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Preface

If I remember correctly, I have always wanted to be a lawyer and drive around in a big
Mercedes. Yet here I am, writing the final words to my thesis in mechanical engineering.
Who could have thought? Engineering has always been an obvious choice though; with
two civil engineers at home, I eventually figured that the Mercedes lies perhaps a lot
closer to mechanical engineering. During my bachelor graduation project, I came in
touch with the concept of bistability, which has fascinated me ever since, and this only
grew over time after being introduced to buckling phenomena. The thought of being
able to combine this topic with development in sustainability through energy harvesting
made the decision for this thesis oh-so easy.

Although I have a specific chapter to express my gratitude to everyone involved in
this thesis, I would like to use this preface to focus on those most important in my life.
My parents and my brother. As you will see, there is summary specially written for them
in Serbo-Croatian, my native language. I would like to use that once more in this preface
for a message to them. Mama, tata, Haris, mada nemam riječi za to, vama se zahvaljujem
naj više na svijetu. Vi ste mi bili podrška za sve ove godine i posvećujem ovaj rad vama.
Bez vas ne bih mogao ostvarit što sam do sada. Volim vas.

Armin Numić
Purmerend, December 2020
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Summary

Bistable vibration energy harvesters are an interesting alternative to their linear counter-
parts. They allow for large amplitude oscillations between their stable equilibria, from
which much energy can be generated. However, the stable equilibria are separated by
a potential energy barrier that has to be overcome. Therefore, we cannot guarantee
these oscillations, and the performance advantage diminishes. As a solution to this, a
novel method of stiffness compensation in compliant bistable mechanisms is explored
to lower the potential barrier. This method makes use of interaction between the buck-
ling modes. Whereas this phenomenon is most undesired in structures due to their in-
creasing proneness to catastrophic failure, we cleverly use it to our advantage. During
the deflection required for the large amplitude oscillations, a transition between these
buckling modes occurs, causing the increase in potential energy. By bringing the corre-
sponding buckling loads closer together, the transition is eased and the potential barrier
is lowered. An analytical framework was set up as a fundamental test of this method.
Using a discrete analytical model of a bistable buckled four-bar linkage with torsion
springs, it was shown that the potential barrier can be flattened upon matching the first
two critical buckling loads, resulting in static balancing. This was achieved by making
two torsion springs three times stiffer with respect to the other two springs. To put the-
ory into practice, three compliant mechanisms were designed using the ratio between
the first two buckling loads. Their force-deflection characteristics were experimentally
determined and it was shown that the stiffness may be tuned according to the ratio be-
tween the buckling loads. Furthermore, it was shown that in designs having the first two
buckling loads equal to each other, near zero stiffness is achieved. Hence, this method
is proven a successful addition to the arsenal of methods in stiffness compensation and
static balancing of compliant mechanisms.
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Sažetak

Transformacija energije vibracija u električnu energiju predstavlja značajan korak za budućnost
u svim segmentima društva. Njena je široka dostupnost čini pogodnom zamjenom za
trenutne izvore energije, odnosno baterijama, za napajanje bežičnih senzora i mobilnih
ured̄aja. Postoji nekoliko metoda za povećanje efikasnosti i primjenljivosti vibracionih
transformatora energije. Jedna od njih je i upotreba bistabilnih mehanizama. Bistalibni
mehanizmi su zanimljiva alternativa linearnim mehanizmima. Bistabilni mehanizmi
omogućavaju velike amplitudne oscilacije izmed̄u njihovih stabilnih ravnoteža, iz ko-
jih se može proizvesti mnogo energije. Med̄utim, stabilne ravnoteže odvojene su po-
tencijalnom energetskom barijerom koja sprečava ove oscilacije, i koju dakle treba pre-
vladati. Dakle, ne možemo garantirati ove oscilacije, što rezultira u smanjenje proizvo-
dene energije. Kao rješenje za to, tj. da se smanji potencijalna barijera, se u ovom pro-
jektu istraživa nova metoda kompenzacije krutosti u gipkim bistabilnim mehanizmima.
Ova metoda koristi interakciju izmed̄u načina izvijanja u bistabilnim mehanizmima.
Iako je ovaj fenomen najnepoželjniji u grad̄evini, mi ga koristimo u svoju korist. Tokom
potrebnog otklona za velike amplitudne oscilacije, dogad̄a se prijelaz izmed̄u ova dva
načina izvijanja što rezultira u povećanje potencijalne energije. Približavanjem odgo-
varajućih izvijajućih opterećenja, ova se tranzicija olakšava i spušta se potencijalna bari-
jera. Kao osnovni test ove metode postavljeni su analitički postupci. Korištenjem diskretnog
analitičkog modela bistabilnog izvijenog klasičnog polužnog mehanizma sa četiri člana i
torzijskim oprugama, pokazano je da se potencijalna barijera može izravnati nakon po-
dudaranja prva dva kritična opterećenja izvijanja, što rezultira statičkim balansiranjem.
To je postignuto postavljanjem krutosti vanjskih torzijskih opruga na tri puta veću kru-
tost unutarnjih opruga. Da bi se ova teorija primijenila u praksi dizanjirana su tri modela
bistabilhin gipkih mehanizama. Pri tome je korišten omjer izmed̄u prva dva izvijajuća
opterećenja. Eksperimentalno su utvrd̄ene njihove karakteristike sile otklona i pokazano
je da se krutost može promjeniti u skladu sa omjerom kritičnih opterećenja. Nadalje je
pokazano da u mehanizmima u kojima se podudaraju prva dva izvijajuća opterećenja
dobivaju konstantne sile otklona sa vrijednošću blizu nule. Ova se metoda pokazala us-
pješnim dodatkom arsenalu metoda u kompenzaciji krutosti gipkih mehanizama.
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Chapter 1
Introduction

In this chapter, an introduction to the overarching subject of this thesis, energy harvest-
ing, is given. Starting from energy harvesting in general and giving several examples, the
text narrows down to the scope of this research. An overview of performance enhancing
techniques in vibration energy harvesting is presented as an introduction to the prob-
lem statement and the research goal. Finally, the structure of this thesis is given, with an
elaboration of the contents of each chapter.
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2 1 Introduction

1.1 Energy harvesting
For our society to function every single day, energy, especially electrical, is a fundamental
requirement. At present, the majority of this energy is obtained through the combustion
of fossil fuels. However, significant steps in the direction of renewable energy - for in-
stance, hydro, wind and solar - have been made. This process of deriving energy from
ambient sources and converting to electrical energy is named energy harvesting. Other
examples are geothermal plants, which use the earth’s heat to heat a working fluid pow-
ering a generator, or the combustion of biomass. Although numerous energy harvesting
applications exist, the majority of portable devices still rely on batteries as an energy
source. Using batteries has two great downsides.

• Economical impact: the lifetime of battery-powered devices exceeds that of the
batteries, resulting in required maintenance/replacement. Apart from the down-
time, maintenance costs are the most contributing factor [1].

• Environmental impact: from 2012 to 2018, the collection percentage of sold bat-
teries has risen from 35.2% to 47.6% in the European Union. Although significant,
the recycling efficiency of the collected batteries is not 100%. Hence, a staggering
number of trashed batteries ends up decomposing on landfills, resulting in pollu-
tion of the environment due to the toxic materials in batteries [2].

1.1.1 Applications and relevance
The main advantage of energy harvesting is that ambient sources are virtually unde-
pletable. Additionally, they need not be sought actively, i.e. they are everywhere around
us. As a result, energy harvesting lends itself as a possible alternative to batteries, to pro-
long their lifetime or entirely replace them. Energy harvesting has a great potential in
application to wireless sensor networks. Examples are monitoring of structural health,
air quality and calamities. These sensors usually have to be operational over a long span
of time. On top of that, depending on the application, they are placed in remote loca-
tions. Powering using batteries is a limiting factor, as the maintenance costs are great.

Other applications may be wearable devices. A classic example is the mechanical
movement in a wrist watch, which uses the swinging motion of the arm as a power
source. Jogging lights may be equipped with an energy harvester to convert the run-
ner’s motion to light for visibility during night runs. In the context of wireless sensors,
powering medical wearable devices with energy harvesters renders them as "plug and
forget", which is favorable for devices aiding or monitoring bodily functions.

Finally, in the present steps to a more sustainable society, energy harvesters are an
interesting solution. The use of energy harvesters combats the depletion of fossil fuels,
and in the long run the emission of green house gases. Moreover, the unnecessary dis-
posal of batteries and devices can be reduced.

1.1.2 Vibration energy harvesting
There is a catch to the term undepletable though. Solar energy for instance, is available
with significant sunlight. However, during overcast days or inside, solar energy strongly
declines. The same flaws apply to wind energy. The choice of a suitable power source
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needs to be considered based on the application. However, vibration energy has proven
to excel in power density and availability [3–6]. Figure 1.1 shows a schematic represen-
tation of vibration energy harvesting.

Structure/system Vibration signal Mechanism Transduction and 
conditioning

Power

Figure 1.1: Depiction of vibration energy harvesting. A vibration signal can be obtained from any vibrating
system or structure. This vibration signal is captured using an oscillating mechanism, the vibration energy
harvester. For the conversion to electrical power, transduction and conditioning of the mechanism output are
required.

In this case, a bridge is subjected to wind, passing traffic and possible flowing water at
the pillars. The bridge stores these interactions in the form of vibrations. Reminiscing
the collapse of the Tacoma Narrows Bridge, vibrations are undesired and are therefore
dampened out. However, instead of dampening, vibration energy may be captured using
an oscillating mechanism: the vibration energy harvester. The conversion from mechan-
ical energy to electrical energy requires a transduction step. This transduction may be
done by means of piezoelectricity, magneto- or electrostriction and electromagnetism.

1.2 Capturing energy from vibrations
In this thesis, the focus lies on the capturing of vibrations with an oscillating mecha-
nism. Figure 1.1 presents a trivial example of a cantilever beam as the mechanism. The
vibration signal is captured in the form of kinetic energy, as the mass of the cantilever
is accelerated. Note the use of ’trivial’ here; the cantilever can be seen as a linear mass-
spring-damper system, with the resonant frequency determined by (1.1).

ω=
√

k

m
(1.1)

Linear systems are designed such that the resonance frequency matches the frequency
of the vibration signal, as this induces resonance and hence the largest oscillation am-
plitude. The larger the oscillation amplitude, the greater the electrical power output of
the energy harvester. The oscillation amplitude strongly diminishes with a small devia-
tion from the resonance frequency; thus, linear systems have a narrow operation band-
width. Unfortunately, real-world vibrations rarely exhibit behavior at a single frequency,
rendering linear systems ineffective in practical applications. To work with real-world
vibrations, the bandwidth of energy harvesters needs to be increased. An overview of
methods used for bandwidth increase is presented in Table 1.1.
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Table 1.1: Selection of methods used for the increase of the energy harvester bandwidth

Method Working principle

Duffing non-
linearities

The resonance peak is bent along the frequency domain to create a broader res-
onance region

Bi- and multi-stability Negative stiffness is used to create a multi-well potential and enable frequency-
independent large amplitude interwell hopping

Stochastic resonance A periodic modulating signal is applied to a double-well potential, so that inter-
well hopping is induced by noise

Frequency conversion A low-frequency oscillator susceptible to broadband vibrations is coupled to a
high-frequency oscillator which oscillates at the resonance frequency due to the
transmission of the vibration

End-stops End-stops limit the oscillation amplitude and increase the stiffness, shifting the
resonance frequency

Multiple modes Multiple elements with different resonance frequencies are combined in one
structure to create a broader region of combined resonance peaks

Linear systems have an upright resonance peak, as seen in Figure 1.2a. By introducing
a Duffing non-linearity, the resonance peak is bent along the frequency domain, creat-
ing a broader region in which resonance is obtainable. Unfortunately, this bent peak is
not instantaneously accessible, as it depends on the direction of increasing or decreas-
ing frequency. Duffing non-linearities may be introduced with the use of, for instance,
magnets, axial pre-stress or coupling between material layers in the mechanism.

In Figure 1.2b, the potential curves of a linear and bistable system are presented.
The linear system has a single minimum, or " potential well", rendering it monostable,
while the bistable system has two wells. The two wells are separated by a peak called
the potential barrier. With sufficient excitation, a large amplitude oscillation between
(and beyond) the two potential wells can be obtained. This oscillation may be obtained
irrespective of the vibration frequency, which means that the bandwidth is increased.

In stochastic resonance, noisy vibrations are used to induce hopping between wells
in a bistable system. However, noise alone is usually not strong enough to trigger this.
Therefore, an actuator is added to a bistable system, to alter the depths of the wells peri-
odically. The combination of noise and periodic forcing can result in continuous motion
between wells, and therewith harvesting broadband noise.

Frequency conversion, particularly frequency-up conversion, is used in miniaturiza-
tion of vibration energy harvesters. As the scale of the system decreases, the resonance
frequency increases. To be able to harvest energy at the resonance frequency, a low- and
high-frequency oscillator (LFO and HFO) are coupled. The LFO, which is susceptible to
broadband or low frequency vibrations, transmits the vibration to the HFO. The HFO
oscillates at the resonance frequency, returning a large power output.

End-stops are used as limiters to the oscillation amplitude. This is beneficial in minia-
turization and damage prevention. Additionally, upon impact of an oscillator with an
end-stop, the effective length of the oscillator changes. This results in a change in stiff-
ness and therefore a shift in eigenfrequency. This shift in frequency results in an expan-
sion of the bandwidth.

Achieving resonance returns a large oscillation amplitude, and ultimately a large
power output. The resonance region can be expanded by combining several elements
with different resonance frequencies. As a result, if the vibration frequency deviates from
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one resonance frequency, there are others as backup, ensuring that there still is a signif-
icant power output [7].
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Frequency

Linear system Duffing non-linearity

(a) Resonance peaks of linear system and
system with Duffing non-linearity. The
resonance peak of the Duffing system is
bent along the frequency domain, creating
a larger resonance region
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n
ti

al
 e

n
er

gy

Displacement

Linear system Bistable system

(b) Potential energy curves of a monostable
system and a bistable system. The bistable
system has one unstable equilibrium at the
top of the potential barrier, and two stable
equilibria on either side of this barrier

Figure 1.2: Depiction of Duffing non-linearity and bistability compared to a linear system

1.3 Bistable energy harvesting
These techniques for increasing the bandwidth each have advantages and disadvan-
tages. For a bistable system, the advantage lies in the large oscillation amplitude that
can be obtained irrespective of the frequency. We need to be careful with the term ’irre-
spective’ here though. The main contributing factor to the large amplitude oscillations
is the amplitude of the vibration; nevertheless, resonance can still occur and induce this
large amplitude oscillation.

1.3.1 Problem statement
Bistable harvesters can deal with real-world vibrations due to the reduced dependency
on frequency. However, as much as we have a fluctuation in the frequency, the ampli-
tude in real-world vibrations also varies. Bistable energy harvesters excel when exhibit-
ing continuous large amplitude oscillations. To this end, we require sufficient accelera-
tion (vibration amplitude) to overcome the potential barrier. However, as the vibration
amplitude varies, continuous large amplitude oscillations cannot be guaranteed. This
results in unpredictable and discontinuous large amplitude oscillations, diminishing the
performance advantage of bistable systems in the process.
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1.3.2 Research goal
The potential barrier height determines the threshold in vibration amplitude to achieve
large amplitude oscillations. In stochastic resonance, the potential barrier height is rela-
tively lowered periodically; however, this requires extra actuation. Hence arises the ques-
tion: how do we passively lower the potential barrier to aid large amplitude oscillations?
Taking a large leap forward, this question can be formulated as the research goal:

"Stiffness compensation in compliant oscillators."

This goal can be elaborated with the underlined terms.

Stiffness compensation
The potential barrier stems from the non-linear stiffness characteristic of bistable mech-
anisms. By taking the derivative of the potential energy with respect to e.g. a displace-
ment, the force-deflection characteristic (Figure 1.3b) is obtained; its slope represents
the stiffness. By comparing the potential curve (Figure 1.3a) with the corresponding
force-deflection characteristic, we see that the potential barrier is the equivalent of the
negative slope. Hence, by decreasing the slope, or compensating the stiffness, the height
of the potential barrier also decreases. This process of "stiffness compensation" can also
lead to static balancing. Statically balanced, neutrally stable, constant potential energy
or zero-stiffness, all refer to mechanisms that are in a continuous state of equilibrium
over a range of motion [8]. This suggests that the equilibrium spans between the two
wells (Figure 1.3a); hence, the force-deflection characteristic has zero slope over the
range of motion. To obtain such characteristics, we can introduce a positive stiffness
(Figure 1.3b), exactly equal to the negative stiffness in the force-deflection characteris-
tic, creating a zero slope in the process [9].

Displacement
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 e

n
er

gy

Bistable Weakly bistable

Statically balanced

(a) Lowering of the potential barrier: from
bistable, to weakly bistable to statically
balanced. In the statically balanced curve,
the equilibrium spans the motion range
between the two wells of the bistable curve;
however, it also suffers from loss of motion
range

Fo
rc

e

D
is

pl
ac

em
en

t

Bistable Positive stiffness

Statically balanced

(b) Force deflection curves of a bistable
system, linear positive stiffness and a
statically balanced mechanism. The linear
positive stiffness exactly matches the
negative stiffness of the bistable system;
however, with opposite sign, leading to
cancellation of stiffness and the statically
balanced system

Figure 1.3: Process of static balancing depicted with potential energy and force-deflection characteristics
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As a result of the continuous equilibrium, the mechanism theoretically has no stiffness.
This lack of stiffness presents itself as an opportunity to energy harvesting, as there is
no resistance to an excitation, irrespective of the frequency or acceleration. Hence, a
stiffness compensated energy harvester would be applicable to any kind of vibration and
therefore in any kind of environment.

Compliant
A great deal of energy harvesting systems in literature is constructed through the assem-
bly of several parts. The focus lies greatly on the application to real-world vibrations.
However, for an energy harvester to have a real-world application, its production should
also be easy. Assembly is a very time-consuming and therefore costly step in the produc-
tion process. Additionally, for micro-scale devices, assembly is near impossible. In com-
pliant mechanisms, several parts are substituted by elastic elements that fulfill the same
function, reducing the number of parts greatly and requiring less assembly steps. To
continue on manufacturability, a method for stiffness compensation with the focus on
applicability to orthoplanar mechanisms is investigated. Planar mechanisms are con-
structed in one plane, not requiring any connection between parts in different planes.
On a large scale, using laser cutting, or on a small scale using etching, this simplifies the
production of prototypes greatly. The prefix "ortho" refers to the oscillation direction,
which is out of plane: orthogonal to the planar surface of the mechanism (Figure 1.4).

Figure 1.4: Schematic representation of orthoplanar. The mechanism is built from the red plane up and the
oscillation direction is orthogonal to it

1.4 Thesis structure
The focus of this thesis lies on investigation of a stiffness compensation method for com-
pliant mechanisms, which can be used to increase vibration energy harvester perfor-
mance. Several topics are addressed: motion in bistable energy harvesters, buckling of
structures, analytical and finite element modeling of post-buckled compliant structures.

The second Chapter of this work presents the resulting research paper of the liter-
ature phase on the topic of bistable energy harvesters. In particular, a classification of
motion in bistable energy harvesters based on displacement time-series is presented.
Additionally, an evaluation of performance of different motion types is conducted. This
research paper resulted in the problem statement described above.

The third Chapter touches upon the topics of (bi)stability and buckling, acting as an
introduction to the research hypothesis. This chapter presents a hypothesis in stiffness
compensation in compliant mechanisms and the tools used to test this hypothesis.
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In Chapters 4 and 5, two research papers on stiffness compensation in compliant mecha-
nisms are presented. Chapter 4 tests the hypothesis analytically, numerically and exper-
imentally using a simple post-buckled four-bar linkage model. It results in an analytical
framework of stiffness compensation in four-bar linkages, and a designed mechanism
that exhibits the hypothesized behavior. Chapter 5 acts as an application of the tested
hypothesis on two existing compliant mechanism architectures, continuing on prior art
in this field.

In the final Chapter, a critical reflection on the conducted work is given, together
with conclusions, recommendations and direction for further research using the insights
gained.

Background information to the papers can be found in the included appendices. Ap-
pendix A includes an elaborate presentation of the analytical model used in Chapter 4 as
well as the prototyping phase and preliminary measurements to the final experiments.
All analysis steps applied to the analytical model are presented in Appendix B. Analo-
gously, Appendix C presents the modeling and prototyping phase for Chapter 5. Techni-
cal drawings for both final designs are given in Appendices D and E. The references used
in all chapters, including the research papers, are taken up in a complete bibliography
at the end of this thesis. Hence, it may seem as if the papers are incomplete, but the
readability is significantly improved.



Chapter 2
A classification and performance
evaluation of motion in bistable
energy harvesters based on
displacement time-series

In this chapter, the research paper created during the literature review phase on the topic
of motion in bistable energy harvesters is presented. The paper starts with an overview
of motions which a bistable energy harvesting may exhibit; this overview is accompanied
by displacement time-series representations of each motion. The overview is further ex-
tended methods to distinguish the presented motions. Finally, the classification is used
in the evaluation of performance of different motions found in the relevant literature.

9
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A classification and performance evaluation of motion in
bistable energy harvesters based on displacement time-
series
A. Numić and T.W.A. Blad
Abstract
Bistable systems are widely used in the field of motion energy harvesting. This review presents a
classification of the motions a bistable energy harvester may exhibit, by means of displacement
time-series analysis. To this end, periodic and chaotic behavior are distinguished and the dis-
tribution of the motion is determined. The resulting classification presents intrawell, interwell
and intermittent crosswell (multi-period, sporadic switching, recurring combination) as periodic
bistable motions and chaotic intrawell and crosswell as chaotic motions. Finally, a comparison in
performance between different motion regions is given. It was found that interwell overall per-
forms best, followed by chaotic crosswell motion. The amplitude of the exhibited motion is of
significant influence to the performance of the harvester.

Keywords
Bistable energy harvesting, time-series analysis, motion classification, performance

2.1 Introduction
Bistable mechanisms have been vastly studied in vibration energy harvesting applica-
tions, due to better performance and robustness as compared to linear resonant har-
vesters [10–14]. Linear resonant harvesters return a large energy output upon excita-
tion in the resonant frequency and a narrow frequency band around it. However, real-
world signals tend to have time-varying frequency over a broad range, and manufactur-
ing tolerances induce deviation from the desired resonant frequency, rendering linear
harvesters ineffective for practical applications [11, 12, 14, 15]. For bistable harvesters
to outperform linear ones, the greater oscillation amplitude by virtue of the double-well
potential, known as interwell motion that is obtainable over a broad frequency range
and at low frequencies, is required continually [11–14, 16]. However, obtaining interwell
motion is not straightforward, as there are more possible motions that may coexist [11].

In several works, a classification of possible bistable motions with explanation of the
corresponding motion is given. A global overview of the possible motions is presented by
Harne and Wang [12, 17] and Daqaq e.a. [11], including intrawell (i.e. the motion around
in a single potential well), interwell (i.e. the motion over the double-well potential) and
chaotic interwell motion. Harne and Wang [12] expand the intra- and interwell motion
with a low- and high-amplitude variant. The existence of chaotic interwell motion in
forced non-linear oscillators was experimentally investigated by Holmes [18] and ana-
lytically by Szemplińska-Stupnicka [19], whom also mentions the existence of chaotic
intrawell motion. In the works of Arrieta e.a. [20] and Pan e.a. [21], intermittent inter-
well motion for bistable plate harvesters is investigated in addition to intra-, interwell
and chaotic motion. Intermittent motion here is shown as continuous interwell motion
interrupted by intrawell motion, or as intrawell motion switching between potentials
due to interwell motion. Syta e.a. [22] and Betts e.a. [23] on the other hand present
intermittent motion for bistable plates as a periodic recurrence of intra- and interwell
motion. Kovacic and Brennan [24] present this periodic intermittency as the combina-
tion of interwell motion with different oscillation periods. In the work of Guo e.a. [25], a
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classification is presented with intrawell and interwell motion, with interwell containing
three groups: large amplitude limit cycle oscillations; chaotic motion; and large ampli-
tude multiple periodic motions containing intrawell oscillation.

The types of motion can be distinguished by means of displacement time-series. This
notion is used in the quantification of motion introduced by Heymanns e.a. [26, 27].
The analysis distinguishes intra- and interwell motion based on the so called ’large am-
plitude ratio’, Ψ, determined by counting the number of jumps between wells, i.e. the
number of times the distance between two peaks is greater than that between the equi-
librium position, and dividing it by the total number of oscillations. Ψ = 0, Ψ = 1 and
0 < Ψ < 1 indicate intrawell, interwell, and both intermittent and chaotic motion, re-
spectively.

However, to date, no complete classification of distinct bistable motions exists in lit-
erature. It is necessary to have an unambiguous classification in order to compare future
bistable harvesters. The objective of this research paper is to create a classification of the
motion a bistable mechanism may exhibit. Such a classification enables a uniform ter-
minology to be used in comparison of harvesters and motion types.

In Section 2.3, the methods used for classification are elaborated. Section 2.2 presents
an overview of the existing bistable motions with graphical depiction and explanation.
Additionally, the classification is applied to several harvesters, and the performance of
different motion regions is compared. Section 2.5 the results and classification are dis-
cussed, and recommendations are given. Finally, Section 2.6 finishes with the conclu-
sions that can be drawn.

2.2 Classification of bistable motion
2.2.1 Literature search method
The scientific literature used in this research was sought in the database of Scopus and
Google Scholar. For the classification of different motions, only publications containing
an explanation of a certain motion, as well as corresponding graphical representation
were used. For instance, the characteristics of a certain motion were explained with ref-
erence to a time-series of the motion and a frequency spectrum. In Figure 2.1, a com-
plete overview of bistable motions is given. Based on the information found in the form

Bistable
motion

Periodic Chaotic

Intrawell
motion

Intermittent
crosswell
motion

Interwell
motion

Chaotic
intrawell
motion

Chaotic
crosswell
motion

Chaotic
interwell
motion

Figure 2.1: Tree-structure classification of bistable motion



2

12 2 Classification of motion in bistable energy harvesters

of definitions and time-response data, each bistable motion is elaborated below, pro-
vided with an explanation of the motion and a time-response.

2.2.2 Intrawell motion
Intrawell or single-well motion, is the motion around one of the two equilibria in the
double-well potential. It may exist in a low- and high-amplitude variant [12]. Intrawell
motion may exist in periodic or chaotic form, depending on the excitation parameters
and initial conditions. Periodic and chaotic intrawell motion are depicted in Figures 2.2a
and 2.2b respectively. Chaotic intrawell motion may act as the onset of motion across the
potential barrier [11, 28, 29].
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Figure 2.2: Displacement time-response of (a) periodic intrawell motion, (b) chaotic intrawell motion

2.2.3 Interwell motion
Interwell or double-well motion, is the periodic motion around the unstable equilib-
rium traversing the two potential wells, as depicted in Figure 2.3a [11, 12, 17, 22, 23, 27].
As intrawell motion, interwell motion has a low- and high-amplitude variant [12]. De-
pending on the excitation, interwell motion may occur at the fundamental excitation
frequency, or exhibit sub- and super-harmonic interwell oscillations as well, leading to
a multi-periodic interwell response [30]. As chaotic intrawell motion, a chaotic form of
interwell motion exists, depicted in Figure 2.3b; however, chaotic interwell motion is
mainly denoted as chaotic crosswell motion in literature.
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Figure 2.3: Displacement time-response of (a) periodic interwell motion, (b) chaotic interwell motion
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2.2.4 Crosswell motion
Crosswell motion is a combination of intra- and interwell motion, containing intermit-
tent and chaotic motion [11, 12, 17, 22, 23, 27].

Intermittent crosswell motion
Intermittent motion is continuous interwell motion interrupted by intrawell motion, or
vice versa. It is mainly found as a result of period-doublings, leading to sub-harmonics,
and is depicted in Figure 2.4a. Depending on the m number of sub-harmonics, this form
of intermittency leads to period-m-motion; however, as m increases, the motion ap-
proaches chaos. In the relevant literature, mostly period-3 to period-5 motion is found
[11, 24, 25].

Translating the form of motion in Figure 2.4a to predominantly interwell motion in-
terrupted by intrawell dwells, returns intermittent motion as the sporadic switching be-
tween interwell and intrawell motion; an interpretation is displayed in Figure 2.4b. This
switching does not necessarily have to be periodic [20, 31]. Intermittency can also be
found as periodically recurring blocks of combined intra- and interwell motion [22, 32],
as seen in Figure 2.4c.
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Figure 2.4: Displacement time-response of (a) multi-period intermittent motion, (b) intermittent motion
with sporadic switching between single- and double-well motion, (c) intermittent motion with recurring
combined single- and double-well motion pattern, (d) chaotic crosswell motion time-response

Chaotic crosswell motion
In chaotic crosswell motion, there is no recurring pattern between intra- and interwell
motion [11, 12, 17, 23, 27]. For the same system exhibiting chaotic behavior, a slight
change in initial conditions will result in a different response. In Figure 2.4d, a chaotic
time-response is depicted.
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2.3 Evaluating performance of motion types
The goal in designing a bistable harvester is to obtain interwell motion over a broad fre-
quency range. However, as other motion types coexist, the relative performance of dif-
ferent motion types should be evaluated. To this end, a quantifiable distinction, in terms
of periodicity, chaos, and motion nature is required.

2.3.1 Distinguishing chaotic from periodic motion
Chaotic motion is stated to be undesirable in energy harvesting applications, due to the
need for conditioning and filtering [13, 17, 25]. For the sake of performance comparison,
it is therefore necessary to distinguish chaotic from periodic motion. From the relevant
publications, a time-series X (i ) at discrete sampling points i = 1,2, ..., N can be obtained
and interpolated with a time-step∆t , in which periodic or chaotic characteristics can be
identified using several techniques for time-series analysis. Frequency spectrum anal-
ysis using Fourier transform creates distinct peaks and a broadband cluster of peaks in
the frequency spectrum for periodic and chaotic motion respectively. However, this clear
distinction is not as trivial in practice [22, 27, 33]. Upon comparing intermittent (Figure
2.5a) and chaotic motion (Figure 2.5b) for instance, the frequency spectra show signifi-
cant resemblance, leaving room for subjectivity.

(a) (b)

Figure 2.5: Frequency spectra of bistable motion. (a) intermittent motion, (b) chaotic motion

A more objective alternative is the estimation of the Largest Lyapunov Exponent, which
is widely used in the case of known governing equations. The Largest Lyapunov Expo-
nent returns the presence of chaotic of periodic behavior in a single parameter [34, 35].
In the case of only having a time-series X , i.e. no knowledge on the governing equa-
tions, the Lyapunov exponent can be estimated using algorithms by Wolf e.a. [36] or
Rosenstein e.a. [37]. However, this firstly requires reconstruction of the phase-space
and implementation of the algorithms is not straightforward [38]. Similar to the Largest
Lyapunov Exponent, the 0-1 test for chaos by Gottwald and Melbourne [39], returns the
presence of chaos or periodic behavior in a single parameter. The 0-1 test works directly
with a given time series, requiring no phase-space reconstruction [32, 40, 41]. However,
the 0-1 test showed difficulties in distinguishing recurring patterns from chaotic behav-
ior [40].
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Motion matching

The methods described above demonstrated difficulties in distinguishing periodic mo-
tion identified in literature from chaotic motion; therefore, a new method named "mo-
tion matching" is presented in this research to satisfy the goal of classification. Motion
matching distinguishes periodic from chaotic behavior in a time-series X by determin-
ing the recurrence of a certain portion of the motion throughout the time-series, as de-
picted in Figure 2.6. Initially, a random portion of the time-series is taken by selecting
a random point X (t ) and a subsequent point X (t +τ). τ denotes the time-delay, whose
optimal value is obtained from the first minimum of the average mutual information
between X (t ) and its time-shifted variant X (t +τ), as proposed by Fraser and Swinney
[42]; if no minimum is found, the τ of the crossing with 1/e is taken [43]. The mutual
information can be interpreted as the reduction of uncertainty on X (t ) with knowledge
on X (t +τ). The first minimum therefore returns τ for which X (t ) and X (t +τ) are most
independent. For recurring periodic behavior τ will be relatively small, since reduction
of uncertainty will increase again (i.e. X (t ) and X (t+τ) become less independent) if X (t )
and X (t +τ) start overlapping as τ increases [35, 43]. Thus, for periodic behavior a small
portion of the motion is taken, which will highly likely recur in the time-series. Contrari-
wise, τ will be relatively big for chaotic behavior, giving a greater portion of the motion
that will less likely recur.
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Figure 2.6: Depiction of motion matching on periodic double-well oscillation case. The portion used is
indicated in blue and iterated throughout the time-series (red). The green sections depict the sections in X
matching with the blue portion

The portion is iterated along the entire time-series in order to find sections of X (t ) that
match with the portion. The process is repeated with a new random portion and the
mean number of recurrences R̄ is used as the indicator for periodicity or chaos. In Fig-
ure 2.7, the mean number of recurrences to the number of iterations (newly generated
random portions) is displayed. While no exact steady state value is obtained, it is clear
that from even under 50 iterations the mean number of recurrences for chaotic motion
will tend to 1, while for periodic motion this rises above 1 depending on the nature of
motion.
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Figure 2.7: Plot of mean number of recurrences R̄ to number of iterations used in motion matching. Chaotic
motion (black) tends to 1, while the periodic motion (red, blue and magenta) tend to a value greater than 1
depending on the nature of motion

2.3.2 Distribution of motion
As interwell oscillations are desirable for greater performance, it is necessary to take the
distribution of motion, i.e. the share of single- and double-well oscillations, into ac-
count. To this end, the method Heymanns and Hagedorn [26] introduced, lends itself
as suitable. Figure 2.8 displays a time-series X with the equilibrium positions of the
double-well potential indicated by the dashed lines and peaks by the blue dots. The dis-
placement |xp − xp+1| between each consecutive peak is determined and compared to
the distance |xs+ − xs− | between the two equilibrium positions of the double-well po-
tential. Parameter Jp can be found in (2.1); this keeps track of whether or not a jump be-
tween the two wells has occurred. The number of times a jump has and has not occurred
is counted, as well as the total number of oscillations in the time-series. By dividing the
first two by the latter, Pintra and Pinter, the percentage of intra- and interwell motion in
the time-series respectively, are obtained.

Jp =
{

1, |xp −xp+1| ≥ |xs+ −xs− | (jump occurred)
−1, otherwise (no jump occurred)

for p = 1, ..., Np −1

(2.1)

2.3.3 Performance metric
The performance of an energy harvester, in terms of power output, fluctuates with the
exhibited motion. As a metric relating the power output to the excitation, the volume
figure of merit FoMV, as found in (2.2), introduced by Mitcheson e.a. [44], is used. This
metric is designed to compare harvesters; however, in the case of comparing motions
for the same harvester, the dimensions and mass (Lz and ρMV ) remain unchanged and
are left out, resulting in the modified Equation (2.3). Pavg denotes the reported power
output, Y0 and ω the excitation amplitude and frequency respectively; in the case of
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Figure 2.8: Example of displacement time-series. Equilibrium positions are indicated by the dashed lines at
xs+ and xs− ; peaks are indicated with blue dots; the distance |xp −xp+1| between two peaks is depicted

Y0 given as acceleration, the denominator changes to Y0ω. Strictly, the FoM∗ is not a
proper figure of merit, as it is not dimensionless and does not return a value between
zero and one. However, its value tells clearly what the output power is with respect to the
excitation. Finally, for each used reference in the results, the FoM∗ is normalised to the
greatest value found in the corresponding work, resulting in a normalised power metric.

FoMG = Pavg

1
16 Y0ρMV Lzω3

·100% (2.2)

FoM∗ = Pavg

Y0ω3 (2.3)

2.4 Results
A bistable energy harvester may exhibit any of the motion discussed in Section 2.2, de-
pending on the excitation case. In Figure 2.9, a selection of harmonically excited energy
harvesters from literature, which had the displacement time-series and power output
available, is presented. The displacement time-series are analyzed using the motion
matching method and the R̄-parameter is determined. Additionally, the intra- and in-
terwell shares Pintra and Pinter are determined. For performance, the normalized power
is included as well as the rms displacement of each motion, normalized to the greatest
rms displacement in the corresponding work. Solely works that include several exhib-
ited motions are taken up. For the work of Litak e.a. [45], the mass is included in the
denominator of (2.3), as this parameter is changed to obtain different motions.



2

18 2 Classification of motion in bistable energy harvesters

Periodic interwell Periodic intrawell Chaotic crosswell Intermittent crosswell

Guo e.a. (2015) [25] Harris e.a. (2017) [48]∗ Harris e.a. (2016) [49]∗
Syta e.a. (2016) [50]† Litak e.a. (2016) [45]‡

∗ Experimentally obtained data
† Different motions are obtained through modification of the simulation initial conditions (position and
velocity)
‡ Different motions are obtained through modification of the oscillating mass in the model

Figure 2.9: Normalized power and normalized RMS displacement of harmonically excited bistable energy
harvesters, versus distribution of motion (Pintra and Pinter) Motion types are indicated using different shapes.
Different references are indicated using different colors; motions corresponding to one reference are
connected with a dotted colored line

2.4.1 Motion distribution in literature

Periodic intrawell motion in the relevant literature is mainly found with a Pintra = 100%
share. However, interestingly in the works of Holmes [18] and Nakano e.a. [46], chaotic
motion with 93% and 92% intrawell share are still denoted as chaotic intrawell motion,
even though there are interwell oscillations present. Analogous to periodic intrawell mo-
tion, periodic interwell motion is found with a Pinter = 100% share. Intermittent motion
in the form of multi-period motion is found with roughly a Pinter : Pintra = 1/3 : 2/3 dis-
tribution. In the work Radice e.a. [47], the boundary between intra- and interwell on
the one hand, and intermittent crosswell motion on the other hand is addressed. It is
argued that provided that single-well oscillations are short compared to double-well os-
cillations, the motion is taken as interwell motion, and vice versa. However, this notion
is not elaborated with a threshold regarding the motion distribution.
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2.5 Discussion
The first notable result is that interwell motion returns the greatest performance for the
evaluated energy harvesters. This is in accordance to that found in previous literature
[11–14, 16]. Periodic interwell motion returns a continuous great voltage response, re-
sulting in a greater power output. The share of interwell motion however, does not en-
tirely contribute to a greater power output, as can be seen in Harris e.a. [49]. Intrawell re-
turns the greatest normalized power as a result of the greater root mean square displace-
ment; additionally, the excitation amplitude is lower for intrawell motion, increasing the
normalized power. Even though chaotic and intermittent crosswell motion include an
interwell share Pinter > 0 %, the root mean square displacement is smaller due to smaller
amplitude intrawell oscillations. The increase in excitation amplitude is at the expense of
performance in this case. The same is seen in Litak e.a. [45] for the two chaotic crosswell
motion cases (equivalent excitation) with Pinter = 74% and Pinter = 94%, of which the first
(with lower Pinter) performs better, due to the greater root mean square displacement.

Chaotic motion is stated to be undesirable in energy harvesting applications, due
to the need for conditioning circuits as the power output is chaotic as well [13, 17, 25].
However, as mentioned by Daqaq e.a. [11] and Harne and Wang [12], the capabilities of
chaotic motion in energy harvesting have still not been researched thoroughly. As can be
seen in Figure 2.9, chaotic crosswell motion returns normalized power exceeding that of
intermittent crosswell motion in all the treated works. Hence, chaotic crosswell motion
may be useful in applications that only require a sufficient power supply, and impose no
demands on the regularity of this power supply.

2.5.1 Limitations of classification
In Section 2.2, a classification of the possible motion for bistable energy harvesters in
literature is presented. This classification was made to create a complete overview of the
possible motions in the field under one terminology. While various methods exist for dif-
ferentiating periodic and chaotic motion, less information is available for creating a clear
boundary between intra- and interwell motion and intermittency. Where multi-period
intermittent motion can be identified using its frequency spectrum, recurring patterns
and sporadic switching are not that recognizable. The latter imposes the greatest dif-
ficulty, as, to the author’s knowledge, this has only been addressed by Radice e.a. [47]
without quantification. Therefore, no quantification criteria are included for classifying
the actual motions.

As mentioned in Section 2.2, low- and high-amplitude variants of intra- and interwell
motion exist. These are not included as separate groups in the classification as they
do not impose a significant difference in the motion. The result is solely visible upon
examining the power output.

The work of Wu e.a. [51] presents the conditions required for excitation-induced sta-
bility in a bistable duffing oscillator. The resulting motion occurs between the two stable
equilibria, which would be classified as intrawell motion, while it is in fact a considerable
difference. However, the required excitation conditions are unique and the motion is not
further encountered in practical applications. Therefore, it is chosen not to include it in
the classification.
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2.5.2 Recommendations
To expand this classification, a quantification of intermittency is required as to set the
boundaries between the motion groups. A ’motion rate of change’, determining the rate
of change from intra- to interwell and/or vice versa over the time-series would enable
such a goal. Using this motion rate of change, it would be possible to differentiate pre-
dominantly intrawell motion with a concentrated interwell part in the time-series, from
intrawell motion continuously interrupted by interwell motion (and vice versa).

Using a quantification of motions, it would be interesting to create charts indicat-
ing the motion regions for a combination of excitation amplitude and frequency. Such
charts could aid in experimental work to find the desired motion, or to assess the perfor-
mance of harvesters in terms of obtainable motion.

2.6 Conclusion
Bistable energy harvesters are widely studied due to the increased performance and ro-
bustness as compared to linear systems. These traits require bistable harvesters to ex-
hibit continuous interwell motion, which coexists with several other types of motion.
In this research, a general classification of the possible types of motion is presented,
creating a uniform terminology that is applicable to the field of bistable energy har-
vesting systems, enabling the comparison of performance of certain motion types, or
harvesting systems exhibiting the same motion. The classification is created based on
displacement time-series. Firstly, periodic and chaotic behavior are distinguished by
means of ’motion matching’. This method records the recurrence of random portions
of the time-series throughout the data; the mean number of recurrences (R̄) will tend
to 1 for chaotic motion. For periodic motion, R̄ will tend to a number greater than 1;
however, no distinct steady-state value exists for a certain motion type. Secondly, the
percentage of intra- and interwell motion, Pintra and Pinter, are determined. The result-
ing classification presents intrawell, interwell and intermittent crosswell (multi-period,
sporadic switching, recurring combination) as periodic bistable motions and chaotic
intrawell and crosswell as chaotic motions. Trivially, intra- and interwell motion are
distinguishable by Pintra = 100% and Pinter = 100%, respectively. The common inter-
mittent crosswell motion, resulting from sub- and super-harmonics, roughly returns a
Pinter : Pintra = 1/3 : 2/3 distribution. However, the onset of intermittent motion from
intra- or interwell motion remains undefined. The performance of different motions is
evaluated using normalized power, relating the power output to the excitation, and the
normalized rms displacement. In terms of performance, interwell motion returns the
greatest normalized power and rms displacement, followed by chaotic crosswell motion.
It was found that the share of interwell motion does not contribute to the power output
as much as the overall amplitude does.



Chapter 3
Research hypothesis

In Chapter 1 we have touched upon the use of bistability as a means of broadening the
bandwidth of energy harvesters. Moreover, it was stated that bistabilty is a starting point
in methods for stiffness compensation. This chapter continues on the concept of bista-
bility, with a more elaborate explanation using a beam model. This functions as an intro-
duction to the research hypothesis. The hypothesis concerns a novel method for stiffness
compensation in compliant mechanisms. Additionally, the tools required for testing this
hypothesis are discussed in this chapter.
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3.1 Bistability
In Chapter 1, it is said that in a bistable mechanism a large amplitude oscillation between
the two wells, or equilibria, may occur. To understand this better, let us first look at the
concept of stability of equilibria. In Figure 3.1a, a ball on a convex surface is displayed.
If we were to push it up the convex hill, it would roll down, oscillate and come to rest
at its original position. Since a perturbation does not change the equilibrium position,
the ball is said to be in stable equilibrium. A perturbation would cause the ball in Figure
3.1b to start rolling downhill, away from the initial position; hence this represents an
unstable equilibrium. In Figure 3.1c, a perturbation would neither make the ball return
to its initial position, nor make it continuously move away. In this case, the ball is said to
be in a neutral equilibrium.

(a) (b) (c)

Figure 3.1: Stability of equilibria: stable (a), unstable (b) and neutrally stable (c) equilibria depicted with ball
analogy. Perturbation of the ball is depicted with the grey balls on either side. The red dot indicates the datum
for the ball’s vertical displacement

Stability can also be assessed by means of the potential energy Φ of the system. The po-
tential energy of the ball is proportional to the ball’s vertical displacement with respect
to a datum, which in this case is the red dot. In any equilibrium, the potential energy
takes a stationary value; for the equilibrium to be stable, the potential energy has to be
a local minimum [52, 53]. In the stable equilibrium, a perturbation would only increase
the potential energy of the ball with respect to the initial position. In the unstable equi-
librium, the potential energy is at a maximum, meaning that a perturbation will make
the ball roll away and seek a minimum. In the neutrally stable equilibrium, a perturba-
tion does not change the potential energy, so there is no tendency to seek a minimum;
hence, the ball is in equilibrium at every position [54]. Figure 3.2 uses this analogy to
relate bistability and neutral stability. Three equilibria, I, II and III are depicted together
with their height with respect to the datum. In a bistable system (Figure 3.2a), to achieve
a large amplitude oscillation between I and III, the potential energy has to increase with
hII −hI. This increase in potential energy has to be provided as input energy, in the form
of e.g. acceleration of the ball’s mass in the case of dynamics, or force in the case of stat-
ics. In the neutrally stable system (Figure 3.2b), the three equilibria are located at the
same height, and hence the ball has the same potential energy in all three. Therefore, we
do not depend on an increase in potential energy when moving from I to III, of course
assuming there is no friction, and it can be said that the movement between I and III be-
comes easier as the barrier height is reduced. The ball’s potential energy can be mapped
on the displacement δ to obtain the potential energy curves in Figure 3.2c. Blue and ma-
genta dots indicate the stable equilibria; a black dot indicates the unstable equilibrium
for the bistable case.
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Figure 3.2: Comparison of movement between states I and II for bistable (a) and neutrally stable (b) system.
For the bistable system ( ), I and III are separated by a barrier of height hII, which results in an increase in
potential energy for horizontal displacement δ (c), which has to be overcome with input energy. For the
neutrally stable system ( ), the potential energy is constant between I, II and III

3.2 Buckling
Whereas the ball analogy is very insightful for bistability, it lacks a relation to stiffness
compensation. Therefore, we need to turn to a mechanical element that can exhibit
the same behavior. In this case, bistability requires two main ingredients: a deformable
element. e.g. a slender beam, and a pre-load of some sort. Pre-load can be introduced
by means of a force, displacement or stress. Let us start from a simply supported slender
beam in a flat unloaded state, as displayed in Figure 3.3. By applying an axial load P on
the right side, the beam will initially act as a spring: it will compress as a result of the
applied load. However, once load P reaches a certain threshold value, the beam will lose
the ability to carry the load and it will deflect drastically in transversal direction. The
resulting deformed beam is displayed in Figure 3.3 in gray.

Pd

Figure 3.3: Depiction of an undeformed simply supported slender beam. As a result of an axial load P
reaching the critical load Pcr , the beam will displace a distance d in axial direction and buckle into its first
buckling mode from the flat state

This phenomenon of abruptly changing from axial compression to large transversal de-
flection is called buckling, or strictly bifurcation buckling. The load at which this hap-
pens is called the critical buckling load Pcr , and the obtained shape is the corresponding
buckling mode/shape. In theory, multiple buckling modes exist, each with their own
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corresponding buckling load. The first buckling mode corresponds to the lowest buck-
ling load, the second buckling mode to the second lowest load, etc. In practice however,
a beam will buckle in its first mode as this requires the least loading; this is the mode in
gray displayed in Figure 3.3. The beam is now said to be in its post-buckled state [53, 55].
As a quick excursion, let us address the slenderness of the beam. The word ’slender’ is
key; it has to hold that our beam is significantly thin with respect to its length

(
h2/L2 ¿ 1

)
for buckling to occur instead of plastic deformation.

Buckling can be related to stability by looking at the potential energy Φ of the beam.
This potential energy consist of two contributions: the elastic potential E and load po-
tential B. The elastic potential accounts for the energy governed by deflection of the
beam, i.e. strain and bending energy. The load potential accounts for the work done by
displacement of imposed loads. The total potential is given by Expression (3.1).

Φ= E +B (3.1)

Suppose we introduce a perturbation of the beam’s flat state in Figure 3.3 by imposing a
small transversal displacement. This will result in a small variation of the total potential:
the beam deflects, giving ∆E , and the load is displaced, giving ∆B. For the equilibrium
to remain stable, we require a positive variation in potential energy, i.e. the potential
energy increases due to the perturbation, which holds if

∆E >∆B

Contrariwise, if the variation in potential energy is negative, stability is lost. Hence, the
equilibrium is unstable if

∆E <∆B

This means that the onset of buckling is found in the critical point given by

∆E =∆B

The variation of potential energy is not changing in this case, which is equivalent to a
neutrally stable equilibrium [54].

3.3 Hypothesis
The beam in post-buckling will have attained the first buckling shape. This may be a
bridge in positive y-direction, hence called the B-mode, or the mirrored shape in nega-
tive y-direction, which we define as the -B-mode. Let us assume that the B-configuration
is the obtained shape after bifurcation buckling. The transversal post-buckling behav-
ior of the beam can be analyzed by actuating the middle of the beam with an incre-
mental displacement δ as in Figure 3.4a and recording the force required to do so. The
force-deflection characteristic that is obtained and the corresponding potential energy
curve are displayed in Figures 3.4b and 3.4c respectively. Following the force-deflection
characteristic, we reach a limit point in the load (green dot). It is crucial that there is a
prescribed displacement instead of a force. By imposing a force, the beam would snap-
through abruptly after the limit point, which is called limit load buckling [55]. An insight-
ful example for this force-displacement characteristic would be a light switch. When
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moving a switch from on to off, the required force to do so increases gradually as we ap-
proach the middle. Releasing the force just before the limit point makes the switch jump
back into its original state. After the limit point however, the required force decreases,
meaning that there is no displacement corresponding to an increase in force nearby. The
actual displacement is on the other side of the force-displacement characteristic. This
sudden jump in displacement is called snap-through, and is also observed in flicking
a switch: it pulls itself into the other state when pushed adequately [52]. However, by
controlling the displacement of the beam, snap-through is prevented, allowing us to see
what happens when moving from B to -B. By increasing δ further, the beam gradually
attains an S-shape, until a perfect S-shape is obtained when the middle point is exactly
on the horizontal axis. We define this shape as the S-mode, which is the second buckling
mode of the beam. Note that this mode is not obtained by increasing P but by deflecting
the beam transversally.
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Figure 3.4: Displacement controlled deflection of bistable buckled beam (a). The colors correspond to the
dots in the potential curve (b) and force-deflection characteristic (c). The black dot on top of the potential
barrier corresponds to the S-shape of the beam, which is the second buckling mode

Hence, during deflection, the beam transitions from the first buckling mode to the sec-
ond mode and back to the first mode. When looking at the potential energy curve in
Figure 3.4c, this second buckling mode complies with the top of the potential barrier,
meaning that the transition into the second mode is equivalent to moving up the poten-
tial barrier.
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This observation gives rise to the thought that if it is easier to transition between the
first two buckling modes, the potential barrier is lower, which means that the stiffness in
the mechanism is reduced and eventually canceled out. In this case, the first two buck-
ling loads should be close to one another, bringing the buckling modes closer together,
which is phenomenon is called buckling mode interaction. This can be formulated as
the following hypothesis:

"Buckling mode interaction can be used as a method for stiffness compensation"

3.4 Tools
To test this hypothesis, a few tools are required. Firstly, a model that describes the prob-
lem has to be proposed. This model has to be simple enough to be insightful, but still
describe the problem well. Of course, a solution method to analyze this model is re-
quired. To this end, literature on buckling analysis is used to find a suitable method.

3.4.1 Description of problem
In the hypothesis, we are interested in interaction of the first two buckling modes, mean-
ing that a model describing two buckling modes is required. The most accurate descrip-
tion would be using a continuous beam model, which captures the two buckling modes
perfectly. However, a continuous model also introduces immense complexity. There-
fore, a rudimentary description of the buckling modes is required. With a combination
of links and rotational joints, a basic description of the buckling modes can be estab-
lished:

• B buckling mode: the B buckling mode is half a sine wave. The most rudimentary
description is a triangle consisting of two links and three hinges, as in Figure 3.5a.

• S buckling mode: the S buckling mode is a sine wave. The most rudimentary de-
scription is two consecutive triangles consisting of three links and four hinges, as
in Figure 3.5b.

(a) (b)

Figure 3.5: Rudimentary descriptions of (a) B and (b) S buckling modes using linkages

Hence, a four-bar linkage with four joints and one slider joint will suffice to describe the
two buckling modes. This discrete model allows for simple solution of the mechanics
behind buckling mode interaction.

3.4.2 Buckling problem
In order for us to look into buckling mode interaction, the buckling modes and cor-
responding loads have to be determined. To this end, several methods exist and are
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grouped in two main approaches. The first is the vector approach, which uses Newton’s
second law to find the governing equations of the system of interest. The second ap-
proach is establishing these governing equations by minimizing the potential energy of
the system, given that it is conservative. The resulting governing equations are in the
form of an eigenvalue problem, in which the eigenvalues and eigenvectors represent the
buckling loads and corresponding modes respectively [55]. The energy approach lends
itself as a simple method for systems in which solution of the governing equations be-
comes complex [54]. While this is not to be expected from the linkage in Section 3.4.1,
this method is quick way to obtain an estimation of the buckling loads and modes. Re-
call the critical condition given to find the buckling loads: an equilibrium in which the
variation of the total potential does not change. This is equivalent to finding a stationary
value of the potential energy that does not change, i.e. a point in the potential energy
with zero slope and no change of the slope. The work of Budiansky [56] gives an elabo-
rate overview of the energy approach, following the principle of virtual work, to find the
buckling loads and modes. This approach will be explained and discretized here with-
out delving into the mathematics behind it, as these are not crucial for the problem to
be solved.

The potential energy is a functional of the degrees of freedom u and the scaling of
the applied load λ. First, it is required that the system is in equilibrium, i.e. the poten-
tial energy is to be stationary, which is defined in (3.2). This expression states that Φ
is stationary with respect to a variation of the degrees of freedom δu. However, for the
principle of virtual work to hold, δu has to be kinematically admissible and it has to hold
that δu 6= 0.

δΦ [u;λ] =Φ′ [u;λ] δu = 0 (3.2)

Expression (3.2) returns the equilibrium equations of the system, which are solved to
obtain the pre-buckling solution, u0, that describes the degrees of freedom in the equi-
librium prior to buckling. With the pre-buckling solution established, we need to assess
the stability of this solution following Section 3.2. As finding the equilibrium is equiva-
lent to setting the first derivative of the potential energy with respect to the degrees of
freedom equal to zero, finding a neutral equilibrium is equivalent to setting the second
derivative equal to zero. This is found in Expression (3.3), which is called the buckling
condition. Here λc denotes the critical buckling load and θ denotes the vector describ-
ing the buckling modes. The buckling condition tells us to load the beam from its pre-
buckling solution up to the critical load and evaluate the stability of that equilibrium for
a small perturbation of the degrees of freedom.

δΦ′′ [u0(λc );λc ]θδu =Φ′′
cθδu = 0 (3.3)

The buckling condition returns an eigenvalue problem from which the buckling loads
and modes are obtained, which will only follow from a non-trivial solution. Since it holds
that δu 6= 0, a trivial solution returns θ = 0. However, this would mean no buckling is oc-
curring. Therefore, a non-trivial solution follows from a singular Φ′′

c . Expressions (3.2)
and (3.3) are given as functional expressions; however, for a discrete system as the link-
age model with degrees of freedom ui , both Expressions simplify greatly to (3.4a) and
(3.4b) for n degrees of freedom. The buckling loads and modes are then obtained from
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det

(
∂2Φ

∂ui ∂u j

∣∣∣
u0[λc ]

)
= 0 [53]. Finally, we can identify what parameters govern the values

of the buckling loads and establish the conditions for buckling mode interaction. Even-
tually, the effect on the force-deflection characteristic in transversal deflection can be
evaluated as depicted in Figure 3.4.

n∑
i

∂Φ

∂ui
δui = 0 (3.4a)

n∑
j

∂2Φ

∂ui∂u j

∣∣∣∣
u0[λc ]

θ jδui = 0 (3.4b)

3.4.3 Buckling modal basis
The potential energy Φ is a function of the degrees of freedom u. These degrees of free-
dom describe the any configuration of the system in question. Hence, the deformation
as well as the buckling modes are entirely described in terms of u. The choice of u is
free: we may arbitrarily choose a set of degrees of freedom. A usual choice for instance,
is the nodal displacements of the system, or rotations of bodies in for example linkages.
Since we are interested in the buckling modes, another option arises. If the degrees of
freedom u describe the buckling modes θ, then θ may be used to describe u. This can
be formulated as (3.5).

u = θm (3.5)

Here m denotes the modal amplitudes, which describe the scaling of the modes in the
current configuration. What we are essentially doing here is mapping u onto a basis
described by the buckling modes. These buckling modes are eigenvectors, or simply
said shapes, that we can arbitrarily scale with an amplitude and hence obtain combined
shapes that e.g. describe the displacement field as in Figure 3.4a. This is similar to modal
analysis in dynamics, in which the vibration response of a system may be expressed as
a linear combination of the vibration modes [57]. As a result, we may for instance de-
scribe the potential energy in terms of the buckling modes and decompose it in each of
their contributions, which allows for an interesting analysis regarding the effect of mode
interaction [58].

The tools here are solely a brief introduction for the reader to get acquainted to what will
be used further in this thesis. Chapter 4 presents the actual application of these tools
in the form of a research paper. Appendices A and B provide an in depth step-by-step
elaboration of the linkage buckling problem and modal analysis respectively.



Chapter 4
Stiffness compensation through
matching buckling loads in a
compliant four-bar mechanism

This chapter presents the research paper on a novel method of stiffness compensation,
or static balancing. The work is a fundamental test of the hypothesis in Chapter 3, and
presents an analytical framework, mechanism design and experimental verification. An
analytical four-bar linkage model provided with four torsion springs in the joints is pro-
posed and defined as the torsion spring linkage. It is analytically shown that by mak-
ing the outer torsion springs three times stiffer than the inner two, static balancing is
achieved. This analytical model is translated into a lumped-compliant four-bar mech-
anism and it is experimentally shown that the behavior in the analytical model occurs
in practice as well, verifying the hypothesis. Modal analysis is used to establish an ex-
planation of the observed behavior. Furthermore, upon comparison to literature, it is
observed that the analytical model describes the behavior found in continuous bistable
buckled beams.

29
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Stiffness compensation through matching buckling loads
in a compliant four-bar mechanism

A. Numić, T.W.A. Blad and F. van Keulen
Abstract
In this paper a novel alternative method of stiffness compensation in buckled mechanisms is in-
vestigated. This method involves the use of critical load matching, i.e. matching the first two
buckling loads of a mechanism. An analytical simply supported four-bar linkage model consisting
of three rigid links, four torsion springs in the joints is proposed for the analysis of this method.
It is found that the first two buckling loads are exactly equal when the two outer springs are three
times stiffer than the two inner springs. The force-deflection characteristic of this linkage archi-
tecture showed statically balanced behavior in both symmetric and asymmetric actuation. Using
modal analysis, it was shown that the sum of the decomposed strain energy per buckling mode
is constant throughout the motion range for this architecture. An equivalent lumped-compliant
four-bar mechanism is designed; finite element and experimental analysis showed near zero ac-
tuation forces, verifying that critical load matching may be used to achieve significant stiffness
compensation in buckled mechanisms.

Keywords
Stiffness compensation, static balancing, buckling, compliant mechanisms

4.1 Introduction
A statically balanced mechanism is in static equilibrium in every point over a finite range
of motion. In this case, the total potential energy of the mechanism is constant [8]. Static
balancing may for instance be used to compensate for the gravity load of a mechanism.
Not only gravity loads, but also elastic energy stored during deformation such as in com-
pliant mechanisms (CMs) can be balanced. As a result, the force required for this defor-
mation is zero [59].

A frequently used method to achieve static balancing in for example linkages, is an
intricate synthesis of ideal springs and auxiliary rigid bodies [60–63]. The springs are re-
sponsible for counteracting undesired forces occurring during deflection. In CMs, strain
energy accumulates in the elastic elements due to their inherent positive stiffness [64].
Static balancing in CMs is achieved through stiffness compensation, i.e. cancellation
of the positive stiffness using equal but negative stiffness [65]. This negative stiffness is
introduced through pre-loading of elastic elements. Accumulated strain energy is com-
pensated by the energy stored in the pre-loaded elements during the deformation [66].
As a result, the net change in energy is small; hence, the required input force reduces
[67].

Current methods of stiffness compensation require an iterative process of finding the
correct negative stiffness and force-deflection characteristics [68, 69], or geometrical op-
timization [59, 70–72]. Kuppens e.a. [73] introduced a novel notion on using pre-loading
in stiffness compensation of CMs. In this work, the stiffness of a mechanism was min-
imized by matching the first two critical buckling loads. Blad e.a. [74] defined the ratio
between these buckling loads as the critical load ratio (CLR), which is used to identify
the variation of potential energy between the equilibria of the buckled mechanism in
question. The CLR was applied as a strategy to balance several orthoplanar CMs and the
effect of geometrical parameters on the mechanical behavior was investigated. It was
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shown that by maximizing this ratio, i.e. matching the two buckling loads, a minimal
actuation force is obtained in transversal deflection. This method may be a simple al-
ternative for stiffness compensation in designing statically balanced CMs. However, the
working of this method has yet to be applied to lumped-compliant mechanism, for e.g.
stiffness compensation in linkages.

In this research, the use of the CLR as a means of stiffness compensation is investi-
gated. The goal of this paper is to present an analytical approach to stiffness compensa-
tion using the CLR, as to establish it as a new method.

In Section 4.2, the concept of stiffness compensation using the CLR is presented.
Subsequently, an analytical framework using a four-bar linkage with torsion springs is
formed. The buckling problem for this analytical model is solved, the CLR is established,
and modal analysis of the deformation is discussed. Additionally, the mechanical design
of the lumped-compliant four-bar mechanism, finite element modeling and the experi-
mental setup are discussed. In Section 4.3 the results obtained from the analytical, finite
element and experimental analyses are presented. Section 4.4 discusses upon these re-
sults and concluding remarks are given in Section 4.5.

4.2 Methods
4.2.1 Buckling of four-bar linkage
Buckling is feared in engineering due to the danger of catastrophic failure of structures
[53]. When several buckling loads are close together, a phenomenon defined as buck-
ling mode interaction, this danger grows significantly larger [75]. In this research how-
ever, exactly this phenomenon is used for stiffness compensation in a four-bar linkage.
Figure 4.1a displays a schematic representation of this four-bar linkage. Its flat config-
uration in Figure 4.1a is a stable equilibrium which is defined as the pre-buckling state
[56]. The slider joint allows for axial pre-loading by means of e.g. an axial load P . Dur-
ing pre-loading, the axial load P is gradually increased while the linkage preserves its
flat configuration, up to the point that it holds P = Pcr,1. Eventually, the linkage deflects
transversally in e.g. the gray buckled configuration. Its force-deflection (FD) behavior
may now be evaluated by imposing an external load F in an arbitrary location, and de-
flecting the linkage in y-direction.

y

x

P

F

(a)

P

S

B

(b)

Figure 4.1: Schematic representation of four-bar linkage in flat and buckled state (a) and its two buckling
modes (b). As a result of axial load P , the linkage buckles from the flat into the deformed (gray) configuration
from which it may be transversally deflected using an external load F . The linkage has two buckling modes:
the B-mode and the S-mode



4

32 4 Stiffness compensation through matching buckling loads

Pcr,1 is the first critical buckling load, i.e. the lowest axial load at which the pre-buckling
state loses stability, and bifurcates into a new equilibrium that is called the post-buckling
state [55]. Figure 4.1b displays the possible post-buckling equilibria of the linkage, which
are the two buckling modes. These are defined as the B and S-modes, as the linkage
forms a bridge and S-shape, with their corresponding critical buckling loads PB and PS

respectively. The CLR, i.e. the ratio of these two buckling loads, describes the variation
of potential energy between the equilibrium states of a buckled mechanism [74]. Dur-
ing transversal deflection, the linkage will transition between these equilibrium states.
By achieving a unity CLR, the two buckling loads, and thus the potential energies in the
equilibria, are equal. As a result, constant potential energy between the equilibria, and
hence static balancing, is obtained. This effect is visualized with the strain energy con-
tributions of the B and S-modes under transversal deflection using modal analysis in
Section 4.2.2. A more practical visualization is by means of the force-deflection (FD)
characteristic of the linkage under transversal deflection, as described in Section 4.2.2.

4.2.2 Analytical framework
To use the CLR as a method for stiffness compensation, the buckling loads and modes of
the linkage have to be obtained. Figure 4.2 displays the proposed model of the torsion
spring linkage (TSL) used in this analysis. The TSL consists of three rigid links of length
L; and torsion springs in the joints with stiffness ka , kb , kc , and kd , which capture the
elastic properties of the linkage. Additionally, a spring with stiffness k in axial direction
functions as the pre-loading mechanism: by displacing the frame connection a distance
d in −x direction, the linkage is loaded axially and brought into post-buckling. The four-
bar linkage allows for one degree of freedom (DoF) as a description of the kinematics. A
second DoF, required to prevent singularities in the kinematics, is obtained by relaxing
the axial displacement in one end by means of a slider joint. The two DoFs are chosen

as u = [
ϕ1,ϕ2

]T
; additionally, moderate rotations (ϕ2 ¿ 1) are assumed. The resulting

stiffness compensation is evaluated by means of the FD characteristic of the TSL under
deflection in y-direction. To this end, two external loads, an asymmetric load Fa and
symmetric load Fs , are imposed in Oa and Os respectively.
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d
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kb
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Fs
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Figure 4.2: Schematic representation of torsion spring linkage. By applying a pre-loading displacement d to
the rigid connection of spring k, the linkage is brought into a buckled state in which an asymmetric load Fa
and symmetric load Fs are imposed in Oa and Os respectively
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Buckling problem
First, the buckling problem is solved using the energy approach [54], which will return
the bifurcation buckling loads and corresponding modes. To this end, the potential en-
ergyΦ of the TSL is can be found in (4.1).

Φ [u;d ;Fa ;Fs ] = 1

2
kaϕ

2
1 +

1

2
kb

(
2ϕ1 +ϕ2

)2 + 1

2
kc

(
ϕ1 +2ϕ2

)2 + 1

2
kdϕ

2
2

+ 1

2
k

[
d +L

(
ϕ2

1 +ϕ1ϕ2 +ϕ2
2

)]2 +
(

1

2
FaL+ 1

2
Fs L

)
ϕ1 − 1

2
Fs Lϕ2

(4.1)

The first step in solving the buckling problem is obtaining the equilibrium equations, by
finding a stationary value of the potential energy with respect to a kinematically admissi-
ble perturbation of the DoF δu using (4.2) [53, 56]. The obtained equilibrium equations
are subsequently made dimensionless and can be found in (4.3). Φ̄ denotes the dimen-
sionless potential energy; parametersα= (ka +3kb)/(kb +kc ) andβ= (kd +3kc )/(kb +kc )
describe the stiffness ratios between the torsion springs in the linkage;ω= kL2/(kb +kc )
governs the dimensionless axial stiffness;λ= d/L denotes the dimensionless pre-loading
that is imposed; and f = F /(kL) denotes the dimensionless imposed external load.

δΦ=Φ′δu = ∂Φ

∂ϕ1
δϕ1 + ∂Φ

∂ϕ2
δϕ2 = 0 (4.2)
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2
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(4.3)

By solving the equilibrium equations in (4.3), the pre-buckling solution u0 = [
0,0

]T
for

λ 6= 0 is obtained. This is a stable solution describing the state of the system prior to
buckling for a pre-load λ increasing from zero, or the flat state from Figure 4.1a in short.
The critical buckling loads and corresponding modes are obtained by evaluating the sta-
bility of u0 using the buckling condition in (4.4) [56]. Φ̄′′

c denotes the second derivatives
of the dimensionless potential energy evaluated at the pre-buckling solution and the
critical pre-load λ= λc , θ denotes the buckling modes of the system. The buckling con-
dition returns the generalized non-dimensional eigenvalue problem in (4.5). A trivial
solution would be that θ = 0; however, this means that no buckling is occurring. There-
fore, a non-trivial solution can only be found for a singular Φ̄′′

c .

Φ̄′′ [u0 (λc ) ;λc ] = Φ̄′′
cθδu = 0 (4.4)

Φ̄′′
cθ =

{[
α+1 2

2 β+1

]
+µ

[
2 1
1 2

]}[
θ1

θ2

]
= {

A+µB
}
θ = 0 (4.5)

Critical load matching
Solving (4.5) by setting C = B−1 A returns the eigenvalues µi = λiω and eigenvectors θi ,
which represent the dimensionless critical buckling loads and corresponding modes re-
spectively for i = 1, 2. The lowest value of µi is the first critical buckling load µ1; the
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second lowest is the second critical buckling load µ2. The CLR for the TSL is defined as
the ratio µ1/µ2 and can be found in (4.6). It is found that the CLR becomes unity for
α=β= 3, which means that the two buckling loads are exactly equal.

µ1

µ2
=
α+β−

√
α2 −αβ+β2 −3

(
α+β)+9

α+β+
√
α2 −αβ+β2 −3

(
α+β)+9

(4.6)

The CLR governs the values of the stiffness ratiosα andβ, and thus physically the relative
stiffness of the torsion springs in the TSL. Hence, by varying the CLR, different linkage
architectures are obtained. According to a unity CLR, α and β are constrained to α=β=
κ. Assuming symmetry in the TSL as ka = kd = c∗ and kb = kc = c, returns ka = kd = 3c
for κ= 3. Therefore, a unity CLR is obtained when the two outer springs are three times
stiffer relative to the two inner springs. This architecture will be denoted as 3c-c-c-3c,
in which c denotes the stiffness of the torsion springs and the hyphens denote the links
between the springs. Four additional architectures κ= {2,2.5,3.5,4} are denoted as, c-c-
c-c, 2c-c-c-2c, 4c-c-c-4c, 5c-c-c-5c respectively. By solving (4.3) for fa and fs respectively
for a given displacement field, the symmetric and asymmetric FD characteristics of these
five architectures are determined to analyze the effect of the CLR on the mechanical
behavior.

Modal analysis
The TSL has two DoFs describing the deflection and its two buckling modes B and S.
Expressed in the DoFs, it holds that ϕ1 = −ϕ2 for the B-mode, and ϕ1 = ϕ2 for the S-
mode [52]. Inversely, it holds that any configuration of the linkage may be decomposed
in buckling modes B and S (4.7). Here, the DoFs u are projected on a modal basis θ
spanned by the buckling modes B and S. For a given linkage configuration, the modes
are scaled with their modal amplitudes mB and mS. Modal amplitudes are linked to
the displacement using the mode participation χ. As opposed to the modal amplitude,
which is solely the scaling of the mode, the participation represents the measure of con-
tribution, e.g. χi = 1 means that the linkage configuration is fully described by mode i ,
and it holds that

∑N
i χi = 1 [58].

u =
[
ϕ1

ϕ2

]
= θm =

[
1 1
−1 1

][
mB

mS

]
∧ χi = |mi |

|mB +mS|
(4.7)

Using this decomposition, the potential energy of the linkage under transversal deflec-
tion can be decomposed in strain energy contributions of the B and S-modes. The di-
mensionless strain energy Ē expressed in the modal basis can be found in (4.8). The
strain energy contribution of each mode can be evaluated by scaling the modes sepa-
rately and evaluating (4.8), which is schematically represented in Figure 4.3.

Ē
[
m;α;β

]= 1

2
m2

B

(
α+β−2

)+ 1

2
m2

S

(
α+β+6

)+mBmS
(
α−β)

(4.8)
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Figure 4.3: Schematic representation of linkage deformation using the buckling modes B (a) and S (b). From
the buckled configuration, the modal amplitude is decreased until it reaches zero in the flat configuration

4.2.3 Mechanical design and manufacturing
The TSL in Figure 4.2 is converted into a lumped-compliant four-bar mechanism (CFBM)
by replacing the torsion springs with flexures. In Figure 4.4a, the designed CFBM is de-
picted with the corresponding dimensions. It comprises three rigid links (1) of length
B , width W and thickness H and two clamping blocks (2). Two flexures (3), represent-
ing the outer springs, of width w and thickness t connect the two outermost links to
the clamping blocks, while two flexures (4), representing the inner springs, of width w f

and thickness t interconnect the links. The flexures are clamped to the links using a bolt
connection and a cap (5), creating a fixed-fixed boundary and a flexure length l . The as-
sembly is mounted on a base plate (6) provided with two slots (7) allowing for a variable
pre-loading displacement d . The links and the clamping blocks are milled from alu-
minum. The flexures are manufactured from 0.20 mm thick AISI 301 spring steel using
a Spectra Physics Talon 355-15 diode pumped solid-state (DPSS) UV laser cutter with a
wavelength of 355 nm and a maximum power of 15 Watts at 50 kHz. The stiffness ratios
κ from the five linkage architectures (Section 4.2.2) are achieved by varying the flexural
rigidities of the inner flexures relative to the outer flexures. The flexural rigidity is de-
termined as the product of torsion stiffness ka , kb , kc , kd and the flexure length [76].
For a constant flexure length and outer flexure width, the rigidities for the inner flexures
(displayed in Figure 4.4a) are governed by w f . The post-buckled state, e.g. the S-mode
displayed in Figure 4.4b, is obtained by inducing a pre-loading displacement d = 5 mm.
All parameters are summarized in Table 4.1.

Table 4.1: Relevant parameters of the manufactured lumped-compliant four-bar mechanisms

Fixed parameter Symbol Value [mm]

Link length B 70
Link width W 10
Link thickness H 10
Outer flexure width w 10
Flexure thickness t 0.20
Flexure length l 7
Pre-load displacement d 5

CFBM architecture Inner flexure width w f [mm]

c-c-c-c 10
2c-c-c-2c 5
3c-c-c-3c 3.33
4c-c-c-4c 2.50
5c-c-c-5c 2
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Figure 4.4: Designed lumped-compliant four-bar mechanism: (a) schematic showing the design of the
unloaded mechanism and inner flexures with the dimensions indicated. The design comprises: rigid links (1),
clamping blocks (2), outer flexures (3), inner flexures with variable width (4), PMMA caps (5), mounting base
plate (6), pre-loading slots (7). By applying a pre-load the manufactured mechanism may buckle into the
S-mode (b)

4.2.4 Finite element modeling
To simulate the mechanical behavior of the post-buckled CFBM architectures, a finite
element model was constructed in ANSYS Mechanical APDL. The flexures are modeled
as linear elastic (E = 190 GPa, ν = 0.34, ρ = 7890 kg ·m−3) two-node Timoshenko beam
elements (BEAM188). A linear buckling analysis is performed to determine the first two
buckling loads and the corresponding modes of the CFBM. To prevent crashing in the
pre-loading phase due to singularities, an initial imperfection is added. The pre-loading
displacement d is applied, and subsequently an incremental displacement is applied in
either Oa or Os , while recording the reaction force to obtain the FD characteristics for
asymmetric and symmetric actuation.

4.2.5 Experimental setup
The FD characteristics of the mechanism architectures were evaluated experimentally
with the setup shown in 4.5a. To apply the desired displacement to the mechanism, a
PI M-505 motion stage with an internal encoder for the displacement data is used. The
force required for applying the displacement to the mechanism is measured by a FUTEK
LRM200 force sensor. A rolling point contact between the mechanism and force sensor
is established using a probe with a bearing ball, attached to the sensor, and a spherical
magnet, attached to the mechanism, as shown in Figure 4.5b. The magnet ensures that
contact remains in the unstable region. Data was recorded using an NI USB-6008 in 100
steps with a resolution of 750µm.
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(a) (b)

Figure 4.5: Experimental setup for measuring force-deflection behavior. The used components (a) comprise
a PI M-505 motion stage (1), a FUTEK LRM200 force sensor (2), and an NI USB-6008 data acquisition unit. A
rolling contact (b) ensures that contact between the sensor and the mechanism remains in the unstable
motion region

4.3 Results
The analytical buckling loads and the CLR values are tabulated in Table 4.2 for the five
TSL architectures.

Table 4.2: Analytical buckling loads PB and PS and CLR values for analytical analysis

Architecture PB [N] PS [N] CLR [-]

c-c-c-c 4.77 7.96 0.60
2c-c-c-2c 3.58 4.38 0.82
3c-c-c-3c 3.18 3.18 1.00
4c-c-c-4c 2.98 2.59 0.87
5c-c-c-5c 2.86 2.23 0.78

The FD characteristics of the TSL and CFBM architectures are depicted in Figures 4.6 and
4.7 for the symmetric and asymmetric actuation respectively. Analytical results are indi-
cated with the dashed black line, finite element analysis (FEA) results with the red line,
experimental results with the blue circles. The chronology of deflection is presented in
Figures 4.8 and 4.9 for the symmetric and asymmetric actuation respectively. The nu-
merals are indicated in the c-c-c-c Architecture FD characteristics at the corresponding
locations.

Figure 4.10a depicts the relation between the mode participation of the B and S-
modes and the vertical displacement of Os under transversal deflection. The numer-
als correspond to the chronology of deflection in Figure 4.8. In Figures 4.10c, 4.10b and
4.10d, the dimensionless strain energy of the two separate modes is plotted together with
their sum for the c-c-c-c, 3c-c-c-3c and 5c-c-c-5c Architectures for symmetric actuation.



4

38 4 Stiffness compensation through matching buckling loads

(I, VI)

(II)

(III)

(IV)

(V)

(a) (b)

(c) (d)

(e)

Figure 4.6: Comparison of analytical ( ), FEA ( ) and experimental ( ) force-deflection behavior for
symmetric actuation: (a) c-c-c-c, (b) 2c-c-c-2c, (c) 3c-c-c-3c, (d) 4c-c-c-4c, (e) 5c-c-c-5c
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Figure 4.7: Comparison of analytical ( ), FEA ( ) and experimental ( ) force-deflection behavior for
asymmetric actuation: (a) c-c-c-c, (b) 2c-c-c-2c, (c) 3c-c-c-3c, (d) 4c-c-c-4c, (e) 5c-c-c-5c
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Figure 4.8: Chronology of mechanism deflection for symmetric load actuation (numerals refer to those in
Figure 4.6)

Figure 4.9: Chronology of mechanism deflection for asymmetric load actuation (numerals refer to those in
Figure 4.7)
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4.4 Discussion
4.4.1 Force-deflection characteristics of architectures
In both actuation cases, the same effect is observed due to a change in κ: there is a
counter-clockwise rotation of the FD characteristic parts between the ends as κ, i.e. the
torsion stiffness ratios, increases. As the κ increases from the c-c-c-c Architecture to the
3c-c-c-3c the stiffness gradually diminishes to zero. Looking into the CLR, it is observed
that as the CLR approaches unity, the stiffness reduces. Static balancing is achieved in
the mechanism as a result of matching the first two buckling loads in the 3c-c-c-3c Archi-
tecture. This strong reduction in stiffness matches the results found in [73, 74]. There-
fore, it can be said that using the CLR is indeed a successful method for stiffness com-
pensation of the mechanism applied to, and can return statically balanced behavior for
a unity value. The same counter-clockwise rotation of the FD characteristics is found in
[77] for a Von Mises truss with a spring attached to the middle joint. For an increase in
spring stiffness, the slope of the FD transitions from negative, to perfectly flat, to positive.
[78] obtained the same behavior for a Von Mises truss and denoted it as a zero-stiffness
structure.

The change in sign of the FD slope for the 4c-c-c-4c and 5c-c-c-5c Architectures is
ascribed to the buckling modes changing "order". Whereas the first buckling mode in the
c-c-c-c Architecture is the B-mode, it becomes the S-mode for the 4c-c-c-4c and 5c-c-c-
5c Architectures which is observed in Table 4.2. Architectures c-c-c-c to 3c-c-c-3c have
the B-mode as two stable positions on either side of the motion range. The S-mode has
a single stable position at the middle of the motion range. This results in the mechanism
acting as a spring with positive stiffness.

The stiffness of the asymmetric FD characteristics may be approximated by taking
the slope between the crossings of the loops, which is observed to follow the same trend
as in the symmetric FD characteristics. It can also be observed that the area of the loops
decreases as we approach the 3c-c-c-3c Architecture, matching the results in [74]. [79]
quantified the area under this loop as the energy required for deformation; hence, the
energy decreases as we approach the 3c-c-c-3c Architecture.

4.4.2 Decomposition of the strain energy
From Figure 4.10a, it can be observed that the configuration of the linkage in the equilib-
ria is fully defined by a single mode. Hence, the strain energy in the equilibria is equiv-
alent to that of the corresponding buckling mode, and determined by the pre-loading
displacement and critical load, which corresponds to what was found in [74]. In the 3c-
c-c-3c Architecture, the CLR is unity, and hence the three equilibria have equal strain
energy. As a result, it is observed that two strain energy contributions sum to a constant
value throughout the motion range. The obtained constant strain energy results in zero
actuation force during transversal deflection of the 3c-c-c-3c Architecture. Hence, it can
be said that by obtaining a unity CLR, the mechanism is statically balanced between its
equilibrium positions.

The counter-clockwise rotation observed in the FD characteristics due to change in
the mode order is depicted by the strain energy as well. Two equilibrium positions, both
described by the B-mode, which are separated by a barrier that is defined by the S-mode
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are found for the c-c-c-c Architecture (Figure 4.10c). The downward opening parabola
indicates that the c-c-c-c Architecture exhibits bistable behavior, as is observed in Figure
4.6a. A single minimum of strain energy for χS = 1 is observed for the 5c-c-c-5c Archi-
tecture, meaning that the stable equilibrium is fully described by S-mode (Figure 4.10d).
The upward opening parabola indicates monostability, which is observed as the positive
stiffness in Figure 4.7e.
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Figure 4.10: Relation between mode participation χ and displacement of Os for modes B and S (a).
The numerals correspond to the chronology of deflection in Figure 4.8, indicating the configuration of the
linkage. The dimensionless strain energy Ē for each mode is plotted separately together with the sum of both
contributions for the 3c-c-c-3c (b), c-c-c-c (b) and 5c-c-c-5c (d) Architectures

4.4.3 Accuracy of model
From Figures 4.6 and 4.7 it is observed that the analytical model and the experimental
results comply well in terms of stiffness. The moderate rotations assumption introduces
a slight error to the kinematics that remains within a 2% bound. From Figure 4.9 it can be
observed that the asymmetric actuation results in two load paths occurring. The shapes
of the FD characteristics of the c-c-c-c Architecture match those found for symmetric
and asymmetric actuation of a bistable buckled prismatic beam [80]. Therefore, it can
be said that the proposed analytical model predicts the behavior of such a beam well.
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In symmetric actuation of the 3c-c-c-3c Architecture, a discrepancy between the stiff-
ness in the experimental and the analytical results is observed. Due to imperfections in
the assembly process, the pivot length is not exactly 7 mm, and the actual stiffness dis-
tribution is 3.01c-1.03c-1.07c-2.98c, given that the mechanism is perfectly in plane. The
finite element FD characteristics are simulated with these pivot length imperfections.
Nevertheless, a discrepancy between the FEA and experimental results is still observed.
This indicates the difficulty of achieving static balancing in practice due to the sensitivity
of the buckling loads to manufacturing and assembly.

4.5 Conclusion
In this paper, we have investigated the effect of matching the first two buckling loads
on the force-deflection characteristics in a four-bar linkage. An analytical simply sup-
ported four-bar linkage model consisting of three rigid links, four torsion springs in the
joints and a linear spring capturing the buckling behavior was proposed to achieve this.
The buckling problem was solved and it was found that the ratio between the buck-
ling loads changes as a function of the torsion stiffness ratios in the linkage. The first
two buckling loads are exactly equal when the two outer springs are three times stiffer
than the two inner springs. The force-deflection characteristics of five linkage archi-
tectures with the torsion spring stiffness ratio ranging from 1 to 5 were evaluated ana-
lytically, numerically using finite element analysis and experimentally. In the finite el-
ement and experimental models, the torsion springs were replaced by short flexures,
creating a lumped-compliant four-bar mechanism. It was shown that by matching the
first two buckling loads, the force required for deformation entirely diminishes and static
balancing is achieved. Using modal analysis, it was shown that the sum of the decom-
posed strain energy per buckling mode is constant throughout the motion range due to
the matching buckling loads. This indicates that matching the first two buckling loads
is a useful method in stiffness compensation or static balancing of buckled lumped-
compliant four-bar mechanisms.





Chapter 5
Effect of matching buckling loads
on post-buckling behavior in
compliant mechanisms

This chapter presents the research paper on the use of the stiffness compensation method
described in Chapter 4. The method is applied to two compliant mechanism architec-
tures and a parametric study of changes in the geometry is conducted. By changing
the relative width and length of flexures in the architectures, the ratio between the first
two buckling loads, called the critical load ratio, is adjusted. A finite element model is
constructed and the force-deflection characteristics of different architecture designs are
simulated to investigate the effect of the critical load ratio on the mechanical behavior.
The results are subsequently experimentally validated.
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Effect of matching buckling loads on post-buckling behav-
ior in compliant mechanisms

A. Numić, T.W.A. Blad and F. van Keulen
Abstract
In this paper, a novel method for stiffness compensation in compliant mechanisms is investigated.
This method involves tuning the ratio between the first two critical buckling loads. To this end, the
relative length and width of flexures in two architectures, a parallel guidance and stepped beam,
are adjusted. Using finite element analysis, it is shown that by maximizing this ratio, the actuation
force for transversal deflection in post-buckling is reduced. These results were validated exper-
imentally by identifying the optimal designs in a given space and capturing the force-deflection
characteristics of these mechanisms.

Keywords
Static balancing, stiffness compensation, buckling, compliant mechanisms

5.1 Introduction
Compliant mechanisms (CMs) allow motion through the deflection of elastic members.
These mechanisms are widely used due to their ease of manufacturing, increased pre-
cision and reliability, and wear resistance, as compared to non-compliant counterparts.
Despite these advantages, a great disadvantage is the significant storing of input energy
in the form of strain energy in the elastic members [81]. As a result, the available travel
range and mechanical efficiency are reduced, and the natural frequency is significantly
increased [64].

This strain energy is not dissipated and can be balanced out by adding new strain
energy into the system, e.g. through pre-stress [64, 82]. A system in which the elastic
potential energy is kept constant over a finite motion range is called statically balanced;
hence, the system is in a neutrally stable equilibrium throughout this motion range [8].
This range is bounded by a steep increase in the potential energy due to the elastic ele-
ments being loaded in tension. In the force-deflection characteristic, this translates to a
plateau that rapidly steepens at either end. Ideally, the actuation force and stiffness of a
statically balanced mechanism approach zero [69].

Examples of statically balanced compliant mechanisms (SBCMs) can be found for
use in micro mechanisms [68, 69], haptic interfaces [67, 83], surgical equipment[84, 85].
Additionally, SBCMs may find application in energy harvesting devices and linear bear-
ings [70]. Statically balanced behavior in the given examples is obtained through intri-
cate design, synthesis of pre-stressed and unstressed compliant elements, and optimiza-
tion steps. These steps have been incorporated in building blocks to generalize the pro-
cess of static balancing [71, 82, 86]. Kuppens e.a. [73] presented a novel notion in static
balancing of CMs. In this work, the stiffness of a parallel guidance connected to a buck-
led flexure is minimized by matching the first two buckling loads. Blad e.a [74] proposed
the critical load ratio (CLR), i.e. the ratio between the first two buckling loads, to identify
the variation of potential energy between the equilibria of a buckled mechanism. This
strategy was applied as a design method to statically balance several compliant ortho-
planar mechanism architectures by maximizing the CLR. To date, this method has only
been applied to these orthoplanar mechanism architectures.
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The goal of this paper is to investigate the effect of the CLR on the force-deflection char-
acteristics of two CM architectures, namely a stepped beam and the parallel guidance
from [73].

In Section 5.2, the model of the two architectures is presented. Additionally, man-
ufacturing, finite element modeling and the experimental setup are discussed. Section
5.3 presents the results obtained from the finite element analysis (FEA) and the exper-
iments. The results are discussed in Section 5.4 and conclusions are drawn in Section
5.5.

5.2 Methods
5.2.1 Critical buckling load ratio
A minimal stiffness in a CM can be achieved by matching the first two critical buck-
ling loads [73]. The first critical buckling load, Pcr,1, is the lowest axial load at which a
mechanism loses its stability and bifurcates into a new equilibrium: the first buckling
mode. This mode describes the stable equilibrium configuration of the mechanism, i.e.
the minimum of potential energy. The second buckling load corresponds to the second
buckling mode, and it holds that Pcr,2 > Pcr,1 [52, 53]. Higher buckling modes describe
equilibrium configurations as well, though unstable [87].

By adjusting the geometry of the mechanism, the values of these buckling loads
change; more importantly, the ratio between the buckling loads, CLR = Pcr,1/Pcr,2, changes.
The CLR describes the variation in potential (or strain) energy between the equilibrium
configurations. The strain energy Ei of buckling mode i , is equivalent to the input en-
ergy required to obtain the deformation corresponding to the mode. This input energy
is approximately the work done by the corresponding buckling load over the imposed
pre-loading displacement d : Ei ≈ Pcr,i d . For a unity CLR, it holds that Pcr,1 = Pcr,2 and
hence E1 = E2. Therefore, there is no variation in potential energy between the equilib-
rium configurations and static balancing is achieved [74].

A physical visualization of this effect can be achieved by means of the force-deflection
(FD) characteristics. FD characteristics with a single load path and two load paths are
displayed in Figures 5.1a and 5.1b respectively. For the single load path, a linear stiff-
ness k between the ends of the FD characteristic can be evaluated. This stiffness ideally
goes to zero when static balancing is achieved [69]. For the two load paths, the stiffness
may be evaluated between the crossings of the load paths. Alternatively, Cazottes e.a.
[79] proposed the snapping energy Es , i.e. the energy required for deformation, as the
area between each load path and the horizontal axis. The linear stiffness and snapping
energy will be used to quantify the effect of the CLR on the FD characteristics.

In the current work, the FD characteristics in post-buckling of two architectures are
investigated. The first architecture comprises a shuttle suspended by two flexures on
either side creating a stepped beam; hence, it is named Buckled Stepped Beam (BSB). In
the second architecture, a third flexure is added to constrain the rotation of the shuttle
creating a parallel guidance; hence, it is named Buckled Parallel Guidance (BPG). The
first and second buckling modes of the BSB and BPG are displayed in Figure 5.2. The
geometry in both architectures is tuned by means of parameters β and σ, which denote
the relative length and width of the flexures.
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Figure 5.1: Force-deflection characteristics with a single load path (a) and two load paths (b). For the single
load path, a linear stiffness k between the steep ends can be evaluated. For the two load paths (as well as for
the single load path) the energy for deformation can be evaluated as the area between the load paths and the
horizontal axis

(a) (b)

Figure 5.2: First two buckling modes of Buckled Stepped Beam (a) and Buckled Parallel Guidance (b)
Architectures

5.2.2 Mechanical design
The two architectures are displayed in Figure 5.3. Both architectures consist of flexures
(indicated in dark and light gray) and a shuttle connecting these (indicated in tan). The
dimensions of the shuttle, length l , width h, thickness b, as well as the flexure thickness t ,
are kept constant throughout the analysis for both architectures. The length L and width
w of the dark gray, henceforth called unchanging, flexures are kept constant. For the
light gray, henceforth called variable, flexures, the length and width are defined relative
to L and w using parameters β and σ respectively. Both architectures are brought into
post-buckling by imposing an axial displacement d onto the side of the variable flexure.

5.2.3 Manufacturing
Both architectures are incorporated in the assembly in Figure 5.3. This consists of a
frame milled from aluminum and 3D-printed shuttles on which the flexures are clamped
using a bolt connection. The fixed dimensions are set to: l = 25 mm, h = 20 mm, L =
50 mm, w = 20 mm. The flexures are manufactured using a laser cutting process from
t = 0.20mm thick AISI 301 stainless steel. By tightening the bolt on the side of the variable
flexure, the axial displacement of d = 2 mm is imposed and the mechanism is brought
into post-buckling. The designs chosen for both architectures are tabulated in Table 5.1
in terms of β and σ.
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Figure 5.3: Buckled Stepped Beam (BSB) (a) and Buckled Parallel Guidance (BPG) (b) mechanism
architectures. The unchanging flexures are indicated in dark gray; the shuttles are indicated in tan; the
variable flexures are indicated in light gray. β and σ denote the relative length and width of the flexures
respectively. Both assemblies are brought into post-buckling by imposing a displacement d giving the
buckled manufactured architectures: (c) BSB and (d) BPG

Table 5.1: Chosen designs for both architectures in terms of β and σ

Design I
(
β,σ

)
II

(
β,σ

)
III

(
β,σ

)
IV

(
β,σ

)
IV

(
β,σ

)
BSB (0.40,0.20) (0.40,0.10) (0.40,0.30) (0.60,0.20) -
BPG (1.3,0.50) (1.3,0.40) (1.3,0.60) (1.6,0.50) (1.0,0.50)

5.2.4 Experimental setup
The FD behavior of the manufactured mechanisms was experimentally evaluated with
the setup shown in Figure 5.4a. The force is measured using a FUTEK LRM200 force sen-
sor (1). The mechanism is deflected using a PI M-505 motion stage (2) with an internal
encoder to capture the displacement. All data is recorded using an NI USB-6008 acqui-
sition unit (3) in 100 steps with a resolution of 350µm. Connection between the force
sensor and the mechanism is established, and ensured in the unstable region, using a
rolling contact and a ball magnet as seen in Figure 5.4b.

5.2.5 Finite element modeling
The CLR is obtained by developing a finite element model for both architectures and
conducting a linear buckling analysis. The models are created in ANSYS Mechanical
APDL using two-node Timoshenko beam elements (BEAM188) for the flexures. The flex-
ure are modeled as linear elastic (E = 190 GPa, ν = 0.34, ρ = 7890 kg ·m−3). The CLR is
evaluated for β and σ in 50 steps each, resulting in a grid of 2500 designs. For the manu-
factured mechanisms, the FD behavior is simulated. The designs are brought into post-
buckling by applying an axial displacement d . After obtaining the buckled geometry, a
displacement in y-direction (see Figure 5.3) is applied to the shuttle. In the BPG, the
displacement is applied in the center of compliance to ensure there is no rotation of the
shuttle relative to the displacement [88]. In the BSB, this rotation is inherent to the de-
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flection; therefore, the displacement is applied at the middle of the shuttle. The reaction
force arising due to the imposed displacement is measured back and forth to obtain the
force-deflection behavior for each design.

(a) (b)

Figure 5.4: Experimental setup used for measuring force-deflection behavior: (a) overview of components,
(b) rolling contact used to ensure contact in unstable region

5.3 Results
The obtained CLR values for different variations of β and σ for both architectures are
displayed in Figure 5.5. The designs from Table 5.1 are indicated in the surfaces with the
colored dots.

(a) (b)

Figure 5.5: Critical load ratio (CLR) surface plot to β and σ for the Buckled Stepped Beam (a) and Buckled
Parallel Guidance (b) Architectures. The surface plot displays the CLR for variations of β and σ and acts as a
space from which mechanism designs can be chosen. The designs from Table 5.1 are indicated by the colored
dots: I( ), II( ), III( ), IV( ), V( )

Figure 5.6 displays the FD behavior obtained from the FEA for the chosen designs of both
architectures. It can be observed that Design I requires the least force for deformation.
The energy required for the deflection Es for the BSB, and the linear stiffness k for the
BPG are tabulated in Table 5.2.
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Figure 5.6: Force-deflection behavior of sample points in Buckled Stepped Beam (a) and Buckled Parallel
Guidance (b) Architectures for Designs I( ), II( ), III( ), IV( ), V( )

Table 5.2: Quantification of force-deflection behavior for both architectures. The snapping energy Es
corresponds to the Buckled Stepped Beam; the linear stiffness k corresponds to the Buckled Parallel Guidance

Design I II III IV V

BSB Es [mJ] 14 25 36 25 -
BPG k

[
N mm−1]

0.029 -0.064 0.12 0.21 -0.39

Figures 5.8 and 5.7 display a comparison of the FEA and experimental FD results. The
experimental results comply with the simulation results, validating the finite element
model.

5.4 Discussion
5.4.1 Critical load ratio surfaces
The CLR surfaces in Figure 5.5, act as a design space for the mechanisms of both ar-
chitectures. It can be observed that for both architectures, there exist a narrow band in
which the CLR is largest, of which on either side the CLR decreases. For the BSB, the
largest CLR is confined to a domain

(
0.3 ≤β≤ 0.7;0.1 ≤σ≤ 0.5

)
. On either side of this

band, the CLR drops to 0.30−0.40. For the BPG, this band stretches along the entire cho-
sen design domain. By increasing β, the CLR settles around 0.50−0.60; whereas it drops
to 0.20− 0.30 for a decrease in β. In contrast to the BSB, a CLR near unity is observed
throughout the entire band for the BPG.

5.4.2 Effect of critical load ratio on force-deflection behavior
From Figures 5.6a and 5.8, it can be observed that the least actuation force is obtained
for Design I. This is evident from the FD characteristic becoming close to zero and nearly
flat (k = 0.029 [N/mm]), approaching statically balanced behavior [86]. A CLR = 0.97 is
found; hence it can be said that by matching the first two buckling loads, the mech-
anism is statically balanced. Increasing β from Design V to IV, passing I, results in a
counter-clockwise rotation of the FD curves. Contrariwise, increasing σ from Design II
to III results in a clockwise rotation of the FD curves. Hence, Designs III and V exhibit
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bistable behavior due to the negative stiffness. Designs II and IV return a monostable
mechanism with positive stiffness. Comparing the stiffness values between the steep
ends of the FD curve ends in Figure 5.6a shows that an increase in CLR results in a de-
crease of the absolute stiffness. Hence, it can be said that the CLR is a suitable method for
stiffness compensation, and achieving static balancing, in compliant parallel guidance
mechanisms.

Buckled Stepped Beam Architecture
For the BSB, Figures 5.6b and 5.7 show two different load paths, indicating snap-through
behavior [79, 80]. Evaluating the stiffness between the load path crossings does not re-
turn significant differences between the four designs. A more insightful result of the
increase in CLR is observed for the snapping energy. In Table 5.2, this energy is found to
be the lowest for Design I, which has the highest CLR. This can be observed from the FD
characteristic of Design I as well, as the distance between its load paths is significantly
smaller relative to the other three designs. Furthermore, it is observed that the maxi-
mum force of the load paths, the limit load, is the least for Design I. However, it cannot
be concluded that any increase in CLR returns lower snapping energy and limit loads
for the BSB. Upon comparison of Deign II to Designs III and IV, it can be observed that
despite the higher CLR, the snapping energy is significantly greater. In the BSB, it is not
possible to match the two buckling loads given the boundary conditions.
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Figure 5.7: Comparison of FEA ( ) and experimental ( ) force-deflection behavior for the Buckled Stepped
Beam: (a) I, (b) II, (c) III, (d) IV
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Figure 5.8: Comparison of FEA ( ) and experimental ( ) force-deflection behavior for the Buckled Parallel
Guidance: (a) I, (b) II, (c) III, (d) IV, (e) V
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5.5 Conclusion
In this work, the effect of matching the first two buckling loads on the mechanical behav-
ior is investigated for two compliant mechanisms architectures. By changing the relative
length and width of the flexures in said architectures, the ratio between the first two crit-
ical loads is tuned. Maximizing this ratio for a certain architecture returns a minimal
actuation force in post-buckling, which is shown through finite element analysis and
experiments. For a parallel guidance mechanism, an increase in this ratio results in a
decrease of absolute stiffness between the steep ends of the force-deflection character-
istic. The ratio may approach unity, resulting in a nearly zero and flat actuation force.
In a stepped beam architecture, a unity ratio is not obtainable; however, maximizing it
reduces the distance between load paths in the force-deflection characteristic and there-
with the energy required for moving between equilibrium positions. These results indi-
cate that the critical buckling load ratio is a useful method for stiffness compensation in
compliant mechanism and may be used to achieve static balancing.



Chapter 6
Reflection, conclusions and
recommendations

This chapter serves the purpose of concluding the graduation project. A schematic overview
of the research activities is presented, together with a reflection on several attempts in
this project, both successful and unsuccessful. Subsequently, the conclusions resulting
from the research papers are listed and recommendations for further research regarding
the topics in this thesis are given.
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6.1 Overview of research activities
An overview of the research activities is given in Figure 6.1. In total, the graduation
spanned a period of 15 months, starting from October 1st 2019 to January 22nd 2021.
In this period, three research papers were written and three prototypes were designed
and tested. Additionally, a novel concept in the field of stiffness compensation, or static
balancing, was thoroughly tested and investigated, resulting in a foundation for this con-
cept to stand on.

Buckling mode interac�on as a novel method of s�ffness compensa�on

Energy 
harves�ng

Literature review on 
bistable vibra�on 
energy harvesters

A classifica�on and 
performance evalua�on 

of mo�on in bistable 
energy harvesters

Bandwidth 
enlargement

Sta�c balancing using 
buckling modes

Research hypothesis Cri�cal load ra�o

Force-deflec�on 
measurements

Analy�cal formula�on 
of hypothesis

Finite element modeling 
of compliant mecha-

nisms

Design of BSB and BPG 
architectures

Design of 
lumped-compliant 

four-bar mechanism

Analy�cal framework 
for balancing using 

buckling modes

S�ffness compensa�on 
through matching 
buckling loads in a 
compliant four-bar 

mechanism

Effect of matching 
buckling loads on 

post-buckling behavior 
in compliant 
mechanisms

Parametric study of 
balancing using 
buckling modes

Designing prototypes, 
conduc�ng prototype 

FD measurements

Dynamics of bistable 
mechanisms

Lowering the poten�al 
barrier

Bistable oscillator with 
magnets

Figure 6.1: Schematic overview of research activities. Blue blocks indicate a main part of the research from
which a research paper or experiments have followed. The practical work, i.e. designing/manufacturing and
experiments, are indicated by the red blocks. Yellow blocks indicate the resulting research papers, and green
indicates new concepts published during the course of this thesis that contributed to the current work
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6.2 Reflection
6.2.1 Dynamics of bistable mechanisms
Following the line of the literature review, dynamics of bistable mechanisms were in-
vestigated with the use of several works on simulation of these mechanisms and the
prototyping of a bistable oscillator using magnets. A seeming shift in the equilibrium
positions under harmonic excitation was erroneously related to a finding in literature
describing the influence of harmonic oscillations on the potential energy function [89].
This was experimentally evaluated and found to be an error in the simulation. It was
chosen not to continue with this topic; however, despite the failure, this served as a good
opportunity to get acquainted with the test setups in the lab. Additionally, attempts in
finite element simulation of bistable mechanisms for dynamic analysis were made. Due
to the complexity of simulation, and frankly the lack of knowledge on this topic, it was
chosen not to continue with these simulations.

A vast amount of time and effort went into the classification of bistable mechanism
dynamics in the literature review. In search for a parameter discerning all types of mo-
tion clearly, which was proposed as the ’motion rate of change’ in Chapter 2, it was con-
cluded that the literature review was likely to become a research. In view of time, it was
decided to conclude the literature review and focus on defining the further research.

6.2.2 Finite element modeling
During the course of this thesis, finite element modeling was used extensively to gain in-
sight in the mechanical behavior, or to test an interesting idea quickly. However, a great
deal of effort went into comprehending ANSYS Mechanical APDL, until it was possible
to quickly harvest useful results. Of course, this effort greatly repaid itself in later stages
of the project with the accurate representation of the mechanical behavior for the con-
structed prototypes. Frequent discussion with my supervisor Thijs Blad resulted in an
ongoing generation of knowledge on the use of ANSYS and development of more robust
scripts.

6.2.3 Analytical framework
The strength of this work lies in the analytical framework used to describe the problem
and test the hypothesis in Chapter 3. Compared to a finite element simulation, it was
experienced that it is easier to continue with complex methods than it is to find a sim-
ple model that does the same. Several iterations of modeling were required to establish
the torsion spring linkage model in Chapter 4. Eventually, this model resulted in a veri-
fication of the hypothesis and even lent itself as a good approximation of a continuous
form of a bistable buckled beam. Along with these modeling iterations, different steps in
search of an explanation of the observed behavior, which can be found in Appendix B,
were conducted. Unfortunately, some steps were less useful than others; however, they
are still included to give an overview of the different possibilities in this analysis.
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6.2.4 Practical work
The statement "If my measurements go well today, I will be done in no time", has probably
been said far more often than this actually occurring. During the project, a number of
prototype experiments (Appendices A and C) were conducted as a practical verification
of the hypothesis, prior to the final experiments (Chapters 4 and 5). These prototype
experiments eventually resulted in trying to single out all factors that negatively influ-
enced the measurements. The experiments were repeated to identify problems in the
equipment, different methods were used for comparison of results, and prototypes were
improved. Finally, three prototypes were manufactured from aluminum and steel, as to
have designs that can be used by others in future research. Considering the little experi-
ence in manufacturing, consisting of first-year instructions on milling and lathing, this
was a challenge, but nonetheless a satisfying one.

6.3 Conclusions
Bistable energy harvesters are widely studied due to the increased performance and ro-
bustness as compared to linear systems. These traits require bistable harvesters to ex-
hibit continuous interwell motion, which coexists with several other types of motion.
A general classification of the possible types of motion, based on displacement time-
series, is presented. This creates a uniform terminology that is applicable to the field
of bistable energy harvesting systems, enabling performance comparison of certain mo-
tion types, or harvesting systems exhibiting the same motion. The performance of differ-
ent motions is evaluated and it was found that continuous interwell motion returns the
best performance, followed by chaotic crosswell motion. Furthermore, the share of in-
terwell motion does not contribute to the power output as much as the overall amplitude
does. Based on this, it was concluded that in order to have a bistable energy harvester
excel at performance, it is necessary to have continuous interwell motion. This is possi-
ble by lowering the potential energy barrier using stiffness compensation methods.

During this project, [73] published their work on stiffness compensation in a compli-
ant mechanism. In this work, it was mentioned that the stiffness of the mechanism is
minimized by making the loads of the first two buckling modes equal to each other.
This phenomenon was related to a simply supported bistable buckled beam to have a
clear understanding of these buckling modes and formulated as the hypothesis "Buck-
ling mode interaction can be used as a method for stiffness compensation". The simply
supported beam was discretized to obtain a simple, yet effective model to investigate
this concept. This discretized model is a four-bar linkage consisting of three links, four
torsion springs in the joints and a linear spring capturing the buckling behavior. It was
found that the values of the buckling loads are governed by the ratios between the stiff-
ness of the torsion springs. The first two buckling loads were found to be exactly equal
for the outer springs being three times stiffer than the inner springs. The stiffness of
this linkage was evaluated by making the linkage buckle; imposing a transversal dis-
placement in the middle of the middle and one outer link respectively; and recording
the reaction force for this deflection. By changing the torsion stiffness ratios, the over-
all stiffness of the linkage changes, ranging from initially negative to positive. Upon the
two buckling loads being equal, the overall stiffness of the linkage diminishes to zero,
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resulting in a flat force-deflection characteristic. By projecting the analytical description
onto a basis spanned by the two buckling modes, the potential energy of the linkage was
decomposed in contribution of each mode. It was found that by matching the buckling
loads, the potential energy becomes constant over the range of motion. Hence, it was
concluded that interaction of the buckling modes can indeed be used for stiffness com-
pensation, and static balancing is achieved for matching the two buckling loads. The
analytical four-bar linkage was converted into a lumped-compliant four-bar mechanism
with flexures for the torsion springs and the behavior found analytically was verified ex-
perimentally.

The ratio between the first two buckling loads, named the critical load ratio, was pro-
posed in [74] as a quantification to this method during the development of the analytical
model. This ratio was used as a design tool to obtain several designs of two compli-
ant mechanisms architectures. It was shown that by adjusting the critical load ratio, the
overall stiffness, or the energy required for deformation, of the mechanisms changes.
Obtaining a unity critical load ratio, i.e. matching the two buckling loads, results in static
balancing; hence, verifying the hypothesis a second time. Such significant stiffness com-
pensation was not obtainable in both architectures though, indicating the limitations of
this method as well.

All in all, it is concluded that buckling mode interaction is indeed a suitable method
for stiffness compensation in mechanisms. By adjusting the ratio between the first two
buckling modes, the stiffness can be adjusted and static balancing may be achieved, de-
pending on the mechanism in question. This work is an addition to the existing methods
in this field of work and paves the way for further development and design of new stiff-
ness compensated mechanisms.
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6.4 Recommendations
The term ’stiffness compensation’ was purposefully used in this work instead of static
balancing. It has not only been shown that matching the buckling loads results in static
balancing, but rather that the measure of matching decides the resulting stiffness of the
mechanism. However, the only goal was to match the two buckling loads, or in terms
of the critical load ratio, maximize the ratio. In order to effectively use this as a design
method, i.e. obtain the desired stiffness (negative, positive or zero), a metric could be
designed. This metric would relate the amount of stiffness compensation to the criti-
cal load ratio, and provide a stiffness directed design method. It was experienced that
buckling modes tend to change their order upon changes in the geometry. Therefore, a
good starting point would be to vary only a single parameter and provide a metric for the
mechanism in question.

This thesis started from the field of energy harvesting, with an interest in the dynam-
ics of bistable mechanisms for energy harvesting. Along the way, this interest shifted to
statics and overcoming the problems encountered in bistable mechanisms. However, an
interest in dynamics has never been lost, but rather fueled by the new findings in this
thesis. The torsion spring linkage is a convenient and insightful model for dynamical
analysis. Due to its simplicity of having only two modes, it is a good starting point for
those with interest in dynamic modal analysis of pre-stressed mechanisms. It would be
interesting to excite the physical model using a frequency sweep and identifying the vi-
bration modes of the simple pre-stressed mechanism. Attempts in finite element model-
ing of this problem were made, but ceased. The analytical and physical models however,
should provide much insight in the dynamics.

Finally, with the method for stiffness compensation established, the initial subject of
this thesis remains untouched apart from a literature review. While energy harvesting
has not recurred from Chapter 2 on, it has been an ongoing goal in the research group
this project was a part of. With the motivation for stiffness compensation in mind, it
would be interesting to conduct experiments on the dynamics of statically balanced
mechanisms. The low, or even lack of, stiffness results in little resistance to vibrations
and therefore an interesting energy harvesting mechanism for a broadband and low-
frequency region. Other members of the research group facilitated the experimental
equipment such as shaker setup with vibration control, a large stroke linear stage with vi-
bration control, and piezo-film for quick assessment of energy harvesting performance.
It is recommended to simply build a mechanism, or even use one of the designs from
this project, and test it, rather than trying to simulate and predict every outcome. Ex-
perience showed that prototyping and testing, while they may seem more intricate and
strenuous, are a quicker way of getting to know something than simulations.
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Appendix A
Lumped-compliant four-bar
mechanism: modeling and
prototyping

This chapter serves as a first iteration of the lumped-compliant four-bar mechanism ex-
periments. The mathematical steps in the model are elaborated; finite element mod-
eling of the linkage is discussed as well as prototyping of the physical model. As in
Chapter 4, the influence of buckling mode interaction is evaluated in simulations and
experiments. The experiments are conducted iteratively, i.e. the measurement method
is changed according to encountered problems along the way.

A.1 Analytical linkage model
Recall the Torsion Spring Linkage (TSL) in Figure A.1. The model comprises four rigid
links of length L; four joints labelled A, B, C and D; four torsion springs with stiffness ka ,
kb , kc and kd ; a linear spring with stiffness k. The torsion springs act as the deformable
elements storing the elastic potential energy during deformation. The linear spring acts
as the pre-loading element: by moving the wall to which spring is attached a distance d
past point D, the beam is loaded axially and buckles into the first mode.

x d

y

x

v

w

d

k
ka

kb

kc

kdφab

φcd
φbc

Figure A.1: Linkage model used for mode interaction hypothesis with rigid links and torsion springs. By
applying a pre-loading displacement d to the rigid connection of the linear spring k, the beam is brought into
a buckled state
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A.1.1 Kinematics
In Figure A.1, three degrees of freedom (DoF)ϕi j are displayed; however, the Chebyshev-
Grübler-Kutzbach criterion (A.1) states there are two DoFs, with the number of rigid bod-

ies N = 4, number of joints j = 4, number of DoFs
∑ j

i=1 fi = 5. The DoFs are then chosen
to be ϕab and ϕcd .

M = 3(N −1− j )+
j∑

i=1
fi (A.1)

Using these two DoFs, the kinematics of the model can be described. Figure A.2 displays
the kinematics of a single link, consisting of a horizontal displacement (v), vertical dis-
placement (w) and a rotation ϕ. Following the chosen DoFs, the vertical and horizontal
displacements are expressed in terms of ϕ as:

w1

w2
v1 v2

φ

L
Figure A.2: Kinematics of a single link, consisting of a horizontal displacement v , vertical displacement w and
a rotation ϕ

∆v = v2 − v1 = L
(
cosϕ−1

)
(A.2)

∆w = w2 −w1 = L sinϕ (A.3)

Summing these displacements along the entire beam returns the horizontal and vertical
displacements of point D

v =∆v AB +∆vBC +∆vC D = L
(
cosϕab −1

)+L
(
cosϕbc −1

)+L
(
cosϕcd −1

)
(A.4)

w =∆w AB +∆wBC +∆wC D = L sinϕab +L sinϕbc +L sinϕcd (A.5)

We take a Taylor expansion of the trigonometric expressions around 0 in Expressions
(A.2) and (A.3)

sinϕ= sin(0)+ cos(0)

1!
ϕ+ −sin(0)

2!

(
ϕ−0

)2 + −cos(0)

3!

(
ϕ−0

)3 +·· ·

= 0+ϕ+0− 1

6
ϕ3 +·· ·

cosϕ−1 = cos(0)+ −sin(0)

1!
ϕ+ −cos(0)

2!

(
ϕ−0

)2 + sin(0)

3!

(
ϕ−0

)3 +·· ·−1

= 1+0− 1

2
ϕ2 +0+·· ·−1
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By assuming moderate rotations (ϕ2 ¿ 1), we get

sinϕ=ϕ
cosϕ−1 =−1

2
ϕ2

Therewith, Expressions (A.4) and (A.5) simplify to:

v =−1

2
L

(
ϕ2

ab +ϕ2
bc +ϕ2

cd

)
(A.6)

w = L
(
ϕab +ϕbc +ϕcd

)
(A.7)

The slider joint in point D prevents a vertical displacement; therefore, by setting setting
w = 0, the rotation of link BC (ϕbc ) can be expressed in terms of the DoFs. Substituting
Expression (A.8) into Expression (A.6) returns the horizontal displacement in point D is
expressed in terms of the DoFs.

ϕbc =−ϕab −ϕcd (A.8)

v =−1

2
L

(
ϕ2

ab +
(−ϕab −ϕcd

)2 +ϕ2
cd

)
=−1

2
L

(
ϕ2

ab +
(
ϕ2

ab +2ϕabϕcd +ϕ2
cd

)+ϕ2
cd

)
=−1

2
L

(
2ϕ2

ab +2ϕabϕcd +2ϕ2
cd

)
=−L

(
ϕ2

ab +ϕabϕcd +ϕ2
cd

)
(A.9)

A.1.2 Buckling problem
With the kinematics established, the buckling problem can now be tackled to gain in-
sight into the first two buckling loads and the conditions at which the modes are able to
interact. The buckling problem starts with establishing the potential energy of the beam,
which consists of an elastic potential E and a load potential B. The elastic potential is
the work done by the torsion springs and the pre-loading spring, i.e. the elastic energy
stored in the springs due to the deformation. The load potential is the work done by the
displacement of the applied external loads; however, pre-loading is done using a spring
and hence it follows that B = 0. Summing the two potentials returns the total potential
energy of the systemΦ.

Φ= E +B (A.10)

E = 1

2
kaϕ

2
ab +

1

2
kb

(
ϕbc −ϕab

)2 + 1

2
kc

(
ϕcd −ϕbc

)2 + 1

2
kdϕ

2
cd + 1

2
k (d − v)2 (A.11)

B = 0 (A.12)
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For the sake of neatness, let us take
[
ϕab ; ϕcd

]T = [
ϕ1; ϕ2

]T
. Using Expressions (A.8)

and (A.9), the total potential expressed in the DoFs is given as

Φ=1

2
kaϕ

2
1 +

1

2
kb

(−ϕ1 −ϕ2 −ϕ1
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2
kc
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(A.13)

Equilibrium equations
The solution of the buckling problem continues with establishing the equilibrium equa-
tions. Following the energy method described by Budiansky (Section 3.4.2), the first step
is to find a stationary value of the systems’ potential energy with respect to the DoFs:

δΦ [u;d ] =Φ′ [u;d ] δu = 0 (A.14)

with δu denoting an arbitrary kinematically admissible perturbation of the DoFs. Trans-
lated to the discrete beam model this becomes

δΦ=Φ′δu = ∂Φ

∂ϕ1
δϕ1 + ∂Φ

∂ϕ2
δϕ2 = 0 (A.15)

For the principle of virtual work to hold, it must hold that δu 6= 0 and kinematically ad-
missible, meaning that the equilibrium equations are given as

∂Φ

∂ϕ1
= kaϕ1 +kb

(
4ϕ1 +2ϕ2

)+kc
(
ϕ1 +2ϕ2

)
+ 1

2
k

[
2dL

{
2ϕ1 +ϕ2

}+L2 {
4ϕ3

1 +6ϕ2
1ϕ2 +6ϕ1ϕ

2
2 +2ϕ3

2

}]= 0

(A.16)

∂Φ

∂ϕ2
= kb

(
2ϕ1 +ϕ2

)+kc
(
2ϕ1 +4ϕ2

)+kdϕ2

+ 1

2
k

[
2dL

{
ϕ1 +2ϕ2

}+L2 {
2ϕ3

1 +6ϕ2
1ϕ2 +6ϕ1ϕ

2
2 +4ϕ3

2

}]= 0

(A.17)

By solving the equilibrium equations in (A.16) and (A.17), the pre-buckling solution u0

is obtained. This pre-buckling solution describes the state of the beam before buckling
occurs. In this case, there is only axial deformation of the beam, i.e. ϕ1 =ϕ2 = 0, due to
the axial loading d 6= 0.

u0 =


ϕ1,0 = 0

ϕ2,0 = 0

d0 6= 0

(A.18)
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Stability
The pre-buckling solution follows from a stationary value of the potential energy. Since
buckling has not yet occurred, the pre-buckling solution has to be a stable solution, i.e. it
has to return a local minimum of potential energy. The stability of the solution is evalu-
ated by perturbing the pre-buckling solution and searching for a solution nearby, which
is described as the buckling condition:

δΦ′′ [u0(dc );dc ]θδu =Φ′′
cθδu = 0 (A.19)

with θ denoting the buckling modes. As stated in Section 3.2, this requires us to evaluate
the second derivative of the potential energy with respect to the DoFs in the buckling
solution. Translating (A.19) to the beam problem gives

[
δϕ1 δϕ2

] ∂2Φ
∂ϕ2

1

∂2Φ
∂ϕ1∂ϕ2

∂2Φ
∂ϕ2∂ϕ1

∂2Φ
∂ϕ2

2


u0

[
θ1

θ2

]
= 0 , with (A.20)
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As the principle of virtual work must hold, δu 6= 0 is a requirement. A trivial solution
would then be that θ1 = 0 and θ2 = 0. However, this trivial solution means that no buck-
ling is occurring. Therefore, a non-trivial solution can only be found for det

(
Φ′′|u0

) = 0,
which returns the eigenvalue problem as ∂2Φ

∂ϕ2
1

∂2Φ
∂ϕ1∂ϕ2

∂2Φ
∂ϕ2∂ϕ1

∂2Φ
∂ϕ2
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u0
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θ1
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=

{[
ka +4kb +kc 2(kb +kc )

2(kb +kc ) kb +4kc +kd

]
+2dL

[
2k k
k 2k

]}[
θ1

θ2

]
= 0

(A.21)
The eigenvalue problem is composed of a first term with torsional stiffness and axial

stiffness, with units ki = [N m] and k = [ N
m

]
respectively. The eigenvalues are represented

by the second term, with units dLk = [
m2 N

m

]= [N m]. This eigenvalue problem can now
be made dimensionless by introducing the three dimensionless groups in (A.22). The
resulting non-dimensional eigenvalue problem with dimensionless eigenvalueµ is given
in (A.23).

α= ka +3kb

kb +kc
β= kd +3kc

kb +kc
µ= kdL

kb +kc
(A.22)

{[
α+1 2

2 β+1

]
+µ

[
2 1
1 2

]}[
θ1

θ2

]
= 0 (A.23)
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A.1.3 Matching eigenvalues
Expression (A.23) is in the form of a generalized eigenvalue problem, which is given in
Expression (A.24). As B is invertible, the generalized form is multiplied with B−1 to ob-
tain matrix C = B−1 A. The resulting form can be solved as a standard eigenvalue prob-
lem. To look into the effect of mode interaction on the potential energy curve, the first
two dimensionless eigenvalues (dimensionless buckling loads) are obtained from (A.24),
and their ratio is inspected for a collection of α and β. The ratio, or critical load ratio
(CLR), in (A.25), is determined for a 500×500-sized grid with α= β= {1, . . . ,5}. It is cho-
sen to set the grid boundary to 5, as the optimal result is within the boundaries. The CLR
is displayed in Figure A.3.

(A−λB)θ = 0 → (
C +µI

)
θ = 0

A =
[
α+1 2

2 β+1

]
∧ B =

[
2 1
1 2

]
∧ C = B−1 A (A.24)

µ1

µ2
=
α+β−

√
α2 −αβ+β2 −3

(
α+β)+9

α+β+
√
α2 −αβ+β2 −3

(
α+β)+9

(A.25)

Figure A.3: Critical load ratio (CLR) surface plot to α and β. At α=β= 3, the CLR is exactly equal to 1,
meaning that the first two critical buckling loads are equal to one another and the buckling modes are fully
interacting

From Figure A.3, it follows that for α = β = 3 the CLR = 1 and thus both buckling loads
are equal. For a physical interpretation, symmetry has to be assumed as follows: ka =
kd = c∗ and kb = kc = c. Given that α= β= 3 it follows that ka = kd = 3c; hence, for the
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two first buckling loads to match, the two outermost springs need to have three times
the stiffness of the inner torsion springs. In Figure A.3, the black line separates the fea-
sible and infeasible region in the CLR. In the infeasible region, the CLR is negative. We
can sample a point in the infeasible region to assess what causes this negative CLR. For
instance, let us take α = 1 and β = 1. Following the symmetry assumption ka = kb = c∗
and kb = kc = c, this gives

α= ka +3kb

kb +kc
= 1∧β= kd +3kc

kb +kc
= 1

c∗+3c

2c
= 1

c∗ =−c

The result is a negative stiffness in the torsion springs. While this may be obtainable
through certain methods, it is not seen as an available property. Therefore, the negative
CLR values are defined as an infeasible region.

A.1.4 Potential energy curves
To analyze the implications on the potential energy curve of the beam, the potential
energy during deflection has to be recorded. The deflection is defined by ϕ1 as an array
ranging from π/10 to −π/10 and back in n = 200 steps. For every choice of ϕ1, there
exists a choice ofϕ2 that results in a kinematically admissible configuration of the beam;
this choice of ϕ2 is governed by the potential energy and is found by minimizing Φ. The
process is summarized follows:

1. Initialization step: set ϕ1,i=1 = π/10 and determine the global minimum to find
the corresponding ϕ2,i=1.

2. Introduce a prescribed perturbation so that ϕ1,i =ϕ1,i−1 +∆ϕ1.

3. Establish functionΦ|ϕ1,i

[
ϕ2

]
.

4. Evaluate gradient ∂(Φ|ϕ1,i )/∂ϕ2 in point (ϕ1,i ,ϕ2,i−1).

If ∂(Φ|ϕ1,i )/∂ϕ2 ≤ 0 search for the minima ofΦ|ϕ1,i for ϕ2 ≥ϕ2,i−1.

If ∂(Φ|ϕ1,i )/∂ϕ2 > 0 search for the minima ofΦ|ϕ1,i for ϕ2 ≤ϕ2,i−1.

5. The correct choice of ϕ2 =ϕ2,i lies at the first encountered local minimum.

6. Repeat steps 2 to 5 until i = n

Step 3 is depicted in Figure A.4. Any system seeks to maintain a state of stable equilib-
rium, even when momentarily or continuously perturbed. As discussed in Chapter 3, an
equilibrium is found at a stationary value of potential energy; this equilibrium is stable
if the stationary value is at a (local) minimum. In Figure A.4a, the perturbation of ϕ1 is
depicted with two kinematically admissible configurations enclosing a blue area. In the-
ory, ϕ2 could be any value between the boundaries of this area; however, the potential
energy governs the correct choice. The potential energy function Φ|ϕ1,i

[
ϕ2

]
is depicted
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together with the solution of the previous simulation step, ϕ2,i−1 (Figure A.4b). Evaluat-
ing the gradient in this previous solution returns ∂(Φ|ϕ1,i )/∂ϕ2 > 0. As can be seen, there
lie two minima of potential energy left of this previous solution. As the deformation of
the mechanism is done quasi-statically, there is not sufficient energy input to carry the
mechanism over the potential barrier to the second minimum; hence, the correct choice
of ϕ2,i lies at the first encountered minimum of potential energy.

Δφ1

φ2

(a)

φ2

φ2,i-1

φ2,i

(b)

Figure A.4: Initial and perturbed configuration of beam (a) and corresponding potential energy (b)
Φ|ϕ1,i

[
ϕ2

]
with previous solution ϕ2,i−1 and next solution ϕ2,i . ϕ2 could for instance be any value within the

blue area; however, the correct choice is found at the first encountered minimum in opposite of direction of
the gradient in the previous solution

With the complete set of DoFs established, the potential energy for the imposed defor-
mation is evaluated and depicted in Figure A.5b. The continuous and dashed lines in-
dicate two load paths respectively, which is a result of actuation on either of the links
on the side. It can be observed that in the 3c-c-c-3c Architecture, the resulting poten-
tial energy curve is flat, indicating that this Architecture is in a state neutral equilibrium
throughout the imposed range of motion; hence, statically balanced.

A.1.5 Force-deflection characteristics
The potential energy is an indication of the mechanism’s behavior and shows the de-
sired result for the 3c-c-c-3c Architecture. However, potential energy is not a physically
measurable quantity; hence, to be able to compare the analytical model to experimental
results, the force-deflection characteristics have to be obtained. To this end, two external
loads are imposed on the beam, as displayed in Figure A.6. The external loads comprise
an asymmetric load Fa and a symmetric load Fs imposed in the nodes Oa and Os respec-
tively. The presence of the external loads in the equilibrium equations is governed by the
load potential B. As said, B describes the work done due to displacement of the exter-
nal loads. A method to determine correct sign of the load potential is by imagining load
is applied through a combination of masses and pulleys; this is depicted in Figure A.7.
By applying a perturbation of the DoF in positive direction, the direction of the mass can
be observed. If the mass rises, its potential energy will increase and the load potential of
the corresponding external load will be positive. Expressing the displacements of nodes
Oa and Os in terms of the DoF returns the load potential (A.26).

B =ϕ1

(
1

2
FaL+ 1

2
Fs L

)
− 1

2
Fs Lϕ2 (A.26)
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c-c-c-c 2c-c-c-2c 3c-c-c-3c 4c-c-c-4c

knee-up → knee-down

knee-down → knee-up

Figure A.5: Potential energy curve with linkage configurations indicated (a). Potential energy curves of c-c-c-c
to 4c-c-c-4c Architectures (b) for deflection from knee-up to knee-down and back; it is observed that the
potential energy is flat for a finite range of motion in the 3c-c-c-3c Architecture, indicating statically balanced
behavior
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Figure A.6: TSL linkage with external asymmetric load Fa and symmetric load Fs applied in nodes Oa and Os
respectively
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Figure A.7: Determining the sign of the load potential by imposing the external loads with masses. By
applying a perturbation of the DOF in positive direction, it can be observed in which direction the mass will
move, and hence whether its potential energy will in or decrease



A

72 A Lumped-compliant four-bar mechanism: modeling and prototyping

Substituting (A.26) in (A.16) and (A.17), returns the new equilibrium equations which
can be made dimensionless using α, β and µ.

∂Φ̄

∂ϕ1
=ϕ1 (1+α)+2ϕ2 +µ

(
2ϕ1 +ϕ2

)+ kL2

kb +kc

{
ϕ2

1 +ϕ1ϕ2 +ϕ2
2

}(
2ϕ1 +ϕ2

)
+ 1

2

FaL

kb +kc
+ 1

2

Fs L

kb +kc
= 0

(A.27)

∂Φ̄

∂ϕ2
= 2ϕ1 +ϕ2

(
1+β)+µ(

ϕ1 +2ϕ2
)+ kL2

kb +kc

{
ϕ2

1 +ϕ1ϕ2 +ϕ2
2

}(
ϕ1 +2ϕ2

)− 1

2

Fs L

kb +kc
= 0

(A.28)

This is taken a step further with the introduction of:

ω= kL2

kb +kc
µ= dkL

kb +kc
= d

L
ω=λω f = F

kL
(A.29)

This finally gives the dimensionless equilibrium equations (A.30) and (A.31) from which
the external loads can be solved by displacement of Oa and Os . The force-deflection
characteristics of the symmetric load is displayed in Figure A.8, since this is the mea-
surement location used in the experiments. It can be observed that the actuation force
diminishes to zero for the 3c-c-c-3c Architecture, as was observed with the flat poten-
tial energy curve in Figure A.5b. Another interesting observation is the positive stiffness
occurring in the 4c-c-c-4c Architecture, which arises due to the switching of the buck-
ling modes: the prior second mode (S) now becomes the first buckling mode due to the
adjusted stiffness.

∂Φ̄

∂ϕ1
=ϕ1 (1+α)+2ϕ2 +ω

[
λ+{

ϕ2
1 +ϕ1ϕ2 +ϕ2

2

}](
2ϕ1 +ϕ2

)+ 1

2
faω+ 1

2
fsω= 0 (A.30)

∂Φ̄

∂ϕ2
= 2ϕ1 +ϕ2

(
1+β)+ω[

λ+{
ϕ2

1 +ϕ1ϕ2 +ϕ2
2

}](
ϕ1 +2ϕ2

)− 1

2
fsω= 0 (A.31)
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Figure A.8: Analytical force-deflection characteristics of symmetric load Fs for the four beam Architectures
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A.2 Physical model
The TSL indicates that buckling mode interaction is indeed a method for static balanc-
ing. However, the question whether the desired results also occurs in reality still remains.
In this section, the TSL is translated to a physical model and a force-deflection measure-
ment is performed to analyze the behavior of the four linkage architectures.

A.2.1 Reverse PRB modelling
The TSL in Figure A.1 is used to describe a lumped-compliant four-bar mechanism. In
Pseudo-Rigid Body modeling, torsion springs are used to represent flexural elements. In
the TSL, the concentrated torsion springs are small in length compared to the rigid links.
In this case, the torsion springs represent small-length flexural pivots, as presented in
Figure A.9, for which holds that l ¿ L and (E I )l ¿ (E I )L . For a rigid body with a small-
length flexural pivot subjected to an end moment M , the stiffness of the flexural pivot is
given by Expression (A.32) [76].

l

(EI )l

L

(EI )L

M

l/2

M
K

Figure A.9: Pseudo-Ridig Body representation of torsion springs: translated to a compliant model, the torsion
springs in the torsion spring linkage can be interpreted as small-length flexural pivots of with stiffness K [76]

K = (E I )l

l
(A.32)

A.2.2 Manufacturing
Using the small-length flexural pivots, the TSL is converted into a physical model. Four
architectures are manufactured: c-c-c-c, 2c-c-c-2c, 3c-c-c-3c and 4c-c-c-4c. It is chosen
to add the two other architectures besides the uniform and matching buckling loads
ones, in order analyze the effect of stiffening the outermost torsion springs. The rigid
links are laser cut from 5mm thick PMMA to a length of L = 70mm and width w = 5mm.
The links are provided with a 5 mm deep slit for the flexures to be embedded in. The
flexures are manufactured from AISI 301 steel with a width w f = 5mm and varying length
and thickness using a guillotine shear. The flexures and PMMA links are assembled using
a two-part epoxy adhesive. For l ¿ L to hold, the free length of the flexures is chosen to
be l = 7 mm, creating a lumped compliant model. The thickness of the flexures in other
architectures is reduced to roughly preserve the ratio of link to flexure length; the flexure
dimensions are tabulated in Table A.1. The mechanisms are fastened to base plates using
a nut and bolt connection with a clearance, introduced by spacers, of 5mm from the base
plate to allow free motion. These base plates are provided with two slots on one side,
allowing for a continuously variable pre-load displacement from 0− 7 mm. Drawings
of a link and base plate for the c-c-c-c Architecture are displayed in Figure A.10. The
resulting lumped-compliant four-bar mechanism in flat and buckled state is presented
in Figure A.11.
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Table A.1: Length and thickness of varying flexures in lumped-compliant four-bar mechanism model. All
flexures have a width of w f = 5 mm

Flexure stiffness Free length l [mm] Thickness t f [mm]

c 7.00 0.20
2c 11.81 0.15
3c 7.88 0.15
4c 5.91 0.15

Figure A.10: Drawings of the links and base place for c-c-c-c Architecture with dimensions

(a)

(b)

Figure A.11: Lumped-compliant four bar mechanism in (a) flat and (b) buckled state after pre-loading with
7 mm pre-load distance

A.2.3 Force-deflection measurements
The force-deflection behavior of the PMMA models is evaluated using two different se-
tups. This was done to investigate the problems encountered during the measurements.
Both methods are discussed and the results are presented. Both methods use the same
components, which are displayed in Figure 4.5a in Chapter 4. The PI-M 505 motion stage
provides a linear motion, which is imposed onto the mechanisms. The force for the im-
posed displacement is recorded using a FUTEK LRM200 force sensor. This sensor allows
for a maximum load of 250 g or 2.5 N. The displacement data is obtained from an inter-
nal encoder; all the data is recorded using an NI USB-6008 data acquisition unit. The
mechanisms are set in their stable equilibrium position, deflected to their second stable
position and back. This allows us to record any differences in load paths back and forth,
and identify possibly present hysteresis.
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Setup with magnet
In this method, a magnet is used to ensure a connection between the sensor and the
mechanisms in the unstable region. A magnet is attached to the side of the middle
PMMA link. The sensor is provided with a bearing ball attached to an M3 threaded stud.
This bearing ball is placed onto to magnet, creating a point contact, as displayed in Fig-
ure A.12. The mechanism is now set into its stable position at A, and pulled back to
capture the force away from the stable equilibrium position. Subsequently, the mecha-
nism is pushed in direction of stable equilibrium B, beyond this equilibrium, and back
to the starting position.

Figure A.12: Close-up of magnet connection between force sensor and mechanism. The initial position is
beyond the stable equilibrium at A. The mechanism is pushed in direction of equilibrium B, beyond it and
back to the initial position

The measured force-deflection characteristics for the four architectures are displayed in
Figure A.13, together with the force-deflection characteristics obtained from the ana-
lytical analysis. From the analytical results, it can be seen that from an increase of the
outermost spring stiffness, a counter-clockwise rotation of the force-deflection curves
follows. Unfortunately, the measurement points do not match the analytical results well.
Behavior reminiscent of snap-through is observed, as the force-deflection curve bulges
out, then narrows down and shows a peak at the end. This may be ascribed to the fact
that past the middle (0 mm displacement), the mechanism starts pulling on the sensor,
which causes the measured force to decrease (increase negatively). The observed rota-
tion from the analytical results can be slightly found in the measurements results as well.
However, it is not as evident as in the analytical results. The main contributing factor to
this is the presence of hysteresis, which is seen as the different load paths taken during
back and forth displacement. This hysteresis may be ascribed to:

• Manufacturing errors: the flexures are manufactured using guillotine shears. This
may result in flexures of non-uniform width, different lengths, burrs introduced by
folding instead of cutting. The stiffness changes significantly due to these produc-
tion errors. Non-uniform width of the flexures may result in the mechanism not
being perfectly in plane. Additionally, assembly is conducted using epoxy, which
results in layers of glue having their own stiffness.

• Movement of the actuation point: the middle point of the mechanism does not
undergo a straight-line motion. As the stage, and therefore the bearing ball, is
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constrained in all directions except in direction A → B, the rolling contact moves
along the magnet. This definitely results in measuring a different load path.
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Figure A.13: Obtained force-deflection behavior from analytical analysis and measurements (magnet setup)
for the four architectures: (a) c-c-c-c, (b) 2c-c-c-2c, (c) 3c-c-c-3c, (d) 4c-c-c-4c

Setup with pulley
To prevent movement of the rolling contact, the measurements are repeated with the
setup in Figure A.14a. The mechanism is connected to the force sensor using fishing
line; this allows the stage to pull the mechanism into the stable equilibrium at A. A 100 g
mass is used to pull the mechanism back into the equilibrium at B. The pulley functions
as a guidance for the fishing line, and to reduce friction in the process. As with the mag-
net connection, the force is measured in direction A → B and back. The results of the
analytical model and measurements are displayed in Figure A.15. With the use of the
mass and pulley, the "snap-through" behavior from Figure A.13a is not observed, as the
mass pulls on the sensor throughout the measurement. The slope of the measured force
matches that found in the analytical model better than the magnet setup measurements;
hence, the counter-clockwise rotation is observed in the measurements as well. As with
the magnet setup, a significant amount of hysteresis is observed. Differences between
the analytical results and measurements may be ascribed to:
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• Manufacturing errors

• Movement of the actuation point: the middle point of the mechanism does not
undergo a straight-line motion. As a result, forces in transversal direction are ex-
erted on the sensor; the fishing line will not pull on the sensor in a straight line
throughout the measurement. This may result in a different load path.

• Friction of the pulley: the pulley itself introduces friction, as can be seen in Figure
A.14b. This measurement presents the behavior of the mass and pulley, without
the mechanism placed in between. As can be seen, two load paths are present
in this reference measurement, which is ascribed to the friction in the pulley. This
friction may also have caused stick slip behavior, resulting in measured values that
are higher than expected.

(a)

-20 -10 0 10 20
-0.04

-0.02

0

0.02

0.04

(b)

Figure A.14: Overview of setup with mass and pulley (a). A mass (1) over a pulley (2) is connected to the
mechanism and force sensor using fishing line. The mass pulls the mechanism into the stable equilibrium in
B, after which the mechanism is pulled to the stable equilibrium in A. Reference measurement of pulley with
mass, and mass offset deducted (b). The two different load paths indicate there is significant friction
contribution by the pulley. Additionally, the sensor noise is also evident
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Figure A.15: Obtained force-deflection behavior from analytical analysis and measurements (pulley setup)
for the four architectures: (a) c-c-c-c, (b) 2c-c-c-2c, (c) 3c-c-c-3c, (d) 4c-c-c-4c



Appendix B
Lumped-compliant four-bar
mechanism: analysis steps

This chapter serves as an overview of the steps taken in the analysis of the torsion spring
linkage model for the lumped-compliant four-bar mechanism. A number of analyses
has been performed to investigate the effect of the matching buckling loads analytically
and explain the mechanism behind the behavior. An answer has been sought in the
buckling modes of the system. To this end, the buckling modes are used to express the
displacement field and equilibrium equations. Introduction of these modes is discussed
here as well.

B.1 General steps
B.1.1 Accuracy of model
The torsion spring linkage (TSL) is strongly simplified with the assumption of moderate
rotations (ϕ2 ¿ 1). The error occurring due to the assumption is determined using (B.1)
for sin(ϕ) and cos(ϕ). The measured angles in the physical model return an error within
the 2% bound. Of course, not only the moderate rotation assumption influences the
accuracy of the analytical model. In the TSL, the torsion springs are assumed as infinitely
small torsion springs concentrated at the joints of the linkage. In practice however, the
torsion springs are realized using flexures of finite length, with a flexural rigidity (i.e. the
analytical torsion stiffness) distributed along this length. During deformation, the pivot
of these flexures will shift; as a result, the rigid link length L is not constant.

sin(ϕ)−ϕ
sin(ϕ)

∧ cos(ϕ)− (− 1
2ϕ

2 +1)

cos(ϕ)
(B.1)

Sensitivity analysis
Figure B.1 displays the FD characteristics of the 3c-c-c-3c Architecture for slight changes
in the flexure widths. The flexure widths are changed with ± 1% and ± 2% to assess the
influence of imperfections in the stiffness ratios on the mechanical behavior. It is ob-
served that a 1% error in flexure width already results in a strong increase in the stiffness.
Manufacturing and assembly govern the discrepancies between the model (analytical
and finite element analysis) and experimental results greatly. Improving on manufac-
turing may of course improve the match between these results; however, assembly has
has a relatively larger influence. Clamping of the flexures is a crucial part of the assem-
bly process. During clamping, the flexures may get caught between the thread of the

79



B

80 B Lumped-compliant four-bar mechanism: analysis steps

used screws or they may not be assembled exactly in plane, resulting in skewed flex-
ures with a shorter or longer free length. As is observed from the sensitivity analysis,
a slight change in the stiffness ratios influences the stiffness of the matching buckling
loads configuration greatly. Hence, it cannot be expected that the experimental results
of the manufactured and assembled mechanism match the analytical results perfectly.
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Figure B.1: Sensitivity analysis of 3c-c-c-3c Architecture. The width of the flexures is adjusted with ±1% and
±2% and the FD characteristic is evaluated

B.1.2 Potential energy surfaces
Inspired by the work in [79], the potential energy of each linkage architecture is evalu-
ated for both DoFs. This returns the potential energy as a surface with respect to the DoF
ϕ1 and ϕ2 on the x y-plane. Subsequently, it was chosen to map the potential energy of
the beam during deflection onto this surface using the displacement field. Figure B.2
depicts the potential energy surfaces for the c-c-c-c and 3c-c-c-3c Architectures in sym-
metric and asymmetric actuation. There is no significant difference in paths between
the beam architectures, nor a significant change in the 3c-c-c-3c Architecture potential
energy surface with respect to the other Architectures. Therefore, it was concluded that
this analysis did not add information to form a sound explanation of the observed FD
behavior. However, it is an interesting representation of the motion of a bistable linkage
in the space of its DoFs.

B.1.3 Axial reaction forces
In [79] it is mentioned that the FD characteristic of a bistable buckled beam in trans-
verse deflection can be dissected into branches belonging to different buckling modes.
Together, these branches form the FD characteristic of the beam as we have seen in this
work. These branches are only obtainable if the axial load in the beam is equal to or
greater than the buckling load of the corresponding mode. Based on this information,
the axial reaction force for the Architectures in both actuation cases are displayed in Fig-
ure B.3. The axial reaction force curve shapes match those found in [79, 80]; however,
there is no significant difference in the axial load for the 3c-c-c-3c Architecture with re-
spect to the other Architectures. In symmetric actuation, the axial reaction in all beams is
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(a) (b)

(c) (d)

Figure B.2: Potential energy surfaces to DoF with the deflection path mapped onto the surface for the beam
Architectures: c-c-c-c symmetric (a) and asymmetric (b), 3c-c-c-3c symmetric (c) and asymmetric (d)

equal to the second buckling mode, as found in literature. In the asymmetric actuation,
the buckling load is reached in the middle of the deflection (0 mm).
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c-c-c-c 2c-c-c-2c 3c-c-c-3c 4c-c-c-4c 5c-c-c-5c

Figure B.3: Axial reaction forces for (a) symmetric and (b) asymmetric actuation
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B.2 Modal analysis
As the hypothesis tells us to use the buckling modes by matching their loads, we refer to
using the buckling modes in order to explain the effect of these buckling modes inter-
acting. This is similar to modal analysis in dynamics, in which the vibration modes of
a system are used to describe the system response to imposed vibrations. To this end,
we firstly need to establish a definition of these buckling modes. Since the TSL is a dis-
crete system, the buckling modes can easily be expressed in terms of the displacements
of B and C defined by the DoFs, as in Figure B.4. In the B-mode, the points B and C are
displaced an equal amount in the same direction. Following the definition of the DoFs
in Chapter A, this mode is described as ϕ1 = −ϕ2. In the S-mode, they are displaced an
equal amount in opposite direction, which is defined as ϕ1 = ϕ2. The two modes are
stored in the mode matrix Q (B.2).

Q =
[

1 1
−1 1

]
(B.2)
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Figure B.4: Depiction of the two buckling modes B (a) and S (b) expressed in the degrees of freedom

B.2.1 Displacement field in terms of modes
The displacement field obtained can be expressed in terms of the buckling modes. As a
result, the set of DoFs is now given in terms of two mode amplitudes. Separately, these
mode amplitudes are difficult to interpret as actual DoFs. For instance, in the S-shape
buckling mode, the location of center point (middle of link BC) is predefined to lie on
the horizontal axis. By scaling the mode, we are essentially displacing nodes B and C,
without affecting the vertical displacement of the center point. This is observed in the
absence of contribution of symmetric load Fs when using the second mode amplitude
as the actuation parameter. The displacement field is expressed in terms of the modes
as:

u =
[
ϕ1

ϕ2

]
=Qm =

[
1 1
−1 1

][
mB

mS

]
(B.3)

This allows us to investigate the behavior of different linkage architectures in a space de-
scribed by the buckling modes, and see whether there is a significant difference between
them. To this end, the amplitude of each mode is determined using Q−1 and the partici-
pation factor χi of mode i is calculated as the ratio of the mode amplitude mi to the sum
of both amplitudes in every instance, as in (B.4). This participation factor tells us "how
much" of the buckling mode is present in the current configuration ranging from 0 to 1.

χi = |mi |
|mB +mS|

(B.4)
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In FEA however, this is not as straightforward as taking the inverse of the mode matrix
and multiplying with the displacement field. The deflection is incrementally changed,
giving a new displacement field for every sub-step S. The model consists of N nodes;
hence, for every sub-step, an array of N ×1 is returned for every DoF (three translations,
three rotations). As we are interested in the y-displacement, the displacement field is
an N ×S array, where N 6= S. The buckling mode matrix describes the y-translation of
the N nodes for M modes, giving an N ×M matrix where N 6= M . As the mode matrix is
non-square, we are not able to take the inverse of the matrix. In other words, there does
not exist a unique solution to the modal amplitudes. A possible solution is by solving
the least-squares problem in (B.5) following the work of [58]. The modal participation
factors are determined using (B.4).

u(S)
N×1

least
squares= QN×M m(S)

2×1 (B.5)

Figure B.5 depicts the modal participation factors for the five Architectures under sym-
metric loading for the analytical analysis and FEA. Differences can be observed between
the analytical analysis and FEA; however, these cannot be used to draw any conclusions
on the differences in the FD characteristics. Unfortunately, no significant changes are
identified for the analytical 3c-c-c-3c Architecture with respect to the other Architec-
tures: the participation factors obtained do not change significantly due to the two buck-
ling loads matching. Therefore, it was concluded that the modal participation alone did
not add information to form a sound explanation of the observed FD behavior.
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Figure B.5: Comparison of modal participation factors under symmetric actuation in FEA for the five beam
Architectures: (a) c-c-c-c, (b) 2c-c-c-2c, (c) 3c-c-c-3c, (d) 4c-c-c-4c, (e) 5c-c-c-5c



B

84 B Lumped-compliant four-bar mechanism: analysis steps

B.2.2 Decomposition of strain energy in buckling modes
Despite the modal participation factors not adding any information to the explanation
of the observed behavior, they strengthen the hypothesis posed in Chapter 3. Figure B.6
depicts de potential energy curve to the displacement of the actuation point for the c-
c-c-c Architecture in symmetric actuation. When comparing the potential curve to the
Figure B.5a, it is observed that the B-mode occurs in the stable equilibria on either end
of the potential curve, while the S-mode occurs at the top of the potential barrier.
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Figure B.6: Potential curve of c-c-c-c Architecture for symmetric actuation to the displacement of point Os .
Upon comparison with the modal participation factors, it is seen that the modes at the equilibria are the B
and S-modes

Following [74], the potential energy, or strain energy in this case, needs to stem from
some input. The input to the system to obtain these buckling modes is the pre-loading
of the linkage. To obtain the B-mode during pre-loading, the axial load in the linkage
needs to be equal to the critical buckling load PB. This axial load is displaced by the
pre-loading displacement d , and thus the energy input is equal to the work done by
pre-loading WB = PBd . Hence, for the strain energy in the first buckling mode it holds
that EB = WB. In the c-c-c-c Architecture, the B-mode is the first buckling mode. The
second buckling mode (S-mode) is practically not obtainable; however, analogously, for
the strain energy in the second buckling mode it holds that ES =WS. This can be checked
by taking the buckling loads PB = 4.77 N and PS = 7.96 N and pre-loading displacement
d = 5mm, giving EB =WB = 0.024J and ES =WS = 0.040J. In terms of the DoFs, the strain
energy of the buckled linkage is found in (B.6). Note that this only holds for a mode
participation χi = 1 for mode i .

E
[
ϕ1;ϕ2

]= 1

2
kaϕ

2
1 +

1

2
kb

(
2ϕ1 +ϕ2

)2 + 1

2
kc

(
ϕ1 +2ϕ2

)2 + 1

2
kdϕ

2
2 (B.6)

As can be observed, the axial stiffness term of the beam is disregarded. This term gov-
erns the buckling conditions; however, as we are interested in the energy of the buckling
mode itself, this term would give a huge increase in strain energy due to the extension
of spring k. Using (B.3), the strain energy may be decomposed in terms of the buckling
modes. This is not to be confused with actuation using the buckling modes. What we are
essentially doing here is determining the part of the potential energy ascribed to either
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buckling mode, i.e. determining E [mB;mS = 0] and E [mB = 0;mS] for (B.7). This analysis
is performed for the symmetric actuation of the five linkage architectures and presented
in Figure B.7.

E [mB;mS] = 1

2
m2

B (ka +kb +kc +kd )+ 1

2
m2

S (ka +9kb +9kc +kd )

+mBmS (ka +3kb −3kc −3kd )
(B.7)

-20 -10 0 10 20
Displacement [mm]

0

0.01

0.02

0.03

0.04

(a)
-20 -10 0 10 20

Displacement [mm]

0

0.005

0.01

0.015

0.02

0.025

(b)
-20 -10 0 10 20

Displacement [mm]

0

0.005

0.01

0.015

0.02

(c)

-20 -10 0 10 20
Displacement [mm]

0

0.005

0.01

0.015

(d)
-20 -10 0 10 20

Displacement [mm]

0

0.005

0.01

0.015

(e)

Figure B.7: Decomposition of strain energy E in buckling modes B ( ) and S ( ) contributions and their
sum ( ) for symmetric actuation in linkage architectures: (a) c-c-c-c, (b) 2c-c-c-2c, (c) 3c-c-c-3c, (d)
4c-c-c-4c, (e) 5c-c-c-5c

Apart from the two separate mode contributions to the strain energy, their sum E [mB;mS = 0]
+E [mB = 0;mS] is also depicted. This sum is exactly equal to the total strain energy of
the linkage during symmetric actuation. An interesting transition from a downward to
an upward opening parabola is observed for the total strain energy from the c-c-c-c to
the 5c-c-c-5c Architecture. This depicts the change in mode order as described in Chap-
ter 4. Another interpretation is the shift of the equilibrium: whereas the stable equilibria
in the c-c-c-c and 2c-c-c-2c Architectures are at either end of the motion range and fully
described by the B-mode, the 4c-c-c-4c and 5c-c-c-5c Architectures have a single stable
equilibrium at 0mm displacement, fully described by the S-mode. As a result, the linkage
shifts from bistable behavior to monostable behavior as a result of changing the spring
stiffness ratios.

Returning to the work done per buckling load, in the 3c-c-c-3c Architecture, the
buckling loads are exactly equal. Hence, the strain energy in the B-mode and S-mode
is equal and essentially no extra energy is required to transition from one mode to the
other. As a result, the 3c-c-c-3c Architecture is statically balanced, and the FD character-
istic becomes near zero as seen in Chapter 4.
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B.2.3 Decomposition of force-deflection in buckling modes
The use of the buckling modes allows us to dissect the FD behavior in contributions per
mode. This analysis is also seen in [79], in which branches of the FD characteristic are
ascribed to different buckling modes. To this end, the equilibrium equations have to
be projected onto the two buckling modes. Recall (4.2), which returns the equilibrium
equations of the system. A constraint to this equation is that δu has to be kinematically
admissible; hence, we have only looked at Φ′. For the transformation onto the modal
basis however, we have to incorporate δu as well. The stationary potential energy (4.2)
returns:

δΦ [u] =Φ′δu = ∂Φ

∂ϕ1
δϕ1 + ∂Φ

∂ϕ2
δϕ2 = 0

Which can also be written as:

[
δϕ1 δϕ2

][
∂Φ
∂ϕ1
∂Φ
∂ϕ2

]
= 0

Using (B.3), we can write δu =Qδm, and hence δuT = δmT QT . Finally, the equilibrium
equations on the modal basis are given by:

δmT QT

[
∂Φ
∂ϕ1
∂Φ
∂ϕ2

]
= 0 (B.8)

Modal basis equilibrium equations
Recall the dimensionless equilibrium equations in (B.9). Using (B.8), these equilibrium
equations can be transformed to the modal basis, essentially leaving us with the modal
amplitudes as DoFs. All the steps in the transformation are given below.

∂Φ̄

∂ϕ1
=ϕ1 (1+α)+2ϕ2 +ω

[
λ+{

ϕ2
1 +ϕ1ϕ2 +ϕ2

2

}](
2ϕ1 +ϕ2

)+ 1

2
faω+ 1

2
fsω= 0

∂Φ̄

∂ϕ2
= 2ϕ1 +ϕ2

(
1+β)+ω[

λ+{
ϕ2

1 +ϕ1ϕ2 +ϕ2
2

}](
ϕ1 +2ϕ2

)− 1

2
fsω= 0

(B.9)

First we rewrite the equilibrium equations in a matrix form:[
∂Φ
∂ϕ1
∂Φ
∂ϕ2

]
=

[
1+α 2

2 1+β
][
ϕ1

ϕ2

]
+ω[

λ+{
ϕ2

1 +ϕ1ϕ2 +ϕ2
2

}][
2 1
1 2

][
ϕ1

ϕ2

]
=

[− 1
2 faω− 1

2 fsω
1
2 fsω

]
Next we use (B.8) to obtain the transformed matrices

QT
[

1+α 2
2 1+β

]
Q =

[
1 −1
1 1

][
1+α 2

2 1+β
][

1 1
−1 1

]
=

[−2+α+β α−β
α−β 6+α+β

]
{
ϕ2

1 +ϕ1ϕ2 +ϕ2
2

}= [
ϕ1 ϕ2

][
1 1

2
1
2 1

][
ϕ1

ϕ2

]
→QT

[
1 1

2
1
2 1

]
Q =

[
1 −1
1 1

][
1 1

2
1
2 1

][
1 1
−1 1

]
=

[
1 0
0 3

]
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QT
[

2 1
1 2

]
Q =

[
1 −1
1 1

][
2 1
1 2

][
1 1
−1 1

]
=

[
2 0
0 6

]

QT
[− 1

2 faω− 1
2 fsω

1
2 fsω

]
=

[
1 −1
1 1

][− 1
2 faω− 1

2 fsω
1
2 fsω

]
=

[− 1
2 faω− fsω

− 1
2 faω

]
Finally, we obtain the equilibrium solutions transformed in the modal basis:[−2+α+β α−β

α−β 6+α+β
][

mB

mS

]
+ω{

λ+m2
B +3m2

S

}[
2 0
0 6

][
mB

mS

]
=

[− 1
2 faω− fsω

− 1
2 faω

]
(B.10)

The equilibrium equations in the modal basis have an interesting form, in that the non-
linear part has reduced in complexity due to elimination of the cross term. However, this
does not mean that the two equations are uncoupled; hence, the complexity has only
been hidden in the new non-linear term λ+m2

B+3m2
S. Dissecting the FD characteristics

has been attempted without success: it was not succeeded to obtain the same represen-
tation as in [79]. (B.10) can also be used to plot the FD characteristics with respect to
the modal amplitudes. These FD characteristics are side views of the force in the modal
amplitude space, similar to the mapped path in the potential energy surfaces in Figure
B.2. No significant difference between the architectures that adds to an explanation was
found in these results.





Appendix C
Buckled Stepped Beam and
Parallel Guidance

This chapter serves as the first iteration to the experiments conducted in Chapter 5. Fi-
nite element analysis (FEA) as well as the prototyping of physical models is discussed.
As in Chapter 5, the results obtained from finite element modeling and experiments are
compared to establish the effect of matching buckling loads. Furthermore, matching of
higher buckling loads is discussed.

C.1 Tuning the stiffness
C.1.1 Critical load ratio
The goal of this experiment is to investigate the effect of matching the first two buckling
loads of a mechanism, as firstly introduced in the work of Kuppens e.a. [73]. In order to
do this, recall the critical load ratio (CLR) [74]. The CLR describes the ratio between the
first and second critical buckling loads. However, for further research, we can define this
as the ratio between two chosen critical loads in general, which allows us to investigate
the effect of matching other buckling loads. By increasing the CLR, the two correspond-
ing buckling modes come closer together, as it were. Upon reaching unity (CLR = 1), the
two buckling modes occur simultaneously. It is observed that by maximizing the CLR of
the first two critical loads, the overall stiffness in the mechanism diminishes.

C.1.2 Mechanisms
To test the effect of the CLR on the stiffness in the mechanisms, two architectures are
used. Here, both architectures and tuning of the FD characteristics is discussed.

Buckled Parallel Guidance
The Buckled Parallel Guidance (BPG) is used in [73], as it is "easy" to compensate the
stiffness in this architecture. The ease of stiffness compensation is a result of the parallel
guidance mechanism. The two parallel flexures prevent the rotation of the shuttle they
suspend, and as a result, all the elastic elements connected to this shuttle are rendered
connected in parallel. Elastic elements in parallel share the same applied displacement,
which means that their FD characteristics can simply be added to one another with re-
spect to the force. This advantageous property is exploited in static balancing, by adding
positive and negative slopes in the FD characteristic to obtain a plateau [9], and hence a
statically balanced mechanism. This is displayed in Figure C.1a, when adding the linear

89
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FD curve (b) to a bistable FD curve (a), the resulting curve (a+b) contains a relatively flat
section.

Buckled Stepped Beam
In the Buckled Stepped Beam (BSB), the flexures do not prevent the rotation of the shut-
tle, and as a result, it is not possible to simply add the FD characteristics to obtain a
statically balanced mechanism. Alike behavior can be seen for elastic elements in series.
In series, elastic elements share the same force, but the displacement is different. As a re-
sult, the FD characteristics have to be added with respect to the displacement. In Figure
C.1b, it is seen that the resulting curve (a+b) shows entirely different behavior compared
to the parent curves (a) and (b) and the resulting curve in parallel. This extreme exam-
ple shows snap-back behavior that can be obtained in series architectures [9]. Strictly
speaking, neither architecture is actually parallel nor series, but the parallel guidance
exhibits the same behavior as elastic elements in parallel. In the interest of statically bal-
ancing orthoplanar mechanisms, the BSB is investigated, since this architecture is more
straightforwardly applicable in orthoplanar mechanisms.

a+b

a

b

Fo
rc

e

Displacement(a)

a+b

a
b

Fo
rc

e

Displacement(b)

Figure C.1: Addition of force-deflection characteristics in (a) parallel and (b) series configurations. In parallel,
elastic elements share the displacement and the FD characteristics are added with respect to displacement.
In series, elastic elements share the force and the FD characteristics are added with respect to force, which in
extreme cases may lead to snap-back

C.2 Designing
C.2.1 Mechanical design
The two used architectures consist of an unchanging flexure(s), a flexure variable in
length and width, and a shuttle connecting both, as displayed in Figure C.2. In the BSB,
a shuttle is suspended by an unchanging and variable flexure on either side. In the BPG,
the unchanging part comprises a parallel guidance mechanism, consisting of a shuttle
suspended by two flexures. The variable flexure is connected to the shuttle, creating a
parallel connection. Both architectures are brought into post-buckling by applying an
axial displacement d . The buckling loads are tuned by changing the geometry of the ar-
chitecture. To this end, parameters β and σ are used, which represent the length and
width of the variable flexure relative to the unchanging flexures respectively. Hence, by
changing the values of β and σ, the ratio between the first two buckling loads is tuned.
The parameters chosen for the models are given in Table C.1.
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Figure C.2: Proposed mechanism BSB (a) and BPG (b) architectures. β and σ denote the relative length and
width of the flexures respectively

Table C.1: Model parameters used for mechanical design of the BSB and BPG architectures

BSB BPG

Flexure length L [mm] 50 50
Flexure width w [mm] 5 5
Flexure thickness t [mm] 0.20 0.20
Shuttle length Lm [mm] 20 20
Shuttle width wm [mm] 5 50
Shuttle thickness tm [mm] 5 5
Pre-loading displacement d [mm] 5 5
β [-] 0.01 - 3 0.01 - 3
σ [-] 0.01 - 1 0.01 - 1

C.2.2 Forming the design space
To investigate the effect of the CLR on the FD characteristic, a design space containing
different designs, i.e. different combinations of β and σ, is constructed. This design
space is formed by performing a linear buckling analysis to obtain the buckling loads of
both architectures for a set of β and σ. Both architectures are modeled in ANSYS Me-
chanical APDL to perform a linear buckling analysis and a simulation of the mechanical
behavior, i.e. to obtain the force-deflection characteristic. The models are created using
two-node Timoshenko beam elements (BEAM188) for both the flexures and the shuttle,
which are modeled as linear elastic (flexures: E = 190 GPa, ν = 0.34, ρ = 7890 kg ·m−3;
shuttle: E = 3 GPa, ν= 0.35, ρ = 1180 kg ·m−3). β and σ are both chosen to be sets of 40
ranging between the values in Table C.1. As a result, the buckling loads Pcr,i for 1600 de-
sign iterations are obtained. The ratio between the first two buckling loads is determined
for each design and displayed in Figures C.3b and C.3a, for the BSB and BPG respectively.
Both design spaces are provided with five sample points which represent the chosen de-
signs. These choices are based on the value of the CLR: the center Sample is the optimal
design, i.e. that with the largest CLR. The surrounding points are chosen to investigate
the influence of β and σ on the CLR, and ultimately the effect on the FD characteristics.
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(a)

Sample point β σ CLR

Center 0.85 0.8 0.6779
Right 0.85 0.9 0.6593
Left 0.85 0.7 0.6770
Above 0.95 0.8 0.6603
Below 0.75 0.8 0.6388

(b)

Sample point β σ CLR

Center 1.3 0.5 0.9712
Right 1.3 0.6 0.8836
Left 1.3 0.4 0.8077
Above 1.4 0.5 0.8380
Below 1.2 0.5 0.8775

Figure C.3: Critical load ratio (CLR) surface plot to β and σ for the buckled stepped beam (a) and buckled
parallel guidance (b) architectures. The sample points at the chosen optimum value for the CLR and the
points around the Center are indicated. For the BSB, the surrounding points are offset with ∆β= 0.1 and
∆σ= 0.1. For the BPG architecture, the surrounding points are offset with ∆β= 0.1 and ∆σ= 0.1

C.2.3 Manufacturing
The sample points in Figure C.3 are manufactured in order to validate the mechanical
behavior, by measuring the FD characteristics. The flexures, both the unchanging and
variable, are manufactured from AISI301 stainless steel using a laser cutter. The flexures
are given a 5 mm long and wide appendage on either side, for the clamping, as seen in
Figure C.4. The shuttle, and auxiliary parts for the assemblies, are manufactured from
PMMA using a laser cutter. Auxiliary parts comprise two boundary blocks, which act as
the clamping for the flexures, and a base plate that is used to assemble the parts in a pre-
loaded state. The shuttle and base blocks are provided with 5 mm deep slits, in which
the flexures are embedded to create the clamped boundary. Additionally, the shuttle is
provided with a hole in the middle, which is used for the connection between the FD
measurement setup and the testing sample. The parameters from Table C.1 are used in
the physical models as well. Figure C.5 displays the manufactured prototypes.
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Figure C.4: Drawing of variable flexure. The square appendages at then ends are used for clamping of the
flexures

(a) (b)

Figure C.5: Prototypes of BSB (a) and BPG (b) architectures. The base blocks and shuttle are indicated by the
white faces. The shuttles are provided with hole in the middle that enables a connection to the FD
measurement setup with a pulley and mass

Additional measurement point

An additional point for the BSB is chosen, namely at (β= 0.9253;σ= 0.0302). From Fig-
ure C.3a, it follows that a CLR ≈ 1 is obtained, possibly returning statically balanced be-
havior. This point is chosen to investigate whether it is possible to obtain the desired
statically balanced behavior in the BSB Architecture. The width of the variable flexure
reduces to 0.15 mm however, which is not manufacturable. Therefore, it is chosen to
scale the width of the unchanging flexure up to w = 67 mm, giving a width of 2 mm for
the variable flexure. A frame and shuttle are 3D printed from PLA and the flexures are cut
from AISI301 stainless steel using guillotine shears. The resulting prototype is displayed
in Figure C.6.

Figure C.6: Additional BSB measurement point (β= 0.9253;σ= 0.0302). Flexures are scaled up to make
manufacturing possible



C

94 C Buckled Stepped Beam and Parallel Guidance

C.3 Force-deflection behavior

After the linear buckling analysis, the mechanical behavior is evaluated by performing an
FD analysis of the finite element models; this is subsequently experimentally verified.
The same setup as in Chapter 5 is used for the FD measurements. As in the previous
measurements, a magnet is used to ensure the connection between the force sensor and
the prototypes in the unstable region. The connection is displayed in Figure C.7.

Figure C.7: Rolling contact magnet connection between force-sensor and prototypes. The magnet ensures
contact in the unstable region

C.3.1 Sample point measurements

A comparison of the FEA and experimental FD results in the sample points are displayed
in Figures C.9 and C.8 for the BSB and BPG Architectures respectively. It can be said
that despite the discrepancies, the experimental results match the simulation results;
therefore, the model is said to work correctly. In the BPG, the resulting FD characteristic
of the Center sample shows a plateau close to zero force. This indicates that a CLR near
unity results in a significantly low actuation force; hence, this ratio can be used to lower
the actuation force in the BPG Architecture. As for the BSB Architecture, the chosen
sample points show little difference in the CLR, which results in little difference between
the obtained FD characteristics.

C.3.2 Additional point measurements

To check whether the effect of a unity CLR returns the same behavior in the BSB as in the
BPG, the FD analysis is also performed on the additional sample point for the BSB Archi-
tecture. Due to the nearly square cross section of the variable flexure for an unchanging
flexure width w = 5 mm, the matched buckling loads are not the desired ones. In Fig-
ure C.10a, these two modes, which are in different planes, are displayed. Upon scaling
the flexures up, the modes are the expected ones. The FD behavior is displayed in Figure
C.10b; it clearly shows bistable behavior, which is not the expected effect for a unity CLR.
The actual CLR for the upscaled flexures is 0.56, resulting in the bistable behavior.
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Figure C.8: Comparison of FEA and experimental FD behavior for BSB Architecture: (a) Center, (b) Left, (c)
Right, (d) Above, (e) Below
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Figure C.10: Two modes in additional sample point (a): two modes in different planes. Due to the nearly
square cross section, the two matching modes are in a different plane. Comparison of FEA and experimental
FD behavior for additional sample in BSB Architecture (b)

C.4 Influence of other modes
Following the work of Kuppens e.a. [73], the two buckling loads of the displayed modes
in Figure C.11 have been matched and having them equal shows a flat FD characteristic
near zero. During transverse deflection in post-buckling, both architectures transition
between the two buckling modes displayed. Thus, the reasoning follows: if it is easy to
transition between the two buckling modes, the potential barrier will be low.

(a) (b)

Figure C.11: The first two buckling modes of which the buckling loads are matched for BSB and BPG
architectures

Hence arises the questions, why those two modes are chosen in particular, and what
FD behavior might be expected when taking into account matching of different modes.
The displacement field can be expressed in terms of the buckling modes as in Chapter
B.2.1. This gives us an insight in the presence of the modes, and hence which modes
contribute to the FD characteristic of the design. To this end, three designs of the BSB
and BPG have been investigated, where the CLR between other modes than the first two
was maximized. The FD characteristics of these three designs are displayed in Figure
C.12; the CLR values between different modes are tabulated in Table C.2; and the first
four buckling modes and their participation in the displacement field during deflection
are depicted in Figures C.13 and C.14 for the BSB and BPG respectively. The modes are
indicated by the different colors and linked to the corresponding participation curve.
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Figure C.12: Force-deflection characteristics of the three chosen BSB (a) and BPG (b) designs

Table C.2: Critical Load Ratio values between the four buckling modes in the three BSB and BPG designs

BSB BPG

Design I II III I II III

CLR1,2 0.77 0.35 0.36 0.97 0.25 0.50
CLR1,3 0.26 0.27 0.17 0.45 0.24 0.26
CLR1,4 0.22 0.13 0.15 0.24 0.24 0.24
CLR2,3 0.34 0.76 0.49 0.46 0.95 0.51
CLR2,4 0.28 0.38 0.41 0.25 0.95 0.47
CLR3,4 0.82 0.50 0.83 0.53 1 0.93

C.4.1 Buckled Stepped Beam
As can be observed, BSB Design I, which is identical to BSB Design I in Chapter 5, re-
turns the smallest distance between the two load paths. In this design, the CLR1,2 is
maximized to reduce the distance between the load paths. When looking into the mode
participation for Design I, it is observed that the displacement field is fully described by
the first and second mode. Despite CLR3,4 > CLR1,2, the third and fourth mode do not
occur. As a result, energy is only used for deformation between modes 1 and 2, reducing
the distance between the load paths.

For Design II, the CLR2,3 is maximized which can be observed through the modal
participation. While the displacement field is mainly described by modes 1 and 2, mode
3 significantly contributes. The presence of mode 3 in the displacement field causes
energy to be used for the corresponding deformation; hence, the distance between the
load paths increases significantly. However, despite the increase distance between the
load paths (and therefore also the limit load of snap-through) the sharp peaks at the
ends of the FD characteristic disappear. The mode participation indicates a sharp rise in
contribution of mode 3 at this part of the FD characteristic. Hence, it is thought that the
contribution of higher modes results in a more gradual transition between the equilibria.

For Design III, the CLR3,4 is maximized; however, mode 4 does not contribute to the
displacement field. As the CLR1,2 is low, it would be expected to observe a large distance
between the load paths. Interestingly, this distance is quite comparable to that of Design
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I. A slight increase is caused by the presence of the third mode. The same sharp increase
in the contribution of mode 3 as in Design II is observed, which decreases the peaks in
the FD characteristic.
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Figure C.13: Depiction of first four buckling modes (a, c, e) and mode participations (b, d, f) for BSB for three
designs: Design I (a,b), Design II (c,d), Design III (e,f)
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C.4.2 Buckled Parallel Guidance
BPG Design I is identical to BPG Design I in Chapter 5. It is observed that the CLR1,2 is
near unity, which, given the two corresponding modes, returns a low linear stiffness or
near static balancing. Due to the scale of the vertical axis, this FD characteristic looks
entirely flat; however, the behavior returns slight positive stiffness. The CLR values for
any other combination of modes is low; this is also observable in the modal participation
(Figure C.14b), since the displacement field can fully be described by the first two modes.
Other modes have no participation, which can be interpreted as no energy going into
deformation corresponding to those modes.

For Design II, the FD characteristic drastically changes, giving a steep negative stiff-
ness between the nonlinear ends. Compared to Design I, the CLR1,2 is significantly lower,
while a CLR2,3 and CLR2,4 near unity are obtained. The effect of these two CLR values is
seen in the modal participation in C.14d: modes 3 and 4 both show a significant contri-
bution in the the displacement. Looking into the corresponding modes, it is observed
that these two modes do not aid the transverse deflection of the BPG. Hence, it can be
said significant effort is put into deflection of the two parallel flexures, resulting in an
increase in actuation force during deflection. This deflection of the parallel flexures is
enabled by the unity CLRs for between mode 2 and modes 3 and 4.

Finally for Design III, an FD similar to that of Design I is obtained, though with a
significant increase in stiffness. In this design a CLR1,2 = 0.50 is obtained, while a near
unity CLR3,4 is obtained; however, mode 4 does interestingly not contribute to the dis-
placement field. The FD behavior is similar to that found in Chapter 5 for designs where
CLR1,2 declines.

A final observation is the presence of the modes in the equilibrium positions. For De-
signs I and III, it is observed that at 0mm displacement, the displacement field is entirely
described by the first mode. In Design II, which has two stable equilibrium positions at
either side of the motion range, the displacement field is entire described by the first
mode as well. Hence, at a stable equilibrium it is expected to have a mechanism con-
figuration in purely the first mode. This is of course an obvious thought when related
to pre-loading. Upon pre-loading, we are putting energy into the system and essentially
pushing it away from its stable equilibrium (or minimum of potential energy). Once
buckling occurs, a new minimum of potential energy is formed, which corresponds to
the first buckling mode.

C.4.3 Recommendation
Based on these findings, a recommendation for stiffness compensation can be formed.
It is required to match the buckling loads that correspond to the stable equilibrium, i.e.
the first buckling mode, and a mode that describes the displacement field of interest. "Of
interest" should not be confused with the modes that describe the displacement field in
terms of modal participation. From BPG Design II, it is observed that even though modes
3 and 4 describe the displacement field, they do not aid in the desired displacement;
hence, the energy required for deformation is large and the FD characteristic returns
a steep negative stiffness. When comparing BPG Designs I and III, it would seem that
matching modes 1 and 3 for Design III would return a flat FD characteristic. However, by
matching the first and third mode, the second mode must per definition also match the
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first and third mode. Moreover, a slight change in geometry already returns a significant
difference in the order (and also shape) of the modes. As a result, what was formerly
known as mode 3 may change in this process of matching the loads.
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Figure C.14: Depiction of first four buckling modes (a, c, e) and mode participations (b, d, f) for BPG for three
designs: Design I (a,b), Design II (c,d), Design III (e,f)
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Technical drawings of the
lumped-compliant four-bar
mechanism
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Appendix E
Technical drawings of buckled
stepped beam and parallel
guidance frame
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Figure E.1: Technical drawings and dimensions of sides for constant (a) and variable (b) flexure clampings
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Figure E.2: Technical drawings and dimensions of bottom blocks for attachment to base plate for constant (a)
and variable (b) flexure sides
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104 E Technical drawings of buckled stepped beam and parallel guidance frame
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Figure E.3: Technical drawings and dimensions of shuttles for buckled stepped beam (a) and buckled parallel
guidance (b)
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[19] W. Szemplińska-Stupnicka, The analytical predictive criteria for chaos and escape in
nonlinear oscillators: A survey, 7, 129.

[20] A. F. Arrieta, P. Hagedorn, A. Erturk, and D. J. Inman, A piezoelectric bistable plate
for nonlinear broadband energy harvesting, 97, 104102.

[21] D. Pan, W. Jiang, and F. Dai, Dynamic analysis of bi-stable hybrid symmetric lami-
nate, 225, 111158.

[22] A. Syta, C. R. Bowen, H. A. Kim, A. Rysak, and G. Litak, Responses of bistable
piezoelectric-composite energy harvester by means of recurrences, 76-77, 823 ().

[23] D. N. Betts, C. R. Bowen, H. A. Kim, N. Gathercole, C. T. Clarke, and D. J. Inman,
Investigation of bistable piezo-composite plates for broadband energy harvesting, p.
86881N.

[24] I. Kovacic and M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their
Behaviour (John Wiley & Sons Ltd).

[25] K. Guo, S. Cao, and S. Wang, Numerical and experimental studies on nonlinear dy-
namics and performance of a bistable piezoelectric cantilever generator, 2015, 1.

[26] M. Heymanns and P. Hagedorn, Analytical and numerical investigations on a
bistable system for energy harvesting application, in Volume 6: 10th International
Conference on Multibody Systems, Nonlinear Dynamics, and Control (American So-
ciety of Mechanical Engineers) p. V006T10A063.

[27] M. Heymanns, P. Hagedorn, and B. Schweizer, Multistable structures for broad
brandwidth vibration-based energy harvesters: An analytical design investigation,
Forschungsbericht / Mechanik, Technische Universität Darmstadt No. Band 39
(Studienbereich Mechanik, Technische Universität Darmstadt).

[28] D. Briand, E. Yeatman, and S. Roundy, Micro Energy Harvesting, 1st ed., Advanced
MIcro & Nanosystems (Wiley-VCH).

[29] M. Panyam, M. F. Daqaq, and S. A. Emam, Exploiting the subharmonic parametric
resonances of a buckled beam for vibratory energy harvesting, 53, 3545.

[30] K. Yang, F. Fei, and H. An, Investigation of coupled lever-bistable nonlinear energy
harvesters for enhancement of inter-well dynamic response, 96, 2369.

http://dx.doi.org/10.1115/DETC2011-47828
http://dx.doi.org/10.1115/DETC2011-47828
http://dx.doi.org/10.1088/0964-1726/22/2/023001
http://dx.doi.org/ 10.1098/rsta.1979.0068
http://dx.doi.org/10.1007/BF00053705
http://dx.doi.org/10.1063/1.3487780
http://dx.doi.org/10.1016/j.compstruct.2019.111158
http://dx.doi.org/ 10.1016/j.ymssp.2016.01.021
http://dx.doi.org/10.1155/2015/692731
http://dx.doi.org/10.1115/DETC2014-34859
http://dx.doi.org/10.1115/DETC2014-34859
http://dx.doi.org/10.1007/s11012-018-0900-9
http://dx.doi.org/10.1007/s11071-019-04929-3


Bibliography 109

[31] A. J. Lee and D. J. Inman, Broadband energy harvesting performance of a piezo-
electrically generated bistable laminate, in Sensors and Instrumentation, Air-
craft/Aerospace and Energy Harvesting , Volume 8, edited by E. Wee Sit, C. Walber,
P. Walter, A. Wicks, and S. Seidlitz (Springer International Publishing) pp. 1–14.

[32] P. Harris, C. R. Bowen, H. A. Kim, and G. Litak, Dynamics of a vibrational energy
harvester with a bistable beam: voltage response identification by multiscale entropy
and “0-1” test, 131, 109 ().

[33] P. Grassberger, T. Schreiber, and C. Schaffrath, Nonlinear time sequence analysis, 1,
521.

[34] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, The analysis of
observed chaotic data in physical systems, 65, 1331.

[35] H. D. I. Abarbanel, Analysis of observed chaotic data, Springer study edition
(Springer).

[36] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining lyapunov exponents
from a time series, 16, 285.

[37] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, A practical method for calculating
largest lyapunov exponents from small data sets, 65, 117.

[38] J. Awrejcewicz, A. Krysko, N. Erofeev, V. Dobriyan, M. Barulina, and V. Krysko,
Quantifying chaos by various computational methods. part 1: Simple systems, 20,
175.

[39] G. A. Gottwald and I. Melbourne, The 0-1 test for chaos: A review, in Chaos Detec-
tion and Predictability, Vol. 915, edited by C. Skokos, G. A. Gottwald, and J. Laskar
(Springer Berlin Heidelberg) pp. 221–247.

[40] A. Syta, C. R. Bowen, H. A. Kim, A. Rysak, and G. Litak, Experimental analysis of the
dynamical response of energy harvesting devices based on bistable laminated plates,
50, 1961 ().

[41] D. Toker, F. T. Sommer, and M. D’Esposito, A simple method for detecting chaos in
nature, 3, 11.

[42] A. M. Fraser and H. L. Swinney, Independent coordinates for strange attractors from
mutual information, 33, 1134.

[43] S. Wallot and D. Mønster, Calculation of average mutual information (AMI) and
false-nearest neighbors (FNN) for the estimation of embedding parameters of mul-
tidimensional time series in matlab, 9, 1679.

[44] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Energy har-
vesting from human and machine motion for wireless electronic devices, 96, 1457,
conference Name: Proceedings of the IEEE.

http://link.springer.com/10.1007/978-3-319-74642-5_1
http://link.springer.com/10.1007/978-3-319-74642-5_1
http://dx.doi.org/10.1140/epjp/i2016-16109-4
http://dx.doi.org/ 10.1103/RevModPhys.65.1331
http://dx.doi.org/ 10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(93)90009-P
http://dx.doi.org/10.3390/e20030175
http://dx.doi.org/10.3390/e20030175
http://link.springer.com/10.1007/978-3-662-48410-4_7
http://link.springer.com/10.1007/978-3-662-48410-4_7
http://dx.doi.org/ 10.1007/s11012-015-0140-1
http://dx.doi.org/10.1038/s42003-019-0715-9
http://dx.doi.org/10.1103/PhysRevA.33.1134
http://dx.doi.org/10.3389/fpsyg.2018.01679
http://dx.doi.org/ 10.1109/JPROC.2008.927494


110 Bibliography

[45] G. Litak, M. I. Friswell, and S. Adhikari, Regular and chaotic vibration in a piezo-
electric energy harvester, 51, 1017.

[46] K. Nakano, M. P. Cartmell, H. Hu, and R. Zheng, Feasibility of energy harvesting
using stochastic resonance caused by axial periodic force, 60, 314.

[47] J. J. Radice, P. J. Ellsworth, M. A. Romano, N. Lazarus, and S. S. Bedair, On the use of
discontinuous nonlinear bistable dynamics to increase the responsiveness of energy
harvesting devices, 84, 49.

[48] P. Harris, M. Arafa, G. Litak, C. R. Bowen, and J. Iwaniec, Output response identifi-
cation in a multistable system for piezoelectric energy harvesting, 90, 20 ().

[49] P. Harris, G. Litak, J. Iwaniec, and C. R. Bowen, Recurrence plot and recurrence quan-
tification of the dynamic properties of cross-shaped laminated energy harvester, 849,
95 ().

[50] A. Syta, G. Litak, M. I. Friswell, and S. Adhikari, Multiple solutions and correspond-
ing power output of a nonlinear bistable piezoelectric energy harvester, 89, 99 ().

[51] Z. Wu, R. L. Harne, and K. W. Wang, Excitation-induced stability in a bistable duffing
oscillator: Analysis and experiments, 10, 011016.

[52] N. A. Alfutov, Stability of Elastic Structures, Foundations of Engineering Mechanics
(Springer Berlin Heidelberg).

[53] M. L. Gambhir, Stability Analysis and Design of Structures (Springer Berlin Heidel-
berg).

[54] S. P. Timoshenko, J. M. Gere, and W. Prager, Theory of elastic stability, second edition,
29, 220.

[55] C. M. Wang, C. Y. Wang, and J. Reddy, Exact Solutions for Buckling of Structural
Members, COMPUTATIONAL MECHANICS and APPLIED ANALYSIS (CRC Press).

[56] B. Budiansky, Theory of buckling and post-buckling behavior of elastic structures,
(Elsevier) pp. 1 – 65, ISSN: 0065-2156.

[57] J. He and Z.-F. Fu, Overview of modal analysis, in Modal analysis (Butterworth-
Heinemann) pp. 1–11.

[58] J. Cai and C. D. Moen, Automated buckling mode identification of thin-walled struc-
tures from 3d finite element mode shapes or point clouds, p. 18.

[59] G. Chen and S. Zhang, Fully-compliant statically-balanced mechanisms without
prestressing assembly: concepts and case studies, , 6.

[60] J. L. Herder, Design of spring force compensation systems, 33, 151 ().

[61] S. R. Deepak and G. K. Ananthasuresh, Static balancing of a four-bar linkage and its
cognates, , 19 ().

http://dx.doi.org/ 10.1007/s11012-015-0287-9
http://dx.doi.org/ 10.5545/sv-jme.2014.1833
http://dx.doi.org/10.1016/j.mechrescom.2017.06.005
http://dx.doi.org/ 10.1140/epjb/e2016-70619-y
http://dx.doi.org/10.4028/www.scientific.net/AMM.849.95
http://dx.doi.org/10.4028/www.scientific.net/AMM.849.95
http://dx.doi.org/10.1140/epjb/e2016-60699-0
http://dx.doi.org/10.1115/1.4026974
http://dx.doi.org/10.1007/978-3-540-49098-2
http://dx.doi.org/10.1007/978-3-662-09996-4
http://dx.doi.org/10.1115/1.3636481
https://doi.org/10.1016/B978-075065079-3/50001-2
http://dx.doi.org/ 10.1016/S0094-114X(97)00027-X


Bibliography 111

[62] S. R. Deepak and G. K. Ananthasuresh, Perfect static balance of linkages by addition
of springs but not auxiliary bodies, 4, 021014 ().

[63] B. Soethoudt and J. L. Herder, Synthesis of perfect spring balancers with higher-order
zero-free-length springs, in Volume 8: 31st Mechanisms and Robotics Conference,
Parts A and B (ASMEDC) pp. 751–762.

[64] J. A. Gallego and J. L. Herder, Criteria for the static balancing of compliant mecha-
nisms, in Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and
B (ASMEDC) pp. 465–473.

[65] N. Tolou and J. L. Herder, Concept and modeling of a statically balanced compliant
laparoscopic grasper, in Volume 7: 33rd Mechanisms and Robotics Conference, Parts
A and B (ASMEDC) pp. 163–170.

[66] A. Lamers, J. A. Gallego Sánchez, and J. L. Herder, Design of a statically balanced
fully compliant grasper, 92, 230.

[67] E. G. Merriam, M. Colton, S. Magleby, and L. L. Howell, The design of a fully com-
pliant statically balanced mechanism, in Volume 6A: 37th Mechanisms and Robotics
Conference (American Society of Mechanical Engineers) p. V06AT07A035.

[68] N. Tolou, V. A. Henneken, and J. L. Herder, Statically balanced compliant micro
mechanisms (SB-MEMS): Concepts and simulation, in Volume 2: 34th Annual Mech-
anisms and Robotics Conference, Parts A and B (ASMEDC) pp. 447–454.

[69] N. Tolou, P. Estevez, and J. L. Herder, Collinear-type statically balanced compliant
micro mechanism (SB-CMM): Experimental comparison between pre-curved and
straight beams, in Volume 6: 35th Mechanisms and Robotics Conference, Parts A and
B (ASMEDC) pp. 113–117.

[70] K. A. Tolman, E. G. Merriam, and L. L. Howell, Compliant constant-force linear-
motion mechanism, 106, 68.

[71] J. A. Gallego Sánchez, Buckling as a new perspective on static balancing of mecha-
nisms, , 8.

[72] F. M. Morsch and J. L. Herder, Design of a generic zero stiffness compliant joint,
in Volume 2: 34th Annual Mechanisms and Robotics Conference, Parts A and B
(ASMEDC) pp. 427–435.

[73] P. R. Kuppens, J. L. Herder, and N. Tolou, Permanent stiffness reduction by thermal
oxidation of silicon, 28, 900.

[74] T. Blad, R. Van Ostayen, and N. Tolou, A method for tuning the stiffness of building
blocks for statically balanced compliant ortho-planar mechanisms, , 11.

[75] E. J. Barbero, E. K. Dede, and S. Jones, Experimental verifcation of buckling-mode
interaction in intermediate-length composite columns, , 16.

http://dx.doi.org/10.1115/1.4006521
http://dx.doi.org/10.1115/DETC2007-34954
http://dx.doi.org/10.1115/DETC2007-34954
http://dx.doi.org/ 10.1115/DETC2010-28469
http://dx.doi.org/ 10.1115/DETC2010-28469
http://dx.doi.org/10.1115/DETC2009-86694
http://dx.doi.org/10.1115/DETC2009-86694
http://dx.doi.org/ 10.1016/j.mechmachtheory.2015.05.014
http://dx.doi.org/ 10.1115/DETC2013-13142
http://dx.doi.org/ 10.1115/DETC2013-13142
http://dx.doi.org/10.1115/DETC2010-28406
http://dx.doi.org/10.1115/DETC2010-28406
http://dx.doi.org/ 10.1115/DETC2011-47678
http://dx.doi.org/ 10.1115/DETC2011-47678
http://dx.doi.org/ 10.1016/j.mechmachtheory.2016.08.009
http://dx.doi.org/ 10.1115/DETC2010-28351
http://dx.doi.org/ 10.1109/JMEMS.2019.2935379


112 Bibliography

[76] C. Lusk, Using pseudo-rigid body models, in Handbook of compliant mechanisms,
Vol. 5, edited by L. L. Howell, S. P. Magleby, and B. M. Olsen (John Wiley & Sons, Inc)
pp. 55–76.

[77] C. Schranz, B. Krenn, and H. A. Mang, Conversion from imperfection-sensitive into
imperfection-insensitive elastic structures. II: Numerical investigation, 195, 1458.

[78] T. Tarnai, Zero stiffness elastic structures, 45, 425.

[79] P. Cazottes, A. Fernandes, J. Pouget, and M. Hafez, Bistable buckled beam: Modeling
of actuating force and experimental validations, 131, 101001.

[80] B. Camescasse, A. Fernandes, and J. Pouget, Bistable buckled beam and force actu-
ation: Experimental validations, 51, 1750.

[81] L. L. Howell, Introduction to compliant mechanisms, in Handbook of compliant
mechanisms, Vol. 1, edited by L. L. Howell, S. P. Magleby, and B. M. Olsen (John
Wiley & Sons, Inc) pp. 1–13.

[82] L. Berntsen, D. H. Gosenshuis, and J. L. Herder, Design of a compliant mono-
lithic internally statically balanced four-bar mechanism, in Volume 5A: 38th Mech-
anisms and Robotics Conference (American Society of Mechanical Engineers) p.
V05AT08A040.

[83] L. C. Leishman, D. J. Ricks, and M. B. Colton, Design and evaluation of statically bal-
anced compliant mechanisms for haptic interfaces, in ASME 2010 Dynamic Systems
and Control Conference, Volume 1 (ASMEDC) pp. 859–866.

[84] P. J. Pluimers, N. Tolou, B. D. Jensen, L. L. Howell, and J. L. Herder, A compliant
on/off connection mechanism for preloading statically balanced compliant mecha-
nisms, in Volume 4: 36th Mechanisms and Robotics Conference, Parts A and B (Amer-
ican Society of Mechanical Engineers) pp. 373–377.

[85] J. Lassooij, N. Tolou, G. Tortora, S. Caccavaro, A. Menciassi, and J. L. Herder, A stat-
ically balanced and bi-stable compliant end effector combined with a laparoscopic
2dof robotic arm, 3, 85.

[86] K. Hoetmer, J. L. Herder, and C. J. Kim, A building block approach for the design
of statically balanced compliant mechanisms, in Volume 7: 33rd Mechanisms and
Robotics Conference, Parts A and B (ASMEDC) pp. 313–323.

[87] A. H. Nayfeh and S. A. Emam, Exact solution and stability of postbuckling configu-
rations of beams, 54, 395.

[88] D. Brouwer, J. Meijaard, and J. Jonker, Large deflection stiffness analysis of parallel
prismatic leaf-spring flexures, 37, 505.

[89] R. Zheng, K. Nakano, H. Hu, D. Su, and M. P. Cartmell, An application of stochastic
resonance for energy harvesting in a bistable vibrating system, 333, 2568, read.

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118516485.ch5
http://dx.doi.org/10.1016/j.cma.2005.05.025
http://dx.doi.org/10.1016/S0020-7403(03)00063-8
http://dx.doi.org/10.1115/1.3179003
http://dx.doi.org/ 10.1016/j.ijsolstr.2014.01.017
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118516485.ch1
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118516485.ch1
http://dx.doi.org/10.1115/DETC2014-35054
http://dx.doi.org/10.1115/DETC2014-35054
http://dx.doi.org/10.1115/DSCC2010-4260
http://dx.doi.org/10.1115/DSCC2010-4260
http://dx.doi.org/ 10.1115/DETC2012-71509
http://dx.doi.org/ 10.5194/ms-3-85-2012
http://dx.doi.org/10.1115/DETC2009-87451
http://dx.doi.org/10.1115/DETC2009-87451
http://dx.doi.org/ 10.1007/s11071-008-9338-2
http://dx.doi.org/ 10.1016/j.precisioneng.2012.11.008
http://dx.doi.org/ 10.1016/j.jsv.2014.01.020

	Preface
	Summary
	Sažetak
	Introduction
	Energy harvesting
	Capturing energy from vibrations
	Bistable energy harvesting
	Thesis structure

	Classification of motion in bistable energy harvesters
	Introduction
	Classification of bistable motion
	Evaluating performance of motion types
	Results
	Discussion
	Conclusion

	Research hypothesis
	Bistability
	Buckling
	Hypothesis
	Tools

	Stiffness compensation through matching buckling loads
	Introduction
	Methods
	Results
	Discussion
	Conclusion

	Effect of matching buckling loads in compliant mechanisms
	Introduction
	Methods
	Results
	Discussion
	Conclusion

	Reflection, conclusions and recommendations
	Overview of research activities
	Reflection
	Conclusions
	Recommendations

	Acknowledgements
	Appendices
	Lumped-compliant four-bar mechanism: modeling and prototyping
	Analytical linkage model
	Physical model

	Lumped-compliant four-bar mechanism: analysis steps
	General steps
	Modal analysis

	Buckled Stepped Beam and Parallel Guidance
	Tuning the stiffness
	Designing
	Force-deflection behavior
	Influence of other modes

	Technical drawings of the lumped-compliant four-bar mechanism
	Technical drawings of buckled stepped beam and parallel guidance frame
	Bibliography

