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Abstract

In this thesis we construct a perturbation method for delay differential equations (DDEs) based on the
method of multiple scales for ordinary differential equations (ODEs) and ordinary difference equations
(O∆Es). The method works for nonlinear DDEs, which are linear DDEs in the unperturbed case.
The validity of the method is proven under certain conditions, such as a Lipschitz condition on the
perturbation, and we illustrate how the method can be applied by working out several examples. We
consider a delayed version of Mathieu’s equation, which is especially useful, because it can be used when
one linearizes a nonlinear oscillator around a period soluction. We also consider a quadratic perturbation.
For these examples we have to analyse the relationship between the solutions of the characteristic equation.
There already exists a perturbation method for DDEs, for which one solves a corresponding ODE, and
uses this solution as an approximation. This method is only applicable when the influence of the delay is
small, and is not always accurate due to the different natures of DDEs and ODEs. We study an example
for which this method can be used, and show when it fails to give an accurate approximation. We then
show how to use our perturbation method for this example, to obtain an accurate approximation.
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Introduction

In many fields of science we try to model the dynamics of a system, just to name a few: population
dynamics, heating and cooling, mechanics and electrical circuits. Many of these models are based on
differential equations, which relate the change of a quantity to the value of a quantity. For simple models
we can find analytical solutions of the governing equations. However, as models get more complicated,
we sometimes cannot find the exact solution anymore. When this occurs, usually people find an approx-
imation of the solution numerically. Although these approximations can be very accurate, one cannot
always be certain whether the obtained answer is correct. Furthermore, one does not gain insights in the
physics of the models. Another way to obtain approximations for these unsolvable problems is the use of
asymptotics and perturbation methods. These methods are usable when a relatively small parameter is
present in the problem, which occurs often in the field of applied mathematics. We usually denote this
small parameter with ε, which we will come across many times in this thesis. The problems that we shall
consider always satisfy the following fact: if we set ε = 0, then we get a simpler problem that we have to
solve.

In this thesis we shall consider the method of multiple scales. The name is quite self-explanatory, this
method is used when there are multiple length or time scales in a problem. Suppose we wish to describe
how far the sea reaches upon the beach. If we consider the waves and the tides, then we see that waves work
on a timescale of seconds and tides on a timescale of hours. We can use this fact to obtain approximations
for problems. Holmes [11] provides a short history on the method of multiple scales. Halfway through the
nineteenth century people started using multiple scales to solve very specific problems. One of these was
Stokes [24], who used it to describe the flow of fluid around an elliptic cylinder. However, these people
did not study the ideas underlying the method of multiple scales. This was done by Poincaré [21], using
the work of Lindstedt [19], when studying the motion of planets. Later work on the method, to the point
that we shall present it in this thesis, was done by Kuzmak [16] and Cole and Kevorkian [4].

In this thesis we will consider a special class of differential equations, delay differential equations. For
these type of equations, the change of a quantity is not only determined by the value of the quantity at the
current time, but also at previous time(s). After the First World War, automatic control systems came
into use. As there is some time between detecting and reacting, delay differential equations are necessary
to create proper models for these systems. In these times, the main research focused on oscillations
and instabilities caused by the delays. Erneux [7] gives a good overview of the applicability of delay
differential equations in different scientific fields. For the mathematical research on delay differential
equations, important work has been done by Bellman and Danskin [2], Bellman and Cooke [1] and
Krasovskii [15]. Building upon this, Hale [9] made a fundamental contribution to this research field. In
this thesis we will use the work of Hale and Verduyn Lunel [10].

One of the examples given by Erneux [7] is that of two cars following each other. Let x1 and x2 be
the positions of the leading and following car, respectively. We will use that initially these two cars are
driving with a certain velocity v0 and that there is a constant distance L between the two cars. Suddenly
the front car starts to break for some time and then accelerates back to the initial velocity v0. If the
following car would react immediately, then there is no problem and the distance between the two cars
stays L. However, this is never the case. There is a certain time before the following car reacts to the
change in velocity between the two cars. We will use the following delay differential equation for x2,

d2x2(t)

dt2
= α

(
dx1(t− T )

dt
− dx2(t− T )

dt

)
.

1



Introduction 2

In simple terms, this equation describes how much the following car accelerates or decelerates depending
on the difference in velocity between the two cars. However, due to a delay in reaction, we use the
difference in velocity some time T ago. We also have a constant α which represents how intense the
following car reacts on a difference in velocity. For a high α, the following car will break and accelerate
hard, for a low α the following car will break and accelerate slowly. Figure I.1 shows a plot of the distance
between the two cars for different delays. We see that if it takes longer before the following car reacts,
then the distance between the two cars becomes a lot smaller and there are also more oscillations. For
T = 3, we even have that the distance becomes practically zero, so for even greater T we will have a car
crash. Although this is a very simple model, it does show that the reaction time is very important. As
phone use and drinking ensures a longer reaction time, this model confirms again that these two should
not be combined with driving.
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Figure I.1: Plot of the distance between the two cars over time for different delays T . The solid (red) line is for
T = 1, the dashed (blue) line is for T = 2 and the dotted (green) line is for T = 3. For the other parameters we
have taken α = 0.5 and L = 20.

The goal of this thesis is to construct a perturbation method for delay differential equations, using the
method of multiple scales. To give a clear overview of how the method can be used, we shall consider
several examples, each highlighting a different problem that one can come across when using the method.

We start this thesis in Chapter 1 by giving the definition and well-posedness of a retarded functional
differential equation. We use the terminology, definitions and theorems of Hale and Verduyn Lunel [10] for
this chapter. In Chapter 2, we shall first calculate the solution of a first order delay differential equation,
meaning that the highest derivative is of order one. Then we determine the stability for first order
delay differential equations. Next, we shall consider how one should calculate the solution for a higher
order delay differential equation and perform the actual calculations for a second order delay differential
equation. We end this chapter by determining the stability of a second order delay differential equation.
For that section we use the work of a bachelor student, whose thesis I have supervised. In Chapter 3 we
explain the method of multiple scales for ordinary differential equations and ordinary difference equations
and consider illustrating examples for both types. We discuss these types of equations, because we can
combine the method of multiple scales for both cases to construct a method of multiple scales for delay
differential equations. Such a method already exists, given by, for example, Erneux [7]. However, this
method involves solving ordinary differential equations instead of delay differential equations. As a
result, the obtained approximations are not always accurate. In this thesis we present a perturbation
method which keeps the delay differential equations. We first describe our method for first order delay
differential equations in Chapter 4 and then for higher order delay differential equations in Chapter 5.
We consider nonlinear delay differential equations with a small parameter ε, which are linear delay
differential equations if we set ε = 0. We shall consider examples with different nonlinearities, each
resulting in different types of problems that we have to solve when applying our method. Finally, we
draw conclusions and give some further remarks on future research in Chapter 6.



Chapter 1

Definition and Well-posedness of a
Retarded Functional Differential
Equation

In this chapter we give the definition of a retarded functional differential equation, and state three
theorems about the well-posedness of such an equation. We closely follow Hale and Verduyn Lunel [10].

1.1 Definition of a Retarded Functional Differential Equation

First, define the following, r ≥ 0 is a given real number, C([a, b],Rn) is the Banach space of continuous
functions mapping the interval [a, b] into Rn with the topology of uniform convergence. Define the special
case C = C([−r, 0],Rn) and define the norm of φ ∈ C as |φ| = sup−r≥θ≥0 |φ(θ)|. If for σ ∈ R, A ≥ 0
and x ∈ C([−σ − r, σ + A],Rn), then for any t ∈ [σ, σ + A], we define xt ∈ C as xt(θ) = x(t + θ), with
θ ∈ [−r, 0]. Let D be a subset of R× C, and let f : D → Rn be a given function, then we call

ẋ(t) = f(t, xt), (1.1)

a retarded functional differential equation on D. We denote this as RFDE(f). x(σ, φ, f) is a solution of
Eq. (1.1) with initial value φ at σ, if there is an A > 0, such that x(σ, φ, f) is a solution of Eq. (1.1) on
[σ − r, σ + A) and xσ(σ, φ, f) = φ. If σ ∈ R and φ ∈ C are given, and f(t, φ) is continuous, then finding
a solution of Eq. (1.1) through (σ, φ) is equivalent to solving the integral equation

xσ = φ, (1.2)

x(t) = φ(0) +

ˆ t

σ

f(s, xs)ds, t ≥ σ. (1.3)

1.2 Well-posedness

For RFDE(f) to be a well-posed problem, it has to satisfy three criteria. A solution must exist, this
solution must be unique, and when changing the problem slightly, the solution should change slightly.

Hale and Verduyn Lunel [10] prove these three criteria under certain circumstances. The procedure is as
follows. A mapping T can be defined using the integral equation. Using Schauder’s fixed-point theorem,
it is proven that a fixed point exists. Then this is a solution of the integral equation, thus a solution
exists. Adding a Lipschitz condition on f , ensures that there is a unique fixed point, and thus a unique
solution to the integral equation. The continuous dependence is also proven.

Before we state the theorems, the following must be defined. Let V be a subset of R×C, then C(V,Rn)
is the class of all functions f :→ Rn that are continuous and define C0(V,Rn) ⊆ C(V,Rn) as the subset
of all bounded continuous functions from V to Rn.

3



Chapter 1. Definition and Well-posedness of a Retarded Functional Differential Equation 4

Now we can state three theorems, (Chapter 2, Theorems 2.1, 2.2 and 2.3, of [10]), concerning the existence
and uniqueness of a solution, and the continuous dependence on initial data and coefficients.

Theorem 1.1 (Existence). Suppose Ω is an open subset in R × C and f0 ∈ C(Ω,Rn). If (σ, φ) ∈ Ω,
then there is a solution of the RFDE(f0) passing through (σ, φ). More generally, if W ⊆ Ω is compact
and f0 ∈ C(Ω,Rn) is given, then there is a neighborhood V ⊆ Ω of W , such that f0 ∈ C0(V,Rn), there
is a neighborhood U ⊆ C0(V,Rn) of f0 and an α > 0, such that for any (σ, φ) ∈ W , f ∈ U , there is a
solution x(σ, φ, f) of the RDFE(f) through (σ, φ) that exists on [σ − r, σ + α].

Theorem 1.2 (Uniqueness). Suppose Ω is an open set in R×C, f : Ω→ Rn is continuous , and f(t, φ)
is Lipschitizan in φ in each compact set in Ω. If (σ, φ) ∈ Ω, then there is a unique solution for RFDE(f)
through (σ, φ).

Theorem 1.3 (Continuous dependence). Suppose Ω ⊆ R×C is open, (σ0, φ0) ∈ Ω, f0 ∈ C(Ω,Rn), and
x0 is a solution of the RFDE(f0) through (σ0, φ0) which exists and is unique on [σ0 − r, b]. Let W 0 ⊆ Ω
be the compact set defined by

W 0 = {(t, x0
t ) : t ∈ [σ0, b]}

and let V 0 be the neighborhood of W 0 on which f0 is bounded. If (σk, φk, fk), k = 1, 2, . . . satisfies
σk → σ0, φk → φ0, and |fk − f0|V 0 → 0 as k → ∞, then there is a k0, such that the RFDE(fk) for
k ≥ k0 is such that each solution xk = xk(σk, φk, fk) through (σk, φk) exists on [σk − r, b] and xk → x0

uniformly on [σ0−r, b]. Since all xk may not be defined on [σ0−r, b], by xk → x0 uniformly on [σ0−r, b],
we mean that for any ε > 0, there is a k1(ε) such that xk(t), k ≥ k1(ε), is defined on [σ0 − r + e, b], and
xk → x0 uniformly on [σ0 − r + ε, b].

In the next chapters we will consider scalar delay differential equations, DDEs, which are a subset of the
RFDEs.



Chapter 2

Solution and Stability

We start this chapter with calculating the solution of a first order DDE. After that we consider the
stability of this solution. We continue with the solution for higher order DDEs. A part of this derivation
will be for a general higher order DDE, and we work it out entirely for a second order DDE. We end this
chapter with a stability analysis of a second order DDE.

2.1 Solution of a First Order Delay Differential Equation

Consider the following DDE,
dy(t)

dt
+ αy(t) + βy(t− T ) = f(. . . ), (2.1)

with T > 0 the delay and f a nonlinear function of y. Then define τ = t
T and ỹ(τ) = y(t). The equation

becomes
dỹ(τ)

dτ
+ αT ỹ(τ) + βT ỹ(τ − 1) = f̃(. . . ),

with f̃ a function similar to f . We write a = αT , b = βT , omit the tildes and use t instead of τ , such
that we obtain the following equation

dy(t)

dt
+ ay(t) + by(t− 1) = f(. . . ). (2.2)

This equation has one parameter less, so it is easier to analyse.

We also need an initial condition. Note that this initial condition must be prescribed on the interval
[−1, 0], due to the delay term. We use

y(t) = φ(t), for t ∈ [−1, 0]. (2.3)

We will first derive a solution for a linear DDE and then consider the nonlinear case.

2.1.1 The Linear Case

We consider the following problem,

dy(t)

dt
+ ay(t) + by(t− 1) = 0, (2.4)

with
y(t) = φ(t), for t ∈ [−1, 0]. (2.5)

For linear ordinary differential equations, ODEs, we find the solutions by trying eλt. This then results in
a characteristic equation for λ. Solving this, and satisfying the initial conditions gives us the solution of

5



Chapter 2. Solution and Stability 6

a linear ODE. We can do the same for a DDE. The characteristic equation corresponding to Eq. (2.4) is
given by

λ+ a+ be−λ = 0. (2.6)

For ODEs the number of solutions for a characteristic equation was the same as the order of the ODE.
In this case, there is an infinite number of solutions of the characteristic equation. We will determine
these numerically. We can do this by ourselves, but we can also use the Lambert W function to do
this. Programs such as Maple and Matlab are able to compute the Lambert W function quickly and
accurately, making it easy to use in this case. For higher order DDEs, we will only be able to use the
Lambert W function in specific cases, so then we will need to find the solutions of the characteristic
equation ourselves.

The Lambert W function, W (z), is discussed in great detail by Corless et al. [5]. It is defined as the
inverse of the function f(z) = zez,

z = f−1((zez)) = W (zez) .

In other form this is
W (z)eW (z) = z. (2.7)

Both z and W (z) can be complex. Like the complex logarithm there is an infinite number of branches of
the Lambert W functions, which we denote as Wk(z), with k = 0,±1,±2, . . . . Figure 2.1 shows a plot of
the first branches of the Lambert W function, together with the curves that separate them. When the
real parts go to infinity, the imaginary parts go to multiples of π.
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Figure 2.1: Branches of the Lambert W function. Adapted from [5].

We can rewrite the characteristic equation, Eq. (2.6), into the following form,

(λ+ a)eλ+a = −bea,

such that we can write down the solutions in terms of the Lambert W function,

λk = Wk (−bea)− a, k = 0,±1,±2, . . . . (2.8)

In Appendix A we show how to find the solutions of the characteristic equation by ourselves. We calculate
a solution curve on which all solutions must lie. We can write down ω as a function of ν for this curve.
Consequently, we can write down the characteristic equation as a function of ν, such that we can easily
check numerically, for which ν we find solutions. In Appendix A we will show that the solution curve has



7 2.1. Solution of a First Order Delay Differential Equation

different shapes for different choices of a and b. We also show how to calculate approximations for the
large solutions of the characteristic equation.

Given the solutions of the characteristic equation, λk, the solution of the linear DDE, Eq. (2.4), is given
by

y(t) =

∞∑
k=−∞

αke
λkt. (2.9)

We have yet to determine the constants αk. These will depend on the initial condition, Eq. (2.5). We will
use the Laplace transform to determine the constants (this has been done before by for example [27]).

The Laplace transform is defined as

L(f(t))(s) =

ˆ ∞
0

e−stf(t)dt. (2.10)

To be able to take the Laplace transform of the DDE, we need to know the Laplace transform of all
individual terms. For the derivative, it is well known that

L
(
dy(t)

dt

)
= sL(y(t))− y(0).

This can be easily derived using partial integration. We can use that y(0) = φ(0). For the delay term we
have

L(y(t− 1)) =

ˆ ∞
0

e−sty(t− 1)dt

=

ˆ 1

0

e−sty(t− 1)dt+

ˆ ∞
1

e−sty(t− 1)dt

=

ˆ 1

0

e−stφ(t− 1)dt+ e−s
ˆ ∞

0

e−sty(t)dt

= L(φ(t− 1)) + e−sL(y(t)).

(2.11)

We have extended φ(t) on the interval [−1,∞) by setting φ(t) = 0 for t > 0. The Laplace transform of
the linear DDE, Eq. (2.4), is given by

sL(y(t))− φ(0) + aL(y(t)) + b
(
L(φ(t− 1)) + e−sL(y(t))

)
= 0.

We solve this for L(y(t)),

L(y(t)) =
(
s+ a+ be−s

)−1
(φ(0)− bL(φ(t− 1))) .

We define the fundamental solution Y (t) as

L(Y (t)) =
(
s+ a+ be−s

)−1
.

In Appendix B we show how to calculate Y (t). There are two possible expressions, depending on the
multiplicities of the solutions of the characteristic equation. We will continue with the case for which
each solution has multiplicity one. For this case, the fundamental solution is given by

Y (t) =

∞∑
k=−∞

1

1− be−λk
eλkt.

We can use this expression, together with the convolution theorem, to calculate the solution of y(t).

Theorem 2.1 (Convolution). Suppose we have the functions f(t), g(t), h(t), with Laplace transforms
F (s), G(s), H(s). If H(s) = F (s)G(s), then

h(t) = (f ∗ g)(t) =

ˆ t

0

f(t− τ)g(τ)dτ =

ˆ t

0

g(t− τ)f(τ)dτ.
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We use that
L−1 (φ(0)− bL(φ(t− 1))) = φ(0)δ(t)− bφ(t− 1).

For y(t) we find

y(t) =

ˆ t

0

Y (t− τ) (φ(0)δ(τ)− bφ(τ − 1)) dτ

= Y (t)φ(0)− b
ˆ 0

−1

Y (t− θ − 1)φ(θ)dθ

=

∞∑
k=−∞

αke
λkt,

(2.12)

with

αk =
1

1− be−λk

(
φ(0)− be−λk

ˆ 0

−1

e−λkθφ(θ)dθ

)
. (2.13)

We now have the solution to a linear first order DDE. In the next section we shall consider a nonlinear
first order DDE.

2.1.2 The Nonlinear Case

Most of the derivation for the linear case can be applied in the nonlinear case. We again take the
Laplace transform and solve for L(y(t)). Then we define a fundamental solution Y (t), with L(Y (t)) =

(s+ a+ be−s)
−1

. We consider the case where all solutions of the characteristic equations have multiplicity
one. Next, we use Y (t) to find y(t), (see for example [10])

y(t) =

ˆ t

0

Y (t− τ) (φ(0)δ(τ)− bφ(τ − 1) + f(. . . )) dτ.

Working this out yields

y(t) =

∞∑
k=−∞

αke
λkt +

∞∑
k=−∞

eλkt

1− be−λk

ˆ t

0

e−λksf(. . . )ds, (2.14)

Note that this is not an explicit solution if f depends on y. If we have a linear inhomogeneous DDE,
which is the case when f(. . . ) = f(t), then this does give an explicit solution.

In the next section we consider the stability of a first order DDE.

2.2 Stability of a First Order Delay Differential Equation

To investigate the stability of the just derived solution, we use linearized stability. Assuming that f is
of ”higher order”, the stability of the solution of the nonlinear equation is determined by the stability of
the linearized equation. We can determine the stability of the linear equation by considering the signs of
the real parts of the solutions of the characteristic equation (see for instance [10, 23]).

Define
µ = max

k∈Z
Re(λk). (2.15)

Note that the highest value is obtained by the principal branch of the Lambert W function (see [5]). So,
µ = Re(λ0). We have asymptotic stability if µ < 0, and instability if µ > 0. For µ = 0 the stability
depends on the multiplicity of λ0. The multiplicity is one if bea 6= e−1 and two if bea = e−1. Then
λ−1 = λ0 = −(a + 1). To have µ = 0, we must have a = −1 and b = 1. If the multiplicity is one, then
the linear solution is stable, but not asymptotically stable. The stability of the solution of the nonlinear
equation is determined by the nonlinear terms. If a = −1 and b = 1, then the solution is unstable.
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We wish to find for which (a, b), we get µ = 0. We must have λ0 = iω, with ω ∈ (−π, π), since we
consider the principal branch. Plugging this in the characteristic equation and splitting it into a real and
imaginary part yields

a+ b cosω = 0

ω − b sinω = 0

If ω = 0, then we must have a+ b = 0. If ω ∈ (−π, π) \ {0}, then we must have (a, b) =
( −ω

tanω ,
ω

sinω

)
. We

define the curve

C =

{(
−ω

tanω
,
ω

sinω

) ∣∣∣∣∣ ω ∈ (−π, π) \ {0}

}
. (2.16)

Note that as ω → 0, the curve approaches (1,−1), so the line a + b = 0 and the curve intersect in this
point. It can be checked with ease that between these curves µ < 0 and outside these curves µ > 0. We
call the area between the curves the stability region, since we have asymptotic stability here. Figure 2.2
shows a plot of the stability region.
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Figure 2.2: Plot of the stability region. In the gray area, µ < 0. On the curves enclosing the region, µ = 0.
Outside of the curves, µ > 0. The dashed line is a− b = 0.

Recall that the original equation, Eq. (2.1), contained a delay T . By transforming time, we obtained
the term y(t − 1) instead of y(t − T ). Due to this the coefficients changed. Instead of α and β, we got
a = αT and b = βT . We can use the stability region for a and b, to investigate the stability of the original
equation, with the parameters α, β and T .

Between the lines α − β = 0 and α + β = 0, there is stability regardless of the value for T . Above the
line α−β = 0, there is a critical value for T , such that there is a change in stability. Using the definition
of the curve C, we find

b2 − a2 = ω2 and − a

b
= cosω.

We then find that the critical value for T is given by

T ∗ =
arccos

(
−αβ
)

√
β2 − α2

. (2.17)

We have the following possibilities.
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� We have asymptotic stability if −α < β ≤ α, or when β > α and 0 < T < T ∗.

� We have instability if β < −α, β > α and T > T ∗, or when αT = −1 and βT = 1.

� The stability is determined by the nonlinear terms if β = −α or when β > α and T = T ∗. For both
cases, we may not have αT = −1 and βT = 1.

In the next section we shall show how to derive the solution of a higher order DDE and work this out for
a second order DDE.

2.3 Solution of a Higher Order Delay Differential Equation

Consider the following DDE of order n > 1,

dny(t)

dtn
+

n−1∑
i=0

ai
diy(t)

dti
+

n−1∑
i=0

bi
diy(t− 1)

dti
= f(. . . ), (2.18)

with initial conditions

diy(t)

dti
= φi(t), for t ∈ [−1, 0], i = 0, . . . , n− 1. (2.19)

We introduce the notation

dit =
di

dti

and the vector

z(t) =


y(t)
dty(t)
d2
ty(t)

...
dn−1
t y(t)

 .

We have the following equation for z(t),

dz(t)

dt
+Az(t) +Bz(t− 1) = f(. . . ), (2.20)

with

A =



−1
−1 ∅

. . .

∅ −1
−1

a0 a1 a2 . . . an−2 an−1


and B =


∅

b0 b1 b2 . . . bn−2 bn−1

 . (2.21)

The initial condition for z(t) is
z(t) = φ(t), for t ∈ [−1, 0], (2.22)

with

φ(t) =

 φ0(t)
...

φn−1(t)

 .

We will now consider the characteristic equation corresponding to this system.
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2.3.1 The Characteristic Equation

We know that the solutions will be of the form ξeλt, with ξ a constant vector. We can then plug this
into the DDE, to obtain a characteristic equation. After rewriting, we obtain the following.(

λI +A+ e−λB
)
ξ = 0.

We define the matrix
C = λI +A+ e−λB. (2.23)

For nonzero solutions we must require detC = 0. Working this out yields the characteristic equation. In
general we have

λn +

n−1∑
i=0

aiλ
i +

n−1∑
i=0

biλ
ie−λ = 0. (2.24)

For the second order case we get the following matrix

C =

(
λ −1

a0 + b0e
−λ λ+ a1 + b1e

−λ

)
and the following characteristic equation

λ2 + a1λ+ b1λe
−λ + a0 + b0e

−λ = 0. (2.25)

Note that we could have also obtained these characteristic equations if we had put eλt into the original
DDEs.

We will now first consider how to determine the solutions of the characteristic equation numerically. Then
we will discuss an interesting characteristic for large solutions of the characteristic equation.

Solution curve

We can find solutions of the characteristic equations numerically, by finding the solution curves. We know
that the solutions of the characteristic equation must lie on this curve, making it a lot easier to find the
solutions. We have done this for the first order case in Appendix A. We will now do this for the second
order case.

To determine the solution curve, we write λ = ν+ iω, with ν, ω ∈ R, and split the characteristic equation
into a real and imaginary part. For the second order characteristic equation we obtain

ν2 − ω2 + a1ν + b1 (ν cosω + ω sinω) e−ν + a0 + b0e
−ν cosω = 0, (2.26)

2νω + a1ω + b1 (−ν sinω + ω cosω) e−ν − b0e−ν sinω = 0. (2.27)

These can be rewritten into the following form,

ν2 − ω2 + a1ν + a0 = − ((b1ν + b0) cosω + b1ω sinω) e−ν ,

2νω + a1ω = − (−(b1ν + b0) sinω + b1ω cosω) e−ν .

Squaring and adding these equations yields(
ν2 − ω2 + a1ν + a0

)2
+ (2νω + a1ω)

2
=
(
(b1ν + b0)2 + b21ω

2
)
e−2ν .

We can write this as an equation for ω,

ω4 + f(ν)ω2 + g(ν) = 0,

with

f(ν) = −2
(
ν2 + a1ν + a0

)
+ (2ν + a1)

2 − b21e−2ν ,

g(ν) =
(
ν2 + a1ν + a0

)2 − (b1ν + b0)2e−2ν .
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Then solve this equation for ω2,

ω2 =
−f(ν)±

√
h(ν)

2
,

with
h(ν) = f(ν)2 − 4g(ν).

Since we only wish to consider ω ∈ R, we must require h(ν) ≥ 0. We will consider an example, for which
we set (a0, a1, b0, b1) = (1, 1, 1, 1). Figure 2.3 shows a plot of h(ν). The root of h is denoted by ν1. For
ν ≤ ν1, h(ν) ≥ 0.
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Figure 2.3: Plot of h(ν) for (a0, a1, b0, b1) = (1, 1, 1, 1).

Then define the functions

k(ν) =
−f(ν) +

√
h(ν)

2
,

l(ν) =
−f(ν)−

√
h(ν)

2
,

such that
ω = ±

√
k(ν) and ω = ±

√
l(ν).

Again, we must check for which intervals k(ν) ≥ 0 and l(ν) ≥ 0. Figure 2.4 shows a plot of k(ν) for
ν ≤ ν1. k(ν) ≥ 0 for all ν ≤ ν1, so this is the only restriction on the interval of ν for the solutions
ω = ±

√
k(ν).
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Figure 2.4: Plot of k(ν) for (a0, a1, b0, b1) = (1, 1, 1, 1).

Figure 2.5 shows a plot of l(ν) for ν ≤ ν1. The roots of l(ν) are at ν = ν2, ν = ν1 and ν = 0. We have
l(ν) ≥ 0 for ν ∈ [ν2, ν3] and ν ∈ [0, ν1].
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Figure 2.5: Plot of l(ν) for (a0, a1, b0, b1) = (1, 1, 1, 1).

We can then use these intervals to plot ±
√
k(ν) and ±

√
l(ν). This is done in Figure 2.6. We call this

the solution curve, as all solutions must lie on this curve. We can use this curve to easily calculate the
solutions numerically.
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Figure 2.6: Plot of ±
√
k(ν) and ±

√
l(ν) for (a0, a1, b0, b1) = (1, 1, 1, 1).

We can express ω in terms of ν, such that the real and imaginary characteristic equation, Eqs. (2.26)
and (2.27), becomes equations for solely ν. We determine for which ν these equations are satisfied
simultaneously. Note that the ± in ω = ±

√
k(ν) and ω = ±

√
l(ν) corresponds to the fact that if λ is a

solution of the characteristic equation, then so is its conjugate λ. Consequently, we only have to check
for ω =

√
k(ν) and ω =

√
l(ν). Figure 2.7 shows a plot of the characteristic functions, using ω =

√
k(ν).

One has to check at which ν, both have a root.
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Figure 2.7: Plot of the real, solid (red) line, and imaginary, dashed (blue) line, characteristic functions, using
ω =

√
k(ν) and (a0, a1, b0, b1) = (1, 1, 1, 1).

One can show that we only satisfy the characteristic equation with ω =
√
l(ν) for ν = ν2.

Figure 2.8 shows a plot of the solution curve, with the first solutions.
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Figure 2.8: Plot of the solution curve, together with the first solutions, for (a0, a1, b0, b1) = (1, 1, 1, 1).

For a third and fourth order DDE e will have to solve cubic and quartic equations for ω2, for which we
still have analytic solutions. For higher order DDEs, we will not be able to solve the equations for ω2

analytically, making it harder to find the solutions of the characteristic equations.

We will now consider an interesting feature of the characteristic equation for large solutions.

Large solutions of the characteristic equation

We start by noting that the large solutions will have a negative real part. For these equations we can
simplify the characteristic equation. To see this, we rewrite it into the following form,

λn +
∑n−1
i=0 aiλ

i∑n−1
i=0 biλ

i
= −e−λ.

Suppose m < n is the highest derivative with a delay that appears in the DDE, so bm = 0 and bi = 0 for
i > m. Then the previous equation can be rewritten into the following form,

λn−m +
∑n−1
i=0 aiλ

i−m∑m
i=0 biλ

i−m = e−λ

For large λ, we can use that λi−m ≈ 0 for i < m. To find approximations of the large solutions of the
characteristic equation, we can solve the following equation

λn−m +

n−1∑
i=m

aiλ
i−m + bme

−λ = 0.

The characteristic equation has become of lower order, and is easier to analyze. Now assume that ai = 0
for i = m, . . . , n− 1. Then the equation can be rewritten into the following form,

λ

n−m
e

λ
n−m =

(−bm)
1

n−m

n−m
.

Note that there are n −m solutions of (−bm)
1

n−m . This means that we will have n −m different first
order characteristic equations. The number of solutions is infinite, but intuitively one could say that in
this case there are n − m times as many solutions for the characteristic equation, as for a first order
characteristic equation.

Now that we are able to find the solutions of the characteristic equations, we can find the solutions of
the DDEs. We start with a linear DDE.
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2.3.2 The Linear Case

As for the first order case, we use the Laplace transform to derive the solution. We first take the Laplace
transform of the DDE, and then solve the resulting equation for L(z(t)). We obtain the following equation,

L(z(t)) =
(
sI +A+Be−s

)−1
(φ(0)−BL(φ(t− 1))) . (2.28)

Note that (sI +A+Be−s)
−1

is the inverse of the matrix C, Eq. (2.23), with s instead of λ. Define the
fundamental solution Z(t) as L(Z(t)) = C−1. We must first determine the inverse of the matrix C, and
can then perform the inverse Laplace transform. To illustrate this, we will do this for a second order
DDE, for which the matrix C is given by

C =

(
s −1

a0 + b0e
−s s+ a1 + b1e

−s

)
.

The inverse is given by

C−1 =
1

detC

(
s+ a1 + b1e

−s 1
−a0 − b0e−s s

)
.

We calculate the inverse Laplace transform element-wise, analogous to the first order case, and obtain

Z(t) =

∞∑
k=−∞

Dke
λkt,

with

Dk =
1

2λk + a1 + b1(1− λk)e−λk − b0e−λk

(
λk 1

−a0 − b0e−λk λk + a1 + b1e
−λk

)
.

We can then use Z(t) to determine z(t),

z(t) =

ˆ t

0

Z(t− τ) (φ(0)δ(τ)−Bφ(τ − 1)) dτ.

Working this out yields

z(t) =

∞∑
k=−∞

αke
λkt, (2.29)

with

αk = Dk

(
φ(0)−Be−λk

ˆ 0

−1

e−λkθφ(θ)dθ

)
. (2.30)

We originally started with a higher order DDE for y(t). The solution for y(t) is the first element of z(t).

Now we shall consider the nonlinear case.

2.3.3 The Nonlinear Case

For the nonlinear case the derivation stays the same, but have to take into account f . We find

z(t) =

∞∑
k=−∞

αke
λkt +

∞∑
k=−∞

Dke
λkt

ˆ t

0

e−λksf(. . . )ds. (2.31)

If f(. . . ) has a z dependence, then this is not an explicit solution. For the linear inhomogeneous case,
this does give the solution for z.

We have worked out the solution for a second order DDE. In the next section we will consider the stability
of this solution.
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2.4 Stability of a Second Order Delay Differential Equation

For this section we use the Bachelor thesis of Vincent Li [17, 18], whom I co-supervised. The focus of
this work was on the stability of the following linear second order DDE,

d2y(t)

dt2
+ ay(t) + by(t− 1) = 0. (2.32)

The corresponding characteristic equation is given by

λ2 + a+ be−λ = 0.

The stability of a solution is determined by the largest real part of all the solutions of the characteristic
equation. Let λk, k = 0,±1,±2, . . . be all the solutions of the characteristic equation and define

µ = max
k∈Z

Re(λk).

If µ > 0, then the solution of the DDE is unstable, if µ < 0, then the solution is asymptotically stable,
and if µ = 0, then we have to continue our investigation. Areas for which µ < 0 and µ > 0 are separated
by curves on which µ = 0. We wish to know the curves on which µ = 0. To find these curves, we write
λ = iω, and obtain the following equation for ω,

−ω2 + a+ b (cosω − i sinω) = 0.

To satisfy the imaginary part of this equation, we must have b = 0 or ω = nπ. If b = 0, then we do not
have a DDE anymore, but an ODE. To have purely imaginary solutions we must have a > 0 and find
ω = ±

√
a. If ω = nπ, then we obtain the following restriction for a and b,

a+ (−1)nb = n2π2.

These lines enclose triangles around the positive a-axis. Li [17, 18] has proven that these triangles are
exactly the regions for which µ < 0. Figure 2.9 shows a plot of a part of the stability region.
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Figure 2.9: Plot of the stability region for the DDE in Eq. (2.32). There exist imaginary solutions on the
boundaries of the triangles and the dashed lines.

One of the interesting characteristics of this stability region is the alternating sign of b. For the first
triangle b < 0, for the second triangle b > 0, etcetera. We can see why this occurs by first noting that
λ = λ(a, b) and then taking the derivative of the characteristic equation with respect to b,

2λ
∂λ

∂b
+

(
1− b∂λ

∂b

)
e−λ = 0.
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We can solve this for
∂λ

∂b
,

∂λ

∂b
=

e−λ

be−λ − 2λ

and work this out for λ = i
√
a,

∂λ

∂b

∣∣∣∣
λ=i
√
a

=
sin
√
a

2
√
a

+ i
cos
√
a

2
√
a
.

If sin
√
a > 0, then if b increases/decreases, the real part of λ increases/decreases as well. So, we find

a stability region for sin
√
a > 0 and b < 0. Similarly, we find the stability region for sin

√
a < 0 and

b > 0. We also know that the entire regions enclosed by these triangles must be stability regions, because
of the continuity of the solutions of the characteristic equation. We find that the sign of b must change
for sin

√
a = 0, so for a = n2π2. This corresponds to the vertices of the triangles that lie on the positive

a-axis.

One of the remaining problems from the thesis of Vincent Li, is the stability on the lines on which
λ = ±inπ. He has proven that there is stability, but no asymptotic stability, on the lines surrounding
the triangles. We expect that there is instability on the remainder of the lines, but have not proven this.
To support this claim, we consider the vertices of the triangles that do not lie on the a-axis, in which
there are multiple imaginary solutions. Suppose we are at the point where ±iπ and ±2iπ are solutions
of the characteristic equation. We are then interested in what happens with ±2iπ, when we continue on
the ±iπ line and vice versa. On these lines we can write b as a function of a, such that we find λ = λ(a).
We can then use the characteristic equation to find an expression for λ′(a) and numerically integrate this
to see how the solutions change along the line. If we do this for ±2iπ along the line on which ±iπ are
solutions and for ±iπ along the line on which ±2iπ are solutions, then we find that the real parts become
positive. For the first we let a → ∞ and for the second a → −∞. We find that inπ → i(n + 2)π as
a → ∞ and inπ → i(n − 2)π as a → −∞. This corresponds to the fact that parallel lines ”intersect”
in infinity. As this was done numerically, and only for a few cases, this is not a formal proof, but does
support our claim of instability on the lines not surrounding the triangles.

In this chapter we have calculated the solutions for a first and second order DDE and analysed the
stability of the solutions. We have also given a general method to derive the solution of a higher order
DDE. In the next chapter we introduce and discuss the method of multiple scales for ordinary differential
equations and ordinary difference equations.



Chapter 3

Method of Multiple Scales

In the next chapter we shall introduce our perturbation method for delay differential equations, which
is based on the method of multiple scales for ordinary differential equations, ODEs, and for ordinary
difference equations, O∆Es. In this chapter we will show how the method of multiple scales works for
these two cases.

3.1 Ordinary Differential Equation

To illustrate the method of multiple scales we consider the following example as discussed by, for example,
Holmes [11] and Reiss [22],

y′′ + εy′ + y = 0, (3.1)

with
y(0) = 0 and y′(0) = 1. (3.2)

ε is a small parameter, 0 < ε� 1, so this corresponds to an oscillator with weak damping.

A way to solve perturbed equations, is by trying an expansion for the solution,

y(t) = y0(t) + εy1(t) + . . . .

We assume the following ordering for this expansion,

y0(t)� εy1(t)� . . . .

y0(t) is the main part of the approximation and the other terms are corrections. Plugging this expansion
into the equation yields

(y′′0 + εy′′1 + . . . ) + ε(y′0 + εy′1 + . . . ) + (y0 + εy1 + . . . ) = 0.

For each order of ε, we can get an equation. The O(1) equation is

y′′0 + y0 = 0,

which corresponds to the unperturbed problem. The O(ε) equation is

y′′1 + y1 = −y′0.

The initial conditions for y0 are y0(0) = 0 and y′0(0) = 1. The initial conditions for yn, with n ≥ 1 are
yn(0) = 0 and y′n(0) = 0. We can solve the O(1) equation for y0,

y0(t) = sin t.

The right-hand side of the O(ε) equation becomes − cos t, such that we find the following solution for y1,

y1 = −1

2
t sin t.

19
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An approximation for the solution y(t) is given by

y(t) ∼ sin t− 1

2
εt sin t. (3.3)

We can also solve the equation exactly,

y(t) =
1√

1− ε2

4

e−
1
2 εt sin

(√
1− ε2

4
t

)
(3.4)

Figure 3.1 shows a plot of both the exact solution and the approximation for ε = 0.1. At first the
approximation fits the exact solution well, but after some time the amplitude of the approximation
becomes much greater than that of the exact solution. This is caused by the second term in the expansion,
− 1

2εt sin t. Note that the ordering that we assume, y0(t)� εy1(t), is violated for t = O( 1
ε ). This means

that the approximation is only valid for t = O(1). We call the growth of the second term in the expansion
secular growth, and the second term is called a secular term.
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Figure 3.1: Plot of the exact solution, solid (red) line, and the approximation, dashed (blue) line for ε = 0.1.

We can distinguish two timescales if we take a look at the exact solution, Eq. (3.4). The oscillation
occurs on a fast timescale, t, and the damping occurs on a slow timescale, εt. This motivates us to use
two timescales, t and τ = εt. We will try to find a solution which depends on these two timescales,
ỹ(t, τ) = y(t). We assume that the timescales are independent, so what happens on a short timescale is
not influenced by what happens on a long timescale and vice versa.

Due to the two timescales, partial derivatives are introduced,

d

dt
=

∂

∂t
+ ε

∂

∂τ
,

d2

dt2
=

∂2

∂t2
+ 2ε

∂2

∂t∂τ
+ ε2 ∂

2

∂τ2
.

Eqs. (3.1) and (3.2) then become(
∂2

∂t2
+ 2ε

∂2

∂t∂τ
+ ε2 ∂

2

∂τ2

)
ỹ + ε

(
∂

∂t
+ ε

∂

∂τ

)
ỹ + ỹ = 0,

and

ỹ = 0 and

(
∂

∂t
+ ε

∂

∂τ

)
ỹ = 1 for t = τ = 0.
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These are in fact too few conditions to have a unique solution, but this freedom will allow us to avoid
secular terms. We will find an approximation for ỹ, using an asymptotic expansion,

ỹ(t, τ) = y0(t, τ) + εy1(t, τ) + . . . .

We again find an equation for each order of ε. The first two equations are given by

∂2y0

∂t2
+ y0 = 0,

∂2y1

∂t2
+ y1 = −2

∂2y0

∂t∂τ
− ∂y0

∂t
.

For the initial conditions we also collect like orders of ε. The initial conditions for y0 and y1 are

y0 = 0 and
∂y0

∂t
= 1,

y1 = 0 and
∂y1

∂t
= −∂y0

∂τ
,

for (t, τ) = (0, 0). Note that in the equation for y0, τ only appears as a parameter. We shall solve for t,
and instead of constants, we get functions of τ ,

y0(t, τ) = A(τ) cos t+B(τ) sin t.

The initial conditions for y0, can be used to obtain initial conditions for A and B,

A(0) = 0 and B(0) = 1. (3.5)

The equation for y1 becomes

∂2y1

∂t2
+ y1 =

(
2
dA

dτ
+A

)
sin t−

(
2
dB

dτ
+B

)
cos t.

sin t and cos t will cause secular terms, but we can use our freedom here to avoid this. We must require

2
dA

dτ
+A = 0,

2
dB

dτ
+B = 0.

Together with the initial conditions in Eq. (3.5), we can solve for A and B,

A(τ) = 0,

B(τ) = e−
1
2 τ .

We obtain the following approximation,
y ∼ e− 1

2 εt sin t. (3.6)

Note that for t = O(1) we can expand the exponential to obtain

y ∼
(

1− 1

2
εt+ . . .

)
sin t,

in which we recognize the approximation that we obtained using the asymptotic expansion with only one
timescale.

Figure 3.2 shows a plot of the exact solution and the approximation obtained using the method of multiple
scales. The plots are indistinguishable.
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Figure 3.2: Plot of the exact solution, solid (red) line, and the approximation obtained using the method of
multiple scales, dashed (blue) line, for ε = 0.1.

Due to the nice nature of this example the error will stay small for all t. In general the approximation
obtained using this method is valid for t = O( 1

ε ). With this we mean that the error is O(ε).

Next we shall consider the method of multiple scales for ordinary difference equations, O∆Es.

3.2 Ordinary Difference Equation

In a difference equation we do not consider a continuous, but a discrete time. So, we will have x1, x2, . . . ,
xn, xn+1, . . . and an equation for xn+1, which depends on the previous time(s). One method of multiple
scales to solve difference equations, developed by Hoppensteadt and Miranker [12], involves transforming
differences to derivatives, such that one has to solve an ODE. Although some results are the same for
ODEs and O∆Es, other results are different, so one must be careful using this method. Van Horssen
and Ter Brake [26] have developed a method, which keeps the differences throughout the calculations.
We shall first introduce the operators that are used in this method, and then consider an illustrating
example.

3.2.1 Operators

Three operators are defined, the shift operator E, the difference operator ∆ and the identity operator I,

Exn = xn+1, ∆xn = xn+1 − xn and Ixn = xn.

We have the following relation between these operators,

E −∆ = I.

For ODEs we introduced two timescales, a fast timescale t and a slow timescale εt. Similarly for O∆Es
we can introduce n and εn. We will find approximations for x̃(n, εn) = x(n). As a result, the O∆Es will
become partial difference equations, P∆Es. We define the partial operators in the following way,

E1x(n, εn) = x(n+ 1, εn),

Eεx(n, εn) = x(n, εn+ ε),

∆1x(n, εn) = x(n+ 1, εn)− x(n, εn),

∆εx(n, εn) = x(n, εn+ ε)− x(n, εn).
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The identity operator remains the same. The relations between the partial operators are

E1 −∆1 = I and Eε −∆ε = I.

We wish to know the relation between the operators E and ∆, and the partial operators, such that we
can rewrite the O∆Es into P∆Es. First,

Ex̃(n, εn) = x̃(n+ 1, εn+ ε) = E1Eεx̃(n, εn),

such that
E = E1Eε.

We use this, together with the relations between the partial operators, to write the difference operator
in terms of the partial difference operators,

∆ = E − I = E1Eε − I = (∆1 + I)(∆ε + I)− I
= ∆1 + ∆ε + ∆1∆ε.

It is assumed that

∆1x(n, εn) = O(x(n, εn)),

∆εx(n, εn) = O(εx(n, εn)),

which will be important when we get equations by collecting like orders of ε. We will now consider an
example, to illustrate the method.

3.2.2 Example

We will consider an example, similar to the example for the ODEs,

xn+2 + εxn+1 + xn = 0, (3.7)

with
x0 = 0 and ∆x0 = 0, (3.8)

and ε a small parameter.

We first rewrite the equation using the operators,(
∆2 + (2 + ε)∆ + (2 + ε)I

)
xn = 0.

Then introduce the slow timescale εn and construct an equation for x̃(n, εn) = xn. We use the partial
operators to do this,(

(∆1 + ∆ε + ∆1∆ε)
2 + (2 + ε)(∆1 + ∆ε + ∆1∆ε) + (2 + ε)I

)
x̃(n, εn) = 0

⇐⇒
(
∆2

1 + 2E1

)
x̃(n, εn) +

(
2E2

1∆ε + εE1

)
x̃(n, εn) +O(ε2x̃(n, εn)) = 0.

We have split the equation in an O(x̃(n, εn) and a O(εx̃(n, εn) part. We will use an expansion to obtain
an approximation for x̃(n, εn), x̃(n, εn) = x0(n, εn) + εx1(n, εn) + . . . . We obtain an equation for each
order of ε. The first equation is given by

(∆2
1 + 2E1)x0(n, εn) = 0.

The initial condition is

x0 = 0 and ∆1x0 = 1, for (n, εn) = (0, 0).

Note that the subscripts 0 here, differs from the subscript 0 in Eq. (3.8). What we mean with the
subscripts should be clear from the context. The solution is given by

x0(n, εn) = A(εn) cos

(
1

2
nπ

)
+B(εn) sin

(
1

2
nπ

)
.
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Using the initial conditions for x0, we get initial conditions for A and B,

A(0) = 0 and B(0) = 1. (3.9)

The O(ε) equation is

ε(∆2
1 + 2E1)x1(n, εn) = −

(
2E2

1∆ε + εE1

)
x0(n, εn)

= (2∆εA(εn)− εB(εn)) cos

(
1

2
nπ

)
+ (2∆εB(εn) + εA(εn)) sin

(
1

2
nπ

)
.

To avoid secular terms, we must require

2∆εA(εn)− εB(εn) = 0,

2∆εB(εn) + εA(εn) = 0.

Together with initial conditions, Eq. (3.9), the solutions are given by (see [6, 26])

A(εn) =

(
1 +

ε2

4

)n
2

sin(nµ(ε)),

B(εn) =

(
1 +

ε2

4

)n
2

cos(nµ(ε)).

µ(ε) is defined as

cos(µ(ε)) =
1√

1 + ε2

4

and sin(µ(ε)) =
ε

2
√

1 + ε2

4

.

Using the trigonometric identity for the angle sum, the approximation can be written in the following
form,

x0(n, εn) =

(
1 +

ε2

4

)n
2

sin

(
1

2
nπ + nµ(ε)

)
. (3.10)

The exact solution can be calculated, such that one can see that the error is of O(ε), for n = O( 1
ε ). This

has been done by Van Horssen and Ter Brake [26]. Figure 3.3 shows a plot of the exact solution and the
approximation. Secular behaviour is observed, but only for n = O( 1

ε2 ).
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Figure 3.3: Plot of the exact solution of Eqs. (3.7) and (3.8), (blue) triangles, and an approximation obtained
using the method of multiple scales, (red) squares, for ε = 0.1. Only every fourth point has been plotted.

Now that we have seen how the method of multiple scales works for ODEs and O∆Es, we shall consider
a method of multiple scales for DDEs.



Chapter 4

Method of Multiple Scales for First
Order Delay Differential Equations

We will use the method of multiple scales for ODEs and O∆Es, to construct a method of multiple scales
for DDEs. In this chapter we shall only consider first order DDEs. Many of the difficulties that arise for
first order DDEs will also arise for higher order DDEs. It is then favorable to have solved these problems
for the simplest case, such that only slight adjustments are necessary.

Method of multiple scales already exist for DDEs (see for example [7]), but these assume that either the
delay is a perturbation on an ODE, for example

dy(t)

dt
+ ay(t) = εy(t− 1),

or that the delay itself is small, for example

dy(t)

dt
+ ay(t) = by(t− ε).

For the first case, the unperturbed equation is an ODE. For the second case, a Taylor expansion can be
used to again obtain an ODE. To obtain approximations, the ODEs are solved, instead of the DDEs.
The effect of the delay terms are small in these equations, so one might expect this method to work.
However, due to the different natures of ODEs and DDEs, the approximations are not always accurate.
Furthermore, this method cannot be used anymore when the effect of the delay term becomes bigger. In
this chapter we shall construct a method which keeps the DDEs throughout the derivation. We consider
(nonlinear) DDEs, which are linear DDEs in the unperturbed case.

We shall first show what kind of functions cause secular terms. Then we present the operators that will
be used in this method. These operators will be similar to the operators used in the method of multiple
scales for O∆Es. Next, an example is used to illustrate how the method works. After that, the validity
of the method is proven under certain conditions. Then we shall consider a delayed version of Mathieu’s
equation and a quadratic perturbation, for which we need to analyse the characteristic equation. Finally,
we will consider a DDE perturbation on an ODE. We will show when the already existing perturbation
method fails, and yield an accurate approximation for this case, using our perturbation method.

4.1 Secular Terms and Detuning

In the method of multiple scales for ODEs and O∆Es, the initial conditions did not fully determine
a unique solution. This freedom was used to avoid secular terms. It was important to identify which
functions would cause secular growth, such that these can be eliminated. In this section, we shall show
which functions cause secular growth for DDEs.

25
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Consider
dy(t)

dt
+ ay(t) + by(t− 1) = f(t).

As seen before, solutions to the homogeneous equation can cause secular growth. We shall investigate
that phenomenon here as well. In Section 2.1 the solution to a nonlinear first order DDE was derived.
This solution consists of a homogeneous part and a part related to the nonlinear part of the DDE. The
nonlinear part of this solution is given by

∞∑
k=−∞

eλkt

1− be−λk

ˆ t

0

e−λksf(s)ds,

with λk the solutions of the characteristic equation corresponding to the linear DDE. Set f(t) = eλlt, with
λl one of the solutions of the characteristic equation. Then the nonlinear part of the solution becomes

teλlt

1− be−λl
+

∞∑
k=−∞
k 6=l

eλlt − eλkt

(1− be−λk) (λl − λk)
,

where we have split it up into a k = l and k 6= l part. We see that for k = l we get teλlt, which is a
secular term.

Note that we have used the solution for which all solutions of the characteristic equation must have
multiplicity one. If we consider the case for which λ0 = λ−1, then the solution will contain a term of the
form teλ0t. Then using f(t) = eλ0t will result in a term of the form t2eλ0t in the solution, so we still have
secular behaviour.

We now consider a source function, close to a solution of the homogeneous equation. This is called
detuning. Write f(t) = eαt, with α = λl + ε. ε is small, 0 < ε� 1. The nonlinear part of the solution is
then given by

∞∑
k=−∞

eαt − eλkt

(1 + be−λk) (α− λk)
.

For k = l, α− λk = ε, so we divide by ε. If we use an expansion, then this will violate the ordering of an
expansion, so detuning still causes secular behaviour.

We shall now consider the operators used in the method of multiple scales for DDEs.

4.2 Operators

The operators that we consider for DDEs are similar to the operators for O∆Es. We have the shift
operator E, the difference operator ∆ and identity operator I, now defined as

Ex(t) = x(t− T ), ∆x(t) = x(t)− x(t− T ), and Ix(t) = x(t), (4.1)

for a delay T . The relation between the operators is

E + ∆ = I. (4.2)

For most examples that we consider in this thesis we will have to use a fast and a slow timescale, t and
τ = εt. We will use the following partial operators,

E1x(t, τ) = x(t− T, τ), (4.3)

Eεx(t, τ) = x(t− T, τ − εT ), (4.4)

∆1x(t, τ) = x(t, τ)− x(t− T, τ), (4.5)

∆εx(t, τ) = x(t, τ)− x(t, τ − εT ). (4.6)

The relations between the partial operators are

E1 + ∆1 = I and Eε + ∆ε = I. (4.7)
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As for the O∆Es, we have
E = E1Eε. (4.8)

Then,

∆ = I − E = I − E1Eε = I − (I −∆1)(I −∆ε)

= ∆1 + ∆ε −∆1∆ε.
(4.9)

As for O∆Es, we assume that

∆1x(t, τ) = O(x(t, τ)), (4.10)

∆εx(t, τ) = O(εx(t, τ)). (4.11)

We shall now use these operators for a method of multiple scales for first order DDEs.

4.3 Method of Multiple Scales

We will consider the following types of equations in this chapter,

dy(t)

dt
+ ay(t) + by(t− 1) = εf(t, y(t), y(t− 1)).

Usually, f is a function for which we cannot find the exact solution of the equation. ε is a small
parameter, so we are considering a small (nonlinear) perturbation on a linear first order DDE. We will
use the following initial condition,

y(t) = φ(t), for t ∈ [−1, 0].

For most examples that will be discussed in this chapter, we will introduce a slow timescale, τ = εt. We
will construct an equation for ỹ(t, τ) = y(t). For the derivative we use

d

dt
=

∂

∂t
+ ε

∂

∂τ
,

as we have seen for ODEs. For the delay term we will use

E = E1Eε = E1(I −∆ε)

= E1 − E1∆ε,

whereas we used only partial ∆ operators for O∆Es. Both yield the same equations, so one can use either
method.

The equation for ỹ(t, τ) is given by(
∂

∂t
+ ε

∂

∂τ

)
ỹ(t, τ) + aỹ(t, τ) + bE1ỹ(t, τ)− bE1∆εỹ(t, τ) = εf̃(. . . ),

with f̃(. . . ) a function similar to f(t, y(t), y(t − 1)). We will use expansions for ỹ(t, τ) and f̃(. . . ) to
obtain an approximation for ỹ(t, τ),

ỹ(t, τ) = y0(t, τ) + εy1(t, τ) + . . . ,

f̃(. . . ) = f0(. . . ) + εf1(. . . ) + . . . .

We assume that f0(. . . ) only depends on y0, f1(. . . ) only on y0 and y1, and so on. We can then collect
like orders of ε in the equation for ỹ(t, τ). The O(1) equation is given by

∂y0(t, τ)

∂t
+ ay0(t, τ) + bE1y0(t, τ) = 0.
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Note that this is exactly the equation that we would get if we would set ε = 0 in the original equation.
τ only appears as a parameter in this equation, so we can solve it for t. We use the results of Chapter 2,
with functions of τ instead of constants. The solution for y0 is of the following form,

y0(t, τ) =

∞∑
k=−∞

αk(τ)eλkt,

with λk the solutions of the characteristic equation

λ+ a+ be−λ = 0.

Generally we have the initial condition ỹ(t, τ) = φ̃(t, τ) for (t, τ) ∈ [−1, 0]× [−ε, 0]. Then one should use
an expansion for φ̃ to obtain initial conditions for each yi. For simplicity, we will assume that φ̃ = O(1),
such that y0 will satisfy the initial condition. We shall also assume that φ̃ has no τ dependence. This
is not a strange assumption, as it only means that εt does not occur in the initial condition. The initial
condition for y0 becomes a constant initial condition for αk,

αk(τ) = Φk, for τ ∈ [−ε, 0],

with

Φk =
1

1− be−λk

(
φ(0)− be−λk

ˆ 0

−1

e−λkθφ(θ)dθ

)
.

Note that these are precisely the constants that we find for the exact solution of the unperturbed problem.

The O(ε) equation is given by

∂y1(t, τ)

∂t
+ ay1(t, τ) + bE1y1(t, τ) = −∂y0(t, τ)

∂τ
+
b

ε
E1∆εy0(t, τ) + f0(. . . ).

Note that we assume that ∆εy0(t, τ) = O(εy0(t, τ)), so the term b
εE1∆εy0(t, τ) is of the same order as

all other terms in this equation. Using our expression for y0, the right-hand side of the O(ε) equation
becomes

∞∑
k=−∞

(
−dαk(τ)

dτ
+
b

ε
e−λk∆εαk(τ)

)
eλkt + f0(. . . ).

We have shown that terms of the form eλt, with λ a solution of the characteristic equation, will cause
secular terms. So, we need to eliminate these terms on the right-hand side of the O(ε) equation. If for
some λl, f0(. . . ) does not contain eλlt, then to eliminate eλlt from the right-hand side, we must require

dαl(τ)

dτ
=
b

ε
e−λl∆εαl(τ).

Note that αl(τ) = Φl is a solution which satisfies the equation and the initial condition for αl. By the
existence and uniqueness theorems, as stated in Chapter 1, this must be the unique solution. If f0(. . . )
does contain eλlt, then we get different equations. For different choices of f , we will get very different
problems. We will discuss several examples in this chapter.

We start with a simple example, for which we also know the exact solution. We can compare our
approximation with this exact solution.

4.4 Linear Example

We shall consider the following problem,

dy(t)

dt
+ ay(t) + by(t− 1) = εy(t), (4.12)

with
y(t) = φ(t), for t ∈ [−1, 0]. (4.13)

Note that this is a linear DDE, for which we know the exact solution. We shall first give this exact
solution. Then we shall determine an approximation, using the method of multiple scales. Finally, we
shall compare our approximation with the exact solution.



29 4.4. Linear Example

4.4.1 Exact solution

The exact solution is given by

y(t) =

∞∑
k=−∞

αke
λkt, (4.14)

with λk the solutions of the characteristic equation,

λ+ a− ε+ be−λ = 0, (4.15)

and the constants are determined by the initial condition,

αk =
1

1− be−λk

(
φ(0)− be−λk

ˆ 0

−1

e−λkθφ(θ)dθ

)
. (4.16)

We continue with the approximation.

4.4.2 Approximation

We can copy much of the general derivation. We will use the slow timescale τ = εt, obtain an equation
for ỹ(t, τ) and use an expansion. We then get equations for each order of ε. The O(1) equation is the
same as for the general derivation, so we can immediately write down the solution,

y0(t, τ) =

∞∑
k=−∞

βk(τ)eµkt,

with µk the solutions of the characteristic equation

µ+ a+ be−µ = 0. (4.17)

We assume that φ(t) = O(1) and has no τ dependence, such that for βk we get the following initial
condition

βk(τ) = Φk, for τ ∈ [−ε, 0],

with

Φk =
1

1− be−µk

(
φ(0)− be−µk

ˆ 0

−1

e−µkθφ(θ)dθ

)
. (4.18)

Note that this is the same as αk, but with µk instead of λk. The O(ε) equation is given by

dy1(t, τ)

dt
+ ay1(t, τ) + bE1y1(t, τ) = −∂y0(t, τ)

∂τ
+
b

ε
E1∆εy0(t, τ) + y0(t, τ).

Using our expression for y0, we can write down the right-hand side of the O(ε) equation,

∞∑
k=−∞

(
−dβk(τ)

dτ
+
b

ε
e−µk∆εβk(τ) + βk(τ)

)
eµkt.

To avoid secular terms, we get the following equation for βk,

dβk(τ)

dτ
−
(
b

ε
e−µk + 1

)
βk(τ) +

b

ε
e−µkβk(τ − ε) = 0.

This is a linear first order DDE, with a delay T = ε instead of T = 1. We can readily solve this,

βk(τ) =

∞∑
l=−∞

γkle
νklτ ,

with νkl the solutions of the characteristic equation

ν −
(
b

ε
e−µk + 1

)
+
b

ε
e−µke−εν = 0, (4.19)
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and the constants are given by the following expression,

γkl =
Φk

1− be−µke−ενkl

(
1− b

ε
e−µke−ενkl

ˆ 0

−ε
e−νklηdη

)
.

Our approximation is given by

y0(t, τ) =

∞∑
k,l=−∞

γkle
νklτeµkt

=

∞∑
k,l=−∞

γkle
(µk+ενkl)t.

We shall now compare this approximation with the exact solution.

4.4.3 Comparison

We shall show that the error of the approximation is O(ε) for t = O( 1
ε ).

We first consider the relation between the solutions of the different characteristic equations. For ν, we
can find solutions of different orders of ε. There are two possible balances, O(1) and O( 1

ε ). For the first
balance we expand the exponential in Eq. (4.19), to obtain the following equation,

ν −
(
b

ε
e−µk + 1

)
+
b

ε
e−µk (1− εν + . . . ) = 0

Note that the two b
εe
−µk cancel. Then solve the O(1) equation for ν to obtain the following first order

approximation,

ν ∼
(
1− be−µk

)−1
. (4.20)

For the other balance write ν = 1
ε ν̃, with ν̃ = O(1). The O( 1

ε ) equation is given by

ν̃ − be−µk + be−µke−ν̃ = 0.

This has infinitely many solutions. ν̃ = 0 is a solution of this equation, but we do not consider this, since
then we do not have that ν is O( 1

ε ). Using the characteristic equation, one can show that

γkl =
Φk

1− be−µke−ενkl
1

νkl
.

For νkl = O( 1
ε ) we find γkl = O(ε) and for νkl = (1− be−µk)

−1
we find γkl = Φk (1 +O(ε)). So,

for a first order approximation of βk, we can neglect the O( 1
ε ) solutions. We will continue to write

νk = (1− be−µk)
−1

and let γk be the corresponding coefficient.

Now consider λ. We expand λ as λ = λ0 + ελ1 + . . . and expand the exponential in Eq. (4.15) to obtain(
λ0 + ελ1 + . . .

)
+ a− ε+ be−λ

0 (
1− ελ1 + . . .

)
= 0.

The O(1) equation is given by

λ0 + a+ be−λ
0

= 0,

which is exactly the characteristic equation for µ, Eq. (4.17). The O(ε) equation is given by

λ1 − 1− be−λ
0

λ1 = 0.

Solving this for λ1 yields

λ1 =
(

1− be−λ
0
)−1

,

which is the same expression that we found for νk. So, we have

λk = µk + ενk +O(ε2).
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Then,

eµkteνkτ = e(λk+O(ε2))t = eλkt(1 +O(ε)), (4.21)

for t = O( 1
ε ).

We must now show that the O(1) parts of γk and αk are the same. Using that e−λk = e−µk (1 +O(ε)),
one can show that αk = Φk (1 +O(ε)). We have already seen that γk = Φk (1 +O(ε)), such that

γk = αk (1 +O(ε)) . (4.22)

Using Eqs. (4.21) and (4.22), we have

y0(t, τ) = y(t) +O(ε),

for t = O( 1
ε ).

We have shown that the approximation is O(ε) accurate on a timescale of t = O( 1
ε ) for this example. In

the next section we will prove the validity of the method in a more general sense.

4.5 Validity of the Method of Multiple Scales

Consider the equation
dy(t)

dt
+ ay(t) + by(t− 1) = εf(t, y(t), y(t− 1)), (4.23)

with
y(t) = φ(t), for t ∈ [−1, 0].

We have an approximation of the solution, ỹ, which satisfies

dỹ(t)

dt
+ aỹ(t) + bỹ(t− 1) = εf(t, ỹ(t), ỹ(t− 1)) + ε2R(t), (4.24)

with
ỹ(t) = φ0(t), for t ∈ [−1, 0].

The initial conditions are close together, φ(t) = φ0(t) + εφ1(t) + . . . .

We will show that ỹ(t) is O(ε) accurate on a timescale of O( 1
ε ).

Note that the linear parts of the equations for y and ỹ are the same, which can be seen by setting ε = 0
in both equations. We have the fundamental solution Y (t), with L(Y (t))(s) = (s− a− be−s)−1

. Then,

y(t) = Y (t)φ(0) + b

ˆ 0

−1

Y (t− θ − 1)φ(θ)dθ + ε

ˆ t

0

Y (t− s)f(s, y(s), y(s− 1))ds, (4.25)

ỹ(t) = Y (t)φ0(0) + b

ˆ 0

−1

Y (t− θ − 1)φ0(θ)dθ + ε

ˆ t

0

Y (t− s)f(s, y(s), y(s− 1))ds+ ε2

ˆ t

0

Y (t− s)R(s)ds

(4.26)

We assume that f satisfies the following Lipschitz conditions: there exist positive constants L1 and L2,
such that

|f(t, y(t), y(t− 1))− f(t, ỹ(t), y(t− 1))| ≤ L1|y(t)− ỹ(t)|, (4.27)

|f(t, y(t), y(t− 1))− f(t, y(t), ỹ(t− 1))| ≤ L2|y(t− 1)− ỹ(t− 1)|. (4.28)

Under these conditions, the following inequality holds,

|f(t, y(t), y(t− 1))− f(t, ỹ(t), ỹ(t− 1))| ≤ L1|y(t)− ˜y(t)|+ L2|y(t− 1)− ỹ(t− 1)|. (4.29)

Recall that for the fundamental solution Y (t) we have an expression with an infinite sum of eλkt, with λk
the solutions of the characteristic equation. The λk with the highest real value will dominate the solution
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of the unperturbed problem. We call this eλkt the ”largest solution of the unperturbed problem (ε = 0)”.
Y (t) is bounded by this ”largest solution” and we assume that R(t) is as well. We define

µ = max
k

Re(λk). (4.30)

Recall that this maximal value is found at the principal branch of the Lambert W function, λ0. Hale and
Verduyn Lunel [10] show that if λk has multiplicity m, then for n = 0, . . . ,m− 1, tneλkt are all solutions
of the unperturbed equation. If bea = e−1, then λ0 has multiplicity two, so the bounding function is teµt.
If bea 6= e−1, then the multiplicity of λ0 is one, so the bounding function is eµt. We will continue with
the latter case, and assume that

|Y (t)| ≤M0e
µt, (4.31)

|R(t)| ≤M1e
µt, (4.32)

with M0 and M1 positive constants. The derivation for the other case is similar.

Recall that the initial conditions are close together, so we can write

|φ(θ)− φ0(θ)| ≤ εM2, (4.33)

with M2 a positive constant. Note that this only has to hold for θ ∈ [−1, 0].

Subtract Eqs. (4.25) and (4.26) and take the absolute value,

|y(t)− ỹ(t)| ≤|Y (t)||φ(0)− φ0(0)|+ b

ˆ 0

−1

|Y (t− θ − 1)||φ(θ)− φ0(θ)|dθ

+ ε

ˆ t

0

|Y (t− s)||f(s, y(s), y(s− 1))− f(s, ỹ(s), ỹ(s− 1))|ds

+ ε2

ˆ t

0

|Y (t− s)||R(s)|ds

(4.34)

We will consider three parts separately. First, we consider the part involving the initial conditions. Using
our assumptions, we find that

|Y (t)||φ(0)− φ0(0)|+ b

ˆ 0

−1

|Y (t− θ − 1)||φ(θ)− φ0(θ)|dθ ≤ εM0M2e
µt + ε

bM0M2

µ

(
1− e−µ

)
eµt

= εM3e
µt, (4.35)

with

M3 = M0M2 +
bM0M2

µ

(
1− e−µ

)
.

For the second part, we consider the function f . We use Eqs. (4.29) and (4.31) to find,

ˆ t

0

|Y (t− s)||f(s, y(s), y(s− 1))− f(s, ỹ(s), ỹ(s− 1))|ds

≤
ˆ t

0

|Y (t− s)|
(
L1|y(s)− ˜y(s)|+ L2|y(s− 1)− ỹ(s− 1)|

)
ds

=

ˆ t

0

|Y (t− s)|L1|y(s)− ˜y(s)|ds+

ˆ t−1

−1

|Y (t− s− 1)|L2|y(s)− ỹ(s)|ds

≤
ˆ t

−1

(L1|Y (t− s)|+ L2|Y (t− s− 1)|) |y(s)− ỹ(s)|ds

≤
ˆ t

−1

M0Le
µ(t−s)|y(s)− ỹ(s)|ds,

(4.36)

with
L = L1 + L2e

−µ.
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For the third part, we consider R. We use Eqs. (4.31) and (4.32), to find

ˆ t

0

|Y (t− s)||R(s)|ds ≤M0M1

ˆ t

0

eµ(t−s)eµsds

= M0M1te
µt.

(4.37)

Using Eqs. (4.35) to (4.37), the inequality in Eq. (4.34) becomes

|y(t)− ỹ(t)| ≤ εM3e
µt + ε2M0M1te

µt +

ˆ t

−1

εM0Le
µ(t−s)|y(s)− ỹ(s)|ds, (4.38)

which is equivalent to

e−µt|y(t)− ỹ(t)| ≤ εM3 + ε2M0M1t+

ˆ t

−1

εM0Le
−µs|y(s)− ỹ(s)|ds (4.39)

We are considering t = O( 1
ε ), so let t ≤ K

ε , with K a positive constant. Then,

e−µt|y(t)− ỹ(t)| ≤ ε(M3 +M0M1K) +

ˆ t

−1

εM0Le
−µs|y(s)− ỹ(s)|ds. (4.40)

Grönwall [8] has shown that a function satisfying an integral inequality is bounded by the solution of the
corresponding integral equation. We can use that here to obtain

e−µt|y(t)− ỹ(t)| ≤ ε(M3 +M0M1K) exp

(ˆ t

−1

εM0Lds

)
= ε(M3 +M0M1K)eεM0L(t+1).

The right-hand side is O(ε) (for t = O( 1
ε )), so

|y(t)− ỹ(t)| = O
(
εeµt

)
. (4.41)

We consider the absolute error, |y(t)− ỹ(t)|, and the relative error,

|y(t)− ỹ(t)|
eµt

.

For µ < 0 the absolute and the relative error both stay small. For µ ≥ 0, we only consider the relative
error as the exact solution and approximation are unbounded.

We summarize the results of this section in the following theorem.

Theorem 4.1. Let y(t) satisfy Eq. (4.23) and ỹ(t) Eq. (4.24). Assume f satisfies Eq. (4.29), let µ be
defined as in Eq. (4.30), let Y (t) be the fundamental solution, which satisfies Eq. (4.31), assume R(t)
satisfies Eq. (4.32), and assume that |y(t)− ỹ(t)| = O(ε) for t ∈ [−1, 0]. Then, the absolute error between
y and ỹ is O(ε) for µ < 0, and the relative error between y and ỹ is O(ε) for all µ, on a timescale
t = O( 1

ε ).

In this chapter we consider first order DDEs. We have already considered the solution for higher order
DDEs in Chapter 2. In the next chapter we shall consider the method of multiple scales for higher order
DDEs. We will already briefly touch upon the validity of the method of multiple scales for higher order
DDEs.

4.5.1 Validity for higher order delay differential equations

We can rewrite higher order DDEs into the following system of DDEs,

dy(t)

dt
+Ay(t) +By(t− 1) = εf(t,y(t),y(t− 1)), (4.42)
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with the initial condition y(t) = φ(t) for t ∈ [−1, 0]. Using the method of multiple scales, we will find an
approximation, ỹ(t), which satisfies

dỹ(t)

dt
+Aỹ(t) +Bỹ(t− 1) = εf(t, ỹ(t), ỹ(t− 1)) + ε2R(t), (4.43)

with initial condition ỹ(t) = φ(t) for t ∈ [−1, 0]. As for the first order case, these initial conditions are
close together.

This time, we will have the same fundamental matrix Y (t), such that we can write down the integral
equations for y(t) and ỹ(t). We can subtract these integral equations and take the norm, ‖ · ‖, which we
define as

‖y(t)‖ = max
i
yi(t),

with yi(t) the elements of y(t). We will get a restriction for each part of the equation and use Grönwall’s
lemma to obtain a restriction for ‖y(t)− ỹ(t)‖. This will again be of the form

‖y(t)− ỹ(t)‖ = O
(
εeµt

)
, (4.44)

with µ the largest real part of all the solutions of the characteristic equation. The restriction holds for
t = O( 1

ε ). We find that the error is O(ε) on a timescale t = O( 1
ε ). Whether this is the absolute and/or

relative error depends on the sign of µ.

In the remainder of this chapter we shall consider examples for first order DDEs. For the example that
we shall consider next, the relation between the solutions of the characteristic equation will need to be
investigated.

4.6 Mathieu’s Equation

We shall consider an example closely related to Mathieu’s equation (see for example [13, 20] for Mathieu’s
equation for ordinary differential equations and [14] for the stability of a DDE version of Mathieu’s
equation). Mathieu’s equation for ODEs is of the following form,

d2y(t)

dt2
+ (δ + ε cos t)y(t) = 0. (4.45)

One assumes that δ = O(1) and that ε is a small parameter. It can be shown that for certain values of
δ, the solution becomes unstable. This phenomenon is called parametric resonance. We will consider the
following DDE version of Mathieu’s equation,

dy(t)

dt
+ ay(t) + by(t− 1) = εeγty(t), (4.46)

with the following initial condition,

y(t) = φ(t), for t ∈ [−1, 0]. (4.47)

We will set a and b, such that we can calculate all solutions of the characteristic equation. We can then
find for which γ, resonance will occur. We could also consider a different forcing, such as ε cos(γt)y(t).
This will lead to similar behaviour. We will consider this forcing for a second order DDE in Section 5.2.

We introduce the slow timescale τ = εt, and construct an equation for ỹ(t, τ). We do this exactly as
before and obtain(

∂

∂t
+ ε

∂

∂τ

)
ỹ(t, τ) + aỹ(t, τ) + bE1ỹ(t, τ)− bE1∆εỹ(t, τ) = εeγtỹ(t, τ).

Then expand ỹ as ỹ(t, τ) = y0(t, τ) + εy1(t, τ) + . . . , and collect like orders of ε. The O(1) and O(ε)
equations are given by

∂y0(t, τ)

∂t
+ ay0(t, τ) + bE1y0(t, τ) = 0, (4.48)

∂y1(t, τ)

∂t
+ ay1(t, τ) + bE1y1(t, τ) = −∂y0(t, τ)

∂τ
+
b

ε
E1∆εy0(t, τ) + eγty0(t, τ). (4.49)
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We solve y0 for t,

y0(t, τ) =

∞∑
k=−∞

αk(τ)eλkt, (4.50)

with λk the solutions of the characteristic equation

λ+ a+ be−λ = 0. (4.51)

We assume that φ(t) is O(1) and has no τ dependence, such that we have a constant initial condition for
αk, αk(τ) = Φk for τ ∈ [−ε, 0], with

Φk =
1

1− be−λk

(
φ(0)− be−λk

ˆ 0

−1

e−λkθφ(θ)dθ

)
. (4.52)

The right-hand side of the O(ε) equation then becomes

∞∑
k=−∞

[(
−dαk(τ)

dτ
+
b

ε
e−λk∆εαk(τ)

)
eλkt + αk(τ)e(λk+γ)t

]
.

As said before, we wish to find γ, such that resonance occurs. For this we must find a solution of the
characteristic equation, λk, such that λk + γ is again a solution of the characteristic equation.

We must know for which solutions this is possible. To this end, we write λ = ν + iω, with ν, ω ∈ R, and
split the characteristic equation into a real and imaginary part. We will only need the imaginary part of
the characteristic equation,

ω − be−ν sinω = 0.

First consider ω = nπ, with n ∈ Z. Then we see that this only satisfies the equation if n = 0. Second,
consider ω 6= nπ. Then we see that we can determine ν for this value of ω. Consequently, there is only
one solution with this imaginary part, so λ + γ cannot be a solution as well. The only possibility is to
have more than one real solutions of the characteristic equation. One can show that there are two distinct
real solutions if bea ∈

(
0, e−1

)
. These are λ−1 and λ0, with λ−1 < λ0. We choose γ = λ−1−λ0 < 0, such

that we will find a stable solution.

We can then write down the equations for αk, such that there are no secular terms. For k 6= −1, the
equations are

dαk(τ)

dτ
=
b

ε
e−λk∆εαk(τ). (4.53)

Note that αk(τ) = Φk is a solution that satisfies the equation and initial condition for αk. By the existence
and uniqueness theorems, as stated in Chapter 1, this must be the unique solution. For k = −1, we get
the following equation

dα−1(τ)

dτ
=
b

ε
e−λ−1∆εα−1(τ) + Φ0, (4.54)

where we have used that α0(τ) = Φ0. The solution is given by

α−1(τ) = Φ−1 +

∞∑
l=−∞

eµlτ

1− be−λ−1e−εµl

ˆ τ

0

e−µlσΦ0dσ,

with µl the solutions of the characteristic equation

µ− b

ε
e−λ−1 +

b

ε
e−λ−1e−εµ = 0.

We rewrite the characteristic equation for µ into the following form,

εµ− be−λ−1 = −be−λ−1e−εµ.

Then use the characteristic equation for λ, Eq. (4.51), to see that −be−λ−1 = λ−1 + a, such that the
characteristic equation for µ becomes

εµ+ λ−1 + a = (λ−1 + a)e−εµ.
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We can rewrite this into the following form,

(εµ+ λ−1 + a) eεµ+λ−1+a = (λ−1 + a) eλ−1+a.

We again use the characteristic equation for λ, this time to see that (λ−1 + a) eλ−1+a = −bea, such that

(εµ+ λ−1 + a) eεµ+λ−1+a = −bea.

Note that this is the characteristic equation for λ, in rewritten form, thus we must have

λl + a = εµl + λ−1 + a,

or equivalently
εµl = λl − λ−1.

It is then easy to see that µ−1 = 0. We can calculate the integral in the expression for α−1, to obtain

α−1(τ) = Φ−1 +
Φ0

1− be−λ−1
τ +

∞∑
l=−∞
l 6=−1

εΦ0

(1− be−λl) (λl − λ−1)
(eµlτ − 1) . (4.55)

We have also rewritten some terms, using our expression for µl. We can finally write down the expression
for y0,

y0(t, τ) =

∞∑
k=−∞

Φke
λkt +

Φ0

1− be−λ−1
τeλ−1t +

∞∑
l=−∞
l 6=−1

εΦ0

(1− be−λl) (λl − λ−1)

(
eλlt − eλ−1t

)
. (4.56)

We can compare this with a numerically calculated solution.

4.6.1 Numerical Comparison

We use a very simple method to calculate a numerical solution. We discretize time, ti = i∆t, and
will calculate the numerical approximation ŷi ≈ y(ti). We use the Euler forward approximation for the
derivative,

dy(ti)

dt
≈ ŷi+1 − ŷi

∆t
. (4.57)

For the delay term we use y(t− 1) ≈ ŷi− 1
∆t

. Eq. (4.46), becomes the following equation for ŷ

ŷi+1 − ŷi
∆t

+ aŷi + bŷi− 1
∆t

= εeγti ŷi.

We can rewrite this into the following form,

ŷi+1 = ŷi + ∆t
(
−aŷi − bŷi− 1

∆t
+ εeγti ŷi

)
. (4.58)

We start with a vector for t ∈ [−1, 0], for which we have the initial condition. Then we iterate and
calculate ŷi+1, using the previous values.

Figure 4.1 shows a plot of the numerical solution, together with the approximation. The two plots are
close together.
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Figure 4.1: Plot of a numerically calculated solution, solid (red) line, and an approximation of the solution, dashed
(blue) line, of Eq. (4.46), with initial condition Eq. (4.47) with φ(t) = et. For the parameters, a = 1

2
, b = 1

5
,

ε = 0.1 and γ = λ−1 − λ0 have been used.

As the numerical solution and the approximation, both go to zero, the absolute error will go to zero as
well. Instead, we will consider the relative error. Figure 4.2 shows a plot of the relative error. One can
clearly distinguish the linear line, which corresponds to the term Φ0

1−be−λ−1
τeλ−1t in the approximation.

Also note that the relative error is O(ε) on a timescale t = O( 1
ε ).
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Figure 4.2: Plot of the relative error of the approximation for the solution of the DDE Eq. (4.46), with initial
condition Eq. (4.47) with φ(t) = et. For the parameters, a = 1

2
, b = 1

5
, ε = 0.1 and γ = λ−1 − λ0 have been used.

In this example we had to answer the question whether λ+γ could again be a solution of the characteristic
equation. In the next example, we will have to answer the question whether the sum of two solution of
the characteristic equation can be a solution of the characteristic equation.
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4.7 Quadratic Perturbation

We shall consider the following DDE with a quadratic perturbation,

dy(t)

dt
+ ay(t) + by(t− 1) = εy(t)2, (4.59)

with the following initial condition,

y(t) = φ(t), for t ∈ [−1, 0].

The beginning of the analysis is as before. We again find,

y0(t, τ) =

∞∑
k=−∞

αk(τ)eλkt,

with λk the solution of the characteristic equation,

λ+ a+ be−λ = 0. (4.60)

We have a constant initial condition for αk, αk(τ) = Φk for τ ∈ [−ε, 0], with

Φk =
1

1− be−λk

(
φ(0)− be−λk

ˆ 0

−1

e−λkθφ(θ)dθ

)
. (4.61)

The right-hand side of the O(ε) is of the following form,

∞∑
k=−∞

[(
−dαk(τ)

dτ
+
b

ε
e−λk∆εαk(τ)

)
eλkt +

∞∑
l=−∞

αk(τ)αl(τ)e(λk+λl)t

]
. (4.62)

We see that we must determine whether λk + λl can again be a solution of the characteristic equation.
This is discussed in detail in Appendix C. One can tune the parameters a and b, such that the sum of
two conjugate solutions is exactly a real solution, either λ−1 or λ0. As λ−1 and λ0 are greater than
the real parts of all other solutions, this will only occur for cases for which some of the solutions of the
characteristic equations have positive real part. Thus, we can only consider a problem, which is already
unstable in the unperturbed case. We will continue with the case λ1 + λ−2 = λ0, and there is no other
possibility to have that the sum of two solutions of the characteristic equation is again a solution of the
characteristic equation. Then for k 6= 0 we have the equations

dαk(τ)

dτ
=
b

ε
e−λk∆εαk(τ), (4.63)

such that αk(τ) = Φk. For k = 0 we have the following equation,

dα0(τ)

dτ
=
b

ε
e−λ0∆εα0(τ) + 2Φ1Φ−2. (4.64)

The solution is given by

α0(τ) = Φ0 +

∞∑
l=−∞

eµlτ

1− be−λ0e−µl

ˆ τ

0

e−µlσ2Φ1Φ−2dσ, (4.65)

with µl the solutions of the characteristic equation

µ =
b

ε
e−λ0

(
1− e−εµ

)
.

As in the previous example, εµl = λl − λ0. We can use this to work out the expression for α0,

α0(τ) = Φ0 +
2Φ1Φ−2

1− be−λ0
τ +

∞∑
l=−∞
l 6=0

2εΦ−2Φ1

(1− be−λl) (λl − λ0)
(eµlτ − 1) . (4.66)
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The approximation is given by

y0(t, τ) =

∞∑
k=−∞

Φke
λkt +

2Φ1Φ−2

1− be−λ0
τeλ0t +

∞∑
l=−∞
l 6=0

2εΦ−2Φ1

(1− be−λl) (λl − λ0)

(
eλlτ − eλ0t

)
. (4.67)

Finally, we will consider an example for which we will have to introduce a different timescale.

4.8 DDE perturbation on an ODE

In the beginning of this chapter we mentioned that there already exists a method of multiple scales for
certain kinds of DDEs, for which we will only solve ODEs. In this section we will consider when this
method fails, and in which way we can use our method to obtain a good approximation for these cases.
For this we will have to introduce a timescale that we have not seen in the previous examples.

We consider the equation
dy(t)

dt
+ ay(t) = εy(t− 1), (4.68)

with ε a small parameter. We use the following initial condition,

y(t) = φ(t), for t ∈ [−1, 0]. (4.69)

We will first state the exact solution. Then we will use the method as described by Erneux [7] to obtain
an approximation, and show when this method fails. Finally we will obtain an accurate approximation
using our method.

4.8.1 Exact solution

The exact solution is given by

y(t) =

∞∑
k=−∞

αke
λkt, (4.70)

with λk the solutions of
λ+ a = εe−λ, (4.71)

and

αk =
1

1 + εe−λk

(
φ(0) + εe−λk

ˆ 0

−1

e−λkθφ(θ)dθ

)
. (4.72)

We can group the solutions of the characteristic equation according to their dependence on ε. There is
one O(1) solution. To obtain an approximation for this solution, we can expand it, λ = λ0 + ελ1 + . . . ,
and collect like orders of ε in the characteristic equation. We obtain

λ = −a+ εea + . . . . (4.73)

To find the other orders, we first write µ = λ+ a. The equation for µ is given by

µ = εeae−µ.

As µ ∈ C, we can write µ = reiθ, with r ≥ 0 and θ ∈ (−π, π]. Note that µ = 0 is not a solution, so we
do not have to consider r = 0. The equation for µ becomes the following equation,

reiθ = εeae−r cos θe−ir sin θ.

We assume that ε > 0, such that
r = εeae−r cos θ,

and
θ = −r sin θ + 2kπ,
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with k ∈ Z. We can rewrite these equations into the following form,

r cos θ = ln εea − ln r,

r sin θ = −θ + 2kπ.

For the first equation, we are interested in the balance of the right-hand side. For r ∼ ε and r ∼ 1
ε , ln εea

and ln r balance. For r, in between these, ln εea is dominant. One can show that r ∼ ε is not an option.
We have already seen that there is one O(1) solution of the characteristic equation. We will now consider
a solution with r greater than O(1), but smaller than O( 1

ε ). We neglect θ in the second equation, such
that we have the following system,

r cos θ = ln εea,

r sin θ = 2kπ.

Note that ln εea is negative, such that the real part of the solution, r cos θ, will be negative. Squaring
both equations and adding them yields the following equation for r,

r2 = ln2 ε+ 4k2π2. (4.74)

We can solve this and use a Taylor expansion for the square root in the expression. We then have,

r ∼ − ln ε

(
1 +

1

2

(
2kπ

ln ε

)2
)
. (4.75)

So, to a first order, another group of solutions of the characteristic equation is found for r ∼ − ln ε. These
are the smallest solutions after the O(1) solution. We will use this group to construct a new timescale,
which we will use to obtain an approximation.

We continue with the approximations. We start with the simple approximations and show for which cases
these fail.

4.8.2 Simple approximations

We start with a simple expansion,

y(t) ∼ y0(t) + εy1(t) + . . . .

The O(1) equation is an ODE,
dy0(t)

dt
+ ay0(t) = 0.

Note that we can only satisfy an initial condition at a single point in time, instead of satisfying the initial
condition on the interval t ∈ [−1, 0]. We choose to satisfy the initial condition at t = 0. If φ(0) = O(1),
then

y0(t) = φ(0)e−at.

Else we get y0(t) = 0. The O(ε) equation is given by

dy1(t)

dt
+ ay1(t) = φ(0)eae−at.

The solution is given by
y1(t) = φ(0)eate−at.

So, we have the following approximation

y(t) ∼ φ(0) (1 + εeat) e−at.

Note that we have a secular term, so we use the method of multiple scales. We do this as described by
Erneux [7]. We introduce the slow timescale τ = εt, and derive the following equation for ỹ(t, τ) = y(t),(

∂

∂t
+ ε

∂

∂τ

)
ỹ(t, τ) + aỹ(t, τ) = εỹ(t− 1, τ − ε).



41 4.8. DDE perturbation on an ODE

Whereas we have kept all the delays throughout the analysis, Erneux [7] uses a Taylor expansion for the
second input,

ỹ(t− 1, τ − ε) ∼ ỹ(t− 1, τ)− ε∂ỹ(t− 1, τ)

∂τ
+ . . . .

We expand ỹ, ỹ(t, τ) = y0(t, τ) + εy1(t, τ) + . . . . We collect the like orders of ε, and obtain the following
O(1) and O(ε) equations,

∂y0(t, τ)

∂t
+ ay0(t, τ) = 0,

∂y1(t, τ)

∂t
+ ay1(t, τ) = −∂y0(t, τ)

∂τ
+ y0(t− 1, τ).

We can solve the equation for y0 for t,

y0(t, τ) = A(τ)e−at.

The initial condition for y0 becomes an initial condition for A. Note that we run into the same problems
as for the simple expansion, we cannot satisfy the initial condition on the entire interval. We will use
A(0) = φ(0). Using the expression for y0, the right-hand side of the O(ε) equation becomes(

−dA(τ)

dτ
+ eaA(τ)

)
e−at.

To avoid secular terms, we must require

A(τ) = φ(0)ee
aτ .

We find the following approximation,

y0(t, τ) = φ(0)ee
aτe−at

= φ(0)e(−a+εea)t.
(4.76)

Note that using the simple expansion, we got a term of the form e−at. Using the method of multiple
scales, we got e(−a+εea)t. The exponents correspond to a first and second order approximation of the
O(1) solution of the characteristic equation, respectively. As the real part of all other solutions are large
and negative, these will damp out quickly, and one might expect these approximations to hold very well.
We will first consider an example for which they do, and then an example for which they do not. This
depends on the value of the initial condition at t = 0.

We first use φ(t) = et, such that φ(0) = 1. Figure 4.3 shows a plot of the exact solution and the two
approximations for this initial condition. One can clearly see that the error of both solutions is O(ε)
for all t. This is also caused by the fact that all solutions go to zero for increasing t. If we would
plot the relative error, then we would see differences between the two approximations. In this case, the
approximations work as one would like them to.
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Figure 4.3: Plot of the exact solution, solid (red) line, of Eq. (4.68) with initial condition Eq. (4.69) with φ(t) = et.
Also, the approximation using a simple expansion, dashed (blue) line, and the approximation using a simple
method of multiple scales, dotted (green) line, have been plotted. For the parameters a = 1 and ε = 0.1 have
been used.

Now consider the case, φ(t) = sin(πt), such that φ(0) = 0. As a consequence, our approximations will be
y ∼ 0. Figure 4.4 shows a plot of the exact solution for this initial condition. Note that this solution has a
small amplitude, so the absolute error of the approximations will be small. However, the approximations
give no information about the behaviour of the exact solution. Furthermore, the relative error will always
be 1. We conclude that these simple approximations fail, when the initial condition at t = 0 is small. We
have shown this here with the extreme case φ(0) = 0, but we also find this if we would have φ(0) = O(ε).
That this is the case can be seen by investigating the constants in the exact solution, Eq. (4.72). In

between the brackets we have the terms φ(0) and εe−λk
´ 0

−1
e−λkθφ(θ)dθ. If φ(θ) = O(1) for θ ∈ [−1, 0],

then the first terms is dominant, so we only make a small error. If φ(0) = O(ε), while φ(θ) = O(1) for
θ ∈ [−1, 0), then the two terms balance, so we cannot only consider φ(0). For smaller φ(0), the second
term becomes the dominant term.
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Figure 4.4: Plot of the exact solution of Eq. (4.68) with initial condition Eq. (4.69) with φ(t) = sin(πt). For the
parameters a = 1 and ε = 0.1 have been used.

One could state that only considering eat is still a good approximation, but that we need to find the
appropriate constant. Figure 4.5 shows a plot of the exact solution, together with α0e

λ0t. We see that
after some time, this is a good approximation. However, in the beginning we really need the other
branches of the solution to obtain an accurate approximation.
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Figure 4.5: Plot of the exact solution, solid (red) line, and the approximation using only one branch of the exact
solution, dashed (blue) line. Initial condition φ(t) = sin(πt) and parameters a = 1 and ε = 0.1 have been used.

Now that we have established that these simple approximations fail when the initial condition at t = 0
is small, we will consider a better method for these cases. For this we will use the method of multiple
scales, but with a fast timescale, instead of a slow timescale.
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4.8.3 Approximations with a different timescale

The timescale that we use, depends on the solutions of the characteristic equation. We have previously
shown that there is one O(1) solution. We found that the simple approximations only used this O(1)
solution. We also wish to include the O(ln ε) solutions that we found. Define

δ = − 1

ln ε
, (4.77)

and the timescale

s =
t

δ
. (4.78)

Note that this is a fast timescale, whereas we have only considered adding the slow timescale τ = εt
before. We will again have to obtain an equation for ỹ(t, s) = y(t). We will need partial operators as
before,

E1ỹ(t, s) = ỹ(t− 1, s),

∆1ỹ(t, s) = ỹ(t, s)− ỹ(t− 1, s),

E 1
δ
ỹ(t, s) = ỹ

(
t, s− 1

δ

)
,

∆ 1
δ
ỹ(t, s) = ỹ(t, s)− ỹ

(
t, s− 1

δ

)
.

Previously, we assumed that ∆εỹ(t, τ) = O(εỹ(t, τ)). This was not a strange assumption, as we only
move a little bit in time. It is harder to see what order we have for ∆ 1

δ
. We found δ by balancing the

terms in the characteristic equation, so we will use this balance for the assumption

∆ 1
δ
ỹ(t, s) = O

(
1

εδ
ỹ(t, s)

)
.

The equation for ỹ(t, s) is(
∂

∂t
+

1

δ

∂

∂s

)
ỹ(t, s) + aỹ(t, s) = εE1ỹ(t, s)− εE1∆ 1

δ
ỹ(t, s).

We rewrite this and indicate the orders of each term,

δ
∂ỹ(t, s)

∂t︸ ︷︷ ︸
O(δỹ(t,s))

+
∂ỹ(t, s)

∂s︸ ︷︷ ︸
O(ỹ(t,s))

+ aδỹ(t, s)︸ ︷︷ ︸
O(δỹ(t,s))

= εδE1ỹ(t, s)︸ ︷︷ ︸
O(εδỹ(t,s))

− εδE1∆ 1
δ
ỹ(t, s)︸ ︷︷ ︸

O(ỹ(t,s))

.

We then introduce the expansion ỹ(t, s) = y0(t, s) + δy1(t, s) + . . . and obtain the following O(1) and
O(δ) equations,

∂y0(t, s)

∂s
+ εδE1∆ 1

δ
y0(t, s) = 0,

∂y1(t, s)

∂s
+ εδE1∆ 1

δ
y1(t, s) = −∂y0(t, s)

∂t
− ay0(t, s).

Note that when we used the slow timescale τ = εt, τ would only appear as a parameter in the O(1)
equation. We could then solve this equation for t, and solve for τ by eliminating secular terms in
the next equation. In this case, both t and s appear as variables in the O(1) equation, so we have a
partial delay differential equation, PDDE. We will solve this using the method of separation of variables
(as done by Van Horssen [25] for partial difference equations, P∆Es). We assume that we can write
y0(t, s) = T0(t)S0(s). The O(1) equation then becomes

T0(t)
dS0(s)

ds
+ εδE1T0(t)∆ 1

δ
S0(s) = 0.
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We can rewrite this equation into the following form,

T0(t)

T0(t− 1)
= −εδ

S0(s)− S0

(
s− 1

δ

)
dS0(s)

ds

.

The left-hand side depends on t and the right-hand side depends on s, so they both must be equal to
some separation constant, ζ. We then have two equations,

T0(t) = ζT0(t− 1),

and
dS0(s)

ds
+
εδ

ζ
S0(s)− εδ

ζ
S0

(
s− 1

δ

)
= 0.

We first solve for T0. We will use S0(s) to satisfy the initial condition. We find,

T0(t) = ζt.

With this expression, the right-hand side of the O(δ) equation becomes

(− ln ζ − a)T0(t)S0(s).

Note that T0(t)S0(s) will cause secular behaviour, so we must require

ζ = e−a.

The solution for T0 then becomes
T0(t) = e−at. (4.79)

We recognize that this corresponds to the O(1) solution of the characteristic equation. The equation for
S0 becomes

dS0(s)

ds
+ εδeaS0(s)− εδeaS0

(
s− 1

δ

)
= 0.

To be able to solve this, we need an initial condition for S0(s). Using the initial condition for y0(t, s), we
must have

T0(t)S0(s) = φ(t).

We can rewrite this as an initial condition for S0,

S0(s) = φ̃(s), for s ∈
[
−1

δ
, 0

]
,

with
φ̃(s) = eaδsφ(δs).

The solution for S0 is then given by

S0(s) =

∞∑
k=−∞

βke
µks, (4.80)

with µk the solutions of the characteristic equation

µ+ εδea − εδeae−µ/δ = 0, (4.81)

and the constants are given by

βk =
1

1 + εeae−µk/δ

(
φ̃(0) + εδeae−µk/δ

ˆ 0

− 1
δ

e−µkηφ̃(η)dη

)
. (4.82)
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Our approximation is given by

y0(t, s) =

∞∑
k=−∞

βke
µkse−at

=

∞∑
k=−∞

βke
(µkδ −a)t.

(4.83)

We will compare this approximation with the exact solution. We have the characteristic equations, as in
Eqs. (4.71) and (4.81). It is easy to show that

µk
δ

= λk + a+O(ε). (4.84)

Just put this into the characteristic equation for µ and work it out into the following form,

λ+ a+O(ε) + εea = εe−λ (1 +O(ε)) . (4.85)

The O(1) part of this equation is the characteristic equation for λ, so this approximation indeed holds.
For βk, we will use θ = δη in the integral, together with the approximation for µk, and obtain

βk =
1

1 + εe−λk

(
φ(0) + εe−λk

ˆ 0

−1

e−λkθφ(θ)dθ

)
(1 +O(ε)) . (4.86)

Note that the first part is equal to αk, Eq. (4.72). We then find

y0(t, s) =

∞∑
k=−∞

αke
(λk+O(ε))t (1 +O(ε)) . (4.87)

For t = O(1),
y0(t, s) = y(t) (1 +O(ε)) , (4.88)

so the relative error is O(ε).

Figure 4.6 shows a plot of the exact solution and the approximation. The approximation describes the
behaviour of the exact solution very well.
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Figure 4.6: Plot of the exact solution, solid (red) line, and an approximation of the solution, dashed (blue) line,
of Eq. (4.68) with initial condition Eq. (4.69) with φ(t) = sin(πt). For the parameters, a = 1 and ε = 0.01 have
been used.

Our approximation is only valid for t = O(1). We can also construct an approximation that is valid on
a longer timescale.
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4.8.4 Three timescales

If we wish to have a valid approximation for t = O( 1
ε ), we also have to include the timescale τ = εt. We

then obtain the following equation for ỹ(t, s, τ) (omitting the (t, s, τ)),

∂ỹ

∂s︸︷︷︸
O(ỹ)

+ εδE1∆ 1
δ
ỹ︸ ︷︷ ︸

O(ỹ)

= − δ
∂ỹ

∂t︸︷︷︸
O(δỹ)

− εδ ∂ỹ
∂τ︸ ︷︷ ︸

O(εδỹ)

− aδỹ︸︷︷︸
O(δỹ)

+ εδE1ỹ︸ ︷︷ ︸
O(εδỹ)

− εδE1∆εỹ︸ ︷︷ ︸
O(ε2δỹ)

+ εδE1∆ 1
δ
∆εỹ︸ ︷︷ ︸

O(εỹ)

Using the expansion ỹ(t, s, τ) = y0(t, s, τ) + δy1(t, s, τ) + . . . yields the same equations as before with τ
appearing as a parameter,

∂y0(t, s, τ)

∂s
+ εδE1∆ 1

δ
y0(t, s, τ) = 0,

∂y1(t, s, τ)

∂s
+ εδE1∆ 1

δ
y1(t, s, τ) = −∂y0(t, s, τ)

∂t
− ay0(t, s, τ).

This time we write y0(t, s, τ) = T0(t)S0(s)T0(τ). The solution will then be of the form,

y0(t, s, τ) =

∞∑
k=−∞

βke
µkse−atT0(τ),

with µk and βk as for the case with timescales t and s. We have the initial condition T0(τ) = 1 for
τ ∈ [−ε, 0].

As the right-hand side of the O(δ) equation becomes zero, and we have a zero initial condition for y1,
we find y1(t, s, τ) = 0. Instead we will use an expansion of the form ỹ(t, s, τ) = y0(t, s, τ) + εy1(t, s, τ) +
εδy2(t, s, τ) + . . . . Normally we would now obtain an equation for T (τ) by avoiding secular terms in the
O(ε) equation. However, as we shall see, it is better to avoid secular terms in the O(εδ) equation. We
start by writing both equations down. The O(ε) equation is given by

∂y1(t, s, τ)

∂s
+ εδE1∆ 1

δ
y1(t, s, τ) = δE1∆ 1

δ
∆εy0(t, s, τ),

and the O(εδ) equation is given by

∂y2(t, s, τ)

∂s
+ εδE1∆ 1

δ
y2(t, s, τ) = −∂y1(t, s, τ)

∂t
− ∂y0(t, s, τ)

∂τ
− ay1(t, s, τ) + E1y0(t, s, τ).

We can write down the right-hand side of the O(ε) equation, using our expression for y0, and the fact
that µ0 = 0,

∞∑
k=−∞
k 6=0

δea
(

1− e−
µk
δ

)
eµkseat∆εT0(τ).

Note that we do not get an equation for k = 0. This is the branch that dominates the solution for large
t, so we need this equation to find a good expression for T0(t). Note that the k = 0 part for y1 will be
zero, as the right-hand side and the initial condition are zero for this part.

The k = 0 part of the right-hand side of the O(εδ) equation is given by(
−dT (τ)

dτ
+ eaT (τ)

)
e−at.

To avoid secular behaviour for this branch, we must require

dT (τ)

dτ
= eaT (τ).

We cannot satisfy the initial condition on the interval τ ∈ [−ε, 0], but only on τ = 0. Due to this, we will
make an O(ε) error on this interval. The solution is given by

T (τ) = ee
aτ .
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The approximation using three timescales is given by

y0(t, s, τ) =

∞∑
k=−∞

βke
µkse−atee

aτ

=

∞∑
k=−∞

βke
(µkδ −a+εea)t.

(4.89)

That this approximation holds for t = O(1) is not changed by the slow timescale. For t = O( 1
ε ) we get

y0 ∼ β0e
(−a+εea)t. We have already seen that y ∼ α0e

λ0t, β0 = α0(1 +O(ε)) and λ0 ∼ −a+ εea +O(ε2),
such that

y0(t, s, τ) = y(t) (1 +O(ε)) ,

for t = O( 1
ε ).



Chapter 5

Method of Multiple Scales for a
Higher Order Delay Differential
Equation

In the previous chapter we considered the method of multiple scales for first order DDEs. We shall now
show how the method of multiple scales works for higher order DDEs. Most of the procedure is very
similar to that for the first order case. We will use this method to find an approximation for a second
order Mathieu’s equation. We will also consider a detuned case of this example.

5.1 Method of Multiple Scales

The equations that we will consider are of the following form,

dny(t)

dtn
+

n−1∑
i=0

ai
diy(t)

dti
+

n−1∑
i=0

bi
diy(t− 1)

dti
= εf(. . . ), (5.1)

with f a nonlinear function of y. So, we consider a linear higher order DDE, with a nonlinear perturbation.
We include the following initial conditions

diy(t)

dti
= φi(t), for t ∈ [−1, 0], i = 0, . . . , n− 1. (5.2)

In Chapter 2 we transformed this into a system of DDEs. The resulting vector contained derivatives with
respect to t, which results in difficulties when we add the slow timescale τ = εt. It will be simpler to
first introduce the slow timescale and collect the like orders of ε to obtain the different equations. These
equations can then be rewritten into a system, which we can solve using the results of Chapter 2.

The delay terms will be handled the same as for the first order case. For the ith derivative we have

di

dti
=

i∑
k=0

(
i
k

)
∂k

∂tk
∂i−k

∂τ i−k
.

We then have the following equation for ỹ(t, τ) = y(t),

n∑
k=0

(
n
k

)
∂k

∂tk
∂n−k

∂τn−k
ỹ(t, τ) +

n−1∑
i=0

ai

i∑
k=0

(
i
k

)
∂k

∂tk
∂i−k

∂τ i−k
ỹ(t, τ)

+

n−1∑
i=0

bi

i∑
k=0

(
i
k

)
∂k

∂tk
∂i−k

∂τ i−k
E1ỹ(t, τ)−

n−1∑
i=0

bi

i∑
k=0

(
i
k

)
∂k

∂tk
∂i−k

∂τ i−k
E1∆εỹ(t, τ) = εf̃(. . . ),

49
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with f̃ a function similar to f . We will find an approximation for ỹ(t, τ) by using an expansion, ỹ(t, τ) =
y0(t, τ) + εy1(t, τ) + . . . . We then collect the like orders of ε. The O(1) equation is given by

∂ny0(t, τ)

∂tn
+

n−1∑
i=0

ai
∂iy0(t, τ)

∂ti
+

n−1∑
i=0

bi
∂iE1y0(t, τ)

∂ti
= 0.

This is a higher order DDE with τ appearing as a parameter. We define the vector

z0(t, τ) =


y0(t, τ)
∂ty0(t, τ)

...
∂n−1
t y0(t, τ)

 ,

with ∂t =
∂

∂t
. We have the following equation for z0,

∂z0(t, τ)

∂t
+Az0(t, τ) +BE1z0(t, τ) = 0,

with

A =



−1
−1 ∅

. . .

∅ −1
−1

a0 a1 a2 . . . an−2 an−1


and B =


∅

b0 b1 b2 . . . bn−2 bn−1

 .

We assume that φi(t) = O(1) and has no τ dependence, for all i = 0, . . . , n − 1, such that we find the
following initial condition for z0(t, τ),

z0(t, τ) = φ(t), for t ∈ [−1, 0],

with

φ(t) =

 φ0(t, τ)
...

φn−1(t, τ)

 .

We solve the equation for z0(t, τ) for t. In Chapter 2 we have shown that for a second order DDE the
solution is given by

z0(t, τ) =

∞∑
k=−∞

αk(τ)eλkt,

with λk the solutions of the characteristic equation

λ2 + a1λ+ b1λe
−λ + a0 + b0e

−λ = 0.

The initial condition for z0(t, τ) becomes an initial condition for αk(t). Due to the assumption that there
is no τ dependence in the initial condition, we have

αk(τ) = Φk, for τ ∈ [−ε, 0],

with

Φk = Dk

(
φ(0)−Be−λk

ˆ 0

−1

e−λkθφ(θ)dθ

)
and

Dk =
1

2λk + a1 + b1(1− λk)e−λk − b0e−λk

(
λk 1

−a0 − b0e−λk λk + a1 + b1e
−λk

)
.
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These are exactly the constants which we would find if we solved the unperturbed equation. Using the
definition of z0(t, τ), we know that αk(τ) is of the following form,

αk(τ) =

(
βk(τ)
λkβk(τ)

)
.

We write Φk =

(
Φ0
k

Φ1
k

)
, such that we have the following initial condition for βk,

βk(τ) = Φ0
k, for τ ∈ [−ε, 0].

We can calculate Φ0
k explicitly,

Φ0
k =

1

2λk + a1 + b1(1− λk)e−λk − b0e−λk

(
λkφ0(0) + φ1(0)− b0e−λk

ˆ 0

−1

e−λkθφ0(θ)dθ − b1e−λk
ˆ 0

−1

e−λkθφ1(θ)dθ

)
.

We have the following solution for y0(t, τ),

y0(t, τ) =

∞∑
k=−∞

βk(τ)eλkt.

Note that we find this kind of solution for every higher order DDE, but we have only calculated the initial
condition for βk(τ) for a second order DDE.

We continue with the O(ε) equation, which is given by

∂ny1(t, τ)

∂tn
+

n−1∑
i=0

ai
∂iy1(t, τ)

∂ti
+

n−1∑
i=0

bi
∂iE1y1(t, τ)

∂ti
=− n ∂

n−1

∂tn−1

∂

∂τ
y0(t, τ)−

n−1∑
i=1

iai
∂i−1

∂ti−1

∂

∂τ
y0(t, τ)

−
n−1∑
i=1

ibi
∂i−1

∂ti−1

∂

∂τ
E1y0(t, τ) +

1

ε

n−1∑
i=0

bi
∂iE1∆εy1(t, τ)

∂ti

+ f0(. . . ),

where we have assumed that we can write

f̃(. . . ) = f0(. . . ) + εf1(. . . ) + . . . .

We work out the right-hand side of the O(ε) equation,

∞∑
k=−∞

[
−

(
nλn−1

k +

n−1∑
i=1

iaiλ
i−1
k +

n−1∑
i=1

ibiλ
i−1
k e−λk

)
dβk(τ)

dτ
+

n−1∑
i=0

bi
ε
λike
−λk∆εβk(τ)

]
eλkt + f0(. . . ).

If f0(. . . ) does not contain the term eλlt for some λl, then we have the following equation for βl,(
nλn−1

l +

n−1∑
i=1

iaiλ
i−1
l +

n−1∑
i=1

ibiλ
i−1
l e−λl

)
dβl(τ)

dτ
=

n−1∑
i=0

bi
ε
λile
−λl∆εβl(τ).

We note that βl(τ) = Φ0
l is a solution which satisfies the equation and the initial condition for βl. By the

existence and uniqueness theorems, as stated in Chapter 1, this must be the unique solution. If f0(. . . )
does contain the term eλkt, then the equation for βk is different.

Our general discussion ends here. Next, we consider a second order DDE version of Mathieu’s equation.

5.2 Second Order Mathieu’s Equation

We consider the following problem in this example,

d2y(t)

dt2
+ ay(t) + by(t− 1) = 2ε cos(γt)y(t), (5.3)
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with

y(t) = φ(t) and
dy(t)

dt
= ψ(t), for t ∈ [−1, 0]. (5.4)

This is a DDE version of Mathieu’s equation. Extensive research has been done on this equation and the
stability of the solution. Mathieu’s equation occurs when one linearises around a periodic solution of a
nonlinear oscillator, and thus is of practical use. It is then very interesting to see if we can solve a DDE
version of this equation.

Note that for the first order DDE version of Mathieu’s equation, we considered a perturbation of the
form εeγty(t). We then had to answer the question whether λk + γ could again be a solution of the
characteristic equation, if λk was a solution of the characteristic equation. We can already see that we
will have to answer the question whether λl ± iγ can again be a solution of the characteristic equation
for this example.

As seen before, we introduce the timescale τ = εt and write down the equation for ỹ(t, τ) = y(t),(
∂2

∂t2
+ 2ε

∂

∂t

∂

∂τ
+ ε2 ∂

2

∂τ2

)
ỹ(t, τ) + aỹ(t, τ) + bE1ỹ(t, τ)− bE1∆εỹ(t, τ) = 2ε cos(γt)ỹ(t, τ).

We will use the following expansion, ỹ(t, τ) = y0(t, τ) + εy1(t, τ) + . . . and have equations for each order
of ε. The O(1) and O(ε) equations are given by

∂2y0(t, τ)

∂t2
+ ay0(t, τ) + bE1y0(t, τ) = 0,

∂2y1(t, τ)

∂t2
+ ay1(t, τ) + bE1y1(t, τ) = −2

∂

∂t

∂

∂τ
y0(t, τ) +

b

ε
E1∆εy0(t, τ) + 2 cos(γt)y0(t, τ).

We will get the following solution of the O(1) equation,

y0(t, τ) =

∞∑
k=−∞

αk(τ)eλkt,

with λk the solutions of the characteristic equation

λ2 + a+ be−λ = 0,

and the initial conditions for αk(τ) are

αk(τ) = Φk, for τ ∈ [−ε, 0],

with

Φk =
1

2λk − be−λk

(
λkφ(0) + ψ(0)− be−λk

ˆ 0

−1

e−λkθφ(θ)dθ

)
.

The right-hand side of the O(ε) is of the following form,

∞∑
k=−∞

[(
−2λk

dαk(τ)

dτ
+
b

ε
e−λk∆εαk(τ)

)
eλkt + αk(τ)

(
e(λk+iγ)t + e(λk−iγ)t

)]
,

where we have used that 2 cos(γt) = eiγt + e−iγt. As stated in the beginning of this example, we must
determine whether λk ± iγ can again be a solution of the characteristic equation. We know that if λ is a
solution of the characteristic equation, then so is its conjugate λ. If we take γ = 2Im(λ), then λ+ γ = λ.
To make the effect of the method of multiple scales most clear, we wish to have purely imaginary solutions
of the characteristic equation. To this end, write λ = iω. We use the characteristic equation to obtain
the following equation for ω,

−ω2 + a+ b (cosω − i sinω) = 0.

To satisfy the imaginary part of this equation, we must require ω = nπ, with n ∈ Z. We can use the real
part of the equation to obtain a restriction on the parameters a and b,

a+ (−1)nb = n2π2.
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We will continue with a = 2π2 and b = π2, such that λ = ±iπ are solutions of the characteristic equation.
Figure 5.1 shows a plot of the solution curve, together with the actual solutions for λ. λ = ±iπ are the
solutions of the characteristic equation with the largest real part.
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Figure 5.1: Plot of the solution curve, together with the actual solutions for λ. For the parameters a = 2π2 and
b = π2 have been used

We define λ−1 = −iπ and λ0 = iπ. Let γ = 2π, such that λ−1 + iγ = λ0. For k 6= −1, 0 there does not
exist a λl such that λl ± iγ = λk. We have seen in the general derivation that then αk(τ) = Φk for all τ .
For α−1 and α0 we have the following equation,

dαk(τ)

dτ
=

b

2ελkeλk
∆εαk(τ) +

1

2λk
αl(τ),

with (k, l) = (−1, 0) and (k, l) = (0,−1). We define the vector β(τ) =

(
α−1(τ)
α0(τ)

)
, for which we have the

following equation,
dβ(τ)

dτ
+ Ãβ(τ) + B̃β(τ − ε) = 0,

with

Ã = −

(
b

2ελ−1e
λ−1

1
2λ−1

1
2λ0

b
2ελ0eλ0

)
and B̃ =

(
b

2ελ−1e
λ−1

0

0 b
2ελ0eλ0

)
.

The initial condition for β is given by

β(τ) = Φ, for τ ∈ [−ε, 0],

with Φ =

(
Φ−1

Φ0

)
. Define the matrix

C̃ = µI + Ã+ B̃e−εµ.

We find the characteristic equation by working out det C̃ = 0,(
µ− b

2ελ−1eλ−1

(
1− e−εµ

))(
µ− b

2ελ0eλ0

(
1− e−εµ

))
− 1

4λ−1λ0
= 0.

Then use that λ−1 = −iπ and λ0 = iπ, to find

µ2 +
c2

ε2

(
1− e−εµ

)2 − 1

4π2
= 0,
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with c = b
2π . We will consider two balances for µ. If µ = O(1), then we can expand the exponential and

obtain the following equation,

µ2 +
c2

ε2
(1− (1− εµ+ . . . ))

2 − 1

4π2
= 0.

We solve the O(1) equation and obtain

µ ∼ ± 1

2π
√

1 + c2
.

These are approximations of the two real solutions of the characteristic equation. The other balance that
we consider is µ = O( 1

ε ). We write µ = µ̃
ε and obtain the following equation,

µ̃2

ε2
+
c2

ε2

(
1− e−µ̃

)2 − 1

4π2
= 0.

We consider the O( 1
ε2 ) equation,

µ̃2 + c2
(
1− e−µ̃

)2
= 0.

There are infinitely many solutions of this equation. We highlight three solutions, µ̃ = 0,±iπ. We do not
have to consider µ̃ = 0, since then µ 6= O( 1

ε ). For µ̃ = ±iπ we must continue our expansion, to obtain
the real part. We will have to use the expansion µ ∼ 1

ε

(
µ0 + ε2µ1 + . . .

)
. We obtain an equation for µ1

and using that µ0 = ±iπ, we obtain

µ1 = − 1

4π2 (π2 + 4)
∓ i 1

2π3 (π2 + 4)
.

We will use the following approximations for µ,

µ ∼ − ε

4π2 (π2 + 4)
± iπ

ε
.

We can find the other O( 1
ε ) solutions numerically.

To find the solution for β, we first need to calculate the inverse of C̃, with s instead of µ,

C̃−1 =
1

det C̃

(
s− b

2ελ0eλ0
(1− e−εµ) 1

2λ−1
1

2λ0
s− b

2ελ−1e
λ−1

(1− e−εµ)

)
.

We use this inverse to calculate the fundamental matrix

Γ(τ) =

∞∑
l=−∞

D̃le
µlτ ,

with

D̃l =
1

2µl + 2c2

ε (1− e−εµl) e−εµl

(
µl − b

2ελ0eλ0
(1− e−εµl) 1

2λ−1
1

2λ0
µl − b

2ελ−1e
λ−1

(1− e−εµl)

)
.

We can then use Γ(τ) to calculate the β(τ),

β(τ) =

∞∑
l=−∞

ξle
µlτ ,

with

ξl = D̃l

(
Φ− B̃Φe−εµl

ˆ 0

−ε
e−µlηdη

)
.
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We write ξl =

(
ξ−1
l

ξ0
l

)
, such that

α−1(τ) =

∞∑
l=−∞

ξ−1
l eµlτ and α0(τ) =

∞∑
l=−∞

ξ0
l e
µlτ .

We have the following approximation,

y0(t, τ) =

∞∑
k=−∞
k 6=−1,0

Φke
λkt +

∞∑
l=−∞

(
ξ−1
l eλ−1t + ξ0

l e
λ0t
)
eµlτ .

Figure 5.2 shows a plot of a numerical solution and the approximation. The two solutions are indistin-
guishable. Note that due to resonance, the amplitude of the solutions increases over time.
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Figure 5.2: Plot of numerical solution, solid (red) line, and the approximation of the solution, dashed (blue) line,
of Eq. (5.3) with initial condition Eq. (5.4) with φ(t) = sin(2πt) and ψ(t) = 2π cos(2πt). For the parameters,
a = 2π2, b = π2, γ = 2π and ε = 0.1 have been used.

In the next section, we shall consider a detuned version of this example.

5.2.1 Detuned version

We shall consider the following variation,

d2y(t)

dt2
+ ay(t) + by(t− 1) = 2ε cos((γ + εδ)t)y(t).

We will continue using a = 2π2, b = π2 and γ = 2π. We never have exactly the resonant frequency, so it
is interesting to see what happens when we are close to the resonant frequency.

We will find the following terms, λk ± i(γ + εδ). Although these will never be exactly solutions of the
characteristic equation, λ−1 + i(γ + εδ) and λ0 − i(γ + εδ), are close to solutions of the characteristic
equation. We have seen in Section 4.1 that these terms will still violate the ordering of a simple expansion,
so we still need to use the method of multiple scales. We use the slow timescale τ = εt and have the
following equation for ỹ(t, τ) = y(t),(

∂2

∂t2
+ 2ε

∂

∂t

∂

∂τ
+ ε2 ∂

2

∂τ2

)
ỹ(t, τ) + aỹ(t, τ) + bE1ỹ(t, τ)− bE1∆εỹ(t, τ) = 2ε cos(γt+ δτ)ỹ(t, τ).
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We can copy a lot of the derivation that we have seen before in this example. We will again use an
expansion for ỹ, ỹ(t, τ) = y0(t, τ) + εy1(t, τ) + . . . . The O(1) equations results in the following expression
for y0(t, τ),

y0(t, τ) =

∞∑
k=−∞

αk(τ)eλkt,

with λk the solutions of the characteristic equations. For αk we have the same initial condition as before.
The right-hand side of the O(ε) equation is now given by

∞∑
k=−∞

[(
−2λk

dαk(τ)

dτ
+
b

ε
e−λk∆εαk(τ)

)
eλkt + αk(τ)

(
eiδτe(λk+iγ)t + e−iδτe(λk−iγ)t

)]
.

For k 6= −1, 0 we obtain the same equation and again find αk(τ) = Φk. For α−1 and α0 we have the
following equations,

2λ−1
dα−1(τ)

dτ
= − b

ε
∆εα−1(τ) + α0(τ)e−iδτ ,

2λ0
dα0(τ)

dτ
= − b

ε
∆εα0(τ) + α−1(τ)eiδτ ,

where we have used that e−λ−1 = e−λ0 = −1, since λ−1 = −iπ and λ0 = iπ. We again have coupled
equations. However, these are even harder to solve than before due to the presence of e±iδτ .

We will solve this problem using the Laplace transform. We first define a few functions, to make the
derivation clearer. For the initial conditions we use

α−1(τ) = ψ−1(τ) and α0(τ) = ψ0(τ), for τ ∈ [−ε, 0],

with

ψ−1(τ) =

{
Φ−1, for τ ∈ [−ε, 0],

0, else
and ψ0(τ) =

{
Φ0, for τ ∈ [−ε, 0],

0 else
.

We will need the Laplace transforms of ψ−1(τ − ε) and ψ0(τ − ε),

Ψi(σ) = L(ψi(τ − ε)) =

ˆ ∞
0

e−εσψi(τ − ε)dτ

= Φi
1− e−εσ

σ
.

We will use the notation Ai(σ) = L(αi(τ)). Finally, we will use that

L
(
α0(τ)e−iδτ

)
= A0(σ + iδ) and L

(
α−1(τ)eiδτ

)
= A−1(σ − iδ).

We can then take the Laplace transform of the equations for α−1 and α0,

2λ−1 (σA−1(σ)− Φ−1) = − b
ε

(
A−1(τ)−

(
Ψ−1(σ) + e−εσA−1(τ)

))
+A0(σ + iδ),

2λ0 (σA0(σ)− Φ0) = − b
ε

(
A0(τ)−

(
Ψ0(σ) + e−εσA0(τ)

))
+A−1(σ − iδ).

We can rewrite these equations into the following form,(
2λ−1σ +

b

ε

(
1− e−εσ

))
A−1(σ) = 2λ−1Φ−1 +

b

ε
Ψ−1(σ) +A0(σ + iδ),(

2λ0σ +
b

ε

(
1− e−εσ

))
A0(σ) = 2λ0Φ0 +

b

ε
Ψ0(σ) +A−1(σ − iδ).

Then use that

2λiΦi +
b

ε
Ψi =

(
2λiσ +

b

ε

(
1− e−εσ

)) Φi
σ
,
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such that (
2λ−1σ +

b

ε

(
1− e−εσ

))(
A−1(σ)− Φ−1

σ

)
= A0(σ + iδ),(

2λ0σ +
b

ε

(
1− e−εσ

))(
A0(σ)− Φ0

σ

)
= A−1(σ − iδ).

We will use σ → σ + iδ in the second equation, solve the resulting equation for A0(σ + iδ) and use this
in the first equation. This results in the following equation for A−1(σ),(

2λ−1σ +
b

ε

(
1− e−εσ

))(
A−1(σ)− Φ−1

σ

)
=

Φ0

σ + iδ
+

A−1(σ)

2λ0(σ + iδ) + b
ε

(
1− e−ε(σ+iδ)

) .
We solve this equation for A−1(σ),

A−1(σ) =

[(
2λ−1σ +

b

ε

(
1− e−εσ

))(
2λ0(σ + iδ) +

b

ε

(
1− e−ε(σ+iδ)

))
− 1

]−1

×

[
2λ−1σ + b

ε (1− e−εσ)

σ

(
2λ0(σ + iδ) +

b

ε

(
1− e−ε(σ+iδ)

))
Φ−1

+
2λ0(σ + iδ) + b

ε

(
1− e−ε(σ+iδ)

)
σ + iδ

Φ0

]
.

We will use this to calculate an expression for α−1. We could also calculate an expression for A0 and use
this to calculate α0. However, we will use the fact that we must have α0 = α−1 to have a real valued
approximation. Consequently, we only have to calculate α−1 and use this to calculate α0.

We shall now study the characteristic equation for this problem.

Characteristic equation

Using the equation for A−1(σ), we see that the characteristic equation for this problem is given by(
2λ−1σ +

b

ε

(
1− e−εσ

))(
2λ0(σ + iδ) +

b

ε

(
1− e−ε(σ+iδ)

))
− 1 = 0.

There are two balances for µ, µ = O(1) and µ = O( 1
ε ). For µ = O(1) we write µ = µ0 + εµ1 + . . . . We

can then expand the exponentials and collect like orders of ε in the equation,(
(2λ−1 + b)µ0 + ε

(
(2λ−1 + b)µ1 −

1

2
bµ2

0

)
+ . . .

)
×
(

(2λ0 + b)(µ0 + iδ) + ε

(
(2λ0 + b)µ1 −

1

2
b(µ0 + iδ)2

)
+ . . .

)
− 1 = 0.

The O(1) equation is given by

(2λ−1 + b)(2λ0 + b)µ0(µ0 + iδ)− 1 = 0.

The solution is given by

µ0 = − iδ
2
± 1

2

√
4− δ2z

z
,

with z = (2λ−1 + b)(2λ0 + b). The O(ε) equation is given by

(2λ−1 + b)µ0

(
(2λ0 + b)µ1 −

1

2
b(µ0 + iδ)2

)
+ (2λ0 + b)(µ0 + iδ)

(
(2λ−1 + b)µ1 −

1

2
bµ2

0

)
= 0.

We solve this for µ1 and obtain

µ1 =
b
(
(2λ−1 + b)µ0(µ0 + iδ)2 + (2λ0 + b)µ2

0(µ0 + iδ)
)

2(2λ−1 + b) ((2λ−1 + b)µ0 + (2λ0 + b)(µ0 + iδ))
.
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For µ = O( 1
ε ) we write µ = 1

ε

(
µ0 + εµ1 + ε2µ2 + . . .

)
. We have the following equation,

1

ε2

((
2λ−1µ0 + b

(
1− e−µ0

))
+ ε

(
2λ−1µ1 + be−µ0µ1

)
+ ε2

(
2λ−1µ2 + be−µ0

(
µ2 −

1

2
µ2

1

))
+ . . .

)
×
((

2λ0µ0 + b
(
1− e−µ0

))
+ ε

(
2λ0(µ1 + iδ) + be−µ0(µ1 + iδ)

)
+ ε2

(
2λ0µ2 + be−µ0

(
µ2 −

1

2
(µ1 + iδ)2

))
+ . . .

)
− 1 = 0.

The O( 1
ε2 ) equation is given by(

2λ−1µ0 + b
(
1− e−µ0

)) (
2λ0µ0 + b

(
1− e−µ0

))
= 0.

So, either 2λ−1µ0 + b (1− e−µ0) = 0 or 2λ0µ0 + b (1− e−µ0) = 0. If we take the conjugate of the first
equation, then we obtain the second equation. So, the solutions of the second equation are conjugates of
the solutions of the first equation. If 2λ−1µ0 + b (1− e−µ0) = 0, then the O( 1

ε ) equation is given by(
2λ−1 + be−µ0

) (
2λ0µ0 + b

(
1− e−µ0

))
µ1 = 0.

Note that 2λ−1 + be−µ0 = 0 corresponds to µ0 having a multiplicity higher than one. For our choice of
parameters this is not the case, so we have 2λ−1 + be−µ0 6= 0. We also have 2λ0µ0 + b (1− e−µ0) 6= 0,
since we are considering the other case. We find µ1 = 0. The O(1) equation is then given by(

2λ−1 + be−µ0
) (

2λ0µ0 + b
(
1− e−µ0

))
µ2 − 1 = 0.

We solve this equation for µ2 and obtain,

µ2 =
1

(2λ−1 + be−µ0) (2λ0µ0 + b (1− e−µ0))
.

If 2λ0µ0 + b (1− e−µ0) = 0, then the O( 1
ε ) equation is given by(

2λ−1µ0 + b
(
1− e−µ0

)) (
2λ0 + be−µ0

)
(µ1 + iδ) = 0.

We find µ1 = −iδ. The O(1) equation is given by(
2λ−1µ0 + b

(
1− e−µ0

)) (
2λ0 + be−µ0

)
µ2 − 1 = 0.

We solve this equation for µ2 and obtain,

µ2 =
1

(2λ−1µ0 + b (1− e−µ0)) (2λ0 + be−µ0)
.

Now that we have found approximations of solutions of the characteristic equation, we can continue our
example.

Continuation of the example

We will first define the fundamental solution, β(τ), as

L(β(τ)) =

[(
2λ−1σ +

b

ε

(
1− e−εσ

))(
2λ0(σ + iδ) +

b

ε

(
1− e−ε(σ+iδ)

))
− 1

]−1

.

We can immediately solve this, using the solutions of the characteristic equation. We skip the derivation
as this is the same as before. We have the following expression for β,

β(τ) =

∞∑
l=−∞

ζle
µlτ ,

with

ζl =
1

(2λ−1 + be−εµl)
(
2λ0(µl + iδ) + b

ε

(
1− e−ε(µl+iδ)

))
+
(
2λ−1µl + b

ε (1− e−εµ)
) (

2λ0 + be−ε(µl+iδ)
) .
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To calculate α−1, we will first need to know the inverse Laplace transforms of

2λ−1σ + b
ε (1− e−εσ)

σ

(
2λ0(σ + iδ) +

b

ε

(
1− e−ε(σ+iδ)

))
Φ−1

and
2λ0(σ + iδ) + b

ε

(
1− e−ε(σ+iδ)

)
σ + iδ

.

We will omit the calculations and only given the results,

L−1

(
2λ−1σ + b

ε (1− e−εσ)

σ

(
2λ0(σ + iδ) +

b

ε

(
1− e−ε(σ+iδ)

))
Φ−1

)

=4λ0λ−1D
′(τ) + 4λ0λ−1iδD(τ)− 2b

ε

(
λ0 + e−iεδλ−1

)
D(τ − ε)

+
b

ε

(
2λ0iδ +

b

ε

)
(u(τ)− u(τ − ε))− b2

ε2
e−iεδ (u(τ − ε)− u(τ − 2ε)) ,

and

L−1

(
2λ0(σ + iδ) + b

ε

(
1− e−ε(σ+iδ)

)
σ + iδ

)
= 2λ0D(τ) +

b

ε
e−iδτ (u(τ)− u(τ − ε)) ,

with D(τ) the Dirac delta function and u(τ) the Heaviside step function. Usually we denote the Dirac
delta function with δ(τ), but we already use δ as a parameter, so to avoid confusion we use D(τ).

Now that we have β and the inverse Laplace transforms, we can calculate α−1

α−1(τ) =

ˆ τ

0

β(τ − σ)

{
Φ−1

[
4λ0λ−1D

′(σ) + 4λ0λ−1iδD(σ)− 2b

ε

(
λ0 + e−iεδλ−1

)
D(σ − ε)

+
b

ε

(
2λ0iδ +

b

ε

)
(u(σ)− u(σ − ε))− b2

ε2
e−iεδ (u(σ − ε)− u(σ − 2ε))

]

+ Φ0

[
2λ0D(σ) +

b

ε
e−iδσ (u(σ)− u(σ − ε))

]}
dσ.

We can work this out

α−1(τ) =Φ−1

[
4λ0λ−1β

′(τ) + 4λ0λ−1iδβ(τ)− 2b

ε

(
λ0 + e−iεδλ−1

)
β(τ − ε)

+
b

ε

(
2λ0iδ +

b

ε

)ˆ ε

0

β(τ − σ)dσ − b2

ε2
e−iεδ

ˆ 2ε

ε

β(τ − σ)dσ

]

+ Φ0

[
2λ0β(τ) +

b

ε

ˆ ε

0

β(τ − σ)e−iδσdσ

]
This can be written in a more compact form,

α−1(τ) =

∞∑
l=−∞

ξle
µlτ ,

with

ξl = ζl

{
Φ−1

[
4λ0λ−1µl + 4λ0λ−1iδ −

2b

ε

(
λ0 + e−iεδλ−1

)
e−εµl

+
b

ε

(
2λ0iδ +

b

ε

)ˆ ε

0

e−µlσdσ − b2

ε2
e−iεδ

ˆ 2ε

ε

e−µlσdσ

]

+ Φ0

[
2λ0 +

b

ε

ˆ ε

0

e−(µl+iδ)σdσ

]}
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We can calculate the integrals,

ξl = ζl

{
Φ−1

[
4λ0λ−1µl + 4λ0λ−1iδ −

2b

ε

(
λ0 + e−iεδλ−1

)
e−εµl

+
b

ε

(
2λ0iδ +

b

εµl

)(
1− e−εµl

)
− b2

ε2µl
e−iεδe−εµl

(
1− e−εµl

) ]

+ Φ0

[
2λ0 +

b

ε(µl + iδ)

(
1− e−ε(µl+iδ)

)]}
.

For α0 we use that α0 = α−1 to obtain the following expression,

α0(τ) =

∞∑
l=−∞

ξle
µlτ .

Finally, we can write down our approximation,

y0(t, τ) =

∞∑
k=−∞
k 6=−1,0

Φke
λkt + α0(τ)eλ0t + α−1(τ)eλ−1t

=

∞∑
k=−∞
k 6=−1,0

Φke
λkt +

∞∑
l=−∞

(
ξle

µlτeλ−1t + ξle
µlτeλ0t

)
.

We use that λ−1 = −iπ, λ0 = iπ and write ξl = ξRl + iξIl and µl = µRl + iµIl . After some calculations we
obtain

y0(t, τ) =

∞∑
k=−∞
k 6=−1,0

Φke
λkt +

∞∑
l=−∞

2eµ
R
l τ
(
ξRl cos(πt− µIl τ) + ξIl sin(πt− µIl τ)

)

=

∞∑
k=−∞
k 6=−1,0

Φke
λkt +

∞∑
l=−∞

2eµ
R
l εt
(
ξRl cos((π − εµIl )t) + ξIl sin((π − εµIl )t)

)
.

We will consider our approximation for two values of δ. For small δ the frequency is close to the resonance
frequency, so we still expect instability. As δ increases, we expect that at some point this turns into
stability. To see for which δ this occurs, we investigate the O(1) solutions of µ,

µ0 = − iδ
2
± 1

2

√
4− δ2z

z
,

with z = (2λ−1 + b)(2λ0 + b). We distinguish two cases,

0 < δ <
2√
z

and δ ≥ 2√
z
.

For the first, we have a µ0 with a positive real part, which causes instability. As this happens for the
term eµ0τ , we expect to see this on a timescale t = O( 1

ε ). For δ ≥ 2√
z
, there is no real part anymore. So,

if we find instability, this will occur on a timescale t = O( 1
ε2 ), for which our approximation is not valid

anymore.

Figure 5.3 shows the approximation, together with a numerically calculated approximation, for δ = 1√
z
.

It is clear that these both show instability, as expected.
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Figure 5.3: Plot of the numerical solution, solid (red) line, and our approximation, dashed (blue) line, for a second
order DDE detuned Mathieu equation. We have used a = 2π2, b = π2, γ = 2π, ε = 0.1, δ = 1√

z
, φ(t) = sin(2πt)

and ψ(t) = 2π cos(2πt).

Figure 5.4 shows a plot of the approximation, together with a numerically calculated approximation, for
δ = 1 > 2√

z
. As expected, there is no instability for t = O( 1

ε ). Instead we notice that there are two

periods, one on a fast timescale and one on a slow timescale. For the fast timescale this corresponds to
the solution λ = ±iπ, resulting in a period of 2. For the slow period this corresponds to the solution
µ ≈ −iδ, resulting in a period of 2π

εδ . These periods correspond to the periods that we see in the figure.
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Figure 5.4: Plot of the numerical solution, solid (red) line, and our approximation, dashed (blue) line, for a second
order DDE detuned Mathieu equation. We have used a = 2π2, b = π2, γ = 2π, ε = 0.1, δ = 1, φ(t) = sin(2πt)
and ψ(t) = 2π cos(2πt).





Chapter 6

Conclusion and Further Research

The goal of this thesis was to construct a perturbation method for delay differential equations. We have
first shown how to calculate the solution of a DDE in Chapter 2. In Chapter 3 the method of multiple
scales was explained for ordinary differential equations and ordinary difference equations. The work of
these two chapters was combined in Chapter 4 to create the method of multiple scales for DDEs. In
this chapter we only considered first order DDEs. In Chapter 5 we considered the method of multiple
scales for higher order DDEs. We have proven the validity of the method under certain conditions and
illustrated how the method should be applied, by working out examples.

We started with a linear example for which we could also calculate the exact solution, with which we
could compare our approximation. We have considered Mathieu’s equation for a first order DDE in
Chapter 4 and for a second order DDE in Chapter 5. Especially the second order case is of practical
use, as it can be used when one linearizes a nonlinear oscillator around a periodic solution. For the
first order case we used the perturbation εeγty(t) and had to determine whether there exists solutions
of the characteristic equation, λ, such that λ + γ is also a solution of the characteristic equation. For
the second order case we used the perturbation ε cos(γt)y(t) and had to determine whether there exist
solutions of the characteristic equation, λ, such that λ+ iγ or λ− iγ is also a solution of the characteristic
equation. We have also considered a detuned version for the second order case. If we are still close
enough to the resonant frequency, then the solution remains unstable. However, as we get further away,
the solution becomes stable. For this case we found a solution with a oscillation on the fast and on the
slow timescale. We have also considered a quadratic perturbation, εy(t)2, for which we had to determine
whether the sum of two solutions of the characteristic equation could again be a solution. Finally, we
have also considered a DDE perturbation on an ODE. This is exactly the type of equation for which
there already existed a perturbation method. This perturbation method focuses on obtaining an ODE,
which one solves to obtain an approximation for the DDE. We have shown that this method does not
work if the initial condition at t = 0 is small. We considered the extreme case φ(0) = 0, such that this
perturbation method yielded the approximation, y(t) ∼ 0. For this case, the approximation gives no
information about the exact solution and the relative error is 1 for all t. We then used our perturbation
method to obtain an approximation for this example. For all other examples we consider a fast timescale
t and a slow timescale εt. For this example we also had to include an even faster timescale, (− ln ε)t.

As we have proven the validity of our method, and for each example the approximation showed good
agreement with a numerically calculated solution, we conclude that the perturbation method for DDEs,
as constructed in this thesis, works well.

An example that we have not considered in this thesis, is that of a cubic perturbation, εy(t)3. These
also occur often in the field of applied mathematics, just think of the van der Pol-equation. In the field
of DDEs, a famous equation with a cubic perturbation is Minorsky’s equation. This equation is used
for certain stabilization problems in which delays occur. When handling a cubic problem we will have
to answer the question whether the sum of three solutions of the characteristic equation can again be a
solution of the characteristic equation. We divide this question into three subquestions.

� If we have the solution λ, can 3λ be a solution?
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� If we have the distinct solutions λk and λl, can 2λk + λl be a solution?

� If we have the distinct solutions λk, λl and λm, can λk + λl + λm be a solution?

These first two can be solved in the same manner that we have solved the quadratic perturbation example.
The final question with three distinct solution turns out to be a difficult problem and remains unsolved.
The problems that we run into are similar to that of partial differential equations with quadratic and
cubic nonlinearities and boundary conditions which result in transcendental equations for the eigenvalues
of the corresponding linear problem. One could assume that there are no distinct solutions such that the
sum of three solutions is again a solution. With this assumption one can solve a problem with a cubic
perturbation, such as Minorsky’s equation. However, one cannot be sure of the validity of the obtained
approximation. Although it may be very challenging to solve the cubic case, the outcome will be great,
as we will be able to obtain approximations for many DDEs that occur naturally in real life.

We have considered a small collection of examples in this thesis, which we thought would illustrate
the constructed perturbation method well. Now we can continue to expand the use of this method by
considering many more examples and solving the challenges that come with them.



Appendix A

Solution Curve and Approximations
for a First Order Characteristic
Equation

For a linear first order scalar DDE,

dy(t)

dt
+ ay(t) + by(t− 1) = 0, (A.1)

we have the following corresponding characteristic equation

λ+ a+ be−λ = 0. (A.2)

The solutions of this equation can be expressed in terms of the Lambert W function. As Maple and
Matlab can calculate the Lambert W function easily, this is a useful tool to express the solutions with.
However, it does not present much insight in the locations of the solutions of the characteristic equation.
We will try to get a sense of the solutions of the characteristic equation, using more elementary functions.
We will first derive a solution curve on which all solutions must lie. Such a solution curve can be very
useful when determining the solutions of the characteristic equation numerically. For higher order DDEs,
we cannot generally express the solutions of the characteristic equation in terms of the Lambert W
function, so we will have to use a solution curve to find the solutions numerically. Next, we will derive
approximations for the larger solutions of the characteristic equation.

A.1 Solution Curve

We start by writing λ = ν + iω, with ν, ω ∈ R, and splitting the characteristic equation into a real and
imaginary part,

ν + a+ be−ν cosω = 0,

ω − be−ν sinω = 0.

Define µ = ν + a and c = −bea, the equations become

µ = ce−µ cosω,

ω = −ce−µ sinω.

Squaring both equations and adding them yields

µ2 + ω2 = c2e−2µ.
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We define the function
f(µ) = c2e−2µ − µ2, (A.3)

then we find
ω = ±

√
f(µ). (A.4)

Note that the ± corresponds to the fact that conjugates are both solutions for the characteristic equation.
We are interested in f(µ) ≥ 0, such that we find real values for ω. Note that f(µ)→ ∓∞ for µ→ ±∞.
We are interested in the roots of f ′(µ). First,

f ′(µ) = −2c2e−2µ − 2µ.

For the roots we have
2µe−2µ = −2c2.

Define d = −2c2 and note that d is negative, since c = 0 is not an option. If this would be the case, then
we are not considering a DDE anymore.

One can easily see that 2µe−2µ < 0 for µ < 0 and 2µe−2µ ≥ 0 for µ ≥ 0. To have the equality,
we must have µ < 0. Also, 2µe−2µ ∈ (−e−1, 0) for µ ∈ (− 1

2 , 0), 2µe−2µ = −e−1 for µ = − 1
2 and

2µe−2µ ∈ (−e−1, 0) for µ ∈ (−∞,−1). Then, if d < −e−1, we cannot find any µ to satisfy the equality.
Thus, f ′(µ) < 0 for all µ then. Then, f(ν) has exactly one root. We find real values for ω, for µ smaller
than that root. If d = −e−1, then µ = −1 is the only (double) root of f ′(µ). If −e−1 < d < 0, then
there are two roots of f ′(µ), µ0 < − 1

2 and − 1
2 < µ1 < 0. We are interested in the values of f at these

points. One can find that always f(µ1) > 0. Also, there exists a value d∗, such that f(µ0) = 0. For
−e−1 < d < d∗, f(µ0) > 0. For d∗ < d < 0, f(µ0) < 0.

Figure A.1 shows what the curve (ν, ω) looks like for different regions of d.
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(a) d < −e−1.
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(b) d = −e−1.
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(e) d∗ < d < 0.

Figure A.1: Plots of solution curves for different regions of d.

One can now write ω as a function of ν and put this into the characteristic equations. We then have
two equations only depending on ν. We can find numerically, when these two equations are satisfied
simultaneously.

A.2 Approximations for the Large Solutions of the Character-
istic Equation

We will find approximations for the large solutions of the characteristic equation. To this end, we first
define µ = λ + a and c = −bea, such that we can rewrite the characteristic equation into the following
form,

µ = ce−µ.

µ ∈ C, so there exist r > 0 and θ ∈ (−π, π], such that µ = reiθ. We exclude the case r = 0, because
µ = 0 is only a solution if c = 0, in which case we are not considering a DDE. Using this notation, the
equation becomes

reiθ = ce−r cos θe−ir sin θ,

where we have written out eiθ. From this equality we immediately obtain

r = |c|e−r cos θ.

If c > 0, then
θ = −r sin θ + 2kπ,

with k ∈ Z. If c < 0, then
θ = π − r sin θ + 2kπ.

Define

K(k) =

{
2k, c > 0,

2k + 1, c < 0.

Then,
r sin θ = −θ +K(k)π.

We can rewrite r = |c|e−r cos θ, by taking the logarithm,

cos θ = −
ln r
|c|

r
.
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We will use expansions for r and θ, to obtain approximations. Write, r = r0+r1+. . . and θ = θ0+θ1+. . . ,
with r0 � r1 � . . . and θ0 � θ1 � . . . . Note that for large r, cos θ ∼ 0, so we must have θ0 = ± 1

2π. We
will continue with θ0 = 1

2π.

We have the following equations,

cos θ = −
ln r
|c|

r
,

r =
−θ +K(k)π

sin θ
.

Then, using Taylor expansions around θ0 = 1
2π and r0, the equations can be rewritten into the following

form,

(θ1+θ2+. . . )−1

6
(θ1+θ2+. . . )3+· · · =

ln r0
|c|

r0
+

1− ln r0
|c|

r2
0

(r1+r2+. . . )+
−3 + 2 ln r0

|c|

2r3
0

(r1+. . . )2+. . . , (A.5)

and

r0 + r1 + · · · =
(
K(k)− 1

2

)
π

(
1 +

1

2
(θ1 + . . . )

2
+ . . .

)
−
(

(θ1 + . . . ) +
1

2
(θ1 + . . . )

3
+ . . .

)
. (A.6)

We will use Eq. (A.5) to find expressions for the terms in the expansion for θ and Eq. (A.6) for r. We
will first find r0, then θ1, then r1, etcetera. Every time we must find the dominant term in the equations,
and then the next term must be equal to that dominant term. This can be checked most easily with a
program like Maple or Matlab. We then find

r0 =

(
K(k)− 1

2

)
π (A.7)

and

θ1 =
ln r0
|c|

r0
. (A.8)

For r1, we have two options, 1
2θ

2
1r0 and −θ1. It turns out that the first is the dominant term, so we have

r1 =
1

2
θ2

1r0. (A.9)

We continue this and find

θ2 =
1− ln r0

|c|

r2
0

r1, r2 = −θ1, (A.10)

θ3 =
1

6
θ3

1, r3 = θ1θ2r0. (A.11)

Then we have the following approximations,

r ∼ r0 + r1 + r2 + r3, (A.12)

θ ∼ θ0 + θ1 + θ2 + θ3. (A.13)

Using the approximations, we can calculate an approximation for µ, and then for λ. Figure A.2 shows a
plot of the exact solution for λ, and the approximations. These are the first branches, but not λ0. For
λ0, the approximation is inaccurate.
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Figure A.2: Plot of the exact solutions, (blue) triangle, and the approximations, (red) square.

Figure A.3 shows a plot of the relative error of the approximations.
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Figure A.3: Plot of the relative error of the approximations.



Appendix B

The Fundamental Solution of a First
Order Delay Differential Equation

In Chapter 2 we find the solutions for first and higher order DDEs. In the derivation we take the Laplace
transform of the DDE for y(t). This yields an equation for L(y(t)). For a linear first order DDE we find

L(y(t)) =
(
s+ a+ be−s

)−1
(φ(0)− bL(φ(t− 1))) .

We then define the fundamental solution, Y (t), as

L(Y (t)) =
(
s+ a+ be−s

)−1
.

In this appendix we will find an expression for Y (t).

We can solve for Y (t) using the inverse Laplace transform,

Y (t) = lim
ξ→∞

1

2πi

ˆ γ+iξ

γ−iξ

est

s+ a+ be−s
ds. (B.1)

γ must be taken such that the real parts of all the poles of (s+ a+ be−s)
−1
est are smaller than γ. The

poles are exactly the solutions of the characteristic equation corresponding to the linear DDE. The largest
real part is found at the principal branch of the Lambert W function, λ0 (see [5]). Let γ > Re(λ0), then
this inverse Laplace transform is well-defined. To calculate this integral, we consider the contour, Γ, as
in Figure B.1. We have split Γ up into two pieces, the vertical line which we need for the inverse Laplace
transform, Γ1, and an arc, Γ2.
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Figure B.1: The contour Γ which is used to calculate the integral in Eq. (B.1)

To evaluate the integral, we use the residue theorem, also known as Cauchy’s residue theorem, (see for
example [3])

lim
ξ→∞

˛
Γ

est

s+ a+ be−s
= 2πi

∞∑
k=−∞

Res

(
est

s+ a+ be−s
, λk

)
,

with ”Res” the residues in the poles. For a pole of multiplicity m, this can be calculated using the
following equation

Res

(
est

s+ a+ be−s
, λk

)
=

1

(m− 1)!
lim
s→λk

dm−1

dsm−1

(
(s− λk)m

est

s+ a+ be−s

)
. (B.2)

In our case, the multiplicity is one for all λk, except when when bea = e−1. In this case λ−1 = λ0 =
−(a+ 1). We use L’Hôpital’s rule to evaluate the limit. In the case of multiplicity 2,

Res

(
est

s+ a+ be−s
,−(a+ 1)

)
= (6t+ 2)e−(a+1)t, (B.3)

and for the other cases,

Res

(
est

s+ a+ be−s
, λk

)
=

1

1− be−λk
eλkt. (B.4)

The arc in Figure B.1, Γ2, can be described as s = γ + ξeiθ, with θ ∈
[
π
2 ,

3π
2

]
. Then,

ˆ
Γ2

est

s+ a+ be−s
ds =

ˆ 3π/2

π/2

e(γ+ξeiθ)t

γ + ξeiθ + a+ be−(γ+ξeiθ)
iξeiθdθ.

We will estimate the magnitude of this integral,∣∣∣∣∣
ˆ 3π/2

π/2

e(γ+ξeiθ)t

γ + ξeiθ + a+ be−(γ+ξeiθ)
iξeiθdθ

∣∣∣∣∣ ≤ πξ2 sup
Γ2

∣∣∣∣∣ e(γ+ξeiθ)t

γ + ξeiθ + a+ be−(γ+ξeiθ)

∣∣∣∣∣ .
Using that the real part of eiθ is negative for our choice of θ, taking the limit ξ →∞ causes the numerator
to go to zero exponentially and the denominator to infinity exponentially. Thus, the integral over Γ2 will
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go to zero for ξ →∞. This means that the integral over the vertical line, Γ1, which we wish to know for
the inverse Laplace transform, is equal to the contour integral.

If bea = e−1, then

Y (t) = (12t+ 4)e−(a+1)t +

∞∑
k=−∞
k 6=−1,0

1

1− be−λk
eλkt. (B.5)

If this is not the case, then

Y (t) =

∞∑
k=−∞

1

1− be−λk
eλkt. (B.6)

These are the two possible fundamental solutions.





Appendix C

Sum of Solutions of the
Characteristic Equation for a First
Order Delay Differential Equation

In this chapter we shall consider whether the sum of two solutions of the characteristic equation for a
first order DDE, can again be a solution of this characteristic equation. The general first order linear
DDE that we consider is

dy(t)

dt
+ ay(t) + by(t− 1) = 0.

The corresponding characteristic equation is

λ+ a+ be−λ = 0.

We can write λ = ν + iω, with ν, ω ∈ R, and split the characteristic equation into a real and imaginary
part,

ν + a+ be−ν cosω = 0, (C.1)

ω − be−ν sinω = 0. (C.2)

We see that to satisfy the first equation for ”large” negative ν, cosω must be ”small”. Thus, we must
have ω ≈ ± 1

2π + kπ, with k ∈ Z. As negative and positive ω correspond to conjugate solutions, we will
focus only on positive ω. To satisfy the latter equation, we see that we must have b sinω > 0. To this
end, define

K(k) =

{
2k, b > 0,

2k + 1, b < 0,

such that

ω ≈
(
K(k) +

1

2

)
π.

Now suppose that we have two solutions of the characteristic equation, λk and λl. The imaginary part of
the sum of these solutions will be approximately Nπ, with N an integer. This will cannot be a solution,
except when there is a real solution and N = 0.

We will show how to determine the parameters a and b, such that this occurs. For simplicity of calcu-
lation, we will use the Lambert W function. In Chapter 2 we already showed that the solutions of the
characteristic equation are given by

λk = Wk (−bea)− a,
with k = 0,±1,±2, . . . the branches of the Lambert W function. Define c = −bea. For c ∈ [−e−1, 0),
λ−1 ∈ R and for c ∈ [−e−1,∞), λ0 ∈ R. Suppose we wish to have λk + λk = λ0. Then take any
c ∈ [−e−1,∞) and let

a0(k, c) = 2Re(Wk(c))−W0(c). (C.3)
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To satisfy the definition of c, we must let

b0(k, c) = −ce−a0(k,c). (C.4)

Similarly we can define

a−1(k, c) = 2Re(Wk(c))−W−1(c), (C.5)

b−1(k, c) = −ce−a−a(k,c). (C.6)

For this case, we must take c ∈ [−e−1, 0). We can also ensure that λk + λk = λ−1 and λl + λl = λ0 at
the same time. This will not be possible for any k and l. But suppose we take k = 2 and l = 1, then
it is possible. Figure C.1 shows a plot of a−1(2, c) and a0(1, c) for c ∈ [−e−1, 0). One has to calculate
where these lines intersect, such that we have λ2 + λ−3 = λ−1 and λ1 + λ−2 = λ0 for the same set of
parameters, (a, b).
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Figure C.1: Plot of a−1(2, c), solid (red) line, and a0(1, c), dashed (blue) line.

Note that what we have just derived, ensures that the sum of two solutions of the characteristic equation
is again a solution of the characteristic equation. Furthermore, we have given a reasoning why this can
be the only possibility. However, for this reasoning we have used an approximation for the imaginary
part of the solutions. Therefore, we are not certain whether there do not exist other solutions for which
the sum is again a solution. We will derive a method to check whether there are more possibilities.

Suppose we have two solutions, λk and λl and assume that λk + λl is also a solution. We split these
into a real and imaginary part as before, λ = ν + iω. Then define µ = ν + a. We have the following six
equations that should be satisfied simultaneously,

µk = −beae−µk cosωk,

ωk = beae−µk sinωk,

µl = −beae−µl cosωl,

ωl = beae−µl sinωl,

b (µk + µl − a) = −be2ae−(µk+µl) cos(ωk + ωl),

b (ωk + ωl) = −be2ae−(µk + µl) sin(ωk + ωl).

We rewrite the latter two, using the first four and the following trigonometric identities,

cos(α+ β) = cosα cosβ − sinα sinβ,

sin(α+ β) = sinα cosβ + sinβ cosα.
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We then get

b (µk + µl − a) = −b2e2ae−(µk+µl) (cosωk cosωl − sinωk sinωl)

= −
(
−beae−µk cosωk

) (
−beae−µl cosωl

)
+
(
beae−µl sinωk

) (
beae−µl sinωl

)
= −µkµl + ωkωl.

Similarly, we obtain
b (ωk + ωl) = −ωkµl − ωlµk.

We now have two equations and four unknowns, µk, ωk, µl and ωl. We can solve the equations for µk
and ωk. The solutions are given by

µk = −
b
(
ω2
l + (µl − a)(µl + b)

)
ω2
l + (µl + b)2

,

ωk = − b(a+ b)ωl
ω2
l + (µl + b)2

.

We can also express µk in terms of ωk, using the imaginary part of the characteristic equation,

µk = ln

(
bea

sinωk
ωk

)
.

We define the functions

f(µ, ω) = −
b
(
ω2 + (µ− a)(µ+ b)

)
ω2 + (µ+ b)2

, (C.7)

g(µ, ω) = − b(a+ b)ω

ω2 + (µ+ b)2
, (C.8)

h(ω) = ln

(
bea

sinω

ω

)
. (C.9)

We can then write down µk as a function of ωl in two ways. First, write µl as a function of ωl using h.
Then calculate µk and ωk, using the functions f and g respectively. We then have the first expression
for µk. Finally, calculate the second expression, by putting the expression for ωk in h. We define the
functions

F (ω) = f(h(ω), ω), (C.10)

G(ω) = h(g(h(ω), ω)), (C.11)

such that µk = F (ωl) and µk = G(ωl) should hold. We define the function

H(ω) = G(ω)− F (ω). (C.12)

We seek the roots of H(ω). Given a root of H, we can calculate the solutions λk and λl. However, we
must still check whether λk, λl and λk + λl are indeed solutions of the characteristic equation.

We will now focus on finding the roots of H. If λ is a solution, then so is λ. So, we only have to check
for ω ≥ 0. For ω = 0, we have real solutions. The only possibility for the sum of two real solutions to
again be a solution, is when 2λ0 = λ−1 or 2λ−1 = λ0. We will continue with the case ω > 0.

We can ease our task of finding all roots of H, if we can limit the interval of ω which we have to consider.
Note that we have ωk = g(h(ωl), ωl). For large ω, g(h(ω), ω) ∼ 1

ω . As the solutions of the characteristic
equation are isolated, we can find a Ω, such that for ω > Ω, we know that g(h(ω), ω) can never be the
imaginary part of a solution. Consequently, we only need to consider ω ∈ (0,Ω).

To find the roots of H, we need to know whether there are sign flips. To this end, it is interesting
to consider certain limits of H(ω). It is interesting to know with which sign we start and end, so we
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consider the limits ω → 0 and ω → ∞. For ω → 0, we have h(ω) → ln(b) + a. Then g(h(ω), ω) → 0,

h(g(h(ω), ω))→ ln(b) + a and f(h(ω), ω)→ − b ln(b)
ln(b)+a+b , such that

H(ω)→ b ln(b)

ln(b) + a+ b
+ ln(b) + a, as ω → 0. (C.13)

For ω → ∞, h(ω) → −∞. This happens logarithmic, so it goes to infinity ”slower” than ω. Then,
g(h(ω), ω)→ 0, h(g(h(ω), ω))→ ln(b) + a and f(h(ω), ω)→ −b, such that

H(ω)→ ln(b) + a+ b. (C.14)

If ω → 0 and ω →∞ lead to different signs for H, then we know that there will be a sign flip, and thus
possibly a root.

We will now set a and b, and see how the function H can be used. We note two things about plotting H.
First, H is not real valued for every ω, due to the fact that we can have negative input in a logarithm. We
only consider the intervals for which H is real valued. Second, the plot may not be accurate for ω → nπ,
n = 1, 2, . . . . Then h(ω)→∞ analytically, since sinω

ω → 0. Numerically however, we get sinω → ε, with
ε the machine precision. Suppose we have ε = 10−16, then ln(ε) = −16. So, instead of −∞, we get some
finite negative number. This will then continue to influence the behaviour of H in these regions. One
should take this into consideration when investigating the plots.

Figure C.2 shows a plot of H(ω), together with the markers of the imaginary parts of the first solutions.
We have used a = a0(1, 10) and b = b0(1, 10), such that we know that λ1 + λ−2 = λ0. We find two
intersections for H(ω), and one corresponds to the imaginary part of λ1. The other intersection does not
correspond to a solution, thus we ignore this root of H(ω). We can then use the functions f , g and h to
calculate the two solutions. This yields λ1 and λ−2, as expected.
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Figure C.2: Plot of H(ω) using a = a0(1, 10) and b = b0(1, 10). The markers are the imaginary parts of the
solutions of the characteristic equation for the first branches.
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