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A B S T R A C T

Rising sea levels caused by climate change are increasing the risk of overtopping on coastal structures.
Moreover, there is a growing societal concern about the visual impact of these structures, which leads to
the lowering of their crest freeboards. In previous studies, safety during overtopping events was assessed
considering the overtopping layer thickness (ℎ𝑐), the overtopping flow velocity (𝑢𝑐) and the individual wave
overtopping volume (𝑉 ). Existing models in the literature to estimate ℎ𝑐 , 𝑢𝑐 and 𝑉 on mound breakwater crests
are mainly deterministic, involve a chain of successive estimations leading to accumulated errors and/or do
not account for the dependencies between ℎ𝑐 , 𝑢𝑐 and 𝑉 . This study proposes a model to describe the joint
probability distribution of ℎ𝑐 , 𝑢𝑐 and 𝑉 based on bivariate copulas. Experimental data from small-scale 2D
physical tests conducted on mound breakwaters with three armor layers (single-layer Cubipod®, and double-
layer cubes and rocks) in depth-limited breaking wave conditions on two mild bottom slopes and dimensionless
crest freeboards between 0.33 and 3.20 is used. Lognormal distribution functions are proposed for each
variable and a multivariate dependence model is developed through a one-tree vine-copula. The parameters
of this model are quantified directly using wave characteristics and the structure geometry minimizing the
accumulated errors in the final predictions. The application of the model is illustrated by computing the
probability of not fulfilling at least a tolerability limit for one of the studied variables (OR probability). The OR
probability is computed both considering the dependence and assuming independence between the variables
and a significant difference is obtained. It is concluded that by accounting for the multivariate dependence
between the variables, it is possible to reduce the crest freeboard and, thus, achieve a more economic design
within the required safety level.
1. Introduction

Sea level rise (IPCC, 2019) and stronger wave conditions (Camus
et al., 2019) resulting from climate change have led to an increase of
coastal hazards, such as the risk of salinization and flooding in low lying
areas or the potential damage to the existing coastal structures. More-
over, since sustainable development was first defined by the Brundtland
Commission (WCED, 1987), the awareness of society regarding the neg-
ative impacts of infrastructures has arisen and has sparked a demand
for coastal structures with reduced visual and environmental impacts.
These factors significantly influence the design of coastal structures;
more extreme and uncertain wave overtopping events and reduced
design dimensionless crest freeboards must be considered.

Thus, the current context of climate change has increased the uncer-
tainty surrounding wave overtopping, which was already recognized as
a highly uncertain phenomenon by Romano et al. (2015). Romano et al.
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(O. Morales-Nápoles).

(2015) studied the variability of the mean wave overtopping discharge
(𝑞, l/s/m) for different time series realizations from the same wave
spectrum and concluded that 𝑞 may vary up to one order of magnitude.
Therefore, further non-deterministic tools are needed to improve the
design of mound breakwaters facing extreme overtopping rates.

During the design phase, tolerable 𝑞 is usually considered to de-
termine the required crest elevation of coastal structures. However,
overtopping hazard can be better described if the hydrodynamic vari-
ables of the individual wave overtopping events (namely, individual
wave overtopping volumes, 𝑉 (l), overtopping layer thickness on the
crest, ℎ𝑐 (m), and overtopping flow velocity on the crest, 𝑢𝑐 (m/s))
are included in the analysis (Franco et al., 1994). For instance, the
maximum 𝑉 (𝑉𝑚𝑎𝑥) has been related to damage to coastal structures
and hazard for vehicles and pedestrians (Geeraerts et al., 2007). ℎ𝑐 and
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𝑢𝑐 have also been related to the hydraulic stability of the breakwater
crest and rear side (Argente et al., 2018) and the pedestrian safety on
the breakwater crest (Bae et al., 2016).

In the last years, extensive literature has been developed to estimate
ℎ𝑐 , 𝑢𝑐 and 𝑉 on mound breakwaters based on results of physical model
tests (e.g., Mares-Nasarre et al., 2021; Koosheh et al., 2021). Regarding
𝑉 , the 2-parameter Weibull distribution function has been extensively
proposed to describe the univariate uncertainty of 𝑉 (Franco et al.,
1994; Besley, 1999; Bruce et al., 2009; Zanuttigh et al., 2013; Nørgaard
et al., 2014; Molines et al., 2019). The maximum individual wave
overtopping volume (𝑉𝑚𝑎𝑥) was then estimated using the number of
overtopping events (𝑁𝑜𝑤) which was predicted using 𝑞. This approach
presents two main drawbacks: (1) the inclusion of a chain of estima-
tions (𝑞 − 𝑁𝑜𝑤 − 𝑉𝑚𝑎𝑥) which lead to accumulated errors in the final
predictions, and (2) the low reliability of the measurements of 𝑉𝑚𝑎𝑥,
which is also function of the duration of the wave storm.

Regarding ℎ𝑐 and 𝑢𝑐 on mound breakwaters, limited literature is
available. Formulas to estimate ℎ𝑐 and 𝑢𝑐 exceeded by 2% of the
incoming waves (ℎ𝑐,2% and 𝑢𝑐,2%, respectively) were proposed in Mares-
Nasarre et al. (2019, 2021). Also, the distribution function of events
more extreme than ℎ𝑐,2% and 𝑢𝑐,2% were analyzed. Exponential and
Rayleigh distributions were recommended to describe the distribution
functions of ℎ𝑐∕ℎ𝑐,2% and 𝑢𝑐∕𝑢𝑐,2%, respectively, where ℎ𝑐 and 𝑢𝑐 are
events extremer than 2%. It should be noted that the probabilities
assigned to those observations of ℎ𝑐 and 𝑢𝑐 were in terms of the
number of incoming waves and not in terms of the commonly used
exceedance probabilities (following van Gent, 2003; Schüttrumpf and
van Gent, 2004). These methodologies have thus the pitfall of defining
probabilities as function of the duration of the storm (number of waves)
which hinders the comparison with probabilities obtained for 𝑉 or
wave characteristics. Moreover, it is required to estimate ℎ𝑐,2% and 𝑢𝑐,2%
to quantify the distribution of extreme values of ℎ𝑐 and 𝑢𝑐 since they are
defined in terms of ℎ𝑐∕ℎ𝑐,2% and 𝑢𝑐∕𝑢𝑐,2%, respectively, leading again to
accumulated errors in the final estimations.

When designing the crest elevation of a mound breakwater using
ℎ𝑐 , 𝑢𝑐 and 𝑉 , a given value of them (namely, ℎ𝑐,2%, 𝑢𝑐,2% and 𝑉𝑚𝑎𝑥)
is compared to the tolerability limits and a binary result is obtained:
the design satisfies or does not satisfy the limits. Consequently, a lot of
information is lost regarding how likely it is to overpass those limits
and, thus, what the safety level of the structure is. If the distribu-
tion functions proposed in the literature are used to determine the
probabilities of overpassing those limits, the dependence between the
variables is not considered. It is possible to determine the probability
of not fulfilling one specific limit but if more than one tolerability
limit is set (for instance to each of the three parameters ℎ𝑐 , 𝑢𝑐 and
𝑉 ) the probability of not fulfilling at least one tolerability limit (OR
probability) cannot be computed. This is, first, because probabilities
for ℎ𝑐 and 𝑢𝑐 are defined in terms of percentage of exceeded waves and
probabilities for 𝑉 are stated using the common axiomatic concept of
probability. Thus, they cannot be combined. Second, if this difference
is neglected, independence between the variables would need to be
assumed. However, ℎ𝑐 , 𝑢𝑐 and 𝑉 are generated by the same drivers and,
thus, a correlation exist between them. Therefore, a dependence model
which describes the multivariate uncertainty of ℎ𝑐 , 𝑢𝑐 and 𝑉 all together
is needed to better assess the crest elevation of mound breakwaters, as
well as to provide further insight into their safety against overtopping.

In the Coastal Engineering field, copula-based models have been
successfully used in the scientific literature to model the joint proba-
bility distribution of wave variables (e.g., Jaeger and Morales-Nápoles,
2017; Lucio et al., 2020) or to perform reliability assessments of
structures or offshore operations (e.g., Leontaris et al., 2016; Torres-
Alves and Morales-Nápoles, 2020). For instance, Antão and Guedes
Soares (2014) and Jaeger and Morales-Nápoles (2017) focused on the
probabilistic dependence between wave height and period to better
model important asymmetries observed in their joint distribution by
2

means of probabilistic models based on bivariate copulas. Masina et al.
Fig. 1. Proposed methodology to compute the OR probability.

(2015), Corbella and Stretch (2013) and Sebastian et al. (2017) as-
sessed coastal risk of flooding modeling the dependence between wave
variables, storm surge and/or precipitation using copulas. Studies such
as De Michele et al. (2007), Zhang et al. (2018), Lira-Loarca et al.
(2020) or Leontaris et al. (2016) modeled wave storms using both
bivariate and multivariate models based on copulas to assess and design
coastal and offshore structures. However, to the authors’ knowledge,
copulas have not been used to model the response of coastal structures
to wave loading.

This study proposes a model to describe the joint probability dis-
tribution of ℎ𝑐 , 𝑢𝑐 and 𝑉 based on bivariate copulas. The contribution
of this paper is three fold: (1) new distribution functions are proposed
for each variable using the axiomatic probability concept, (2) a mul-
tivariate dependence model is developed, and (3) the parameters of
both the marginals and dependence model are quantified directly using
variables related to wave characteristics and the structure geometry
minimizing the accumulated errors in the final predictions. Thus, this
model allows the computation of the probability if more than one
tolerability criterion is set. Conditional distributions and conditional
probabilities can also be computed if the value of one or two vari-
ables is known. The paper is structured as follows. The experimental
methodology of the physical model tests and data analysis of the
measurements used to develop the proposed model is presented in
Section 2. The concept of bivariate copula and the goodness of fit
measures for these probabilistic models are introduced in Section 3.
The selection and fitting of the new proposed distribution functions to
describe the univariate uncertainty of ℎ𝑐 , 𝑢𝑐 and 𝑉 are described in
Section 4. The selection and development of the copula-based model
is described in Section 5. Recommendations of use together with an
example of application of the proposed methodology are presented in
Section 6 and illustrated in Fig. 1. Finally, conclusions are drawn in
Section 7 and recommendations for future research are given.
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Fig. 2. Cross-section of the wave flume of LPC-UPV. Dimensions in m.
2. Experimental methodology

2.1. Experimental setup

2D physical tests were performed by Mares-Nasarre et al. (2021) in
the wave flume (30 m × 1.2 m × 1.2 m) of the Laboratory of Ports and
Coasts at Universitat Politècnica de València (LPC-UPV). Two bottom
slope configurations were tested: (a) a 6.25 m-long 𝑚 = 4% bottom
slope and a 9.0 m-long 𝑚 = 2% bottom slope, and (b) a continuous ramp
of 𝑚 = 4% all along the wave flume. Fig. 2 displays the longitudinal
cross-sections tested in the wave flume and the locations of the wave
gauges.

The LPC-UPV wave flume also presents a double floor to allow the
water recirculation and prevent the accumulation of overtopped water
behind the structure leading to a reduction of the water level at the
seaward side. As shown in Fig. 2, wave gauge S11 was placed behind
the model to detect this phenomenon; accumulation of water behind
the structure was not significant during the tests. In addition, 10 more
capacitive wave gauges were installed along the flume to measure the
free surface. Wave gauges S1 to S5 were located close to the wave
generator with distances following recommendations in Mansard and
Funke (1980). These wave gauges were used to separate incident and
reflected waves in the generation zone. Wave gauges S6 to S9 were
placed in the model zone, where depth-limited wave breaking takes
place. Note that the existing methods in the literature to separate
incident and reflected waves are not reliable under these conditions,
although de Ridder et al. (2023) showed that the incident significant
wave heights can still be derived with rather good accuracy. S6, S7,
S8 and S9 were installed at distances of 5ℎ𝑠, 4ℎ𝑠, 3ℎ𝑠 and 2ℎ𝑠 from
the toe of the model, where ℎ𝑠 is the water depth at the toe of the
structure. Wave gauge S10 was located in the middle of the breakwater
crest to measure the overtopping layer thickness on the crest, ℎ𝑐 . All
wave gauges measured at a frequency of 20 Hz.

Three different mound breakwater models were tested with armor
slope H/V = 3/2 and rock toe berms: a single-layer Cubipod®-armored
model (Cubipod-1L, nominal median diameter or equivalent cube size
𝐷𝑛 = 3.79 cm), a double-layer randomly-placed cube-armored model
(cube-2L, 𝐷𝑛 = 3.97 cm) and a double-layer randomly-placed rock-
armored model (rock-2L, 𝐷𝑛50 = 3.18 cm). A cross-section of a tested
model is depicted in Fig. 3. Tests performed on the bathymetry with
𝑚 = 2% were conducted with a rock toe berm with nominal diameter
or equivalent cube size 𝐷𝑛50 = 2.6 cm, whereas those with 𝑚 = 4% were
carried on with a larger rock toe berm with 𝐷𝑛50 = 3.9 cm to guarantee
the toe berm hydraulic stability during the tests.
3

Fig. 3. Cross-section of the models tested in this study. Dimensions in m.

Random runs of 1000 irregular waves were generated following a
JONSWAP spectrum (𝜆 = 3.3). The AWACS wave absorption system
was used during the tests to avoid multireflections in the flume; low-
frequency oscillations were not significant during the tests. Two water
depths at the toe (ℎ𝑠) were tested for each model and bathymetry
configuration. ℎ𝑠 = 0.20 m and 0.25 m were tested for all cases, but for
those conducted with the cube-2L and 𝑚 = 2% where ℎ𝑠 = 0.25 m and
0.30 m were tested. For each water depth and foreshore configuration,
the spectral significant wave height (𝐻𝑚0 = 4(𝑚0)0.5) and peak period
(𝑇𝑝) were generated such that the wave steepness (𝑠𝑜𝑝 = 𝐻𝑚0∕𝐿𝑜𝑝 =
2𝜋𝐻𝑚0∕(𝑔𝑇 2

𝑝 ), where 𝐿𝑜𝑝 is the deep-water wave length) was kept
approximately constant during the test series. For each 𝑠𝑜𝑝 = 0.02 and
0.05, 𝐻𝑚0 in the wave generation zone was increased in steps of 1 cm
from no damage to initiation of damage of the armor model or wave
breaking in the wave generation zone. The main experimental ranges
of the experiments are shown in Table 1. Note that 𝐻𝑚0 and spectral
wave period (𝑇𝑚−1,0 = 𝑚−1∕𝑚0, where 𝑚𝑖 is the 𝑖th spectral moment
𝑚𝑖 = ∫ ∞

0 𝑆(𝑓 )𝑓 𝑖𝑑𝑓 , being the wave spectrum 𝑆(𝑓 )) are provided using
the incident waves near the toe of the structure.

2.2. Wave analysis

Waves were separated in the wave generation zone applying the
LASA-V method (Figueres and Medina, 2005) on the measurements
of wave gauges S1 to S5. This method is applicable to nonstationary
and nonlinear irregular waves, but it is not valid for breaking waves,
similarly to most methods in the literature. Therefore, the SwanOne
propagation model (Verhagen et al., 2009) was used to estimate in-
cident waves in the model zone, where wave breaking takes place.
SwanOne model uses a JONSWAP spectrum (𝛾 = 3.3) fitted with
the incident wave conditions in the wave generation zone. Such spec-
trum is propagated along the flume and the wave height distribution
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Table 1
Experimental ranges in the tests. Note that wave characteristics are given at the toe of
the structure.
𝑚 Armor 𝐵 (m) #test ℎ𝑠 (m) 𝑅𝑐 (m) 𝐻𝑚0 (m) 𝑇𝑚−1,0 (s)

4% Cubipod®-1L 0.24 28 0.20 0.12 0.06–0.15 0.93–2.05
30 0.25 0.07 0.06–0.18 0.91–2.34

4% cube-2L 0.27 30 0.20 0.16 0.05–0.16 0.95–2.10
30 0.25 0.11 0.06–0.17 0.94–2.43

4% rock-2L 0.26 19 0.20 0.15 0.05–0.14 0.92–2.04
17 0.25 0.10 0.05–0.14 0.88–2.06

2% Cubipod®-1L 0.24 30 0.20 0.12 0.06–0.14 0.91–2.21
30 0.25 0.07 0.06–0.16 0.94–2.24

2% cube-2L 0.27 30 0.25 0.11 0.05–0.16 0.95–2.25
24 0.30 0.06 0.06–0.18 0.91–2.05

2% rock-2L 0.26 15 0.20 0.15 0.06–0.12 0.90–1.86
15 0.25 0.06 0.05–0.13 0.90–1.88

is described using the Composite Weibull distribution recommended
by Battjes and Groenendijk (2000). Since SwanOne is prepared for
prototype scale wave conditions (frequencies in the range 0.03 to
0.8 Hz), a scale 1/30 was used.

In order to validate this methodology, tests without structure were
performed in Mares-Nasarre et al. (2021) using a passive wave ab-
sorption system at the end of the wave flume, similarly to Herrera
and Medina (2015). The total measurements of the tests without a
structure were compared to the simulations by SwanOne model both
in the wave generation zone and in the model zone. The performance
of SwanOne model was assessed using the coefficient of determination,
𝑅2. 0 ≤ 𝑅2 ≤ 1 estimates the percentage of the variance explained by
the model and is defined in Eq. (1).

𝑅2 = 1 −
1

𝑁𝑜𝑏𝑠

∑𝑁𝑜𝑏𝑠
𝑖=1 (𝑜𝑖 − 𝑒𝑖)2

1
𝑁𝑜𝑏𝑠

∑𝑁𝑜𝑏𝑠
𝑖=1 (𝑜𝑖 − 𝑜)2

(1)

where 𝑁𝑜𝑏𝑠 is the number of observations, 𝑜𝑖 and 𝑒𝑖 are the observations
and estimations, respectively, and 𝑜 is the mean of the observations.

In line with previous studies (Mares-Nasarre et al., 2019, 2020b),
satisfactory performance was obtained for 𝐻𝑚0 (𝑅2 ≤ 0.94), while
poor performance was found for 𝑇𝑚−1,0 (0.03 ≤ 𝑅2 ≤ 0.89). Similarly
to Herrera and Medina (2015) or Mares-Nasarre et al. (2020b), wave
characteristics estimated by SwanOne model were used for further
analysis to simulate the design phase conditions, when the design wave
conditions at the construction site need to be estimated. Note that the
SwanOne model does not very accurately model the wave period since
some essential physical processes are missing in this model. This often
leads to an underestimate of the wave period. This bias in computed
wave periods is taken into account by using SwanOne predictions to
develop the model proposed in this study, as SwanOne is commonly
use in practice.

2.3. Analysis of overtopping variables

A weighing system was installed in a collection tank behind the
model to measure the overtopping discharges during each test. They
were collected using a chute in the rear side line of the crest. This
system provided a continuous record of accumulated overtopping vol-
ume and the individual wave overtopping volumes were identified
following the method developed by Molines et al. (2019) based on the
derivative of the overtopping record. Fig. 4 presents an example of the
overtopping volume collected by the weighing system and the points
identified as the beginning of an individual wave overtopping event.

ℎ𝑐 was measured using the capacitive wave gauge S10 which was
located in the middle of the breakwater crest (see Figs. 2 and 3). S10
was inserted into a hollow cylinder (2 cm in length and 8.5 cm in
diameter) filled with water so the sensor remained partially submerged.
4

Fig. 4. Example of the collected overtopping volumes (test #1) and the beginning
point of the identified individual wave overtopping events.

Fig. 5. Example of a recorded timeseries of ℎ𝑐 (test #1).

Fig. 6. Example of a recorded timeseries of 𝑢𝑐 (test #1).

A lid with a slot was installed in the upper part to prevent water loss
and to maintain the daily-calibrated reference level. Little variation in
the reference level was seen and little noise was measured, as shown
in Fig. 5. Peak values over 1 cm were extracted from the signal and
considered for further analysis.

𝑢𝑐 was measured using three miniature propellers at a frequency
of 20 Hz. Their operational range was 0.15 < 𝑢𝑐 (m/s) < 3.00, so
𝑢𝑐 < 0.15 m∕s were disregarded. The three miniature propellers were
installed along the crest: (1) on the seaward edge, (2) in the middle,
and (3) on the leeward edge of the model crest. Here, measurements
taken in the middle of the breakwater crest were used. Peak values
within the operational range were considered for further analysis. An
example timeseries is displayed in Fig. 6.

Once the individual wave overtopping events, 𝑉 , and the peak
values of ℎ𝑐 and 𝑢𝑐 are extracted, concomitant events are assigned. This
is, the values closer to each other in time are assigned as belonging to
the same overtopping event. Note that 𝑉 are recorded later due to the
time that overtopping water needs to run through the chute and reach
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the weighing system. Thus, those 𝑉 closest in time to ℎ𝑐 and 𝑢𝑐 but
recorded later are assigned.

2.4. Dimensionless variables definition

This study is focused on the maximum overtopping layer thickness
(ℎ𝑐), the maximum overtopping flow velocity (𝑢𝑐) and the individual
wave overtopping volume (𝑉 ) of each individual wave overtopping
event. The following dimensionless expressions are considered here:
ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕

√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0.

According to the literature, the explanatory variables which might
influence ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕

√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0 are the bottom slope (𝑚),

the crest freeboard (𝑅𝑐), the spectral significant wave height (𝐻𝑚0 =
4
√

𝑚0), the spectral wave period (𝑇𝑚−1,0 = 𝑚−1∕𝑚0) and water depth
(ℎ𝑠). These variables are made dimensionless as

• 𝑚, is the bottom slope, which determines the type of wave break-
ing at the toe of the structure. Moreover, in Mares-Nasarre et al.
(2020a), the bottom slope 𝑚 was found to play a significant role
in the estimation of ℎ𝑐 and 𝑢𝑐 .

• 𝑅𝑐∕𝐻𝑚0, is the dimensionless crest freeboard, which is the most
widely accepted dimensionless variable that governs the mean
wave overtopping discharge (e.g., Molines and Medina, 2016; van
Gent et al., 2022). Moreover, it can be found in all methods in
the literature to estimate 𝑉 (e.g., Nørgaard et al., 2014; Mares-
Nasarre et al., 2020b) and ℎ𝑐 and 𝑢𝑐 (e.g., Mares-Nasarre et al.,
2019, 2021).

• 𝑠−1,0 = 𝐻𝑚0∕𝐿−1,0, is the wave steepness calculated with 𝐿−1,0 =
𝑔𝑇 2

𝑚−1,0∕2𝜋. This variable influences the wave breaking on the
structure slope. 𝑠−1,0 is included within the surf similarity pa-
rameter or Iribarren number (𝐼𝑟𝑚−1,0, calculated with 𝐻𝑚0 and
the 𝑇𝑚−1,0) in methods to estimate 𝑉 given by EurOtop (2018)
and Koosheh et al. (2022). Also, it was reported as a signifi-
cant explanatory variable to estimate ℎ𝑐 and 𝑢𝑐 in studies such
as Schüttrumpf and van Gent (2004) and Mares-Nasarre et al.
(2019, 2021).

• ℎ𝑠∕𝐻𝑚0, is the dimensionless water depth at the toe of the struc-
ture. This variable is used as an indicator of whether waves are
depth-limited (van Gent, 1999; Nørgaard et al., 2014). Therefore,
it can be found in the methods in the literature to estimate
𝑉 (Nørgaard et al., 2014) and ℎ𝑐 and 𝑢𝑐 (Mares-Nasarre et al.,
2021).

3. Theoretical framework

In this study, a probabilistic model is proposed to describe the multi-
variate uncertainty of overtopping hydrodynamic variables. Parametric
distribution functions are used to model the marginal distributions,
while bivariate copulas are applied to describe the bivariate uncertainty
between each pair of variables. In this section, the concepts of bivariate
copula and tail dependence are introduced. Also, the goodness of fit
criteria to assess the performance of copulas are presented.

3.1. Concept of bivariate copula

Bivariate copulas, or just copulas, are joint distributions with uni-
form marginal distributions in [0, 1]. According to Sklar (1959)’s
theorem, any multivariate joint distribution of continuous variables
can be described as a copula that models the dependence between the
variables and a set of univariate marginal distributions. The definition
of copula for the bivariate case is given by

𝐻𝑋1 ,𝑋2
(𝑥1, 𝑥2) = 𝐶{𝐹𝑋1

(𝑥1), 𝐺𝑋2
(𝑥2)} (2)

where 𝐻𝑋1 ,𝑋2
(𝑥1, 𝑥2) for (𝑥1, 𝑥2) ∈ R2 is a joint distribution with

marginals 𝐹𝑋1
(𝑥1) and 𝐺𝑋2

(𝑥2) in [0, 1] and a copula in the unit square
𝐼2 = ([0, 1] × [0, 1]), being Eq. (2) satisfied for all (𝑥 , 𝑥 ) ∈ R2.
5

1 2
Fig. 7. Example of copula families with 𝑟 = 0.88.

Different families of copulas can be found in the literature (see
Czado, 2019); all families in R-library VineCopula by Nagler et al.
(2022) are considered here. For further guidance on the application
of copulas in maritime engineering, the reader is referred to Salvadori
et al. (2014, 2015). One distinctive feature between copula families
is tail dependence which characterizes the correlations in the tails of
the distributions of two random variables. Thus, the upper tail depen-
dence coefficient is defined as 𝜆𝑢𝑝𝑝𝑒𝑟 = lim𝑡→1− 𝑃 (𝑋2 > 𝐹−1

2 (𝑡)|𝑋1 >
𝐹−1
1 (𝑡)) (Sibuya et al., 1960; Joe, 1997). Note that calculating tail

dependence in practical applications may lead to unreliable results for
limited datasets (see more in Salvadori et al., 2007). Fig. 7 presents
four common copula families with the same 𝑟 = 0.88. Figs. 7(a) and
(b) display the Gaussian and Frank copulas, which do not present tail
dependence. Fig. 7(c) shows the Clayton copula, which presents lower
tail dependence. This is, the lower values of the variables are more
correlated than the higher values. Finally, Fig. 7(d) displays the Gumbel
copula which presents upper tail dependence, so higher values of the
random variables are more correlated than the lower ones. More about
copulas can be found in Nelsen (2006).

3.2. Goodness of fit for bivariate copulas

For each test and pair of variables, the best copula model is inves-
tigated. The selection process is performed as follows. First, the best
fitting copula in terms of Akaike Information Criterion, 𝐴𝐼𝐶 (Akaike,
1973), in the R-library VineCopula by Nagler et al. (2022) is selected.
Afterwards, the previously selected copula is compared with: (1) Gaus-
sian, (2) Frank, (3) Clayton, and (4) Gumbel. The aforementioned
comparison is performed using two criteria: (1) Cramer–von-Mises
statistic (Genest et al., 2009), and (2) semi-correlations (Joe, 2014).
When no clear tail dependence was observed as evaluated through
the semi-correlations and the Cramer–von-Mises did not point out a
given copula family as the best fitting copula, the Gaussian copula was
selected for simplicity.

The Cramer–von-Mises statistic (𝑆𝐶𝑣𝑀 ) assesses the distance be-
tween the empirical and the parametric copula. Thus, a perfect fit is
given by 𝑆𝐶𝑣𝑀 → 0. In addition, an hypothesis test is performed and
the 𝑝-value (𝑝𝐶𝑣𝑀 ) is computed following the parametric bootstrap
proposed in Genest et al. (2006). The null hypothesis of this test
corresponds to the empirical and parametric copula coming from the
same bivariate distribution. Therefore, 𝑝 < 0.05 (significance level)
𝐶𝑣𝑀
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Table 2
Number of tests where each marginal distribution function provided the best fit.
Distr. Gamma Logn. Norm. Expon. GEV Rayl.

ℎ𝑐∕𝐻𝑚0 43 36 23 0 16 0
𝑢𝑐∕

√

𝑔𝐻𝑚0 28 65 8 0 17 0
𝑉 ∕𝐻2

𝑚0 17 50 0 31 15 5

rejects the null hypothesis indicating a poor fit of the parametric
copula.

Semicorrelations allow to assess whether a parametric copula is
capturing the (presence or lack of) tail dependence in the data. This
approach consists of transforming the pseudo-observations (observa-
tions in unity space) to standard normal space. There, four quadrants
are delimited using 𝑋 = 𝑌 = 0 and the correlations within those
four quadrants are computed. This procedure is applied to both the
empirical observations and the random samples obtained from the
fitted parametric copula and the semicorrelations are compared.

4. Marginal distributions

4.1. Marginal distribution selection

In this section, the one-dimensional marginal distribution functions
which better fit the observations of ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕

√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0

re identified. It should be noted that only those tests with at least 10
bservations were included in the analysis. Six different distribution
unctions were considered: (1) Gamma, (2) Lognormal, (3) Normal, (4)
xponential, (5) Generalized Extreme Value (GEV), and (6) Rayleigh.
or each test and variable, the six aforementioned distributions were
itted using Maximum Loglikelihood Estimator (MLE) and the best
istribution in terms of 𝐴𝐼𝐶. Table 2 shows the number of tests where
given distribution function provided the best fit. Similar behavior is

bserved when splitting the number by armor elements, as shown in
ppendix A.1.

In most cases, the Gamma distribution provided the best fit for
𝑐∕𝐻𝑚0, while the Lognormal distribution performed the best for
𝑐∕
√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0. The Lognormal distribution was the second

most frequently selected distribution for ℎ𝑐∕𝐻𝑚0 with a number close to
that of the Gamma distribution. Gamma and Lognormal distributions
are quite similar and both are widely used for describing positively
skewed data. Thus, both Gamma and Lognormal distributions were
considered to describe ℎ𝑐∕𝐻𝑚0. In the subsequent sections, results
for ℎ𝑐∕𝐻𝑚0 obtained with the Lognormal distribution function are
presented, since it provided the best results in the following phases of
the analysis.

The cumulative distribution function of the Lognormal distribution
is given by

𝐹 (𝑥) = 1
2

[

1 + 𝑒𝑟𝑓

(

𝑙𝑛(𝑥) − 𝜇
√

2𝜎

)]

(3)

where 𝑒𝑟𝑓 denotes the error function, and 𝜇 and 𝜎 are the mean and
the standard deviation of the variable’s natural logarithm. If 𝑋 follows
a Lognormal distribution, 𝑌 = 𝑙𝑛(𝑋) follows a Normal distribution.

4.2. Marginal distribution fitting

After selecting the best fitting distributions in the previous section,
they were fitted to each variable and test using MLE. The goodness
of fit of the Lognormal distribution was assessed using both the one-
sample Kolmogorov–Smirnov (Kolmogorov, 1933; Smirnov, 1948) and
the one-sample Anderson–Darling (Anderson and Darling, 1952, 1954)
hypothesis tests. The null hypothesis of these tests is that the samples
come from the given distribution. Thus, 𝑝−𝑣𝑎𝑙𝑢𝑒𝑠 below the significance
level (here, 0.05) indicate a statistically significant difference. The Log-
normal distribution could not be rejected as a valid model in 99% of the
6

9

Table 3
P-values for the two-samples Kolmogorov–Smirnov test applied to the parameters of
the marginal distributions.

Parameter ℎ𝑐∕𝐻𝑚0 𝑢𝑐∕
√

𝑔𝐻𝑚0 𝑉 ∕𝐻2
𝑚0

𝜇ℎ 𝜎ℎ 𝜇𝑢 𝜎𝑢 𝜇𝑉 𝜎𝑉
Cubes vs. Cubipod® 0.01 0.23 0.11 0.03 0.04 0.19

cases using the Kolmogorov–Smirnov test, while in all the tests it could
not be rejected as a valid model according to the Anderson–Darling test.

Once fitted for each variable and test, the obtained parameters
were analyzed. First, the existence of significant differences between
the parameters obtained for the different armor elements was assessed
using the two-samples Kolmogorov–Smirnov test. The null hypothesis
is that both samples come from the same distribution. Thus, 𝑝− 𝑣𝑎𝑙𝑢𝑒𝑠
elow the significance level (here, 0.05) indicate a statistically signif-
cant difference. Since few tests of the double-layer randomly-placed
ock-armored model presented a sufficient number of observations of
𝑐∕𝐻𝑚0, 𝑢𝑐∕

√

𝑔𝐻𝑚0 or 𝑉 ∕𝐻2
𝑚0, the comparison was performed between

the single-layer Cubipod®-armored and the double-layer randomly-
placed cube-armored models. As shown in Table 3, three out of six
possible differences between the two types of armor layers were found
significant. However, two of those 𝑝−𝑣𝑎𝑙𝑢𝑒𝑠 are close to the significance
level of 0.05, so no significant difference between the armor elements
was assumed.

4.3. Formulas for the parameters of the marginal distributions

In the subsequent sections, formulas to estimate the parameters of
the lognormal distributions to model ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕

√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0

as function of the explanatory variables defined in Section 2.4 are
developed. The methodology to do so is as follows:

• Parameters are plotted against the explanatory variables and
formulas are proposed based on the observed relationships. When
no clear shape is observed, a linear relationship is proposed.

• Data is randomly divided into two subsets: (1) training subset
(70% data), and (2) test subset (30% data). Data in the training
subset is used to fit the model, while data in the test subset is used
to assess the performance of the model after the fitting process.

• Linear regression is performed with the data on the training
subset to determine which explanatory variables in Section 2.4
are significant, as well as to fit the coefficients.

4.3.1. Lognormal distribution for ℎ𝑐∕𝐻𝑚0
In this section, the parameters of the Lognormal distribution to

describe ℎ𝑐∕𝐻𝑚0, denoted here as 𝜇ℎ and 𝜎ℎ, are studied. Fig. 17 in
Appendix A.2 presents the influence of the explanatory variables on
the parameter 𝜇ℎ. A linear relationship is observed between 𝜇ℎ and the
explanatory variables. Thus, Eq. (4) is proposed to estimate 𝜇ℎ.

𝜇ℎ = 𝐴1 𝑚 + 𝐴2

(

𝑅𝑐
𝐻𝑚0

)

+ 𝐴3𝑠−1,0 + 𝐴4
ℎ𝑠
𝐻𝑚0

+ 𝐴5 (4)

where 𝐴1, 𝐴2, 𝐴3, 𝐴4 and 𝐴5 are coefficients to be fitted. Following
ethodology in 4.3, all variables were found significant with 𝐴1 =

−13, 𝐴2 = −0.2, 𝐴3 = −13, 𝐴4 = 0.5 and 𝐴5 = −1.6. Note that the
igher the 𝜇ℎ, the higher the predicted values of ℎ𝑐∕𝐻𝑚0. Therefore,
ccording to Eq. (4), the lower the 𝑚, the 𝑅𝑐∕𝐻𝑚0 or the 𝑠−1,0, the
igher the ℎ𝑐∕𝐻𝑚0, in accordance with Mares-Nasarre et al. (2020a,

2021). On the other hand, deeper waters (higher ℎ𝑠∕𝐻𝑚0) lead to higher
predicted ℎ𝑐∕𝐻𝑚0. The validity ranges for Eq. (4) are 0.02 ≤ 𝑚 ≤ 0.04,
.35 ≤ 𝑅𝑐∕𝐻𝑚0 ≤ 1.73, 0.015 ≤ 𝑠−1,0 ≤ 0.057, 1.27 ≤ ℎ𝑠∕𝐻𝑚0 ≤ 3.24 and
2.33 ≤ 𝜇ℎ ≤ −0.92. The performance of the formula is reasonable with
2 = 0.59 in the testing subset. Fig. 8 presents the comparison between

he observed and estimated 𝜇ℎ using the fitted Eq. (4), as well as the

0% error band.
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Fig. 8. Comparison between the observed and estimated 𝜇ℎ using Eq. (4) with 𝐴1 =
−13, 𝐴2 = −0.2, 𝐴3 = −13, 𝐴4 = 0.5 and 𝐴5 = −1.6.

Assuming a Gaussian error distribution, the 90% error band is given
by

𝜇ℎ
|

|

|

|

|

95%

5%
= 𝜇ℎ ± 1.64

√

𝑣𝑎𝑟(𝜀) = 𝜇ℎ ± 0.29 (5)

Fig. 18 in Appendix A.2 presents the influence of the explanatory
variables defined in Section 2.4 on the parameter 𝜎ℎ. No clear shape of
the dependence between 𝜎ℎ and the explanatory variables is observed,
so a linear relationship proposed in Eq. (6).

𝜎ℎ = 𝐵1 𝑚 + 𝐵2

(

𝑅𝑐
𝐻𝑚0

)

+ 𝐵3𝑠−1,0 + 𝐵4
ℎ𝑠
𝐻𝑚0

+ 𝐵5 (6)

where 𝐵1, 𝐵2, 𝐵3, 𝐵4 and 𝐵5 are coefficients to be fitted. 𝑚 was not
found significant, so 𝐵1 = 0, 𝐵2 = −0.07, 𝐵3 = −1.2, 𝐵4 = −0.06 and
𝐵5 = 0.53. Note that the higher the 𝜎ℎ, the wider the distribution of
ℎ𝑐∕𝐻𝑚0 and the longer the tail, so higher values of ℎ𝑐∕𝐻𝑚0 become
more likely. Therefore, the lower the 𝑅𝑐∕𝐻𝑚0, the 𝑠−1,0 and ℎ𝑠∕𝐻𝑚0
(shallower waters), the higher probability of observing extreme values
of ℎ𝑐∕𝐻𝑚0. The experimental ranges for Eq. (6) are 0.35 ≤ 𝑅𝑐∕𝐻𝑚0 ≤
1.73, 0.015 ≤ 𝑠−1,0 ≤ 0.057, 1.27 ≤ ℎ𝑠∕𝐻𝑚0 ≤ 3.24 and 0.17 ≤ 𝜎ℎ ≤ 0.48.
The developed formula presents a reasonable performance with 𝑅2 =
0.30 in the testing subset. Fig. 9 compares the observed and estimated
𝜎ℎ using the fitted Eq. (6). The 90% error band is also presented.

Assuming a Gaussian error distribution, the 90% error band is
computed as

𝜎ℎ
|

|

|

|

|

95%

5%
= 𝜎ℎ ± 0.075 (7)

4.3.2. Lognormal distribution for 𝑢𝑐∕
√

𝑔𝐻𝑚0
Parameters of the Lognormal distribution to describe 𝑢𝑐∕

√

𝑔𝐻𝑚0,
denoted here as 𝜇𝑢 and 𝜎𝑢, are analyzed. The variability of 𝜇𝑢 was very
low, with a mean value of −1.485 and a standard deviation of 0.104.
Moreover, no clear influence of the explanatory variables was found
on the parameters 𝜇𝑢, as shown in Figs. 19 and 20 in Appendix A.2.
Consequently, 𝜇𝑢 = −1.5 is recommended here.

Fig. 21 in Appendix A.2 shows the influence of the explanatory
variables on the parameter 𝜎𝑢. No clear influence of 𝑠−1,0, 𝑅𝑐∕𝐻𝑚0 or 𝑚
is observed on 𝜎𝑢, while a negative linear relationship between ℎ𝑠∕𝐻𝑚0
and 𝜎𝑢 is observed. Thus, Eq. (8) is proposed to predict 𝜎𝑢.

𝜎𝑢 = 𝐶1 𝑚 + 𝐶2

(

𝑅𝑐
)

+ 𝐶3𝑠−1,0 + 𝐶4
ℎ𝑠 + 𝐶5 (8)
7

𝐻𝑚0 𝐻𝑚0
Fig. 9. Comparison between the observed and estimated 𝜎ℎ using Eq. (6) with 𝐵1 =
0, 𝐵2 = −0.07, 𝐵3 = −1.2, 𝐵4 = −0.06 and 𝐵5 = 0.53.

Fig. 10. Comparison between the observed and estimated 𝜎𝑢 using Eq. (8) with 𝐶1 =
0, 𝐶2 = 0.03, 𝐶3 = 0, 𝐶4 = −0.05 and 𝐶5 = 0.33.

where 𝐶1, 𝐶2, 𝐶3, 𝐶4 and 𝐶5 are coefficients to be fitted. Only 𝑅𝑐∕𝐻𝑚0
and ℎ𝑠∕𝐻𝑚0 were found significant, so 𝐶1 = 0, 𝐶2 = 0.03, 𝐶3 = 0,
𝐶4 = −0.05 and 𝐶5 = 0.33. Note that the higher the 𝜎𝑢, the wider
the distribution of 𝑢𝑐∕

√

𝑔𝐻𝑚0, so the longer the tail and higher values
of 𝑢𝑐∕

√

𝑔𝐻𝑚0 become more likely. Therefore, the higher 𝑅𝑐∕𝐻𝑚0 and
the shallower waters (lower ℎ𝑠∕𝐻𝑚0), the wider the distribution of
𝑢𝑐∕

√

𝑔𝐻𝑚0 and, thus, higher extremes of 𝑢𝑐∕
√

𝑔𝐻𝑚0 are expected. The
validity ranges for Eq. (8) are 0.35 ≤ 𝑅𝑐∕𝐻𝑚0 ≤ 1.73, 1.27 ≤ ℎ𝑠∕𝐻𝑚0 ≤
3.24 and 0.17 ≤ 𝜎𝑢 ≤ 0.36. The proposed formula presents a reasonable
performance with 𝑅2 = 0.18 in the testing subset. Fig. 10 compares the
observed and estimated 𝜎𝑢 using the fitted Eq. (8). The 90% error band
is also presented.

Assuming a Gaussian error distribution, the 90% error band can be
estimated as

𝜎𝑢
|

|

|

95%
= 𝜎𝑢 ± 0.06 (9)
|

|

5%
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Fig. 11. Comparison between the observed and estimated 𝜇𝑉 using Eq. (10) with 𝐷1
= 0, 𝐷2 = 0.6, 𝐷3 = −30, 𝐷4 = 0 and 𝐷5 = −1.5.

4.3.3. Lognormal distribution for 𝑉 ∕𝐻2
𝑚0

In this section, predictors for the parameters of the Lognormal dis-
tribution to describe 𝑉 ∕𝐻2

𝑚0, denoted here as 𝜇𝑉 and 𝜎𝑉 , are derived.
Fig. 22 in Appendix A.2 presents the influence of the explanatory
variables defined in Section 2.4 on the parameter 𝜇𝑉 . It is shown how
lower values of 𝑠−1,0 lead to higher values of 𝜇𝑉 . Also, a negative power
law between 𝑅𝑐∕𝐻𝑚0 and 𝜇𝑉 is observed. Thus, Eq. (10) is proposed to
predict 𝜇𝑉 .

𝜇𝑉 = 𝐷1 𝑚 +𝐷2

(

𝑅𝑐
𝐻𝑚0

)−1
+𝐷3𝑠−1,0 +𝐷4

ℎ𝑠
𝐻𝑚0

+𝐷5 (10)

where 𝐷1, 𝐷2, 𝐷3, 𝐷4 and 𝐷5 are coefficients to be fitted. 𝑚 was found
not relevant, in accordance with previous studies (Mares-Nasarre et al.,
2020b), together with ℎ𝑠∕𝐻𝑚0. Therefore, 𝐷1 = 0, 𝐷2 = 0.6, 𝐷3 = −30,
𝐷4 = 0 and 𝐷5 = −1.5. Note that the higher the 𝜇𝑉 , the higher the
predicted values of 𝑉 ∕𝐻2

𝑚0. Thus, the higher the 𝑠−1,0 and the lower
the 𝑅𝑐∕𝐻𝑚0, the higher the 𝑉 ∕𝐻2

𝑚0. This is in agreement with previous
studies such as Molines and Medina (2016) or Koosheh et al. (2021).
The experimental ranges for Eq. (10) are 0.35 ≤ 𝑅𝑐∕𝐻𝑚0 ≤ 1.73,
0.015 ≤ 𝑠−1,0 ≤ 0.057 and −3.05 ≤ 𝜇𝑉 ≤ 0.05. The developed formula
presents a good performance with 𝑅2 = 0.62 in the testing subset.
Fig. 11 presents the comparison between the observed and estimated
𝜇𝑉 using the fitted Eq. (10), as well as the 90% error band.

Assuming a Gaussian error distribution, the 90% error band can be
estimated as

𝜇𝑉
|

|

|

|

|

95%

5%
= 𝜇𝑉 ± 0.84 (11)

Fig. 23 in Appendix A.2 presents the influence of the explanatory
variables in Section 2.4 on the parameter 𝜎𝑉 . No clear relationship
was observed between 𝜎𝑉 and the explanatory variables, so Eq. (12)
is proposed for its prediction.

𝜎𝑉 = 𝐸1 𝑚 + 𝐸2

(

𝑅𝑐
𝐻𝑚0

)

+ 𝐸3𝑠−1,0 + 𝐸4
ℎ𝑠
𝐻𝑚0

+ 𝐸5 (12)

where 𝐸1, 𝐸2, 𝐸3, 𝐸4 and 𝐸5 are coefficients to be fitted. ℎ𝑠∕𝐻𝑚0 was
found not relevant, so 𝐸1 = -8, 𝐸2 = −0.2, 𝐸3 = −6, 𝐸4 = 0 and
𝐸5 = 1.6. This result points out that wave breaking may not have a
major influence on the distribution of the individual wave overtopping
volumes, as found in Mares-Nasarre et al. (2020b). Note that the higher
the 𝜎𝑉 , the wider the distribution, so higher values of 𝑉 ∕𝐻2

𝑚0 become
more likely. Therefore, according to Eq. (12), lower values of 𝑠−1,0
and 𝑅 ∕𝐻 lead to higher values of 𝜎 and, thus, the more likely
8

𝑐 𝑚0 𝑉
Fig. 12. Comparison between the observed and estimated 𝜎𝑉 using Eq. (12) with 𝐸1
= −8, 𝐸2 = −0.2, 𝐸3 = −6, 𝐸4 = 0 and 𝐸5 = 1.6.

the extreme values of 𝑉 ∕𝐻2
𝑚0. These observations are in agreement

with previous literature (Molines and Medina, 2016; Koosheh et al.,
2021). The experimental ranges for Eq. (12) are 0.02 ≤ 𝑚 ≤ 0.04,
0.35 ≤ 𝑅𝑐∕𝐻𝑚0 ≤ 1.73, 0.015 ≤ 𝑠−1,0 ≤ 0.057 and 0.40 ≤ 𝜎𝑉 ≤ 1.39. The
developed formula presents a reasonable performance with 𝑅2 = 0.35
in the testing subset. Fig. 12 compares the observed and estimated 𝜎𝑉
using the fitted Eq. (12). The 90% error band is also shown.

Assuming a Gaussian error distribution, the 90% error band is given
by

𝜎𝑉
|

|

|

|

|

95%

5%
= 𝜇𝑉 ± 0.30 (13)

4.4. Marginal distributions performance

Once the marginal distributions ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕
√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0 are

defined and their parameters are fitted, the overall performance of
the models is assessed here. To do so, the observed quantiles ℎ𝑐∕𝐻𝑚0,
𝑢𝑐∕

√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0 are compared to the predicted quantiles using

the models developed in the previous sections. A satisfactory perfor-
mance of the proposed distributions is observed with 0.67 ≤ 𝑅2 ≤ 0.78.
As an example, the comparison between the measured and estimated
quantiles of 𝑉 ∕𝐻2

𝑚0 is shown in Fig. 13. Note that Fig. 13 is displayed in
logarithmic scale and that each color in the plots represent a different
test. In Appendix A.3, the comparison between the measured and
predicted quantiles for ℎ𝑐∕𝐻𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0 is shown in Figs. 24 and
25. Also, 90% error bands are shown in Figs. 24, 25 and 13.

The 90% error band for ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕
√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0 is calcu-

lated following the methodology in Herrera and Medina (2015). A
Gaussian error distribution of the error (𝜀) is assumed, with 0 mean
and the variances given by

𝑣𝑎𝑟(𝜀ℎ) = 0.03(ℎ𝑐∕𝐻𝑚0)2 (14)

𝑣𝑎𝑟(𝜀𝑢) = 0.017(𝑢𝑐∕
√

𝑔𝐻𝑚0)2 (15)

𝑣𝑎𝑟(𝜀𝑉 ) = 0.15(𝑉 ∕𝐻2
𝑚0)

2 (16)

Thus, the 90% error bands are computed as

ℎ𝑐∕𝐻𝑚0

|

|

|

95%
= ℎ𝑐∕𝐻𝑚0 ± 1.64

√

0.03(ℎ𝑐∕𝐻𝑚0)2 (17)

|

|

5%
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Fig. 13. Comparison between the measured and estimated 𝑉 ∕𝐻2
𝑚0 marginal distri-

butions with Lognormal distribution in Eq. (3) and parameters in Eqs. (10) and
(12).

Table 4
Best fit copulas for all pairs with significant rank correlation.
Copula Gaussian Frank Clayton Gumbel Other

ℎ𝑐∕𝐻𝑚0 − 𝑢𝑐∕
√

𝑔𝐻𝑚0 8 2 6 6 4
ℎ𝑐∕𝐻𝑚0 − 𝑉 ∕𝐻2

𝑚0 18 11 23 18 6
𝑉 ∕𝐻2

𝑚0 − 𝑢𝑐∕
√

𝑔𝐻𝑚0 0 4 8 11 0

𝑢𝑐∕
√

𝑔𝐻𝑚0

|

|

|

|

|

95%

5%
= 𝑢𝑐∕

√

𝑔𝐻𝑚0 ± 1.64
√

0.017(𝑢𝑐∕
√

𝑔𝐻𝑚0)2 (18)

𝑉 ∕𝐻2
𝑚0

|

|

|

|

|

95%

5%
= 𝑉 ∕𝐻2

𝑚0 ± 1.64
√

0.15(𝑉 ∕𝐻2
𝑚0)

2 (19)

5. Copula model

5.1. Copula selection

In this section, the bivariate copulas which better model the de-
pendence between ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕

√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0 are identified. It

should be noted that only those tests with at least 20 observations and
a significant 𝑟 (see Eq. (25)) are considered; 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 < 0.05 indicate
a significant 𝑟. Figs. 26 and 27 in Appendix B.1 present the values of 𝑟,
as well as their associated 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠.

As explained in 3.2, for each test and pair of variables, the fol-
lowing copula families are compared: (1) Gaussian, (2) Frank, (3)
Clayton, (4) Gumbel, and (5) the best fitting copula in terms of 𝐴𝐼𝐶
within those included in the R-library VineCopula by Nagler et al.
(2022). Those copulas are compared using Cramer–von-Mises statistic
and semi-correlations. Further information about the selection proce-
dure is given in 3.2. Table 4 summarizes the copulas selected for each
pair of variables.

In most cases, the best fit for ℎ𝑐∕𝐻𝑚0−𝑢𝑐∕
√

𝑔𝐻𝑚0 was the Gaussian
copula. Moreover, no clear tail dependence was observed, so the Gaus-
sian copula is an appropriate model. For the pair ℎ𝑐∕𝐻𝑚0 − 𝑉 ∕𝐻2

𝑚0,
the best fit in most tests is the Clayton copula. In addition, 3 out of
the 6 other copulas lead to the Survival Gumbel, which also presents
a lower tail dependence. Finally, the best fit for the pair 𝑉 ∕𝐻2

𝑚0 −
𝑢𝑐∕

√

𝑔𝐻𝑚0 was the Gumbel copula. Equations for the selected copulas
are given in B.2. Note that for the selected copula models it holds that
𝐶{𝐹𝑋1

(𝑥1), 𝐺𝑋2
(𝑥2)} = 𝐶{𝐺𝑋2

(𝑥2), 𝐹𝑋1
(𝑥1)}.

Tables 9–11 in Appendix B.3 show the fitting results divided by
armor element. It is shown how Gaussian and Gumbel copulas are again
9

Table 5
P-values for the two-samples Kolmogorov–Smirnov test applied to the parameters of
the copulas.

Gaussian Clayton Gumbel

Parameter 𝜌ℎ𝑢 𝛿ℎ𝑉 𝜃𝑉 𝑢
Cubes vs. Cubipod® 0.83 0.99 0.16

the best fit for the pairs ℎ𝑐∕𝐻𝑚0 − 𝑢𝑐∕
√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0 − 𝑢𝑐∕

√

𝑔𝐻𝑚0,
respectively, independently of the armor. Regarding the pair ℎ𝑐∕𝐻𝑚0 −
𝑉 ∕𝐻2

𝑚0, the selected Clayton copula is the best fit for the single-
layer Cubipod®armor data and the second best for the double-layer
randomly-placed cube armor data. Only 6 tests are available for rock
armors. Consequently, it is considered that no significant differences in
the copula selection arise from the different armors.

5.2. Copula fitting

Once best fitting copulas for each pair of variables are selected,
the selected copula for each variable is fitted using MLE and the fitted
parameters are analyzed.

Similarly to Section 4.2, the existence of significant differences
between the parameters for the different armor elements is assessed
using the two-samples Kolmogorov–Smirnov test (Kolmogorov, 1933;
Smirnov, 1948). Again, the comparison is performed between the
single-layer Cubipod®-armored and the double-layer randomly-placed
cube-armored models, since few tests of the double-layer randomly-
placed rock-armored model present a sufficient number of observations.
As shown in Table 5, no significant differences were observed.

5.2.1. Gaussian copula for ℎ𝑐∕𝐻𝑚0 and 𝑢𝑐∕
√

𝑔𝐻𝑚0
In this section, the parameter of the Gaussian copula to describe the

dependence structure of the pair ℎ𝑐∕𝐻𝑚0 and 𝑢𝑐∕
√

𝑔𝐻𝑚0, denoted here
as 𝜌ℎ𝑢, is analyzed. Fig. 28 presents the influence of the explanatory
variables defined in Section 2.4 on the parameter 𝜌ℎ𝑢. Eq. (20) is
proposed to explain 𝜌ℎ𝑢.

𝜌ℎ𝑢 = 𝐺1𝑚 + 𝐺2

(

𝑅𝑐
𝐻𝑚0

)

+ 𝐺3𝑠−1,0 + 𝐺4
ℎ𝑠
𝐻𝑚0

+ 𝐺5 (20)

where 𝐺1, 𝐺2, 𝐺3, 𝐺4 and 𝐺5 are coefficients to be fitted. Data is
randomly divided into a training (70% data), and a test subset (30%
data). Linear regression is performed with Eq. (20) and the data on the
training subset to determine which variables are significant, as well as
to fit the coefficients. As expected, only ℎ𝑠∕𝐻𝑚0 was found significant,
so 𝐺1 = 0, 𝐺2 = 0, 𝐺3 = 0, 𝐺4 = 0.22 and 𝐺5 = 0. Thus, deeper
water (higher ℎ𝑠∕𝐻𝑚0) leads to higher correlation between ℎ𝑐∕𝐻𝑚0 and
𝑢𝑐∕

√

𝑔𝐻𝑚0. The experimental ranges for Eq. (20) are 1.27 ≤ ℎ𝑠∕𝐻𝑚0 ≤
2.77 and 0.23 ≤ 𝜌ℎ𝑢 ≤ 0.72. Note that only experiments with a significant
𝑟 were included in the bivariate analysis, as explain in Section 5.1.
The performance of the formula is reasonable with 𝑅2 = 0.52 in the
testing subset. Fig. 14 presents the comparison between the observed
and estimated 𝜌ℎ𝑢 using the fitted Eq. (20), as well as the 90% error
band.

Assuming a Gaussian error distribution, the 90% error band is given
by

𝜌ℎ𝑢
|

|

|

|

|

95%

5%
= 𝜇ℎ ± 0.18 (21)

5.2.2. Clayton copula for ℎ𝑐∕𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0

Here, the parameter of the Clayton copula to model the dependence
of the pair ℎ𝑐∕𝐻𝑚0 and 𝑉 ∕𝐻2

𝑚0, denoted here as 𝛿ℎ𝑉 , is analyzed. No
clear influence of the explanatory variables on 𝛿ℎ𝑉 was found, as shown
in Fig. 29 in Appendix B.4. Therefore, 𝛿ℎ𝑉 = 0.8 was suggested. Note
that this means that a constant value of the correlation between ℎ𝑐∕𝐻𝑚0
and 𝑉 ∕𝐻2

𝑚0 can be assumed. This is valid within the experimental
ranges 0.02 ≤ 𝑚 ≤ 0.04, 0.34 ≤ 𝑅𝑐∕𝐻𝑚0 ≤ 1.25, 0.015 ≤ 𝑠−1,0 ≤ 0.057
and 1.28 ≤ ℎ ∕𝐻 ≤ 3.24.
𝑠 𝑚0
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Fig. 14. Comparison between the observed and estimated 𝜌ℎ𝑢 using Eq. (20) with 𝐺1
= 0, 𝐺2 = 0, 𝐺3 = 0, 𝐺4 = 0.21 and 𝐺5 = 0.

5.2.3. Gumbel copula for 𝑉 ∕𝐻2
𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0
Here, the parameter of the Gumbel copula used to describe the

dependence between the pair 𝑉 ∕𝐻2
𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0, denoted here
as 𝜃𝑉 𝑢, is analyzed. No clear influence of the explanatory variables
on 𝜃𝑉 𝑢 was observed, as displayed in Fig. 30 in Appendix B.4. Thus,
𝜃𝑉 𝑢 = 1.2 was suggested here. Note that this means that a constant
value of the rank correlation between 𝑉 ∕𝐻2

𝑚0 and 𝑢𝑐∕
√

𝑔𝐻𝑚0 can be
assumed. Its validity ranges are 0.02 ≤ 𝑚 ≤ 0.04, 0.34 ≤ 𝑅𝑐∕𝐻𝑚0 ≤ 0.85,
0.015 ≤ 𝑠−1,0 ≤ 0.048 and 1.27 ≤ ℎ𝑠∕𝐻𝑚0 ≤ 2.49.

5.3. Copula performance

Once the copula models for the pairs ℎ𝑐∕𝐻𝑚0 and 𝑢𝑐∕
√

𝑔𝐻𝑚0,
ℎ𝑐∕𝐻𝑚0 and 𝑉 ∕𝐻2

𝑚0 and 𝑉 ∕𝐻2
𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0 are selected and their
parameters are fitted, the overall performance of the models is assessed
here. To do so, the empirical joint non-exceedance probabilities for the
observed values of ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕

√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0 are compared to

the non-exceedance probabilities computed with the developed prob-
abilistic models in the previous sections. A satisfactory performance
is observed with 0.97 ≤ 𝑅2 ≤ 0.98. As an example, the comparison
between the observed and estimated joint non-exceedance probabilities
the pair ℎ𝑐∕𝐻𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0 is shown in Fig. 15. In Appendix B.5,
the comparison for the pairs ℎ𝑐∕𝐻𝑚0 and 𝑉 ∕𝐻2

𝑚0 and 𝑉 ∕𝐻2
𝑚0 and

𝑢𝑐∕
√

𝑔𝐻𝑚0 is presented in Figs. 31 and 32, respectively. Also, 90% error
bands are presented. The 90% error bands are computed similarly to
previous sections, so they are given by

𝑃 [ℎ𝑐∕𝐻𝑚0 ≤ ℎ, 𝑢𝑐∕
√

𝑔𝐻𝑚0 ≤ 𝑢]
|

|

|

|

|

95%

5%
=

𝑃 [ℎ𝑐∕𝐻𝑚0 ≤ ℎ, 𝑢𝑐∕
√

𝑔𝐻𝑚0 ≤ 𝑢] ± 0.05
(22)

𝑃 [ℎ𝑐∕𝐻𝑚0 ≤ ℎ, 𝑉 ∕𝐻2
𝑚0 ≤ 𝑣]

|

|

|

|

|

95%

5%
=

𝑃 [ℎ𝑐∕𝐻𝑚0 ≤ ℎ, 𝑉 ∕𝐻2
𝑚0 ≤ 𝑣] ± 0.05

(23)

𝑃 [𝑉 ∕𝐻2
𝑚0 ≤ 𝑣, 𝑢𝑐∕

√

𝑔𝐻𝑚0 ≤ 𝑢]
|

|

|

|

|

95%

5%
=

𝑃 [𝑉 ∕𝐻2
𝑚0 ≤ 𝑣, 𝑢𝑐∕

√

𝑔𝐻𝑚0 ≤ 𝑢] ± 0.05
(24)

6. Example of application and recommendations of use

In this section, an example is given on how to apply the developed
probabilistic model to better design the crest level of a mound breakwa-
ter. The following methodology is illustrated in Fig. 1. Here, a mound
10
Fig. 15. Comparison between the observed and estimated non-exceedance joint
probabilities for the pair ℎ𝑐∕𝐻𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0.

Fig. 16. Exceedance probability plot for the predicted marginal distributions of ℎ𝑐∕𝐻𝑚0,
𝑢𝑐∕

√

𝑔𝐻𝑚0, and 𝑉 ∕𝐻2
𝑚0.

breakwater placed on a gentle sea bottom (𝑚 = 0.02) is considered,
facing a storm that can be characterized by 𝐻𝑚0 = 5 m and 𝑇𝑚−1,0 = 10
s, so 𝑠−1,0 = 0.032. The structure is placed at ℎ𝑠 = 7.5 m, and presents
a 𝑅𝑐 = 4 m, so ℎ𝑠∕𝐻𝑚0 = 1.5 and 𝑅𝑐∕𝐻𝑚0 = 0.8.

Applying the results in Section 4.3, the marginal distributions of
ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕

√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0 are modeled by Lognormal distribu-

tions with parameters 𝜇ℎ = −1.69 and 𝜎ℎ = 0.35, 𝜇𝑢 = −1.5 and 𝜎𝑢 =
0.28, and 𝜇𝑉 = −1.71 and 𝜎𝑉 = 1.09, respectively. Fig. 16 shows the
exceedance probability plots of the predicted marginals.

Different tolerability limits for ℎ𝑐 , 𝑢𝑐 and 𝑉 can be found in lit-
erature (e.g., Geeraerts et al., 2007; Bae et al., 2016), which need to
be carefully selected for each location. In order to illustrate the use
of the model, the following tolerability limits are selected: ℎ𝑐 = 1 m,
𝑢𝑐 = 2 m∕s and 𝑉 = 2 ⋅ 103 l∕m. Thus, ℎ𝑐∕𝐻𝑚0 = 0.2, 𝑢𝑐∕

√

𝑔𝐻𝑚0 =
0.29 and 𝑉 ∕𝐻2

𝑚0 = 0.08. These values correspond to univariate ex-
ceedance probabilities of 0.41, 0.19 and 0.77, respectively. Thus, for
the considered limits and boundary conditions, the tolerability limit
for 𝑉 ∕𝐻2

𝑚0 = 0.08 is the most restrictive since it is the most likely to
be exceeded. It should be noted that this reasoning is possible since
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the same axiomatic probability is used for the three studied variables,
different from previous literature.

In order to assess the safety of the structure against the overtop-
ping failure mode, the probability of not fulfilling at least one of the
tolerability limits needs to be computed. This can be done assuming
the independence between the variables (only marginal distributions
needed) or accounting for the dependence between the variables (both
marginal distributions and dependence model needed). Here, the prob-
ability of not fulfilling at least one of the limits is computed under and
without the independence assumption to compare the results later on.

In order to compute the joint exceedance probability of the tolera-
bility limits, the following use of the developed model is recommended.
Each bivariate copula models the joint probabilities of two variables.
Thus, using only two out of the three copula models is enough to
calculate the joint probability of the three variables (𝑋1−𝑋2−𝑋3). Here,
it is recommended to use the Clayton copula for ℎ𝑐∕𝐻𝑚0 and 𝑉 ∕𝐻2

𝑚0 in
ection 5.2.2 with 𝛿ℎ𝑉 = 0.8 and the Gumbel copula for 𝑉 ∕𝐻2

𝑚0 and
𝑐∕
√

𝑔𝐻𝑚0 in Section 5.2.3 with 𝜃𝑉 𝑢 = 1.2. This is because Clayton
nd Gumbel copulas present tail dependence, while the Gaussian copula
elected for the pair ℎ𝑐∕𝐻𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0 is the most generic model.
hus, it is suggested here to ensure that the tail dependence is included

n the predictions while the generic dependence is left to the inference
etween the other two. Note that this proposal resembles a one-tree
ine-copula, which assumes the conditional independence between the
ariables (for further information the reader is referred to Czado,
019).

Here, an algorithm to calculate the joint probabilities using the
escribed model following a Monte Carlo approach is recommended.
owever, this could also be done by numerical integration. The sug-
ested algorithm is as follows:

1. The tolerability limits of the variables are transformed to unity
space using the marginal distributions: ℎ𝑙𝑖𝑚 = 0.59, 𝑢𝑙𝑖𝑚 = 0.81
and 𝑉𝑙𝑖𝑚 = 0.23.

2. Three random samples of size 𝑁 in [0, 1] are drawn from a
uniform distribution, denoted as 𝑆1, 𝑆2 and 𝑆3. Here, 𝑁 = 5000
is used to illustrate the process.

3. 𝑆1 represent random samples of ℎ𝑐 , while 𝑆2 represent the
conditional probabilities 𝐹 (𝑉 |ℎ𝑐 ). Therefore, the values of 𝑉
corresponding to 𝑆1 and 𝑆2 (𝑆𝑉 ) can be computed using the
inverse of the conditional distribution function of the Clayton
copula. The inverse conditional distribution functions for differ-
ent copula families can be found in Aas et al. (2009) denoted as
the inverse of the h-functions.

4. 𝑆3 represent the conditional probabilities 𝐹 (𝑢𝑐 |𝑉 ). Then, the
samples of 𝑢𝑐 (𝑆𝑢) are computed using the inverse of the con-
ditional distribution function of the Gumbel copula with 𝑆3 and
𝑆𝑉 .

5. 𝑆1 = 𝑆ℎ, 𝑆𝑢 and 𝑆𝑉 are random samples in unity space of
ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕

√

𝑔𝐻𝑚0, and 𝑉 ∕𝐻2
𝑚0 which account for the depen-

dence between them. The number of samples which do not fulfill
at least one of the three tolerability limits (ℎ𝑙𝑖𝑚, 𝑢𝑙𝑖𝑚 and 𝑉𝑙𝑖𝑚)
defined in Step 1 is counted, 𝑁𝑓 .

6. The probability of not fulfilling at least one tolerability limit
is then computed as 𝑃 [ℎ𝑐∕𝐻𝑚0 > ℎ𝑙𝑖𝑚 𝑂𝑅 𝑢𝑐∕

√

𝑔𝐻𝑚0 > 𝑢𝑙𝑖𝑚
𝑂𝑅 𝑉 ∕𝐻2

𝑚0 > 𝑉𝑙𝑖𝑚] = 𝑁𝑓∕𝑁 .

Using the described procedure, the 𝑃 [ℎ𝑐∕𝐻𝑚0 > ℎ𝑙𝑖𝑚 𝑂𝑅 𝑢𝑐∕
√

𝑔𝐻𝑚0 > 𝑢𝑙𝑖𝑚 𝑂𝑅 𝑉 ∕𝐻2
𝑚0 > 𝑉𝑙𝑖𝑚] = 0.83. If the dependence between the

ariables is neglected and, thus, independence between the variables
s assumed 𝑃 [ℎ𝑐∕𝐻𝑚0 > ℎ𝑙𝑖𝑚 𝑂𝑅 𝑢𝑐∕

√

𝑔𝐻𝑚0 > 𝑢𝑙𝑖𝑚 𝑂𝑅 𝑉 ∕𝐻2
𝑚0 >

𝑙𝑖𝑚] = 0.89. Thus, if dependence between the variables is considered,
he obtained probability of failure against overtopping is lower, giv-
ng room for optimizing the structure. A lower crest freeboard can
e then designed and, thus, less visual and environmental impacts
lower material consumption) are derived from the mound breakwater
11

onstruction. c
This section has shown one example of application of the developed
odel, although there are others. For instance, if the value of one

ariable is known, the conditionalized distribution of the other two
iven this observation can be computed, giving insight into the physical
nteraction between them.

. Conclusions and recommendations

Consequences of climate change, namely sea level rise and stronger
ave conditions, and the social pressure to diminish the visual impact
f coastal structures lead to an increase of the overtopping hazard on
oastal structures. Safety of coastal structures against overtopping can
e assessed through the hydrodynamic variables which describe the in-
ividual wave overtopping events: the overtopping layer thickness (ℎ𝑐),
he overtopping flow velocity (𝑢𝑐) and the individual wave overtopping

volume (𝑉 ). Models in the literature to characterize those variables
present several limitations, since they are deterministic and/or they
involve a chain of subsequent estimations leading to accumulated er-
rors. Moreover, they do not allow to compute the probability if criteria
are set to more than one of the overtopping variables (OR probability),
since they do not account for the dependence between them.

In this study, a probabilistic model based on bivariate copulas is
proposed to describe the joint probability distribution of ℎ𝑐 , 𝑢𝑐 and
𝑉 and, thus, account for the dependence between them. This model
was built using experimental data from Mares-Nasarre et al. (2021).
Tests were performed with relatively deep water to depth-limited wave
conditions (1.25 ≤ ℎ𝑠∕𝐻𝑚0 ≤ 5.00), with two mild bottom slopes
(𝑚 = 2% and 4%) and a wide range of dimensionless crest freeboards
(0.33 ≤ 𝑅𝑐∕𝐻𝑚0 ≤ 3.20).

Lognormal distribution functions are proposed to describe the uni-
variate uncertainty of each variable. The parameters of those distri-
butions can be predicted based on wave characteristics, the structure
crest freeboard and the water depth at the toe of the breakwater, as
shown in Eqs. (4), (6), (8), (10), and (12). A satisfactory performance
of the proposed distributions is obtained for the three variables with
0.67 ≤ 𝑅2 ≤ 0.78 (see Figs. 13, 24 and 25).

The bivariate dependence between the variables is described
through bivariate copulas. Gaussian, Clayton and Gumbel copulas are
recommended for the pairs ℎ𝑐∕𝐻𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0, ℎ𝑠∕𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0

and 𝑉 ∕𝐻2
𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0, respectively. Eq. (20) is recommended to
estimate the parameter of the Gaussian copula, which only depends on
ℎ𝑠∕𝐻𝑚0. Constant values of 𝛿ℎ𝑉 = 0.8 and 𝜃𝑉 𝑢 = 1.2 are recommended
for Clayton and Gumbel copulas, respectively. A satisfactory prediction
of the joint non-exceedance probabilities or the three variables is
obtained with 0.97 ≤ 𝑅2 ≤ 0.98 (see Figs. 15, 31 and 32).

Finally, the use of the proposed model is illustrated to estimate
the probability of fulfilling at least one tolerability limit of the three
variables (OR probability). This is, the proposed model allows for
the computation of the probability of functional failure of a mound
breakwater due to overtopping. A one-tree vine-copula model is rec-
ommended using the Clayton and Gumbel copulas for the pairs ℎ𝑠∕𝐻𝑚0
and 𝑉 ∕𝐻2

𝑚0 and 𝑉 ∕𝐻2
𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0, respectively.
The OR probability is computed both considering the dependence

nd assuming independence between the variables and a significant dif-
erence is obtained. Therefore, it can be concluded that by accounting
or the multivariate dependence between the variables, it is possible to
educe the crest freeboard and, thus, the material consumption. Thus,
he use of the proposed model allows for a more economic design
ithin the required safety level.

The expressions proposed in this study are valid within the exper-
mental ranges that are given together with each derived equation.
herefore, checking their validity out of the experimental ranges of this
tudy is encouraged, also considering the possible influence of crest
alls, berms, and different armor layers and slopes. Moreover, since

his study is motivated by climate change adaptation to overtopping
azard, a study where the methodology is used to account for possible
limate scenarios is recommended.
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Table 6
Number of tests where each marginal distribution function provided the best fit for
those tests performed with a double-layer randomly-placed cube-armored model.
Distr. Gamma Logn. Norm. Expon. GEV Rayl.

ℎ𝑐∕𝐻𝑚0 21 22 12 0 7 0
𝑢𝑐∕

√

𝑔𝐻𝑚0 15 33 6 0 8 0
𝑉 ∕𝐻2

𝑚0 6 31 0 16 7 2

Table 7
Number of tests where each marginal distribution function provided the best fit for
those tests performed with a single-layer Cubipod®-armored model.
Distr. Gamma Logn. Norm. Expon. GEV Rayl.

ℎ𝑐∕𝐻𝑚0 21 12 8 0 9 0
𝑢𝑐∕

√

𝑔𝐻𝑚0 13 24 2 0 8 0
𝑉 ∕𝐻2

𝑚0 11 17 0 14 3 2

Table 8
Number of tests where each marginal distribution function provided the best fit for
those tests performed with a double-layer randomly-placed rock-armored model.
Distr. Gamma Logn. Norm. Expon. GEV Rayl.

ℎ𝑐∕𝐻𝑚0 3 2 3 0 1 0
𝑢𝑐∕

√

𝑔𝐻𝑚0 0 8 0 0 1 0
𝑉 ∕𝐻2

𝑚0 0 2 0 1 5 1

CRediT authorship contribution statement

Patricia Mares-Nasarre:Writing – original draft, Software, Method-
logy, Formal analysis, Conceptualization. Marcel R.A. van Gent:
riting – review & editing. Oswaldo Morales-Nápoles: Writing –

eview & editing, Methodology.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgment

The authors want to acknowledge Prof. Dr. Josep R. Medina Folgado
or providing the experimental data.

ppendix A. Marginal distributions

.1. Marginal selection by armor element

In this section, the number of tests where each distribution function
rovided the best fit per armor layer is displayed in Tables 6–8.
o relevant differences can be observed between the different armor

ayers.

.2. Influence of explanatory variables in the parameters of the marginal
istributions

Figs. 17 and 18 present the influence of the explanatory variables in
ection 2.4 on the parameters of the Lognormal distribution to model
𝑐∕𝐻𝑚0.

Fig. 19 presents the Spearman’s correlation coefficient (Spearman,
904), 𝑟, calculated between the explanatory variables and the pa-
12

ameters 𝜇𝑢 or 𝜎𝑢. 𝑟 assesses the strength and direction of association
etween two ranked variables. This is, it provides a measure of mono-
onicity of the relation between two variables. 𝑟 ∈ [−1, 1], where 𝑟 = 1

and −1 represent perfect positive and negative monotonic dependence,
respectively. 𝑟 is defined as

𝑟 =
𝐶𝑜𝑣[𝑅(𝑋), 𝑅(𝑌 )]

𝜎𝑅(𝑋)𝜎𝑅(𝑌 )
(25)

where 𝐶𝑜𝑣[𝑅(𝑋), 𝑅(𝑌 )] is the covariance of the ranked variables, and
𝑅(𝑋) and 𝜎𝑅(𝑌 ) are the standard deviations of the ranked variables.

As shown in Fig. 19, the correlation between the explanatory vari-
bles and the parameter 𝜇𝑢 is very low. In Fig. 20 the relationship
etween 𝜇𝑢 and the explanatory variables is presented as scatter plots.

In Fig. 21 the relationship between 𝜎𝑢 and the explanatory variables
s displayed.

Figs. 22 and 23 show the influence of the explanatory variables in
ection 2.4 on the parameters of the Lognormal distribution to model
∕𝐻2

𝑚0.

.3. Goodness of fit of marginal distributions

Here, the comparison between the measured and estimated quan-
iles of ℎ𝑐∕𝐻𝑚0 and 𝑢𝑐∕

√

𝑔𝐻𝑚0 using the developed formulas in Sec-
ion 5 is displayed in Figs. 24 and 25.

ppendix B. Bivariate copulas

.1. Rank correlation coefficients

In this section, the rank correlation between each pair of variables
s studied. Fig. 26 presents the rank correlations between each pair of
ariables for each physical test. Fig. 27 presents the 𝑝−𝑣𝑎𝑙𝑢𝑒𝑠 associated

to those rank correlations. Note that 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 indicate that the
measured rank correlation is significant.

B.2. Copulas

In this study, three copula families were used: Gaussian, Clayton
and Gumbel. The Gaussian or normal copula is given by

𝐶𝜌(𝑢, 𝑣) = 𝛷𝜌{𝛷−1(𝑢), 𝛷−1(𝑣)} (26)

here 𝛷𝜌{., ., .} is the cumulative distribution function of the bivariate
ormal with 0 expectation, unit variance and 𝜌 Pearson correlation
oefficient (Pearson and Galton, 1895).

Clayton and Gumbel copulas are part of the Archimedean family of
opulas. Clayton copula is parameterized by 𝛿 > 0 and is given by

𝛿(𝑢, 𝑣) = (𝑢−𝛿 + 𝑢−𝛿 − 1)−1∕𝛿 (27)

Gumbel copula is parameterized by 𝜃 > 1 and is given by

𝜃(𝑢, 𝑣) = 𝑒𝑥𝑝[−([−𝑙𝑛(𝑢)]𝜃 + [−𝑙𝑛(𝑢)]𝜃)1∕𝜃] (28)

B.3. Copula selection by armor element

In this section, the number of tests where each copula provided
the best fit per armor layer is displayed in Tables 9–11. No relevant
differences can be observed between the different armor layers.

B.4. Copula parameters and explanatory variables

Figs. 29 and 30 present the influence of the explanatory variables
in Section 2.4 on the parameters of the Gaussian, Clayton and Gumbel
copula to model the structure dependence between the pairs ℎ𝑐∕𝐻𝑚0
and 𝑢𝑐∕

√

𝑔𝐻𝑚0, ℎ𝑐∕𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0 and 𝑉 ∕𝐻2

𝑚0 and 𝑢𝑐∕
√

𝑔𝐻𝑚0, re-
spectively.
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Fig. 17. Influence of explanatory variables on 𝜇ℎ.
Fig. 18. Influence of explanatory variables on 𝜎ℎ.
Fig. 19. Rank correlation matrix between explanatory variables and 𝜇𝑢 and 𝜎𝑢.

Table 9
Best fit copulas for pairs with significant rank correlation for double-layer
randomly-placed cube armor.
Copula Gaussian Frank Clayton Gumbel Other

ℎ𝑐∕𝐻𝑚0 − 𝑢𝑐∕
√

𝑔𝐻𝑚0 4 0 4 3 3
ℎ𝑐∕𝐻𝑚0 − 𝑉 ∕𝐻2

𝑚0 12 7 9 9 0
𝑉 ∕𝐻2

𝑚0 − 𝑢𝑐∕
√

𝑔𝐻𝑚0 0 3 4 6 0
13
Table 10
Best fit copulas for pairs with significant rank correlation for single-layer
Cubipod®armor.
Copula Gaussian Frank Clayton Gumbel Other

ℎ𝑐∕𝐻𝑚0 − 𝑢𝑐∕
√

𝑔𝐻𝑚0 3 2 1 3 1
ℎ𝑐∕𝐻𝑚0 − 𝑉 ∕𝐻2

𝑚0 6 2 13 10 0
𝑉 ∕𝐻2

𝑚0 − 𝑢𝑐∕
√

𝑔𝐻𝑚0 0 1 4 4 0

Table 11
Best fit copulas for pairs with significant rank correlation for double-layer
randomly-placed rock armor.
Copula Gaussian Frank Clayton Gumbel Other

ℎ𝑐∕𝐻𝑚0 − 𝑢𝑐∕
√

𝑔𝐻𝑚0 1 0 0 0 1
ℎ𝑐∕𝐻𝑚0 − 𝑉 ∕𝐻2

𝑚0 0 2 1 3 0
𝑉 ∕𝐻2

𝑚0 − 𝑢𝑐∕
√

𝑔𝐻𝑚0 0 0 0 1 0

B.5. Goodness of fit of copula models

Here, the comparison between the measured and estimated non-
exceedance joint probabilities of the pairs ℎ𝑐∕𝐻𝑚0 and 𝑉 ∕𝐻2

𝑚0 and
𝑉 ∕𝐻2

𝑚0 and 𝑢𝑐∕
√

𝑔𝐻𝑚0 is presented in Figs. 31 and 32, respectively.
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Fig. 20. Influence of explanatory variables on 𝜇𝑢.

Fig. 21. Influence of explanatory variables on 𝜎𝑢.

Fig. 22. Influence of explanatory variables on 𝜇𝑉 .
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Fig. 23. Influence of explanatory variables on 𝜎𝑉 .
Fig. 24. Comparison between the measured and estimated ℎ𝑐∕𝐻𝑚0 marginal dis-
tributions with Lognormal distribution in Eq. (3) and parameters in Eq. (4) and
(6).

Fig. 25. Comparison between the measured and estimated 𝑢𝑐∕
√

𝑔𝐻𝑚0 marginal dis-
tributions with Lognormal distribution in Eq. (3) and parameters 𝜇𝑢 = −1.5 and
(8).
15
Fig. 26. Rank correlations for each test between ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕
√

𝑔𝐻𝑚0 and 𝑉 ∕𝐻2
𝑚0.

Fig. 27. P-values for rank correlation coefficients between ℎ𝑐∕𝐻𝑚0, 𝑢𝑐∕
√

𝑔𝐻𝑚0 and
𝑉 ∕𝐻2

𝑚0.
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Fig. 28. Influence of explanatory variables on 𝜌ℎ𝑢.

Fig. 29. Influence of explanatory variables on 𝛿ℎ𝑉 .

Fig. 30. Influence of explanatory variables on 𝜃𝑉 𝑢.
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Fig. 31. Comparison between the observed and estimated non-exceedance joint
probabilities for the pair ℎ𝑐∕𝐻𝑚0 − 𝑉 ∕𝐻2

𝑚0.

Fig. 32. Comparison between the observed and estimated non-exceedance joint
probabilities for the pair 𝑉 ∕𝐻2

𝑚0 − 𝑢𝑐∕
√

𝑔𝐻𝑚0.
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