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1
INTRODUCTION

Over the past three decades, two fundamental communication technical evolutions

laid foundations for my thesis topic. The first is that the analog speech signal

can be represented in digital form [22], which is able to be processed, stored and

transmitted easily. The second is the development of packet-switched networks, including

the interconnection we know currently as the Internet [29]. Figure 1.1 demonstrates

a typical packet-switched network. These two techniques firstly merged in 1992 to

achieve reliable voice transmission over the Internet [5]. Recently, we have witnessed

the development of an Internet conferencing architecture [14], such as protocol for

interactive application [39], multicast communication [40]. However, when designing

applications such as interactive conference system, we have to face its trade-off: statistical

multiplexing versus transmission latency and packet loss which significantly degrade the

Quality-of-Service (QoS) issues. In this chapter, the basic principle of packet-switching

network, reasons of packet loss during the transmission, some appropriate approaches

used to conceal the packet loss, and objectives and an outline of the whole thesis, are

presented. The objectives of my thesis provides comprehensive understandings on packet

loss and packet loss concealment.

1.1 Motivation and Scope

Voice over Internet Protocol (VOIP) has become one of rapid-growing technologies which

commonly uses the real-time transport protocol (RTP) to deliver voice packets over the

1



CHAPTER 1. INTRODUCTION

FIGURE 1.1. A packet-switched network receiving packets to route out

packet-switched network. RTP typically run on top of the user datagram protocol (UDP),

which is not an absolute reliable transmission protocol so that packet loss may occur

during the transmission. However, real-time applications require timely delivery of data

or information and always tolerate packet loss to achieve this aim.

Packet communication which can handle speech in telecommunication system, such as

conferencing system, has become more and more popular. In a typical wireless telecom-

munication system, analog speech signals are collected by microphones, then they are

processed and encoded before arriving at the packets buffer. After transmitting to the

receiver, signals are processed again and decoded to analog signals to be played-out

by speakers. A diagram of typical wireless telecommunication applications is shown in

Figure 1.2. The packet communication network’s merit is the flexible applicability in

multicast transmission with low cost [4].

1.2 Research Challenge and Approach

One inevitable problem with packet communication systems is that the messages or

speech segments may be lost or do not reach the receiver during wired or wireless trans-

mission. Figure 1.3 is used to describe the packet loss phenomenon in the transmission,

the speech signal are divided into packets by black dashed lines, some packets were lost

and imposed gap in the sentence during the transmission. The packet loss may occur in

wireless networks for various reasons: First, congestion of routers and gateways. Second,

the load in workstation is too heavy. Third, channel noise and interferences during the

transmission. Referring several tests conducted to evaluate the effects of packet loss on

2



1.2. RESEARCH CHALLENGE AND APPROACH

FIGURE 1.2. Diagram of a typical wireless telecommunication application

FIGURE 1.3. Illustration of packet loss in a speech transmission over an IP
network

speech quality [12][13], silence replaced missing parts, and it was determined the packet

loss rates up to 1 percent were acceptable. However, in the wireless transmission process,

the loss rate can be really high (up to 10 percent or even more). In that case the quality

of the transmitted speech may be severely impaired.

Although the packet loss exists ubiquitously, several packet loss recovery techniques

are able to repair the loss in packet switched networks. Such techniques can be roughly

divided into two categories: sender-driven repair techniques and receiver-based repair

techniques.

3



CHAPTER 1. INTRODUCTION

Most sender-based PLC techniques work by re-transmitting lost packets or adding re-

dundancies and additional information to packets in order to recover the loss from these

extra parts. While sender-based approaches always consume undesirable resources such

as network bandwidth and CPU capacity, etc. the consumption of bandwidth causes more

load on the network and may potentially impose the loss of more packets. Apart from the

resources consumption, sender-driven approaches typically introduce more delay into the

transmission. A large delay is unacceptable for most real-time interactive applications.

As a result, we focus on the receiver-based approaches to conceal the loss. Depending

on earlier researches, there are a number of approaches used to deal with the loss,

such as silence and noise substitution [39], simply repeating previous packets or, if the

codec information is known, synthesizing speech from received segments [44]. In recent

years, interpolation-based schemes are getting more and more popular because of the

simplicity and efficiency, such as pitch waveform replication [43] and waveform similarity

overlap-and-add (WSOLA) technique [38].

In this thesis, the packet loss recovery technique should operate on conventional PCM

packets without any codec information in order to fulfil the requirement of the system

and could fully work in local devices without introducing any unacceptable delay as

well as resources consumption. Of course, the high speech qualities after recovery must

be guaranteed when facing to different packet loss conditions. For instance, the PLC

algorithm is designed for Bosch Dicentis real-time wireless conference system, which

uses simple A/D and D/A converter without any codec information. The latency budget

in a complete transmission, including up-link and down-link in this system, should

be as low as possible. Here, the challenges consist of three main components: 1) The

reconstructed waveform should be similar to the original. 2) The discontinuity at frame

boundaries should be smoothed after reconstructions. 3) The entire PLC algorithm should

not add too many latencies to the system. Additionally, the algorithm should not be very

complex to implement because of the practical use. Figure 1.4 gives a simple diagram to

describe a typical wireless telecommunication application with receiver-based packet

loss concealment unit and packet merging unit.

4



1.3. THESIS OBJECTIVES

FIGURE 1.4. Diagram of a typical wireless telecommunication application with
PLC

1.3 Thesis Objectives

As stated packet loss concealment as a research challenge in packet-switched network,

this master thesis covers the following objectives: First, packet loss characteristics in

realistic wireless network and existing PLC algorithms should be investigated in order

to design a better PLC algorithm. Second, a PLC scheme with high quality, low latency

and low resources consumption should be proposed. Third, the performance of proposed

PLC should be evaluated and compared with performances of other techniques. Fourth,

summaries and conclusions about this thesis should be given. Fifth, future works which

may follow this thesis should be proposed.

1.4 Thesis Outline

This thesis is composed of five chapters and three appendixes.

The structure of my thesis is as follows. Chapter 2 introduces characteristics of packet

loss in VOIP applications, along with a review to some existing receiver-based PLC algo-

rithms. Chapter 3 presents a complete description of the proposed PLC scheme. Chapter

4 evaluates the performance of different PLC algorithms in different scenarios through a

subjective listening test. After presenting results in each scenario, a brief discussion is

5



CHAPTER 1. INTRODUCTION

performed. Finally, chapter 5 gives conclusions about this thesis and proposes possible

future works which can follow my present work.

At the end of this report, there are three appendixes, which contain detailed explanations

about some topics referred in this report. Appendix A describes a four-state Markov

model, which was used to generate packet loss patterns used to corrupt the audio file.

Appendix B describes the details in State-of-Art PLC (ANSI T1.521a-2000). Appendix C

gives a review to existing objective measures for evaluating speech quality.

6
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2
BACKGROUND

2.1 Packet-Loss Characteristics

Packet transmission channels usually suffer a combination of single packet losses and

burst losses (several consecutive packet losses). Clear understandings of characteristics

of packet loss are necessary to design a corresponding packet loss concealment algorithm.

Here, we roughly categorized them into two main classes: single loss and burst loss.

• Single loss: With single loss we lose packets randomly. We experienced single

packet loss when losses are independent from one instant to the next.

• Burst loss: With burst loss we suppose losses will last for a time period so that we

lose one or more consecutive packets. Although the occurrences of burst loss are

relatively rare with the occurrences of single loss, Loss bursts of several consecutive

packets is one of main reasons of speech quality degradation caused by packet loss.

As the network condition becomes bad, the probability of burst loss may increase.

Looking into the realistic wireless network, we usually experience a combination of

the single packet loss and the burst packet loss. When we use standard Wi-Fi-based

applications to transmit the data packets, the data packets will enter a certain channel of

Wi-Fi channels. Then, the chance to transmit these packets successfully is depending on

the real-time condition, such as the load, of this certain channel. The Wi-Fi environment

changes from time to time, we never know the state of certain channel is "good" or "bad"

at certain instant. As a result, we randomly suffer the single loss and burst loss in one

7



CHAPTER 2. BACKGROUND

transmission.

We consider using a logic analyser to measure the packet loss situation in real-network

environment. In our measurement, Agilent logic analyser is used to capture the change of

voltage at the end of up-link (up-link is the wireless transmission link from devices to the

access point). Here, only transitions between high voltage (packets are received) and low

voltage (packets are lost) will be recorded and put into the buffer, however, the sampling

keeps going on with the rate defined by users (used to get the duration between two

adjacent voltage changes). The sampling will stop until users stop the measure manually

or the buffer is full. The voltage level is taking on values in the set X={0,1}, where 0

represents the loss and 1 represents the reception. The measurement is taken from 9am

to 3pm (working hours) in Bosch Security System building. The devices are Dicentis

wireless unit and Dicentis access point. All channels in Wi-Fi 2.4GHz are enabled.

In order to investigate the packet loss characteristics in realistic networks and represent

the data clearly, we plotted the probability mass function (PMF) of packet loss (Bad

States) with different run-length and run-length of received packets (Good States)

between losses in log scale. As shown in the Figure 2.1, both run-length of Good States

and Bad States followed somewhat experiential decays. As for packet loss, the major loss

was the single loss, which approached 85% in this particular measurement. Additionally,

burst loss, which was up to hundreds milliseconds, happened with really low probability.

As for received packets between losses, probabilities of short run-length of received

packets were higher.

When we monitored the Wi-Fi environment by Wi-spy (a tool to monitor the Wi-Fi envi-

ronment) in real-time, we found that the channel used to transmit our data packets was

congested or even fully occupied by other devices in a short time period which is called

bursty period, so that the data packets could not get through the Wi-Fi link and reach

the destination successfully. In bursty period, the packets were lost continuously (burst

loss) or sort of alternatively (loss at a high rate in a short time period) until conditions in

this channel became good again to transmit packets. However, the Wi-Fi environment

was fine or normal to transmit the data packets most of the time.

In conclusion, we can derive two main characteristics: First, occurrences of single loss

are way more than occurrences of burst loss. Most losses consist of singe packet loss,

8



2.2. EXISTING PACKET LOSS CONCEALMENT ALGORITHMS REVIEW

(a) (b)

FIGURE 2.1. (a) PMF of loss burst with different run-length in log scale (b) PMF
of received packets between losses with different run-length in log scale

even in bursty periods, run-lengths of individual loss are short and fall close together.

Second, burst losses, including short and long bursts of loss, cannot be ignored in real-

network and have to be considered in designing the packet loss model and the packet

loss concealment algorithm.

In this thesis, a four-state Markov model is used to model the packet loss in wireless

networks and generate the loss pattern which are used to corrupt the audio file. Details

are presented in appendix A.

2.2 Existing Packet Loss Concealment Algorithms
Review

The main constraint introduced by the interactive applications is the latency, which

is supposed to be minimized as small as possible. A part of sender-based packet loss

recovery techniques, including retransmission and interleaving, cannot be used any more,

since these techniques impose too much latency to make the transmitter be ready for the

transmission. Due to the fast and efficient transmission is required, IP-based interactive

applications always use User Datagram Protocol (UDP) as their transmission protocol

instead of Transmission Control Protocol (TCP). In UDP, the samples are transmitted

in packets, which will be completely lost when the packet loss occurs, so it’s useless to

9
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FIGURE 2.2. Receiver-based repair techniques taxonomy

piggyback any extra information to itself for repairing the loss. Meanwhile, piggybacking

information to any other packet will introduce undesirable latency in the end since the

reconstruction process has to start after receiving the packet with that piggybacked

information in stead of reconstructing the loss immediately. As a result, the technique

like Forward Error Correction (FEC) become failing. Additionally, another main reason

for avoiding sender-based loss recovery techniques is that some existing approaches

require additional network bandwidth. Since the data bandwidth increases, the network

becomes more congested and more packets may be dropped. Above constraints force us

to focus on the receiver-based PLC techniques.

The Figure 2.2 gives a taxonomy of receiver-based packet loss concealment (PLC).

Receiver-based packet loss concealment techniques do not require any assistance from

the sender part. Such techniques are useful when the sender cannot recovery all the loss

or when the sender is unable to participate in the recovery process.

The basic goal of PLC is to create replacements for lost packets which are similar to the

original. In the conference system, these techniques are feasible since speech signals are

comprised of lots of short-term self-similarities.

10



2.2. EXISTING PACKET LOSS CONCEALMENT ALGORITHMS REVIEW

As studied in earlier researches, the most of PLC techniques can be split into four

categories

• Insertion-based schemes recover losses by inserting fill-in packets. The noise or

silence are commonly used as fill-in packets. Such techniques are easy to implement

at expense of the speech quality after repairs.

• Interpolation-based schemes recover losses by finding matching patterns or interpo-

lation to derive replacement packets which are similar to the original. These tech-

niques’ computations are complicated but performances are better than insertion-

based schemes.

• Prediction-based schemes recover losses by predicting them from previous packets

according to training data or entropy theory in the language [28].

• Regeneration-based schemes take advantage of the knowledge of the audio com-

pression algorithm to collect codec parameters and recover the loss by using those

parameters of packets surrounding the loss to produce replacement packets. Such

recoveries are expensive to implement but give satisfying results.

Although Prediction-based schemes and regeneration-based schemes perform better than

insertion-based and interpolation-based schemes in packet loss concealment, both of

them are too complicated and expensive to implement. Insertion-based schemes are easy

to implement but with the expense of the speech quality after repairs. After balancing

the performance and feasibility, I mainly focus on the interpolation-based techniques,

which consist of following three categories.

• Odd-even interpolation: Using Odd-even interpolation to recover the packet

loss is first presented by Nuggehally [21].The speech samples are divided into

adjacent odd-sample and even-sample packets, respectively. Samples in the lost

packet can be interpolated by odd-samples or even-samples in this packet. Odd-

even interpolation works pretty good for recovering single loss, however, both the

odd-sample and even-sample packets in a pair can be lost. When this happens,

odd-even interpolation will fail to recovery the loss.

• Waveform Substitution: Waveform substitution techniques use the speech signal

before, or after, the loss to find an alternative to recover the lost segment. Wave-

form substitution is effective when the speech signal doesn’t change a lot during

a missing packet [11]. When a reliable pitch detection is available, a new kind of

11
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waveform substitution called Pitch waveform replication (PWR) technique is pro-

posed [43]. If the pitch period P ms is available for a voiced speech, then the missing

segment can be filled by repeatedly copying the last P ms of received speech before

the loss, after the loss or both. For unvoiced speech segments, simple repetition of

previous packets is employed instead . Naofumi Aoki presented a modified two-side

PWR technique [1], which takes the coherency of the pitch waveforms between the

backward and forward frames into account. In that paper, the study assumes that

the variation between backward and forward frames can be modeled as a linear

function. In other words, the pitch period is changed with respect to the time when

we repeat the waveform from backward or forward frames. This technique, to some

degree, alleviates the phase mismatches inside recovered segments and produces

better results than the others.

However, there are still some problems existing in PWR technique degrade the

performance of recovery. In the following part, we mainly take two problems into

account.

– Metal/Tinny sound

The loss gap may consist of several consecutive packets instead of single

packet. In another word, the pitch waveform replication may be applied sev-

eral times in order to cover the gap. PWR is seemed as a kind of repetition but

with pitch information, however, the substitution waveform is completely the

same with the previous waveform. As a result, concealment generates highly

periodic signal, which degrades the perceptual quality significantly. Users can

distinguish that sounds are heard not that natural after the concealment and

such sounds are called "metal" or "tinny". This problem is inevitable in any

repetition-based technique.

– Wrong pitch period detection

Pitch detection is an indispensable procedure of PWR technique. A reliable

pitch detection guarantees the high recovery quality. However, the task of

estimating pitch period is still very difficult now because a) the human vocal

tract is very flexible and varies from people to people. b) The emotional

state of speaker also influences the pitch period. c) Pronunciation(accent) can

also change the pitch period. d) pitch period varies from 1.25ms to 40ms [25].

Therefore, no one algorithm so far perfectly derives the pitch period, especially

12
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FIGURE 2.3. Wrong pitch detection in PWR

in a noisy environment. In another word, wrong pitch period detection is an

inevitable problem. From the Figure 2.3, the pitch period is determined as a

wrong number so that the substitution waveform doesn’t look similar to the

original.

• Time Scale modification(TSM): Time scale modification allows segments on

either side of the loss to be "stretched" to fill the gap. One of the most advanced

version of TSM is called waveform similarity overlap-and-add (WSOLA).

Depending on the previous researches, WSOLA proposed by Werner Verhelst et al.

[42] is a member of TSM techniques and seems like a ideal method for covering

losses [38]. WSOLA finds overlapping waveform on either side of the loss and

averages where they overlap to cover the loss. WSOLA can preserve the naturality

of sound better than traditional time-scale modification method, because it doesn’t

simply stretch sound segments and change the pith period.

The operation of the WSOLA technique is illustrated in figure 2.4 and explained
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FIGURE 2.4. Illustration of a WSOLA algorithm for stretching signal

below.

Proceeding in a left-to right direction, suppose frame 1 is the last frame that is

received from the input and directly added to the output (frame a = frame 1). 1’
is the adjacent frame coming after frame 1 and overlap-add with frame 1 in a

synchronized way. WSOLA then needs a frame b which can overlap-add with a
in a synchronized way and is able to be extracted from the input. Since frame

a = frame 1, WSOLA just needs to go back L samples (depending on the ratio

of stretching signal) and locate a frame that resembles 1’ as closely as possible

within the tolerance interval ∆) in the input. The position of frame 2 is located by

maximizing a similarity measure between the sample underlying frame 1’ and the

input segment. Assume the most similar frame with 1’ is frame 2, then add it to the

output as frame b and overlap-add with a in a natural way. After overlap-adding

b with a in the output, WSOLA continues to process the "neighbourhood" of 2
and stretch it. From the figure above, it’s easy to see the length of the original is

stretched by WSOLA. Suppose the loss happens from Time 3200 to Time 6500,

then this gap is fully covered by WSOLA. Since frames are overlap-added in a

synchronized way and the original pitch period is maintained, the sound after

stretching will hear naturally. This is the basic starting point to use WSOLA as a

14
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packet loss concealment technique.

In practice, the parameters in WSOLA have to be chosen carefully to ensure the

high recovery quality. There are five parameters, including window size, overlap

ratio, scaling factor, tolerance interval and length of signal to be stretched, existing

in WSOLA techniques:

Window size: Window size is chosen to be 20ms. First, 50Hz is the lower bound

on frequency of human speech and its corresponding time period in time domain is

20ms. In another word, 20ms speech segment must contain at least one entire pitch

period, which ensure the pitch period will not be changed after the overlap-adding.

Second, Speech signal may be stationary when it is viewed in blocks of 10-30 ms.

Window size should be chosen from this interval so that the similar waveform can

be extracted and overlap-added in a natural way.

Overlap ratio: Overlap ratio is chosen to be 50% to make the sum of adjacent

window functions maintains 1. In another word, the amplitude of original waveform

won’t change after overlap-addings.

Scaling factor: Scaling factor is used to determine the ratio of stretching the

original waveform. When the size of gap is known, it is used to divide by the length

of signal to be stretched to get the scaling factor.

Tolerance interval: Tolerance interval is the ∆ in figure 2.4, which gives a inter-

val to let WSOLA search for the most similar waveform with the "neighbourhood"

and use it in the overlap-add procedure later.

Length of signal to be stretched: In the buffer, it’s called history buffer. History

buffer is used to be stretched in order to cover the gap.

In practice, the most challenging part is to balance the scaling factor, tolerance

interval and length of signal to be stretched so that the stretched signal can cover

the gap but doesn’t exceed a lot, since the excess part will destroy the coming

signal. Because of the tolerance interval, user never knows the exact length of the

stretched signal. Larger tolerance interval means more opportunities in finding

the best match to overlap-add the signal with expense of more uncertainties. When

tolerance interval is increased, the scaling factor or length of history buffer should

also be increased in order to ensure the stretched signal covers the gap. In this

scenario, the overlap-add quality is maintained but the uncertainty is enlarged. As
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(a)

(b)

FIGURE 2.5. (a) Stretched signal is not long enough to cover the gap (b)
Stretched signal is too long to destroy the coming signal

shown in the figure 2.5 (a) and (b), the stretched signal is too short and too long to

fill-in the gap, respectively. Our goal is to cover the gap so only (b) is allowed in the

implementation. Scaling factor is large and the coming part may suffer distortions.

While if the tolerance is minimized, the uncertainty is also minimized, however,

the overlap-add quality is degraded as shown in the figure 2.6. The stretched signal

part distorts a lot and sounds weird after the recovery. Even the parameters are

tuned into good situation and make one of the recoveries work perfectly, however,

they may not be efficient in the others.

Apart from the uncertainty introduced by tolerance interval, latency is another

significant drawback of WSOLA technique. Reasons of the length of the signal to

be stretched should be long enough are twofold: First, the longer length means

16
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FIGURE 2.6. Small tolerance interval degrades overlap-add quality to introduce
distortion

more times to stretch the signal in order to fully cover the gap. Second, the length

should be long enough in case a long loss happens. The signal to be stretched

can handle the repair without excess stretch, and excess stretch makes recovered

signals sound quite different with the original. In the buffer, this part of the signal

need to wait to be played-out after the recovery so that the whole speech segment

sounds smoothly. Additionally, the merge part between stretched signal and coming

signal imposes latency as well, and this part of latency is unknown because of the

uncertainty. Also, the size of gap need to be known to get the scaling factor and

this size can only be determined once the system successfully receives the packet.

These latencies are unacceptable for some interactive applications which really

need real-time communications.

In conclusion, WSOLA is not suitable when a number of losses happen and these

losses are too short or too long compared with the signal to be stretched because

of the uncertainties introduced by the tolerance interval. In addition, WSOLA

technique adds too many latencies to play-out the received speech segments and

makes real-time communication process belated.
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3
PROPOSED PACKET LOSS CONCEALMENT SCHEME

In this chapter, a packet loss concealment scheme is proposed to conceal the packet loss

in the speech transmission under constraints given by real-time applications. Firstly,

motivations to implement proposed PLC scheme are presented. Secondly, the structure

of the proposed scheme is described. Thirdly, a complete and detailed description of PLC

algorithm is performed. Eventually, the signal processing steps and latency consumptions

of this scheme are analysed.

3.1 Motivations

The motivations of proposing a new adaptive PLC algorithm for real-time applications

are twofold:

First, existing PLC algorithms, such as two-side pitch waveform replication, WSOLA,

etc., they reconstruct packet loss based on the known size of gap. In order to derive the

size of gap, above algorithms have to take actions until a packet is successfully received

after the loss. Such PLC schemes impose large latencies, which are unacceptable for

real-time applications.

Second, as shown in the investigations of packet loss characteristics and existing PLC

algorithms in the chapter 2, most losses consist of single packet. These single losses

can be easily repaired by odd-even interpolation because the original waveform could be
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recovered by simply interpolating even or odd samples of itself. Odd-even interpolation

fails when both odd and even samples of one packet are lost. However, waveform-based

interpolations can be applied to erase effects caused by such short burst loss. As described

in the packet loss characteristics section, transmission may also suffer long loss runs. If

the burst loss is beyond certain length, the reconstructed waveform will diverge from

the original and produce artificial effects which degrade the speech quality significantly.

Then, an attenuation function should be employed to alleviate these artificial effects.

Another packet loss characteristic mentioned in chapter 2 is that short loss runs get close

together in bursty periods. Waveform-based interpolations reconstruct the packet loss

based on the waveform information in previous received parts. Assume there are many

losses including single loss and burst loss in one period, early losses will be reconstructed

by waveform-based interpolations and used to recover later losses. Waveform-based inter-

polations introduce distortions (difference between the substitution and the original) in

the reconstruction and, to some degree, destroy the waveform information used to recover

the next loss so that the distortions as well as artificial effects are accumulated. With

increasing of the number of distortions, the artificial effects will become distinguishable

and impair the speech quality. However, odd-even interpolation can repair a part of

losses in bursty periods to make the recovered waveform resemble the original as closely

as possible.

As a result, we proposed a scheme named continuous update, which introduced extremely

small latency to the system. By using this scheme, an adaptive PLC algorithm combining

odd-even interpolation, waveform similarity matching and silence substitution, was

proposed to deal with the packet loss in real-time applications.

In section 3.2, the use of continuous update scheme is described. Section 3.3 shows

all details in the adaptive packet loss concealment algorithm. Section 3.4 analyses the

complexity, latency and resources consumptions introduced by this algorithm.

3.2 Continuous Update

In common streaming speech transmission, the speech samples will be first stored in a

buffer and then played-out until the buffer is full. Due to the packet loss in the transmis-

sion, some loss gaps occur in the buffer. PLC unit (see Figure 1.4) then needs to repair

the loss and forward the recovered waveform to the next step. However, for real-time
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FIGURE 3.1. Illustration of the continuous update scheme

applications, above procedures impose the unacceptable latency.

In continuous update, as shown in the figure 3.1, buffer is used in different way from

streaming speech transmissions. Samples in the buffer will be overwritten when new

speech samples come in, but PLC buffer (History Buffer) will keep a copy of received sam-

ples so that the packet loss concealment unit can use them to reconstruct lost samples.

Received speech samples will forward to the next step instead of staying in the buffer.

When a missing part is indicated, it will be recovered immediately by using samples in

the PLC buffer. Once the missing part is reconstructed, it will be updated to the PLC

buffer in order to recover the coming potential loss. If the next part is lost as well, the

same reconstruction process occurs until the proper packet arrives.

Figure 3.2 is used to describe the way of reconstructing waveform in continuous update

scheme. When part 6 was indicated as a missing part, PLC algorithm could reconstruct

it immediately and update a copy of it to the PLC buffer. Part 7 was lost as well,

then samples in updated buffer were able to be used to reconstruct part 7. Whole

recovery stopped once part 8 was successfully received. Since we did no changes to

received samples and did not have to know the size of the missing part, continuous

update procedure introduced negligible latency to the whole system. The specific latency

consumption in this scheme is presented in the section 3.4.
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FIGURE 3.2. The way of reconstructing waveform in continuous update scheme

3.3 Adaptive Packet Loss Concealment

The reason of giving adaptive packet loss concealment as a name to the proposed

algorithm is that the proposed PLC algorithm will make the decision to use which

algorithm for concealing the packet loss based on the number of consecutively lost packets.

Figure 3.3 gives an illustration of the adaptive packet loss concealment algorithm, which

is integrated into the block named packet loss concealment in the Figure 3.1. As shown

in the Figure 3.3, a pair of odd-sample and even-sample packets are hopefully received

at the receiver side from the sender side. If both of them are received, PLC will simply

assemble them back to the normal order and forward them to the next step. If one of the

packets is received, PLC then upsamples the received one with an integer factor 2. If

both of them are lost, PLC then chooses to use WSM or repetition instead. If the previous

segment is detected as unvoiced/silence, simple repetition will be employed, if not, then

WSM will be used to find ideal substitutions. Reconstructed waveform will be merged

with previous speech samples in order to erase discontinuities at boundaries. With

increasing of the number of reconstructions, the reconstructed waveform will attenuate

to zero once the gap exceeds a certain length. When a incoming packet arrives, it will be

merged with the last recovery immediately and forwarded to the next step. Details in
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FIGURE 3.3. Illustration of the adaptive packet loss concealment algorithm

the adaptive PLC are as follows.

3.3.1 Odd-even Interpolation

The speech samples are partitioned into adjacent odd-sample and even-sample packets,

respectively. When transmitting both odd-sample and even-sample packets, there are

four scenarios at the receiver part as shown in the Figure 3.4. In scenario 1, both packets

are successfully received, samples just need to be put back into the original order to

recover the primary speech segment. In scenario 2 and 3, only odd-sample or even-sample

packet is received. Then, interpolation with low-pass filter is applied to interpolate the

packet to the original length. An expander is shown in the Figure 3.5 to explain steps

in the interpolation, the sequence separated by zeros enter a low-pass filter (LPF) with

gain factor L=2 in our case. Then, the sequence is interpolated with the gain factor L=2.

The waveforms constructed by upsampling the odd-sample or even-sample packet are

shown in the Figure 3.6, the red line is the original waveform, while black one and blue

one are reconstructed by interpolating the even samples and odd samples, respectively.

However, if both packets are lost as shown in the scenario 4, then a loss with two-packet

length occurs and has to be reconstructed by other techniques.

The performance of odd-even interpolation will degrade when the signal frequency is

higher than the (original sampling rate)/4. If we want to up-sample the sequence (odd-

sample or even-sample packet whose sampling frequency is (original sampling rate)/2)

by a factor 2, then the gain in the low-pass filter (LPF) is 2 and corresponding cut-off
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FIGURE 3.4. Scenarios in receiving odd-sample and even-sample packets at the
receiver

FIGURE 3.5. An expander to explain steps in the interpolation

frequency is π/2. In another word, if the original sampling rate is 48kHz, the frequency

which is higher than 12kHz will be removed by the LPF. This issue introduces errors to

the implementation of odd-even interpolation when signals contain very high-frequency

parts. However, in telephony, the usable voice frequency ranges from 300 Hz to 3400 Hz,

so the above problem will not happen to speech signals.

3.3.2 Waveform Similarity Matching

In this section, first, the motivation to choose waveform similarity matching in stead of

other techniques in this adaptive PLC algorithm is presented. Second, details in WSM

are described.
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FIGURE 3.6. Waveform constructed by odd-even interpolation

Suppose both odd-sample and even-sample packets are lost in a transmission, odd-even

interpolation then has no information about the current speech segment. With this

happens, WSM including segment repetition will stuff the missing part based on the

speech information in the history buffer (PLC buffer). Considering the continuous update

scheme, simple repetition (simply repeat the last received segment to fill-in the gap) can

be implemented, modified one-side pitch waveform replication (back to one pitch period

just before the loss, and take a part of/couple of pitch pattern/patterns with two-packet

length to fill-in the gap) can be applied as well.

As for simple repetition, the last received packet cannot be used to predict the coming

packet because it can’t make sure that this packet can connect itself in a synchronized

way, especially for the voiced speech segment. As shown in the Figure 3.7, repeating the

speech segment in the part A after itself will produce a "jump" called DC offset in the

red dashed block. This DC offset produces distinguishable artificial effects, even it is

smoothed by some merging techniques. However, repetition can be applied to unvoiced

speech segment without producing perceivable artificial effects [11], since unvoiced

speech is noise-like without any periodic nature. By looking the waveform, the amplitude

level of unvoiced speech segment is so low that the offset introduced by repetition can, to
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FIGURE 3.7. DC offset introduced by repetition

some extent, be ignored.

As for pitch waveform replication (PWR), some inevitable problems listed in chapter 2

also occur in continuous update scheme: First, the performance of PWR relies on the

performance of the pitch detection procedure, which gives accurate results for highly

periodic voiced speech signal. However, it may derive wrong pitch period with lowly

periodic signal or noisy signal. Also, the pitch detection algorithm adds complexity to

the PWR. Second, the simple replication of the same pitch period cause artificial effects

(i.e. tinny/metal sounds), since highly periodic signal is generated and the same tone is

sustained.

Considering all issues mentioned above, We proposed a PLC algorithm named waveform

similarity matching, which performs in continuous update scheme and doesn’t only

rely on last pitch period to fill-in the gap. The basic assumption of waveform similarity

matching is that the signal is quasi-periodic in the time domain and its spectral charac-

teristics are relatively invariant for a short duration. In another word, we can pick the

one which can connect the previous packet in the most natural way instead of only using

the segment in last pitch period. As shown in Figure 3.8, waveform similarity matching

uses the last part before the loss as the template to find the most similar part with itself

(template’) in the history buffer, and copy the following part (candidate) with two packets

length in our case to substitute the loss.

WSM algorithm is composed of several components , such as voice activity detection,
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FIGURE 3.8. Illustration of Waveform Similarity Matching (WSM): (a) the
original signal; (b) the corrupted signal; (c) the signal recovered by WSM

similarity matching algorithm, parameters selection and packet merging technique.

• Voice activity detection The first step in WSM is voice activity detection. If the

lost segment is estimated to be the voiced speech, then a missing packet will be

reconstructed by WSM, if the lost segment is unvoiced speech, a simple repetition

of the last speech segment will be applied instead.

Here, a combination of zero-crossing rate calculation and energy calculation is used

to determine the voice activity.

The zero-crossing rate (ZCR) is a measure of number of times in a given frame

that the amplitude of speech signals crosses through a value of zero. Zero-crossing

analysis is widely used in the signal processing field as a typical parameter. Voiced

speech is produced because of excitation of vocal tract by the periodic flow of air

at the glottis and usually shows a low zero-crossing count, whereas the unvoiced

speech is produced by the constriction of vocal tract narrow enough to cause turbu-

lent airflow which results in noise and shows a high zero-crossing count [2][20].
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ZCR is defined formally as

ZCR =
L−1∑
l=1

∣∣∣∣ sgn [x(l)]− sgn [x(l−1)]
2

∣∣∣∣
where, sgn [x(l)]=

{
1, x(l)≥ 0

−1, x(l)< 0

(3.1)

where x is a signal of length L.

However, zero-crossing of a waveform are sensitive to the formants, noise, and any

DC level in the waveform [9]. Another parameter, the short time energy (STE),

is also widely used for speech activity detection. Short time energy is a simple

but effective classifying parameters for separating voiced and unvoiced speech

segments based on the energy of speech signals in the frame [7]. Voiced speech

signals always have higher energy in a frame than unvoiced speech signals do [30].

Energy of signal in a single frame is defined formally as

(3.2) STE =
L∑

l=1
x(l)2

where x is a signal of length L.

As explained before, If one speech segment has low energy and large or zero zero-

crossing rate, this segment is considered as the unvoiced/silence speech segment,

otherwise the segment is voiced speech segment. The Block diagram of the voice

activity detection scheme is shown in Fig.3.9.

The thresholds of energy and zero-crossings rate for making the decision should be

set in advance. In our simulation, we analysed both of them in 4ms speech segment.

The threshold for energy was chosen to be 0.5 based on the energy of speech signals

used in our simulations. The energy level of one speech signal is plotted in the

Figure 3.10. From the figure, the energy of most of unvoiced/silence segments are

lower than 0.5, while most of voiced segments have higher energy level.

For zero-crossing, the threshold was chosen to be 10. With a 20ms unvoiced speech

signal, the zero-crossing rate is supposed to be higher than 50 [3], so in our case,
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FIGURE 3.9. Voice activity detection

FIGURE 3.10. Energy level of the speech signal used in our simulations

the threshold of zero-crossing rate in a 4ms segment is set to be 10. The criteria for

determining the voice activity was that if the energy was smaller than the energy

threshold and the zero-crossing rate was larger than the ZCR threshold or the ZCR

is equal to zero (silence), then the segment was assumed to be unvoiced/silence

speech segment, otherwise, it was voiced speech segment. As shown in the Figure
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FIGURE 3.11. Simulation of voice activity detection

3.11, a speech segment containing 10000 samples was analysed by the proposed

voice activity detection. In the detection algorithm, the unvoiced/silence speech

signal was set as 0, while voiced speech signal was set as 1. From the figure, the

speech segment was perfectly classified into two classes.

Additionally, there are two points need to be pointed out: First, in normal VAD

algorithm, the speech is divided into frames by window functions and frames

are normally longer than 4ms. In each frame, the speech signal is considered

to be stationary and has identical voice activity. In my case, packets arrive at

the receiver side one by one and are indicated as the loss or not immediately. If

a loss occurs, the voice activity of this segment needs to be predicted based on

the previous signal in order to take any action for repairing it. The experiments

show that the voice activity of a speech segment can be precisely detected in the

4ms segment with appropriate thresholds and can be used to predict the voice

activity of the next part. Second, the criteria for the unvoiced/silence segment

detection should be more critical than the one for voiced segment, since WSM

can be applied to unvoiced/silence segment with no harm to the reconstructed
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signal (even there is no similarity in unvoiced speech signals, WSM can still find a

part which substitutes the lost unvoiced signal), however, if the voiced segment

is detected as unvoiced/silence, repetition may degrade the speech quality as

mentioned before.

• Similarity matching: One essential factor influencing the performance of wave-

form similarity matching algorithm is the accuracy of finding the template’ (see

Figure 3.8), which best matches the template. There are a number of methods used

to calculate the waveform similarity. Template’ slides from the beginning of history

buffer to the end sample by sample.

One simple method is the cross-correlation, which measures the similarity between

template and shifted copies of template’. If the number of samples in template is T,

starting position of template’ is n, history buffer size is N, x and y indicates the

template and template’, respectively. then the cross-correlation formula is:

(3.3) Sxcorr(n)=
T∑

t=1
x(t)y(n+ t), n = 1,2, ..., N −T

The result of the match is the value of n corresponding to the maximum Sxcorr(n).

However, the value of S(n) can be really affected by the signal amplitude and

lead a mismatch, which significantly degrades the performance of this algorithm.

In order to get results which are sensitive to the waveform shapes rather than

signal amplitudes, normalized cross-correlation (Equation 3.4) has to be applied.

In my simulation, normalized cross-correlation worked way better than the non-

normalized one in this algorithm.

(3.4) Sxcorrnorm(n)=
∑T

t=1 x(t)y(n+ t)√∑T
t=1 x2(t)

∑T
t=1 y2(n+ t)

, , n = 1,2, ..., N −T

Another commonly used method is the average magnitude difference function

(AMDF), which is defined as

(3.5) Samd f (n)=
T∑

t=1
|x(t)− y(n+ t)| , n = 1,2, ..., N −T
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The result of the match is the value of n corresponding to the minimum Samd f (n).

AMDF technique faces the normalization as well. In order to alleviate the influence

introduced by the level changes, three normalized AMDFs are applied instead of

the basic one. One is normalized by the square root of energy, the formula is shown

below:

(3.6) Samd f root(n)=
T∑

t=1

∣∣∣∣∣∣∣
x(t)√∑T

t=1 [x(t)]2
− y(n+ t)√∑T

t=1 [y(n+ t)]2

∣∣∣∣∣∣∣ , n = 1,2, ..., N −T

Second one is normalized by the sum of the absolute magnitudes of the samples,

which is quite similar with the previous one.

(3.7) Samd f absolute(n)=
T∑

t=1

∣∣∣∣∣ x(t)∑T
t=1 |x(t)| −

y(n+ t)∑T
t=1 |y(n+ t)|

∣∣∣∣∣ , n = 1,2, ..., N −T

Third one is normalized by dividing by the peak-to peak amplitude.

(3.8) Samd f peak(n)=
T∑

t=1

∣∣∣∣ x(t)
xmax − xmin

− y(n+ t)
ymax − ymin

∣∣∣∣ , n = 1,2, ..., N −T

where, xmax and ymax are the maximum value in x and y, respectively, and similarly

for xmin and ymin.

In the simulation,compared with non-normalized methods, normalized methods

made the search be sensitive to the waveform shape instead of amplitude change,

so the reconstructed waveform was much more similar with the original. As for

above four normalized methods, they produced almost equivalent results in our

simulation.

• Packet size, Template size and history buffer size: In this section, we present

the effects of packet size, template size and history buffer size on performance of

reconstructions. To perform above evaluations, we generate a number of loss pat-

terns by four-state Markov model (see appendix A) and recover losses by waveform

similarity matching with various parameters. Composite objective measures (see
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appendix C) is used to obtain quality scores. The packet size is changed from 2ms

to 32ms, the template size is from 1ms to 30ms and the history buffer size is from

2ms to 512ms. The scores are average scores derived from different loss patterns

and audio samples.

As shown in the Figure 3.12(a), compared with template size and history buffer

size, the packet size is the major impact on the performance of reconstructions

and smaller packet size shows higher quality score. The reasons is that smaller

packet size always produces smaller loss gap, which is easier to be recovered by

WSM algorithm because the missing segment is so short that the characters of the

speech signal do not change significantly and the speech signal is still stationary.

Apart from high quality scores, smaller loss gap saves resources (history buffer)

used to recover losses. However, the packet size cannot be too small to lose the

efficiency in packet transmissions. Considering all benefits and limits, the packet

size is chosen to be 2ms or 4ms.

With 2ms packet size in our case, WSM always faces to a 4ms loss because of the

odd-even interpolation, so we take the 4ms plate out of the Figure 3.12(a) and

plot it in the Figure 3.12(b) in order to investigate the specific template size and

history buffer size used in the WSM algorithm. It’s easy to find that the highest

scores concentrate on certain part in the figure. We cut two slices out of the surface.

Figure 3.13(a) shows quality scores as a function of template size when the history

buffer size is 32ms. From the figure, the appropriate template size is between 3ms

and 5ms. If it is too small, the waveform information in the template is simply

insufficient so that WSM may not find the ideal match. The quality also goes down

when the template is too long, because it contains too many uncorrelated waveform

components to find the lost segment. The choice of template size appears to be

independent of packet size and history buffer size. Again, we eventually determine

the template size as 4ms, which is a safe choice to implement this algorithm. Figure

3.13(b) plots quality scores as a function of history buffer size when the template

size is 4ms. If the history buffer is too short, then it will omit the best substituted

waveform, especially for some male voice with very low frequency. After a certain

length, the history buffer size does not influence scores significantly as long as

you have a perfect similarity matching algorithm. However, a long history buffer

seems not necessary because it is resources-consuming. Additionally, longer history
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(a) (b)

FIGURE 3.12. (a) Quality score with different packet size, template size and
history buffer size. (b) Quality score with different template size and history
buffer size when the packet size is 4ms.

(a) (b)

FIGURE 3.13. (a) Quality score versus template size when the history buffer is
32ms. (b) Quality score versus history buffer size when the template size is
4ms.

buffer is always equivalent with longer time to determine the best substituted

waveform and introduces undesirable latency. As a result, we suggest that 30ms

is an appropriate and safe choice for history buffer. Note that the history buffer

appears to be dependent of packet size and template size, because it must contain

at least one packet length for the recovery.

• Packet Merging: In waveform substitution, speech impairments can happen

due to the discontinuities at boundaries between the successfully received speech

segments and reconstructed speech segments. The discontinuities yield artificial

effects, which is pretty annoying by listening. There are couple of methods used to

smooth discontinuities. One method called phase matching algorithm is proposed

in [41]. the reconstructed speech segment is time-scaled so that the ending phase
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matches the following speech segment in a natural way without any discontinuity.

However, a reliable phase estimator always imposes complexity into the algorithm.

Another method is moving average, which creates series of averages of different

parts of the speech segment. Moving average technique can smooth discontinuities

with producing the distortions caused by averaging samples to the speech wave-

form. An overlap-based based packet merging technique was presented in [11].

The reconstructed waveform overlaps and adds with the received speech using

window function which yields a weighted sum between the overlapped segments.

This techniques, besides the fact of being easy to implement, the performance is

also satisfying.

In this thesis, we use this overlap-add based packet merging technique to smooth

discontinuities. In the similarity matching part, we take Tm more samples at each

end of the substitution packet to become the Head (H) and Tail (T), respectively. As

shown in the Figure 3.14, when a packet is indicated as a loss, Received Packet 1
is delayed to be played-out, the Head of Substitution Packet a overlaps and adds

with the last part of Received Packet 1 by crossed Hanning window functions, while

the Tail is not applied until the received packet 2 arrives. In our simulation, the

value of Tm was chosen to be 1ms. If Tm was too short, the discontinuity could not

be erased perfectly, if Tm was too long, the overlap-add process introduced more

latency because of the continuous update scheme had to delay received parts before

and after the loss. In our simulation, a long Tm period seemed meaningless for

smoothing discontinuities.

Waveform similarity matching (WSM) is effective when characters of speech do not

change significantly during the missing part. Speech waveforms show quasi-stationary

intervals which always fall into one of three distinct categories: voiced speech segments,

unvoiced speech segments and silence. WSM will lead a wrong substitution if the tran-

sition from one category to another within the missing part. As shown in the Figure

3.15, there is a transition from unvoiced speech to voiced speech within the missing part.

Based on previous received packets, WSM will simply copy the preceding packet since the

missing part is predicted to be the unvoiced speech segment. This reconstruction leads

a distortion as well as a loss of speech information. Some algorithms named transition

protection were developed to protect the transition, however, such algorithms are very

complex to implement and may introduce undesirable latency since they need to wait
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FIGURE 3.14. Packet merging technique

for other packets which contain transition information and then start recovering the

waveform of that missing transition. As shown in the Figure 3.15, the use of odd-even

interpolation may solve above problem in WSM because it can retrieve the speech in-

formation in the transition when only one of the packets containing the information of

transition is lost.

Another reason makes WSM find an incorrect waveform substitution is that characters

of the speech signal change within the missing part. As shown in the Figure 3.16, during

the missing part, characters of the signal have changed and the signal cannot be assumed

as a stationary signal with the prior part. Using the only preceding signal to reconstruct

the missing part must lead a distortion. Again, two-side methods (fill-in the missing part

from preceding and succeeding signals) cannot be used because the latency constraint

doesn’t allow the algorithm to take actions after receiving succeeding signals. To some

extent, odd-even interpolation alleviates this kind of distortion, since the information of

missing speech segment containing changing characters may be recovered by adjacent

packets from both sides of the loss.

Above two problems in WSM can be alleviated by odd-even interpolation. These are also

motivations to combine both of them together. Unfortunately, WSM sometimes produce
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FIGURE 3.15. A transition from unvoiced speech to voiced speech within the
missing part

periodic signal like PWR does, because the substitution may be a part of waveform in

previous pitch period and produce artificial effects, however, this probability is small.

3.3.3 Attenuation and Silence Substitution

Packet transmissions sometimes suffer heavy congestion and disconnection with servers.

The duration of burst loss may go up to hundreds milliseconds, or even longer. So far, no

one PLC algorithm at receiver side can handle this without any assistance from codec

information, transmitter part, etc. However, if the PLC algorithm is kept working locally

in a standalone system, additional complexity and latency are not expected, especially in

real-time interactive applications.

With long recoveries, it is necessary to attenuate the speech signal as the recovery process.

As the reconstructed speech gets longer, the speech signal is more likely to diverge from

the original signal. For the first 10ms of the recovery, reconstructed waveform would not

attenuate significantly since the size of gap is unknown to the PLC and most of loss runs

are shorter than 10ms (see measurements presented in the Figure 2.1). Slow attenuation
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FIGURE 3.16. Characters of the speech signal change within the missing parts

at the beginning makes sure that the amplitudes of most of recovered waveform for the

short burst loss are retained. At the start of coming recovery, the attenuation factor

increase rapidly to zero. After 30 ms, the attenuation factor becomes zero, so the silence

substitution will be applied instead, because the speech signals can only be assumed as

stationary signals within 30ms. In another word, WSM reconstructs waveform based

on waveform shape and characters of speech signals do not change significantly for a

short duration. If the loss gap is longer than 30ms, it is unreasonable to recover the later

waveform by preceding signals in the PLC buffer.

In order to attenuate reconstructions slowly in first 10 ms, while rapidly in the coming

20ms. Attenuation factors are obtained from the second half of the Hanning window

function. Silence substitution stops when the incoming packet arrives. A fade-in function

with 1ms duration will be applied to smooth the boundary between the silence substitu-

tion and the incoming packet.

38



3.4. SIGNAL PROCESSING STEPS AND LATENCY CONSUMPTIONS

3.4 Signal Processing Steps and Latency
Consumptions

Signal processing steps:
Adaptive algorithm is composed of three PLC algorithms, all these three algorithms

should be implemented in the system. However, three of them do not need to run at the

same time. There is only one algorithm will be applied in every recovery. Steps of signal

processing can, to a degree, be used to indicate how complex the algorithm is.

As for odd-even interpolation, the algorithm can be explained as a 2-step process: 1)

creating a new sequence xn consisting of the original sequence, separated by n-1 zeros.

2) if both of packets are received, replacing zeros by samples in the second packet. If not,

smoothing the new sequence with a low-pass filter, which substitutes the zeros.

As for WSM, the first step is voice activity detection which contains two-steps: 1) zero-

crossing rate calculation 2) energy computation. Then, if the segment is unvoiced/silence,

a simple repetition is employed and samples in previous segment are simply copied. If the

segment is voiced, 4-step process will be conducted: 1) normalized cross-correlation/AMDF

is used to find the substituted samples. 2) the substituted samples with head and tail

are copied. 3) attenuation function is applied to samples. 4) overlap-add happens at

boundaries to smooth discontinuities.

As for silence substitution, only filling-in the gap with zeros is needed.

Latency consumptions:

Whole process produces extremely small latency because of the continuous update scheme.

The latency existing in packet buffer parts really depends on the packet size. In our

simulation, we chose the packet size to be 2ms. Figure 3.17 showed latency budget in

the system, each buffer introduced 4ms (2 packets) delay by collecting speech samples.

The reason of collecting 2 packets was that odd-even interpolation needed to make the

decision after both even-sample and odd-sample packets were collected at the receiver

side. The latency in WSM algorithm was imposed by packet merging. Since overlap-

add parts existed at each end of the packet (see Figure 3.14), there were 2ms extra

(2*Tm=2*1ms=2ms) latency. In total, the computational latency in the system was 10ms

(2*4ms+2ms=10ms), which was acceptable for real-time applications like Bosch Dicentis
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FIGURE 3.17. Latency budget in the system

conference system. Of course, some other parts, such as computation procedures, step

transformations, etc., introduced delays to the system as well, however, the effects were

so small that those latencies could, to some degree, be ignored.
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4
RESULTS, ANALYSIS AND DISCUSSION

In this chapter, I used MUSHRA listening test to evaluate the performance of several

packet loss concealment algorithms, such as odd-even interpolation, waveform similarity

matching (WSM), pitch waveform replication (PWR), under different loss conditions.

First, details in experiments are presented and it is followed by evaluation results and

corresponding discussions.

4.1 MUSHRA listening test

4.1.1 Subjective Quality Measures

Subjective quality measures are measured based on the subjective opinions from listen-

ers on the quality of the speech and considered as being the most reliable method of

evaluating the speech quality.

Multi-Stimulus Hidden Reference and Anchor (MUSHRA) is one of the advanced opinion-

based measures defined by ITU-R recommendation BS.1534-1 [35]. Multi-Stimulus

allows listeners to have instant random access to each of test items and the reference

signal. Hidden reference means one of the test items is a copy of the reference signal

(absolutely clean speech signal). Compared with other recommendations for listening

test, MUSHRA uses multi-stimulus with hidden reference, continuous quality scale and

loop function, which make sure listeners are able to deal with clearly audible differences
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FIGURE 4.1. Relation between MUSHRA scores and speech quality

and give rational scores.

MUSHRA consists of two phases: training phase and evaluation phase. The former is

required by the standard and lets listeners familiarise themselves and stimuli they

are going to listen. Comparing all signals with the reference signal, listeners have to

evaluate each signal belonging to different excepts by giving scores between 0 (really

bad) and 100 (absolutely excellent). The numerical scores are related to speech qualities

as shown in Figure 4.1. All the scores are statistical analysed by analysis of variance

(ANOVA) and mean scores, the details will be presented in the next section.

4.1.2 Statistical Analysis to Results

In this thesis, one-way analysis of variance (ANOVA) is used to process the data collected

from listening tests. ANOVA is applied to determine whether there are statistically

significant differences between independent groups. Compare with other statistical

analyses like t-test and comparison of mean values, ANOVA mainly focuses on the

differences among several groups and clearly shows the degree of those differences.

Also, ANOVA could show the range of absolute values given to the speech quality from

listeners. The absolute values tell us the quality of speech after recoveries and how

good the algorithm is. The illustration of ANOVA plot is described in the Figure 4.2. the

Red line represents the median number (q2) in this data set, the horizontal blue lines

which are higher and lower than median number represent the 75th (q3) and 25th (q1)
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FIGURE 4.2. Illustration of the ANOVA plot

percentile of the data, respectively. The maximum and minimum values are shown with

black lines on the top and bottom. The outlier is plotted individually using the red "+"

symbol. The median number comes up with a 95% confidence interval, which reflects

deviations among different excepts and listeners. Here, 95% confidence interval (CI) is

presented in the following equation:

(4.1) 95%CI = q2± 1.57(q3− q1)p
NJ

where q2 is the median score of certain PLC algorithm, q1 and q3 are the 25th and 75th

percentiles, respectively. N and J is the number of listeners and excerpts, respectively.

With 95% confidence interval, we’re 95 percent confident that the true median value

for the scores ranges from the upper confidence limit to the lower confidence limit. In

another word, if the 95% confidence intervals of two groups do not overlap with each

other, then two medians are significantly different at the 5% significance level. Apart

from ANOVA, the mean score for each algorithm is calculated by averaging the scores

from different excepts and listeners:
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(4.2) µi =
1

NJ

N∑
n=1

J∑
j=1

µi jn

where µi jn is the score of PLC algorithm i for a given except j and a listener n.

The mean scores are used to refer to a central value of the scores given to different

algorithms.

4.1.3 Test Set-up

The reference signals were sampled by 48kHz and divided in packets of 2ms lengths,

they were processed by different PLC algorithms under different loss scenarios (see

Table 4.1 and Table 4.2). The whole test consisted of two listening tests: test A and B.

In the listening test A (as shown in Table 4.1), 2 female (around 7 seconds long, 48kHz

sampled speech sample with high pitch frequency) and 2 male (around 7 seconds long,

48kHz sampled speech sample with low pitch frequency) reference speech signals were

corrupted by different loss patterns with fixed packet loss rate 4%. The insertion points

of the different type of loss were chosen randomly in the sentence. As explained in the

chapter 2, there were five types of loss patterns used to investigate performances of

different PLC algorithms (adaptive PLC, WSM and PWR) under different packet loss

conditions for each reference speech signal. First, single loss at a high rate in bursty

periods meant single losses got close in a short time period (see chapter 2). Second to

fourth, changing the burst length of losses: 1,2,4 packets. Fifth, generating losses which

were 20 packets long (40ms). The corrupted signal without any repair was used to be the

low anchor signal in MUSHRA test (see standards in MUSHRA). This test contained

100 scores in total (4 sentences x 5 loss patterns x (4 PLC algorithms +1 reference)).

In the listening test B (as shown in Table 4.2), only 1 female (23 seconds long, 48kHz

sampled English speech sample) and 1 male (22 seconds long, 48kHz sampled English

speech sample) reference speech signals were corrupted by changing the loss rate from

2% to 8%, which were generated by four-state Markov model (see appendix A). Compared

with the audio samples used in the listening test A, audio samples in the listening test B

are longer. With the same packet loss rate, longer sentences always have larger number

of packet loss and more types of loss. This makes sentences corrupted by the model be
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able to represent the one with packet loss in the realistic network. Each audio sample

was processed by two algorithms: Adaptive PLC and State-of-Art PLC (see appendix

B). The corrupted signal without any repair was used to be the low anchor signal in

MUSHRA test (see standards in MUSHRA). This test contained 24 scores in total (2

sentences x 3 loss rates x (3 PLC algorithms +1 reference)).

Listening test A aimed to investigate which algorithm behaved the best in each loss

scenario. Listening test B was the comparison between the whole adaptive PLC algo-

rithm and STA PLC algorithm, to confirm that the adaptive one behaved better than

State-of-Art PLC in realistic transmissions with different packet loss rate.

Considering the human concentration dropped down with the increasing of listening

time, Listening test A and B were conducted separately and each one just costed listener

about 20-30mins. This action ensured that results reflected the reliable opinions from

listeners and were able to be used to represent algorithms’ performances.

In a listening test, more listeners always give more reliable and convincing results,

but the listening test is a time-consuming and cost-consuming process. Additionally,

the quality of ears of listeners also influences the reliability of results. After a careful

consideration, a total of 9 listeners with "good" ears were chosen to participate in the

listening test A and B. The listening tests were conducted in a separate testing room

and all material was rendered to listeners using a professional headphone. Each listener

could freely access the MUSHRA software and evaluate different algorithms without

any constraint.

4.2 Test Results and Analysis

In this section, the results of above two described listening tests are presented to

evaluate different PLC algorithms. In order to easily and clearly show absolute scores

and comparisons between different algorithms, the results are shown in the figure, where

ANOVA plot is first presented, then a table with the mean score of each algorithm follows.

The horizontal axe in each ANOVA plot represents PLC algorithms and the vertical axe

represents a score in the scale from 0 (Bad) to 100 (Excellent). In the result analysis, I

put results from female and male speakers under the same loss condition together and

draw a little discussion from the figure.
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Table 4.1: Listening test A

Listening Test A
Gender Samples Excerpt PLR(%) Loss type PLC algorithm

Female

Female 1

1 4 Single loss(high rate) Adaptive,WSM,PWR,lossy
2 4 Burst length 1 Adaptive,WSM,PWR,lossy
3 4 Burst length 2 Adaptive,WSM,PWR,lossy
4 4 Burst length 4 Adaptive,WSM,PWR,lossy
5 4 Burst length 20 Adaptive,Adaptive(no silence),lossy

Female 2

6 4 Single loss(high rate) Adaptive,WSM,PWR,lossy
7 4 Burst length 1 Adaptive,WSM,PWR,lossy
8 4 Burst length 2 Adaptive,WSM,PWR,lossy
9 4 Burst length 4 Adaptive,WSM,PWR,lossy

10 4 Burst length 20 Adaptive,Adaptive(no silence),lossy

Male

Male 1

11 4 Single loss(high rate) Adaptive,WSM,PWR,lossy
12 4 Burst length 1 Adaptive,WSM,PWR,lossy
13 4 Burst length 2 Adaptive,WSM,PWR,lossy
14 4 Burst length 4 Adaptive,WSM,PWR,lossy
15 4 Burst length 20 Adaptive,Adaptive(no silence),lossy

Male 2

16 4 Single loss(high rate) Adaptive,WSM,PWR,lossy
17 4 Burst length 1 Adaptive,WSM,PWR,lossy
18 4 Burst length 2 Adaptive,WSM,PWR,lossy
19 4 Burst length 4 Adaptive,WSM,PWR,lossy
20 4 Burst length 20 Adaptive,Adaptive(no silence),lossy

Table 4.2: Listening test B

Listening Test B
Gender Excerpt PLR(%) PLC algorithm

Female
1 2 Adaptive PLC,State-of-Art PLC,lossy
2 4 Adaptive PLC,State-of-Art PLC,lossy
3 8 Adaptive PLC,State-of-Art PLC,lossy

Male
4 2 Adaptive PLC,State-of-Art PLC,lossy
5 4 Adaptive PLC,State-of-Art PLC,lossy
6 8 Adaptive PLC,State-of-Art PLC,lossy
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• Listening test A – single loss at a high rate in bursty period

(a) (b)

FIGURE 4.3. (a) Scores for different algorithms from female sequences. (b)
Scores for different algorithms from male sequences.

The plots in the Figure 4.3 showed that the adaptive method behaved way better

than waveform similarity matching (WSM) and pitch waveform replication (PWR)

in this scenario. The scores given to the adaptive method approached 100, corre-

sponding to a excellent perceiving quality, because adaptive method in this case

worked exactly the same with odd-even interpolation, which perfectly reconstructed

the lost waveform based on odd-sample or even-sample in that packet. While WSM

and PWR gave unsatisfying scores, since both of them relied on the waveform

information in the history buffer to estimate the lost part, if there were so many

losses in a bursty period and substitutions of early loss were updated to the history

buffer in order to recover the later loss, the distortions introduced by recoveries

were actually accumulated with the increasing of times of the reconstruction. In

another word, as the history buffer used to recovery the next loss got worse, the

reconstructed waveform was more likely to diverge from the original.
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• Listening test A – loss with burst length 1

(a) (b)

FIGURE 4.4. (a) Scores for different algorithms from female sequences. (b)
Scores for different algorithms from male sequences.

In Figure 4.4, for the loss with burst length 1, adaptive method showed extremely

high scores again because of the contribution from the odd-even interpolation. Lis-

teners hardly distinguished the difference between the one recovered by adaptive

method and the original. As for WSM and PWR, they produced almost equivalent

result, however WSM behaved slightly better than the PWR by looking at the

median score and mean score.

48



4.2. TEST RESULTS AND ANALYSIS

• Listening test A – loss with burst length 2

(a) (b)

FIGURE 4.5. (a) Scores for different algorithms from female sequences. (b)
Scores for different algorithms from male sequences.

For the loss with burst length 2, compared with WSM and PWR, Figure 4.5 told us

that adaptive method had really high scores, which were contributed by the odd-

even interpolation again. If the even samples in one packet were lost and the odd

samples in the next one were lost as well, they become a loss with burst length 2.

However, this loss can be fully recovered by odd-even interpolation using adjacent

packets of the loss. Taken to extreme, such losses existed with 50% probability

in an infinite sentence. In another word, half of losses with burst length 2 could

be perfectly reconstructed by odd-even interpolation instead of WSM. WSM and

PWR did not produce significant difference in this case, since the 95% confidence

intervals were overlapped.
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• Listening test A – loss with burst length 4

(a) (b)

FIGURE 4.6. (a) Scores for different algorithms from female sequences. (b)
Scores for different algorithms from male sequences.

For the loss with burst length 4, Figure 4.6 (a) showed that, the adaptive method

were preferred over the WSM, which worked significantly better than PWR. As

explained in the last section, the odd-even interpolation was likely to shorten the

loss to 2 consecutive packets long, which became much easier for WSM to repair. In

another word, shorter gap always meant easier to repair. The reasons that WSM

behaved better than PWR are twofold: first, as explained in the chapter 2, the PWR

produced highly periodic speech signal because of the replication, which imposed

"metal/tinny" sound and severely annoyed listeners. Second, PWR sometimes had

wrong pitch detections which destroyed reconstructed speech signals significantly.

Since the recovered waveform was repeated over the gap, repeated wrong substi-

tutions led unbearable results after recoveries. For scores from the male side, as

shown in the Figure 4.6 (b), the 95% confidence intervals of WSM and PWR were

smally overlapped since the pitch periods for male speakers are normally longer

than those for female speakers, replicated signals with 4-packet length might not

that periodic. This made the difference between WSM and PWR become small.
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However, in general, the WSM behaved better than PWR.

We also noticed that scores of the adaptive method were lower than its score in

both loss with burst length 1 and loss with burst length 2 scenarios, because the

adaptive method could not only rely on the odd-even interpolation any more, it must

need WSM to repair the loss when facing to a loss with burst length 4. Additionally,

the difference between WSM and PWR became larger with the increasing of the

length of the burst loss, because PWR is based on replications, which occurred

more times and generated more periodic signals when the loss got longer.
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• Listening test A – loss with burst length 20

(a) (b)

FIGURE 4.7. (a) Scores for different algorithms from female sequences. (b)
Scores for different algorithms from male sequences.

Figure 4.7 showed that, in general, the adaptive method with attenuation, the

adaptive method without attenuation and the lossy signal without any repair had

almost equivalent performances when losses became long to 40ms. Normally, if

the loss was very long, there was no single algorithm could handle that. As times

of the repair got more, the reconstructed waveform was more likely to diverge

from the original and produced unbearable artificial effects. Silence substitution

seemed like a good way to reduce the artificial effects as well as complexities.

Since we never know the size of gap because of the latency constraints and signal

should attenuate to silence after a certain duration, attenuation factors had to be

applied in order to smooth boundaries between reconstructed signals and silences.

According to feedbacks from listeners, most of them preferred to listening missing

speech information (silence) instead of annoying artificial effects. However, only

9 listeners participated in the listening test, more listeners should be involved to

confirm that the silence is preferred over artificial effects caused by PLC.
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• Listening test B

(a) (b)

FIGURE 4.8. (a) Scores for different algorithms with different packet loss rate
from a female sequence. (b) Scores for different algorithms with different
packet loss rate from a male sequence.

In the listening test B, I aimed to simulate the realistic packet loss in the network.

Packet loss patterns with different packet loss rate in the listening test B were

generated by four-state Markov model (see appendix A). Here, the plot are simpli-

fied by connecting median scores with 95% confidence interval by lines in order to

clearly show comparisons between different algorithms and their performances

when facing to different packet loss rates.

As shown in the Figure 4.8, the performances of both adaptive PLC and State-of-Art

PLC (based on PWR, see appendix B) dropped down with the increasing of the

packet loss rate. The adaptive PLC produced higher scores than State-of-Art PLC

did by looking at median and mean scores. However, the overlapped confidence

intervals told us that the difference, to some degree, was not that significant, since

loss conditions in real network were complicated and packets might be heavily

lost in a time period when a strong interference came to the network suddenly
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or a heavy congestion suddenly happened in the transmission. Under conditions

mentioned above, performances of both algorithms degraded.
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5
SUMMARY, CONCLUSION AND FUTURE WORK

Packet loss is still an inevitable problem in the use of the packet network. With the devel-

opment of packet loss concealment, to some extent, packet loss can be made up. However,

packet loss concealment with high performance is still considered as a research challenge

as well as an indispensable part in many IP-based telecommunication applications.

There are so many constraints in designing a PLC algorithm in telecommunication

systems, for instance, some applications do not have assistances from the sender and

require that the PLC could work independently with the coding mechanism, in other

words, the PLC can only deal with the speech, which exists in the PLC buffer. Another

constraint is the latency requirement in many real-time telecommunication systems

such as Bosch Dicentis conference system, which requires a really low latency to ensure

that participants are able to communicate with each other in real-time. As a result, the

PLC algorithm cannot introduce too many latencies to the system. Apart from latency

requirements, the low complexity and low resource consumption are also essential in

designing a feasible PLC algorithm in a practical system.

In this thesis, we first decided a scheme named continuous update, which repaired the

loss immediately as long as a loss was indicated and imposed extremely small latency

to the system. Then, we developed a PLC algorithm named adaptive algorithm, which

changed the algorithm to use depending on the number of the consecutive loss. As results

shown in the chapter 4, the adaptive method gave us satisfying scores. Additionally,
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whole algorithm fully worked on the receiver side without any codec information and

fulfilled the latency requirements.

This last chapter concludes the thesis by presenting the problems behind each algorithm

and conducting some discussions about them. Eventually, some future works related to

present work, in general, are proposed to improve the performance of PLC algorithm in

the system.

5.1 Summary

The aim of this thesis was to design a packet loss concealment scheme which satisfied

the constraints in Bosch Dicentis conference system and achieved a high performance.

Beside, the algorithm could be implemented in any other system as well.

The logic behind this thesis started from investigating packet loss characteristics in

realistic networks and existing PLC algorithms (see chapter 2), since understanding

the type of loss we have in the network and problems in present algorithms was of

importance to design an appropriate PLC algorithm which overcame the drawbacks of

other methods and perfectly repaired the loss. Then, a scheme named continuous update

was proposed to lower the latency of the system and a algorithm combining the odd-even

interpolation, waveform similarity matching and silence substitution was designed under

the continuous update (see chapter 3). Finally, the performance of each algorithm was

evaluated by a subjective measure called MUSHRA test (see chapter 4).

Packet loss is actually a really simple conception so that many PLC algorithms only

focus on finding a substitution when a packet is lost. Although these algorithms behave

well in the simulation, performances of implementations in practical system are not

satisfying, since the packet loss in realistic network is way more complicated and has to

be taken into account when designing a packet loss concealment. Packet loss characteris-

tics were investigated by analysing the data measured from Dicentis conference system.

We derived run-length distributions of lost and received packets (loss run-lengths were

the number of lost packets in a row, receive run-lengths were the number of received

packets in a row). From the distributions, we found that the packet loss in network is the

combination of single loss and burst loss, whose length is up to hundreds milliseconds.

Most losses consisted of a single packet and individual loss runs were short, but fell
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close together in some certain periods. Through the observation of Wi-Fi environment by

Wi-Spy (a tool to monitor the load and occupancy in Wi-Fi channels), the channel used

to transmit data packets might become very congested because of interferences or data

packets with higher priority in certain time periods, thus many packets were lost in such

time slots and impaired the speech quality significantly. As a result, the proposed PLC

algorithm should work on dealing with single loss, burst loss (short burst and long burst)

and loss at a high rate in bursty periods.

The researches on existing PLC algorithms aimed to investigate advantages and dis-

advantages in each algorithm and see how to improve them. The main problem of the

use of WSOLA in real-time applications was the latency constraint. WSOLA technique

needs to know the size of gap and the history buffer to be stretched in order to cover the

gap, both of requests introduced unacceptable latency to the real-time applications like

Bosch Dicentis conference system. However, the packet repetition and pitch waveform

replication could be implemented. Packet repetition gave a bad estimation of speech

information and could not make sure the substitution can connect itself in a synchronized

way. Pitch waveform replication behaved better than packet repetition, but it generated

highly periodic signals which produced artificial effects. Additionally, pitch waveform

replication was sometimes implemented with wrong pitch information and resulted in

a terrible reconstruction. From the problems in existing PLC algorithms, there were

three components needed to be considered in designing the proposed PLC algorithm:

First, the reconstructed waveform should be similar to the original and make artificial

effects as small as possible. Second, the discontinuities between the repaired and re-

ceived waveform should be smoothed. Third, PLC algorithm should meet low-latency

and low-complexity requirements.

After understanding packet loss characteristics in real networks and knowing constraints

as well as requirements in the PLC design, an adaptive PLC algorithm consisting of odd-

even interpolation, waveform similarity matching and silence substitution was proposed

to cope with the packet loss. Since the major loss was single loss and it might happen at

a high rate in a short period, odd-even interpolation could be used to deal with single

loss with perfect results. To some extent, the odd-even interpolation might even shorten

the burst loss. Waveform similarity matching was implemented based on the speech

signal is quasi-stationary signal. The substitution part was two-packet long waveform

which can connect the previous packet in a natural way instead of the previous packet or
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the segment in previous pitch period so the periodicity could be reduced. As shown in

packet loss characteristics, the length of burst loss might exceed hundreds milliseconds,

so the silence substitution seemed the best and easiest way to recover such long losses.

Adaptive algorithm adjusted different PLC algorithms to use depending on the number

of consecutively lost packets in a row and included a packet merging algorithm which

applies cross-overlap-add function to the boundary. Adaptive method showed good results

(see chapter 4) and met the low-latency and low complexity requirements.

In the chapter 4, a subjective measure called MUSHRA test was used to evaluate the

performance of different PLC algorithms. So far, subjective measures seem to be the

best way to judge the performance of PLC algorithms and MUSHRA is one of the most

advanced methods to do the listening test. Scores were analysed by ANOVA.

5.2 Conclusion

Adaptive PLC scheme proposed in this thesis is preferred over single PLC, such as

odd-even interpolation, WSM, PWR and silence substitution. I had argued that the odd-

even interpolation can perfectly repair single loss and parts of short burst loss without

producing any distinguishable artificial effect since the lost information could be fully

recovered by up-sampling adjacent packets which still contained a half original speech

information. As shown in the chapter 4, odd-even interpolation behaved significantly

better than WSM and PWR in first three scenarios. However, it failed when both odd-

sample and even-sample packets were lost. Then, WSM was proposed to recover the loss.

Compared with the PWR, WSM did not only repeat the part in last pitch period and

did not need to know the pitch period so that it reduced the periodicity of reconstructed

signals and alleviated the artificial effects caused by periodicities or substituting the

part with wrong pitch information. In our simulations (see chapter 4), the difference

between WSM and PWR became large with the increasing of number of consecutively

lost packets. Since the WSM reconstructed the waveform based on the speech signal

could be assumed as a stationary signal for a short duration, the performance of WSM

degraded if there was a transition from one voice activity to another within the missing

part or characters of speech signal had changed during the missing part. The use of

combining odd-even interpolation and WSM together solved above problems and made

the adaptive PLC work significantly better than the WSM. If the loss was longer than

a certain length, the reconstructed signals were likely to diverge from the original and
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produced annoying artificial effects. I argued that the silence substitution should be

applied to alleviate those artificial effects. Depending on the results from chapter 4 and

feedbacks from listeners who participated in the listening test, the one recovered by

adaptive PLC with an attenuation and silence substitution sounded the same with the

one without any repair, and both of them sounded slightly better than the one repaired by

adaptive PLC without any attenuation. As a result, the odd-even interpolation, WSM and

silence substitution were combined together to become an adaptive PLC, and it showed

better results than State-of-Art PLC which is based on PWR in the listening test. In

addition, the adaptive PLC fully worked at the receiver side under the continuous update

scheme which was designed for meeting the real-time systems’ latency requirements.

5.3 Future Work

After finishing this thesis, I think some associated researches should be considered in

the future. The following suggestions are listed:

• To add some specific coding mechanisms appears to be the next stage to conceal

missing packets in the current system. So far, all PLC methods mentioned above

focus on using local speech signal information to estimate substitutions for miss-

ing packets. However, it can still miss a large context of speech information and

produce annoying artificial effects. For codec based on transform coding or lin-

ear prediction, decoder can interpolate between states. With codec information,

the missing packet could be reconstructed by speech parameters estimated from

previous codec information.

• The performance of PLC algorithm and speech quality decrease with the increasing

of the packet loss rate. There are two ways to enhance the speech quality after a

transmission, one is to have a stronger PLC algorithm, another one is to reduce the

packet loss rate in the transmission. To achieve an excellent speech transmission

and better results after recoveries, small packet loss rate appears to be valuable.

The reason of dropping packets in a transmission is that the channel for trans-

mission is occupied or congested. A easy way to solve this is to switch the present

channel to another one. A channel switching algorithm used to decide when the

present channel need to be left and which channel can be utilized seems neces-

sary. In the current system, we have a simple channel switching algorithm which

makes the decision only based on the packet loss rate. However, the distribution
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of packet loss is also essential for channel switching algorithm to make decisions.

In addition, collecting the qualities of other channels always consumes a period

of time and the quality of certain channel may have already changed. This leads

the channel switching algorithm to make a worse decision. A smarter channel

switching algorithm should be considered in the future.

• Existing PLC algorithms focus on repairing losses in speech transmission based

on properties in speech signal, such as periodicity, available pitch information, etc.

However, telecommunication systems usually transmit other types of signal like

music, which doesn’t have many properties like speech signal. Designing a PLC

algorithm which not only recovers losses in the speech transmission but also deals

with losses in the music signal should be considered in the future.

• To minimize the large deviation in scores given by subjective measures like

MUSHRA listening test, it’s necessary to involve more listeners into listening

tests. On the other hand, inviting people to do listening tests is a time-consuming

and cost-consuming work. Another way to reduce the deviation in scores is to

involve more sentences from different female and male speakers, but it may cost

listeners more time. For a normal person, the concentration time of listening and

rating sentences is around 20-30 minutes. If a single listening test is longer than

30 minutes, listeners may lose concentration and lead unreliable results. To avoid

unnecessary cost as well as time and obtain convincing results, it’s of interest to

find a reliable objective measure to evaluate performances of algorithms instead.

As shown in the appendix C, some objective measures are investigated and one

algorithm named composite objective measure appears to be the best one. How-

ever, it showed unsatisfying result in our simulation, since it gave really small

difference between different recovered sentences even they sounded quite different

by ears. The reason behind is that the objective measures compared the whole

recovered sentence with the original to get an average score. However, packet

loss happened at certain time slots and impaired the speech quality. Scores from

objective measures were averaged so that they indicated a small difference. For

this, the objective measure could be applied to some specific frames with the packet

loss, but scores cannot represent the overall quality of the sentence any more. In a

word, an objective measure designed for evaluating performance of the packet loss

concealment should be considered in the future.
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Modelling Packet Loss in The Internet

Several models are made to model the packet loss in wireless networks in past years. The

methods can be roughly categorized into two main classes: end-to-end packet loss models

and link-layer specific packet loss models. Only the end-to-end models are taken into

consideration because its performance is able to observed by applications, while the link-

layer models have so complex loss pattern and sometimes are not available in practice [6].

Commonly use end-to-end models for packet loss are based on multi-state Markov models,

or on complex hidden Markov models. Gilbert model is one of the straightforward and

widely used statistical models for modelling the packet loss [10][16].

Packet loss in the Internet are, to a degree, temporally correlated [24], so that they

usually happen with burst losses or alternative losses rather than random (i.e. Bernoulli)

losses. As a result, the model used to generate the losses should accurately simulate

losses in realistic network. The Gilbert model has been widely used in previous researches

in order to generate temporal dependence of lost packets. To enhance the accuracy of

modelling, the use of Markov chain model of k-th order can be applied with the expense

of complexity [23][24].

As explained in the chapter 2, the short and long duration runs of both Good States (Gn)

and Bad States (Bn) follow an exponential behaviour. [31] used random variables with a
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FIGURE A.1. Run length model for four-state Markov model

mixture of geometric distribution to approximate the exponential distributions,

(A.1) f (n)= p(1−α)αn + (1− p)(1−β)βn

where α,β and p are parameters used to fit the desired run duration. One set of para-

meters {αb,βb, pb} is used in bad run durations fB(n), and another one set {αg,βg, pg}

is for good run durations fG(n). Good State means the packet is successfully received,

while the Bad State means the packet is lost. The model is illustrated in Figure A.1.

The difference between two-state Gilbert model and four-state Markov model is that the

latter one gives two different probabilities to both Good State and Bad State. Figure

A.2 shows the four-state Markov model. The parameters used in this model to model

the packet loss in wireless networks with different SNR values can be referred to the

paper [31]. According to the experiments conducted in [31], the four-state Markov model

provides a low-complexity channel model for precisely simulating the packet loss in

wireless transmission.

In this thesis, the four-state Markov model was used to generate loss patterns in order to

evaluate the performance of WSM with different packet size, template size and history

buffer size. Additionally, it generated loss patterns with different packet loss to evaluate

performances of different PLC algorithm (see chapter 4). This led to a more realistic and

reliable evaluation.
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APPENDIX B

Packet Loss Concealment for Use with ITU-T
Recommendation G.711

The American National Standard Institute (ANSI) presented a standardized PLC algo-

rithm for use with the recommendation ITU-T G.711 [34]. This algorithm is based on

linear prediction techniques and pitch waveform replication and fully implemented at

the receiver side. The main part of the algorithm is presented in the Figure B.1.

The main features of this algorithm are listed below:

• The synthesis signal process is based on pitch detection of speech segments in the

PLC buffer. The pitch detection algorithm is performed in the excitation domain

using LP analysis filter. The synthesized excitation signal used to recovery the

loss is created by going back one detected pitch period and copying the following

segment.

• The reconstructed signal is derived by using LP synthesis filter to process the

synthetic excitation signal.

• The speech signal attenuates with times of replication.

• Once a received packet arrives, the boundary between the synthesized speech

signal and the received is smoothed by overlap-and-add technique.
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FIGURE B.1. Standardized PLC algorithm for use with the recommendation
ITU-T G.711

The algorithm performs in two different domains. Pitch detection and pitch waveform

replication are executed in the excitation domain, while the overlap-and-add technique

is executed in the time domain, since the synthetic excitation signal is passed through

the LP filter before the merging.

The LP coefficients are obtained by using Levinson-Durbin algorithm and stored to re-

cover losses. The pitch period of preceding speech segments are estimated by computing

the normalized autocorrelation function of the past excitation signal and then searching

for the peak location. The pitch detector also gives voice activities to separate the voiced

and unvoiced speech segments in order to apply different processing.

The reconstructed frame attenuates before it’s played out to the speaker. The reconstruc-

tion stops until the gap is fully recovered by the replication. When the next packet is

successfully received, the packet will be delayed and overlap-and-add with the last part

of reconstructed speech signal. The coming signal will be scaled up before it’s played out

to the speaker.

66



A
P

P
E

N
D

I
X

C
APPENDIX C

Objective Measures

The most precise method for evaluating the speech quality is through subjective quality

measures. However, subjective quality measure is always preformed under critical

conditions (e.g., sizeable listener, objective impression from listeners, etc. [32]). For that

reasons, an ideal objective quality measures which can predict the subjective quality

speech is, to some degree, desirable [32]. Objective quality measures are based on

physical measurements, such as acoustic pressure or its electrically converted level, or

mathematically calculated values which come from the comparison between the original

and the processed one. In the following part, several objective quality measures are

listed.

C.1 Signal-to-Noise Ratio (SNR)

SNR measure is one of the widely used objective speech quality assessments. Basic SNR

calculation is shown below and it’s very easy to compute. However, SNR measure needs

both the original speech signal and the processed speech signal, which are sometimes

not available.

(C.1) SNR = 10log10

∑N
n=1 x2(n)∑n=1

N (x(n)− x̂(n))2
[dB]
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where x(n) is the clean speech, x̂(n) is the processed speech, and N is the number of

samples.

As we all known, speech is non-stationary through a long period, the classical SNR

averages the SNR values over entire speech so that the average score does not correlate

well with the speech quality. Thus, segmental SNR comes out and calculate the SNR

value over very short frames, which are normally shorter than 30ms (speech is assumed

to be stationary from 10ms to 30ms).

(C.2) SNRseg = 10
M

M−1∑
m=0

log10

∑Lm+L−1
n=Lm x2(n)∑Lm+L−1

n=Lm (x(n)− x̂(n))2
[dB]

where L is the length of frame, M is the number of frames in the entire speech (N=ML).

Segmental SNR performs better than classical SNR because the noisy parts stand-out

and dominate the final speech quality assessment result, while the relative clean part

can be, to a degree, ignored. However, the segmental SNR will be driven lower when the

original speech contains silence, which impose large negative SNR values. To solve above

problems, a range of SNR values (-10dB to 35dB) [15] can be set to alleviate the effect

introduced by silence or apply voice activity detection (VAD) to separate the silence from

speech signal.

Another advanced version of SNR measure called frequency-weighed SNR, which give

segmental SNR weight factors proportional to the critical band. The f wSNRseg is

defined as follows:

(C.3) f wSNRseg = 10
M

M−1∑
m=0

∑K−1
j=0 W( j,m)log10

X ( j,m)2

(X ( j,m)−X̂ ( j,m))2∑K−1
j=0 W( j,m)

[dB]

where W(j,m) is the weight on the jth subband in the mth frame, K is the number of

subbands, X(j,m) is the spectrum magnitude of the jth subband in the mth frame, and

X̂ ( j,m) is the spectrum magnitude of the jth subband in the mth frame.

Due to experiments, compared with SNR and SNRseg, f wSNRseg shows the highest

correlation with speech quality [19].
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C.2 LPC Measures

Linear prediction can be used to model the speech production and linear prediction

coefficients (LPC) can be derived from the model. The distance between the two sets of

LPC, which come from clean speech and processed speech, respectively, could be used as

an objective way to assess the speech quality. Of course, the LPC measures also need

both clean speech and processed speech. As soon as LPC vectors are known, a couple of

distance measures can be implemented, such as Log-Likelihood Ratio (LLR) measure

[37], Itkura-Saito (IS) distance measure [33], Cepstrum Distance (CD) distance measure

[26], etc. The equation (4),(5),(6) are used to described above three distances, respectively.

(C.4) dLLR(ap,ac)= log(
apRcaT

p

acRcaT
c

)

(C.5) dIS(ap,ac)=
[
σ2

c

σ2
p

][
apRcaT

p

acRcaT
c

]
+ log(

σ2
c

σ2
p

)−1

(C.6) dCP (cp, cc)= 10
log10

√√√√2
P∑

k=1
(cc(k)− cd(k))2

where, ac is the LPC vector of clean speech, while ap is the LPC vector of processed

speech. Rc is the auto-correlation matrix of the clean speech, σ2
c and σ2

p are the all-pole

gains of clean speech and processed speech, cc and cp are the Cepstrum vectors of clean

speech and processed speech, and P is the order.

C.3 Spectral Distance Measures

Literately, spectral distance is calculated from the difference between clean speech

spectrum and processed speech spectrum. Weighted spectral slop (WSS) measure is

one kind of direct spectral distance measures. WSS uses the spectral slopes (spectral

difference between the adjacent neighbouring bands) instead of the spectrum itself. the

implementation of WSS can be described in the equation below:

(C.7) dWSS = 1
M

M−1∑
m=0

∑K
j=1 W( j,m)(Sc( j,m)−Sd( j,m))2∑K

j=1 W( j,m)
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where k is th number of bands, M is the number of frames , S(j,m) is the spectral slope of

the jth band in the mth frame. W is the weigh factor, which can be found in [27].

C.4 Articulation Index (AI)

Articulation Index (AI) was first presented in [8] and used to evaluate the speech

intelligibility. AI was renamed Speech intelligibility Index (SII) [17]. In the AI, the

distortions are supposed uncorrelated in each critical frequency band and assumed to be

additive noise or signal attenuation, etc. AI value is derived by computing SNR for each

frequency band, and averaging them as follows:

(C.8) AI = 1
N

N∑
j=1

min(SNR( j),30)
30

where SNR(j) is the SNR in jth band, the number of subbands is set to be N, and the

maximum subband SNR is set to be 30dB.

However, in many cases, the distortions in adjacent bands are convolutional or not

completely uncorrelated, which degrades the performance of the AI measure.

C.5 Speech Transmission Index (STI)

Speech Transmission Index (STI) [18] is a widely used measure for evaluating the

speech intelligibility. STI uses the modulation transfer function instead of SNR. STI

assumes that the loss of intelligibility is relative with the loss in the modulation depth.

By measuring the loss in modulation depth at the receiver, the intelligibility loss can be

obtained. STI shows better performance than AI because it also considers the flattening

of the information-carrying speech envelopes due to the reverberation.

C.6 PESQ

The Perceptual Evaluation of Speech Quality (PESQ) [36] is used for predicting the

Mean Opinion Score (MOS) from both clean speech and processed speech. PESQ is

commonly regraded as one of the most accurate and complicated methods to estimate

the MOS today. PESQ uses a perceptual mode to convert and time-align both speeches
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into internal representations. Then, a couple of parameters related to speech are applied

to compare internal representations and put into the cognitive model to give the MOS.

A successor of PESQ is called Perceptual Objective Listening Quality Analysis (POLQA),

which offers an advanced level of benchmarking accuracy and adds new capabilities

for wideband and super-wideband (HD) speech signals. Compared with PESQ, POLQA

maintains correct scoring also at high background noise levels and alleviates the effects

introduced by different speech level in samples. Due to the relative measurements,

POLQA gives more reliable and convincing results than PESQ does.

C.7 Composite Measures

By combining multiple objective measures, one can form the so-called composite mea-

sures. The motivations behind the use of composite measures is that different objective

measures evaluate different characteristic of the speech signal, so combining them in a

linear or non-linear way can produce significant gains in correlations. The overall score

is obtained by linear combination of PESQ measure, log-likelihood ratio (LLR) measure

and weighted spectral slop (WSS) measure. The equation is shown below:

(C.9) Covl = 1.594+0.805∗ pesq−0.512∗ llrmean −0.007∗wssdist

The score varies from 1 to 5, which yields the same result with Mean Opinion Score

(MOS). 5 means Excellent, while 1 means Bad.

In this thesis, we use composite measures to evaluate the performance of WSM (see

chapter 3).
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