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Summary 
 
The phenomenon of wave conversions, where acoustic, pressure (P) waves are converted to elastic, 

shear (S) waves is commonly disregarded in seismic imaging, which can lead to lower-quality images 

in regions with strong reflectors. While a number of methods exist which do take wave conversions into 

account, most deal with P- and S-waves separately, rather than in using a single, unified, framework. 

Elastic Full-Waveform Inversion (FWI), on the other hand, which does offer a unified framework for 

all elastic effects, is prohibitively computationally expensive in many cases.  

 

We present an alternative approach by extending Full Wavefield Migration (FWM) to account for wave 

conversions. Full Wavefield Migration describes seismic data in terms of convolutional propagation 

and reflection operators in the space-frequency domain. By applying these operators recursively, multi-

scattering data can be modelled and inverted. Using Shuey’s approximation to constrain the number of 

parameters necessary to describe the full, elastic, reflection and transmission operators, we present an 

elastic FWM algorithm which accounts for wave conversions.  

 

The resulting algorithm is tested on a synthetic model to give a proof of concept. The results show that 

the proposed extension can model wave conversions accurately and yields better inversion results than 

applying conventional, acoustic FWM. 
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Elastic Full Wavefield Migration using Shuey’s approximation

While the earth is an elastic medium in reality, most conventional migration methods treat it as an
acoustic medium in practice. While this approach has produced good results, it disregards the possibility
of wave conversions, where pressure (P) waves are converted into shear (S) waves and vice versa. In
areas with high contrasts, such as around salt bodies (Jones and Davison, 2014), and in areas containing
so-called ‘gas clouds’ (Ensley, 1984), converted waves play a large role, and accounting for them can
increase the quality of the resulting migration images.

In recent years, this fact has been recognized, and multiple methods have been proposed to include
converted waves in the migration process, with the ‘holy grail’ being elastic Full-Waveform Inversion
(FWI) (Virieux and Operto, 2009). However, elastic FWI is an exceptionally computationally expensive
technique, making it impractical in many cases. In this work, we present an alternative method by
extending Full-Wavefield Migration (FWM) (Berkhout, 2014b) to take converted waves into account.

The potential to incorporate wave conversions into FWM has been recognized from the start (Berkhout,
2014c). However, the fact that one needs to invert each of the 16 possible reflection and transmission
coefficients separately for every angle has been a challenge in practice, as it leads to a sigificant over-
parametrisation. To avoid this issue, and to avoid the non-linearity present in the full Zoeppritz reflection
and transmission coefficients, we use Shuey’s approximation (Shuey, 1985) to link the different angles
together. In this way, we introduce a robust elastic FWM algorithm that accounts for wave conversions.

Theory

Following the approach outlined by Berkhout (2014a), we begin by splitting the P- and S-wavefields into
up- and downgoing components. Examining the wavefield at the locations (xi,z−n ) and (xi,z+n ), located
right above and below an interface at z = zn, respectively, we write

pP/S
(
xi,z±n

)
= p∓P/S

(
xi,z±n

)
+q±P/S

(
xi,z±n

)
, (1)

where the superscripts − and + denote up- and downgoing waves, p and q denote waves traveling
towards and away from the interface, and the subscripts P and S denote P- and S-wavefields, respectively.
Also note the angular frequency ω , as we will work in the temporal Fourier domain throughout this work.

Next, we describe the relationship between wavefields above and below the interface. Assuming a
rectangular grid of Nx evenly spaced points in the lateral direction and Nz points in the depth direction,
we introduce the vectors p±

P/S (zn) of length Nx, with elements p±
P/S (zn)

∣∣∣
i
= p±P/S (xi,zn), with a similar
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, (3)

where R···
··· and T···

··· are matrices of size Nx×Nx which relate the wavefields above and below the interface.
Note that we have dropped the zn-dependence of these matrices for ease of legibility.

Next, we examine the relationship between the wavefields at different depth levels zn. To do this, we
introduce a set of propagation operators WP/S (zn±1,zn) such that(

p+
P

(
z−n+1

)
p+

S

(
z−n+1

) )=

(
WP (zn+1,zn) 0

0 WS (zn+1,zn)

)(
q+

P (z+n )
q+

S (z+n )

)
, (4)(
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(
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) )=

(
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)
, (5)
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with WP/S (zn±1,zn) matrices of size Nx × Nx which describe the propagation of waves between the
different depth levels, and 0 the zero matrix of size Nx ×Nx. These propagation operators are described
in detail in Berkhout (2014a).

We now examine the reflection and transmission operators R···
··· and T···

··· in more detail. To avoid the
non-linearity of the full Zoeppritz equations we use Shuey’s approximation. For a flat reflector, Shuey’s
approximation for the PP-reflection coefficient is given by (Shuey, 1985)

R∪
PP (θ)≈

1
2

(
∆VP

VP
+

∆ρ

ρ

)
+ sin2 (θ)

(
1
2

∆VP

VP
−2
(

VS

VP

)2(
∆ρ

ρ
+2

∆VS

VS

))
, (6)

with VP and VS the P- and S-wave velocities, ρ the density of mass and θ the angle of incidence of the
incoming wave. Rewriting equation 6 using the notation of equations 2 and 3 gives

R∪
PP =

∆x
2
(
CP +Cρ

)
+Sθ ,2∆x

(
1
2

CP −2V̂2 (Cρ +2CS
))

. (7)

In equation 7 we have introduced the contrast matrix CP, which is a diagonal matrix with elements
CP (zn)|ii =CP (xi,zn) =∆VP (xi,zn)/VP (xi,zn), with similar definitions for CS (zn) and Cρ (zn). We have
also introduced the velocity ratio matrix V̂(zn), which is a diagonal matrix with elements V̂(zn)

∣∣
ii =

VS (xi,zn)/VP (xi,zn). Finally, we have introduced the operators Sθ ,m (zn), which are defined as

Sθ ,m (zn)|i j = F−1{sinm (
θ

i
n
)}∣∣

x=x j
= F−1

{(
VP (xi,zn)kx

ω

)m}∣∣∣∣
x=x j

, (8)

where F−1 is the inverse (spatial) Fourier transform in the lateral direction. Extending the notation
introduced above to the full reflection and transmission operators, we write

R∪/∩ (zn) =±R0 (zn)±Rθ (zn) , (9)

where R0 (zn) represents the zero-offset reflectivity, while Rθ (zn) represents the angle-dependent reflec-
tivity. These operators are given by

R0 (zn) =

(
∆x
2

(
CP +Cρ

)
0

0 −∆x
2

(
CS +Cρ

) ) , (10)

Rθ (zn) =

(
∆x
2

(
CP −4V̂2D

)
Sθ ,2 (zn) −∆x

2

(
Cρ +2V̂D

)
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−∆x
2

(
Cρ +2V̂D

)
Sθ ,1 (zn) −∆x

2 (CS −4D) V̂2Sθ ,2 (zn)

)
, (11)

where we have introduced D = Cρ +2CS. In a similar way, we write the transmission operators as

T± (zn) = I±T0 (zn)±Tθ (zn) , (12)

with

T0 (zn) =

(
−∆x

2

(
CP +Cρ

)
0

0 −∆x
2

(
CS +Cρ

) ) , (13)

Tθ (zn) =

(
∆x
2 CPSθ ,2 (zn) −∆x

2

(
Cρ −2V̂D

)
V̂Sθ ,1 (zn)

∆x
2

(
Cρ −2V̂D

)
Sθ ,1 (zn)

∆x
2 CSV̂2Sθ ,2 (zn)

)
. (14)

Using the building blocks of equations 2 - 5, we can now formulate a forward modelling algorithm,
which can be seen as the elastic extension of Full-Wavefield Modelling (FWMod) (Berkhout, 2014a).
Assuming a known source wavefield s0 at the surface, one can recursively apply equations 2 and 4 to
model the downgoing wavefield at each depth level, after which equations 3 and 5 can be used to find the
corresponding upgoing wavefield. By repeating this process multiple times, multiple scattering events
can be taken into account. This process is illustrated in algorithm 1.
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Algorithm 1: Elastic Full-Wavefield Modelling

Result: p+,M (zn) and p−,M (zn) for all zn.
Input: s0

1 Set p−,0 (zn) = 0;
2 for m = 1 : M do
3 Set p+,m (z0) = s0;
4 for n = 0 : Nz −1 do
5 q+,m (zn) = T+ (zn)p+,m (zn)+R∩ (zn)p−,m−1 (zn);
6 p+,m (zn+1) = W(zn+1,zn)q+,m (zn);
7 end
8 Set p−,m (zNz) = 0;
9 for n = Nz:1 do

10 q−,m (zn) = T− (zn)p−,m (zn)+R∪ (zn)p+,m (zn);
11 p−,m (zn−1) = W(zn−1,zn)q−,m (zn);
12 end
13 end

In a similar way, a migration algorithm can be set up based on this framework. Following Berkhout
(2014b), we define the objective function

J =
1
2

Nω

∑
i=1

NS

∑
j=1

∥∥d(z0,s j,ωi)−p−,M (z0,s j,ωi,CP,CS,Cρ

)∥∥2
, (15)

where d(z0,s j,ωi) is the known data recorded at the surface and p−,M
(
z0,s j,ωi,CP,CS,Cρ

)
is the for-

ward modelled wavefield up to scattering order M. Note that we have explicitly written the dependence
of these wavefields on the source location s j and the frequency ωi. Applying a gradient descent scheme
with respect to the contrasts CP (x,z), CS (x,z) and Cρ (x,z), one can within the medium.

Results

We apply the method described above to a synthetic, layered model, shown in figures 1a) - 1c). The
model chosen features a strong reflector in the centre, representing a highly simplified salt-body model,
which are known to generate strong converted-wave effects. Synthetic data was generated using a Ken-
nett modelling scheme (Kennett, 1984) with a Ricker wavelet source with a peak frequency of 17 Hz.
Migration was performed on a grid of Nx = 201 by Nz = 301 points with a spacing of ∆x = 10 m and
∆z = 5 m. The results of the migration process are shown in figure 1d) - 1f).

Examining these results, we see that applying elastic FWM leads to a significant uplift when compared to
conventional, acoustic, FWM. Specifically, we see an improved continuity of the layers when applying
elastic FWM and an improved recovery of the amplitudes of the reflectors. While these results are
promising, we see that the result of figure 1e) still contains an unwanted, background, ‘smearing’ effect.
This is most likely caused by the fact that Shuey’s approximation is not accurate for large offsets, leading
to confusion for large angles of incidence. To improve this behaviour, we recommend investigating
alternative formulations of the reflection and transmission coefficients, which may be more accurate for
large angles. Alternatively, large angles can be filtering out from the input data to reduce these effects.

Conclusions

In this abstract, we have shown that the theoretical framework of FWM can be effectively extended to
take wave conversions into account. By applying the resulting migration algorithm on a model contain-
ing a strong reflector we have seen that elastic FWM outperforms conventional, acoustic FWM in a case
where strong wave-conversion effects are present. While these results are promising, but not perfect, the
main limitations of the method are due to the limitations of Shuey’s approximation. Moving forward,
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we therefore recommend examining alternatives to Shuey’s approximation which more closely match
the true reflection and transmission coefficients at larger angles of incidence.
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Figure 1 Comparison of acoustic and elastic FWM. The ground-truth P-wave velocity, S-wave velocity
and density profiles are shown in figures (a), (b) and (c), respectively. Figures (d) and (e) show the
zero-incidence reflectivity CZ =

(
CP +Cρ

)
/2 for acoustic FWM and elastic FWM, respectively. Finally,

figure (f) shows a slice throuh the centre of figures (d) and (e).
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