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Abstract
In the problem of video summarization, the goal
is to select a subset of the input frames conveying
the most important information of the input video.
The collection of data proves to be a challenging
task. In part because there exists a disagreement
among human annotators on what segments of a
video should be considered important for a sum-
mary. In this study we analyse a new dataset cre-
ated with the goal of increasing agreement between
the human annotators. The dataset has been cre-
ated with the use of a novel annotation method,
which uses existing action localization labels for
segmenting the videos. We train a supervised and
an unsupervised deep learning framework on popu-
larly used benchmark datasets and the new dataset.
Experimental results show the effectiveness of this
novel summary annotation method in improving
the agreement between annotators. Analysis re-
veals some issues with the evaluation of the deep
learning framework.

1 Introduction
With the abundance of devices capable of video capture,
video has become a indispensable medium for storing and
sharing information. According to YouTube [34], more than
500 hours of video content are uploaded to the platform ev-
ery minute. Consequently, better methods for browsing the
vast amount of videos are needed. The goal of video sum-
marization is to select frames from an input video where the
video created by combining the selected frames conveys the
most important information of the original video. Effective
summary videos can aid the process of navigating large video
collections by enabling the user to quickly identify the con-
tents of a video.

State-of-the-art automatic video summarization methods
follow a similar process as illustrated in figure 1. An al-
gorithm is applied to split the input video into segments, a
deep neural network predicts the importance scores of the
video frames, and finally the optimal combination of video
segments is selected by the knapsack algorithm [20].

Fully convolutional sequence networks (FCSN) were first
introduced by Rochan et al. [26] as a method for video sum-
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Figure 1: An illustration of the video summarization pipeline on a
video from the TVSum [28] dataset.

marization. Previously, fully convolutional networks (FCN)
have been applied for the unconnected problem of semantic
segmentation. Rochan et al. conceive a relationship between
the problem of semantic segmentation and video summariza-
tion, and present the FCSN as an adaptation of the FCN suit-
able for video summarization. In addition to a model that can
be trained supervised on labeled data (SUM-FCN), Rochan et
al. presented an unsupervised extension that can learn with-
out ground-truth video summary labels (SUM-FCNunsup).

Popular video summarization datasets [28; 7] provide
benchmark summaries that have been created by human an-
notators that can be used for supervised learning. As a re-
sult of disagreement between the annotators on what defines
a good summary, the labels in these datasets contain noise.

With the goal of reducing the disagreement between an-
notators, a novel video summary dataset has been created by
performing surveys with videos from the Breakfast Actions
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dataset [13]. This dataset provide action-localization data,
which was used in the survey for dividing the videos into
segments. The annotators were tasked with selecting the seg-
ments that best represent the original video.

Furthermore, Otani et al. [20] demonstrated that the widely
used F1-score evaluation metric [27] has severe problems.
The F1-score is calculated from the precision and recall
scores for the generated summary compared to the ground
truth summary. This process is shown to be greatly influ-
enced by the video segmentation process and completely ran-
dom assignments of importance scores were able to reach
similar or better scores than the state-of-the-art deep learn-
ing methods. In order to more accurately score the perfor-
mance of a deep learning network, Otani et al. propose a
new evaluation method which considers the rank-order cor-
relation between predicted and human-annotated frame-level
importance scores.

In this paper, we analyse the effectiveness of the novel
video summary dataset created from the Breakfast Actions
dataset [13] in reducing the disagreement in video summa-
rization by analysing the results of the fully convolutional
networks SUM-FCN with supervised learning and SUM-
FCNunsup [26] with unsupervised learning. In section 3,
we first give the details of the benchmark video summary
datasets, followed by an explanation of the evaluation tech-
niques. In section 4, we note the experimental setup and
main results. The results are analysed in section 5. Section 6
reflects on the ethical aspects of this research and the repro-
ducibility of our experiments. In section 7 a reflection is made
on the research. Finally, we recap the main conclusions in
section 8 and follow with ideas for further research.

2 Related Works
2.1 Automated Video Summarization
The goal of video summarization is to shorten an input video
to a summary video which conveys the most important infor-
mation of the original video. Several different problem rep-
resentations have been presented in literature, such as video
montages [10], time-lapses [8; 23], synopsis [25], and story-
boards [9; 35; 37; 26; 36; 16]. Storyboard summaries are
usually composed of a set of representative video frames
(key-frames) [16], or video fragments (key-shots) [19]. Key-
shot summaries are often considered to be more interesting to
watch for the viewer than a slide show of key-frames [15].

The problem discussed in this paper is most equivalent to
key-shot storyboard summarization. Rochan et al. [26] ap-
proach video summarization as a binary classification prob-
lem, where each frame is classified as being a key-frame or
not a key-frame by the FCSN.

2.2 Deep Learning Approaches
Most early approaches for video summarization depend on
predefined heuristic functions to determine the importance
scores of the frames [12; 14]. More recently, deep learn-
ing methods have been researched [9; 35; 37; 26; 36; 19;
4].

One set of deep learning models [37; 4; 36] is trained
with supervised learning using human-annotated benchmark

datasets. As a result the amount training data is limited, and
these models are influenced by the subjectivity of human an-
notators. However, supervised learning allows models to im-
plicitly capture high-level information from the annotations.
Other deep learning methods [9; 35] have been presented that
can be trained using unsupervised learning and therefore mit-
igate the need for human-annotated ground-truth data.

In addition to supervised and unsupervised deep learning
methods, another class [21] attempts to learn video summa-
rization without the need for human annotated summaries, by
using supervised learning techniques on less-expensive weak
labels (e.g. video title, category).

2.3 Benchmarks
In recent literature the TVSum [28] and SumMe [7] datasets
are most commonly used for comparing the performance
of different video summarization methods. Other popular
datasets include: OVP [3] and YouTube [3]. OVP and
YouTube both contain 50 videos from diverse categories.
Both datasets provide key-frame summary annotations cre-
ated by 5 annotators. The OVP and YouTube datasets are typ-
ically used for the assessment of the performance of a method
in the augmented and transfer settings (Sec. 2.4).

2.4 Evaluation
F1-score [27] is most predominantly used as a measure for
the accuracy of a video summarization method. Next to the
standard setting where a single dataset is split into a train-
ing, validation and test set, scores for the augmented setting
are frequently reported as well. In the augmented setting, the
training set is supplemented with other datasets, and for test-
ing only the initial dataset is used. The aim of training on
augmented data is to reduce overfitting.

Additionally, Zhang et al. [36] introduced a transfer score.
In this setting the training set completely consists of data from
other datasets, while being tested on the given dataset. This
score particularly shows how well a video summary method
can generalize for practical applications.

For a qualitative evaluation of generated summaries, some
works [17; 18; 32] rely on human subjects. In a survey sub-
jects view videos and the generated summaries and subjec-
tively the rate how well each summary represents the original
video. These studies give a good representation of how well
a video summarization method would practically perform for
the end-user, but have the disadvantage that the results are
hard to reproduce.

3 Evaluating the Performance of the FCSN
In this section the methodology for the evaluation of the per-
formance of the FCSN models is explained. First the details
of the benchmark datasets that were used are given, then the
evaluation approach is elaborated.

3.1 TVSum
TVSum contains 50 videos obtained from YouTube, using 10
predefined search queries (5 videos per query) [28]. The du-
ration of the videos ranges from 2 to 10 minutes. In a sur-
vey, 20 human annotators ranked the importance of uniform



length shots of each video on a scale from 1 (unimportant)
to 5 (important). This importance scoring approach has the
benefit that any arbitrary length summary can be generated.

3.2 SumMe
The SumMe dataset consists of 25 YouTube videos with di-
verse subjects such as holidays, events and sports [7]. The
duration of the videos varies in the range from about half a
minute to 6 minutes. For each video, 15 to 18 human annota-
tors produced summaries by selecting a subset of the frames
that was required to be of length 5% ≤ Ls ≤ 15% of the
initial video duration.

3.3 Breakfast Actions
The Breakfast Actions dataset contains 1.989 videos of ac-
tors performing cooking activities [13]. The dataset provides
human annotated segment boundaries for the videos, where
each video segment shows the actor performing a labeled ac-
tion. It has annotations for ”coarse” actions labels (e.g. ”grab
milk”) and ”fine” action labels (e.g. ”twist cap”, ”open cap”).

Videos from this dataset have been used to create a novel
video summary dataset by conducting human surveys. First,
a video from the datasets was shown to an annotator. Second,
all the action labels corresponding to the video are listed, and
the annotator is asked to select all actions that best represent
the video content. Third, the annotator is tasked with cre-
ating a video summary by selecting up to 2 segments from
the video. These video segments correspond to the ”coarse”
action labeled segments. A total of 20 videos from the Break-
fast Actions dataset were labeled by 2 to 15 annotators using
this method. The duration of the selected videos ranges from
48 seconds to almost 5 minutes.

The results from the surveys were afterwards aggregated to
form the final dataset. For each annotator frame-level binary
labels were generated which indicate whether the frame is se-
lected or not. All annotator summaries were converted to one
ground-truth frame-level importance score vector by dividing
the amount of annotators who picked each frame by the total
number of annotators for each video. Finally, every second
of the original video was converted to a single feature vector
using the pretrained I3D network [2].

3.4 Fully Convolutional Sequence Networks
Fully convolutional sequence networks (FCSN) [26] are a
type of convolutional neural network inspired by models used
in the problem of semantic segmentation. In semantic seg-
mentation, the objective is to label each pixel in an image to
some representative class. Rochan et al. [26] establish a rela-
tionship between this problem and the problem of video sum-
marization by formulating video summarization as a binary
key-frame classification problem over the temporal dimen-
sion. The only difference that remains between these prob-
lems are the input dimensions and the number of channels.
By adapting deep learning models for semantic segmentation
to these differences they can be applied for video summariza-
tion.

Rochan et al. [26] present both a supervised (SUM-FCN)
and unsupervised (SUM-FCNunsup) model for video summa-
rization. SUM-FCN learns from a single ground-truth set of

key-frames generated from human annotations. It learns by
using a class-balanced negative log likelihood loss function.
SUM-FCNunsup is designed on the intuition that the chosen
key-frames should be visually diverse by using a reconstruc-
tion and diversity component in the loss function. We com-
pare the performance of both networks to analyse to what ex-
tent the human annotations aid the learning process.

3.5 Evaluation Approach
With the goal of understanding the effects of the novel sum-
mary annotation method, the fully convolutional networks
SUM-FCN and SUM-FCNunsup are trained on the TVSum,
SumMe and the Breakfast Actions datasets. The experimental
setup from Rochan et al. [26] is followed to train the models
(Sec. 4.1).

Following the methods described by Otani et al. [20], the
performance of the SUM-FCN and SUM-FCNunsup are eval-
uated on the benchmark datasets TVSum and SumMe and
the new Breakfast Actions dataset using rank-order correla-
tion scoring. To compute this score, the frames of an input
video are ranked by the predicted importance scores. Then
Kendall’s τ [11] and Spearman’s ρ [38] coefficients are cal-
culated for the correlation between the generated ranking and
the ranking from ground-truth importance scores. The re-
ported correlation score is the mean of the correlation coeffi-
cients for all videos in a dataset.

We also compute the F1-score from the precision (P) and
recall (R) values. To find the F1-score for a particular video,
the scores are calculated by comparing to each human anno-
tation and the average is reported.

F1 =
2P ·R
P +R

(1)

with:

P =

∑N
i=1 yi · y∗i∑N

i=1 yi
and R =

∑N
i=1 yi · y∗i∑N

i=1 y
∗
i

(2)

where for each frame number i: yi ∈ {0, 1} denotes the pre-
dicted binary label and y∗i ∈ {0, 1} the ground-truth label.

4 Experimental Setup and Results
In this section, we report the details for the setup of our exper-
iments on SUM-FCN and SUM-FCNunsup along with justifi-
cations for the parameters that were chosen. Following that,
the results of the experiments are reported.

4.1 Experiment Setup
The experiment setup can be subdivided into an implementa-
tion, ground-truth generation, training and evaluation part.

Implementation: A third party open-source implementa-
tion was used as a base for the FCSN models. The imple-
mentation uses the PyTorch machine learning library [22] for
modeling and training the network. The concerns with us-
ing a third party implementation are further elaborated in the
discussion section (Sec. 7).

Ground-truth: The TVSum, SumMe and Breakfast Ac-
tions datasets provide the ground-truth annotations in various



Dataset Method F1-score Kendall’s τ Spearman’s ρ

TVSum

SUM-FCN 56.5 (82.0) 0.006 (0.076) 0.009 (0.112)
SUM-FCNunsup 52.9 (72.7) 0.009 (0.152) 0.013 (0.224)
Random 56.4 (80.4) 0.000 (0.005) 0.000 (0.004)
Human 53.8 (80.5) 0.177 (0.311) 0.204 (0.357)

SumMe

SUM-FCN 30.9 (84.3) -0.003 (0.027) 0.004 (0.034)
SUM-FCNunsup 28.3 (51.8) 0.000 (0.062) -0.011 (0.050)
Random 18.7 (52.9) 0.000 (0.002) 0.000 (0.002)
Human 31.1 (79.0) 0.202 (0.425) 0.213 (0.440)

Breakfast

SUM-FCN 31.4 (86.3) 0.024 (0.162) 0.032 (0.215)
SUM-FCNunsup 20.1 (50.1) -0.020 (0.282) -0.021 (0.356)
Random 21.4 (29.0) 0.000 (0.012) 0.000 (0.022)
Human 43.2 (100.0) - -

Table 1: Mean F1-score and correlation score results, comparison of different methods on the benchmark datasets. The maximum scores
are noted between brackets. Note that for the Breakfast Actions dataset it is not possible to generate the correlation scores on the human
annotations, considering the fact that these are not given as importance scores but as binary labels.

formats. Since the FCSN models require a single ground-
truth set of isolated key-frames for each video for training, we
follow methods from [36] to convert these annotations. For
the frame-level scores annotations provided by TVSum and
SumMe each videos is first segmented using KTS [24], the
segments are ranked by mean importance score of all anno-
tations, then the knapsack algorithm is applied to select from
the segments with a maximum duration of 15%. Finally for
each selected segment, the frame with the highest importance
score is marked as key-frame [36].

For the Breakfast Actions dataset, we follow [5] to greed-
ily create a single ground-truth key-shot summary from the
key-shot annotations. Then ground-truth key-frames are ob-
tained by taking the middle frame of each key-shot as in [36]
(Figure 2).

Training: In order to train SUM-FCN and SUM-FCNunsup
on videos of variable length, Rochan et al. report two meth-
ods. Parallel to the cropping strategy in semantic segmenta-
tion, the feature vectors can be uniformly down-sampled to a
fixed length (T = 320 [26]). Alternatively, since the mod-
els are fully convolutional the variable length feature vector
representation can be used without sampling. In these exper-
iments we use the latter method. In Sec. 5 we compare the
results of both methods.

For training on TVSum and SumMe, we followed [26] and
use a learning rate of 10−3, momentum of 0.9, and batch size
of 5. For training on the Breakfast Actions dataset, we use

Figure 2: An illustration of the conversion process from the provided
human annotations (shaded in yellow) to a single ground-truth key-
shot summary (blue) on a video from the Breakfast Actions dataset.
Ground-truth key-frames (red) are then obtained by taking the mid-
dle frame of each key-shot.

the same learning rate and momentum. However since the
amount of videos is significantly less, we lower the batch size
to 3. The networks are optimized with stochastic gradient
descent (SGD) and trained for 100 epochs on each training-
set/test-set split in 5-fold cross-validation.

Evaluation: The output layers of the SUM-FCN and
SUM-FCNunsup networks are of dimension 1× T ×C where
C = 2 denotes the two classes a frame can be classified as
(selected as key-frame or not). Following [36; 26] we convert
key-frames to key-shots before calculating F1-score. First a
video is segmented using KTS [24]. Next, each segment is
scored by the number of contained key-frames divided by
the segment length. Finally the knapsack algorithm selects
the best scoring combination of segments within the maxi-
mum allowed summary length. For the TVSum and SumMe
datasets, the maximum summary length is 15% of the original
video length. For the Breakfast Actions dataset the provided
video segments from the action localization labels are used
instead of KTS, and the maximum summary length is set to
2 segments in order to copy the requirements for the human
annotators (Sec. 3.3).

In order to obtain predicted frame-level importance scores
for computing the correlation scores, the values for key-frame
classification are taken from the output layer before the binary
classification threshold is applied. These scores are a vector
of length T = 288 and are cut to the original length of the
video before calculating the correlation scores.

In addition to these scores, scores for the human annota-
tors and a randomized importance score baseline method are
computed (as in [20]). For the randomized baseline method,
the scores are averaged over 100 trials. The human score on
the Breakfast Actions dataset is calculated by taking the mean
of the F1-scores obtained by pairwise comparing the human
annotators.

4.2 Main Results
Table 1 shows the mean F1-score and mean correlation scores
obtained with the various methods on the benchmark datasets.
The F1-score and correlation score results of the human and



(a) SUM-FCN
F1 = 86.3, τ = 0.052, ρ = 0.069

(b) SUM-FCNunsup
F1 = 50.1, τ = −0.016, ρ = −0.018

Figure 3: Two plots showing the frame importance scores predicted by SUM-FCN (a) and SUM-FCNunsup (b), and the corresponding key-
frames, compared to the ground-truth importance scores on videos from the Breakfast Actions dataset. The generated summaries for these
particular videos obtained high F1-scores, but low correlation scores.

random baselines on TVSum and SumMe are consistent with
the results Otani et al. [20] report.

The results show SUM-FCN performs similarly in terms
of F1-score on the SumMe and Breakfast Actions video
summary datasets, and much better on TVSum. For SUM-
FCNunsup, the F1-scores show it performs significantly worse
on the Breakfast Actions dataset compared to TVSum and
SumMe. Rank-order correlation scores have been shown to
provide a better measure of the performance of a model [20].
The rank-order correlation scores in Table 1 show highest per-
formance for SUM-FCN on the Breakfast Actions dataset,
which could be an indication of increased annotator agree-
ment. These scores also show a bigger difference between
the performance of the supervised method compared to the
unsupervised method. However there is a notable issue with
calculating these scores for the FCSN models we discuss in
Section 5.3.

The human F1-score on TVSum differs from the F1-score
36 reported by the authors [28], because we first use KTS [24]
to convert each human annotation to a key-shot summary with
a maximum duration of 15% before calculating the score. In
contrast, Song et al. [28] calculate the F1-score from key-
shots of 2 seconds each. We chose for this approach, since it
allows for direct comparison between the human scores and
the scores obtained by the other methods.

In Table 2 the mean F1-scores of the FCSN models as
reported by Rochan et al. [26] are listed. The scores we
achieved on the TVSum dataset are comparable to the origi-
nally reported results. In contrary, the results on the SumMe
dataset greatly differ. We attribute this disparity to issues
within the implementation of the FCSN models (Sec. 7.2),
since the experimental setup of Rochan et al. was accurately
copied.

Dataset SUM-FCN [26] SUM-FCNunsup [26]

TVSum 56.8 (56.5) 52.7 (52.9)

SumMe 47.5 (30.9) 41.5 (28.3)

Table 2: Mean F1-scores of the FCSN models on the TVSum and
SumMe datasets, as reported by Rochan et al. [26]. Between brack-
ets the the F1-scores we achieved are reported (copied from Table 1).

5 Analysis
5.1 Human Agreement
The agreement between the human annotators of the Break-
fast Actions dataset can be analysed by comparing the re-
sults obtained by pairwise F1-score evaluation. This is possi-
ble since the human annotators provide key-shot summaries,
which can be compared with F1-score without conversion
to other formats. Figure 4 shows the mean F1-score for
each video in the dataset. From this bar graph we observe
the dataset contains one video which has an annotator F1-
score 0.0 (”P05 cam01 P05 scrambledegg”). Examining this
video further we find that for this video the provided annota-
tions include just 2 people, who have chosen none of the same
segments. Another remarkable result is a video with an anno-
tator F1-score 1.0 (”P48 cam02 P48 milk”). This video has
been annotated by three individuals, who all chose the exact
same segments for the summary.

5.2 Downsampling
As mentioned in Sec. 4.1, Rochan et al. [26] use videos down-
sampled to a fixed length before training the FCSN models.
We performed experiments to compare the performance of
the models on downsampled videos to the performance on
variable length videos. Since the feature vectors given in the
Breakfast Actions dataset have a minimum length of 48, the



Figure 4: All videos in the Breakfast Actions dataset with their
annotator-agreement F1-score, calculated by pairwise comparison
of the provided human annotations.

down-sampled feature vectors can have a maximum length
T = 48.

Table 3 shows the scores obtained when training on the
downsampled videos and the scores obtained when training
on variable length videos. For FCN-SUM both the F1-score
and correlation scores are significantly higher with variable
length videos. For SUM-FCNunsup the F1-scores are simi-
lar for both cases. The correlation scores are better with the
downsampled videos, however in both cases worse than ran-
dom scores.

Dataset Method F1 K.’s τ S.’ρ

Breakfast
(T = 48)

SUM-FCN 22.4 0.014 0.017
SUM-FCNunsup 20.7 -0.010 -0.013

Breakfast
var. length

SUM-FCN 31.4 0.024 0.032
SUM-FCNunsup 20.1 -0.020 -0.021

Table 3: Mean F1-score and correlation scores of the FCSN mod-
els on the Breakfast dataset. Comparison of the test performance
obtained when training on videos which have been uniformly down-
sampled to T = 48, and variable length input videos (taken from
Table 1).

Compared to the mean human annotation F1-score of TV-
Sum(Table 1), the agreement between human annotations
for the Breakfast Actions dataset seems significantly lower.
However this is an unfair comparison, since the human an-
notation F1-score for the TVSum and SumMe datasets have
been calculated after converting the annotations from impor-
tance scores to key-shots (Sec. 4.1), which has been shown
to be highly dependent on the video segmentation algo-
rithm [20].

5.3 Importance Score Evaluation
Figure 3 shows two plots of the frame importance scores pre-
dicted by SUM-FCN (3a) and SUM-FCNunsup (3b) compared
to the respective ground-truth importance scores for videos
from the Breakfast Actions dataset. Furthermore, the pre-
dicted key-frames are highlighted in orange. These video are

Figure 5: A plot of the loss, Kendall’s τ , and Spearman’s ρ during
training of FCN-SUM. Scores are averaged over each epoch of a
set of videos from the Breakfast Actions dataset. Trained and tested
on the same set of videos to accurately show the correlation between
loss and the correlation scores. For each correlation metric, a dashed
trend-line is shown.

featured since they obtained high F1-scores but low correla-
tion scores.

An analysis of Figure 3 reveals a severe issue with perform-
ing rank-order correlation evaluation on the predicted scores
of the FCSN models. The FCSN models are designed to clas-
sify frames of a video as key-frame or non-key-frame. The
classification is determined by a threshold value (0.5) on the
predicted importance scores (i.e. score > 0.5 = keyframe,
highlighted in orange in Figure 3).

Key-frame summaries consist of a set of the most impor-
tant frames of a video, which are usually isolated. For exam-
ple, the ground-truth labels used by SUM-FCN consist of 1
frame for each segment (Figure 2). Therefore SUM-FCN will
implicitly learn to classify diverse frames as key-frames [26],
and frames similar to a key-frame as non-key-frames.

This effect is also present in summaries generated by
SUM-FCNunsup (e.g. Figure 3b), owing to the design of its
loss function. It incorporates a repelling regularizer compo-
nent which explicitly enforces diversity among the selected
key-frames [26].

In contrast, the ground-truth importance scores of the
Breakfast Actions dataset which are used during rank-order
correlation evaluation are generated from key-shot annota-
tions, resulting in a constant value for each segment (Fig-
ure 3).

As a result of this inequality, the output scores of SUM-
FCN and SUM-FCNunsup are not suitable for calculating rank-
order correlation scores. Consequently the correlation scores
are low.

This statement is further supported by Figure 5. It shows
mean correlation scores as well as the mean loss, computed
during the training of SUM-FCN. The dashed trend-lines of
the correlation scores demonstrate that reducing the loss is
not effective in increasing the correlation scores significantly.



5.4 Comparison to Other Methods
Table 4 compares the results we achieved for the FCSN mod-
els on the Breakfast Actions dataset to the results that have
been reported [30; 6; 31] for other deep learning methods.

In comparison to the other supervised methods, SUM-FCN
is outperformed on all evaluation metrics. Both VASNet [4]
and the DSNet models [37] use frame-level importance scores
for training the models. Compared to the key-frame ground-
truth (Sec. 4.1) the SUM-FCN trains with, frame-level im-
portance scores have previously been shown to provide richer
information [36].

The unsupervised method SUM-GAN-AAE [1] achieves
significantly higher F1-score than SUM-FCNunsup. SUM-
FCN performs slightly better when evaluated using rank-
order correlation scores, however both methods perform
worse than randomized importance scores.

6 Responsible Research
6.1 Ethical Concerns
For this research, data collection was conducted by the use of
surveys on the Amazon Mechanical Turk platform. On this
platform, users can choose to complete tasks (HIT) and then
get paid some arbitrary amount of money as a reward. It is
hard to determine how much each HIT should be worth, since
we do not know any information about the users beforehand.
On the other hand, users have complete freedom to choose
what HIT to complete. Therefore the reward should only be
viewed as an incentive and not as a payment.

6.2 Reproducibility of Experiments
In empirical research, it is crucial to ensure the experimen-
tal results presented can be easily reproduced and verified
by other researchers. To this respect, in this research we
have made sure to exclusively make use of open source
datasets and repositories accessible to anyone. Additionally,
the dataset preparation process and experiment parameters
used have been noted and justified (Sec. 4). This guarantees
that others can easily conduct the same experiments and repli-
cate the reported results.

It should be noted that there was no official repository
available for the FCSN, therefore a publicly available imple-
mentation published by a third party was used. The impli-
cations of this choice are further elaborated upon in the next
section (Sec. 7.2).

7 Discussion
7.1 Notable Differences in the Breakfast Actions

Dataset
It should be noted that some properties of the Breakfast Ac-
tions video summary dataset are different to the properties
of the TVSum and SumMe datasets which could result in an
unfair comparison between the results.

First, the feature descriptor we used for the TVSum and
SumMe datasets is GoogleNet [29]. For the Breakfast Ac-
tions dataset, the features were extracted using I3D [2]. De-
spite the fact that Rochan et al. [26] mention that the FCSN
models can use any feature descriptor, the results we obtained

could be unfairly influenced considering I3D extracts video-
based features, but GoogleNet extracts image-based features.

Second, the annotators on the Breakfast Actions dataset
were tasked with selecting a fixed number of segments from
the videos for a summary. For each video, the importance
scores were subsequently generated by dividing the num-
ber of annotators who picked a segment, by the total num-
ber of annotators for the video, as described in Section 3.3.
This process has as a result that the resulting frame-level im-
portance scores do not necessarily show relative importance.
Take for example the situation where an annotator considers
only one segment of the video to be important for a sum-
mary. With the current annotation method the annotator has
to choose two segments, and both segments will be counted
to be of equal importance.

Finally, as mentioned in Section 5.1 some video’s in the
Breakfast Actions dataset have been annotated by a very low
number of people. As a result, the agreement measures be-
tween annotators are not reliably comparable to the other
datasets, since adding more annotations could greatly in-
crease or decrease the agreement for these videos.

7.2 Open Source Repository
Since no official implementation was available for the FCSN
models, initially when starting this research project, the first
unofficial repository found on GitHub was used1. How-
ever, training with this implementation and analysing the re-
sults quickly made clear that it had significant errors. Most
notably, the F1-scores obtained when training on the TV-
Sum and SumMe datasets where considerably lower than the
scores reported by the authors [26]. After this observation,
we examined the second repository found on GitHub2. This
implementation was able to reproduce the F1-scores, how-
ever it turned out that the scores were incorrectly calculated.
After extensive debugging of this implementation, we were
able to reproduce the scores for the TVSum dataset, but not
for SumMe (Sec. 4.2). Consequently, the reliability of the re-
sults that we present for the new dataset is questionable. The
modified implementation we used for this research has been
made available on GitHub3.

This experience has been an example of the importance of
responsible research and assuring the reproducibility of the
experiments. If an implementation had been provided by the
original authors of the FCSN [26], less time would have been
needed for debugging the code.

8 Conclusions and Future Work
In this research, we have assessed the usability of a novel
dataset that was created by using the existing action-
localization labels of the Breakfast Actions dataset [13] dur-
ing annotation for the problem of video summarization. We
have trained two deep-learning models: the supervised SUM-
FCN [26] and the unsupervised SUM-FCNunsup [26] on the
dataset and on previous benchmark datasets TVSum and

1https://github.com/weirme/Video Summary using FCSN
2https://github.com/pcshih/pytorch-FCSN
3https://github.com/pfrolke/pytorch-FCSN



Type Model F1-score Kendall’s τ Spearman’s ρ

Supervised

VASNet [30] 67.3 0.037 0.045
DSNet (Anchor-based) [6] 64.4 0.090 0.106
DSNet (Anchor-free) [6] 60.0 0.056 0.078
SUM-FCN 31.4 0.024 0.032

Unsupervised SUM-GAN-AAE [31] 51.4 -0.030 -0.030
SUM-FCNunsup 20.1 -0.020 -0.021

Table 4: Performance of different video summarization models on the Breakfast Actions dataset. For each of the models, the mean F1-score
and rank-order correlation scores between predicted importance scores and their corresponding ground-truth importance scores are given.
The scores for SUM-FCN and SUM-FCNunsup are taken from Table 1.

SumMe. For a comparison of the performance of these net-
works we used F1-score [27] and rank-order correlation eval-
uation [20].

The results we obtained for the supervised model than the
results that have been reported for other supervised models
on the new dataset are significantly lower. We attribute this
performance gap to the difference in training ground-truth
format. The other examined models use frame importance
scores, SUM-FCN uses key-frames. The experimental results
we achieved with the unsupervised model are worse in terms
of F1-score than the reported results of another unsupervised
model, but the correlation scores are slightly better.

Furthermore, analysis reveals that the key-frame based
summaries which both SUM-FCN and SUM-FCNunsup are
designed to learn are not suitable for computing rank-order
correlation scores with frame-level importance scores, since
they inherently model a different objective.

For future works, we propose experimenting with new
models adapted from the FCSN models that learn ground-
truth importance scores as opposed to ground-truth key-
frames. Additionally, the agreement between annotators of
video summarization datasets created by annotating action-
localization datasets with videos from a different domain (e.g.
MultiThumos [33]) should be researched. Finally, in order to
compute rank-order correlation scores for human annotations
the human annotations have to be collected with importance
scores.
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querque Araújo. Vsumm: A mechanism designed to
produce static video summaries and a novel evalua-
tion method. Pattern Recognition Letters, 32(1):56–68,
2011.

[4] Jiri Fajtl, Hajar Sadeghi Sokeh, Vasileios Argyriou,
Dorothy Monekosso, and Paolo Remagnino. Summa-
rizing videos with attention. In Asian Conference on
Computer Vision, pages 39–54. Springer, 2018.

[5] Boqing Gong, Wei-Lun Chao, Kristen Grauman, and
Fei Sha. Diverse sequential subset selection for super-
vised video summarization. Advances in neural infor-
mation processing systems, 27:2069–2077, 2014.

[6] Daan Groenewegen and Ombretta Strafforello. Eval-
uation of video summarization using dsnet and action
localization datasets. 2021.

[7] Michael Gygli, Helmut Grabner, Hayko Riemenschnei-
der, and Luc Van Gool. Creating summaries from user
videos. In ECCV, 2014.

[8] Neel Joshi, Wolf Kienzle, Mike Toelle, Matt Uytten-
daele, and Michael F Cohen. Real-time hyperlapse cre-
ation via optimal frame selection. ACM Transactions on
Graphics (TOG), 34(4):1–9, 2015.

[9] Yunjae Jung, Donghyeon Cho, Dahun Kim, Sanghyun
Woo, and In So Kweon. Discriminative feature learning
for unsupervised video summarization. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 8537–8544, 2019.

[10] Hong-Wen Kang, Yasuyuki Matsushita, Xiaoou Tang,
and Xue-Quan Chen. Space-time video montage. In
2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 2,
pages 1331–1338. IEEE, 2006.

[11] Maurice G Kendall. The treatment of ties in ranking
problems. Biometrika, 33(3):239–251, 1945.

[12] Aditya Khosla, Raffay Hamid, Chih-Jen Lin, and Neel
Sundaresan. Large-scale video summarization using
web-image priors. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
2698–2705, 2013.

[13] Hilde Kuehne, Ali Arslan, and Thomas Serre. The lan-
guage of actions: Recovering the syntax and semantics
of goal-directed human activities. In Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pages 780–787, 2014.

[14] Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman.
Discovering important people and objects for egocen-



tric video summarization. In 2012 IEEE conference on
computer vision and pattern recognition, pages 1346–
1353. IEEE, 2012.

[15] Ying Li, Tong Zhang, and Daniel Tretter. An overview
of video abstraction techniques. Technical report, Tech-
nical Report HPL-2001-191, HP Laboratory, 2001.

[16] David Liu, Gang Hua, and Tsuhan Chen. A hierarchi-
cal visual model for video object summarization. IEEE
transactions on pattern analysis and machine intelli-
gence, 32(12):2178–2190, 2010.

[17] Zheng Lu and Kristen Grauman. Story-driven sum-
marization for egocentric video. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2714–2721, 2013.

[18] Yu-Fei Ma, Lie Lu, Hong-Jiang Zhang, and Mingjing
Li. A user attention model for video summarization. In
Proceedings of the tenth ACM international conference
on Multimedia, pages 533–542, 2002.

[19] Behrooz Mahasseni, Michael Lam, and Sinisa Todor-
ovic. Unsupervised video summarization with adver-
sarial lstm networks. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition,
pages 202–211, 2017.

[20] Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne
Heikkila. Rethinking the evaluation of video sum-
maries. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7596–
7604, 2019.

[21] Rameswar Panda, Abir Das, Ziyan Wu, Jan Ernst, and
Amit K Roy-Chowdhury. Weakly supervised summa-
rization of web videos. In Proceedings of the IEEE
International Conference on Computer Vision, pages
3657–3666, 2017.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance
deep learning library. arXiv preprint arXiv:1912.01703,
2019.

[23] Yair Poleg, Tavi Halperin, Chetan Arora, and Shmuel
Peleg. Egosampling: Fast-forward and stereo for ego-
centric videos. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
4768–4776, 2015.

[24] Danila Potapov, Matthijs Douze, Zaid Harchaoui, and
Cordelia Schmid. Category-specific video summariza-
tion. In European conference on computer vision, pages
540–555. Springer, 2014.

[25] Yael Pritch, Alex Rav-Acha, and Shmuel Peleg.
Nonchronological video synopsis and indexing. IEEE
transactions on pattern analysis and machine intelli-
gence, 30(11):1971–1984, 2008.

[26] Mrigank Rochan, Linwei Ye, and Yang Wang. Video
summarization using fully convolutional sequence net-

works. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 347–363, 2018.

[27] Marina Sokolova, Nathalie Japkowicz, and Stan Sz-
pakowicz. Beyond accuracy, f-score and roc: a family
of discriminant measures for performance evaluation. In
Australasian joint conference on artificial intelligence,
pages 1015–1021. Springer, 2006.

[28] Yale Song, Jordi Vallmitjana, Amanda Stent, and Ale-
jandro Jaimes. Tvsum: Summarizing web videos using
titles. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 5179–5187,
2015.

[29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pages 1–9, 2015.

[30] Felicia Elfrida Tjhai and Ombretta Strafforello. Evalu-
ating the supervised video summarization model vasnet
on an action localization dataset. 2021.

[31] Georgi Trevnenski, Ombretta Strafforello, and Seyran
Khademi. Evaluation of the sum-gan-aae method for
video summarization. 2021.

[32] Ting Yao, Tao Mei, and Yong Rui. Highlight detec-
tion with pairwise deep ranking for first-person video
summarization. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 982–
990, 2016.

[33] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo
Andriluka, Greg Mori, and Li Fei-Fei. Every moment
counts: Dense detailed labeling of actions in complex
videos. International Journal of Computer Vision, 2017.

[34] YouTube. Youtube by the numbers. https://blog.
youtube/press/. [Online; accessed 19-April-2021].

[35] Li Yuan, Francis EH Tay, Ping Li, Li Zhou, and Jiashi
Feng. Cycle-sum: cycle-consistent adversarial lstm net-
works for unsupervised video summarization. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 9143–9150, 2019.

[36] Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grau-
man. Video summarization with long short-term mem-
ory. In European conference on computer vision, pages
766–782. Springer, 2016.

[37] Wencheng Zhu, Jiwen Lu, Jiahao Li, and Jie Zhou.
Dsnet: A flexible detect-to-summarize network for
video summarization. IEEE Transactions on Image Pro-
cessing, 30:948–962, 2020.

[38] Daniel Zwillinger and Stephen Kokoska. CRC stan-
dard probability and statistics tables and formulae. Crc
Press, 1999.

https://blog.youtube/press/
https://blog.youtube/press/

	Introduction
	Related Works
	Automated Video Summarization
	Deep Learning Approaches
	Benchmarks
	Evaluation

	Evaluating the Performance of the FCSN
	TVSum
	SumMe
	Breakfast Actions
	Fully Convolutional Sequence Networks
	Evaluation Approach

	Experimental Setup and Results
	Experiment Setup
	Main Results

	Analysis
	Human Agreement
	Downsampling
	Importance Score Evaluation
	Comparison to Other Methods

	Responsible Research
	Ethical Concerns
	Reproducibility of Experiments

	Discussion
	Notable Differences in the Breakfast Actions Dataset
	Open Source Repository

	Conclusions and Future Work

