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Abstract 

Multiscale modeling of catalytical chemical reactors typically results in solving a system 

of partial differential equations (PDEs) or ordinary differential equations (ODEs). Despite 

significant progress, the numerical solution of such PDE or ODE systems is still a 

computational bottleneck. In the past, deep learning techniques have gained attention for 

developing surrogate models in chemical engineering. Also, hybrid models and physics-

informed neural networks (PINNs) have been developed to integrate physical knowledge 

and data-driven approaches. However, it is often unclear how such modeling approaches 

compare for specific case studies. In this study, we investigate and compare state-of-the-

art surrogate and hybrid models for the spatial evolution of the state variables in a packet-

bed reactor for methanol production. Firstly, we develop a tailored hybrid model based 

on PINNs, thereby seamlessly integrating physical knowledge and data. Secondly, we 

investigate a recently-developed time-series transformer model to learn the spatial 

evolution of the state variables. As a benchmark model, we train a traditional multilayer 

perceptron (MLP) and compare the models to a standard numerical integration technique. 

We achieve orders of magnitude in speedup using MLPs and PINNs when compared to 

classical ODE solvers, while maintaining high levels of accuracy in modeling the 

underlying system. 

Keywords: Reactor modeling, hybrid modeling, physics-informed machine learning, 

time-series transformer 

1. Introduction

Multiscale modeling of catalytical reactors is a well-known discipline and commonly 

results in partial differential equation (PDE) or ordinary differential equation (ODE) 

systems describing the spatial and temporal evolution of the state variables involved (e.g., 

temperature, pressure, and composition). Despite significant progress, the numerical 

solution of such PDE or ODE systems is still a computational bottleneck when integrated 

into large, plant-wide process simulation and optimization studies. 

The selection of suitable surrogate modeling approaches for chemical reactor systems is 

complex and remains to be decided circumstantially. Deep learning techniques have 

recently gained attention in their function as surrogate models in chemical engineering. 

The most popular deep learning technique, multilayer perceptrons (MLPs), consists of 

layers of nonlinear transformations that act as universal approximators. MLPs have been 

successfully applied to model many reactor systems. As an alternative, foundation models 

have recently yielded promising results in fields such as computer vision or natural 

language processing (Kolides, et al., 2023). In the context of chemical engineering, time-

series transformers (TSTs) specifically allow for modeling of complex temporal 
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dynamics and relationships within sequential data, enhancing the accuracy and efficiency 

of predictions. They have been applied to crystallization systems before (Sitapure and 

Kwon, 2023). However, the black-box nature of such deep learning models poses issues 

when applied outside training boundaries or when insufficient data is available 

(Schweidtmann, et al., 2021). Moreover, despite sufficient overall accuracy, physical 

consistency may not be ensured. Considering those challenges, hybrid models (von 

Stosch, et al., 2014) and physics-informed neural networks (PINNs) deep learning 

architectures (Raissi, et al., 2019) have been proposed to integrate physical knowledge 

and data-driven approaches. While many promising data-driven model architectures 

exist, the comparison and selection of suitable hybrid model approaches for chemical 

reactor surrogation is complex and remains an open research question.  

In this study, we investigate and compare three state-of-the-art surrogate and hybrid 

models for describing the spatial evolution of the state variables in a packet-bed reactor 

for methanol production (Vanden Bussche and Froment, 1996). (1) We develop and train 

a tailored hybrid model based on PINNs, seamlessly integrating physical knowledge and 

data. We employ PINNs, commonly used in scientific machine learning, for solving 

Partial Differential Equations (PDEs) under a specific initial and boundary condition. We 

expand the PINN framework to enable predictions for a broad range of initial conditions. 

(2) We deploy a TST to model the sequential state evolution along the reactor length. (3) 

As a baseline surrogate model, we train a traditional multilayer perceptron. Finally, we 

systematically compare the developed surrogate and hybrid models with standard ODE 

solvers in terms of accuracy and runtime for potential application in complex plant-wide 

simulation and optimization.  

2. Methodology

2.1. Physics-informed neural networks 

Physics-informed neural networks are deep learning models aimed to bridge the gap 

between data-driven machine learning models and rigorous scientific computing (Lawal, 

et al., 2022). PINNs are neural networks trained in a supervised manner, while also 

minimizing errors on a given equation, e.g., physical law. They allow to approximate the 

solution of ODE and PDE systems, without performing numerical integration, thus 

potentially speeding up the computation.  

We extend the original PINNs framework (Raissi et al., 2019) by considering the solution 

of an ODE system across a variety of initial conditions, specifically targeting relevant 

operating inlet variables. The original PINN formulation was developed to address 

forward PDE problems provided with fixed initial and boundary conditions. Our approach 

involves leveraging existing data to gain insights, while ensuring physical accuracy and 

interpretability through the enforcement of fundamental physical laws, such as material, 

energy, and momentum balances. Given an autonomous initial value problem (IVP): 

𝒅𝒔

𝒅𝒛
= 𝒇(𝒔),   𝒔(𝒛 = 𝟎) = 𝒔𝟎 (1) 

Based on (Eq. 1), a residual function 𝒓(𝑧, 𝒔) ≔
𝑑𝒔

𝑑𝑧
− 𝒇(𝒔), is defined. An MLP can be 

trained to predict the solution s while also considering physical laws by optimizing the 

following multi-task loss function 𝐿 = 𝐿𝑆𝐷 + ∑ 𝐿𝑅𝑘𝑘 . The first term (𝐿𝑆𝐷), known as -

sensors data loss, represents the data-driven contribution, computed as the Mean Squared 

Error (MSE) between the available ground-truth in the domain and the model prediction. 

The second term (∑ 𝐿𝑅𝑘𝑘 ), known as residual loss, measures the physical discrepancy

represented by the difference (residual) between the right-hand side f of the ODE system, 
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and the spatial derivative of the state variables, computed through automatic 

differentiation:  

𝑳𝑹𝒌
=

𝟏

𝑵𝑪
∑ 𝒓𝒊𝒌
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𝟐𝑵𝑪

𝒊=𝟏

(2)

where 𝑁𝐶  is the number of collocation points, which can be arbitrary distributed in the

domain of interest, and 𝑘 is the kth equation in the IVP (Eq. 1). Note that the residual loss 

is entirely dependent on model prediction, parameters, and initial conditions, ensuring 

that spatial derivative and predictions comply with given differential equations, i.e., the 

physical laws. Beyond physical explainability, PINNs potentially facilitate extrapolation 

and generalization outside training boundaries, which can be achieved by placing 

collocation points where training data are unavailable.  

2.2. Tailored training procedure for physics-informed neural networks 

The network parameters are optimized with respect to the multitask loss through a 

gradient descent algorithm, but the PINN training is often challenging. As observed by S. 

Wang et al. (2020) the multiscale nature of both variables involved and loss terms can 

lead to preferential optimization, favoring the minimization of certain terms at expense 

of others. Also, it has been demonstrated that imbalanced contributions can lead to a 

“stiff” loss surface characterized by large eigenvalues of the hessian, ultimately resulting 

in gradient descent failure and training divergence. This has also been observed in our 

study.  

To improve the PINN training, we implement a series of mitigation actions following the 

recommendations by Wang et al. (2023). Specifically, (i) we perform system 

nondimensionalization and (ii) we implement an adaptive loss balancing algorithm. The 

scaling is a best-practice for solving stability issues in gradient-based optimizers. 

Balancing the loss terms is crucial to avoid task dominance and “stiff” loss surface and 

several solutions have been proposed in the literature (McClenny and Brada-Neto, 2022). 

We develop a simple adaptive loss balancing routine based on losses magnitude, by 

defining the following weights: 

𝝀𝑺𝑫
∗ =

𝑳𝑺𝑫
𝒕 + ∑ 𝑳𝑹𝒌

𝒕
𝒌

𝑳𝑺𝑫

(3) 

𝝀𝑹
∗

𝒌
=

𝑳𝑺𝑫
𝒕 + ∑ 𝑳𝑹𝒌

𝒕
𝒌

𝑳𝑹𝒌

𝒕   𝒌 = 𝟏, … , 𝑵𝒆𝒒 (4) 

We update the loss weights every j iterations, through a moving average 𝝀𝑡+1 = 𝛼𝝀𝑡 +
(1 − 𝛼)𝝀∗, where, 𝑗 and 𝛼 are tunable hyperparameters. We initialize the weights to be

equal to 1 in the first iteration. Finally, we define the weighted loss function as 𝐿 =
𝜆𝑆𝐷𝐿𝑆𝐷 + 𝝀𝑹

𝑇 𝑳𝑹.

To comply with the physical system (i.e., all the variables must be greater than zero), we 

add the term ‖max (𝟎, −𝒔)‖1 to the physical loss function to penalize negative

predictions. Moreover, the residual loss is excluded in case output variables are below 

zero to avoid numerical overflow due to physical inconsistency. 

For the PINNs model, we uniformly distributed the collocation points along the reactor 

length to enforce physical consistency. In order to use mini-batch optimization, the 

number of collocation points should coincide with the batch size, which is set to 200. We 

trained the three model on the same generated sensor dataset (Sect. 3) using Adam 

optimizer and a learning rate of 10-5. 

2.3. Time-series transformers 

Time-series transformers, a subset of transformers, have recently been developed to 

handle multivariate problems along a temporal dimension (Wen, et al., 2022). 
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Transformers are neural networks designed for autoregressive sequence prediction based 

on inputs and past outputs. They operate by embedding and processing initial input 

through an encoder. A decoder then uses this encoded information to predict outcomes 

one time step at a time. In TSTs, each prediction step corresponds to a system state, 

represented by a single vector for each timestep. We have adapted these transformers for 

spatial sequence modeling, where each step corresponds to a discretized spatial unit 

instead. 

The foundation of transformer architectures is attention (Vaswani, et al., 2017). Attention 

measures the relatedness of tokens to each other in a computationally efficient way by 

calculating a dot product based similarity of the mapped inputs. For a detailed explanation 

of attention and its application to TSTs, we refer to Wen, et al. (2022). 

3. Case study

3.1. Case study description 

We investigate and compare the methodologies by modeling a tubular packet-bed reactor 

for methanol synthesis. For simplicity, we assume pseudo-homogeneous conditions and 

plug flow hydrodynamics with negligible axial dispersion. The model consists of an ODE 

system representing the material (Eq. 5), energy (Eq. 6) and momentum balance (Eq. 7) 

along the reactor axial coordinate. 

𝒅�̇�𝒊

𝒅𝒛
= 𝑨𝝆𝑪(𝟏 − 𝝐) ∑ 𝝂𝒊𝒋𝒓𝒋

𝑵𝑹

𝒋

  𝒊 = 𝑪𝑶, 𝑪𝑶𝟐, 𝑪𝑯𝟑𝑶𝑯, 𝑯𝟐, 𝑯𝟐𝑶, 𝑪𝑯𝟒, 𝑵𝟐 (5) 

𝒅𝑻

𝒅𝒛
=

𝑨

�̇�𝒕𝒐𝒕�̃�𝑷,𝒎𝒊𝒙
(𝑼𝑺𝑽(𝑻𝑪 − 𝑻) − ∑ ∆𝑯𝑹𝒋

𝟎 𝒓𝒋𝝆𝑪(𝟏 − 𝝐)

𝑵𝑹

𝒋

) (6) 

𝒅𝑷

𝒅𝒛
= − (𝟏𝟓𝟎

(𝟏 − 𝝐)𝟐

𝒅𝒆𝒒
𝟐 𝝐𝟑

𝝁𝒖𝒔 + 𝟏. 𝟕𝟓
𝟏 − 𝝐
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𝝆𝒖𝒔

𝟐) (7) 

In Eq.5, �̇� is the molar flowrate, A is the cross sectional area of the tube, 𝜌𝐶  is the catalyst

density, 𝜖 is the bed void fraction, 𝜈𝑖𝑗𝑟𝑗 indicate the product between the reaction rate of

the reaction j and the correspondent stoichiometric coefficient of species i. In the energy 

balance (Eq.6), �̇�𝑡𝑜𝑡 is the constant total mass flowrate, 𝑆𝑉 is the exchange area per unit

of volume and 𝑇𝐶  is the temperature of the coolant medium.

The reactive system comprises 7 species and 2 reactions, kinetically modelled by Vanden 

Bussche and Froment (1996). The reactor is cooled through boiling water at 38 bar and 

Antoine equation is considered. Specific heat capacity (�̃�𝑃,𝑚𝑖𝑥) , reaction enthalpy (∆𝐻𝑅
0),

overall heat transfer coefficient (U), void fraction (𝜖), viscosity (𝜇) are assumed to be 

constant along the reactor. The pressure drop follows the Ergun relation (Eq.7), where 

𝑑𝑒𝑞  is the equivalent diameter of the cylindrical catalyst pellet, 𝜌 is the gas density and

𝑢𝑠 is the superficial velocity.

3.2. Data generation 

We generate the training dataset by uniformly and randomly perturbating a main set of 

operating conditions (Table 1) and solving the system accordingly. The training dataset 

is composed of 5,000 distinct initial condition combinations, each varying within a +/- 

20% range from a central set of industrial relevant conditions. Each sample describes the 

spatial profile of the 9 state variables, discretized in 800 points along the domain. We 

solve the system in Python, using scipy.integrate.solve_ivp function, setting the 

absolute and relative tolerance to 10−12 and 10−8, respectively. The dataset, comprising

4 million data points, is used to train the models, enabling them to forecast the values of 



 

state variables at a specific longitudinal coordinate based on a given set of initial 

conditions.  

Table 1: Main set of initial conditions: the training dataset is generated within a range that spans 

+/- 20% of the standard operating conditions. The molar flowrate is expressed in mol/s per tube. 

𝑻𝟎 [℃] 𝑷𝟎 [𝒃𝒂𝒓] �̇�𝑪𝑶,𝟎 �̇�𝑪𝑶𝟐,𝟎 �̇�𝑪𝑯𝟒,𝟎 �̇�𝑪𝑯𝟑𝑶𝑯,𝟎
�̇�𝑯𝟐,𝟎 �̇�𝑯𝟐𝑶,𝟎 �̇�𝑵𝟐,𝟎

𝟐𝟒𝟓 65 0.0409 0.0764 0.1786 0.0032 0.4316 0.0007 0.0261 

For training and test, we nondimensionalize the system, defining the nondimensional state 

variables 𝑇∗, 𝑃∗, and �̇�𝑖
∗ and longitudinal coordinate 𝑧∗, by scaling the original values

using the characteristic dimensions < 𝑇 >, < 𝑃 >, < �̇�𝑖 >, and < 𝑧 >, specifically taken

as the average of each feature in the dataset. For a fair comparison, we trained and tested 

all the models on the scaled, nondimensional, dataset. 

4. Results and discussion

We evaluate and compare the accuracy and runtime of the proposed data-driven and 

hybrid modeling methods with a conventional Python ODE solver. We build an MLP and 

PINN with 3 hidden layer with 512 neurons each. The TST consists of 5 encoder and 

decoder layers respectively.  

4.1. Prediction runtime and accuracy 

We compare the performance of a conventional ODE solver in Python 

(scipy.integrate.solve_ivp) with the presented alternatives in terms of accuracy and 

runtime. The test set, which includes 500 varied scenarios distributed within the same 

range as the training set, utilizes an ODE solver with very small tolerances, considered to 

be 100% accurate, and serves as the baseline for comparison. We assessed the solver's 

performance by adjusting the tolerance to quicken computation, albeit at the expense of 

reduced accuracy. Ultimately, we evaluated the outcome of MLP, PINNs and TST when 

applied to the unseen test dataset. We measure the accuracy as the complement of the 

Mean Absolute Percentage Error (MAPE).  

Table 2 summarizes the main results. We evaluate the mean performance across 500 

simulations using varying solver tolerances, MLP, PINN, and TST methodologies. As 

expected, the runtime of the ODE solver decreases significantly when the tolerances are 

reduced. Nonetheless, the MLP and PINNs offer a significantly shorter computational 

time, being 35 times faster than the least accurate version of the ODE solver, and still 

maintain a higher accuracy of approximately 99.5%. This outcome indicates a potential 

for utilizing MLP and PINNs models within larger optimization or simulation studies. 

For instance, in superstructure optimization problems, the reactor model often needs to 

be evaluated thousands of times at every iteration, depending on the plant complexity and 

assessed configurations. Thus, our work can potentially shift the overall computational 

time of such problems from several hours to few minutes. Considering that this 

preliminary analysis excludes hyperparameter tuning, it is anticipated that incorporating 

extended optimization analysis would likely improve accuracy of  the models further. The 

computational time of the TST is higher due to its large architectural complexity. The 

accuracy of the TST prediction is simultaneously the lowest, suggesting the need for 

further investigation, for instance into more data-efficient modeling techniques. 
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Table 2: Runtime and accuracy comparison of the proposed methods. The ODE solver is tested 

when different relative (r) and absolute (a) tolerances are required. In the table, the tolerance 

numbers indicate the decimal digits (e.g., r10 stands for “relative tolerance = 10−10”). The runtime

is referring to CPU computation (11th Gen Intel Core i7). 

Method Runtime [s] Accuracy [%] 

ODESolver - r10a12 (baseline) 0.063 100.00 

ODESolver - r3a3 0.013 99.97 
ODESolver - r1a1 0.0056 98.55 

MLP 0.00016 99.54 

PINNs 0.00016 99.51 
TST 12.06 96.87 

5. Conclusions

We demonstrate that MLPs and PINNs can provide an alternative to classical modeling 

techniques given their high accuracy and low runtime. These considerations are especially 

important in the context of highly exhaustive modeling, for instance plant-wide 

optimization and simulation, where the reactor model needs to be solved repetitively. 

Notably, the MLP and PINNs demonstrate a 35-fold decrease in computation time 

compared to the least accurate version of the ODE Solver, while maintaining higher 

accuracy. Further investigation is needed to evaluate the ability of PINNs model to 

overcome the limitations in the application scope commonly associated with black-box 

models by extending the solution beyond the training limits. Finally, we envision the 

opportunity to embed physical knowledge into a simplified transformer architecture for 

steady-state and dynamic modeling of chemical systems.  
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