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Abstract
Brute, A state-of-the-art inductive program synthesis (IPS)
system, introduced a two-phase algorithm; first, complex pro-
gram instructions are invented from basic instructions. Sec-
ond, a best-first search algorithm finds a sequence of invented
instructions to solve an IPS task. This method is limited
because invented instructions are always of the same com-
plexity, also when less or more complexity is needed. Also,
best-first search falls into local optima easily. In this paper,
I describe Vlute, an IPS system using Large Neighborhood
Search (LNS), in which a solution is gradually improved by
exploring neighboring solutions, and Variable-Depth Invent
(VDI), in which instruction complexity is increased dynami-
cally. Vlute is tested on three IPS domains (robot-planning,
string transformations, and drawing ASCII-art). Results show
that using VDI improves Vlute’s performance only for string
transformation. Vlute can outperform Brute and escape local
optima encountered by Brute also only for string transforma-
tion. A limitation of Vlute is finding large programs.

1 Introduction
Program synthesis is the automation of writing programs [5].
In a program synthesis task, constraints of some form that
define how a program should behave are given by the user.
The task in program synthesis is finding what program satis-
fies those constraints. Inductive program synthesis (IPS) is a
type of program synthesis where a program should be synthe-
sized using input and output examples [7]. Program synthe-
sis is considered the holy grail of artificial intelligence [5]. It
has powerful applications in fields like software engineering,
computer-aided education, and end-user programming. One
can imagine more impactful applications of program synthe-
sis if it gets developed into a more powerful tool.

However, program synthesis is not a simple task. Difficul-
ties come from two aspects of the problems: the size of the
search space and user intent [5]. Since there are an infinite
number of programs that can be created, the search space is
infinite as well. Moreover, the search space grows exponen-
tially with the size of the program. Therefore it is difficult
to solve tasks that require large programs. The second chal-
lenge is finding a program that not only satisfies the given
constraints, but also the intent of the user. A lot of different
programs will satisfy the given constraints but might be over-

fitted to those constraints and not adhere to the users’ intent.
In [4] Cropper and Dumanĉić argued that a key limitation

of existing IPS systems is that entailment is used to guide
the search. Using entailment limits the potential since it is
a binary decision. A program entails an example or it does
not; intermediate states are non-existent. Therefore they in-
troduced an example-dependent loss function depending on
the domain of the task. To evaluate a program, the program’s
output, given an input example, is compared to the desired
output. This gives a distance measure, or cost, of the pro-
gram, which is used to guide the search.

Brute, designed by Cropper and Dumanĉić, is a state-
of-the-art system designed to solve IPS problems using an
example-dependent loss function [4]. One of Brute’s intents
is to learn larger programs than other state-of-the-art IPS sys-
tems could. Simply stated, Brute works in two phases; an
invent stage, where more complex program instructions are
created out of basic ones. The second stage, the search stage,
is a best-first search, where a sequence of the previously in-
vented instructions needs to be found.

By using an invent stage, the search problem is reduced.
Without an invent stage instructions can be nested infinitely
deep (think about if and loop statements in programming lan-
guages). By using an invent stage, the branching factor of
possible programs is reduced and the search space is signif-
icantly smaller. To demonstrate the power of this concept,
Brute uses a greedy, best-first search and still shows promis-
ing results. However, a different search technique is desired
because a best-first search is prone to get stuck in local op-
tima.

This research aims to explore the use of a different search
metaheuristic: Very Large Neighborhood Search (VLNS).
Metaheuristics are used to search combinatorial space and
find a decent solution within a reasonable time [2]. In short,
VLNS is a class of improvement algorithms, where each al-
gorithm improves a feasible solution by exploring solutions
in a “very large” neighborhood around it [1]. A metaheuristic
belonging to this class is Large Neighborhood Search (LNS)
[6]. LNS explores neighbors that can be reached by partially
destroying the best-found solution and thereafter repairing it.
A subclass of VLNS is Variable-Depth Neighborhood Search
(VDNS) [6]. The idea behind VDNS is to extend the neigh-
borhood from which neighbors can be found whenever the
search fails to yield improving results. This research explores
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using a combination of VDNS and the invent stage of Brute,
called Variable-Depth Invent (VDI). Initially in the search
less complex tokens are invented, but if the search cannot find
a better program, more complex tokens will be invented. In
this paper, I describe Vlute, an IPS system that combines VDI
with a simple LNS algorithm.

I claim that Vlute can perform better in certain IPS do-
mains than Brute. To do so, I have devised the following
research questions that will be answered in this paper:
Q1. Can Vlute, with VDI, outperform Vlute without VDI,

both guided by an example-dependent loss function?
Q2. Can Vlute outperform Brute, both guided by an

example-dependent loss function?
Q3. Can Vlute, guided by an example-dependent loss func-

tion, solve problems where Brute encountered local op-
tima?

To answer these questions and support the claim, the follow-
ing contributions are described in this paper:

• An implementation of VDI and Vlute is described. This
technique combines the invent stage from Brute with
VDNS while using LNS to search for a solution.

• Vlute is evaluated on three different IPS domains. Vlute
will be compared to a version of itself without VDI and
Brute. Results show that Vlute outperforms Brute in one
of the tested domains; real-world string transformations.

2 Related Work
Brute
As stated before, Brute is a state-of-the-art IPS system [4].
Brute works in two stages: invent and search. In the invent
stage, basic program statements are combined to create more
complex statements. These complex statements are used in
the search stage, where a sequence of complex statements
needs to be found. Since there is an infinite number of com-
plex statements that can be created, Brute follows a common
convention to limit the number of complex statements cre-
ated. The effectiveness of the invent stage is based on the
assumption that most IPS challenges are solvable using a se-
quence of these generated complex statements, which signif-
icantly reduces the search space.

Brute uses a best-first search. The search initially starts
out by only having discovered a program containing no state-
ments. For every statement, created in the invent stage, a
new program is created by appending that statement to the
best-discovered, lowest cost, program. It then computes the
cost and adds the newly discovered program to the set of dis-
covered programs. This process is repeated until a zero-cost
solution has been found or another termination condition is
reached.

Very Large Neighborhood Search
Very Large Neighborhood Search (VLNS) is a class of im-
provement algorithms. An improvement algorithm in general
starts with a feasible solution and tries to improve this solu-
tion each iteration [1]. Neighborhood search, also called lo-
cal search, is a class of improvement algorithms where each

iteration it tries to find a better solution by exploring neigh-
bors in a neighborhood around the current solution. How a
neighborhood is defined differs widely among implementa-
tions. VLNS is the subclass where the neighborhood is con-
sidered to be ”very large”.

A subclass of VLNS is Variable-Depth Neighborhood
Search (VDNS) [6]. The idea of VDNS is to gradually ex-
tend the neighborhood as the search progresses. Whenever
the search gets trapped in a local optimum, the size of the
explorable neighborhood is increased and the search can pos-
sibly escape the local optimum.

Large Neighborhood Search
A more concrete VLNS algorithm is Large Neighborhood
Search (LNS) [6]. In LNS, neighbors are reached by first par-
tially destroying a solution and thereafter repairing it. Usu-
ally, the destroy method contains randomness or stochasticity
to make sure that every part of a solution can be destroyed.
How exactly the destroy and repair methods work, is specific
to a problem and how one designs both methods.

Adaptive Large Neighborhood Search is an extension of
the LNS algorithm; during the search different destroy and
repair methods can be used. Selection of the destroy and re-
pair method is according to weights, which will be updated
after every iteration.

3 Methodology
Program syntax
A program is a sequence of tokens. When a program inter-
prets an input environment, every token in its sequence is ap-
plied to the input environment sequentially. These tokens can
consist of three types: transition, boolean, and control to-
kens. Transition tokens are tokens that directly alter a given
state. When this token is applied to a state, a new state will be
returned. Boolean tokens are tokens that when applied to a
state always yield either true or false. Transition and boolean
tokens are different for each IPS domain. Control tokens are
tokens that determine the flow of a program. There are two
control tokens: If and Loop. An If token takes in one boolean
and two sequences of tokens. When applied, the boolean to-
ken is evaluated first. If that yields true, the first sequence is
applied. Otherwise, the second sequence is applied. A Loop
token takes in one boolean and one sequence of tokens. First,
the boolean is evaluated. As long as the boolean token yields
true, the sequence keeps being applied.

Vlute
Like Brute, Vlute has two components; invent and search.
Below both components are detailed, accompanied by pseu-
docode and examples.

Invent
Similar to Brute, in the invent stage basic tokens are com-
bined to create more complex ones. However, in Brute the
library of invented tokens is static; for every search, the same
invented tokens are created. This can be inefficient when a
certain search does not require the complexity of the invented

2



tokens and this method can be insufficient when a more com-
plex token is required to solve the problem. Therefore, I in-
troduce Variable-Depth Invent (VDI).

Variable-Depth Invent
The main idea behind VDI is to increase the complexity of
the invented tokens if the search fails to yield improving re-
sults. Initially, the invented tokens are simple, simpler than
the ones created by Brute. Whenever a certain condition in-
dicating that the search is stuck in a local optimum is met, the
depth of VDI is increased. New, more complex, tokens will
be invented and are available to use in the search. For sim-
plicity VDI only invents Loop or If tokens. Brute also invents
sequences of transition tokens, however, the same sequences
can also be found in the search stage.

But what exactly does depth or complexity mean in the
context of invented tokens? I have identified two dimensions
of depth for an invented token; the total number of transition
tokens and the total number of control tokens. Depth
can therefore be represented by a 2-tuple where the first
entry is the number of transition tokens and the second the
total number of control tokens. The lowest sensible depth
is (1, 1), where control tokens containing only a single
transition token are invented. Because the number of tokens
that can be invented explodes quickly when the depth is
increased, I have limited it to three depth levels: (1, 1),
(2, 1), and (2, 2). For example, the following two tokens
will be invented at depths (1, 1) and (2, 2) respectively:

Loop(IsNotSpace, [Drop])
Loop(NotAtEnd, [If(IsNumber, [MoveRight], [Drop])])

To search more efficiently, some pointless invented tokens
are pruned. The following types of tokens are pruned:

• If tokens with negations as a condition; a version with
the non-negated condition and flipped branches will be
invented too, making this token redundant.

• If tokens with equal branches.
• Loop tokens with an empty body.

Random tokens can be retrieved from the VDI object.
Weights can be set that determine the probability of an If,
Loop, or transition token being returned. The weights are de-
noted by wif , wloop, and wtrans respectively.

Search
The core of the search stage is variable-depth LNS. As stated
before, LNS gradually improves the best-found solution by
exploring its neighbors. For depth variability, the search
keeps track of how many iterations have passed since a new
best solution was found. When this amount exceeds a thresh-
old, the depth is increased.

Pseudocode for the search stage can be found in algorithm
1. Inputted is Ni, denoting the depth increase threshold. The
search starts with an empty list as the best-found solution.
Also, a counter, ib, denoting the number of iterations since a
new best-solution was found, is initialized to zero. Each it-
eration, a temporary solution is created by destroying and re-
pairing the best-found solution. If this solution is a zero-cost
solution, meaning it has solved the task, it will be returned.

Inputs: Ni : int
Output: list

1: xb = [] ▷ Init. best solution with empty list
2: ib = 0 ▷ Init. iterations since best found
3: repeat
4: xt = r(d(xb)) ▷ Destroy and repair current solution
5:
6: if c(xt) = 0 then ▷ Return if solved
7: return xt

8:
9: if c(xt) < c(xb) then ▷ New best solution found

10: xb = xt

11: ib = 0
12: else
13: ib = ib + 1

14:
15: if ib > Ni then ▷ Increase search depth
16: Invent.increase depth()
17: ib = 0

18:
19: until timeout
20: return xb ▷ Return best solution

Algorithm 1: Variable-Depth Large Neighborhood Search.

If the temporary solution is better than the best-found solu-
tion, it will become the new best-found solution, and ib is set
to zero. If ib exceeds the threshold Ni, the search depth will
be increased. If no zero-cost solution was found in time, the
best-found solution will be returned.

Destroy method: remove-N
The destroy method, called remove-N, is simple; split a se-
quence by removing N sequential tokens from it. The pseu-
docode can be found in algorithm 2. Inputted is an integer
Nmax, the maximum number of tokens that can be removed,
and a list of tokens P , the program. Outputted is a 2-tuple
containing the leading and trailing part of the program, split
by the deletion of N sequential tokens.

When a sequence gets destroyed, first a random N , the
number of tokens to be removed, is chosen (line 2). N can-
not exceed Nmax and the length of the program. There-
after, a random I , the index from where tokens are de-
stroyed is chosen (line 3). In line 5 two splices are re-
turned: P [: I] are the tokens before the destroyed ones and
P [I +N :] are the tokens after. For clarification, two exam-
ples are given below. For the first example, N was 0 and
I was 2. In the second example, N was 2 and I was 0.

[t1, t2, t3]→ [t1, t2], [t3]
[t1, t2, t3, t4]→ [], [t3, t4]

Repair method: insert-N
The repaired method, insert-N, works the other way around;
stitch two token sequences together while adding N tokens
in the middle. Inputs are a 2-tuple D containing two token
sequences, Nmax, the maximum number of tokens that can
be inserted, and I , a reference to an invent object from which
random tokens can be retrieved.

In algorithm 3 pseudocode for insert-N can be found.

3



Inputs: Nmax : int, P : list
Output: (list, list)

1: N ′
max ← min(Nmax, |P |)

2: N ← random int from [0, N ′
max]

3: I ← random int from [0, |P | −N ]
4:
5: return (P [: I], P [I +N :])

Algorithm 2: Destroy method: Remove-N.

Inputs: D : (list, list), Nmax : int, I : Invent
Output: list

1: P = []
2: N = random int from [0, Nmax]
3:
4: while N > 0 do
5: t = I.random token()
6: P = P + t
7: N = N − 1
8:
9: return D[0] + P +D[1]

Algorithm 3: Repair method: Insert-N.

On line 2 a random N is chosen. Then on lines 4
through 7, N random tokens will be inserted in a list,
P . Random tokens are retrieved through some invent ob-
ject. On line 9, the N random tokens are put in be-
tween the two input sequences and returned. To clar-
ify, two examples are stated below. In the first exam-
ple N was 0 and for the second example N was 2.

[], [t3, t4]→ [t3, t4]
[t1, t2], [t3]→ [t1, t2, ta, tb, t3]

4 Results
4.1 Experimental procedure
Question 1
To investigate if using variable-depth invent (VDI) yields bet-
ter results than using static-depth invent, my experiments aim
to answer the question:

Q1. Can Vlute, with VDI, outperform Vlute without VDI,
both guided by an example-dependent loss function?

To answer this question two versions of Vlute are created;
one using VDI and one using a static-depth invent stage. VDI
increases depth if no better solution was found after Ni itera-
tions. To fully explore VDI’s potential, multiple values for Ni

are tested. To easily denote the value of Ni, it is subscripted.
For example, Vlute with Ni = 1000 is called Vlute1000.
Vlute without VDI is named Vlute∞ since its depth is never
increased.

Question 2
To investigate if Vlute can outperform a state-of-the-art IPS
system like Brute, my experiments try to answer the follow-
ing question:
Q2. Can Vlute outperform Brute, both guided by an

example-dependent loss function?

To answer this question, Vlute is compared against Brute.
The same experiments can be used as before, only Brute also
needs to be tested.

Question 3
A fallacy of Brute is that it falls into local optima easily. To
investigate if Vlute can escape local optima encountered by
Brute, my experiments aim to answer the following question:

Q3. Can Vlute, guided by an example-dependent loss func-
tion, escape local optima encountered by Brute?

To answer this question Brute is run on each test case. If
Brute fails to solve the test case, two versions of Vlute are
run: one normal Vlute with an empty program as the initial
solution and one Vlute with Brute’s best-found solution as
the initial solution. The normal Vlute is called the same as
before and the other version is called VluteBNi

(VluteB1000

for example). Results of both versions of Vlute are compared
and if they yield the same predictive accuracy, it means that
Vlute was able to escape the local optima in which Brute fell.

Experimental settings
For each test case, the system has 10 seconds to solve the
problem. The created IPS system has been evaluated on three
domains: robot-planning, real-world string transformations,
and drawing ASCII-art.

Vlute with VDI
Vlute with VDI is tested with the following values for Ni:
1000, 3000, 5000, 10000, 15000, and 30000. Only two Nis
are shown in the results; the other values followed the same
trend as one of the shown values. The following system pa-
rameters were used:

• Depth levels are [(1, 1), (2, 1), (2, 2)].
• Nmax for destroy and repair is 3.
• wtrans = wloop = 1 and wif = 0.

Vlute without VDI
For Vlute without VDI the following system parameters were
used:

• Nmax for destroy and repair is 3.
• wtrans = wloop = 1 and wif = 0.

In the invent stage If tokens are invented containing two tran-
sition tokens and Loop tokens are invented that contain two
transition tokens and can contain and If token.

Brute
Brute will generate the following tokens during the invent
stage:

• All sequences up to 3 tokens.
• All If tokens with 1 token in each branch.
• All Loop tokens with 1 token in the loop body.

4.2 Robot-planning
Materials
In the first domain, displayed in figure 1, a robot starts at a
location in an n by n grid. It has to pick up a ball and de-
liver it at some location, whereafter the robot has to walk to
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(a) Input state (b) Output state (c) Valid solution

Figure 1: Robot-planning domain visualisation.

d =


Dr,b +Db,b′ +Db′,r′ + 2 if Dr,b > 0 ∧Db,b′ > 0

Dr,b′ +Db′,r′ + 1 if Db,b′ > 0

Dr,r′ otherwise

Figure 2: Robot-planning distance heuristic.

some final location. The input state (figure 1a) is the start
location of the robot and the ball and the output state (figure
1b) is the end location of the robot and the ball. Transition
tokens for this domain are MoveUp, MoveRight, MoveDown,
MoveLeft, GrabBall, and DropBall. For boolean tokens, At-
Top, AtRight, AtBottom, AtLeft, and their negations are avail-
able. The IPS system has these tokens available together with
the If and Loop tokens and has to devise a program that solves
the problem (figure 1c). The used heuristic for this domain is
the number of actions the robot needs to take to complete the
goal (walking, pickup ball, drop ball). This is given by the
formula in figure 2. Inputted are r, r′, b, and b′ which are
the robot’s position, the robot’s goal position, the ball’s posi-
tion, and the ball’s goal position respectively. Dx,y means the
Manhattan distance between positions x and y.

Method
Example test cases are from a set of generated cases with five
different world sizes, n, where n is from {2, 4, 6, 8, 10} [4].
For each world size 110, test cases were generated. Measured
are the predictive accuracy (percentage of tasks solved) and
average execution time, both per n. For both, the average is
plotted and the 90% confidence interval.

Results
The used heuristic in this domain is almost equal to the num-
ber of single transition tokens needed to complete the tasks.
This makes solving the tasks easy; no local optima exist.
Figure 3b confirms this; all tested IPS systems solve robot-
planning with 100% accuracy. However, looking at figure 3c,
execution time is not equal for all systems. Brute performs
the best, while Vlute1000 has a longer execution time. A pos-
sible explanation is that VDI depth is increased too fast and
the search has to deal with more complicated tokens. The
not-shown Vlutes follow the trend as Vlute10000, which has
an execution time between Brute and Vlute1000.

An example program found by Vlute5000 can be found in
figure 4. The program that has been found is stated in figure
4a and a corresponding visualization of the path taken can be
found in figure 4b.

4.3 Real-world string transformations
Materials
In the second domain, shown in figure 5, an input string
needs to be transformed into an output string. The input
state is the input string and the position of a pointer, which
points to a certain position in the string. The output state is
the output string, the position of the pointer does not mat-
ter. Transition tokens act on one character; the one at the
position of the pointer. Transition tokens for this domain
are MoveRight, MoveLeft, MakeUppercase, MakeLowercase,
and DropCharacter. It has AtEnd, AtStart, IsUppercase, Is-
Lowercase, IsLetter, IsNumber, IsSpace, and their negations
as boolean tokens. The distance heuristic used for this do-
main is the Levenshtein distance between the produced output
and the desired output. Levenshtein distance is the number of
changes (insertions, deletions, substitutions) that need to be
made to transform one string into another.

Method
327 real-world string transformation tasks are taken from [3],
where each task has 10 in-/output examples. For each task
and n from {1, 2, ..., 9}, n in-/output examples are taken as
training data. The other 10−n examples are used as test data,
together they create one test case. Each test case is repeated
10 times with different train examples. Measured are the pre-
dictive accuracy (percentage of test cases where all examples
are solved) and average execution time of solved tasks, both
per n. For both the 90% confidence interval has been plotted.
Another plot that will be created, is a scatter plot in which per
n a dot is plotted with the corresponding predictive accuracy
and average execution time as coordinates. In such a plot, one
can compare the number of input examples needed to reach a
certain accuracy.

Results
Figure 6b shows that Vlute has a higher accuracy than Brute
for each number of examples given. Vlute10000 has a better
performance than Vlute∞. All other Vlutes are almost equal
to Vlute1000, which is still a bit better than Vlute∞. This
confirms the belief that VDI can improve performance over
not using VDI.

Figure 6c shows that Brute still has the shortest execution
time when the number of given examples is low. It can also
be seen that Vlute10000 has the shortest execution time of all
Vlutes, shorter than Vlute∞, indicating that using VDI can
also improve execution time. All not-shown Vlutes have ex-
ecution times between that of Vlute10000 and Vlute∞. How-
ever, Vlute1000 has a longer execution time than Vlute∞. As
before, a possible explanation is that the search depth is in-
creased too fast and the search has to deal with more compli-
cated tokens.

In figure 6d it can be seen that Vlute10000 needs fewer
training examples than Vlute1000 and Vlute∞ to reach the
same accuracy. For example, to reach an accuracy of 50%
Vlute10000 needs 2 examples, while Vlute1000 and Vlute∞
need 3 and 5 respectively.

An example program that Vlute10000 found can be found
in figure 7. The task is displayed in figure 7a and the found
program can be seen in figure 7b.
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Figure 3: Results of robot-planning experiments.

1. Loop(NotBottom, [Down])
2. Loop(NotRight, [Right])
3. Up
4. Grab
5. Up
6. Left
7. Drop
8. Left
9. Left

10. Up

(a) Found solution (b) Solution visualisation

Figure 4: Program found by Vlute5000 solving a robot-planning task.

I M G 1 4 4 . P N G
t e s t . s h

n u m b e r ( 2 0 )

n u m b e r ( 3 )

(a) Input states

P N G
s h

2 0
3

(b) Outputs

Figure 5: Visualisation of the real-world string transformation do-
main showing two example test cases.

4.4 Drawing ASCII-art
Materials
For the third and last domain, shown in figure 8, the objective
is to draw pixel art where each pixel can either be colored or
not. The input state is a blank canvas of h by w pixels ac-
companied by the location of the pointer. The output state is
a pixelated canvas, the position of the pointer does not mat-
ter. The pointer denotes the pixel on which transition tokens
can act. Available transition tokens are MoveUp, MoveRight,
MoveDown, MoveLeft, and Draw. Available booleans tokens
are AtTop, AtRight, AtBottom, AtLeft, and their negations. In
this domain, the used heuristic is the hamming distance (num-

ber of incorrect pixels) between the created output and the
desired output.

Method
ASCII strings are from a dataset in which strings with n char-
acters were generated, where n is from 1, 2, ..., 5 [4]. For each
n a total of 100 tasks are generated. Characters are sampled
uniformly at random with replacement and text2art was used
to transform the string into pixels. Each character is 4 pixels
wide and 6 pixels high. The input environment is an empty
matrix. Measured are the predictive accuracy and the average
execution time, both per n.

Results
Figure 9b shows that Brute outperforms all Vlutes. Between
the versions of Vlute, no significant difference can be found.
This domain requires large programs, especially when the
number of characters is higher. As expected Brute performs
fine for large programs, but Vlute struggles to find large pro-
grams. At 2 characters almost no problems are solved any-
more by Vlute, while Brute can solve almost all problems
with 2 characters. Figure 9c shows that for the cases that
are solved, Brute has a lower execution time than all Vlutes.
Between the versions of Vlute, there is again no significant
difference in execution time.

4.5 Escaping local optima
Performance of the two different versions of Vlute described
before needs to be compared for cases where Brute failed
to find a zero-cost solution. Since Brute solved all robot-
planning cases and Vlute could not solve many cases for
drawing ASCII-art, the different versions will not be com-
pared in these domains, only in the string transformation do-
main.

Results
Figure 10 shows that performance of both versions are sim-
ilar. The difference never gets larger than 10%, indicating
that Vlute is able to escape some local optima, but not all.
A possible explanation is that when Brute is trapped in a lo-
cal optima, it keeps adding tokens that do nothing, creating
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Figure 6: Results of real-world string transformation experiments.

S a m A n d y S i d S A S
B o b B e n C a r o l B B C

(a) Test case visualisation

1. Loop(NotAtEnd, [
2. If(IsUpper,
3. [MoveRight],
4. [Drop])])
5. Drop

(b) Found solution

Figure 7: Solution found by Vlute10000 solving a string transforma-
tion task.

(a) Input state (b) Output state

Figure 8: Visualisation of the drawing ASCII-art domain.

an extremely large program. For Vlute it can be hard deal-
ing with large programs, since there are more ways to reach
neighbors, making it harder finding a good one.

5 Discussion and Limitations
Question 1
From the results, the conclusion can be drawn that using VDI
only significantly improves results in the real-world string
transformation domain. In this domain, each Vlute version
with VDI outperforms Vlute without VDI based on accuracy.
Execution time is also shorter or equal for almost every Vlute
using VDI, only Vlute1000 has a longer execution time than
Vlute without. However, VDI does not improve results as
much for the other two domains. For robot-planning accu-
racy is 100% for each method. Execution times are similar
for Vlute with VDI and without, only Vlute1000 has a higher
execution time, showing no improvement using VDI. In the
drawing ASCII-art domain accuracy and execution time are
similar for each Vlute version, showing no improvement in
this domain either. A possible explanation for the fact that

VDI only yields better results in the string transformation
domain, is that more complex tokens are not that useful in
the other domains. All robot-planning and drawing ASCII-
art cases can be solved with a sequence of transition tokens.
However, in the string transformation domain more complex
tokens are often needed to solve the problem.

Question 2

From the results, it can also be concluded that Vlute outper-
forms Brute only in the real-world string transformation do-
main. In the real-world string transformation domain, every
tested Vlute method has higher accuracy. However, for the
problems Brute solved, execution times were in general bet-
ter than Vlute. Only one version of Vlute executed faster than
Brute, but only for a larger number of examples. Also, Vlute
needs significantly fewer training examples to reach the same
accuracy as Brute. However, in the other two domains, Vlute
does not outperform Brute. In robot-planning, all methods
reach 100% accuracy, but Brute has a lower average execu-
tion time at each grid size. For drawing ASCII-art, Vlute
does not perform well. Only when one character needs to be
drawn can it solve the majority of the problems. Brute has
a significantly higher accuracy for the first three matrix sizes
while having a lower execution time than Vlute.

Question 3

The last conclusion that can be drawn, is that Vlute can escape
some of the local optima encountered by Brute, but not all.
Vlute that starts with Brute’s best-found solution performs
a bit worse than normal Vlute, but not much worse. This
indicates that Vlute has escaped some of the local optima, but
not all.

Limitations

A limitation of using Vlute in the manner described is find-
ing large programs. For solving drawing ASCII-art examples,
large programs are needed when the number of symbols is
higher, which explains why results are not promising in that
domain. Learning large programs could be difficult since the
size of the neighborhood grows as the size of the sequence
grows since there are more ways to destroy the sequence.
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Figure 9: Results of drawing ASCII-art experiments.
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Figure 10: Results of escaping local optima experiments.

6 Conclusion and Future Work
Conclusion
Brute has shown great potential for using an invent stage be-
fore searching for a solution. However, the search used in
Brute is a best-first search, which is prone to falling into local
optima. Therefore another search method was proposed, Very
Large Neighborhood Search (VLNS), which can escape local
optima as long as the searched neighborhood is large enough.
Another proposed improvement is the use of Variable-Depth
Invent (VDI), in which more complex tokens are invented if
the search does not yield improving results with the currently
available tokens. My experiments show that Vlute using VDI
outperforms Vlute without VDI for real-world string trans-
formations. For the other two domains, no improvement can
be seen when using VDI. Experiments also show that Vlute
outperforms Brute for real-world string transformations. The
experiments show that even the worst-performing Vlute ver-
sion outperforms Brute in this domain. However, for the other
two domains, Brute outperforms Vlute. The last experiment
shows that Vlute is able to escape some, but not all, of the
local optima encountered by Brute in the real-world string
transformation domain.

Future work
Variable-depth invent
The current implemented VDI is simple; almost all tokens
of a certain depth can be used in the search and the depth is
increased when no improving solution is found after a fixed
amount of iterations. Something worth looking into is to auto-
matically determine the usefulness of tokens. There will be a
lot of tokens that are useless or do not make sense. The search
can be sped-up if those tokens are not used in the search as
often as others.

Another possible improvement is changing the depth in-
crement criterion. Currently, this is after a fixed amount of
iterations. However, knowing what value will yield the best
results is hard and will most likely be different for each do-
main or test case. Using a different criterion might improve
results.

Search
In the implemented LNS the destroy and repair methods are
designed to be simple and efficient. Using more sophisticated
destroy and repair methods might improve results. For exam-
ple, alternating the current random repair with a best-first re-
pair could exploit Brute’s ability to find large programs, while
still being able to escape local optima. Also, research can be
done in using different VLNS algorithms.
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7 Responsible Research
In this section concerns regarding reproducibility and credi-
bility are stated. First, I will talk about the data sets; where
did it come from, and is it to be trusted? Thereafter, re-
producibility corners are stated. Last but not least, I will
say something about the credibility of the conclusions drawn
from my research.

Data sets
The data sets were obtained through my responsible profes-
sor, Sebastijan Dumanĉić. In Dumanĉićs paper it was stated
that the data for robot-planning and drawing ASCII-art was
generated randomly like described in this paper. String trans-
formation data was obtained from another paper, also cited
in this paper. The data sets used in this research are blindly
trusted; no full check-up of the data sets was done. The data
has been used by Andrew Cropper and Sebastijan Dumanĉić
in their research, so it probably is valid data, but a check-
up might not be a bad idea. String transformation data has
another problem; is it representable data. The data is based
on real-world string transformation examples, but I am not
aware of how this data was obtained and what possible biases
it could have. It could be the case that accuracy is different if
data was collected from a different source.

Reproducibility
I have identified two concerns for the reproducibility of
this research; availability of source code and the machine
on which experiments are run. To make this research as
reproducible as possible, the code source should be pub-
lished. “data.4tu.nl” has been recommended to publish and
cite source code. Another thing that could affect reproducibil-
ity is the machine on which the code is run. My experiments
were run at the TU Delft’s HPC (High Performance Cluster),
which is a powerful cluster of computers. If the same ex-
periments were run on a different machine the results could
be different. For example, running a test case in which the
maximum depth level needs to be reached can take very long.
When such a test is run on a less powerful machine, it could
be the case that the time limit is reached before the maximum
depth level is reached.

Credibility
Important is to consider how credible the results and con-
clusions of this research are. A few credibility concerns
are explained. Right now the system is only tested on three
domains, but to fully explore its performance, it should be
tested on more domains. Other interesting domains could
be arithmetic, list transformations, software development,
and many more. Another factor influencing credibility is the
available syntax. Currently, the syntax is limited, especially
for string transformations. For example, no characters can be
added. However, some test cases need characters addition to
be solved and are therefore unsolvable right now. Choosing
available syntax can influence results; with more instructions
more problems are solvable, but searching for a solution
takes longer.

At last I want to thank my peers: Farhad Azimzade, Bas
Jenneboer, Nadia Matulewicz, Victor van Wieringen. To-
gether we created a codebase from which we all could diverge
into our research.
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