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Abstract. Representing fractures explicitly using a discrete
fracture network (DFN) approach is often necessary to model
the complex physics that govern thermo-hydro-mechanical–
chemical processes (THMC) in porous media. DFNs find ap-
plications in modelling geothermal heat recovery, hydrocar-
bon exploitation, and groundwater flow. It is advantageous to
construct DFNs from the photogrammetry of fractured out-
crop analogues as the DFNs would capture realistic, fracture
network properties. Recent advances in drone photogram-
metry have greatly simplified the process of acquiring out-
crop images, and there is a remarkable increase in the vol-
ume of image data that can be routinely generated. However,
manually digitizing fracture traces is time-consuming and in-
evitably subject to interpreter bias. Additionally, variations
in interpretation style can result in different fracture network
geometries, which, may then influence modelling results de-
pending on the use case of the fracture study. In this paper, an
automated fracture trace detection technique is introduced.
The method consists of ridge detection using the complex
shearlet transform coupled with post-processing algorithms
that threshold, skeletonize, and vectorize fracture traces. The
technique is applied to the task of automatic trace extraction
at varying scales of rock discontinuities, ranging from 100

to 102 m. We present automatic trace extraction results from
three different fractured outcrop settings. The results indi-
cate that the automated approach enables the extraction of
fracture patterns at a volume beyond what is manually feasi-
ble. Comparative analysis of automatically extracted results
with manual interpretations demonstrates that the method
can eliminate the subjectivity that is typically associated with
manual interpretation. The proposed method augments the
process of characterizing rock fractures from outcrops.

1 Introduction

Naturally fractured reservoir (NFR) modelling requires an
explicit definition of fracture network geometry to accurately
capture the effects of fractures on the overall reservoir be-
haviour. The National Research Council (1996) suggested
the idea of using geologically realistic outcrop fracture pat-
terns to guide subsurface fracture modelling. In recent work,
the use of deterministic discrete fracture networks (DFNs)
based on trace digitization from the photogrammetry of out-
crop analogues was investigated by Bisdom et al. (2017) and
Aljuboori et al. (2015) for reservoir fluid flow simulation and
well testing. Outcrop-derived DFNs encapsulate 2-D frac-
ture network properties at a scale that cannot be character-
ized using either standard surface approaches (scanlines and
satellite imagery) or subsurface techniques (seismic imag-
ing/borehole imagery/core sampling). Ukar et al. (2019) sug-
gested a comprehensive set of protocols to select fractured
outcrops that are representative of the subsurface. Stochastic
and geomechanical DFNs are alternatives to outcrop-derived
DFNs for fractured reservoir modelling. Stochastically gen-
erated DFNs have the disadvantage that they cannot repli-
cate the spatial organization of fracture network patterns ob-
served in nature (Thovert et al., 2017). Geomechanically de-
rived DFNs are based on the physics of fracture propagation
(e.g. Olson et al., 2009; Thomas et al., 2018) and can repro-
duce realistic fracture patterns provided the complex pale-
ostress field and paleo rock properties are known; however,
they are also computationally intensive and hence have lim-
ited applicability. A carefully chosen fractured outcrop that
is relatively free of noise (fractures resulting from exhuma-
tion and weathering and not hidden too much by vegetation)
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may be used to interpret realistic fracture networks which
are geometrical inputs used in simulating various subsurface
thermo-hydro-mechanical–chemical (THMC) processes.

Recent advances in unmanned aerial vehicles (UAVs) and
stereo-photogrammetry has dramatically simplified the ac-
quisition of georeferenced datasets of fractured outcrop im-
ages (e.g. Bemis et al., 2014; Harwin and Lucieer, 2012;
Turner et al., 2012). Photogrammetry using the structure
from motion (SfM) principle is a relatively inexpensive and
rapid technique by which 3-D outcrop models are built
by identifying, extracting, and positioning common points
in georeferenced outcrop images (Donovan and Lebaron,
2009). Images are captured using a camera-equipped UAV
that is capable of following pre-programmed flight missions
where flight path, altitude, velocity, and overlap are specified.
The images undergo further processing steps that include
generating sparse point clouds of common points, aligning
the images, generating dense point clouds (3-D representa-
tion of outcrop geometry), and generating meshed surfaces
(Bisdom et al., 2017). Interpreting fractures on the image or-
thomosaics with conventional Geographic Information Sys-
tem (GIS) software completes the outcrop-based DFN work-
flow.

Manually interpreting fractures is time-consuming and
forms a bottleneck in an outcrop-based DFN workflow. A
manual interpretation has a fair degree of associated sub-
jectivity, and interpreter bias may take the form of specific
scales of features being inadvertently omitted or deliberately
ignored (Bond et al., 2007; Scheiber et al., 2015). Manual in-
terpretation also suffers from a lack of repeatability owing to
the level of expertise of the interpreter, and the interpretation
criteria followed (Hillier et al., 2015; Sander et al., 1997).
Reproducibility may not be guaranteed even with the same
interpreter in multiple trials (Mabee et al., 1994). According
to Bond et al. (2015), quantifying the magnitude and impact
of subjective uncertainty is difficult. Long et al. (2018) con-
ducted a study on the variability of fracture interpretation in
which geologists with varying levels of expertise interpreted
a single image. They found considerable variation in frac-
ture topology, orientation, intensity, and length distributions
in the interpretations. Andrews et al. (2019) made a detailed
quantification of subjective bias in scan-line-based fracture
data collection, the associated effects on derived fracture
statistics, and suggested protocols for managing the varia-
tions. Peacock et al. (2019) delved into the multiple reasons
for bias and the resulting implications for modelling. Given
the amount of data generated in short UAV flight missions,
man-hours spent in interpretation, and the need to de-bias
interpretation as much as possible, automatic feature detec-
tion techniques may be considered. Automated approaches
can speed up the process, improve accuracy, and exploit the
acquired data to the fullest possible extent.

In this paper, we apply an automated method to extract
digitized fracture traces from images of fractured rocks.
The method utilizes the complex shearlet transform mea-

sure to extract fracture ridge realizations from images. Post-
processing image analysis algorithms are coupled with the
ridge extraction process to vectorize fracture traces in an au-
tomated manner. The complex shearlet transform was intro-
duced by Reisenhofer (2014) and King et al. (2015) and pre-
viously applied to problems such as detecting coastlines from
synthetic aperture radar (SAR) images (King et al., 2015) and
propagating flame fronts from planar laser-induced fluores-
cence (PLIF) images (Reisenhofer et al., 2016). We present
automatic fracture extraction results from drone images
of two carbonate outcrops (Parmelan, France and Brejões,
Brazil) and station-scale images of igneous dyke swarms.

2 Background

2.1 Review of automated and semi-automated fracture
detection approaches

Rapid digitization of geological features from photogramme-
try is challenging owing to issues like spatially varying im-
age resolution, inadequate exposure, the presence of shadows
due to the effects of topography on illumination conditions,
and chromatic variations in essential features. False posi-
tives are non-geological features (such as trees, shrubbery,
and human-made structures) that are detected using semi-
automated or automated approaches (Vasuki et al., 2014).
The removal of false positives is time-consuming. On the
other hand, essential features that are not detected at all (re-
ferred to as false negatives) by an algorithm further com-
plicate the task of automated feature extraction. Automated
methods, in general, detect more features than what is present
in the image (Abdullah et al., 2013). In this section, we re-
view some approaches for automatic fracture detection based
on the class of algorithm used.

Automated fracture detection utilizing higher-dimensional
data such as point clouds, digital elevation models (DEMs)
and digital terrain models (DTMs) have an advantage in that
depth variations are captured and can be used to extract fea-
tures. Thiele et al. (2017a) presented an approach based on a
least cost function algorithm applicable to ortho-photographs
of jointed fracture sets and 3-D point cloud data. Masoud and
Koike (2017) introduced a software package to detect linea-
ments from composite grids derived from gravity, magnetic,
DEMs, and satellite imagery. Bonetto et al. (2015, 2017)
presented semi-automatic approaches that extract lineaments
from DTMs utilizing the curvature of geological features.
Hashim et al. (2013) presented an edge detection and line
linking method using enhanced thematic mapping (ETM).

Colorimetry of an image can be used to detect features.
By partitioning features in the image, e.g. matrix rock, as
lighter shades of grey and fractures as darker shades of grey,
fracture pixels may be extracted separately from matrix rock
using pixel values. Vasuki et al. (2017) developed an interac-
tive colour-based image segmentation tool using superpixels
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(Ren and Malik, 2003), which are groupings of pixels that
are perceptually similar.

Edge detection techniques identify points in images where
sharp changes in image intensity occur. Some of commonly
used edge detection techniques in image processing are
Canny, Sobel, Prewitt, Robert, Kuwahara, and Laplacian of
Gaussian filters. Alternatively, edges may be detected using
methods that are invariant to contrast and illumination in
images. Phase symmetry and phase congruency algorithms
(Kovesi, 1999, 2000) fall under this category. Phase symme-
try is an edge detection technique that is invariant to local sig-
nal strength. The method works identifies the axis of a feature
by isolating pixels symmetric along profiles that are sam-
pled from all orientations except parallel to the feature. The
axes of symmetry are regions where frequency components
either approach a maximum or minimum. The phase congru-
ency method is another edge detection method that detects
features by identifying points where Fourier components are
maximally in phase. This approach is also invariant to the
magnitude of the signal. The property of invariance enables
the identification of structures within the image even in the
presence of noise. Vasuki et al. (2014) utilized an edge detec-
tion algorithm using the phase congruency principle coupled
with a multi-stage linking algorithm for the detection of fault
maps.

The Hough transform (Duda and Hart, 1972) is another
technique that has been used to detect lineaments in im-
ages. The Hough transform identifies pixels in binary im-
ages that are likely to represent rock fractures using a vot-
ing procedure. Each pixel in a binary image is represented as
a sinusoidal curve in a 2-D parametric space (or a Hough
space). The voting procedure accumulates a vote for each
curve in the parametric space corresponding to each non-zero
pixel in the binary image. The curves with the highest votes
are selected as probable fractures since they correspond to
the largest number of non-zero pixels. Results by Callatay
(2016) using the Hough transform for fracture detection re-
port the following limitations. Firstly, the detection is limited
to a given fracture orientation set owing to the definition of
the Hough transform parameter space. Secondly, the issues
of false positive detection and discontinuities persisted. The
method is also limited by the fact that it needs a binarized
image to start.

The development of wavelet theory in the field of har-
monic analysis has led to applications in edge detection
(Daubechies, 1992; Heil et al., 2006). Mallat and Hwang
(1992) proposed wavelet-based approaches for edge detec-
tion. Wavelet-based methods differ from gradient-based edge
detection methods that search for local maxima of the abso-
lute value of the gradient. Felsberg and Sommer (2001) intro-
duced monogenic wavelets for the purpose. Tu et al. (2005)
considered the use of the magnitude response of complex
wavelet transforms. Wavelets, owing to their isotropic prop-
erties, cannot extract curve-like features due to the lack of
directional information (Labate et al., 2005). A number of

wavelet-based approaches that have been proposed to over-
come this lack of directional information such as curvelets
(Candès and Donoho, 2005), ridgelets (Candès and Guo,
2002), contourlets (Do and Vetterli, 2005), bandlets (Le Pen-
nec and Mallat, 2005), wedgelets (Donoho, 1999), shear-
lets (Guo et al., 2005), and band-limited shearlets (Yi et al.,
2009).

2.2 The complex shearlet transform

In images of fractured outcrops, the presence of discontin-
uous gaps due to rupture within the rock mass, which oc-
cur naturally and which maybe enlarged through weathering
processes, is commonly used as a defining criterion by inter-
preters to digitally trace and classify fractures within the rock
mass. Fractures may also be partially or completely sealed by
the presence of infilling material that maybe mineralogically
different from the adjacent rock material. In such a case, the
contrast in colour and texture of the infill material provides
an interpretative criterion for classification of these material
regions as fractures. The presence of such prominent discon-
tinuities within otherwise smooth regions of rock images can
be exploited by the complex shearlet transform to precisely
identify positions in the form of edges and ridges.

The basis of the complex shearlet transform applied to
fracture extraction from images emanates from wavelet the-
ory. Wavelets are rapidly decaying wavelike oscillations pos-
sessing a finite duration. Wavelet transforms are routinely
used in digital signal processing applications, which are of-
ten time–domain signals. They can also be applied to image
data which can be regarded as 2-D functions. Wavelet trans-
forms are not able to detect the directionality of structural
features in image data since they may only be dilated or trans-
lated. Shearlets that were introduced by Labate et al. (2005)
as a new class of multidimensional representation systems
overcame a major shortcoming of wavelets by enabling di-
lation, shear transformation, and translation operations. The
isotropic dilation of wavelets was replaced with anisotropic
dilation and shearing in the case of shearlets. These modi-
fications have resulted in shearlets possessing a number of
properties that make them better suited to handling sparse,
geometric features in 2-D image data compared to traditional
wavelets (Kutyniok and Labate, 2012).

The complex shearlet transform is a complex-valued gen-
eralization of the shearlet transform that was developed by
Labate et al. (2005) to handle geometric structures in 2-D
data. Reisenhofer (2014) and King et al. (2015) proposed the
idea of creating complex shearlets by modifying the shearlet
construction so that real parts of the generating function are
even-symmetric and imaginary parts of the generating func-
tion are odd-symmetric. They used the Hilbert transform to
convert even-symmetric functions into odd-symmetric ones
and vice versa. The complex shearlet measure for ridge and
edge detection implemented in Reisenhofer (2014), Reisen-
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hofer et al. (2016), and King et al. (2015) merged the ideas
of phase congruency (Kovesi, 1999) and complex shearlets.

The complex shearlet measure first introduced by Reisen-
hofer (2014) and improved by King et al. (2015) was used for
applications like coastline detection (King et al., 2015), flame
front detection (Reisenhofer et al., 2016), and feature extrac-
tion from terrestrial lidar inside tunnels (Bolkas et al., 2018).
Karbalaali et al. (2018) used the complex shearlet trans-
form for channel edge detection from synthetic and real seis-
mic slices. Reisenhofer et al. (2016) presented a comprehen-
sive comparison of complex shearlet-based feature detection
compared with conventional edge detectors such as Canny
(Canny, 1986), Sobel (Sobel and Feldman, 1973), phase con-
gruency (Kovesi, 1999), and another shearlet-based edge de-
tector (Yi et al., 2009). Bolkas et al. (2018) also made spe-
cific comparisons between the performance of Canny, Sobel,
and Prewitt (Prewitt, 1970) edge detection methods versus
space–frequency transform methods such as wavelets, con-
tourlets, and shearlets. A detailed overview of the complex
shearlet transform is provided in Appendix A for the inter-
ested reader.

3 Methods

3.1 The automatic detection process

The automated fracture trace detection method that we
present has five main steps (see Fig. 1). The first step of
the method uses the Complex Shearlet-Based Ridge and
Edge Measure (CoShREM), a MATLAB implementation by
Reisenhofer et al. (2016) that utilizes functions from Shear-
lab3D developed by Kutyniok et al. (2016) and Yet Another
Wavelet Toolbox (Jacques et al., 2011). The first step, namely
the ridge detection, is dependent on a number of input pa-
rameters tabulated in Tables 1 and 2. Equation (A27) gives
the expression for the ridge measure.

An optimal set of deterministic parameter values which
can extract features on all scales is not known a priori.
Therefore, we vary the input parameters corresponding to the
construction of the shearlet system and the ridge detection
parameters within user-defined ranges to compute multiple
ridge realizations. A ridge ensemble map is obtained by su-
perposing the ridge images and normalizing. A simple sig-
moid function is applied to the normalized ridge ensemble to
non-linearly scale and thereby isolate higher image intensi-
ties. A user-defined threshold is then applied to the intensity
values of this non-linearly scaled, normalized ridge ensemble
image to extract a highly probable, binarized ridge network.
The threshold is set by a visual comparison of the input im-
age with the extracted ridges. The range for each parameter
in Tables 1 and 2 is ascertained by first testing the effect of
variation in each parameter with respect to a chosen base case
image. This approach to automated detection captures fea-

Figure 1. The automated fracture trace detection workflow.

tures of multiple scales and highlights regions of uncertain
feature extraction within the image.

The second step is the segmentation of the detected ridges
using Otsu thresholding (Otsu, 1979). This operation re-
moves small, disconnected, and isolated ridge pixel clusters.
The third step is a skeletonization procedure where clusters
of pixels representing the segmented ridges are thinned into
single pixel representations. For intersecting fractures, the
skeletonization procedure preserves the topology of the frac-
ture network by recognizing and splitting the frame at the
branch point. This step ensures that in subsequent DFN rep-
resentation, there is no further effort expended on manually
connecting the detected segments.

The fourth step involves piecewise linear polyline fitting
to the skeletonized clusters. By default, our code attempts to
fit polylines rather than lines to the pixel clusters. Polyline
fitting retains geologically realistic veering and curvature of
fractures in the vectorized result. We use functions from the
Geom2D toolbox (Legland, 2019) for the skeletonizing and
polyline fitting. The fifth step is a line simplification proce-
dure applied to the piecewise linear polyline clusters. A large
number of polyline points would increase the size of vector-
ized files; hence, we use the Douglas–Peucker line simplifi-
cation algorithm (Douglas and Peucker, 1973) implemented
by Ahmadzadeh (2017). The algorithm simplifies a piece-
wise linear polyline into one which has fewer segments. The
number of polyline points assigned to each skeletonized clus-
ter is set constant in the code, but this may be modified to be
a linear function of the cluster size measured in pixels. If the
image is georeferenced or the image scale is known, the code

Solid Earth, 10, 2137–2166, 2019 www.solid-earth.net/10/2137/2019/
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Table 1. Shearlet system parameters.

Parameter Description

waveletEffSupp Length of the effective support in pixels of the wavelet
gaussianEffSupp Length of the effective support in pixels of the Gaussian filter
scalesPerOctave Number of intermediate scales for each octave
shearLevel Number of differently oriented shearlets on each scale
alpha Degree of anisotropy introduced via scaling
octaves Number of octaves spanned by the shearlet system

Table 2. Detection parameters.

Parameter Description

DetectionType Specification of detection measure (edge/ridge)
minContrast Specification of the level of contrast for edge/ridge detection
offset Scaling offset between the even- and odd-symmetric shearlets

georeferences the simplified polylines and writes to a vector-
ized shapefile format.

The DFN in the vectorized shapefile format may now
be used for any application that requires explicit fracture
network geometry. An example of a fractured Posidonia
shale micro CT (computed tomography) image slice from
Dwarkasing (2016) (see Fig. 2) illustrates the effects of each
of the steps involved.

3.2 Sensitivity analysis of parameters on extraction
results

Since the detection results may vary owing to different pa-
rameter combinations, we conducted a sensitivity analysis to
investigate the ridge extraction output with variation in pa-
rameter input. An example of a fractured image sample rep-
resenting Mesoproterozoic sandstone from the Tomkinson
Province, Northern Territory, Australia (Fig. 3a), is chosen
to study the effect of shearlet parameter variation. The image
dimensions are 1313×1311 pixels, and it has four prominent
fractures with two of them forming an intersection. A subtler
fracture is present towards the top left and a thick fracture
located at the bottom left of the image. A base case set of
parameters for constructing a shearlet system and for ridge
identification is set up in the table next to Fig. 3a. We vary all
parameters one by one with respect to this base case. Ridge
extraction using the base case shearlet system shows that the
major intersecting fracture system is identified; however, the
largest fracture is detected only partially and that, too, only at
the peripheries (see Fig. 3b). The subtle fracture is detected
but disconnected. A large amount of noise is also present.

The complex shearlet system is constructed by the tenso-
rial product of a Mexican hat wavelet and a Gaussian filter.
The first two parameters waveletEffSupp and gaussianEffSup
refer to the pixel widths over which the wavelet amplitudes
sharply change from zero. The even- and odd-symmetric el-

ements of the constructed shearlet system using the base
case parameters for the siliciclastic example are depicted in
Figs. 4i and ii. We chose to maintain a ratio of 2 between
waveletEffSupp and gaussianEffSup. The effect of increasing
the effective support on the complex shearlet system is shown
in Fig. 4xvii–xix. Figure 4xx and xxi indicate the effects of
large ratios between the wavelet effective support and Gaus-
sian support. The second parameter is the scalesperOctave,
which determines the number of intermediate scales per oc-
tave. An octave is the interval between two frequency peaks.
For example, we may consider a wavelet that is scaled by a
factor of 2. Physically, this means a stretching of the wavelet,
thereby decreasing the frequency. The base-2 logarithmic ra-
tio of the reduced frequency with respect to the original fre-
quency is the number of octaves by which the frequency has
reduced. We set the number of octaves as a constant value
of 3.5. This implies that there are seven scales for the com-
plex shearlet system as can be seen in Fig. 4iii–ix. The shear-
Level parameter indicates the discrete number of orientations
that the complex shearlet system can assume. The selected
value of 3 indicates that there are 23

+ 2 (10) orientations
possible for the complex shearlet system (see Fig. 4x–xvi)
and 2(23

+ 2) (or 20 shearlets). For large images and large
number of shearlets, computational effort is quite expensive.
The alpha parameter is the degree of anisotropy induced by
scaling with a null value of alpha maximizing the degree of
anisotropy. We vary alpha, shearLevel, and the scalesperOc-
tave, but the effects on the constructed complex shearlet sys-
tem are minimal as can be seen from Fig. 4xxii–xxx.

The effects of variation in the parameters on ridge extrac-
tion are depicted in Fig. 3c–p. Decreasing the value of the
support by half identifies finer features, but then the largest
fracture is completely missed (Fig. 3e). When the support is
doubled, the emphasis on larger features is more pronounced
(Fig. 3f). The effects of increasing and decreasing scalespe-
rOctave are depicted in Fig. 3g and h with a higher value re-
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Figure 2. Illustration of the steps involved in the automatic fracture extraction using a 40× 34 mm fractured shale core image. (a) CT scan
core image from Dwarkasing (2016). (b) Normalized ridge ensemble. (c) Segmentation applied to the ridge ensemble. (d) Skeletonization
applied to the segmented ridge. (e) Vectorized polylines fitted to the skeletonized clusters. (f) Effect of line simplification applied to a single
vectorized segment.

sulting in a finer ridge map. The effect of an increase and de-
crease in the number of shear levels on the final ridge map is
quite minimal as can be seen from Fig. 3i and j. The effect of
anisotropy parameter alpha is depicted in Fig. 3k and l with
minimal anisotropy resulting in a finer ridge map. The min-

Contrast parameter is a greyscale threshold (values from 0
to 255) applied to Eq. (A27) to extract ridges. A larger value
suppresses noisy features as can be seen from the compari-
son between Fig. 3m and n. The offset parameter is a scaling
offset between odd-symmetric and even-symmetric shearlets

Solid Earth, 10, 2137–2166, 2019 www.solid-earth.net/10/2137/2019/
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Figure 3. Effects of variation in ridge parameters on extracted ridges and the corresponding vectorizations using a fractured siliciclastic
example. A constant greyscale threshold is applied to the ridge map and all other parameters with respect to post-processing are kept
constant. (a) Fractured rock image (5cm× 5cm) and tabulated base case parameters. (b) Ridge maps and vectorized traces for base case.
(c) Effect of a higher Gaussian effect support compared to wavelet support. (d) Effect of a large difference in wavelet effective support with
respect to Gaussian support. (e–o) Lower bounds of parameters with respect to base case, corresponding ridge maps and traces. (f–p) Upper
bounds of parameters with respect to base case, corresponding ridge maps, and traces.

www.solid-earth.net/10/2137/2019/ Solid Earth, 10, 2137–2166, 2019
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Figure 4. Effects of parameter variation on the constructed complex shearlet system for the fractured siliciclastic example. (i) Even-
symmetric elements of the complex shearlet system constructed using the base case parameters in Fig. 3. Full system is 1313× 1318 pixels.
(ii) Odd-symmetric elements of the complex shearlet system using the base case parameters in Fig. 3, (iii)–(ix) depiction of seven scales,
(x)–(xvi) depiction of seven orientations (out of possible 10) for the odd-symmetric elements of the complex shearlet system, (xvii)–(xix) ef-
fect of wavelet effective support and Gaussian effective support on the even-symmetric elements of the complex shearlet system, (xx) effect
of Gaussian effective support double that of wavelet effective support, (xxi) effect of wavelet effective support very large than Gaussian
effective support, (xxii)–(xxiv) effect of scales per octave on the even-symmetric elements, (xxv)–(xxvii) effect of anisotropy parameter on
the even-symmetric elements, and (xxviii)–(xxx) effect of shear levels on the even-symmetric elements.

Solid Earth, 10, 2137–2166, 2019 www.solid-earth.net/10/2137/2019/
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Table 3. Shearlet system and detection parameters used to extract
ridges for the base case.

Base case parameters

waveletEffSupp 125
gaussianEffSup 63
scalesPerOctave 2
shearLevel 3
alpha 0.5
octaves 3.5
minContrast 10
detection negative ridges
even/odd offset 1

quantified in octaves. Reducing the value of this parameter
results in a coarser ridge map with enhanced connectivity
(Fig. 3o) compared to the larger value, which results in a finer
map (Fig. 3p).

From an interpreter’s point of view, three different scales
of fracturing need to be identified and false features also
need to be suppressed. From the sensitivity analysis, the pa-
rameters that are most important to generate high-probability
ridge maps are the wavelet supports (required to capture mul-
tiple scales of fracture), greyscale contrast (suppressing noise
and thereby false features), and even–odd offset (which sup-
presses ridge detachments). This example illustrates the ne-
cessity of computing a ridge ensemble instead of searching
for an ideal parameter combination.

3.3 Shearlet parameter selection

To decide upon the shearlet parameter space to generate mul-
tiple ridge realizations, we chose one sample image (see
Fig. 5a). Base case parameters are chosen based on recom-
mendations underlined in Reisenhofer et al. (2016) for shear-
let construction and ridge detection, and these are tabulated
in Table 3. The use of these results in the overlay depicted
in Fig. 5b. As can be observed from visual inspection of the
overlay of the detected ridges over the original image, the au-
tomatic method can extract a large number of fractures. How-
ever, there are still some false positives (features detected on
the trees and inside the large karstic cavities) and false nega-
tives (undetected small-scale fractures).

To select the parameter ranges, we vary parameters with
respect to the base case ridge image, thereby generating mul-
tiple ridge images. We use the structural similarity measure
(Wang et al., 2004) to quantify the difference between the
base case ridge image and other ridge images. Structural sim-
ilarity (SSIM) is a measure commonly used in image quality
assessment that returns one value as a measure of similar-
ity between two images, where one image is the reference
image. The SSIM is calculated for each ridge realization im-
age corresponding to each parameter with respect to the base
case ridge image. The SSIM for variation in scaling offset,

anisotropy scaling α, Mexican hat wavelet support, Gaussian
filter support scales, minimum contrast, scales per octave,
and number of shear levels are depicted in Fig. A3 accord-
ing to the range of parameters in Table 4. From the analysis
of the effects of parameters, we decided to vary the shearlet
construction parameters so that we have 70 complex shearlet
systems (see Table A1 for the parameters used to construct
the 70 complex shearlet systems).

The total number of stochastic runs for the ridge detection
is the number of combinations of shearlet systems and ridge
specification parameters. Using such an approach, a proba-
bility map of detected features may be obtained, based on
which cut-off thresholds can be defined to remove false pos-
itives. The result of such a stochastic run with 1050 realiza-
tions is depicted in Fig. 5. From this result, the utility of the
method is evident; the features that are obscured by shadows
and the shrubbery have a low-strength signal which can then
be filtered away, thus reducing the number of false positives.
Another advantage is that both large-scale and fine features
are captured, which may not be possible using a single set of
shearlet parameters.

4 Results

4.1 Trace extraction results from Parmelan, France

4.1.1 Geological setting of the Parmelan plateau

We tested the automated fracture extraction method on an ex-
ample from a carbonate outcrop from the Parmelan plateau in
the Bornes Massif, France. The Bornes Massif is a northern
subalpine chain in the western French Alps. The method was
applied to a photogrammetric orthomosaic derived from a 3-
D outcrop model. The outcrop model was built from source
photos acquired using a DJI Phantom 4 UAV. The image res-
olution is 18.6 mm per pixel. Processing of the drone images
and generating the orthomosaic was done using AgiSoft Pho-
toScan Professional (Version 1.2.6) software. The Parmelan
anticline in France (see Fig. 6) is situated in the frontal part
of the Bornes Massif and consists of Upper Jurassic to Creta-
ceous rocks of the European passive margin (Huggenberger
and Wildi, 1991; Gidon, 1996, 1998; Berio et al., 2018).

This NE–SW trending anticline consists of a wide, flat
crestal plateau bounded by steeply dipping limbs. Carbon-
ates form the roof of a kilometre-scale box fold formed dur-
ing the Alpine orogeny (Bellahsen et al., 2014). On the cre-
stal plateau, a 1.7 km by 2.3 km large pavement of flat-lying
shallow-water carbonates is exceptionally well exposed. The
Parmelan outcrop is a good example of fracture patterns
formed in a fold-and-thrust setting. We applied the automatic
fracture detection technique on an orthomosaic that has been
stitched together from drone photogrammetry over six differ-
ent drone missions over the Parmelan. The combined extent
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Figure 5. Effect of multiple ridge realizations on a sample image from Parmelan anticline, France (Prabhakaran et al., 2019b). (a) Base case
image used for testing the effect of multiple ridge realizations. (b) Ridge map obtained using the base case shearlet parameters in Table 3.
(c) Overlay of ridges obtained using base case shearlet parameters over the test image. (d) Normalized ridge intensity ensemble map obtained
after 1050 ridge realizations using the parameters in Table 4. (e) Threshold ridge intensity map that enhances features. (f) Overlay of ridges
using the threshold ridge intensities over the test image.

Table 4. Ensemble for parameter variation.

Parameter Values

waveletEffSupp Original image size in pixels divided by 5, 8, 10, 12, and 15
gaussianEffSupp Original image size in pixels divided by 5, 8, 10, 12, and 15
scalesPerOctave 1, 2, 3, and 4
shearLevel 2, 3, and 4
alpha 0, 0.25, 0.5, 0.75, 1
minContrast 1, 5, 10, 15, 20
even/odd offset 0.001, 0.01, 0.1, 1, 2

of the six orthomosaics is depicted in Fig. 7a, and the areal
extent of each orthomosaic is depicted in Fig. 7b.

4.1.2 Automatic extraction results on the Parmelan
orthomosaic

Considering memory requirements and for faster computa-
tion, the image domain was divided into georeferenced sub-
tiles using the Grid Splitter plugin in QGIS software. Visual
filtering was carried out to remove tiles that did not have ex-

posed rock, had a large degree of shrubbery, and which were
at the orthomosaic edges where image resolution is poor. A
total of 1000 tiles were chosen for the automated interpre-
tation process. The areal extent of the orthomosaic covered
0.589 km2, and this region is depicted in Fig. 7. The region
covered by the tiles amounts to 0.379 km2, and this is shown
as an overlay of the selected tiles in Fig. 8a. Structural mea-
surements were recorded at four small-scale stations (around
2–5 m2 per station) depicted in Fig. 8c–f.
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Figure 6. Location of the Parmelan plateau in France within the
Bornes Massif depicting drone flight base points for six drone
missions. This map was generated using satellite imagery ob-
tained from ESRI World Imagery (https://services.arcgisonline.
com/ArcGIS/rest/services/World_Imagery/MapServer, last access:
12 February 2019) and modified using ArcGIS 10.3, ArcMap 10.3
software by ESRI (http://www.esri.com/, last access: 12 February
2019). Service layer credits: ESRI, DigitalGlobe, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN,
and the GIS User Community.

An ensemble of 1050 ridges was computed using a set
of shearlet parameters. A threshold for the ridge intensity
was chosen to filter out the false positives. The threshold
was determined by a visual examination of the overlay of
detected ridges over the original images. The subsequent
post-processing steps yielded features in each tile. These
were georeferenced and stitched back into a single vectorized
file representation. Around 3 million features were extracted
from the Parmelan orthomosaic. The P21 fracture intensity
was computed using the box-counting method by dividing
the tile into a 25× 25 (pixels) regular grid. The P21 frac-
ture intensity plot highlights the spatial variation in fractur-
ing over the Parmelan plateau (see Fig. 8b). The vectorized

fracture shape files along with the Parmelan basemap are pre-
sented as a public dataset (see Prabhakaran et al., 2019a).

4.1.3 Comparison with manual interpretation and
structural observations

To compare results of the automated approach to a manual in-
terpretation, we chose a subregion within the Parmelan ortho-
mosaic. The selected subregion depicted in Fig. 9a consists
of a 24m×24m tile of the Parmelan orthomosaic. The image
indicates fractures that seem to be isolated, without a well-
connected topology, and which are predominantly aligned
along a NW–SE direction. The fracturing intensity is vari-
able across the tile. The contrast between fractures and the
host rock fabric is intensified by the karstification of the frac-
tures, which can be attributed to weathering and dissolution.
Figure 9b depicts an overlay of the automatically interpreted
fractures overlain over the original tile. A total of 2910 fea-
tures was extracted in this tile. This example highlights some
of the technical challenges associated with automated frac-
ture trace detection. Shrubbery is present in the image, which
obscures certain relevant features. The north-western corner
of the image is blurred since it forms the extent of the ortho-
mosaic.

The image also depicts open cavities or blobs, which could
be the result of localized weathering. The effect of the cavi-
ties on the feature extraction is that only an edge is detected.
Overall the fracture extraction efficiency is quite dependent
on the resolution and quality of images. In the case of the
Parmelan data acquisition, the UAV was flown at an altitude
of 50–70 m above the pavement; therefore, features such as
closed veins and slightly open fractures are below the resolu-
tion of the drone camera. A higher image resolution is neces-
sary to extract such features. In our specific case study, good
lighting and exposure during the UAV flight mission pre-
vented shadows from obscuring the imagery. Figure 9c de-
picts a manually performed interpretation at a zoom level of
1 : 2000 on the raster image with a total of 341 features. P21
fracture intensity comparisons of both automatic and manual
traces are shown in Fig. 9d and e. The difference between the
automatic and manual interpretation highlights the inclina-
tion of the interpreter to neglect small-scale features. Based
on geological experience and prior knowledge of the field
area, there is a tendency to interpret and link together dis-
connected features from the original raster image. The clos-
est small-scale station to the sub-tile depicted in Fig. 9a is
station 2. There is agreement between the rose plots of sta-
tion 2 (see Fig. 8c) and the interpretations (Fig. 9e and f).
The observed fractures in both cases are predominantly sub-
vertical.

4.1.4 Application to mineralized fractures

We now showcase an example of a close-range image con-
taining mineralized veins that are invisible to photogramme-
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Figure 7. Drone photogrammetry coverage area from the Parmelan (a) Region within the Parmelan plateau highlighting the areal extent
of the drone photogrammetric orthomosaics which are projected over the base map. Manually traced large-scale faults are depicted in red.
This map was generated using satellite imagery obtained from ESRI World Imagery (https://services.arcgisonline.com/ArcGIS/rest/services/
World_Imagery/MapServer, last access: 12 February 2019) and modified using ArcGIS 10.3 and ArcMap 10.3 software by ESRI (http:
//www.esri.com/, last access: 12 February 2019). Service layer credits: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community. (b) Spatial extent of the drone coverage of each of the six UAV flight
missions in different colours.

try at altitudes of 40–70 m. The resolution of this image is
0.18 mm per pixel and was taken using a handheld DSLR
camera. In this high-resolution image, the fracture infill has
similar colour to the host rock as can be seen in Fig. 10a.
A manual interpretation of the veins (at a zoom of 1 : 750)
is depicted in Fig. 10b. Using a well-tuned set of parame-
ters with reduced wavelet effective supports, it is possible
to extract the much thinner and subtle features, as depicted
in Fig. 10c. It can be observed from a comparison between
Fig. 10b and c that a large number of false features are also
highlighted alongside the features of interest. The main con-
tributors to the extraction of these non-fracture features are
the natural rugosity of the rock face, the presence of pebbles,
pockmarks, and erosion features. The arrangement of these
artefacts displays a very different pattern: small lines with
random direction compared to the fractures which are con-

sistently oriented and quite continuous. The veins are also
of different thicknesses, with a few veins anastomosing and
some branching in a horsetail manner. Some of the thicker
veins also exhibit a microstructure within the mineral infill.
Further tuning of parameters in order to capture all the veins
while also suppressing false features is quite challenging, and
hence we do not explore this in further detail. Despite the
noise, the automated method is not limited to capturing only
open fractures but can also extract closed fractures.

4.2 Trace extraction results from Brejões, Brazil

4.2.1 Geological setting of the Brejões pavement

The second case study for the automated extraction method
is a carbonate outcrop from the Irecê Basin, central Bahia,
Brazil (see Fig. 11a, b). The Irecê Basin is located within
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Figure 8. Trace extraction results from the Parmelan. (a) Selected tiles from the orthomosaic (Prabhakaran et al., 2019b) spatial extent are
highlighted. Points where structural measurements were collected (stations) are depicted using red squares. The region where there is a
comparison between manual and automatic interpretations is highlighted by the green square. (b) Spatial variation in the fracture intensity
depicted as a P21 plot computed using the box counting method. (d) Rose and stereoplot of Station 1. (e) Rose and stereoplot of Station 2.
(e) Rose and stereoplot of Station 3. (f) Rose and stereoplot of Station 4. The Parmelan dataset (Prabhakaran et al., 2019b) is available under
a CC-BY-NC-SA license.

the northern region of the São Francisco Craton. The Bre-
jões pavement study area is within the Irecê Basin and con-
sists of Neoproterozoic platform carbonates of the Salitre
Formation (750–650 Ma). The Neoproterozoic cover was af-
fected by the Brasiliano Orogeny (750–540 Ma) in two sepa-
rate folding events resulting in fold belts around edges of the
São Francisco Craton (Ennes-Silva et al., 2016). The Brejões
pavement UAV imagery that we used for our analysis was
acquired by Boersma et al. (2019). Structural measurements
from Boersma et al. (2019) are shown in Fig. 11c. The ortho-
mosaic covers an area of 0.81 km2 and consists of fractured,
black oolitic limestones that correspond to Unit A1 of the
Salitre stratigraphy (Guimarães et al., 2011). The resolution
of the Brejões orthomosaic is 20.3 mm per pixel.

4.2.2 Automatic extraction results on the Brejões
orthomosaic

The Brejões orthomosaic is split into 222 tiles for the anal-
ysis, and this region is shown in Fig. 11d. The Brejões ex-

ample has a different fracturing style than the Parmelan and
consists of an intricate pattern of multi-scale conjugate frac-
tures. The shearlet combinations utilized in the case of the
Parmelan were insufficient to capture this variation in scales.
Specifically, in the Brejões case, the large-scale features were
not captured. A visual inspection of the ridges was necessary
to identify the shearlet combinations that amplified the large-
scale features. The contribution of these ridges was increased
(factor of 8) in the ridge ensemble to highlight these large de-
formation features. Figure 11e depicts the P21 fracturing in-
tensity computed using the box-counting method by dividing
each tile into a 25× 25 (pixel) regular grid. The vectorized
fracture shape files along with the Brejões basemap are pre-
sented as a public dataset (see Prabhakaran et al., 2019b).

4.2.3 Comparison with manual interpretation and
structural observations

The automatically extracted features from the Brejões image
data were compared with manual interpretations performed
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Figure 9. Comparison between automatic and manual interpretation on a tile from the Parmelan. (a) Tile from the Parmelan orthomosaic
(Prabhakaran et al., 2019b) depicting intense fracturing with an organization along the NW–SE corridors. (b) Overlay of fractures traced
using the automatic detection method. (c) Overlay of fractures manually traced for the tile at a zoom of 1 : 2000. (d) P21 Fracture intensity
for automatic extracted fractures. (e) P21 Fracture intensity for manually extracted fractures. (f) Length-weighted rose plot and cumulative
trace length frequency distribution for the automated result. (g) Length-weighted rose plot and cumulative trace length frequency distribution
for the manual result. The Parmelan dataset (Prabhakaran et al., 2019b) is available under a CC-BY-NC-SA license.

by and obtained from Boersma et al. (2019) at seven sta-
tions. The automatic interpretations were trimmed to the pe-
ripheries of the manual interpretations for a fair compari-
son between both vectorizations. The location of these sta-
tions alongside the automatic versus manual interpretations
is shown in Fig. 12. A comparison of the rose plots and cu-
mulative length distributions of the manual and automatic in-
terpretations is depicted in Fig. 13. A few observations can

be made from the comparison. Firstly, similar to the Parme-
lan case, the interpreter picks a lower number of features.
Secondly, there is a tendency to extend fractures across im-
age regions where there is no real evidence of rock failure.
Thirdly, there is an inconsistency in specifying the connect-
ing topologies between the interpreted traces.

In some stations (see Mid no. 2, Mid no. 3, and North in
Fig. 12), the automated interpretation suffers from a large
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Figure 10. Extension of the automated method to extract mineralized fractures. (a) Image from Parmelan depicting mineralized fractures.
(b) Manual interpretation of mineralized fractures. (c) Ridge ensemble.

Figure 11. Trace extraction results from the Brejões outcrop. (a) Bahia state in NE Brazil. (b) Location of the Brejões outcrop in the
state of Bahia. (c) Structural measurements from Brejões outcrop, adapted from Boersma et al. (2019). (d) Selected tiles from the Brejões
orthomosaic (Prabhakaran et al., 2019a) for the automated extraction. (e) Spatial variation in the fracture intensity depicted as a P21 plot
computed using the box counting method. Maps depicting administrative boundaries of Brazil and Bahia state was modified from free vector
spatial data downloadable at DIVA-GIS (https://www.diva-gis.org/Data, last access: 14 April 2019). The Brejões dataset (Prabhakaran et al.,
2019a) is available under a CC-BY-NC-SA license.

number of false positives. A close examination indicates that
the presence of shadows and eroded, undulating topography
of the rocks is the main reasons for these false positives. In
the Brejões case, the drone was flown at around 10:00, and
hence the exposure of the outcrop face was not optimal. The
inclined illumination enhances shadows on the rugged topog-
raphy, which are then seen as false positives in the automatic

interpretation. False positives due to shrubbery are minimal
in the station regions considered.

4.3 Benchmarking with data from Thiele et al. (2017)

We further tested the automated trace detection on a recently
published case study from Thiele et al. (2017a). The im-
ages selected are orthophotographs of two 10 m×10 m ar-
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Figure 12. Comparison between manual (left) and automatic (right) interpretation on seven stations within the Brejões outcrop (Prabhakaran
et al., 2019a). The manual interpretations were obtained from Boersma et al. (2019). The Brejões dataset (Prabhakaran et al., 2019a) is
available under a CC-BY-NC-SA license.

eas from Bingie Bingie Point, New South Wales, Australia
(see Figs. 14a and 15a). The exposed rocks are Cretaceous to
Paleogene dykes, intruding diorites, and tonalities cross-cut
by joint sets (Thiele et al., 2017a). The images are complex
as they contain both open and closed fractures of different
scales, distributed between multiple lithological layers. The
images also contain water, shadows, and debris, which makes
it even more challenging. We chose this dataset to bench-
mark the quality of our results with those presented using the
semi-automatic cost-function-based trace mapping approach
of Thiele et al. (2017a).

The variation in fracture scales implied that similar to Bre-
jões, a different set of shearlet combinations was needed.
We generated 2700 ridge realizations which were used to
construct a normalized ridge ensemble map for both im-
ages (see Figs. 14b and 15b). A simple, non-linear sigmoid
function was applied to the normalized ridge intensity to en-
hance ridge strength (see Figs. 14c and 15c) and a thresh-
old was chosen based on visual comparison with the source
image to yield highly probable, binarized ridge images (see
Figs. 14d and 15.d). The subsequent workflow steps, as de-
scribed in Sect. 3.1, were followed to obtain vectorized traces

(see Figs. 14e and 15e). The vectorized traces were used to
render assisted interpretations depicted in Figs. 14f and 15f
which are comparable in quality to the assisted interpretation
of Thiele et al. (2017a).

In the published results of Thiele et al. (2017a), assisted in-
terpretations of both areas are achieved in 37 and 34 min. We
can report better performances of 27 and 32 min for the same
areas. The time does not include computing of the ridge real-
izations. Once the high-probability trace map was generated,
the subsequent steps of the automated detection workflow
took around 3 min. The remainder of the time was used to
perfect the assisted interpretation. The post-processing tasks
performed in this second step were the removal of false pos-
itives owing to shadows, water, and debris and the joining
of segments which were disjointed due to poor resolution
within the image. Although we have performed a benchmark-
ing exercise with the data from Thiele et al. (2017a) and also
compared our results with manual interpretation, it would be
useful to compare them with more manual interpretations to
further validate the accuracy of the technique. Such compari-
son, however, can be done only on networks which are either
limited in their spatial extent or in the number of features in-
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Figure 13. Comparison of trace length-weighted rose plots and cumulative trace length distributions for automatic and manual trace inter-
pretations from Brejões outcrop stations. The Brejões dataset (Prabhakaran et al., 2019a) is available under a CC-BY-NC-SA license.
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Figure 14. Comparison of benchmark image 1. (a) Bingie Bingie area 1 from Thiele et al. (2017a). This image is available for download
at https://doi.org/10.4225/03/5981b31091af9 (Thiele et al., 2017b) under a CC-BY-4.0 license. (b) Normalized ridge map using complex
shearlet automatic extraction. (c) Threshold applied to the normalized ridges. (d) Binarized ridges map. (e) Vectorized automatic traces.
(f) Length-weighted rose plot of the automatic interpreted traces. (g) Cumulative frequency plot of the automatic interpreted traces. (h) As-
sisted cleaned-up trace map for area 1. (i) Length-weighted rose plot of the assisted traces. (j) Cumulative frequency plot of the assisted
traces. (k) Assisted trace interpretation modified from Thiele et al. (2017a) for comparison.
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Figure 15. Comparison of benchmark image 2 (a) Bingie Bingie area 2 from Thiele et al. (2017a). This image is available for download
at https://doi.org/10.4225/03/5981b31091af9 (Thiele et al., 2017b) under a CC-BY-4.0 license. (b) Normalized ridge map using complex
shearlet automatic extraction. (c) Threshold applied to the normalized ridges. (d) Binarized ridges map. (e) Vectorized automatic traces.
(f) Length-weighted rose plot of the automatic interpreted traces. (g) Cumulative frequency plot of the automatic interpreted traces. (h) As-
sisted cleaned-up trace map for area 2. (i) Length-weighted rose plot of the assisted traces. (j) Cumulative frequency plot of the assisted
traces. (k) Assisted trace interpretation modified from Thiele et al. (2017a) for comparison.
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terpreted. For large orthomosaics, a benchmarking exercise
can be challenging as few manually rendered datasets are
comparable in network size.

5 Discussion

The extraction of fracture traces from photogrammetric data
is a necessary processing step to construct DFN representa-
tions. DFNs created using fracture patterns that are directly
extracted from rock images are advantageous as they hon-
our the spatial architecture of fracture networks. Automated
extraction methods reduce the human component in data pro-
cessing, and we have achieved this using the complex shear-
let transform ridge detection method accompanied by post-
processing steps. The complex shearlet method can detect
both edges as well as ridges in fractured rock images. We find
that the ridge measure works very well for the extraction of
fractures, and we use the ridge measure in all our case stud-
ies. Although the method performs very well and can extract
much more traces than is possible manually while reducing
interpreter bias, there are some issues that need to be men-
tioned. In this section, we discuss the validity and limitations
of the technique, areas where there is scope for further devel-
opment, and also describe some potential extended applica-
tions of the method.

5.1 Validity and limitations

– Detection of mineralized features. The method works
well when the features of interest are barren and promi-
nent. When fractures are closed and filled, then they are
generally harder to detect and require high-resolution
images (< 1 mm per pixel), which can be recorded only
at very close ranges at very low UAV flight altitudes.
Recent outcrop studies (Ukar et al., 2019) indicate that
many of the barren features in outcrop are absent within
the same subsurface lithological unit while maintaining
a good correspondence between mineralized features in
both outcrop and subsurface. When mineral fill has a
marked colour contrast with respect to the host rock (as
in vein data published recently by Meng et al., 2019),
then superpixel segmentation algorithms can be suc-
cessful (Vasuki et al., 2017). In the case of poor contrast,
the complex shearlet transform would require a great
deal of manual tuning of detection parameters to extract
reliable results. At such close ranges, as is needed for
veins extraction, it is also likely that many more noisy
features unrelated to fracturing would arise.

Since the mineral fill of fractures can provide a clearer
picture of the evolution, timing, and stress history of
fractures, identifying them on an outcrop scale is im-
portant. This is doubly significant, when the goal is to
directly extrapolate fracture patterns from a particular
outcropping to the same subsurface target. In such a

case, close range UAV-mounted hyperspectral data ac-
quisition would be better suited than conventional imag-
ing and image processing methods. With hyperspectral
imaging, data are collected in near-continuous spectral
bands. The spectral response of minerals constituting
the rock is owed to atomic molecular-level processes
triggered on interaction with a light source (active or
passive) and this may be utilized to identify mineral
composition. Since the mineral fill of veins is likely to
have a different spectral response from the mineralogy
of the host rock, this variation may be used to isolate the
pixels that correspond to veins.
A recent review on close range hyperspectral imag-
ing for mineral identification identifies various previous
studies performed for specific minerals (Krupnik and
Khan, 2019). It would be interesting to observe, iden-
tify, and distinguish between mineralized sequences
based on the differences in spectral response of the frac-
ture infill material. Since hyperspectral data are much
more voluminous and with significantly more complex
image processing than conventional photogrammetry,
such an analysis could be confined to selected regions
within the outcrop. In conjunction with conventional
UAV photogrammetry that covers a larger spatial area,
laboratory-based geochemical studies, and outcrop ob-
servations (scanline sampling, abutting relations, etc.),
a more detailed fracture characterization may be con-
ducted.

– Detection of large cavities and false features. Both
the Parmelan and Brejões pavements exhibit karstifica-
tion, with the Parmelan containing many more collapsed
karstic regions. The presence of such low-aspect ratio
discontinuities is quite rare in siliciclastic and volcanic
outcrops but can prove problematic in the application of
the method in carbonate outcrops where karstification
is severe. Both the ridge and edge measures would fail
in identifying such blobs or would, at best, extract the
periphery of the cavity. In recent work by Reisenhofer
and King (2019), blob detection measures have been de-
veloped within the shearlet framework and could poten-
tially solve this issue.
Another issue is the effect of undulating topography and
shrubbery in generating false positives. False positives
generally appear when there is shrubbery, shadows, very
rugged terrain, and non-fracture bedding planes. In the
case of the Parmelan, the use of multiple ridges was
successful in suppressing the false positives owing to
shrubbery. However, in Brejões, false positives due to
underbrush were more difficult to suppress because they
shared the same scale as that of the fractures. In Brejões,
shrubbery was also present within some of the wider
fractures causing false negatives. In such cases, manual
interference is necessary to either mask the regions of
shrubbery before the automatic extraction or to remove
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(or connect) the vectorized traces after the automated
extraction. Additionally, carbonate outcrops are prone
to widespread erosion owing to exposure to meteoric
water from precipitation cycles and air corrosion. Geo-
morphological features owing to these erosive processes
may also play a role in the generation of false positives.

– Parameter selection. A significant difference in fracture
scales within an image of interest can prove problem-
atic for the method. In such a case, a vast number of
ridge detection runs and an associated increase in com-
putational time is needed to construct a ridge ensem-
ble that takes into account all scales of discontinuities
and yields a satisfactory result. When such variation is
localized, the image could be segmented into regions
that correspond to varying fracture intensities and pro-
cessed separately. This may be difficult to assess a priori
and in such cases would require trial runs. In the Bre-
jões outcrop example and the close range Parmelan vein
example, this difference in fracture scales was ubiqui-
tous throughout the exposure and more pronounced than
the Parmelan outcrop. Using a visual comparison with
the original image, the effect of ridges resulting from
certain shearlet parameter combinations was enhanced,
so that the ridge ensemble is improved. In Brejões, it
was the large-scale features that needed to be strength-
ened, while in the case of the Parmelan vein example,
the smaller features needed sharpening. Since parame-
ter selection is still done manually, a more comprehen-
sive way of arriving at the optimal shearlet combination
is desirable. An algorithm that automatically optimizes
for shearlet parameters corresponding to each individ-
ual scale of fracture is worthy of attention.

– Artificial fragmentation of traces. Manual fracture inter-
pretation from images often involves the step of classi-
fying fracture traces into separate sets based on ground
truth observations or with respect to fracture strike. The
automated method described here in its current form can
only extract traces and cannot distinguish between or
classify traces as belonging to separate sets. When frac-
tures intersect each other, the issue of artificial fragmen-
tation of seemingly continuous traces arises. If an im-
age consists of two orthogonally intersecting fractures,
the automated method would result in four traces inter-
secting at a single branch point, even though a manual
interpretation would only identify two fracture traces
belonging to two different geometric sets. This type of
fragmentation would result in different length distribu-
tions as observed in (insert figures that compare auto-
matic and manual interpretations). This kind of frag-
mentation is not an issue if such an outcrop DFN is used
for geometric input for a flow or geomechanics simu-
lation. This is because the process of meshing models
with explicitly specified DFN geometry would, in any
case, require the specification of all intersection points

(or forced fragmentation of long intersecting fractures).
Therefore, the practitioner must exercise caution when
using cumulative length distributions derived from out-
crop DFNs that are automatically extracted.

A single fracture could also be fragmented without be-
ing cut by other intersecting fractures. This may happen
in the case of false negatives (due to shadows falling
over part of a fracture, debris, or shrubbery within an
open fracture and when fracture opening is very thin at
some regions along the fracture length) that cause frag-
mentation of fractures with gaps in between them. This
kind of fragmentation affects the topology of the net-
work in addition to depressing the height cumulative
length distribution. It maybe noted that the specifica-
tion of fracture endpoints manually is also fraught with
bias (Peacock et al., 2019). A solution would be to use a
range of linking thresholds to connect traces and study
the effects of threshold values on network topology and
length distribution.

5.2 Recommendations for future work

– Link between extractable P21, drone flying altitude, and
camera resolution. From the P21 analysis on the Parme-
lan and the Brejões automatically extracted fractures,
the maximum value P21 was around 8 m−1. The same
drone model was used in both cases (DJI Phantom 4),
and the flying altitude was also similar (between 40 and
70 m). Although such a conjecture needs further verifi-
cation, there could be a relation between the resolution
of imagery and maximum extractable fracture intensity.
Often flight altitudes are chosen by drone pilots de-
pending upon considerations such as local topography,
weather conditions, and the presence of impediments
(such as trees, electricity poles, and telecommunication
towers). A detailed analysis of the relation between fly-
ing altitude (and consequently image resolution) and ex-
tracted fracture intensity could provide drone pilots with
insights and guidelines for UAV-based outcrop analysis.
The ideal flying resolution to identify features of interest
may be ascertained by carrying out a series of acquisi-
tions at a location where ground truth is known.

– Generating data for fractured reservoir modelling
workflows. Fractured reservoir characterization work-
flows in the oil and gas industry have traditionally used
stochastic techniques that attempt to extrapolate aver-
aged fracture statistics (either from borehole imagery,
core data, or outcrop analysis) to reservoir volumes.
The use of multiple point statistics (MPS) for frac-
ture network generation was highlighted by Bruna et al.
(2019) as an alternative approach to DFN modelling.
MPS uses training images of realistic fracture networks
to learn patterns and then generate non-stationary frac-
tured reservoir models. Corrected for false positives and
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noise, the automated method can produce accurate, ge-
ologically realistic, and unbiased training images that
can feed into the MPS workflow. Since our method
can extract large-scale fracture networks (millions of
features from sub-square kilometre regions), it is also
well suited to providing training data for deep-learning
workflows. Recently, the use of generative adversarial
networks (GANs) for geological modelling at the reser-
voir scale was proposed by Dupont et al. (2018), Zhang
et al. (2019) as an alternative to conventional geostatis-
tics, MPS, and object-based modelling. GANs form a
subset of deep-learning architectures that is used for
generative modelling (Goodfellow et al., 2014). GANs
that are trained on realistic data can then generate geo-
logically realistic, non-stationary models.

– Deep-learning methods for trace extraction. Deep-
learning methods have revolutionized computer vision
applications. Various neural architectures have docu-
mented high degrees of accuracy in machine vision
tasks such as the overall image classification, identifi-
cation and classification of objects within an image im-
ages, localization of objects, extraction of regions of
interest (semantic segmentation), and extraction of re-
gions corresponding to individual objects (instance seg-
mentation). The problem of fracture trace extraction
falls within the problem category of region extraction
of individual objects and hence may be attempted us-
ing techniques such as mask region-based convolutional
neural networks (R-CNNs) (He et al., 2017). Deep-
learning methods, in general, require large amounts of
labelled data to train. In the case of a mask R-CNN,
the library of training images must contain marked re-
gions (or overlays) indicating pixels of interest that cor-
respond to individual fractures. The automated method
described in this paper can be used to rapidly generate
a large number of overlay images that can be used as
training data for mask R-CNN architectures.

6 Conclusions

This paper presents a method to automatically detect and dig-
itize fracture traces from images of rock fractures using the
complex shearlet transform. The technique replaces the task
of manually interpreting fractures, which is time-consuming,
prone to interpreter bias, and suffers from a lack of repeata-
bility. The case studies that are presented highlight the utility
of the complex shearlet-based measure for automatically de-
tecting fracture traces from 2-D images. The automatic trace
detection method combines the complex shearlet ridge mea-
sure with a series of post-processing steps that include image
segmentation, skeletonization, polyline fitting, and polyline
simplification. We tested the method at different scales of
rock displacement, at outcrop scale (∼ 102 m), and at station
scale (< 10 m), using two orthomosaics reconstructed from

drone photogrammetry and two rock pavement images. We
have considered carbonate and igneous rock lithologies in the
case studies. Using the method, we have extracted millions of
2-D features from outcrop-scale drone orthophotos. The pro-
cessing time of the technique depends upon the intensity of
fracturing and the complexity of the fracture networks con-
tained within the image. The automatic trace extraction re-
sults are quantitatively compared with manually interpreted
fractures on selected subsamples of the image domain us-
ing fracture trace density metrics. The automated technique
is capable of extracting a much larger number of features,
with a marked reduction in bias. The method outlined in this
paper greatly simplifies the process of generating determin-
istic, outcrop-based DFNs. The automatically extracted frac-
ture patterns can be used by structural geologists to link de-
formation features to tectonic history and by geo-modellers
in subsurface NFR modelling.
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Appendix A: Overview of the complex shearlet
transform

A1 The continuous shearlet system

A shearlet-generating function consists of an anisotropic
scaling matrix and a shear matrix. Let the shearlet-generating
function be

ψ ∈ L2
(
R2
)
. (A1)

The admissibility criterion for the shearlet-generating
function is

∫
R2

∣∣∣ψ̂(ξ1ξ2)

∣∣∣
ξ1

2

2

dξ2dξ1 <∞, (A2)

where ψ̂ is the 2-D Fourier transform of ψ .
A shearlet satisfying Eq. (A2) is an admissible shearlet

or a continuous shearlet (Kutyniok and Labate, 2012). The
admissibility condition implies that a reconstruction formula
exists for the associated continuous shearlet transform. In or-
der to achieve an optimally sparse approximation of an im-
age that possesses anisotropic singularities, the analysing el-
ements must consist of waveforms that range over several
scales, orientations, and locations with the ability to become
very elongated. To this end, a combination of a scaling op-
erator to generate elements at different scales, an orthogonal
operator to change orientations, and a translation operator to
displace elements over the 2-D plane is used. The scaling
matrix Aa is defined as (Labate et al., 2005)

Aa =
(
a 0
0 aα

)
, α ∈ [0,1] .

The value of α controls the degree of anisotropy. (For
more information on the anisotropy scaling molecules or α
molecules, see Grohs et al., 2016.) The scaling matrix is
parabolic when α = 1

2 .
An orthogonal transformation is applied to change the ori-

entations of waveforms. Rotation operators are not preferred
as they destroy the structure of the integer lattice Z2 when-
ever the rotation angle is different from 0,±π2 ,±π,±

3π
2 .

Changes in the structure of integer lattice are problem-
atic when transitioning from continuum to a digital set-
ting. Hence, a shearing transformation is used where the
anisotropic shearing transformation matrix Ss is defined as

Ss =
(

1 s

0 1

)
, where the parameters a ∈ R+, s ∈ R.

The shearing matrix Ss preserves the structure of the integer
grid for any s ∈ N. The shearing matrix parameterizes orien-
tations using the variable s associated with slopes rather than
angles and leaves the integer lattice invariant, provided s is

Figure A1. (a) Isotropic elements capturing a discontinuity
curve (b). Sheared, anisotropic elements capturing a discontinuity
curve (modified from Kutyniok and Labate, 2012).

an integer. The difference between isotropic and anisotropic
dilation with shearing is depicted in Fig. A1a and b.

A shearlet system is defined as (Kutyniok and Labate,
2012)

SH(ψ)=
{
ψa,s,t = a

−3/4ψ
(

Aa−1Ss−1 (· − t)
)

a ∈ R+, s ∈ R, t ∈ R2
}
, (A3)

where (· − t) denotes the translation by a point t .
The corresponding shearlet transform for mapping a func-

tion f ∈ L2 (R2) into coefficients, SHψ f (a,s, t) specified
by scaling a, shearing s, and translation t is given by

f → SHψ f (a,s, t)= f, ψa,s,t . (A4)

A2 Cone-adapted continuous shearlet systems

Equation (A4) renders horizontal shearlets elongated at very
fine scales, which is problematic in digital implementations.
Because the shearing operator can range over a non-bounded
interval, directions are not treated uniformly. To overcome
this drawback of shearing, the cone-adapted shearlet system
was introduced in which the frequency plane is split into a
horizontal and vertical cone that restricts the shear parameter
to bounded intervals (see Fig. A2a). Dividing the frequency
plane in such a manner ensures uniform treatment of direc-
tions (Guo et al., 2005; Kutyniok and Labate, 2012). A cone-
adapted shearlet system can be tiled by further division of the
frequency domain. Such a tiling configuration (see Fig. A2b)
ensures that all directions are treated “almost equally” (Ku-
tyniok and Labate, 2012). There is still small, but control-
lable bias in the coordinate axes directions. The cone-adapted
shearlet systems can therefore be expressed as the union of a
horizontal cone, a vertical cone, and a low-frequency centre
component. The frequency plane is thus split into four hori-
zontal and vertical cones with a low-frequency square region
in the centre. The low-frequency region is given by the rela-
tion (Kutyniok and Labate, 2012)

R= {(ξ1,ξ1) : |ξ1| , |ξ2| ≤ 1} . (A5)
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Figure A2. The cone-adapted continuous shearlet system. (a) Bias
in directions is handled by dividing the frequency plane into four
cones C1, C2, C3, C4, and a square low-frequency box region in the
centre R. (b) Trapezoidal-shaped wedge tiling of the frequency-
induced domain induced by the shearlet transform (modified after
Kutyniok and Labate, 2012).

Inside each cone, the shearing variable s is only allowed
to vary over a finite range. This produces elements with uni-
formly distributed orientations. The union of the generat-
ing functions for the horizontal cones ψ ∈ L2 (R2), verti-
cal cones ψ̃ ∈ L2 (R2), and for the square low-frequency
region ϕ ∈ L2 (R2) is expressed as (Kutyniok and Labate,
2012)

SH(ϕ,ψ,ψ̃)=8(ϕ) ∪9(ψ) ∪ 9̃(ψ̃), (A6)

where

8(ϕ)=
{
ϕt = ϕ (· − t) : t ∈ R2

}
, (A7)

9 (ψ)=
{
ψa,s,t = a

−
3
4ψ
(

Aa−1Ss−1 (· − t)
)

: a ∈ (0,1] , |s| ≤ 1+ a
1
2 , t ∈ R2

}
, (A8)

9̃(ψ)=
{
ψ̃a,s,t = a

−
3
4 ψ̃
(

Ã−1
a Ss−1(· − t)

)
: a ∈ (0,1] , |s| ≤ 1+ a

1
2 , t ∈ R2

}
. (A9)

The scaling matrix for vertical cones, Ãa is expressed as

Ãa =
(
aα 0
0 a

)
. (A10)

The cone-adapted continuous shearlet transform is ex-
pressed as the mapping

f → SHϕ,ψ,ψ̃ f
(
t ′, (a,s, t

)
,
(̃
a, s̃, t̃

)
)=(

f, ϕt ′ ,f, ψa,s,t ,f, ψ̃ã,̃s,̃t
)
. (A11)

A3 The discrete cone-adapted shearlet system

A discrete version of the cone-adapted shearlet system may
be defined with the scaling parameter j , shearing parame-
ter k, and translation parameter m for a sampling factor of

c = (c1,c2) ∈ (R+)2. Similar to Eq. (A6) this is a union of
the generating functions for the vertical, horizontal, and low-
frequency central region.

SH(ϕ,ψ,ψ̃;c)=8(ϕ;c1) ∪9(ψ;c) ∪ 9̃(ψ̃;c) (A12)

8(ϕ;c1)=
{
ϕm = ϕ (· − c1m) :mεZ2

}
, (A13)

9 (ψ;c)=
{
ψj,k,m = 2

3
4 jψ

(
SkA2j · −Mcm

)
:

j ≥ 0, |k| ≤
⌈

2
j
2

⌉
, m ∈ Z2

}
, (A14)

9̃
(
ψ̃;c

)
=

{
ψ̃j,k,m = 2

3
4 j ψ̃

(
Sk
T Ã2j · −M̃cm

)
:

j ≥ 0, |k| ≤
⌈

2
j
2

⌉
, m ∈ Z2

}
, (A15)

with

Mc =

[
c1 0
0 c2

]
;M̃c =

[
c2 0
0 c1

]
,

(Mc and M̃c are sampling matrices for horizontal and vertical
cones)

A2j =

[
2j 0
0 2j/2

]
; Ã2j =

[
2j/2 0

0 2j

]
,

(A2j and Ã2j are dyadic scaling matrices for horizontal and
vertical cones)

Sk =

[
1 k

0 1

]
(shearing matrix).

The discrete cone-adapted shearlet transform associated
with φ, ψ , and ψ̃ is given by the mapping

f → SHϕ,ψ,ψ̃ f
(
m′, (j,k,m

)
, (j̃ , k̃, m̃)=(

f, ϕm′ ,f, ψj,k,m,f, ψ̃j̃ ,̃k,m̃

)
. (A16)

A4 The complex discrete cone-adapted shearlet system

Taking the complex valued wavelet of a real valued even-
symmetric wavelet generator ψeven

∈ L2 (R2) and using the
Hilbert transform operator (H), a complex valued shearlet
generator is obtained (from Reisenhofer, 2014; King et al.,
2015):

ψc
= ψeven

+ i ψodd. (A17)

The complex valued function can be written in terms of
a Hilbert transform pair of an even-symmetric real valued
shearlet and an odd-symmetric real valued shearlet (from
Reisenhofer, 2014; King et al., 2015):

ψc
= ψeven

+ i Hψeven. (A18)

The Hilbert transform operator is written as

H (f )(t)= lim
a→∞

a∫
−a

f (τ)

t − τ
dτ. (A19)
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Figure A3. Variation in the structural similarity index of base case ridges with shearlet and detection parameters. (a) SSIM vs. anisotropy
exponent. (b) SSIM vs. minContrast. (c) SSIM vs. wavelet effective support. (d) SSIM vs. scaling offset. (e) SSIM vs. scales or octave.
(f) SSIM vs. shear levels.

The discrete cone-adapted complex shearlet system is
given as (Reisenhofer, 2014; King et al., 2015)

SH(ϕ,ψ,ψ̃;c)=8(ϕ;c1) ∪9(ψ;c) ∪ 9̃(ψ̃;c) (A20)

and

SHc(ϕ,ψ,ψ̃;c)=8(ϕ;c1) ∪9
c(ψ;c) ∪ 9̃c(ψ̃;c), (A21)

where

8(ϕ;c1)=
{
ϕt = ϕ (· − c1m) :m ∈ Z2

}
, (A22)

9c (ψ;c)=
{
ψc

j,k,m = ψ
c
j,k,m+ i (H(1,0)T ψ)j,k,m :

j ≥ 0, |k| ≤ d2
j
2 e, m ∈ Z2

}
, (A23)

9̃c (ψ̃;c)= {ψ̃c
j,k,m = ψ̃

c
j,k,m+ i (H(0,1)T ψ̃)j,k,m :

j ≥ 0, |k| ≤ d2
j
2 e, m ∈ Z2

}
. (A24)

Correspondingly the discrete complex cone-adapted
shearlet transform is given by the mapping,

f → SHc
ϕ,ψ,ψ̃

f
(
m′, (j,k,m

)
, (j̃ , k̃, m̃))=(

f, ϕm′ ,f, ψ
c
j,k,m,f, ψ̃

c
j̃ ,̃k,m̃

)
. (A25)

A5 Edge and ridge detection using the complex
shearlet transform

The behaviour of the coefficients of the even-symmetric and
odd-symmetric shearlets can be used to detect edges and
ridges. An edge measure for an image f ∈ L2(R2), a loca-
tion x ∈ R2, and a shear parameter s are given as (Reisen-
hofer, 2014; King et al., 2015)

Eψ (f,x,s)=∣∣∑
aεAIm

(
f,ψc

a,s,x

)∣∣−∑aεA

∣∣Re
(
f,ψc

a,s,x

)∣∣
|A|maxaεA

∣∣Im(f,ψc
a,s,x)

∣∣+ ε , (A26)

where A⊂ R+ is a set of scaling parameters, ψ is a real val-
ued symmetric shearlet, and ε prevents division by zero. The
complex shearlet-based edge measure can give approxima-
tions of the tangential directions of an edge. A line measure
or ridge measure is obtained by interchanging the role of the
even-symmetric and odd-symmetric shearlets (Reisenhofer,
2014; King et al., 2015):

Lψ (f,x,s)=∣∣∑
aεARe

(
f,ψc

a,s,x

)∣∣−∑aεA

∣∣Im(f,ψc
a,s,x

)∣∣
|A|maxaεA

∣∣Re(f,ψc
a,s,x)

∣∣+ ε . (A27)

Both the edge and ridge measures given above are inspired
from the phase congruency measure of Kovesi (2000). The
edge and ridge measures are almost contrast invariant.
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Table A1. Shearlets.

Shearlet system waveletEffSupp gaussianEffSupp scalesPerOctave shearLevel scales no. of shearlets alpha

1 200 100 1 2 1 36 0
2 125 63 1 2 1 36 0
3 84 42 1 2 1 36 0
4 67 34 1 2 1 36 0
5 200 100 2 2 7 12 0
6 125 63 2 2 7 12 0
7 84 42 2 2 7 12 0
8 67 34 2 2 7 12 0
9 200 100 3 2 10.5 12 0
10 125 63 3 2 10.5 12 0
11 84 42 3 2 10.5 12 0
12 67 34 3 2 10.5 12 0
13 200 100 4 2 14 12 0
14 125 63 4 2 14 12 0
15 84 42 4 2 14 12 0
16 67 34 4 2 14 12 0
17 200 100 1 3 3.5 20 0
18 125 63 1 3 3.5 20 0
19 84 42 1 3 3.5 20 0
20 67 34 1 3 3.5 20 0
21 200 100 2 3 7 20 0
22 125 63 2 3 7 20 0
23 84 42 2 3 7 20 0
24 67 34 2 3 7 20 0
25 200 100 3 3 10.5 20 0
26 125 63 3 3 10.5 20 0
27 84 42 3 3 10.5 20 0
28 67 34 3 3 10.5 20 0
29 200 100 4 3 14 20 0
30 125 63 4 3 14 20 0
31 84 42 4 3 14 20 0
32 67 34 4 3 14 20 0
33 200 100 1 4 3.5 36 0
34 125 63 1 4 3.5 36 0
35 84 42 1 4 3.5 36 0
36 67 34 1 4 3.5 36 0
37 200 100 2 4 7 36 0
38 125 63 2 4 7 36 0
39 84 42 2 4 7 36 0
40 67 34 2 4 7 36 0
41 200 100 3 4 10.5 36 0
42 125 63 3 4 10.5 36 0
43 84 42 3 4 10.5 36 0
44 67 34 3 4 10.5 36 0
45 200 100 4 4 14 36 0
46 125 63 4 4 14 36 0
47 84 42 4 4 14 36 0
48 67 34 4 4 14 36 0
49 200 100 1 2 3.5 12 0.5
50 125 63 1 2 3.5 12 0.5
51 84 42 1 2 3.5 12 0.5
52 67 34 1 2 3.5 12 0.5
53 200 100 2 2 7 12 0.5
54 125 63 2 2 7 12 0.5
55 84 42 2 2 7 12 0.5
56 67 34 2 2 7 12 0.5
57 200 100 3 2 10.5 12 0.5
58 125 63 3 2 10.5 12 0.5
59 84 42 3 2 10.5 12 0.5
60 67 34 3 2 10.5 12 0.5
61 200 100 4 2 14 12 0.5
62 125 63 4 2 14 12 0.5
63 84 42 4 2 14 12 0.5
64 67 34 4 2 14 12 0.5
65 200 100 1 3 3.5 20 0.5
66 125 63 1 3 3.5 20 0.5
67 84 42 1 3 3.5 20 0.5
68 67 34 1 3 3.5 20 0.5
69 200 100 2 3 7 20 0.5
70 125 63 2 3 7 20 0.5
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Code and data availability. MATLAB code that was
used to generate the results in this paper is avail-
able on Github https://github.com/rahulprabhakaran/
Automatic-Fracture-Detection-Code/tree/v1.0.0 (last access:
13 June 2019; see https://doi.org/10.5281/zenodo.3245452,
Prabhakaran, 2019).

Fracture and image data corresponding to the Parmelan and Bre-
jões outcrops are available at

– fracture network patterns from the Brejões Outcrop, Irecê
Basin, Brazil (Prabhakaran et al., 2019a)

– fracture network patterns from the Parmelan anticline, France
(Prabhakaran et al., 2019b).
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