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Modelling of membrane bonding response: part 1 development of an adhesive
contact interface element
Xueyan Liu, Cor Kasbergen, Jinlong Li and Tom Scarpas

Section of Pavement Engineering, Faculty of Civil Engineering & Geosciences, Delft University of Technology, Delft, Netherlands

ABSTRACT
The adhesive bonding strength of the membrane layers between the asphalt concrete surface layers and
the decks of steel bridges has a strong influence on the fatigue life of orthotropic steel deck bridges
(OSDBs). The most important requirement for the application of membrane materials to orthotropic
steel deck bridges is that the membrane adhesive layer is able to sufficiently bond to its surrounding
material layers. The interfacial properties between the membrane and the layers bonded to it have not
been extensively studied in the current orthotropic steel deck bridge system. In this paper, details of
the contact interface element utilised to model the interfacial bonding properties will be discussed.
Furthermore, the traction-separation material law will be chosen to describe the bonding response of
the interfacial properties of the membrane to its surrounding surfacing layers on OSDBs. Some
numerical examples, in which various aspects of the finite elements response of the contact interface
model will be presented. Utilisation of the model in finite element analyses has enabled the
investigation of the response of a 3D orthotropic steel deck bridge subjected to the different traffic
loading conditions.
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1. Introduction

Orthotropic steel deck bridges (OSDBs) are widely used in most
of the major long-span bridges around the world. The light-
weight and flexibility make OSDB a cost-effective solution for
cases where a high degree of pre-fabrication or rapid erection
is required, such as in seismic zones, for movable bridges,
long-span bridges and for rehabilitation to reduce bridge weight.

In the Netherlands, an asphaltic surfacing structure for
OSDBs mostly consists of multi structural layers. The upper
layer consists of Porous Asphalt (PA) because of reasons related
to noise reduction. For the lower layer a choice between Mastic
Asphalt (MA) or Guss Asphalt (GA), can be made. Mostly, var-
ious membrane layers are involved, functioning as a bonding
layer, isolation layer as well as adhesion layer. Unfortunately,
the service life of the current Dutch asphaltic surfacing struc-
tures on OSDBs is limited to an average of 5 years. Several pro-
blems were observed in relation to asphaltic surfacing materials
on OSDBs such as raveling, cracking, loss of bond between the
surfacing material and the steel plate, etc. The severity of the
problems is increased by the considerable growth of traffic in
terms of number of trucks, heavier wheel loads, wide-base
tires, etc. The availability of innovative design methodologies
and advanced durable surfacing materials on OSDBs become
very urgent for Dutch road authority and will offer opportu-
nities to mitigate material response degradation and fatigue-
related problems in this type of structure contributing thus to
a significant extension of the service life of Dutch OSDBs.

Previous investigations have shown that the adhesive
strength of the membrane layers between the surface layers

and the decks of steel bridges has a strong influence on the struc-
tural response of orthotropic steel bridge decks (Liu et al. 2008,
2013, Li 2015, Tzimiris 2017). The most important requirement
for the application of membrane materials to orthotropic steel
bridge decks is that the membrane adhesive layer is able to
sufficiently bond to the surrounding materials.

According to engineering practices, experimental and
numerical investigations, when traffic load is imposed on the
surface of OSDBs, non-uniform displacement fields develop
resulting in a variety of states of stress in the surfacing material.
An example is shown in Figure 1, which shows the response of
the structure to a dual-wheel load. It can be observed that, when
a dual wheel load is applied onto a steel deck surfacing, trans-
versal tensile deformations are observed at upper locations in
the vicinity of the middle support of the bridge which creates
negative moments as well as the lower parts of the surfacing
layers under the wheel load (Liu et al. 2010, Medani et al.
2010). In the meantime, depending on the bonding strength
between the layers, shear deformations are developed between
the membrane and structural layers. The higher bonding
strength of the membrane interfaces can improve the integrity
of the surfacing system. The shear deformation in the asphalt
surfacing layers close to the membranes can be increased sig-
nificantly by using the poor-bonded membranes which will
result in adhesive failure (debonding) at the interfaces. This
necessitates the search for a more powerful computational
tool for increased understanding of the complicated response
of asphaltic surfacing on orthotropic steel deck bridges. The
tool should incorporate more realistic material behaviour and
more realistic elements representing the adhesive bonding
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characteristics between the structural layers and the structural
geometry.

The debonding process between two bodies is normally
described by cohesive zone models which represent a relation
between the traction and the relative displacement of associated
points of crack surfaces. The tractions are sometimes coupled
by making them a function of both the normal and tangential
opening displacement (Tvergaard 1990, Xu and Needleman
1993). Cohesive zones are typically implemented in finite
element codes as interface elements (Chandra et al. 2002, De
Borst 2003, Van den Bosch et al. 2006).

In general, the membrane will either fail adhesively or cohe-
sively. Cohesive failures are characterised by the fracture of the
membrane in itself. Manufactures retain a relatively good
understanding of their product properties and have been able
to improve their physical properties over the years. This has
led to the membrane with good cohesion properties, and thus
rare cohesive failures. In contrast, the adhesive failure, a
debonding near the membrane/asphalt concrete layers and
membrane/steel deck plate is much more common (Medani
et al. 2008). The interfacial properties between the mem-
brane/asphalt concrete layers and membrane/steel deck plate
have not been extensively studied in the orthotropic steel
deck bridge system. The nature of adhesion is thus not very
well understood. Furthermore, it is known that when the
adhesion between the steel plate and the surfacing is lost, failure
of the surfacing follows soon. This necessitates the search for a
realistic representation of the behaviour of the interfacial prop-
erties of membrane material.

In order to gain insight into the mechanical response of
membranes and their interaction with surrounding materials
on orthotropic steel decks, a large project of experimental
and computational investigation has been undertaken at Delft
University of Technology. One of the primary goals of this
investigation is the development of an appropriate adhesive
constitutive interface model capable of describing the response

of no-penetration, adhesive debonding, stick and frictional slip-
page between two objects. Once the model was available and
verified, its implementation into the CAPA-3D finite element
system (Scarpas 1992, Liu 2003, Liu et al. 2004) has enabled
the simulation of the dynamic response of orthotropic steel
deck bridges accounting for the effects of bonding effect
between layers, material non-linearity, the complex geometry
of orthotropic steel deck and moving load patterns.

In the first part of the paper, the details of the contact interface
element will be discussed. Furthermore, an adhesive constitutive
model for the proposed interface element will be presented. The
traction-separation material law will be chosen to describe the
bonding response of the interfacial properties of the membrane
to its surrounding surfacing layers on OSDBs. Some numerical
examples, in which various aspects of the finite elements
response of the contact interface model will be presented. The
importance of the interface (crack) opening and propagation
in a double cantilever beam (DCB) specimen is used for descrip-
tion of the actual material layer debonding behaviour.

In a companion paper to this contribution, model predic-
tions were compared with actual test data from membrane
adhesion test (MAT). The progressive membrane debonding
process of the MAT test was modelled by introducing the
adhesive traction-separation element into the contact zone.
Comparison of membrane deformation profiles and the in-
time debonding force distribution between experimental obser-
vations and finite element simulations have been drawn. Avail-
ability of the adhesive constitutive interface model will allow in
the future a better understanding of damage development at the
membrane allowing thus optimisation of maintenance activi-
ties on OSDBs.

2. 3d interface finite element formulation

Normally, the bonding interface thickness of membrane with
the surrounding surfacing layers on OSDBs is typically very

Figure 1. Contour of transversal stresses, deformation and adhesive failures of an orthotropic steel bridge under a dual wheel axle (red and blue colours indicate tensile
and compressive stresses, respectively).
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small in comparison to the lateral dimensions. In the context of
the finite element method, the artifice of degenerating ordinary
continuous finite elements into elements of very small thick-
ness renders the elements grossly inaccurate. As a result, for
adequate modelling of those systems, a special type of finite
interface element needs to be developed.

In this paper, the development of an adhesive contact inter-
face element implemented within the FE package CAPA-3D
will be described. The element used in the FE simulation of
the adhesive and contact behaviour of the membrane to the
surrounding layers is achieved by means of a 16-noded isopara-
metric interface element, Figure 2. The element is compatible
with the ordinary quadratic elements and can, therefore, be
used in the modelling of thin layer and/or crack interface.

2.1. Element geometry interpolation

By utilising the element nodal coordinates, a mid-surface is
defined as follows. For every pair of nodes, a local thickness
vector is defined spanning from a node on the bottom surface
of the element to the corresponding node on the top surface,
Figure 3.

If the vector of nodal coordinates for a node k on the bottom
surface of the element is defined as:

Xk = Xk1 Xk2 Xk3
[ ]T

(1)

then, the global coordinates of the middle point the corre-
sponding local thickness vector can be computed as:

mXk1

mXk2

mXk3

⎡
⎣

⎤
⎦ =

Xk1

Xk2

Xk3

⎡
⎣

⎤
⎦ + 1

2

tk1
tk2
tk3

⎡
⎣

⎤
⎦

k = 1, . . . 8

(2)

As shown in Figure 3, at each middle point k, a unit local
thickness vector 1xk can be defined as:

xkj = tkj
‖tk‖ j = 1, . . . 3 (3)

On the element middle surface, Figure 4, two curvilinear coor-
dinate axes j1 and j2 are defined and a third linear axis j3 that is
locally perpendicular to the plane defined by j1 and j2. All axes
span between [− 1, + 1]. The orientation of the axes is

determined by the local numbering of the bottom surface
nodal points.

The global coordinates of any point within the element can
be computed on the basis of the global coordinates of the
middle surface defining points and the curvilinear coordinate
system

X1

X2

X3

⎡
⎣

⎤
⎦ =

∑8
k=1

Nk

mXk1

mXk2

mXk3

⎡
⎣

⎤
⎦ +

∑8
k=1

Nk
tk
2

( )
j3

xk1
xk2
xk3

⎡
⎣

⎤
⎦

(4)

in which Nk are the standard 2-D shape functions

N1 = (1− j1) (1− j2) (−j1 − j2 − 1)/4
N2 = (1− j21) (1− j2)/2

N3 = (1+ j1) (1− j2) (+j1 − j2 − 1)/4
N4 = (1+ j1) (1− j22)/2

N5 = (1+ j1) (1+ j2) (+j1 + j2 − 1)/4
N6 = (1− j21) (1+ j2)/2

N7 = (1− j1) (1+ j2) (−j1 + j2 − 1)/4
N8 = (1− j1) (1− j22)/2

(5)

2.2. Field variables interpolation

The local response of the contact region between two interact-
ing surfaces can be described in terms of the relative motion of
two points j and i, one on each of the surfaces. As shown in
Figure 5 two relative slip displacements and a relative normal
displacement can be defined.

Figure 3. Local unit thickness vector definition.

Figure 2. Schematic of a 3D interface element and local thickness vectors.

Figure 4. Curvilinear coordinate system.
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Within the context of the finite element method, it is these
relative displacements that are to be simulated by means of
an interface element. Only local behaviour is meant to be simu-
lated by each individual element. The overall behaviour can be
simulated by a series of elements placed along the trace of the
physical interface (Figure 6).

The element is formulated so as to enable two relative shear
displacements and one normal between the top and the bottom
faces. Utilising the same mapping for the global displacements
as for the coordinates, the global displacements of two orig-
inally coinciding points j and i, one on each face of the element,
can be expressed in terms of the nodal displacements of the cor-
responding element face as:

ui1
ui2
ui3
uj1
uj2
uj3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= 0 Ñ
Ñ 0

[ ]

u11
u12
u13
u21
:
:

u15 3

u16 1

u16 2

u16 3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

with

Ñ =
N1 0 0 N2 . . . 0 N8 0 0
0 N1 0 0 . . . 0 0 N8 0
0 0 N1 0 . . . N7 0 0 N8

⎡
⎣

⎤
⎦ (7)

or

u = N ũ (8)

Similarly, the contact stresses sc between the two contact
bodies can be expressed in terms of the nodal contact stresses
s̃c as:

sc = N s̃c (9)

2.3. Local Cartesian coordinate system

Three mutually orthogonal axes of material anisotropy are
defined. For this reason, at each integration point of the
element, a local Cartesian coordinate system ( zi, i = 1 . . . 3 )
is set up as follows:

Axis z1 spans along the vector vj1 tangent to the j1 axis

vj1 = ∂X1

∂j1

∂X2

∂j1

∂X3

∂j1

( )T

(10)

then

z1 =
vj1
‖vj1‖

(11)

Axis z3 is defined by the cross product of vector vj1 and vec-
tor vj2 tangent to the j2 axis

vj2 =
∂X1

∂j2

∂X2

∂j2

∂X3

∂j2

[ ]T
(12)

then

z3 =
vj1 × vj2

‖vj1 × vj2‖
(13)

Axis z2 is defined by the cross product

z2 =z3 × z1 (14)

Here the Cartesian derivatives are defined as:

∂Xi

∂j

( )
j=j1,j2

=
∑8
k=1

∂Nk

∂j
Xki + tk

2

( )
j3

∑8
k=1

∂Nk

∂j
xki i=1, ...3

∂Xi

∂j3

( )
= tk

2

( )∑8
k=1

Nkxki

(15)

In the above-defined local Cartesian coordinate system, the
relative displacements between points j and i can be computed
from

Duz1
Duz2
Duz3

⎧⎨
⎩

⎫⎬
⎭ =

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

⎡
⎣

⎤
⎦

uiz1
uiz2
uiz3
ujz1
ujz2
ujz3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

or

Duz = L uz (17)

Figure 6. Local Cartesian system.

Figure 5. Relative displacement at an interface region.

INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING 615



The relation between local interface displacements uz and
the corresponding global displacements is or

uiz1
uiz2
uiz3
ujz1
ujz2
ujz3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= u 0
0 u

[ ]
ui1
ui2
ui3
uj1
uj2
uj3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(19)

or

uz = T u (20)

Combining Equation (8), Equation (20) and Equation (17)
leads to

urel = NL T ũ = NC ũ = N ũrel (21)

where urelis the local relative displacement vector, ũrel is its
nodal equivalent and C = LTis a matrix which transforms
the global displacement into the local relative displacement.
In the next section the constraint equations on the interface
to model the non-penetration condition, stick and slip will be
discussed.

2.4. Simulation of contact

For simulation of no-penetration, adhesive debonding, stick
and frictional slippage between two objects, the interface
element described in the previous section has the capability
to undergo certain constraint conditions.

2.4.1. Virtual work
The contact virtual work for a contact interface element is
defined as

duT Fc =
∫
(duTrel sc) dG (22)

where du is the virtual displacement vector, dũrel is the vir-
tual relative displacement vector, Fc is the contact force vec-
tor, s̃cis the contact stress vector and G is the surface area of
the contact interface. All quantities are continuous field vari-
ables. The variables du and Fcare defined in the global Car-
tesian coordinate system, while durel and sc are defined in
the local Cartesian coordinate system of the interface
element.

With the help of Equations (9) and 21, the virtual work in
Equation (22) can be rewritten into its nodal equivalent as:

duT Fc =
∫
G

duTrel sc dG =
∫
G

(N dũrel)
T N s̃c dG =

=
∫
G

((N(LT dũ))TNs̃c) dG =
∫
G

((N(C dũ))TNs̃c) dG =

=
∫
G

(C dũ)TNTN s̃c dG =
∫
G

dũTCT(NTN) s̃c dG =

=
∫
G

dũTCTS s̃c dG =
∫
G

dũT F̃c dG

(23)

where S = �
G

NTN dG is the surface area matrix.
From Equation (23) it can be derived that the nodal contact

forces for node pair i in the global Cartesian coordinate system
F̃c are defined as:

F̃c = CTS s̃c = CT �Fc (24)

where �Fc = S s̃cis the contact force in the local axis system of
the contact element.

2.4.2. Constraint equations
This section describes the constraint equations to model the
non-penetration condition, stick and frictional slippage
between two objects.

For every node pair a set of constraint equations can be
build, which has the following form:

R · C · ũ+ (I− R)s̃c = R a+ (I− R) b (25)

Here R is the contact state matrix, which is explained later,
I is the identity matrix, s̃c is the nodal contact stresses, a
is the prescribed relative displacements and b is the pre-
scribed contact stresses, and C has been defined in
Equation (21).

Furthermore, the constraint equation in Equation (25) can
be recast in the more compact form as:

h = RC I− R
[ ] ũ

s̃c

[ ]
− a∗ = 0 (26)

where

a∗ = Ra+ (I− R) b

uiz1
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ujz2
ujz3
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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=

cos (z1, x1) cos (z1, x2) cos (z1, x3) 0 0 0
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cos (z3, x1) cos (z3, x2) cos (z3, x3) 0 0 0

0 0 0 cos (z1, x1) cos (z1, x2) cos (z1, x3)
0 0 0 cos (z2, x1) cos (z2, x2) cos (z2, x3)
0 0 0 cos (z3, x1) cos (z3, x2) cos (z3, x3)

⎡
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⎤
⎥⎥⎥⎥⎥⎥⎦

ui1
ui2
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
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⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(18)
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The contact state matrix R is a 3×3 diagonal matrix with
zeros and ones indicating one of the three states: free, stick
and slip, Table 1. For the adhesive contact element presented
in this thesis, the stick state is not used and thus not activated.

It can be seen, that depending on the R-values, the corre-
sponding values on the right-hand side of Equation (25) are
either a prescribed relative displacement (value 1) or a pre-
scribed contact stress (value 0). The magnitude of these pre-
scribed relative displacements or contact stresses depends on
the state transition. For example, if a node pair is in a free
state and overlap occurs, the state is set to stick so that a relative
displacement correction can be applied in the next iteration to
prevent this overlap. More details about state transitions with
their corresponding prescribed relative displacements or con-
tact stresses can be found in Swoboda and Lei (1994).

The schematics in Figure 7 present the three main contact
states defined by the contact algorithm, as well as the local coor-
dinate orientation. For the sake of clarification, in the figure, the
contact states are depicted by faces and bodies, though in reality
the state is evaluated on the terms of node-pairs, see Figure 2.

2.4.3. Incremental solution of global system of equations
To satisfy equilibrium the following coupled optimisation pro-
blem has to be solved:

minimize function g, where g = K · ũ+ CT · S · s̃c − F

minimize function h, where h = R · C · ũ+ (I− R) · s̃c − a∗

(27)

in which g is the residual force function and h is the contact
constraint function defined in Equation (26). Furthermore, K
is the global stiffness, S is defined in Equation (23), F is the
externally applied load, Ris the contact state matrix, a∗ is the
contact constraint vector, and C has been defined in
Equation (21).

For the solution of the optimisation problem a Newton–
Raphson iteration scheme can be defined:

∂g/∂ũ ∂g/∂s̃c
[ ] Dũ

Ds̃c

[ ]
=−g with ∂g/∂ũ=K and∂g/∂s̃c=CTS

∂h/∂ũ ∂h/∂s̃c
[ ] Dũ

Ds̃c

[ ]
=−h with ∂h/∂ũ=R ·Cand∂h/∂s̃c= I−R

(28)

or

K CTS
RC I−R

[ ]
× Dũ

Ds̃c

[ ]
= F− t−DtFint−CTS t−Dts̃c

Da∗

[ ]
(29)

Here the term Fint = K ũ is the sum of the internal loads of
all the elements except the contact interfaces in the previous
converged step/iteration. For the contact interface elements,
internal loads are represented by the term CT S t−Dts̃c.

In the system of equations as defined in Equation (29) not
only the values of the displacements and the contact stresses
are changing during iterations but, also, the contact states.

For every global iteration, the contact state is determined,
which means that for every contact node pair, new values for
the contact state matrix R and incremental contact constraint
vector D a∗ are set. The system of equations in Equation (29)
is then solved for the increments of displacement and contact
stress. Those increments are used to retrieve updated values
of contact stresses and displacements.

It should be noted that the contact interface elements are
constraint elements, which do not have stiffness and therefore
do not contribute to the global stiffness K in Equation (29). In
the case that all three constraints of all contact node pairs of a
contact interface are stress controlled, i.e. R=0, the contact
element stiffness matrix becomes:

Kel = 0 CT S
0 I

[ ]
(30)

This matrix is clearly singular. The consequence hereof is that
the global stiffness matrix is consisting of two or more indepen-
dent parts, for which each part has to be constrained such that
it is statically determined. Therefore, in this study, the
contact interfaces are enhanced with a pseudo stiffness. This
will prevent the singularity of the global stiffness matrix, at

Table 1. Definition of the R matrix per contact state.

Contact state R(1,1) (ζ1 axis) R(2,2) (ζ2 axis) R(3,3) (ζ3 axis)

Stick 1 1 1
Free 0 0 0
Slip 0 0 1

Figure 7. Schematic of the three main contact states. (a) stick state, (b) slip state, (c) free state.
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the expense of generating non-real internal forces. Those
forces are cancelled by adding counter acting external forces
on the right-hand side of Equation (29) at equilibrium, see
Appendix A.

2.5. Simulation of adhesion

Interfacial fibrillation is a typical mechanism that frequently
occurs during debonding of membranes from substrates,
Figure 8. It involves large displacements at the interface as
well as large deformations in the membrane material.

Under large displacements, it is no longer physical to dis-
criminate between normal and tangential openings. In the
case of membrane debonding from substrates, such large dis-
placements are bridged by fibrils, which act more or less like
non-linear springs and transfer load only along their axis.
Therefore, a generic adhesive zone constitutive model is intro-
duced that describes the process of membrane debonding on
the basis of fibrillation, Figure 9. The adhesive traction-separ-
ation law prevents the contact interface to freely separate as
soon as it undergoes tensile forces.

The adhesive zone constitutive model which is utilised to
describe the traction-separation relation of fibrillation is con-
trolled by a constitutive relation between traction force and
the opening displacement along the fibril axis. Based on the
work of van den Bosch and Schreurs (2008), the adhesive trac-
tion-separation law is defined as:

T = G
dC

D

dC

( )
exp − D

dC

( )
(31)

where G as shown in Figure 9, is the strain energy release rate
that is characterised as the energy per unit crack length
required for crack/debonding extension, dC is the characteristic
opening length of the fibril, D is the relative displacement of a
node pair which constitutes the fundamental physical quantity
controlling the magnitude of the debonding stress. If D ≥ dC ,
the traction force along the fibril starts to decrease. The peak
traction value equals

Tmax = G
dCexp(1)

(32)

Upon unloading, if the traction force has not reached the
peak value Tmax, the adhesive zone law follows a reversible
response indicated as (i) in Figure 10 back to the origin, i.e.
no degradation accumulates at the interface. If the traction
force has already passed the peak value, a linear elastic unload-
ing behaviour indicated as (ii) in Figure 10 is shown.

To give a conceptual representation of the traction-separ-
ation law, two sets of the relation are plotted: (1) δC=2.0 mm,
G=1.0, 2.0 and 3.0 N/mm, Figure 11; (2) G=4.0 N/mm, δC=1.0,
1.5 and 2.0 mm, Figure 12.

The accuracy of utilising Equation (31) for simulating the
process of membrane debonding from a substrate will be exam-
ined in the model verification part of this paper.

Figure 9. Schematic of traction separation at interface.

Figure 8. A debonding membrane of a MAT test [2].

Figure 10. Schematic traction-separation relation.

Figure 11. Response curves at different G values (dC=2.0 mm).
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To incorporate this traction-separation law into the numeri-
cal algorithm in 2.4.3 the active contact states with their corre-
sponding contact stress/relative displacement corrections D a∗

have to be determined.
Three contact states are involved in the algorithm of the

adhesive contact finite element, Figure 13. Body A and B are
a pair of contact objects, for illustration purpose here, only
body B is moving and body A is stationary, with a node pair
located between these two bodies. The original normal distance
of this node pair is denoted as D before any relative normal dis-
placement Duhappens. If the two bodies are separating,
Du . 0; if these two bodies are moving closer to each other,
Du , 0. Three contact states can be distinguished based on
D andDu values:

(1) Debonding (Du . 0). In this case, the faces of the contact
interface are separating (i.e. the relative normal displace-
ment of the faces/node pairs is positive). This separation
is controlled by the traction-separation law presented
previously.

(2) Contact-free (− D ≤ Du ≤ 0). This state occurs when the
faces of the contact interface can move freely with respect
to each other in the range of distance from 0 to D, but in
such a way that, a non-overlapping condition is created.

(3) Attaching/sliding (− D . Du), this is a slip state. The
faces of the contact interface have to be prevented from
overlapping along the interface normal direction. In the
tangential directions, i.e. in plane, the interface is allowed
to displace.

For these three contact states the following contact resisting
stress / relative displacement corrections are enforced:

. Debonding: in all three local interface directions the
adhesive law is used to correct the contact stress s̃c, i.e.
(Da∗)1..3 = (T − sel − s̃c)1..3. T is the stress defined by the
traction-separation law, sel is the pseudo elastic stress of
the contact interface and s̃c is the already present contact
stress.

. Contact-free: in normal as well as tangential interface direc-
tions the contact stresses due to the introduced contact
element stiffness are released, i.e. (Da∗)1..3 = −(sel)1..3.

. Attaching/sliding: the amount of overlap in the interface
normal direction has to be corrected, i.e.
(Da∗)3 = −(Dur)3. Here (Dur)3 is the amount of overlap.
In the tangential interface directions the traction-separation
law is applied. The stress correction in these directions is
defined to be (Da∗)1,2 = (T − s̃c)1,2.

The detail explanations of the contact resisting stress/rela-
tive displacement corrections can be found in Appendix
A. The abovementioned contact states address all three basic
cracking modes of fracture mechanics: opening (normal),
shearing and tearing (tangential) modes, Figure 14. The
‘debonding’ state could be referred to the opening as well as
mixing modes of both normal and tangential components.
The ‘attaching/sliding’ state is comparable to the shearing
and tearing modes. The validity of the present adhesive contact
element is demonstrated in the following section.

2.6. Model verification

In order to examine the adhesive contact interface element with
the traction-separation material law, model verifications are
done by comparing the results of numerical simulations,
analytical solutions and experimental measurements. These
simulations include: (1) a strip footing problem to verify the
contact behaviour of the element; (2) a double cantilever
beam problem, aiming to test the pure opening state of the
element; (3) a shear box simulation to test the sliding and
debonding behaviour of the element.

2.6.1. Strip footing problem
In this section, the interface contact behaviour has been verified
by using a strip footing problem. This problem has been
approached theoretically by several researchers. Herein, the

Figure 12. Response curves at different dC values (G=4.0 N/mm).

Figure 13. Three contact states of adhesive contact finite element

INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING 619



setup of Lei et al. (1995) is replicated. For this analysis, the finite
element mesh is composed of a loading block and a footing
block. The mesh and material parameters of the blocks are
given in Figure 15. Cohesionless and frictionless contact con-
ditions are assumed between the loading block and the footing
block. The input parameters for the contact interface are
G=0.001 N/mm, δc=0.1 m. E=2×103 N/mm2, and ν=0.3 are uti-
lised for modelling the blocks.

The loading block is initially suspended above the footing
block, with an initial contact element thickness of 1 mm. The
bottom boundary of the footing block is fixed and all the
other boundaries around the footing block are free to move.
The loading procedure is applied via displacement control on
the upper surface of the loading block, Figure 16. As time
increase, the loading block is firstly lowered toward the footing
and later lifted upwards.

The numerical results show that the contact element
effectively prohibits overlapping and creates realistic contact,
slippage and separation between two adjacent bodies. The
block deformation during the loading process can be seen in
Figure 17.

Figure 18 demonstrates the comparison between theoreti-
cally and numerically computed normal contact stresses
along the edge of the footing. The theoretical solution for this
problem shows a stress concentration near the edge of the foot-
ing. The results show a good agreement between the two
analyses.

2.6.2. Numerical simulation of double cantilever beam
problem
A double cantilever beam (DCB) specimen is used to study
crack opening and growth. This simulation aims at testing
the debonding state of the adhesive contact element. The
configuration and the FE mesh are illustrated in Figure 19.
The dimensions of the specimen are 150×25×4 mm. The length
of an initial crack notch is 30 mm. An adhesive contact layer of
100 mm is located in front of the initial crack notch. The

Figure 14. Three basic cracking modes.

Figure 15. Dimension of strip footing load model.

Figure 16. The loading scheme.

Figure 17. The deformation configuration during the loading process.
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analysis is performed by applying a displacement-controlled
load at the left end of the upper beam surface.

The following properties have been chosen in order to repli-
cate the experimental work by Robinson & Song (1992) for
comparison. For the beam material, the material parameters
utilised for this numerical example are:

E=126000 MPa, n = 0.263
and for the adhesive contact interface element, the following

model parameters are used:
G=0.281 N/mm, δC=0.5 mm
The crack development at the last loading step is shown in

Figure 20. The distributions of horizontal and normal
stresses in the beam are shown in Figure 21 and Figure 22
respectively.

Both the capability and the accuracy of the adhesive contact
interface element with the traction-separation material law can
be examined by comparing the numerical predictions of the
beam response with the observed laboratory behaviour.

Figure 23 presents the comparison of the numerical predic-
tions with the experimental result in term of the load and
deflection at the beam tip. The model parameters utilised for
such comparison are determined on the basis of the basic
material tests.

It can be seen that the overall load/deflection solution
obtained by the finite element simulation shows good agree-
ment with the experimental result. The load fluctuations of
the numerical results can be smoothened by utilising a finer
mesh. It can be concluded that the adhesive contact interface

element with the traction-separation material law is appropri-
ate for description of the actual material layer debonding
behaviour.

2.7. Simulation of fatigue damage accumulation

Cyclic loading, in the multilayer surfacing system on orthotro-
pic steel deck bridges, lead to material fatigue damage.
Accumulation of these micro degradations can initiate debond-
ing at the interfaces in the multilayer surfacing system. Labora-
tory cyclic tests on fatigue resistance of surfacing systems on
orthotropic steel allow to predict and to take into account
material fatigue performances in OSDB pavement design.

In the past, various laboratory fatigue tests for modelling
asphalt concrete surfacing material have been proposed as
well as different interpretation methods. Differences between
results of one type of test to another show the difficulties in
determining the intrinsic characteristics of the asphalt mixes
fatigue damage processes.

The fatigue life assessment of membrane bonded on OSDB
has not yet been sufficiently investigated. Inspection results of
OSDB have shown that the working life of asphalt surfacings

Figure 19. FE mesh of double cantilever beam.

Figure 18. Normal contact stresses along the footing.

Figure 20. Crack propagation and mesh deformation.

Figure 21. Distribution of horizontal stress.

Figure 22. Distribution of normal stress.
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is influenced significantly by the fatigue damage in the mem-
brane bonding layers. This means that particular attention
must be paid on studying the fatigue response at the bonding
interfaces in multilayer surfacing system.

In this study, by modifying the adhesive traction-separation
law in Equation (31), a methodology for modelling fatigue
damage accumulation at the adhesive contact interface element
is proposed. A damage parameter Di is defined which can vary
from 0 (no damage) to 1 (complete damage), and which is
related to the bonding strength degradation at the contact
interface. The damage parameter Di is a scalar quantity,
which can be specified by the following formulation:

Di = D i

D max
(33)

where Δi is the instantaneous fibril displacement along the fibril
axis of the interface subjected to load P, Δmax is the maximum
displacement associated with complete bond strength degra-
dation, Figure 24.

In this study, for a cyclic test, a quantity related to the fibril
deformation Δi is introduced into the proposed fatigue damage
model. The relation between the inelastic deformation related
quantity j and the fibril deformation Δi can be expressed:

j = jmin(M
c − 1) (34)

in which jmin and c are a material parameter. M is the number
of load cycle. Figure 25 shows the variation of j versus the

number of load cycle M. j increases as the number of load
cycle develops.

The characteristic opening length dC in Equation (31)
is defined based on the inelastic deformation related
quantity j:

dc = dmax + (d0 − dmax)e
−k1j (35)

where d0 is the initial characteristic opening length of the
interface, dmaxis the ultimate characteristic opening length.
k1 is a parameter that controls the changing rate of dc.

By substituting the inelastic strain trajectory jin Equation
(34) into Equation (35), the variation of dC versus j can be
obtained. Figure 26 shows an example curve of dC with the
parameter ξ when c=0.4, k1=0.6, d0=1 mm and
dmax = 5mm. It can be observed that the characteristic
debonding length dC increases as the number of load cycle
increases (ξ increases with the increasing load cycle numbers,
see Figure 25).

Figure 27 illustrates the principle of this cumulative damage
approach. According to Equation (33), the peak traction force
Tmax represents the bonding strength of the contact adhesive
interface together with dC governing the shape of the trac-
tion-separation function. The strain energy release rate G in
Equation (31) is a basic physical quantity of the adhesive inter-
face element, which is regarded to be constant. Once the
characteristic debonding length dC is increased, the resultant
peak traction force (bonding strength of the contact adhesive
interface) in the model will be decreased, hence, the model

Figure 24. Damage index for adhesive contact element.

Figure 25. j versus the load cycle M (ξmin=0.2, c=0.4).

Figure 23. Load/deflection relationship for double cantilever beam.

Figure 26. dC as a function of ξ.
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curve tends to be flatter. At a constant cyclic load P, due to the
reduction of the peak traction force, the fibril displacement Δi

along the fibril axis of the interface will increase. Therefore,
by applying the fatigue damage definition in Equation (33),
the fatigue strength degradation at the adhesive contact inter-
face element can be simulated.

The in-time development of damage at the interfacial zone
of a double cantilever beam simulation is shown in Figure 28.
The geometry of the beam is similar to the numerical example
utilised in Section 2.6.2. An adhesive contact interface element
layer of 100 mm is created after the 30 mm initial crack notch,
Figure 28. A cyclic load at a frequency of 5 Hz with amplitude
F=10 N is applied to the left end of the upper beam surface,
Figure 29.

The model parameters utilised for this numerical example
are: G=4.0 N/mm, dC = 1.5mm, Δmax = 8 mm, c=0.4,
j0 = 1.0, k1=30, d0 = 1mm and dmax = 5mm.

Figure 30 shows the accumulated damage at the adhesive
contact interface layer within 35000 load cycles. The damage
value starts from 0 to 1, representing the states of no-debonding
and fully debonded, respectively. It can be observed that, during
the first 25,000 load cycles, the development of damage at the
interface layer shows steady response. After the 25,000 load
cycles, the damage at the interface layer is developed quickly
until fracture of the entire specimen.

Figure 31 shows contour plots of accumulative damage
(delamination) at the adhesive contact interface layer at num-
ber of loading cycles: 1000, 10,000, 30,000 and 35,000

Figure 27. Concept of accumulative damage approach.

Figure 28. FE mesh of double cantilever beam.

Figure 29. Applied shear load to the shear-box mesh. Figure 30. Damage development at the adhesive contact interface.
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respectively. It is shown that delamination in the adhesive con-
tact layer takes place through a process of fatigue damage devel-
opment. This mechanism involves large displacements and
deformations both at the interfacial zone and in the surround-
ing bulk materials.

3. Conclusions

In this contribution, the following main findings and remarks
can be drawn:

. The adhesive traction-separation law that is utilised for the
contact interface element in the FE simulation is capable
to model the debonding process of a layer material from a
substrate.

. by controlling the variation of the characteristic length par-
ameter, the adhesive traction-separation model can provide
consistent and satisfactory modelling of the adhesive contact
interfacial zone.

. Availability of the constitutive model will allow in the future
a better understanding of damage development at the inter-
facial zone between layers, allowing thus optimisation of
their design.

. Further study should be done on the development of exper-
imental methods that are able to determine the associated
model parameters. Non-isothermal effects should be intro-
duced into the model parameters to model the heat effects
on the fatigue response of the adhesive contact interface
layer.
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Appendix A: Contact interface element resisting
force

A.1. Introduction

The resisting force (internal force) due to the presence of contact interface
elements is defined as:

F̃int =
∫
G

CTS s̃el dG+
∫
G

CTS s̃c dG (A.1)

where G is the contact surface area, s̃c is the contact stress and s̃el is the
elastic stress due to the presence of the contact element stiffness. The
matrix CTS is defined in Eq. (A.1).

As discussed earlier in Section 2.4.3, the contact element stiffness is
introduced to overcome the singularity of the global stiffness matrix.
Because in reality contact interfaces do not have stiffness, any forces cre-
ated due to the presence of this stiffness should not contribute to the
force equilibrium equation. This concept will be shown for several contact
states in the sections below.

A.2. Contact-free

This contact-free state occurs when bodies, which are not connected, are
moving freely with respect to each other. It is a stress-free state, so no

contact forces are occurring. Because of the introduced contact element
stiffness, there will be the presence of an elastic stress s̃el . The force created
due to this stress is not physically existed (contact elements do not have
stiffness) and therefore has to disappear from the force equilibrium
equation.

To achieve this the contact stress correction vector Da∗ is set as:

Da∗ = −i+1s̃el (A.2)

where i is step number. Using this into the update of the contact stress vec-
tor i+1s̃cgives:

i+1s̃c = is̃c + Da∗ = is̃c − i+1s̃el = −i+1s̃el (A.3)

Here is̃c is zero, because there is no contact between the bodies.
The resisting force due to the presence of contact interface elements is

now computed as:

F̃int =
∫
V

CTS s̃el dV +
∫
V

CTS s̃c dV

=
∫
V

CTS s̃el dV −
∫
V

CTS i+1s̃el dV = 0 (A.4)

A.3. debonding

This contact state occurs when two bodies, which were connected, are get-
ting separated. Similarly as to the closing contact state, the ‘unreal’ elastic
stress s̃el due to the introduced contact element stiffness should not have
any effect in the force equilibrium equation.

In this case the contact stress correction vector Da∗ is set as:

Da∗ = i+1T− i+1s̃el − is̃c (A.5)

where is̃c is the already present contact stress and Tis the stress due to the
cohesive interface law.

Using this into the update of the contact stress vector i+1s̃cgives:

i+1s̃c = is̃c + Da∗ = is̃c + (i+1T− i+1s̃el − is̃c)

= i+1T− i+1s̃el (A.6)

The resisting force due to the presence of contact interface elements is now
computed as:

F̃int =
∫
V

CTS i+1s̃el dV +
∫
V

CTS i+1s̃c dV =

=
∫
V

CTS i+1s̃el dV +
∫
V

CTS (i+1T− i+1s̃el) dV =
∫
V

CTS i+1T dV

(A.7)

From this equation it is clear that the presence of the ‘unreal’ elastic
stress s̃el does not contribute to the resisting force of the contact interfaces.
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