic VRP
variant, it is presented in this section for static VRPs. However, this model may be applied to
dynamic VRPs. In the AM model (Kool et al., 2019), the attention vector of a node may assign
high attention to infeasible nodes, which are later masked by the decoder. Since the attention
weights are processed using softmax, this downgrades the attention to feasible nodes. Therefore,
Peng et al. (2019) adjusted the AM such that only feasible nodes are considered by the encoder.
Their model (AM-D) updates the attention vectors every time the vehicle returns to the depot.
The policies are trained using REINFORCE with a greedy roll-out baseline. In addition to just
a greedy decoder model, they also applied a 2-opt local search to improve the solution. Their
results (averaged over 1000 test instances) indicated an improvement over AM-greedy, but not
over AM-sampling (which uses a more extensive search strategy).

All the aforementioned constructive approaches use search strategies like sampling and beam
search, which offer limited search guidance. Constructive approaches can also utilize an active
search procedure, proposed by Bello et al. (2016), which adjusts the parameters of a trained model
to a single instance during test time. Hottung et al. (2021) proposed efficient active search (EAS)
that adjusts a subset of the model parameters and solved the TSP, CVRP, and the job shop
scheduling problem (JSSP). Three different EAS implementations are proposed that adapt the
model to a single instance by adjusting: 1) the (normally static) encoder embeddings, (2) the
weights of decoder added instance-specific residual layers, and (3) the lookup table parameters
that have a direct impact on the probability distribution output by model. EAS is not a complete
model on its own, but can act as an extension to another model. Hottung et al. (2021) implement
their model for the POMO model of Kwon et al. (2020). The model of Kwon et al. (2020), called
policy optimization with multiple optima (POMO), is a constructive end-to-end approach and very
similar to the AM model of Kool et al. (2019). The first main difference is that POMO explores
solutions for an instance by selecting each node as a starting node (first node to visit after the
depot), resulting in n different solutions. Secondly, in POMO the baseline used by REINFORCE is
the average cost of a greedy roll-out of all n solutions per instance. Hottung et al. (2021) evaluate
the performance of three POMO model variations: POMO-greedy (which uses a greedy action
selection), POMO-sampling (which randomly samples 200 ·8 ·n solutions and selects the best one),
and POMO-AS (which uses active search of Bello et al. (2016) during testing). The first EAS
model of Hottung et al. (2021), called EAS-Emb, updates instance-specific encoder embedding
parameters. The second proposed strategy, called EAS-Lay, updates an instance-specific added
layer to the trained model during the search. EAS-Emb and EAS-lay are on-policy DRL (policy-
based) methods that use a loss function with an RL component and an imitation learning (IL)
component. The third proposed strategy, called EAS-Tab, uses a lookup table to update the policy
and is an on-policy Q-learning (value-based) method. The model is tested on the data distribution
of Nazari et al. (2018) and the more challenging data distribution of Uchoa et al. (2017).

PDP
Li et al. (2021c) proposed a DRL approach for the pickup and delivery problem (PDP). The
encoder-decoder architecture is similar to Kool et al. (2019), but with six additional heterogeneous
attention layers. These layers learn the pairing and precedence relationship for pickup and delivery
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nodes. A masking scheme is used to guarantee a feasible solution. The problem is formulated as
an MDP, with the (single) vehicle as an agent which selects the next node to visit. The objective
was to minimize the travel time. The policy is trained with an actor-critic method. The model
is compared to an exact solver, heuristics, and machine learning approaches. Results indicated
that their model (for small problem sizes) is competitive with the exact solver, but much with
much faster computation time. For somewhat larger problem sizes, their model provided the best
performance for their objective.

4.2.1.2 Multi-vehicle routing problem

In end-to-end solved multi-vehicle routing problems, multiple vehicles are active at the same time,
i.e., multiple routes are constructed simultaneously. The multi-vehicle routing problem is solved
using ML by, e.g., Falkner and Schmidt-Thieme (2020), Li et al. (2021b), and Zhang et al. (2020a).
Li et al. (2021b) and Zhang et al. (2020a) formulated the problem as single- and multi-agent MDP,
respectively. Li et al. (2021b) studied the multi-CVRP with heterogeneous vehicles. Falkner and
Schmidt-Thieme (2020) and Zhang et al. (2020a) studied the multi-CVRP with time windows.

CVRP
Li et al. (2021b) proposed a DRL constructive approach for the multi-CVRP with heterogeneous
vehicles (different capacities and speeds). They considered both min-max and min-sum objectives.
The former aims to minimize the longest travel time and the latter aims the minimize the total
travel time. They used a Transformer encoder-decoder architecture similar to Kool et al. (2019),
in which the encoder embeddings are calculated only once at t = 0. There is one agent (the
fleet manager) that, at each time step, selects a vehicle and the next destination for that vehicle.
Separate decoders select the vehicle and the next node to visit. The objective functions are
minimized using REINFORCE with baseline, where the baseline is a greedy roll-out of the current
best policy. The models are tested on an adapted data distribution of Nazari et al. (2018) and Uchoa
et al. (2017) and compared to several heuristic and DRL methods. Their model provided superior
results to most heuristics and DRL approaches and is only outperformed by a few percent by the
state-of-the-art heuristic of Christiaens and Vanden Berghe (2020), which required significantly
more time to solve the instances (±100×).

CVRPTW
Falkner and Schmidt-Thieme (2020) proposed a DRL approach for the multi-CVRP with time
windows. Their joint attention model for parallel route construction (JAMPR) is an extension of
Kool et al. (2019). Besides encoding the nodes, two additional encoders are used to embed the
information of current routes and vehicles at each time step. The decoder selects which node to
add to which route. A greedy and sampling approach is used during testing. They considered soft
and hard time windows, where a violation of soft time windows induces a penalty. Their objective
was to minimize the total route length plus penalties. The model parameters are optimized using
REINFORCE with baseline, where the cost of a greedy roll-out policy is used as the baseline. They
tested JAMPR for the CVRP on the data distribution of Nazari et al. (2018) and compared results
to several reinforcement learning approaches. JAMPR performed slightly worse than AM, but the
results indicated that JAMPR performs relatively well for the CVRP although intended for the
CVRPTW. JAMPR with soft and hard time windows is evaluated on a dataset of Solomon (1987)
and provided in most cases better results than their used benchmarks.

Zhang et al. (2020a) proposed a DRL approach for the MCVRPTW (with soft time windows).
Their multi-agent attention model (MAAM) is an end-to-end constructive approach. Contrasting
to Falkner and Schmidt-Thieme (2020), each vehicle is considered as an agent, which selects the
next node to visit. The encoder is inspired by Kool et al. (2019) and is similar for all agents. The
homogeneous agents perceive each other’s state and then select actions sequentially within the
same time step. During the training, they used a sampling decoding process, while during testing
they used a greedy decoder. Their objective was to minimize the total travel costs, which is defined
as a combination of total route length and a penalty term for time window violation. The model
parameters are optimized using REINFORCE with baseline, where the cost of a greedy roll-out
policy is used as baseline (similar to Kool et al. (2019)). MAAN is tested on instances with 20,
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50, 100, and 150 customers and compared to two heuristic methods and Google’s OR-tools. For
most scenarios, MAAN provided the shortest route length in significantly less run time compared
to the benchmarks.

4.2.2 Learning to configure

The aforementioned machine learning approaches for the single-vehicle routing problem all used
reinforcement learning. Contrasting to this, Kool et al. (2021) used supervised learning to guide
a dynamic programming (DP) algorithm. Although, the solution is constructed by sequentially
adding a node to the partial solution, the model of Kool et al. (2021) is considered as learning
to configure. This is because the ML algorithm is used once and the solution is constructed by a
DP algorithm thereafter. According to the categorization of Bengio et al. (2018), this structure is
learning to configure (Figure 8b).

CVRP
Kool et al. (2021) proposed the Deep Policy Dynamic Programming (DPDP) model, which com-
bines a dynamic programming (DP) algorithm with supervised learning, to solve the TSP and the
single-vehicle routing problem. DP is known as a solution method for the VRP, but scales badly
with the number of customers. Therefore, the problem is first preprocessed by a graph convolution
network into a heatmap of promising edges, which is proposed by Joshi et al. (2019). Thereafter,
a solution is constructed by a restrictive dynamic programming algorithm (Gromicho et al., 2012)
using beam search. The heatmap indicates the edges that have a high probability to be part of
the best solution and reduces the number of possible routes by removing edges below a certain
threshold. The target for each training instance is determined with the LKH3 solver. Models with
different beam search sizes are used (10k, 100k, and 1M) and tested on the data distribution of
Nazari et al. (2018) and the more challenging data distribution of Uchoa et al. (2017). DPDP-1M
outperformed LKH3 in terms of total route length but required more time to solve a single instance
(± 18s vs 5s).

4.2.3 Learning to search (improvement)

Whereas constructive approaches start from scratch, learning to search ML approaches to solve
VRPs iteratively improve an initial solution. This is sometimes referred to as learning a heuristic
since local search heuristics are guided by ML algorithms to improve the current solution. Gen-
erally, it is more challenging for these methods to solve richer VRPs (VRPs with constraints),
since modifying solutions while maintaining feasibility is harder for these methods. This may be
the reason why recent learning to search approaches to solve VRPs, e.g., Chen and Tian (2019);
Hottung and Tierney (2020); Lu et al. (2020); Sultana et al. (2021), all studied the CVRP.

CVRP
The NeuRewriter model, proposed by Chen and Tian (2019), learns a policy to select heuristics and
rewrite local parts of the current solution and applied it to solve expression simplification tasks,
the JSSP, and the CVRP. The initial solution is constructed in the following way: starting at the
depot, the vehicle visits the nearest node which either is an unrouted node whose demand can be
completely satisfied, or is the depot node. This procedure is repeated until all demands are satisfied.
The initial solution is incrementally improved (until convergence) by applying the 2-opt heuristic
(an interroute method, where every node can swap with another node in the route). The model
consists of a region-picking and rule-picking policy. The former is learned by using a parameterized
action-value function by fitting it to the return sampled from the current policies. The latter is
trained using the A2C algorithm with the learned action-value function as a critic. Results of the
NeuRewriter model are compared to Nazari et al. (2018), Kool et al. (2019), Google’s OR-tools,
and several classic heuristics studied by Nazari et al. (2018). NeuRewriter provided for all problem
sizes the shortest average tour length compared to the other machine learning approaches, but is
not better than the LKH3 method.

Wu et al. (2020) extends the model of Chen and Tian (2019) by integrating the region-picking
and action-picking policy into one policy. In this single-agent MDP, the action is to select a pair

23



2021.MME.8591

of nodes to swap. They used an actor-critic method, where the actor is a policy trained with an
attention mechanism (similar to the Transformer) and the critic estimates the return of each state.
They tested the model (called LIH) for the TSP and CVRP, where the CVRP model is tested
on data distributions of Nazari et al. (2018) and Uchoa et al. (2017). Wu et al. (2020) compared
their model with T = 1000, 3000, and 5000 iterations against LKH3, Google’s OR-Tools, Chen
and Tian (2019) and Kool et al. (2021), where the latter three were outperformed by LIH.

The results of the Chen and Tian (2019) and Wu et al. (2020) are very dependent on the initial
solution as nodes are only swapped interroute. Therefore, Hottung and Tierney (2020) proposed
to use destroy operators to destroy the solution, which is then repaired by repair operators. The
model of Hottung and Tierney (2020) uses a large neighborhood search (LNS, see section 2.2.3)
metaheuristic that guides the search and learns heuristics to repair incomplete solutions. Their
model is called the neural large neighborhood search (NLNS) and iteratively tries to improve the
initial solution by applying destroy and repair operations. An important feature of NLNS is that
the repair operation complexity is mostly independent of the problem size, allowing the NLNS
to efficiently deal with larger problem sizes. This is because only the relaxed nodes need to be
repaired. Similar to the ALNS (Ropke and Pisinger, 2006), the NLNS model uses several destroy
and repair operators. The initial solution is created using a greedy procedure, which adds the closest
feasible node to the vehicle route. In case the demand of the closest node cannot be completely
satisfied, the vehicle returns to the depot and a new route is started. This procedure is repeated
until all demand is satisfied. A destroy operator determines which and how many nodes to relax
(remove) from the current solution. Two destroy operator types are used: point-based destroy
(which relaxes the closest nodes to a random point from all tours) and tour-based destroy (which
relaxes the closest used edges to a random point). Both types of destroy operators can be set to
different degrees of construction, indicating the percentage of nodes to remove. Whereas the destroy
operators are random, for each destroy operator a repair operator is parameterized through a neural
network. The repair operator sequentially repairs a destroyed solution by connecting, at each time
step, a randomly selected incomplete tour (which can contain one or multiple nodes) endpoint to
another node (depot or other incomplete tour endpoints). The repair operator uses an attention
mechanism (similar to Nazari et al. (2018), but without the RNN decoder) to determine the
probability distribution over the possible nodes to be connected. REINFORCE with baseline is used
to update the model parameters. Two types of models with different search procedures are used:
batch search (solves several instances in parallel) and single instance search (solves one instance
by simultaneously applying destroy and repair operations to several solutions of the instance).
Hottung and Tierney (2020) applied their model to solve the CVRP and CVRPSD. Results of the
NLNS using batch search (denoted as NLNS-batch) are obtained using 10000 test instances and
compared to Nazari et al. (2018) and Kool et al. (2019), which were both outperformed. Results
for the CVRP of the NLNS using single instance search (denoted as NLNS-SIS) are compared to
UHGS (Vidal et al., 2014), LKH3, and LNS. These methods are evaluated on the instances of
Uchoa et al. (2017). The datasets are organized into 17 groups of 20 instances (with the same
distribution per group) with the number of customers ranging from 100 to 297. For all instance
groups, UHGS provided the best performance, with gaps of 0.04% to 3.10% to NLNS-SIS and
with gaps of 0.08% to 3.38% LKH3. NLNS-SIS outperforms LNS on all instance groups by 0.47%
to 10.93%. Performance of NLNS-SIS and LKH3 is comparable, with NLNS-SIS outperforming
LKH3 on 11 of 17 instance groups.

Compared to the improvement approaches of Chen and Tian (2019) and Hottung and Tier-
ney (2020), a much larger solution space is explored by Lu et al. (2020) resulting in better solution
qualities for the CVRP. Their model is called learn to improve (denoted by L2I) consists of im-
provement and perturbation operators. Starting from an initial random solution, the reinforcement
learned improvement operator improves the solution. If for six improvement steps the improve-
ment controller cannot realize a cost reduction (i.e., a local optimum is reached), the solution is
perturbed (randomly selected) and a sequence of improvement operators is applied again. At each
iteration, the improvement controller tries to improve the solution (initial solution or perturbed
solution) by applying one of several intraroute and interroute improvement operators. The im-
provement controller outputs a probability distribution over all the actions given a certain state
(containing features from the problem instance, the current solution, and the history), calculated
using the Transformer architecture. The actions are selected using ϵ-greedy, where with a probabil-
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ity of 0.05 a random action is selected. An improvement iteration consists of a sequence of actions
and is restarted 40000 times. Six different policies are used, where the final solution is chosen as
the best solution out of all discovered solutions. The policies are trained using REINFORCE with
baseline. Lu et al. (2020) compared their model to Google’s OR-Tools, LKH3, Nazari et al. (2018),
Kool et al. (2019), and Chen and Tian (2019). For all problem sizes, L2I provided the shortest
tour length compared to other methods and is the first to outperform LKH3 (averaged over 2000
instances) on the data distribution of Nazari et al. (2018).

The learning to guide local search (L2GLS) model of Sultana et al. (2021) is very similar to
L2I (Lu et al., 2020), but instead of a set of perturbation operators uses penalty terms to escape
local optima. L2GLS is tested for the TSP and CVRP up to 1000 nodes. L2GLS improves an
initial random constructed solution by applying reinforcement learned improvement operators.
The policy defines a probability distribution over actions given a certain state, where actions are
selected according to ϵ-greedy (with ϵ = 0.05). Each action consists of selecting a local search
heuristic and parameters of the LSH. The parameters of an LSH operator are the nodes or edges
to be used by the LSH operator. The state is defined by problem-specific (node coordinates
and demand) and solution-specific features (neighboring nodes and their distances, recently taken
actions and their effects, and remaining vehicle capacity in the route of a customer). These features
are embedded and processed by an attention model (Transformer architecture), which produces
the action probabilities. After six non-improving applied actions, a penalty term to the objective
function is applied to escape the local optimum. This penalty term penalizes high-cost solution
features, which are the high distances between consecutive nodes in a tour, and encourages the
agent to improve these. After finding 40000 local optima, the best-found solution is selected. The
policy is trained using REINFORCE with baseline. Results are obtained by averaging over 1000 test
instances and are compared to (among others) LKH3, Nazari et al. (2018), Kool et al. (2019), Kwon
et al. (2020), Chen and Tian (2019), and Lu et al. (2020). L2GLS outperformed all benchmark
models and achieved state-of-the-art performance for the CVRP with data distributions of Nazari
et al. (2018).

4.3 Dynamic dispatching

Urban environments often have a public transportation network that is focused on mass transporta-
tion. Public transportation services often are not able to bring people to their final destination,
which is known as the ‘last-mile problem’. Taxis can overcome this problem and traditionally
drive around to find customers, i.e., they are not coordinated. Mobility-on-demand (MoD) trans-
portation services, such as Uber, Lyft, and DiDi, offer huge potential to increase transportation
efficiency by utilizing a centralized decision-making platform.

In this section, recent literature for three subtopics of MoD will be reviewed, with a focus on
model-free reinforcement learning. First, solution methods for the order matching problem, where
supply must be assigned to demand. Second, solution methods to increase transportation efficiency
by repositioning vehicles (fleet management). Lastly, solution methods that integrate the order
matching stage and fleet management.

4.3.1 Order matching

Order matching is the process of assigning demand to supply. In this section, two order matching
for two MoD variants, where on-demand customers (orders) need to be assigned (matched) to
vehicles. In on-demand ride-hailing problems, vehicles can only serve one customer at the same
time. However, a group of people can be considered as one customer, as long as they have the
same pickup and destination location. So more specifically, in on-demand ride-hailing problems,
the vehicle cannot be matched with additional customers before it has completed an order (reached
the destination location). The term ‘on-demand’ refers to dynamic incoming orders over time and is
dropped in the remainder of this section since this entire section is about dynamic order matching.
Contrasting to ride-hailing problems, in ride-sharing problems the vehicles may serve multiple
customers (with different pickup and/or destination locations) simultaneously. Another term for
ride-sharing is carpooling. In ride-sharing problems, it needs to be determined how many and
which customers to serve simultaneously. Similar to ride-hailing problems, ride-sharing problems
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can be considered as order matching problems. The terms ‘ride-hailing’ and ‘ride-sharing’ are used
interchangeably in the literature. In this report, ride-hailing and ride-sharing are solely considered
as the above-described definitions.

Order matching for ride-hailing problems can be solved by the traditional Khun-Munkres (KM)
bipartite matching algorithm (Munkres, 1957), but is computationally very costly for online prob-
lems and large problems. A greedy assignment method of the nearest vehicle, such as in Liao (2003),
is computationally less costly, but is myopic (does not consider long-time rewards). Predicting de-
mand based on historical data, such as in Sungur et al. (2010) Moreira-Matias et al. (2013), Tong
et al. (2017), and Ke et al. (2017), improves over greedy assignment, but remains challenging in
continuously updating environments due to the complex matching problem.

Order matching for ride-sharing problems can be solved by constrained programming, e.g., Ma
et al. (2014) and Alonso-Mora et al. (2017), or by utilizing travel time estimation, e.g., Zhan et
al. (2013), however, these methods do not consider the impact of the matching on future rewards.
Other works used ADP which are model-based RL methods, Ulmer (2017) provides an overview of
ADP solution methods or dynamic routing problems. Shah et al. (2020) indicated the limitations
of traditional ADP and proposed an NN-based ADP algorithm, which significantly outperformed
Alonso-Mora et al. (2017) for real-world ride-sharing experiments.

Intuitively, the order matching process can be formulated as an MPD, for which DRL methods
recently have been leveraged. The advantage of DRL approaches is that they can learn the under-
lying probability distribution of the occurrence of dynamic events without explicitly specifying it.
Additionally, DRL makes it possible to learn the long-term influence of actions by considering both
spatial and temporal dynamics. The order matching problem is generally solved by accumulating
the incoming orders and available vehicles for a fixed time window and matching them at the end
of the time window.

4.3.1.1 Ride-hailing

There seems to be no consensus in the reviewed literature about single-agent or multi-agent rein-
forcement learning (MARL). Even if each vehicle is treated as an agent, some works, e.g., Wang
et al. (2018) and Li et al. (2019), considered this as a single-agent setting if the agents are trained
homogeneously. Other works, e.g., Xu et al. (2018) and Shi et al. (2019) considered homoge-
neous agents as a multi-agent setting. ‘Homogeneous’ refers to that the agents’ state space, action
space, and reward function are the same. The advantage of homogeneous MARL compared to
heterogeneous MARL is that the action-value function can be trained for one agent and applied
to all agents. In this report, the approach is considered to be multi-agent if there are multiple
agents, regardless of whether they are homogeneous. In heterogeneous MARL, there are multiple
agents which do not share the learned action-value function. The advantage of MARL compared
to single-agent RL is that the state space can be reduced significantly, but comes at the cost of
less coordination.

Homogeneous multi-agent methods
Works that used MARL with homogeneous agents are approaches are, e.g., Xu et al. (2018), Wang
et al. (2018), Tang et al. (2019), and Shi et al. (2019).

Xu et al. (2018) proposed an ML approach for a ride-hailing platform with the objective to
optimize the accumulated driver income (ADI). They define the matching process as an MDP,
where the reward is based on immediate and future trip prices. In the proposed centralized multi-
agent approach, each vehicle is considered an agent with a homogeneous state space, action space,
and value function. The decision-making process for all agents is done in a centralized way. To
capture the spatio-temporal patterns of supply and demand, an on-policy reinforcement learning
algorithm determines the values for each spatio-temporal state. At each time step, the action for
each vehicle is either to serve a customer or to stay idle (stay at location). The value (expected
revenue of the vehicle) of being in a certain state, is used by an advantage function that calculates
the expected gain of serving a specific order over the average value of that state. The advantage
function is used by a KM algorithm to solve the matching process. The objective is to find the
best actions for vehicles to maximize the platforms’ profit, which corresponds to the aggregate
profit of all vehicles. Therefore, the agents share the same policy that maximizes the aggregate
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action-value function. The policy is evaluated by using Q-learning with dynamic programming.
The proposed method is evaluated on two simulator setups and a real-world environment, which
showed promising results. This resulted in a real-world deployment of the method in DiDi Chuxing.

Wang et al. (2018) identified three main limitations of the approach of Xu et al. (2018). First,
tabular methods (in general) do not generalize well beyond historical data, i.e., the agent has
difficulties responding to real-time information. Second, each city requires its own model, despite
that cities may share common properties. Third, the on-policy method requires a lot of evaluation-
improvement iterations and is computationally very expensive. To overcome these limitations,
Wang et al. (2018) proposed an off-policy deep reinforcement learning approach using DDQN (Van
Hasselt et al., 2016) for transfer learning (Pan and Yang, 2009). Instead of sampling all actions,
an action search strategy is used by the DDQN. The KM algorithm is used to solve the matching,
where the value function is used to determine the edge weights of the bipartite graphs. Results
indicated that the transfer learning model outperforms some benchmark models.

Tang et al. (2019) extend the approach of Xu et al. (2018), but formulate the order matching
as a semi-MDP since the passenger assignments affect the state transitions over multiple time
steps. They used memory-based neural networks for better feature representations and adapt the
transfer learning approach of Wang et al. (2018). Besides long-term aggregate driver income, they
also optimized for experiences from both sides (driver and customer). The matching process is
solved by the KM algorithm, where the graph edges also are affected by a user experience term.
However, this user experience term is not learned and the agents share the same value function.
Hence, their approach is considered a homogeneous MARL method. The policy is evaluated
using DDQN. Results on simulations indicated similar average performance but more consistent
compared to Xu et al. (2018) and Wang et al. (2018).

If the ride-hailing service operates a fleet of electric vehicles (EV), the greenhouse gas emis-
sion can be reduced compared to gasoline vehicles. The challenge of EVs compared to gasoline
vehicles is the requirement to relatively often recharge the battery. Shi et al. (2019) proposed an
off-policy DRL algorithm for a fleet of EVs, with the objective to minimize the customer waiting
time, electricity consumption, and operational costs. During the training phase, they used TD
with an ϵ-greedy policy, whereas in the testing phase a greedy policy is used. Their method uses a
centralized decision-making component, which coordinates the entire fleet and avoids conflicts, and
a decentralized learning component through which homogeneous EVs (agents) can share their ex-
periences. The problem is formulated as an MDP, where the actions are selected by the centralized
decision-making component by utilizing an extension of the KM algorithm, proposed by (Bourgeois
and Lassalle, 1971), that exploits the approximated value function to solve the matching problem.
The state-value function is approximated by a deep neural network. The model is trained and
tested on three cases: (1) a test case for a city center, (2) a test case where customers commute
between two regions, and (3) a small-scale optimality test case for a single region. The model
outperformed two benchmarks, which are a greedy algorithm (adapted from Chen et al. (2016)
and Kang et al. (2016)) and the optimization algorithm of Bauer et al. (2018).

All the aforementioned homogeneous MARL approaches for the ride-hailing problem do not allow
delayed matching. In other words, if there are sufficient idle vehicles to serve all new customers
in the next time step, all new customers will be assigned. Some works do allow delayed matching
or vehicles to reject customers, e.g., Ke et al. (2020) and Yang et al. (2021). Both customers and
vehicles may benefit from delayed matching, since it may result in shorter pickup distances and
shorter waiting times. Ke et al. (2020) and Yang et al. (2021) both considered each customer as
an agent with demand for vehicles, instead of considering each vehicle as an agent with demand
for customers. Ke et al. (2020) proposed several DRL approaches with state-values approximated
by off-policy DQN, and on-policy A2C, PPO, and ACER. The matching process is formulated as
a bipartite matching problem. Yang et al. (2021) proposed a DRL approach with a centralized
decision-making process (the planning component). A many-to-many matching process utilizes the
learned values. They took the vehicle’s rejection behavior into account. The vehicle’s ability to
reject a customer is attractive for the suppliers.

27



2021.MME.8591

Heterogeneous multi-agent methods
Contrasting to the MARL methods with homogeneous agents, Li et al. (2019) proposed a mean-
field reinforcement learning (MFRL) approach for the ride-hailing problem. They stated that the
homogeneous multi-agent approach is oversimplified and cannot completely model the complex
interactions between vehicles and customers. Additionally, the centralized decision-making process
may suffer from reliability issues, due to the potential single point of failure. To overcome these
limitations, they adopted a mean-field approximation to capture the interaction between agents
(vehicles) by taking an average action among neighborhoods. Each agent has its own critic that
evaluates each agent’s actions and updates their policies during training. The centralized critic (a
DQN learned action-value function) is not used during testing, since agents then follow their own
policy. Instead of using a matching algorithm that ensures a feasible solution, agents are allowed
to immediately re-choose an order from an updated set of available customers when agents assign
the same order.

Single-agent methods
Most works formulate a MARL framework for the ride-hailing problem. Contrary to that approach,
Wang et al. (2019) proposed a single agent RL approach. The action-value function is approximated
with restricted Q-learning, which guides a bipartite graph matching algorithm. The agent’s (the
platform’s) state is the expected length of the time windows over which supply and demand are
gathered. The actions of the agent are either to wait a time step or to stop the time window and
assign the gathered customers to vehicles.

4.3.1.2 Ride-sharing

Jindal et al. (2018) proposed a DRL approach to predict the travel time and distance using NYC
taxi data. Their objectives were to maximize transportation efficiency and minimize traffic conges-
tion. They assumed that more served demand per trip results in more efficient transportation and
less congestion. Therefore, the reward of vehicles is defined by the effective distance over a trip
(more served demand per trip results in a higher reward). The action-value function is learned by a
DDQN. The agents are considered as homogeneous, hence share the state space, action space, and
action-value function. Results indicated that their model outperforms the prediction performance
of Wang et al. (2014) and is more robust to outliers. Haliem et al. (2020) proposed a DRL approach
where the agents (vehicles) can choose to assign customers to vacant seats or to reposition. Their
objective is to minimize the supply and demand mismatch, the dispatch time, the repositioning
time, and the number of vehicles and maximize fleet profit.

4.3.2 Fleet management

Traditionally, idle taxis drive around to find customers, which is a waste of fuel and causes ex-
tra congestion. Taxis may wait statically for a new assignment, but this is also not optimal for
both customers and taxis. To tackle this problem, vehicles can be strategically repositioned. This
is known as fleet management and improves transportation efficiency. Fleet management is an
extensively studied problem, which traditionally used to be solved using supply and demand dis-
tributions, see e.g Yuan et al. (2012) and Qu et al. (2014). Some reinforcement learning approaches
optimize the reposition strategy from the perspective of the single vehicle, e.g., Rong et al. (2016),
Han et al. (2016) Wen et al. (2017), and Yu and Shen (2019). Model-based approaches of Rong et
al. (2016) and Yu and Shen (2019) used value iteration-based dynamic programming to reposition
the vehicle to optimize the long-term revenue.

Some model-free RL approaches used a fairly short time horizon, e.g., Han et al. (2016) and
Wen et al. (2017). Both these works optimized an objective function from the perspective of a
single-vehicle with episodes of length from being idle to completing an order and being idle again.
Han et al. (2016) used Q-learning to maximize driver income and Wen et al. (2017) used DQN
to maximize areawide service availability. With the increasing popularity of on-demand mobil-
ity services, vehicle repositioning strategies from the perspective of the entire fleet (the platform)
with long-term objectives have also been more studied recently, e.g., Lin et al. (2018), Oda and
Joe-Wong (2018), Liu et al. (2020), and Zhang et al. (2020b). All these four multi-agent DRL
approaches considered both spatio-temporal and global supply and demand features, while the
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previously mentioned single-agent DRL approaches (Han et al., 2016; Wen et al., 2017) only con-
sidered local spatio-temporal and supply and demand information. Lin et al. (2018) developed
DQN and A2C methods with a masking scheme for coordination. Oda and Joe-Wong (2018)
used a heterogeneous fleet of vehicles (agents) that learn independent policies using DQN, which
comes at the cost of coordination between vehicles but scales better compared to a model predictive
control approach. Instead of considering a grid structure, Liu et al. (2020) divided the graph struc-
ture into zones by a road-connectivity aware clustering algorithm. The homogeneous agents are
trained using DQN and take sequential actions. Their model outperformed, i.a., Lin et al. (2018),
Oda and Joe-Wong (2018). Zhang et al. (2020b) used dueling-DQN (Wang et al., 2016) to train
homogeneous agents, which actions are improved by another Q-learned agent.

4.3.3 Integrated dispatching

Fleet management can also be integrated in the order matching stage, which is studied in, e.g.,
Jin et al. (2019), Holler et al. (2019), Guo and Xu (2020), and (Liang et al., 2021). Jin et
al. (2019) proposed a heterogeneous MARL approach utilizing DDPG (Lillicrap et al., 2015) for
the integrated ride-hailing problem. They used a hierarchical structure, where each region cell is
treated as a working agent that is coordinated by a manager agent (the district). To capture the
impact on neighboring agents and learn the characteristics of each region and district, a multi-head
attention mechanism is utilized. Vehicles in the same region are considered to be homogeneous and
repositioning is done by introducing fake orders. Their model outperformed the order matching
ride-hailing approaches of Xu et al. (2018), Wang et al. (2018), and Li et al. (2019) in terms of ADI
and order response rate (ORR). Contrasting to the end-to-end approach of Jin et al. (2019), Guo
and Xu (2020) used DDQN for the fleet management and the KM algorithm to solve the matching
problem. They utilized a convolutional neural network (CNN) framework for the integrated ride-
sharing problem to maximize the quality of service (QoS) minus the costs. While Jin et al. (2019)
and Guo and Xu (2020) used a grid-based setting, Liang et al. (2021) preserved the graph-based
topology of the supply and demand distribution. They proposed a homogeneous MARL framework
for the ride-sharing problem. The matching is done by the KM algorithm that exploits constrained
programming framework to filter out infeasible assignments and enhances vehicle cooperation. The
edge weights for the KM algorithm are determined with TD-based DQN. Their model outperformed
several adapted DRL frameworks in terms of ADI and ORR. The order of magnitude for the
computation time per decision is milliseconds.

4.4 Dynamic routing

In the dynamic VRP, some information is only revealed during the execution of the routes. This
could, e.g., be new incoming customers, a change in demands, or variable service and travel times.
It is not obvious that a new request is accepted, since it may be too expensive or not feasible to
serve the request. Whether a request is accepted or denied is referred to as service guarantee,
introduced by Hentenryck and Bent (2006).

An initial solution to a static VRP may be adjusted at dynamic events by, e.g., inserting the
new customer into existing routes or by solving the new problem instance. However, this approach
for dynamic VRPs is not optimal, especially not if degree of dynamism (DoD) is high (Lund et
al., 1996). The reason for this is that the underlying probability distribution of dynamic events
is not taken into account. The degree of dynamism δ is defined by ratio of between dynamic and
total requests: δ = nd

ntot
. To also include the time aspect, Larsen (2000) proposed the effective DoD

for both without and with time windows: δe = 1
ntot

∑
i∈R

ti
T and δeTW = 1

ntot

∑
i∈R

(
1− li−ti

T

)
,

respectively, where R is the set of requests, ti the disclosure time of request i ∈ R, T , the length
of the planning horizon, and li the end of the time window.

The main difference between solving dynamic routing and dispatching problems is the sup-
ply/demand ratio (as already mentioned in the introduction of section 4). The dispatching stage
is often associated with the transportation of people and the routing stage is often associated with
the transportation of goods. In the latter case, vehicles typically should be loaded with goods
prior to the delivery and once a delivery request has been accepted, it generally cannot be canceled
afterward.
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Contrasting to dynamic routing problems, dynamic dispatching problems (e.g., ride-hailing and -
sharing) may primarily be concerned with determining the next customer, while for dynamic VRPs
it is required to determine the entire route plan. Ulmer et al. (2017) proposed route-based MDP
as a framework for dynamic VRPs, where dynamic events cause updates in the entire route plan.
This route-based MDP approach allows to (1) determine the value of the projected route which
helps to consider future requests and (2) communicate planning, which is important, e.g., (B2B)
package or food delivery services.

Solving dynamic and deterministic VRPs used to be done with periodic re-optimization or contin-
uous re-optimization approaches (Pillac et al., 2013). In the former approach, the static problem
corresponding to its current state is solved when dynamic data is revealed reveal or at fixed time
intervals. In the latter approach, the problem is solved when dynamic data is revealed using the
information of good past solutions.

Solving dynamic and stochastic vehicle routing problems used to be done with sampling or
stochastic modeling approaches (Pillac et al., 2013). In the former approach, scenarios are sampled
using the stochastic probability distributions, where after the static and determined scenarios are
solved. In the latter approach, stochastic knowledge is analytically integrated by solution methods,
such as (ADP), see Ulmer (2017) for an overview of ADP solutions for dynamic routing problems.

The two main categories of solution methods for dynamic VRPs are offline and online ap-
proaches. In offline approaches, the policy for the decision-making process is defined prior to
execution. A commonly used offline method is approximate value iteration (AVI), e.g., Ulmer
et al. (2019). In such methods, the value function is approximated by a table. To obtain a good
policy, a lot of iterations are required, since some states might not be encountered during training
otherwise. In online methods, the policy that defines the actions to take if a certain state is en-
countered is not calculated a priori. Hence, the decisions (calculations) are done during execution.
Popular online methods are sampling-based approaches, such as the multiple scenario approach
(MSA) in, e.g., Bent and Van Hentenryck (2004a; 2004b; 2007) and Voccia et al. (2017). Conven-
tional online methods are not very suitable when the decision-making needs to be done quickly,
since a single decision can take the order of 100 seconds (Voccia et al., 2017).

There is much literature on model-free DRL for dynamic dispatching (section 4.3), but there
is little literature on model-free DRL for dynamic routing. There is more literature on model-
based or ADP methods for dynamic routing. However, there are many recent literature reviews
for these approaches, for which the reader is referred to, e.g., Oyola et al. (2016b), Ritzinger et
al. (2016), Psaraftis et al. (2016), Ulmer (2017), Ulmer et al. (2020), and Ojeda Rios et al. (2021).
The model-free DRL approaches for dynamic routing problems of Nazari et al. (2018), Peng et
al. (2019), James et al. (2019) and Joe and Lau (2020) are reviewed in the following sections.
The former three applied an end-to-end learning approach and the latter one applied a learning to
configure approach.

4.4.1 End-to-end learning

Nazari et al. (2018) and Peng et al. (2019) proposed end-to-end DRL methods for the dynamic
CVRP, but mainly focused on the static routing variant. Hence, these methods are discussed in
the section for static routing problems, see section 4.2.

James et al. (2019) proposed an end-to-end DRL method for the dynamic electric vehicle
PDP with TW (DEVPDPTW), with the goal to make online decisions as quickly as possible.
Their encoder-decoder framework is based on the PN with structural graph embeddings of Dai
et al. (2016). The encoder sequentially embeds the nodes, whereafter the PN-based decoder de-
termines a probability distribution for the next node to visit by a vehicle. The vehicle tours are
created sequentially. The encoder is a GNN and the decoder is an LSTM. James et al. (2019) sam-
ple multiple solutions per instance of which the best is used and train the model parameters with
A3C. They tested the model using real-world traffic data of 100 dynamic requests (with pickup
and delivery locations) for 100 vehicles and compared results against MIP approaches of James
and Lam (2017) and James (2018). The results indicated that the DRL approach outperformed
the benchmark in both solution quality (total route length) and computation time.
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4.4.2 Learning to configure

Joe and Lau (2020) used an on-policy DRL approach with simulated annealing (the model is
called DRLSA) to solve a dynamic and stochastic customer CVRP with soft time windows (DSC-
CVRPTW), with the objective to minimize total travel plus waiting times plus penalties for time
window violations. They approximate the state-value function using on-policy TD learning with
experience replay. The state-value function is utilized by a simulated annealing (SA) algorithm
(Chiang and Russell, 1996; Osman, 1993), to insert new customers and swap existing customers
in the route. Therefore, their approach can be categorized as ‘learning to configure’. Joe and
Lau (2020) used a route-based MDP approach, in which they assume that orders are not canceled
and that customers cannot swap between routes when they have been assigned. At the start of the
planning horizon, the known customer orders are assigned to a fixed number of vehicles, resulting
in an initial solution. The state of the MDP is defined by a pre-decision state and a post-decision
state, which both contain information on the time step, vehicle locations, remaining routes, and
realized orders. At each time step, an action defines which vehicle(s) is/are assigned to serve the
new incoming order(s). Additionally, an action may consist of swapping existing customers in
the same route. The approximated state-value function takes expected rewards of future dynamic
events into account. During training, a set of historical delivery plans are used with 2 vehicles that
serve 22 out of 48 customers per day on average. Depending on the DoD, a percentage of the orders
are randomly removed and later used as dynamic orders. The performance of DRLSA is compared
to three benchmark algorithms: (1) the offline AVI method of Ulmer et al. (2019), (2) MSA with
consensus of Bent and Van Hentenryck (2004a; 2004b), and (3) a myopic approach of DRLSA,
which selects actions that minimize the immediate reward. After training three DRLSA models
with DoD=0.3, 0.5, and 0.7 for a total of 700h, DRLSA outperformed AVI for DoD=0.5 and 0.7
and the myopic approach only for DoD=0.7 by 11.90%. The poor performance of DRLSA for
low DoDs could be explained by the fact that it is more challenging to anticipate rarely occurring
dynamic events (which is the case for low DoDs). The performance of AVI, for all DoDs, is close to
the myopic approach (between -1.51% and 0.24%). AVI approximates values of encountered states
during training and values of non-encountered states are set to 0, the latter is equivalent to myopic.
This likely is the reason for the similar performance of AVI and the myopic approach. In general,
AVI approaches require a lot of training instances for problem settings with large spaces (due to
multi-vehicle and multi-constraints) to accurately approximate the value of many states. DRLSA
significantly outperformed MSA by on average 7.5%. In terms of run time, the offline approaches
DRLSA and AVI required < 10s per decision, while MSA required up to 10m per decision. This
indicates that for situations where the decision-making should be very quick, offline approaches
are more suitable. Hence, offline approaches for re-routing decisions are more suitable for practical
applications.

4.5 Overviews

In this section, concise overviews will be given for the reviewed deep learning literature. First,
an overview for literature associated with the routing stage is given followed by the literature
associated with the dispatching stage, Table 1 and 2, respectively. Thereafter, the results for deep
learning approaches for the static CVRP are summarized in Table 3.

4.5.1 Overview routing

In Table 1 the characteristics of the reviewed literature are summarized for ML-based solution
methods for static and dynamic routing problems. The routing characteristics are split into five
categories. First, it is indicated what type of problem, static and deterministic (SD) or dynamic and
stochastic (DS), is solved by each literature. Second, the checkmarks indicate the routing variant
considered by each literature. For the variants with time windows, S and H indicate soft and hard
time window constraints, respectively. Third, the checkmarks for single-vehicle or multi-vehicle
problems indicate if the corresponding literature proposed a model in which one or multiple vehicles
are active simultaneously. For the end-to-end (E2E) and learning to configure (L2C) methods, the
routes can be constructed by one or multiple active vehicles. For the learning to search (L2S)
methods, naturally there are multiple vehicles active simultaneously. Fourth, the objective of each
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literature is indicated. Fifth, the maximum considered problem size is indicated for each literature.
The ML characteristics are split into five categories. First, the algorithmic structure (E2E, L2C,
L2S) is indicated. Second, the machine learning category is indicated. Third, it is indicated
whether the literature explicitly formulates the problems as an MDP. Fourth, the used machine
learning concepts (attention mechanisms and DRL) are indicated. It must be mentioned that there
are many more machine learning concepts, which are not indicated in this overview (e.g., RNN,
GNN, GAT, etc). Fifth, the used algorithm(s) for each literature is mentioned.
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Nazari et al. (2018) min. total route
length

100 REINFORCE w/b,
A3C

Kool et al. (2019) min. total route
length

100 REINFORCE w/b

Peng et al. (2019) min. total route
length

100 REINFORCE w/b

Kwon et al. (2020) min. total route
length

100 REINFORCE w/b

Hottung et al. (2021) min. total route
length

300 Q-learning, REIN-
FORCE w/b

Li et al. (2021c) min. total travel
time

120 REINFORCE w/b

Li et al. (2021b) min./max. total
travel time

160 REINFORCE w/b

Falkner and Schmidt-
Thieme (2020)

SH min. total route
length + TW pen.

100 REINFORCE w/b

Zhang et al. (2020a) H min. total route
length + TW pen.

150 REINFORCE w/b

Kool et al. (2021) min. total route
length

100 DP

Chen and Tian (2019) min. total route
length

100 A2C

Wu et al. (2020) min. total route
length

200 AC

Hottung and Tier-
ney (2020)

min. total route
length

300 REINFORCE w/b

Lu et al. (2020) min. total route
length

100 REINFORCE w/b

Sultana et al. (2021) min. total route
length

1000 REINFORCE w/b

Joe and Lau (2020) S min. total travel
time + TW pen.

48 TD

James et al. (2019) S max. ORR - total
route length

100 A3C

Table 1: Overview of ML-based literature for static and dynamic routing problems. See the list of abbreviations at
the beginning of this report for the majority abbreviations in the table, furthermore is S: soft TW, H: hard TW,
SH: soft and hard TW.

What becomes clear from Table 1, is that ML-based solution methods for routing problems are
generally solved by RL policy-based methods. The primary reason for that could be due to the
very complex state and action spaces for these problems, for which value function approximation
is not suitable. However, policy-based methods have the disadvantage that every action leading
to a good final reward is reinforced. Some performed actions may not be that good, nevertheless,
if the outcome of the full trajectory was considered good, the probability of every selected action
will be increased. Actor-critic methods combine the best of policy-based and value-based methods.
In AC methods, each selected action by policy can be evaluated separately by the critic network.
However, learning a good critic network remains challenging for high-dimensional state-action
spaces. Another thing that stands out, is that the L2S approaches are unable to solve richer
VRPs. This is due to the fact that rewriting the current solution makes it difficult to meet the
constraints. Constructive (E2E) approaches can maintain feasibility by using a masking scheme.
A commonly used method is to convert complex constraints into penalty terms in the objective
function. This is done because training a model with complex constraints becomes more difficult
if the number of constraints increases. In practice, more often than not the constraints (such as
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time windows) are not strict and penalties may reflect real-world practices. However, scenarios
with strict constraints may also be applicable to practical applications and is a future challenge
for deep learning models.

4.5.2 Overview dispatching

In Table 2 the characteristics of the reviewed literature are summarized for ML-based solution
methods for dynamic dispatching problems. The dispatching characteristics are split into two
categories. First, the type of problem is mentioned. Second, the objective of each literature is
indicated. The machine learning characteristics are split into five categories. First, the algorithmic
structure (E2E, L2C, L2S) is indicated. Second, the machine learning category is indicated and
because none of the literature used supervised learning it is not included in the table. Third,
the information on the MDP formulation is given. Fourth, the used machine learning concepts
(attention mechanisms and DRL) are indicated. Fifth, the algorithm(s) used by each literature is
mentioned. In Table 2, E2E does not imply a constructive approach, but just that solution is only
based on the input and does not utilize other COP algorithms.

Dispatching characteristics Machine learning characteristics
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Xu et al. (2018) ride-hailing max. gross mer-
chandise volume

vehicle assign, idle Q-learning

Wang et al. (2018) ride-hailing max. ADI vehicle assign, idle DDQN
Tang et al. (2019) ride-hailing max. ADI and user

experience
vehicle assign, idle DDQN

Shi et al. (2019) ride-hailing (EV) min. customer
waiting time + C

vehicle assign, idle, charge TD

Li et al. (2019) ride-hailing max. ADI vehicle assign, idle AC
Ke et al. (2020) ride-hailing max. ADI and user

experience
customer assign, delay DQN

A2C, PPO, ACER
Yang et al. (2021) ride-hailing min. average re-

sponse time, can-
cellation rate

customer assign, delay TD

Wang et al. (2019) ride-hailing max. ADI platform wait, stop time win-
dow

Q-learning

Jindal et al. (2018) ride-sharing max. effective trip
distance

vehicle assign, idle DDQN

Han et al. (2016) fleet management max. vehicle in-
come

vehicle (taxi persp.) move to adjacent
grid cell

Q-learning

Wen et al. (2017) fleet management max. service availi-
bility, min. rebal-
ancing C

vehicle (taxi persp.) move to adjacent
grid cell

DQN

Lin et al. (2018) fleet management max. gross mer-
chandise volume

vehicle (platform persp.) move to adjacent
grid cell

DQN

A2C
Oda and Joe-
Wong (2018)

fleet management min. waiting time
+ repositioning C

vehicle (platform persp.) move to zone DQN

Liu et al. (2020) fleet management balance supply and
demand

vehicle (platform persp.) move to neighbour-
ing zone

DQN

Zhang et al. (2020b) fleet management max. ORR vehicle (platform persp.) move to adjacent
grid cell

dueling-DQN, Q-learning

A2C
Jin et al. (2019) integrated ride-hailing max. ADI and

ORR
region cell, district region cell: rank-

ing features, man-
ager: abstract goal

DDPG

Guo and Xu (2020) integrated ride-sharing max. QoS - C vehicle assign, reposition DDQN
Liang et al. (2021) integrated ride-hailing max. ADI and

ORR
vehicle assign, reposition DQN

Table 2: Overview of ML-based literature for dynamic dispatching problems. See the list of abbreviations at the
beginning of this report for the majority abbreviations in the table, furthermore is ADI: accumulated driver income,
C: costs, ORR: order response rate.

Contrasting to the ML-based solution methods for the routing problem (Table 1), for dynamic dis-
patching a learning to configure approach is more used. The matching process in the ride-hailing
problem is generally solved by a bipartite graph matching algorithm that utilizes the approximated
action-value function to quickly make online decisions. By formulating the problem as homoge-
neous multi-agent MDP, the state-action space can be reduced significantly and thus allows for a
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value-based approach. However, in this way the action space is effectively decomposed and thus
some information is lost. The early ML-based approaches for fleet management optimized vehicle
repositioning from the single-driver perspective. Later, with the increasing popularity of MoD
services, the literature focused on fleet management problems from the perspective of the entire
platform. Another noticeable thing is that the objectives are mostly in favor of the platform. Even
though some literature try to maximize the ORR or minimize the waiting time, this is in the con-
text of maximizing profit for the centralized platform. First, this could lead to large differences in
profits between agents (vehicles) in the fleet, since maximizing joint profit does not guarantee any
minimum profit for individual agents. Secondly, minimizing average waiting time or maximizing
average ORR may disregard the service levels of individual customers.

4.5.3 Performance comparison static CVRP

Table 3 shows the results of deep learning solution methods for the static CVRP. As mentioned
in the introduction of section 4.2, several deep learning approaches to solve the CVRP used the
data distribution of Nazari et al. (2018). This allows for an easy comparison of the objective value
since they all used the same objective function, which was to minimize the total route length. Run
times are more difficult to compare since they depend on the used hardware. Hence, the run times
in Table 3 should be interpreted as indications. The results of each method are reported identical
to their original paper with two exceptions. First, the results of LKH3 are taken from Kool et
al. (2019). Second, the results of Kwon et al. (2020) are taken from Hottung et al. (2021). The
three bold headers in Table 3 indicate the problem size, where, e.g., C30VRP20 indicates a vehicle
capacity of 30 and 20 customers. The percentage gap of each model indicates the performance gap
compared to LKH3. The time (in seconds) indicates the average run time per instance.

C30VRP20 C40VRP50 C50VRP100

Model name Obj. Gap (%) Time (s) Obj. Gap (%) Time (s) Obj. Gap (%) Time (s)

Helsgaun (2017) LKH3 6,14 0,720 10,38 2,520 15,65 4,680

Nazari et al. (2018) RL-BS(10) 6,40 4,23% 0,162 11,15 7,42% 0,232 16,96 8,37% 0,445
RL-greedy 6,59 7,33% 0,105 11,39 9,73% 0,156 17,23 10,10% 0,321

Kool et al. (2019) AM-sampling 6,25 1,79% 0,036 10,62 2,31% 0,168 16,23 3,71% 0,720
AM-greedy 6,40 4,23% <0,001 10,98 5,78% <0,001 16,80 7,35% <0,001

Peng et al. (2019) AM-D(greedy) 6,28 2,28% <0,001 10,78 3,85% <0,001 16,40 4,79% 0,016
AM-D(2OPT) 6,25 1,79% 0,050 10,73 3,37% 0,340 16,27 3,96% 2,210

Falkner and Schmidt-Thieme (2020) JAMPR-greedy 6,47 5,37% 0,110 11,44 10,21% 0,230
JAMPR-sampling 6,26 1,95% 0,840 10,84 4,43% 2,810

Kwon et al. (2020) POMO-greedy 15,76 0,70% 0,012
POMO-sampling 15,67 0,13% 2,520
POMO-AS 15,63 -0,13% 69,120

Hottung et al. (2021) POMO-EAS-Emb 15,63 -0,13% 3,240
POMO-EAS-Lay 15,61 -0,26% 4,320
POMO-EAS-Tab 15,62 -0,19% 2,880

Kool et al. (2021) DPDP-10k 15,832 1,16% 0,924
DPDP-100k 15,694 0,28% 2,148
DPDP-1M 15,627 -0,15% 17,502

Chen and Tian (2019) NeuRewriter 6,16 0,33% 0,133 10,51 1,25% 0,211 16,10 2,88% 0,398
Wu et al. (2020) LIH(T=1000) 6,16 0,33% 0,138 10,71 3,18% 0,288 16,30 4,15% 0,360

LIH(T=3000) 6,14 0,00% 0,360 10,55 1,64% 0,720 16,11 2,94% 1,080
LIH(T=5000) 6,12 -0,33% 0,720 10,45 0,67% 1,440 16,03 2,43% 1,800

Hottung and Tierney (2020) NLNS-batch 6,19 0,81% 0,043 10,54 1,54% 0,145 15,99 2,17% 0,374
Lu et al. (2020) L2I 6,12 -0,33% 0,360 10,35 -0,29% 0,510 15,57 -0,51% 0,720
Sultana et al. (2021) L2GLS 5,85 -4,72% 0,420 10,30 -0,77% 0,600 14,67 -6,26% 1,020

Table 3: Overview of results for ML-based approaches for the static CVRP, where the gap is calculated with respect
to the results of the LKH3 heuristic.

A few conclusions from the performance comparison can be made. First, improvement methods
generally achieve better performance, which can be explained by the fact that the solution space
is explored more. Constructive methods use a less efficient search strategy (e.g., sampling) and
explore the solution to a lesser extent. Second, because the search strategy of improvement meth-
ods is more extensive than of constructive methods, improvement methods require more execution
time. Despite that comparing execution time between literature is hard due to different hardware
used, Li et al. (2021a) also concluded this after running different models on the same hardware.
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Another conclusion not specifically tied to the performance comparison in Table 3 is that improve-
ment methods tend to perform better on data with a different distribution than during training,
i.e, improvement methods generalize better. This is again related to the less extensive search
exploration of constructive methods.

5 Challenges and opportunities for future research

Throughout the previous section, the advantage of DRL methods compared to conventional solution
methods for routing problems has become clear. DRL methods can produce high-quality solutions
in short run times, but there remain some challenges to these approaches. In this section, the
major challenges of DRL solution methods for routing problems are mentioned. Throughout the
following sections, opportunities for future research will also be discussed.

5.1 Scalability

Deep learning approaches for the dispatching problem are able to handle big problem sizes (with
thousands of vehicles) by using centralized control and considering homogeneous agents that share
model parameters. However, in reality, the agents are more likely to be heterogeneous. Hetero-
geneity remains challenging due to the rapidly growing state and action spaces.

The current deep learning methods for the routing phase are limited to solve instances of a few
hundred customers. Training a model for larger problem sizes comes with two difficulties. First,
the long training time is a bottleneck for quickly improving and evaluating the model performance,
which might be the reason that the literature only considered relatively small problem sizes. Sec-
ond, larger problems sizes require larger models with more parameters and consequently, more
data is required to train the parameters. However, the sizes of real-world data sets are generally
not very large for deep learning models, making overfitting another bottleneck. Li et al. (2021a)
concluded that improvement methods require less training data compared to constructive methods
as the former converges faster in terms of average route length on the training data.

Deep learning improvement methods seem to be better scalable than deep learning constructive
methods. This can be explained by the fact that in the former method the complexity of the
improvement is mostly determined by the degree of destruction (e.g., if in an iteration five nodes
are relaxed from the current solution, new locations for only these five nodes must be determined).
Most deep learning improvement methods use randomly created initial solutions so creating the
initial solution is not a bottleneck for large-scale problems. On the other hand, for deep learning
constructive methods the complexity of determining the next node to visit is directly affected by
the problem size.

5.2 Generalization

Deep learning algorithms can outperform several heuristics when the models are tested on the same
data distribution and problem size as during training. However, performance decreases relatively
fast for deep learning models as settings differ from those during training. End-to-end constructive
methods tend to generalize worse compared to learning to search improvement methods, which
was indicated by, e.g., Wu et al. (2020) and Li et al. (2021a), due to the less extensive search
exploration of constructive methods compared to improvement methods. For practical purposes,
it may be useful to train multiple models for different settings and automatically detect which
model can best be used to solve the problem at hand. Another potential way to tackle this issue
is to use active search in constructive methods, as in Hottung et al. (2021), which adapts some of
model parameters during testing to the specific instance at hand.

5.3 Adaptability

Each specific problem setting requires an individual trained DL model, whereas heuristic methods
of the OR community are able to solve problems with broader data characteristics. Nonetheless,
several machine learning approaches showed that the general concept of a model can be utilized
for multiple types of problems with similarities. Whereas pure heuristic methods need a lot of
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expert knowledge and understanding of the specific problem, e.g., Nazari et al. (2018) and Kool
et al. (2019) showed that a DL model can easily be adapted to suit a different type of problem
with minor changes.

Constructive solution methods have much greater adaptability than improvement solution
methods. First of all, by constructively building the solution they can adapt to dynamic events.
Second, by using a simple masking scheme, complex constraints can be taken into account, whereas
improvement methods have much more difficulties to maintain feasibility while locally rewriting
the solution. Therefore, constructive approaches have more potential for dynamic and constrained
routing problems.

5.4 Training and testing time

Comparing training and testing time is tricky since the hardware (GPU vs CPU) and language
(C++ vs Python) highly influence the running times. Whereas the OR community usually im-
plemented algorithms in the more efficient language C++, the CS community implemented deep
learning models in Python. Also, the degree of parallelization has a big effect on the run times.
Heuristic algorithms are most often executed on CPUs using a single thread, while ML approaches
are often executed in parallel on CPUs. To facilitate a fair comparison, an indicative measure of
the speedup due to CPU vs GPU could be given.

Nonetheless, it can be concluded that DRL approaches in general are able to reduce the inference
run time compared to heuristic approaches. However, training deep learning models can take quite
a large time. For dynamic problems, where the decision-making needs to be quick, learning a value
function that learns to configure a combinatorial optimization algorithm seems the best approach.

5.5 Inconsistencies

There are several inconsistencies in the literature in terms of reported run times, objective values,
and data distributions. First, Hottung and Tierney (2020) reported a total run time of 6d for LKH3
for all 10000 test instances, while others e.g., Kool et al. (2021; 2019) reported 780m. Second, the
run times reported by Hottung and Tierney (2020) for RL-BS(10) are inconsistent with what is
reported by Nazari et al. (2018). Third, Lu et al. (2020) mentioned different vehicle capacities as
Nazari et al. (2018), but reported identical tour lengths for the other machine learning approaches
as in their original papers. Fourth, the reported run time by Kool et al. (2021) for the model
of Lu et al. (2020) is inconsistent as in its original paper. Fifth, Sultana et al. (2021) reported
the average run time per instance for LKH3 as 780m, while others, e.g., Kool et al. (2021; 2019)
reported this as the total run time for 10000 test instances. More care should be given reporting
results consistent with other approaches to facilitate a fair comparison.

5.6 Benchmark datasets and algorithms

In the introduction was mentioned that the CS community recently has become more interested
in solving COPs, like the VRP. A common way for the CS community is to generate data using
an arbitrarily defined data distribution from which instances are sampled. Contrasting to this, the
OR community has generated benchmark instances, e.g., Solomon (1987) and Uchoa et al. (2017),
that represent more relevant practices. While some deep learning methods tested models on these
benchmark instances, e.g., Hottung et al. (2021) and Kool et al. (2021), the majority of the CS
community primarily used the data distribution of Nazari et al. (2018). For a fair comparison
with highly optimized heuristics, the CS community could consider evaluating their models on
these benchmark instances. Additionally, the CS community often considered LKH3 or Google’s
OR-Tools to be the state-of-the-art solvers. However, heuristic solvers of Vidal (2021), Accorsi
and Vigo (2021), and Christiaens and Vanden Berghe (2020) and the exact solver of Pessoa et
al. (2020) outperform the two aforementioned solvers (Accorsi et al., 2021). Future deep learning
models for VRPs created by the CS community should be compared against these state-of-the-art
VRP solvers created by the OR community.
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6 Conclusion

In this literature review, ML-based solution methods for the vehicle routing problem are surveyed.
The literature is categorized according to the dispatching and routing stage. The dispatching
stage corresponds to MoD services, such as the ride-haling problem, in which the supply-demand
ratio is high and thus is more like an order matching problem. For these dynamic problems,
value-based DRL solution methods are most common. The literature shows that deep learning
models are able to learn the underlying spatio-temporal probability distribution and that with the
use of approximated value functions order matching algorithms can determine good decisions for
large-scale applications in a matter of milliseconds. The routing stage corresponds more to the
traditional vehicle routing problem, where the supply-demand ratio is low. Due to the NP-hard
nature of VRPs, DRL policy-based methods are the most applied. The ML-based literature for the
VRP is still limited to a maximum of a few hundred customers. Deep learning methods with an
improvement approach, also called learning to search, explore the solution space more extensively
compared to constructive approaches and hence generally achieve better results, generalize better
to other data distributions than during training, but also require more run time.

Considering that the CS community only have focused on VRPs for a few years and some
outperformed highly optimized heuristics is less computation time, the potential of DRL approaches
for routing problems looks very promising. However, there remain some challenges with these
solution methods in terms of scalability, generalization, and adaptability.

Future research for the dispatching stage could be focused on automatically detecting abrupt
changes in supply and demand dynamics and updating the model parameters or the learned value
function corresponding to the abrupt changes due to, e.g., traffic accidents. Furthermore, the fair
distribution of profits between platforms, agents (vehicle drivers), and customers should be taken
into account rather than maximizing total profit for the platform.

Future research for the routing problem stage be focused on larger and richer VRPs with
more practical constraints. Future DRL approaches should compare results against state-of-the-
art heuristic solvers created by the OR community on more realistic data sets rather than to
outdated heuristics and on self-created data distributions. There are few DRL solution methods
for dynamic VRPs, so future research may consider extending existing models for static VRPs to
dynamic VRPs. Several end-to-end constructive approaches mentioned that the final solution may
benefit from an additional optimization step. Applying learning to search DRL methods or other
improvement algorithms on top of the final solution of end-to-end models could also be interesting
for future research.

For both the dispatching and routing stage, taking into account heterogeneous agents (vehicles)
remains challenging due to the quickly increasing state and action spaces, but is an important
feature for real-world applications.
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Bräysy, O., & Gendreau, M. (2005b). Vehicle routing problem with time windows, part ii: Meta-
heuristics. Transportation Science, 39, 119–139. https://doi.org/10.1287/trsc.1030.0057

Chen, T. D., Kockelman, K. M., & Hanna, J. P. (2016). Operations of a shared, autonomous, electric
vehicle fleet: Implications of vehicle charging infrastructure decisions. Transportation Re-
search Part A: Policy and Practice, 94, 243–254. https://doi.org/10.1016/j.tra.2016.08.020

38

https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://arxiv.org/abs/1409.0473
https://doi.org/10.1016/S0305-0548(02)00051-5
https://doi.org/10.1021/acs.est.7b04732
https://doi.org/10.1512/iumj.1957.6.56038
https://doi.org/10.1512/iumj.1957.6.56038
http://arxiv.org/abs/1811.06128
https://doi.org/10.1007/s11750-007-0009-0
https://doi.org/10.1007/s11750-007-0009-0
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1016/j.cie.2015.12.007
https://doi.org/10.1287/trsc.1030.0056
https://doi.org/10.1287/trsc.1030.0056
https://doi.org/10.1287/trsc.1030.0057
https://doi.org/10.1016/j.tra.2016.08.020


2021.MME.8591

Chen, X., & Tian, Y. (2019). Learning to perform local rewriting for combinatorial optimization.
Advances in Neural Information Processing Systems, 32. https://proceedings.neurips.cc/
paper/2019/file/131f383b434fdf48079bff1e44e2d9a5-Paper.pdf

Chiang, W.-C., & Russell, R. A. (1996). Simulated annealing metaheuristics for the vehicle routing
problem with time windows. Annals of Operations Research, 63 (1), 3–27.
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Appendices

A LSTM and GRU

Goodfellow et al. (2016), Olah (2015), and Phi (2018) are consulted for information, equations,
and images about LSTMs and GRUs.

Hochreiter and Schmidhuber (1997) introduced the LSTM model. Similar to RNNs, LSTMs pro-
cesses information sequentially. An LSTM is able to control the flow of information with its internal
mechanisms (called gates). The gates are NNs that can learn whether some information is impor-
tant or not. The gates can decide which information to keep and to throw away. The operations
within an RNN cell (Figure 9) and an LSTM cell (Figure 10) is what differentiates them. The
activation functions may be chosen differently from the examples given below.

Figure 9: image retrieved from Olah (2015). The repeating module in a standard RNN contains a single layer.

Figure 10: image retrieved from Olah (2015). The repeating module in an LSTM contains four interacting layers.

The LSTM cells consists of a state and gates. The cell state transfers information throughout the
sequence processing, i.e. its the memory of the network. Gates are NNs that determine which
information is added or removed to the cell state and are trained to learn what information is
relevant. There are three gates in an LSTM cell: the forget gate, the input gate, and the output
gate.

As the name suggest, the forget gate (see Figure 11) determines which information should be kept
and disregarded. The input (xt) and the previous hidden state (ht−1) is processed by a sigmoid
layer, which outputs values between 0 (forget all information) and 1 (keep all information). The
forget gate operation f j

t (for time step t and cell j) is mathematically expressed as:

f j
t = σ

(
bjf +U j

fxt +W j
fh

j
t−1

)
, (A.1)

where bf , Uf , and Wf are biases, input weights, and recurrent weights respectively.
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The input gate and a vector of new candidate values (see Figure 12) are used to update the cell’s
internal state. For the input gate, the input and previous hidden state are processed by a sigmoid
layer to determine which information needs to be updated. For the vector of new candidates, the
input and previous hidden state is processed by a hyperbolic tangent layer, which output values
between -1 and 1. The output of the sigmoid and tanh layer are multiplied. The output of the
sigmoid layer determines which information from the tanh output layer is important. The input
gate ijt and the vector of new candidate values C̃j

t operations are mathematically expressed as:

ijt = σ
(
bji +U j

i xt +W j
i h

j
t−1

)
, (A.2)

C̃j
t = tanh

(
bjC +U j

Cxt +W j
Cht−1

)
. (A.3)

Now the cell state can be calculated as the sum of the previous cell state multiplied by the forget
layer output and the scaled new candidate values (see Figure 13):

Cj
t = hj

t−1f
j
t + ijtC̃

j
t . (A.4)

The output of LSTM cell is the hidden state (hj
t , see Figure 14), which is calculated by the product

of the output gate (oj
t ) and the cell’s state:

oj
t = σ

(
bjo +U j

oxt +W j
oh

j
t−1

)
, (A.5)

hj
t = oj

t tanh
(
Cj

t

)
. (A.6)

Figure 11: image retrieved from Olah (2015).
Forget gate operations.

Figure 12: image retrieved from Olah (2015). Input
gate operations.

Figure 13: image retrieved from Olah (2015).
Calculating cell state.

Figure 14: image retrieved from Olah (2015). Out-
put gate operations.

Gers et al. (2000) expanded the LSTM model by connecting the cell state to the gates (so called
peephole connection). Cho et al. (2014) introduced a variant of the LSTM model, the Gated
Recurrent Unit (GRU) with two gates: the update gate and reset gate. In the GRU model the
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forget gate input gate are merged into an update gate, which controls which information to forget
and to keep. The GRU does not contain a cell state, but only a hidden state. The reset gate decides
which information is used to compute the next hidden state. For a review on LSTMs variant and
their performance, see Greff et al. (2015) and Jozefowicz et al. (2015).
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