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Abstract

Safe navigation in unknown environments is a challenging task for autonomous Micro Aerial
Vehicle (MAV) systems. Previous works generally avoid obstacles by assuming that the
environment is static. The purpose of this thesis work is to develop a MAV system that
can navigate autonomously and safely in dynamic environments. We present an onboard
vision-based approach for the avoidance of moving obstacles in dynamic environments. This
approach uses a state-of-art visual odometry algorithm to estimate the pose of MAV and an
efficient obstacle sensing method based on stereo image pairs to estimate the center posi-
tion, velocity, and size of the obstacles. Considering the uncertainties of the estimations, a
chance-constrained Model Predictive Controller (MPC) is applied to achieve robust collision
avoidance. The method takes into account the MAV’s dynamics, state estimation and the
obstacle sensing results ensuring that the collision probability between the MAV and each
obstacle is below a specified threshold. The proposed approach is implemented on a designed
experimental platform that consists of a quadrotor, a depth camera, and a single-board com-
puter, and is successfully tested in a variety of environments, showing effective online collision
avoidance of moving obstacles.
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Chapter 1

Introduction

1-1 Background

Over the last decade, Micro Aerial Vehicles (MAVs) have captured the attention of both
academia and industry because of their mechanical and control simplicity, high maneuver-
ability and low cost of entry point [7]. These features of MAVs make them popular aerial
robots in a large number of robotics applications such as package delivery, cinematography,
and surveillance.

Figure 1-1: A pilot flies a MAV over a field of strawberries to study how reflectance data may
help detect outbreaks of spider mite [1].

However, these aerial vehicles used to be operated by professional pilots in order to accom-
plish different tasks (an example is shown in Figure 1-1), since it is challenging for these
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2 Introduction

aerial vehicles to navigate safely and autonomously in clutter environments. Especially in
real-world scenarios, aerial vehicles suffer from imperfect onboard sensors and power-limited
computers, fast and aggressive flights and dynamic environments. Recent researches on at-
tempts to narrow the gap between piloted and pilotless aerial vehicles have demonstrated
amazing progress. Figure 1-2 shows several autonomous MAV applications including drone
delivery, cinematography and agriculture.

(a) (b)

(c) (d)

Figure 1-2: Several autonomous MAV applications. (a) An autonomous racing drone is passing
through a checkpoint [2]. (b) A snapshot of automated drone videography in a dynamic scene
[3]. (c) A delivery drone is approaching the drop-off point on a balcony [4]. (d) Aerial-ground
collaborative 3D mapping for precision farming with an Unmanned Aerial Vehicle (UAV) and an
Unmanned Ground Vehicle (UGV) [5].

One example is the autonomous drone racing [8], a study of Kaufmann et al. [9] shows that
their learning-based autonomous racing system can complete the racing track with speeds of
up to 3.5 m/s and achieve a higher success rate than a professional pilot. Another example
is the automated aerial videography, which can reproduce camera’s motions from recorded
footage more precisely than a human pilot. Nevertheless, unlike autonomous drone racing
and cinematography, whose coarse map may be given as a priori information, the autonomous
navigation in unknown environments is more demanding and is a longed-for solution for
various real-world applications, such as searching and rescuing in disaster scenes and package
delivery.
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1-2 Relative Works 3

In recent years, different vision-based autonomous MAV systems have been developed with
the aim to automate safe flights in unknown environments [10, 11, 12, 13, 14]. The main
challenge of vision-based autonomous navigation is that MAVs are required to track a set of
waypoints and avoid collisions with only the onboard sensing and computing during flights.
To achieve this, most of the previous approaches follow a similar pipeline as shown in Fig-
ure 1-3. For the waypoint tracking, the aforementioned approaches generally take the MAV’s
odometry, estimated with the onboard visual and inertial information, as the feedback of way-
point tracking. And as for the environment perception, most of them use visual or ranging
data (such as depth image, Light Detection And Ranging of Laser Imaging Detection and
Ranging (LIDAR) measurements) to precept MAVs’ local environments. And in order to
avoid collisions with obstacles, both the estimated states of MAVs and obstacles’ information
are then used to generate collision-free trajectories with different planning algorithms (for
example graph search is used in [10], minimum-jerk is used in [12] and motion primitive is
used in [13, 14]).

Figure 1-3: A general pipeline for autonomous navigation of MAV.

In addition, MAVs are required to navigate within dynamic environments in most of the
indoor scenarios. For example, an automated drone videography system may need to fly in
human environments and is required to track or avoid pedestrians. Take Autonomous Drone
Race (ADR) as another example, in IROS ADR 2018, the racing track was featured with a
rotating obstacle. The presentation of moving objects may be a crucial problem when MAVs
are navigating in unknown environments. Because if a MAV navigates by simply following the
trajectory planned at the very first beginning, it may collide with the changing environments.

These two aforementioned challenges together raise a question: is it possible to build a vision-
based MAV system to navigate autonomously and safely in highly dynamic environments with
onboard sensing and computing?

1-2 Relative Works

In some early approaches, collision-free navigation in unknown environments has been success-
fully demonstrated with different reactive heuristic methods. For example, in [15], frontal ob-
stacles are detected by extracting expanding-size Speed-Up Robust Feature (SURF) points[16]
in a sequence of monocular images. And in order to avoid collisions, once the MAV detects a
frontal obstacle, it overtakes the obstacle from its side-way by simply controlling the MAV’s
velocity in the y-direction (while its velocity in the x-direction is constant). In another exam-
ple [11], extended objects are used as the obstacles’ representation instead of sparse feature

Master of Science Thesis Jiahao Lin



4 Introduction

points. It uses disparity images to detect vertical obstacles in camera’s Field of View (FOV)
and models them as two-dimensional ellipses in the x-y plane. It then avoids the extracted
ellipses by selecting a set of feasible waypoints and planning the shortest path along the
ellipse’s edge.

Some other approaches avoid obstacles by using the motion primitive [17], which was first
introduced for efficient autonomous ground vehicle navigation. The main idea of the motion
primitive is evaluating a fixed number of constant-curvature arc motions and selecting the
best trajectory from the pre-generated motion primitive library. The evaluation of the arc
motions considers the quality of obstacle avoidance, the traveling distance toward the goal
point, etc. For example, later in [18], motion primitive was adapted and used for MAV’s
three-dimensional navigation. This approach uses Gaussian Mixture Model (GMM) to group
the three-dimensional point cloud, generated by a depth camera, into ellipsoids and selects a
collision-free trajectory by calculating the collision probability of each motion.

Mellinger et al. [19] firstly showed that a quadrotor’s dynamics are differentially flat, which
means its states and control commands can be written in terms of flat outputs and their
derivatives. With this property, some approaches plan smooth trajectories by finding a poly-
nomial equation that passes through all the waypoints. For example, in [20], a sequence of
waypoints is obtained by using Rapidly-exploring Random Trees (RRT)* algorithm [21] and
the optimal collision-free trajectory is then generated by finding a minimum-snap polynomial
trajectory passing through all the obtained waypoints. Later in [22], the author extracts a
convex region within the free space and assigns interval waypoints within the convex decom-
position. The optimal collision-free trajectory is then generated by fitting a Bézier curve to
those extracted interval waypoints.

However, the aforementioned algorithms’ optimal collision-free trajectories are optimal only
under the assumption that the environment is static. When a moving obstacle is presented in
a MAV’s local neighborhood, the aforementioned algorithms do not take the obstacle’s future
positions into account.

(a) (b)

Figure 1-4: A comparison between the optimal collision-free trajectory (green) generated by (a)
a planner considers only obstacle’s current position and (b) a planner considers both obstacle’s
current and future positions. The blurred obstacle is the previous position that used in the planner
in order to estimate its velocity.
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1-3 Objectives and Contributions 5

An example is shown in Figure 1-4(a), a point (represented by axes) is designed to navigate
from the bottom to the top, while an obstacle (yellow) is moving from the left to the right.
Without future re-planning, the aerial vehicle will collide with the obstacle by following the
generated trajectory (green line). While in Figure 1-4(b), the vehicle is planned to overtake
the obstacle from its left side without any collisions.

To tackle this problem, some researchers have moved their attention to Model Predictive
Controller (MPC) since it has not only the ability of handling constraints but also the preview
capability. These features of MPC make it an ideal local planner for waypoint tracking and
moving obstacle avoidance. In the past, the process of MPC has to be performed offboard
[23, 24], because optimal control problems are too computationally expensive to be computed
with the limited onboard computation capability. But thanks to the Moore’s Law [25] and
the recent development of nonlinear MPC solvers (such as ACADO Toolkit [26] and FORCES
Pro [27]), solving nonlinear MPC problems with an limited computational unit in real-time
has become realistic and widely used in various autonomous MAV applications [3, 28, 29].

In order to generate optimal collision-free trajectories with MPC, multiple objectives and
constraints of the optimal control problem are expressed mathematically, which can be cat-
egorized into two main tasks: waypoint tracking and obstacle avoidance. For the task of
waypoint tracking, the planner punishes the distance between the next waypoint and the
aerial vehicle over the prediction horizon. And as for the task of obstacle avoidance, the
planner performs collision checking for not only the current time step but also the future
predictions.

In the previous works, autonomous and safe navigation have been successfully demonstrated
in static environments [30] or controlled dynamic environments with an overhead motion cap-
ture system [3, 31], while real-time onboard vision-based MAV avoidance of moving obstacles
haven’t been demonstrated. Thus, in this thesis work, multiple objectives and constraints
are formulated with the onboard sensing data to achieve safe navigation in dynamic environ-
ments. In order to obtain the aerial vehicle’s states (including the center position, velocity,
and orientation), a state-of-art Visual-Inertial Odometry (VIO) algorithm is used to estimate
the states of MAV using the onboard visual and inertial measurements. To gather obstacles’
kinematics, an effective obstacle sensing method is implemented to extract obstacles’ informa-
tion (including their center positions, sizes, and their uncertainties) and estimate obstacles’
linear velocities. And in order to improve the flight safety, the planner then performs collision
checking by ensuring the collision probability, which is computed with the measurement and
estimation uncertainties, between the MAV and each obstacle is below a specified threshold.

1-3 Objectives and Contributions

To the best of the writer’s knowledge, real-time onboard vision-based MAV’s avoidance of
moving obstacles haven’t been demonstrated. This leads to the main objective of this thesis
work:

To design and construct an autonomous Micro Aerial Vehicle (MAV) system that
can navigate autonomously and safely in dynamic environments with only onboard
sensing and computing.

Master of Science Thesis Jiahao Lin



6 Introduction

The more detailed sub-objectives are listed as follows, which also reflect the contributions of
this thesis work:

• Integrate an autonomous MAV system for real-time vision-based collision avoidance of
moving obstacles in dynamic environments.

• Extend a fast obstacle detection method to detect, track, and predict obstacles in three-
dimensional space and evaluate its performance in both static and dynamic environ-
ments.

• Adapt an optimal control problem for robust obstacle avoidance in real-world scenarios.
And validate it in a variety of environments to show its effectiveness.

1-4 Thesis Outline

The structure of the following report is five-fold: in Chapter 2, the main findings and scientific
contributions of this thesis work are presented in a scientific paper format. In Chapter 3, the
report introduces the experimental platform used in this thesis work which includes hardware
design and software architecture. In Chapter 4, state-of-art vision-based state estimation
algorithms are introduced, evaluated and compared in order to select the most suitable state
estimation method for the designed experimental platform. Chapter 5 introduces the ob-
stacle sensing algorithm used in this thesis work including obstacle detection, tracking, and
prediction. In Chapter 7, the proposed MAV autonomous navigation system is tested in a
variety of environments. Finally, Chapter 8 concludes this report with a short summary and
suggestions for future works.

Jiahao Lin Master of Science Thesis



Chapter 2

Scientific Paper

This chapter contains a conference paper which has been submitted to International Con-
ference on Robotics and Automation (ICRA) 20201 on September 15th 2019. And a sub-
mitted video as the supplemental material of the conference paper can be accessed via
https://youtu.be/nvxn7niSBCM.

1https://icra2020.org/

Master of Science Thesis Jiahao Lin
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Robust Vision-based Obstacle Avoidance for Micro Aerial Vehicles
in Dynamic Environments

Jiahao Lin∗, Hai Zhu∗ and Javier Alonso-Mora

Abstract— In this paper, we present an on-board vision-
based approach for avoidance of moving obstacles in dynamic
environments. Our approach relies on an efficient obstacle
detection and tracking algorithm based on stereo image pairs,
which provides the estimated position, velocity and size of the
obstacles. Robust collision avoidance is achieved by formulating
a chance-constrained model predictive controller (CC-MPC) to
ensure that the collision probability between the micro aerial
vehicle (MAV) and each moving obstacle is below a specified
threshold. The method takes into account MAV dynamics, state
estimation and obstacle sensing uncertainties. The proposed
approach is implemented on a quadrotor equipped with a stereo
camera and is tested in a variety of environments, showing
effective on-line collision avoidance of moving obstacles.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) are being deployed in a
variety of application domains [1], such as search and rescue,
industrial inspection, and cinematography. In particular, these
applications require MAVs to safely navigate and avoid ob-
stacles in the environments. Successful autonomous naviga-
tion of MAVs using on-board sensors has been demonstrated
in static environments [2], [3] or in controlled dynamic
environments with an overhead motion capture system [4],
[5].

The presence of moving obstacles requires a fast and
efficient obstacle detection and tracking strategy to perform
obstacle avoidance in real time. Moreover, obstacle sensing
and MAV state estimation uncertainties should be accounted
for to achieve robust collision avoidance. In this paper,
we present an on-board vision-based approach for robust
navigation of MAVs in dynamic environments. Our approach
builds upon, and extends, a vision-based obstacle detection
and tracking algorithm [6] and a model predictive controller
(MPC) [5] to generate feasible and probabilistically safe
trajectories for the MAV.

A. Related Work

There has been a large amount of work in vision-based
autonomous navigation for MAVs in unknown environments
[7]. Some early works demonstrate autonomous navigation
by abstracting simple obstacle representations from camera
images and adopting reactive heuristic collision avoidance
techniques. [8] maps obstacles as cylinders by detecting and

∗J. Lin and H. Zhu contributed equally.
This work is supported by the Netherlands Organisation for Scientific

Research (NWO), domain Applied Sciences, the Amsterdam Institute for
Advanced Metropolitan Solutions and ONRG-NICOP-grant N62909-19-1-
2027. The authors are with the Department of Cognitive Robotics, Delft
University of Technology, 2628 CD, Delft, The Netherlands {h.zhu;
j.alonsomora}@tudelft.nl

Fig. 1: Experimental results of vision-based collision avoid-
ance in dynamic environments with two moving humans.
The MAV is equipped with a stereo camera both for visual
odometry and obstacle detection. (a) A snapshot of the
experiment. (b) On-board grayscale image. (c) The depth
image. (d) Visualization of detected obstacles and planned
collision-free trajectory.

tracking features of interest from images, then computes
a reactive acceleration for collision avoidance. Similarly,
[9] uses a monocular camera to avoid frontal obstacles
by detecting relative size changes of image features and
computing an avoidance velocity. However, image processing
in those approaches is computationally heavy, which requires
an off-board ground computer. In [10], the authors filter 3D
point clouds from depth images into planes that are then
used to compute the optimal collision avoidance direction
with maximal open path length. In [6], the authors segment
obstacles, modelled as ellipses, from a disparity map and
plan a set of waypoints along the edge of obstacles using
a heuristic collision checking algorithm. While the two
approaches are shown to be fast, robot dynamics are not
taken into account in the planner.

Recent works mainly rely on a similar pipeline where an
environment map is built from image data and then used to
plan collision-free motions for MAVs. In [11], the authors
incrementally build a 3D global occupancy map on-board
the MAV and use the VHF+ algorithm [12] for collision
avoidance. Recent advances have lead to more efficient map
representations than the occupancy map [13], including the
ESDF map [14], the k-d tree [15], the NanoMap [16], the
FIESTA map [17], etc. After building those maps, two main
categories of methods are developed to plan collision-free
motions. One is to use a library of pre-computed motion
primitives [15] or funnels [18] and choose the best one



from the library via collision checking. The other is to
construct a collision-free flight corridor based a planned path
obtained from a discrete planner such as A* and JPS [19],
followed by trajectory optimization to generate dynamically
feasible trajectories for the MAV [20], [21], [22]. While those
approaches have shown successful navigation of a MAV in a
variety of environments, a common limitation of them is that
they all assume the environments to be static without moving
obstacles. Moreover, obstacle sensing uncertainty and MAV
state estimation uncertainty are generally neglected.

B. Contribution

The main contribution of this paper is an integrated system
for collision avoidance of moving obstacles in dynamic
environments. Obstacles are detected and their position,
velocity and size are estimated from stereo images and the
generated U-depth maps (Section III). Chance-constraints are
then formulated to account for the measured MAV state
estimation and obstacle sensing uncertainty. These chance
constraints are integrated in a model predictive controller
to generate dynamically feasible and robust trajectories that
keep the probability of collision below a specified threshold
(Section IV). Finally, we demonstrate the system in real-
world experiments to show its effectiveness (Section V).

II. SYSTEM OVERVIEW

Given a goal point, the MAV is required to plan and
execute safe collision-free trajectories to navigate towards
the goal while avoiding moving obstacles in the environment,
based on its sensed stereo camera images.

Fig. 2 illustrates the proposed system for solving the
problem, which consists of three main components: MAV
state estimation, obstacle sensing and collision-free trajectory
planning. In this paper, we focus on the last two components
and achieve robust collision avoidance of moving obstacles.
For state estimation, we rely on a visual-inertial odometry
(VIO) method [23] to obtain the MAV pose and associated
uncertainty. For obstacle sensing, we model obstacles as
three-dimensional ellipsoids and adopt an efficient obstacle
detection and tracking approach based on depth images, to
obtain the obstacle size, position, velocity and associated
uncertainty. For collision-free trajectory planning, we formu-
late a chance-constrained model predictive controller (CC-
MPC) [5], taking into account the MAV state estimation and
obstacle sensing uncertainty. The CC-MPC ensures that the
collision probability between the MAV and each obstacle is
below a specified threshold.

III. OBSTACLE DETECTION AND TRACKING

In this section we describe our obstacle detection and
tracking algorithm using depth images, as shown in Fig. 3.
The algorithm is built on [6] where planar static obstacles
are considered. We extend it to three-dimensional scenarios
with moving obstacles.

Fig. 2: The proposed system for robust vision-based obstacle
avoidance in dynamic environments.

Fig. 3: Obstacle detection based on depth image and the
U-depth map. (a) Schematic of the camera facing a human
obstacle, which is represented as a cube with unknown
constant size. (b) Obstacle height and vertical (z) position
detection from the depth image. (c) Obstacle length, width
and horizontal (x, y) position detection from the U-depth
map.

A. Obstacle Detection using Stereo Images

For obstacle detection we model each obstacle as a three-
dimensional cube and detect its position and size (length,
width and height) based on the camera depth image. The
length and width and horizontal position are firstly derived
from the U-depth map (Fig. 3c), and then the height and
vertical position of the obstacle is derived from the depth
image directly (Fig. 3b).

1) U-depth map: An U-depth map is computed with the
column depth value histograms of the original depth image.
Fig. 3b shows an onboard depth image when the MAV is
facing a human obstacle in a lab space and Fig. 3c is the
corresponding generated U-depth map. When an obstacle is
in front of the depth camera, the size of the corresponding bin
in the U-depth map becomes larger. Based on this property,
a bin of the histogram is considered as a point of interest if
its value is larger than a threshold TPOI , which is defined
as:

TPOI =
fTho

dbin
,

where f is the focal length, Tho
is a predefined threshold for

obstacle’s height in the space and dbin is the corresponding
depth of a bin in the histogram.

Those points of interest are then grouped with other



candidate points in their neighborhood so that a bounding
box can be extracted from the U-depth map, as shown in
Fig. 3c.

2) Obstacle detection: We represent obstacles as three-
dimensional cubes with unknown yet constant sizes. Let
pWo = (xWo , y

W
o , z

W
o )T be the position of the center of a

cube obstacle, in which the super index W indicates the po-
sition expressed in the world frame (while B indicates in the
MAV body (camera) frame) and let sWo = (lWo , w

W
o , h

W
o )T

be the size (length, width and height) of the cube.
Based on the bounding box found in the U-depth map [6]

(see Fig. 3c), which is represented by its top-left (ul, dt) and
bottom-right corners (ur, db), we can obtain the obstacle’s
horizontal (x and y) position and size (length and width) in
the body frame:

xBo = db, yBo =
(ul + ur) db

2f
,

lBo = 2 (db − dt) , wBo =
(ur − ul) db

2f
.

(1)

Then we can further find a corresponding bounding box of
the obstacle in the original depth image by grouping depth
image points whose horizontal index are within [ul, ur] and
depth values are within [dt, dt+ lo]. Let (ul, ht) and (ur, hb)
be the top-left and bottom-right corners of the bounding box.
We can derive the obstacle’s vertical (z) position and height
in the body frame:

zBo =
(ht + hb) db

2f
, hBo =

(ht − hb) db
f

. (2)

For a stereo camera, the range measurements error gen-
erally increases quadratically with the measured depth [24].
In this paper, we adopt an empirically determined detection
uncertainty covariance ΣBo for the obstacle position and ΣBo,s
for the size. Then the detected obstacle position, size and
corresponding uncertainty covariance are transformed into
the world frame by considering the MAV’s real-time pose:

pWo = RWB pBo + pW , ΣWo = RW
T

B ΣBo R
W
B + ΣW ,

sWo = RWB sBo , ΣWo,s = RW
T

B ΣBo,sR
W
B ,

(3)

where RWB is the rotation matrix of the MAV’s pose, pW and
ΣW denote the MAV’s position and uncertainty covariance
respectively.

B. Obstacle Tracking and Prediction

To predict obstacle future positions within the prediction
horizon, the detected obstacles in sequential frames are firstly
associated by computing the probability of their means and
covariances coming from the same Gaussian distribution:

p = pG(xmo | x̂m|m−1o , Pm|m−1o ),

where pG(·) is the probability density function of the multi-
variate Gaussian distribution, xo = (pWo , s

B
o )T and Po =

diag(ΣWo ,Σ
B
o,s) are the obstacle state (position and size)

and corresponding uncertainty covariance, the super index
·m indicates the current frame, x̂

m|m−1
o and P

m|m−1
o are

the predicted state and covariance matrix based on previous
detection. If the probability p is larger than a threshold, the
two objects detected are determined to be the same moving
obstacle whose information is then fed to a Kalman filter.

The Kalman filter estimates the obstacle’s position and its
velocity and size. Denote by p̂ko , v̂ko and ŝko the estimated
obstacle position, velocity and size with uncertainty covari-
ance Σko , Σko,v and Σko,s at time k. Here we omit the super
index W for simplicity since in the remaining of this paper,
all variables are expressed in the world frame.

For collision avoidance of moving obstacles, we predict
their future positions and uncertainty covariances using a
constant velocity model for obstacle movement. Hence, we
have

p̂k+1
o = p̂ko + v̂ko∆t, v̂k+1

o = v̂ko ,

Σk+1
o = Σko + Σko,v∆t

2, Σk+1
o = Σko .

(4)

We assume the size of the obstacle is constant, i.e. ŝk+1
o =

ŝko , and its uncertainty is not considered in collision avoid-
ance.

Since polygonal obstacles are ill-posed for online con-
strained optimization, where smooth shapes are preferred to
avoid local minima, we enlarge the detected obstacle cube
using a bounding ellipsoid with semi-major axes proportional
to the cube dimensions, i.e.

(ako , b
k
o , c

k
o) =

√
3

2
(lko , w

k
o , h

k
o), (5)

and a rotation matrix Rko indicating the obstacle orientation
(yaw) in the world frame.

IV. ROBUST COLLISION AVOIDANCE

In this section, we present the robust obstacle avoidance
method using chance constrained model predictive control
(CC-MPC). The method is based on [5] which is used
for collision avoidance in a controlled environment with an
overhead motion capture system. We extend it to an on-board
vision based system, by furthering considering the camera’s
limited filed of view constraints and yaw control of the MAV.

A. Model Predictive Controller

To formulate the MPC, we first consider the MAV’s dy-
namics model, described by a stochastic nonlinear discrete-
time equation,

xk+1 = f(xk,uk) + ωk, x0 ∼ N (x̂0,Γ0), (6)

where xk = [pk,vk, φk, θk, ψk]T ∈ X denotes the state of
the MAV (position, velocity and orienting) and uk ∈ U the
control input at time step k. X and U are the admissible
state and control space respectively. The initial state x0 is
obtained from a state estimator with mean x̂0 and covariance
Γ0. f denotes the nonlinear dynamics. We consider the
MAV’s motion disturbances as Gaussian process noise ωk ∼
N (0,W k). See [5] for details of the dynamics model.

At every time step, for obstacle avoidance, we formulate
and solve online a receding horizon constrained optimization



problem with N time steps and planning horizon τ = N∆t,
where ∆t is the sampling time, as follows,

min
x̂1:N ,u0:N−1

N−1∑

k=0

Jk(x̂k,uk) + JN (x̂N ) (7a)

s.t. x̂0 = x̂(t0), (7b)

x̂k = f(x̂k−1,uk−1), (7c)

G(x̂k,Γk) ≤ 0, (7d)

uk−1 ∈ U , (7e)

x̂k ∈ X , (7f)
∀k ∈ {1, . . . , N},

where Jk denotes the cost term at time k and JN denotes
the terminal cost, G is a function representing the state
constraints, which are described in detail in the following.
Γk is the MAV state uncertainty covariance at time k. We
further denote by Σk the 3×3 covariance matrix of the MAV
position pk, extracted from Γk.

B. Cost Function
We now describe the components of the cost function

presented in Eq. (7a).
1) Goal navigation: Let pg be the given goal position

of the MAV. We minimize the displacement between its
terminal position in the planning horizon and its goal. To
this end, we define the terminal cost term,

JN (x̂N ) =
∥∥p̂N − pg

∥∥
Qg

, (8)

where Qg is a tuning weight coefficient.
2) Control input cost: The second cost term is to mini-

mize the MAV control inputs, designed as a stage cost,

Jku(uk) =
∥∥uk

∥∥
Qu

, (9)

where Qu is a tuning weight coefficient.
3) Collision cost: To improve flight safety, we also intro-

duce an obstacle potential field cost based on the sigmoid
function. Denote by dko =

∥∥p̂k − p̂ko
∥∥ the nominal distance

between the MAV and obstacle o. Then at time stage k, the
potential field cost corresponding to obstacle o is

Jko (p̂k) =
Qo

1 + exp (λo(dko − ro))
, (10)

where Qo is a tuning weight coefficient, λ is a parameter
defining the smoothness of the cost function and ro is a
tuning threshold distance between the MAV and the obstacle
where the collision cost is Qo/2. The reason to use a sigmoid
function is to achieve a smooth and bounded collision cost
function.

4) MAV yaw control: Since the MAV has a limited field of
view, it is generally desirable to make the camera axis, hence
the yaw orientation aligned with the direction of motion.
Instead of employing a velocity tracking yaw control method
as in [25] which may generate infeasible yaw trajectories, we
design a cost function to minimize the deviation between the
MAV’s yaw and motion direction,

Jkψ(ψk) = Qψ(ψk − ψ̄k)2, (11)

where Qψ is a tuning weight coefficient, ψ̄k = arctan
v̂ky
v̂kx

indicates the MAV’s motion direction angle. To reduce
computation time, we compute ψ̄k based on the MAV’s last-
loop planned trajectory.

Finally, the overall stage cost of the formulated MPC is

Jk(p̂k,uk) = Jku(uk) + Jko (p̂k) + Jkψ(ψk). (12)

C. Constraints

1) Collision chance constraints: For the obstacle, mod-
elled as an ellipsoid, at position pko with semi-principal
axes (ako , b

k
o , c

k
o), the MAV at position pk with radius r is

considered to be in collision with it if

Cko : (pk − pko)TΩko(pk − pko) ≤ 1

where Ωko = Rk,To diag( 1
(ako+r)

2 ,
1

(bko+r)
2 ,

1
(cko+r)

2 )Rko .
In this paper, we take into account the MAV state esti-

mation uncertainty and obstacle sensing uncertainty. Hence,
the collision avoidance constraints would be satisfied in
a probabilistic manner, which are formulated as chance
constraints:

Pr(Cko ) ≤ δ, ∀k = 1, . . . , N, (13)

where δ is the probability threshold for robot-obstacle colli-
sion.

By assuming pk and pko are according to Gaussian distri-
butions (obtained from our estimators), i.e. pk ∼ N (p̂k,Σk)
and pko ∼ N (p̂ko ,Σ

k
o), the chance constraint in Eq. (13) can

be transformed into a deterministic constraint with their mean
and covariance as follows [5]

nk
T

o Ωk
1
2

o (p̂k − p̂ko)− 1 ≥ erf−1(1− 2δ)

·
√

2nkTo Ωk
1
2

o (Σk + Σko)Ωk
1
2

o nko

(14)

where nko = (p̂k− p̂ko/)
∥∥p̂k − p̂ko

∥∥, erf(x) = 2√
π

∫ x
0
e−t

2

dt
is the standard error function for normal distribution.

2) FOV Constraints: To ensure flight safety, the MAV
planned trajectory should be within its current limited field
of view (FOV) and limited depth sensing range. Given the
MAV’s current pose, its three-dimensional FOV with limited
depth sensing range can be described by an intersection of
five half-spaces,

FOV k := {p | nkjp ≤ mk
j }, j = 1, . . . , 5, (15)

where nkj and mk
j are parameters of the half-spaces. Hence,

the FOV constraints are formulated as

pk ∈ FOV k, ∀k = 1, . . . , N. (16)

D. MAV State Uncertainty Propagation

Evaluating the collision chance constraints in Eq. (14)
requires calculating the MAV state, in particular, position
uncertainty covariance at each time step. High-precision
uncertainty propagation for nonlinear systems, as in Eq.
(6) could be very computationally intensive [26]. In this
paper, to achieve fast real-time uncertainty propagation, we



approximately propagate the MAV state uncertainty using an
Extended Kalman Filter (EKF) based update, i.e.

Γk+1 = F kΓkF k
T

+W k, (17)

where W k is the process noise accounting for motion dis-
turbances, F k = ∂fk

∂x |x̂k,uk is the state transition matrix of
the MAV. Then the position uncertainty covariance Σk can be
extracted from Γk. Note that in the above equation, the com-
putation of F k correlates the robot state and control inputs,
which will introduce additional variables in the optimization
problem Eq. (7) and increases the computation time greatly.
To this end, we propagate the MAV state uncertainty based
on its last-loop trajectory and control inputs before solving
this-loop optimization problem.

V. RESULTS

In this section, we describe our implementation of the
proposed approach and evaluate it in real-world experiments.
A video showing the flight test results accompanies this
paper.

A. Implementation and Hardware

Our experimental platform is the Parrot Bebop 2 quadro-
tor1 mounted with an NVIDIA Jetson TX2 Module2 and an
Intel RealSense Depth Camera D435i3, as shown in Fig. 4.
The Parrot Bebop 2 allows for executing control commands
sent via ROS4. The D435i camera is dually used for visual-
inertial odometry and depth image sensing, which has a
87◦ × 58◦ FOV and 5 m depth sensing range. The TX2 is
used to perform all on-board computation and is connected
with the Bebop 2 via WiFi.

We use a filter-based stereo visual-inertial odometry algo-
rithm, the S-MSCKF [23], for state estimation of the MAV,
which runs at 15 Hz. The camera depth images are received
at 60 Hz and the obstacle detection and tracking is running at
frame rate. We rely on the ACADO toolkit [27] to generate
a fast C solver for our MPC, in which a sampling time of
60 ms is used and the prediction horizon is set to 1.5 s. The
radius of the MAV is set as 0.4m. The two closest detected
obstacles are fed to the MPC for collision avoidance. The
collision probability threshold is set as δ = 0.03. In order to
obtain some quantitative results, in the lab scenarios we use
an external motion capture system (OptiTrack) to measure
the position of the MAV and moving obstacles, which is
only used as ground true data.

B. Obstacle Detection and Tracking Performance

We first evaluate the obstacle detection and tracking per-
formance for moving obstacles. Fig. 1(a) shows a lab scene
with two walking human obstacles. We put the camera at
the origin of the world frame and recorded a dataset of
which the two humans were walking around at a speed
of approximately 1.2 m/s. Position and velocity of the two

1https://www.parrot.com/us/drones/parrot-bebop-2
2https://developer.nvidia.com/embedded/jetson-tx2
3https://www.intelrealsense.com/depth-camera-d435i/
4https://bebop-autonomy.readthedocs.io

Fig. 4: MAV used in the experiments. It is equipped with an
NVIDIA Jetson TX2 Module for all on-board computation,
an Intel RealSense Depth Camera D435i dually for visual-
inertial odometry and depth image sensing.

TABLE I: Detection and tracking errors of moving obstacles.

Moving
obstacle

Average estimation error
Position (m) Velocity (m/s)

No. 1 0.28 0.47
No. 2 0.25 0.41

human obstacles are obtained using our obstacle detection
and tracking algorithm. Table I shows the average position
and velocity estimation errors of the two moving obstacles
comparing with ground truth measurements. It can be ob-
served that the average position estimation error is around 0.3
m and that of velocity can be up to 0.5 m/s, which indicates
the obstacle sensing uncertainty should be taken into account
when planning robust collision-free trajectories for the MAV.
In practice, the obstacle’s velocity estimation may be very
noisy and has a very large uncertainty covariance. In this case
we bound the Σko,v in Eq. (4) when predicting the obstacle’s
future positions and corresponding uncertainty covariances.

C. Obstacle Avoidance in Dynamic Environments

We tested the system in a variety of flight tests. The results
of two typical scenarios are particularly presented here.

1) Scenario 1 (Flying in a confined lab space): The MAV
is required to navigate from a start point to an end point
while avoiding two walking humans. Fig. 5 shows a series
of snapshots and the MAV on-board camera grayscale images
taken during the experiment. In this scenario, we performed
the experiment five times. Fig. 6a shows the measured
distance between the MAV and the two moving human
obstacles over time in the five experiments. The distance
is computed, based on ground truth measurements, as the
closest distance between the MAV’s position and the obstacle
ellipsoid’s surface (with semi-major axis (0.4, 0.4, 0.9)m). In
Fig. 6b, we cumulate all the distance data. It can be observed
that in all instances a minimum safe separation of 0.4 m
was achieved and therefore collision with the humans were
avoided. A maximal speed of around 1.6 m/s of the MAV
was observed in this experiment.

The boxplots of the on-board runtimes in this scenario is
shown in Fig. 6c. For the runtimes of the obstacle detection
and tracking, the 75th percentile is always below 8 ms, which
is fast enough to be run at frame rate (60 Hz). For the



Fig. 5: A sequence of images during the experiment Scenario 1. The MAV is required to fly from a start point to an end
goal while avoiding two walking humans. Top: Snapshots of the experiment. Bottom: On-board camera grayscale images.

(a) Distance to obstacles over time (b) Histogram of distance (c) MAV on-board runtimes

Fig. 6: Quantitative results of the experiment Scenario 1. (a) Distance between the MAV and the two moving obstacles
(magenta and blue) over time during 5 experiments. (b) Histogram of all the distance data. (c) On-board runtimes of the
MAV state estimation (VIO), obstacle detection and tracking, and collision-free trajectory optimization (MPC).

Fig. 7: Results of the experiment Scenario 2. The MAV is flying in a corridor while avoiding static and moving obstacles.
(a) A snapshot during the experiment. (b) An on-board grayscale image captured in the experiment and (c) visualization of
the corresponding obstacle detection and trajectory planning results.

runtimes of the MPC framework, the 75th percentile is always
below 22 ms, indicating the framework can be run efficiently
in real time.

2) Scenario 2 (Flying in a long corridor): The MAV is
flying in a long narrow corridor where there are both static
and moving obstacles. Fig. 7 shows a snapshot taken during
the experiment. A maximum speed of around 2.4 m/s was
achieved by the MAV in the experiment. Detailed results of
the experiment can be found in the video accompanying this
paper.

VI. CONCLUSION

We presented an on-board vision-based obstacle avoidance
approach for MAVs navigating in dynamic environments.

Flight test results in a variety of environments with moving
obstacles demonstrated the effectiveness of the proposed
approach. We adopted a fast three-dimensional obstacle
detection and tracking algorithm based on stereo depth
images which can run at a frame rate of 60 Hz. We took
into account the obstacle sensing uncertainty by using a
chance constrained model predictive controller (CC-MPC) to
generate robust local collision-free trajectories for the MAV.
We implemented the approach on a computational power-
limited quadrotor platform, where the obstacle detection and
tracking has a mean computation time of 8 ms and that of the
MPC is 16 ms. In real-world indoor experiments, the MAV
is shown to be able to avoid walking human obstacles at a
maximum speed of 2.4 m/s.
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Chapter 3

System Design

In this chapter, the design of the experimental platform is presented. Specifically, consid-
erations of the hardware selection and the software architecture design are discussed.

Figure 3-1: A Parrot Bebop21 is equipped with a forward-looking Intel RealSense depth camera
D435i2 and an onboard computational unit Nvidia Jetson TX23. The OptiTrack camera4 and the
equipped reflective marker are used for ground truth data collection.

1https://www.parrot.com/us/drones/parrot-bebop-2
2https://www.intelrealsense.com/depth-camera-d435i/
3https://developer.nvidia.com/embedded/jetson-tx2
4https://optitrack.com/
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3-1 Platform Design

The aim of the system design is to construct a small-size and light-weight micro aerial vehicle
which can navigate autonomously with only onboard sensing and computing. To accomplish
this, the autonomous aerial vehicle is desired to be equipped with onboard sensors whose range
is not less than 5 m. Besides, the system should carry a powerful computational unit, which
is able to perform all the software components including obstacle sensing, state estimation,
and trajectory planning in real-time. These considerations imply that the search for such an
aerial vehicle system is a weight-power trade-off, which is discussed in the following.

3-1-1 Sensing Module

In order to precept obstacles in the aerial vehicle’s local neighborhood, the onboard sensor is
desired to have the capability to measure the distance. In some approaches [7, 32], LIDAR
is equipped on the aerial vehicles for localization, mapping and obstacle detection. Although
the LIDAR measurements are accurate and available on long-distance, 3D LIDAR sensors
are too heavy (ranging from 590 g1 to 1300 g2) to be carried by a micro aerial vehicle.
Instead, 2D LIDAR are used in the aforementioned approaches. The problem of planar
LIDAR is that it only provides 2D data and it is not suitable for the navigation in 3D space.
Alternatively, some other approaches [10, 11, 13] use stereo cameras (or depth cameras),
which is particularly useful for providing rich 3D information. Besides, stereo cameras can
not only measure the distance of obstacles but also provide fast and accurate state estimation
[33, 6, 34, 35, 36]. These considerations determine the choice that depth camera is a suitable
sensor for this platform. And in order to figure out the most suitable onboard depth camera
for the autonomous aerial vehicle, a list of different commercially available depth (or stereo)
cameras are shown in Table 3-1.

Table 3-1: Comparison between various commercially available depth (or stereo) cameras.

Camera Weight
(g)

Power
(W)

Max Range
(m)

Depth Image
Processor IMU

DUO MLX3 12.5 2.5 - 7 3

ZED Mini4 62.9 1.9 12.0 7 3

Intel RealSense D435i 72.0 3.5 10.0 3 3

MYNT Depth5 184.0 3.5 18.0 3 3

Orbbec Astra6 300.0 2.4 8.0 3 7

Note that DUO MLX is a stereo camera, the max range of depth measurement is not provided
officially. Nevertheless, the length of its baseline is only 30 mm, which suggests that the
depth measurement at long distance will be inaccurate.

1https://velodynelidar.com/vlp-16-lite.html
2https://velodynelidar.com/hdl-32e.html
3https://duo3d.com/product/duo-minilx-lv1
4https://www.stereolabs.com/zed-mini/
5http://www.myntai.com/en/mynteye/depth
6https://orbbec3d.com/product-astra-pro/
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The consideration of the camera selection includes the camera’s weight and power consump-
tion, these two factors will affect the stability of flight maneuvers and flight endurance. Thus,
a camera with lighter weight and lower power consumption is more preferable. In addition,
the embedded depth image processor should be also highlighted. With such a processor, the
stereo algorithm can be performed on the depth camera instead of the onboard computational
unit, which will save a large amount of memory and computational efforts. Also, the inte-
grated IMU sensor is a valuable plus, as by fusing the inertial measurement with the visual
information, the accuracy of state estimation will be improved without doubts.

From the above survey of the commercially available cameras, Intel RealSense D435i is con-
sidered the most suitable choice among the proposed camera since it is relative light-weight
and it integrates an embedded depth image processor and an IMU. Figure 3-2 shows the
available visual information from Intel RealSense D435i. The visual information is captured
at a rate of up to 90 Hz, which consists of a pair of global-shutter, monochrome images, a
rolling-shutter RGB image ,and a depth image. And the angular rates and acceleration from
the integrated IMU are measured at a rate of 250 Hz.

(a) (b)

(c) (d)

Figure 3-2: The onboard visual information provided by Intel RealSense D435i: (a) left and
(b) right image of the stereo camera, (c) depth image generated by the embedded depth image
processor and (d) RGB image.
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3-1-2 Computing Module

In order to perform all the computational components onboard, Nvidia Jetson TX2 is selected
as the onboard computational unit. Since this single board computer is credit card sized and
its weight is 126 g, which is possible to be carried by a small size aerial vehicle. Besides,
compared with other single board computers, it is computationally powerful and has a larger
memory (as can be seen in Table 3-2). Especially, its GPU outperforms the others’, from
which the onboard image process will benefit. With these features, it is sufficiently powerful
to perform optimal control, vision-based state estimation and obstacle sensing in real-time.
This will certainly improve the aerial vehicle’s performance with aggressive maneuvers in
dynamic environments.

Table 3-2: Comparison between various commercially available single board computers.

Computer Weight
(g)

Power
(W) CPU RAM

(GB)

GPU
Performance
(GFLOPS)

RaspberryPi 3B1 45.0 12.5 4×ARM Cortex-A53,
quad-core, 64-bit. 1 6.2

ODROID XU42 60.0 20.0
4×ARM Cortex-A15,
4×ARM Cortex-A7,
octa-core, 32-bit.

2 122

UP Board3 80.0 20.0 Intel Atom x5-Z8350,
quad-core, 64-bit. 4 294

Jetson TX2 126.0 20.0
4×ARM Cortex-A57,
NVIDIA Denver2,
hexa-core, 64-bit.

8 750

Jetson Nano4 136.0 20.0 4×ARM Cortex-A57,
quad-core, 64-bit. 4 256

Note that the weight of Jetson TX2 consists of the weight of a Jetson TX2 core module (85 g)
and an Orbitty Carrier5 (41 g).

In addition to the computationally capacity and memory, Nvidia Jetson TX2 also integrates
a wireless module, which supports dual-band WIFI. By connecting it with an antenna (an
extremely light-weight WIFI antenna6 is used), it can then provide a stable wireless commu-
nication between the ground control station and itself. This is a valuable plus because having
a ground control station enables the operator to monitor, visualize and control the aerial
vehicle during development and experiment. Also, the USB 3.0 port on the Nvidia Jetson
TX2 ensures the reception of massive visual information generated by the depth camera at a
high frequency.

1https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
2https://wiki.odroid.com/odroid-xu4/odroid-xu4
3https://up-board.org/up/specifications/
4https://developer.nvidia.com/embedded/jetson-nano-developer-kit
5http://connecttech.com/product/orbitty-carrier-for-nvidia-jetson-tx2-tx1/
6https://www.delock.com/produkte/G_88984/merkmale.html
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3-1-3 Drone Kit

Parrot Bebop2 is selected as the drone kit, as it is widely used among academia [3, 8, 29,
37, 38] and also because the various existing Software Development Kit (SDK)s (such as
bebop_autonomy1 and Paparazzi UAV2) which are well supported by their corresponding
mature development communities. With these SDKs, the quadrotor can be easily controlled
by giving it high-level control commands (for example pitch, roll, yaw rate, and vertical veloc-
ity). In this work, bebop_autonomy is used as the driver since it provides a Robot Operating
System (ROS) wrapper which can be immediately used for the prototype construction.

From the aspect of Parrot Bebop2’s power supply3, assuming the power-to-weight ratio is
constant, the flight time T ′BAT can be approximated by the following calculations.

Known the battery’s rated capacity CBAT is 3350 mAh, rated voltage VBAT is 11.4 V and
the claimed fly time without payload TBAT is up to 30 minutes. The power-to-weight ratio
φBAT is:

φBAT = CBATVBAT
TBATWdrone

= 3.35Ah× 11.4V
0.5h× 0.5 kg

= 152.76W/kg

(3-1)

where Wdrone is the weight of Parrot Bebop2. After adding Wload = 300 g extra payload to
the quadrotor, the total current draw will be:

Itotal = φBAT (Wdrone +Wload)
VBAT

+ IRealSense + IJetson

= 152.76W/kg × (0.5 kg + 0.3 kg)
11.4V + 0.7A+ 2A

= 13.42A

(3-2)

The flight time of the experimental platform can then be calculated as:

T ′BAT = CBAT
Itotal

≈ 0.25h (3-3)

As for Parrot Bebop2’s payload capacity, the selected drone kit is small-size (frame size is
290 mm) and light-weight (500 g) while its payload-capacity is sufficiently large to carry the
extra payload. Although its payload capacity is not officially published, this is reflected by
the fact that the 13.42 A estimated current draw is lower than the 16.75 A rated discharge
current.

In addition to the above estimation, the flight time and the payload capacity are validated
with several flight tests, which illustrates that Parrot Bebop2 is sufficiently powerful to carry
all the onboard sensing and computing modules with a flight time about 12 minutes.

1https://bebop-autonomy.readthedocs.io
2https://wiki.paparazziuav.org
3https://www.parrot.com/us/spareparts/drones/power-battery-bebop-2-power
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3-1-4 Mount

To attach all the selected sensing and computing components to the drone kit, a mount is
designed and manufactured. The design has three main considerations. Firstly, the weight
center of the extra payload should be well horizontally aligned with the weight center of the
drone kit for the stable maneuver. Secondly, the propeller is not in the camera’s Field of
View (FOV) in order to achieve full visibility. Finally, the mount should be firmly attached
to the drone kit. Figure 3-3 shows the mount design and gives assembly instructions of the
experimental platform.

Figure 3-3: Assembly instructions of the experimental platform.
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3-2 Software Architecture

As introduced in section 3-1, the autonomous MAV system consists of a depth camera (which
provides both the visual and inertial information), a computational unit, and a drone kit.
Besides, a ground control station is used to monitor, visualize and operate the aerial vehicle
during the flight. In order to run the big system properly, these modules should be connected
with each other. Figure 3-4 shows the block diagram of the system, which also demonstrates
the communications among different hardware modules and software components.

Figure 3-4: A block diagram of the whole system. The blocks are marked by different colors for
the discrimination of onboard (blue) and offboard (orange) modules.

As can be seen from the block diagram, the overall system has three basic software compo-
nents, namely state estimation, obstacle sensing, and trajectory planning. And in order to
integrate these individual components into a unified system, ROS is used as the framework
of the software architecture. With ROS, each software component can be run individually
as nodes. And each node can receive and transmit data with other nodes in the same en-
vironment. This property is certainly developer-friendly since it allows distributed building,
testing and debugging. Besides, ROS is popular and widely used in academia and indus-
try. Under a dozen years of development, there are a huge amount of libraries and tools are
available in ROS ecosystem and can be easily adapted for a new project. For example in
Figure 3-4, several software components are adapted from developed tools, such as the ROS
wrapper of Intel RealSense D435i1, joystick driver2, and bebop driver (bebop_autonomy).
Some messages passed among these components are available as well, for example images3,
IMU4, detections5, odometry6, and control7. These features make ROS an ideal framework
for the development of this autonomous MAV system.

1http://wiki.ros.org/RealSense
2http://wiki.ros.org/joy
3http://docs.ros.org/melodic/api/sensor_msgs/html/msg/Image.html
4http://docs.ros.org/melodic/api/sensor_msgs/html/msg/Imu.html
5http://docs.ros.org/melodic/api/vision_msgs/html/msg/Detection3D.html
6http://docs.ros.org/melodic/api/nav_msgs/html/msg/Odometry.html
7http://docs.ros.org/api/geometry_msgs/html/msg/Twist.html
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Chapter 4

MAV State Estimation

Several previous works [39, 36] have already compared different vision-based state estima-
tion algorithms using a well-known dataset [40]. However, since there are differences exist
between our experimental platform and that of [40] (for example the IMU quality and sensor
synchronization), a set of data is collected with our setup to evaluate their performances and
select the most suitable one for this project. In this chapter, several state-of-art algorithms
are introduced and compared based on our dataset.

4-1 Visual Odometry

The research of visual odometer has been undertaken for decades, the main idea of the visual
odometer is tracking features in sequential views and estimating the camera’s ego-motion.
There are vast of approaches based on different image sensors (e.g. monocular [41, 42, 43],
stereo [44, 45] and RGBD camera [46]). For the approaches with the monocular camera,
specific initialization is necessary for the estimation of the landmarks’ depth. Since only the
bearing information of the extracted features can be extracted from the monocular image,
the scale factor needs to be estimated by direct measurements or fusing with other sensors
(e.g. IMU, range finder) [47]. Compared with monocular-based approaches, using a stereo
camera can avoid the uncertainty of the scale factor. Known the baseline b of the stereo
camera, landmarks’ depth can be obtained via stereo triangulation. RGBD cameras also
provide the direct measurement of the depth, however, it is too computationally heavy to
perform the real-time dense image processing on nowadays single-board computer. For these
aforementioned reasons, monocular-inertial or stereo-inertial are preferable for on-board MAV
state estimation. Indeed, there are several state-of-art vision-inertial odometers, which have
already shown their robustness and accuracy with power-limited computers (for example,
OKVIS [6], ROVIO [34] and S-MSCKF [36]).
The architecture of a visual odometer consists of front-end and back-end. The front-end
estimates camera’s ego-motion by extracting and matching correspondences, and the back-
end refines the estimated camera poses as well as the landmarks’ positions. Typically, previous
approaches can be divided into two categories: optimization-based and filtering-based.
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Optimization-Based The optimization-based approaches find the maximum likelihood so-
lution by assuming the measurement noise is distributed normally. The optimal camera poses
Cj and the landmarks’ positions in space Li are obtained by minimizing the reproject error
of n landmarks in m camera views:

min
Cj ,Li

m∑
j=1

n∑
i=1

d(lji,Cj(Li))2, (4-1)

where lji is Li’s corresponding feature in the camera view Cj , and d(a,b) is the Euclidean
distance between a and b.

The problem of optimization-based approaches is that the computation of global bundle ad-
justment is extremely costly because it iteratively computes the optimal 3n+6m parameters,
which will grow unbounded with the increase of m and n. Sparse bundle adjustment is one
of the potential solutions to alleviate the computation load, because when solving Eq. (4-1)
with Levenberg-Marquardt algorithm, the normal equation matrix has a certain sparse block
structure [48]. Besides, to achieve real-time performance, computation complexity should
not grow without bound. A common solution to reduce the computation complexity is only
optimizing the keyframe (some keyframe selection methods are proposed in [49, 6]) within
the sliding window.

Filtering-Based Compared with the optimization-based approaches, the filtering-based ap-
proaches are more computationally efficient but less accurate [6]. The filtering-base ap-
proaches take the camera extrinsic parameters C as well as the landmarks’ positions li as
the filter’s states:

x̂filtering =


Ĉ
l̂1
...
l̂n

 , Pfiltering =


PCC PCl1 · · · PCln

Pl1C Pl1l1 · · · Pl1ln

...
... . . . ...

PlnC Plnl1 · · · Plnln

 . (4-2)

In the prediction step, the robot’s state and its uncertainty are calculated by using a pre-
defined motion model. Once a new measurement is observed, the estimation and the uncer-
tainty are updated with a measurement model [50].

Besides its inaccuracy, the uncertainty will grow unbounded with increasing traveled distance
because of the linearization error in both the filter’s propagation and update steps, which
is detrimental to the state estimation performance. To alleviate this, some techniques are
proposed (such as the robocentric local approach in [51] and anchor-centric parameterization
in [52]).

Combining the visual measurement with the inertial measurement can always lead to a better
estimation of the odometer because these two sensors have complementary characteristics.
According to [6], visual-inertial fusion approaches can be separated into two main categories:
loosely-coupled and tightly-coupled.
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(a) (b)

Figure 4-1: The block diagram of (a) loosely-coupled approaches and (b) tightly-coupled ap-
proaches.

Loosely-coupled Loosely-coupled is the simplest way to fuse the inertial measurement with
the visual measurement, it treats the inertial measurement as an independent module to aid
the vision-only estimation (which can be gathered from structure-from-motion) by using an
Extended Kalman Filter (EKF).

Tightly-coupled Tightly-coupled jointly optimizes both the camera and IMU measurements
from the raw measurement level. Compared with the loosely-coupled approaches, it is more
accurate but computational heavier. An example given by [6] shows that the tightly-coupled
approach outperform the loosely-coupled as well as the vision-only approaches (as shown in
Figure 4-2).

Figure 4-2: An example of visual-(inertial) fusion comparison [6].

4-1-1 Comparison of VO Algorithms

In order to figure out the most suitable visual-inertial algorithm for the designed experi-
mental platform (as introduced in Chapter 3), three state-of-art approaches are investigated,
namely Robust Visual Inertial Odometry (ROVIO) [34], Visual-Inertial System (VINS) [35]
and Stereo Multi-State Constraint Kalman Filter (S-MSCKF) [36].
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ROVIO ROVIO1 is a filtering-based approach, which use monocular image and inertial
measurements to estimate the odometry. However, [36] concludes that it may not perform
well when the scene is far from the camera. Besides, its performance is not comparable with
the other approaches during aggressive flights (around 17 m/s).

VINS VINS is an optimization-based approach, which performs non-linear optimization on
a sliding window to obtain highly accurate visual-inertial odometry by fusing pre-integrated
IMU and observed landmarks. The algorithm is originally designed for a minimum visual-
inertial system (a monocular camera and a low-cost inertial measurement unit), and later it
is extended as a multi-sensor state estimator2. In the following comparisons and evaluations,
VINS with two different multi-sensor combinations are presented: stereo camera only, stereo
camera with an IMU unit.

S-MSCKF S-MSCKF3 is a filtering-based approach, which uses FAST detector [53] and
Kanade-Lucas-Tomasi (KLT) tracker [54] for efficiency. It maintains sequential camera poses
in the state vector and uses the visual measurements of the same landmark across multiple
views to form a multi-constraint update. According to the author, S-MSCKF’s accuracy is
comparable with VINS in the fast flight test, while the computational load is much lower
than the one of VINS.

Experiment Setup

The goal of this experiment is to test the performance of state-of-art visual-inertial odometry
algorithms including ROVIO, S-MSCKF and VINS on a low-cost aerial vehicle platform. The
selected low-cost hardware setup used for the data collection in this experiment consisting of
a Parrot Bebop24, a forward-looking Intel RealSense Depth Camera D435i 5 visual-inertial
sensor and a NVIDIA Jetson TX26 (as introduced in Chapter 3).

In addition to the the experimental platform, Optitrack7 motion capture system was also used
for the data collection (as can be seen from Figure 4-3). The onboard data was logged from
the visual-inertial sensor, which includes 15 Hz stereo infra images with resolution 424× 240
and 250 Hz IMU data. For the ground truth data, the motion capture system measured the
aerial vehicle’s position and orientation by tracking the reflective markers adhered to it. The
external measurement was highly accurate and logged at 150 Hz.

Experiment Result

In order to perform a quantitative analysis, the trajectories estimated by the aforementioned
visual odometry algorithms were firstly aligned with the ground truth trajectory measured

1https://github.com/ethz-asl/rovio
2https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
3https://github.com/KumarRobotics/msckf_vio
4https://www.parrot.com/us/drones/parrot-bebop-2#lightweight
5https://www.intelrealsense.com/depth-camera-d435i/
6https://developer.nvidia.com/embedded/buy/jetson-tx2
7https://optitrack.com/
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Figure 4-3: Parrot Bebop2 with a forward-looking visual-inertial sensor and an onboard compu-
tational unit. The reflective markers are equipped for collecting ground truth.

by the motion capture system. The trajectory’s alignment transformation matrix T was
calculated with only the first N = 100 logged estimated positions {p̂rawi}N−1

i=0 and their
corresponding ground truth position {pi}N−1

i=0 . By solving the minimization problem on the
distance between the p̂rawi and pi, the aligned estimation {p̂i}N−1

i=0 can be computed.

T = arg min
T

N−1∑
i=0
‖pi −Tp̂rawi‖2,

p̂i = Tp̂rawi i = 0, 1, 2, . . . ,N− 1.
(4-3)

Figure 4-4 gives an intuitive comparison result of trajectories estimated by the aforementioned
visual odometry algorithms. In order to firstly evaluate the scaling accuracy of different ap-
proaches, the estimated trajectories and their corresponding ground truth were firstly divided
into K = 10 sub-trajectories { ˆTraji}K−1

i=0 and {Traji}K−1
i=0 . And the scale error was then com-

puted by calculating the ratio between the traveled distance of the estimated sub-trajectories
dist( ˆTraji) and their corresponding ground truth dist(Traji).

∆si = 1
K

K−1∑
i=0
|dist(

ˆTraji)
dist(Traji)

− 1| (4-4)

An overview of the aforementioned visual odometry algorithms’ scaling errors is shown in the
Table 4-1. As can be seen, the scale error of ROVIO is much higher than the others’. This
is mainly because ROVIO is a monocular-inertial odometer, whose scale factor is recovered
with the low-quality IMU measurements, and the noisy inertial information led to the scaling
ambiguity. While S-MSCKF and VINS are stereo-inertial odometry, which does not have the
scale ambiguity once the stereo rig is well-calibrated.

To evaluate the proposed algorithm’s local accuracy, the Relative Pose Error (RPE) of each
estimated position is calculated with the equation given by [55]. The estimated trajectory
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Figure 4-4: Red trajectories are estimated by (a) ROVIO, (b) S-MSCKF, (c) VINS (Stereo), (d)
VINS (Stereo+IMU) respectively. The estimated trajectories (red) are aligned with the ground
truth (blue).

Table 4-1: The scale error of proposed visual (-inertial) odometry algorithms.

VO Scale Error
Variance

Scale Error
Mean

ROVIO 0.02650 0.31032
S-MSCKF 0.00110 0.05059
VINS (Stereo) 0.00055 0.04433
VINS (Stereo+IMU) 0.00050 0.04291

was firstly divided into M sub-trajectories with constant time interval ∆t = 0.5s, and the
Relative Pose Error was extracted by

RPE =
M−1∑
i=0

trans

((
Q−1

i Qi+∆t
)−1 (

P−1
i Pi+∆t

))
(4-5)

where Pi ∈ SE(3) and Pi+∆t ∈ SE(3) represent the starting and ending pose of the aligned
estimated trajectory, Qi ∈ SE(3) and Qi+∆t ∈ SE(3) are their corresponding ground truth
and trans(•) is the function extracting the translational error.

The average translational components of the Relative Pose Error were then extracted and used
as the representation of the local accuracy. As can be seen from Table 4-2, optimization-based
approaches (VINS (Stereo) and VINS (Stereo+IMU)) are more accurate than filtering-based
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approaches (ROVIO and S-MSCKF). Note that the high translational error of ROVIO mainly
due to the scale ambiguity.

Table 4-2: The RPE of proposed visual odometry algorithms on our dataset.

VO Translational RPE
(m)

ROVIO 0.14701
S-MSCKF 0.08425
VINS (Stereo) 0.07647
VINS (Stereo+IMU) 0.07481

In addition to the accuracy, the computational loads of the aforementioned algorithms are
another critical concern. The average computational load and the processing time of each
aforementioned visual odometry with an Nvidia Jetson TX2 were then counted and listed in
Table 4-3.

Table 4-3: The average computational load and processing time of proposed visual odometry
algorithms.

VO CPU
(%)

Processing Time
(ms)

ROVIO 10.40 41.3
S-MSCKF 15.06 26.9
VINS (Stereo) 17.51 134.7
VINS (Stereo+IMU) 19.27 138.3

The result is identical with expectation since VINS is an optimization-based method, it should
be computationally heavier than filtering-based methods (ROVIO and S-MSCKF). And
ROVIO is the computationally lightest approach because it is monocular-inertial, the image
processing of monocular images is much faster than those of stereo images. From the result of
the processing time, VINS is not real-time as its processing time is longer than the sampling
time of the stereo camera.

Summary

To summarize, the selection of a suitable state-of-art visual odometry for a low-cost aerial
vehicle platform (for example the aerial vehicle platform introduced in section 4-1-1) requires
the considerations of their accuracy and computational load. In this section, the comparison
of four different algorithms’ accuracy shows that the monocular approach can not provide
a reliable estimation since the low-cost IMU provides noisy inertial measurements, which
introduces scale ambiguity. Additionally, Table 4-2 shows that the optimization-based method
is more accurate than the filtering-based method. Nevertheless, in terms of the computational
load and the processing time, the optimization-based methods are much computationally
heavier than the filtering-based methods (as shown in Table 4-3). S-MSCKF outperforms
among the proposed visual odometry algorithms since it is computationally light. It occupies
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about 15.06% of the CPU and takes 26.9ms for each pair of stereo images which illustrates
that it can be run in real-time. Besides, its transnational Relative Pose Error is approximately
0.07780 m, which is comparable with optimization-based algorithms (such as VINS). These
facts leads to the conclusion that S-MSCKF is the most suitable visual odometry for the
specified aerial vehicle platform.

4-2 Vision-based Simultaneous Localization and Mapping

Different from odometry, which always suffers from long term drifting, Vision-based Simul-
taneous Localization and Mapping (VSLAM) solves this problem by not only tracking land-
marks across multiple camera views but also simultaneously constructing and updating the
environment. Actually, in some modern VIO approaches, this process is already integrated
(for example the loop-closure module in [35]). And to maintain the environment, VSLAM
algorithms need to undergo several stages which include map initialization, place recognition
and optimization. In this section, two state-of-art VSLAM algorithms are compared and
evaluated: namely ORB-SLAM [45] and VINS (with loop-closure).

4-2-1 Comparison of VSLAM Algorithms

In this section, state-of-art VSLAM algorithms are introduced, compared and evaluated.

VINS (loop-closure) As introduced in Section 4-1, VINS estimates the relative camera’s
transformation by solving a non-linear optimization problem within the sliding window. In
this section, the loop-closure module is also integrated so that a full VSLAM system is eval-
uated. This module uses DBoW2 [56], a state-of-art bag-of-word place recognition approach,
to perform place recognition. Once a loop is detected, the current sliding window and the
past poses are aligned by jointly optimizing all the visual-inertial measurements and retrieved
features.

ORB-SLAM (online) ORB-SLAM is another feature-based VSLAM algorithm, it extracts
sparse Oriented FAST and Rotated BRIEF (ORB) features from the camera images and
estimates the camera poses as well as to perform a sparse reconstruction of the environment.
When there is no loop detected, it performs local bundle adjustment to estimate the camera
poses; while a loop is detected, it then corrects the loop key-frame as well as all the map
points seen by the loop key-frame.

ORB-SLAM (offline) Nevertheless, VSLAM algorithms are so computationally heavy that
they can not be performed with a low-cost computational unit at a high frame rate. To tackle
this problem, ORB-SLAM is run in offline mode, which only performs place recognition: a
sparse feature map is constructed with stereo camera in advanced, and monocular images are
then used to extract the landmarks and estimate the camera poses.
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Experiment Setup

In order to evaluate different VSLAM methods’ real-time performances, two scenarios were
created, in the first scenario, all the aforementioned algorithms were fully online including
both the localization and mapping; in the second scenario, only the re-localization with
monocular camera was run online while the mapping of the static indoor environment was
built offline. To achieve this, another dataset was recorded with the same platform and in
the same environment for map building and the dataset captured in section 4-1-1 was then
used for latter comparison between VO and VSLAM algorithms.

Experiment Result

Different from the relative estimation obtained from visual odometry algorithms, in the case
that the aerial vehicle is flying in a known scene, the estimated pose of VSLAM comes from
the direct measurement. For this reason, instead of the first N logged data, the estimated
positions and their corresponding ground truth were used in this experiment with Equation 4-
3. The alignment results of the aforementioned methods are shown in Figure 4-5.
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Figure 4-5: Red trajectories are estimated by (a) ORB-SLAM (online), (b) ORB-SLAM (offline),
(c) VINS (Stereo+IMU+loop closure) respectively. The estimated trajectories are aligned with
the ground truth(blue).

For the evaluation of their accuracy, the Absolute Trajectory Error (ATE) was used in this
experiment since we now more interest in their global consistency instead of their local ac-
curacy. By using the Equation 4-6, the Absolute Trajectory Error is calculated and listed in
Table 4-4.
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ATE =
N−1∑
i=0

(
Q−1

i Pi
)

(4-6)

Table 4-4: The ATE of proposed VSLAM algorithms on our dataset.

VSLAM Translational ATE
(m)

ORB-SLAM (online) 0.13765
ORB-SLAM (offline) 0.09239
VINS (Stereo+IMU+loop closure) 0.20171

From the ATE result, ORB-SLAM (offline) has the most accurate result, this is mainly
because with a pre-generated map, it always directly measures its position by re-localization.
While the online method estimates relative pose when it is in an unknown environment, and
this will certainly keep introducing accumulated error. VINS has the highest ATE among the
three proposed algorithms since ORB [57] is a more distinctive feature than Shi-Tomasi [58],
which illustrates that it is easier for ORB-SLAM to re-localize the camera.
As for the computational load and the processing time of the aforementioned VSLAM al-
gorithms, a statistical result is given in Table 4-5. The ORB-SLAM (offline) is the most
computationally light among the three and it is the only real-time approach since it only uses
the monocular camera. Besides, unlike ORB-SLAM (online) and VINS (Stereo+IMU+loop
closure), ORB-SLAM offline only has the re-localization process, while the other two run the
localization and mapping simultaneously.

Table 4-5: The computational load and processing time of proposed VSLAM algorithms.

VSLAM CPU
(%)

Processing Time
(ms)

ORB-SLAM (online) 46.18 285.4
ORB-SLAM (offline) 28.39 70.5
VINS (Stereo+IMU+loop closure) 25.94 139.6

Summary

ORB-SLAM (offline) is the only one that compatible with the low-cost aerial vehicle among
the three proposed VSLAM algorithms since it runs at the rate approximately the same as
the 15Hz camera. Besides of the computational load, the offline approach provides the most
accurate estimation among the three because the map is generated offline, which ensures the
accurate re-localization result.

4-3 Concluding Remarks

In this chapter, different state-of-art visual odometry and vision-based simultaneous localiza-
tion and mapping algorithms are evaluated with the proposed low-cost aerial vehicle platform
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(as introduced in Chapter 3). Their accuracy and their computational load are compared in
order to find out the most suitable algorithm for MAV state estimation. From the comparison
among VOs, S-MSCKF provides the most efficient performance among the proposed methods,
because it only consumes 15.06% CPU while its RPE is comparable with optimization-based
approaches. And from the comparison among VSLAMs, ORB-SLAM (offline) is the only ap-
proach can be run in real-time. An overview of the comparison of S-MSCKF and ORB-SLAM
(offline) is shown in Table 4-6.

Table 4-6: Comparison between S-MSCKF and ORB-SLAM (offline).

Methods RPE
(m)

ATE
(m) (m) CPU

(%)
Processing Time

(ms)
S-MSCKF 0.08425 0.64968 15.06 26.9
ORB-SLAM (offline) 0.06545 0.09239 28.39 70.5

It is obvious that VSLAM is more accurate than VO as it localizes the camera with not
only the recent visual information but the global map which is updated at run-time. On
the other side, VO is computationally light because it only estimates camera poses with
only the local information. The performance of ORB-SLAM (offline) is very sensitive to
the environments, which suggests that the localization performance will be largely affected if
the environment is different from the one from which the map is generated. Thus, a future
selection between the recommended two approaches (S-MSCKF and ORB-SLAM (offline))
requires further consideration of other functionalities of the applications. For indoor and
long traveling distance navigation, we should opt to use ORB-SLAM (offline) as it provides
drift-free state estimation which is expressed in map coordination. While in the scenario
that the aerial vehicle navigates in an unknown environment, S-MSCKF should be used since
ORB-SLAM (offline) requires a pre-generated map, which is impossible for this scenario. In
addition, for outdoor navigation, because of the change of the environment (such as daylight,
moving objects, etc.), S-MSCKF will be preferable. Thus, S-MSCKF is a better choice for
MAV autonomous navigation in highly dynamic environments.
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Chapter 5

Obstacle Sensing

To navigate safely, the MAV is required to precept the obstacles in its local environment.
Concerning the avoidance of moving obstacles, the obstacle sensing system must be able
to extract essential information of them, which includes their positions, sizes, and motions.
Besides, due to the imperfect measurement, error exists in the extracted information, which
should be also considered to perform safe navigation. In this chapter, some state-of-art
obstacle sensing methods are introduced, and an obstacle sensing method is proposed and
evaluated.

5-1 Obstacle Detection

For an autonomous MAV navigation system, the obstacle detection method has to be robust
and computationally light so that a real-time obstacle detection can be performed with limited
computational power at a high frame rate. In the past decades, a variety of obstacle detection
algorithms have been done in allowing autonomous robots to precept obstacles around them.
Some of them use sophisticated information which requires heavy computation while some
others aim to extract coarse obstacle’s information at high-frequency.

5-1-1 Obstacle Representation

The first consideration of the detection algorithm is the representation of the obstacles. Typ-
ically, the obstacles’ representations can be categorized into two classes: occupied cell map
and extended objects.

Occupied Cell Map The occupied cell map samples the three-dimensional space with unit
cells. This representation is not computationally efficient to be processed as it always contains
massive data. For example in Figure 5-1, a typical 3D point cloud generated by the RealSense
Depth Camera D435i contains 101760 points (the resolution is set as 424× 240). In addition,
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these data always contain measurement noise, which is detrimental to the detection of each
single unit cell. A simple solution to this is down-sampling the data. For example in [10],
the ranging data from a stereo camera is firstly mapped to a 3D spherical grid. Each point
in space is then treated as a virtual ray extended from the stereo camera, and the median
ray in each spherical cell is then extracted. With this method, the computation load is
decreased and the measurement noise is filtered out by the median filter. After that, a binary
occupancy map is then constructed based on the virtual scan result. Other than using a
binary occupancy map, OctoMap [59] uses a probabilistic occupancy estimation to model the
environment, it efficiently stores the map by using octrees and reduces the sensor noise with
probabilistic modeling and updating method. With this kind of obstacle representation, the
MAV can extract a free space by allocating a convex region and ensuring its current and
future positions lie within it. For example in [22], the MAV have successfully navigated in
static environments with velocity up to 3.65 m/s.

(a) (b)

Figure 5-1: (a) A three-dimensional point cloud generated by RealSense Depth Camera D435i
and (b) its corresponding grayscale image. Points are marked by colors according to their heights.

Extended Objects Nevertheless, the obstacle’s kinematic (which including positions, veloc-
ities, and orientations, etc.) can not be extracted with the aforementioned representations,
which is necessary information for moving obstacle avoidance. Instead of using the occupied
cell map, some other approaches use the extended objects to represent the detection obstacle.
For example, cubes are used in [60, 61] and ellipsoids are used in [3, 29]. Compared with
the demanding computation complexity and memory used for the occupied cell map, the ex-
tended objects group the sensing data into bounding shapes. This will certainly decrease the
computation of collision checking and the memory required to store the obstacle. An example
is shown in Figure 5-2, two bounding ellipsoids are extracted from the depth image so that
the collision checking only needs to be performed for the two detections instead of all the 3D
point in space. Besides, extended objects are easier to be used for data association (determine
whether detection in two different camera views belongs to the same object), this property
can be used later for the estimation of the obstacles’ kinematics (as can be seen from Fig-
ure 5-2(d)). These properties lead to the conclusion that the extended object representation
is preferable for moving obstacle detection with limited computational power.
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(a) (b)

(c) (d)

Figure 5-2: An example of the extended object detection. (a) A snapshot of the scene. (b)
The onboard depth image used for extended object extraction. (c) The onboard gray-scale image
corresponding to the depth image. (d) Visualization of the detection result, two ellipsoids (yellow)
are extracted and used to plan a collision-free trajectory (green).

5-1-2 Detection Methods with Range Data

To extract the three-dimensional objects’ information, range data is used in a vast number
of approaches. Some of them are so computational heavy that they can not be performed on
the onboard computational unit. For example 3D convolutional network, such as 3D Region
Proposal Network [60] and VoxelNet [61], takes the range data as input and output 3D bound-
ing boxes (expressed by objects’ positions, sizes and orientations). However, these methods
require powerful GPUs to perform the 3D convolutional network, their heavy computational
cost makes them difficult to be implemented with limited computational power for real-time
applications. In addition, these learning-based methods can only detect objects which are
presented in the training set (for example pedestrians, vehicles and cyclists, etc). Thus, they
are not suitable for object detection in unknown environments. Some others are originally
designed for ground vehicles, which will not work in the applications of aerial vehicles. For
example, stixel world [62] uses the disparity map to detect the vertical obstacles in the cam-
era’s field of view, assuming the camera is parallel to the horizon and all the obstacle touch
the ground plane. However, for aerial vehicles, the camera’s optical axis is not necessary to
be parallel to the ground plane because of the pitch and roll rotations. Even though the
raw image can be rotated to overcome this problem, stixel world will also not work once
the ground plane is not in the field of view. Besides, this method can not detect floating
objects (for example, another aerial vehicle) because they are not on the ground plane. Other
than those aforementioned approaches, U-V map is used to detect obstacles in [11, 63], which
can be used to extract the bounding ellipses with light computational power. According to
the author of [11], the average computation time of their detection method is 5.49 ms on a
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low-cost computer. Thus, in this thesis work, a computationally light 3D obstacle detection
method is developed based on the idea of U-V map.

5-1-3 3D Obstacle Detection with U-depth Map

In this section, the 3D obstacle detection method is described and evaluated. This detection
method models each obstacle as a three-dimensional cube and detect its position pobs and
size sobs = (lo,wo,ho) based on the camera depth image. The length, width and horizontal
position (x-y plane) are firstly derived from the U-depth map, and the height and the vertical
position (z-direction) of the obstacle is then extracted directly from the depth image.

U-depth Map

The first step of the detection method is to extract the U-depth map from the depth image.
The U-depth map is computed with the column depth value histograms of the depth image
generated by depth camera. Figure 5-3 shows an example of the extraction of U map.

(a)

(b)

(c)

(d)

(e)

Figure 5-3: The extraction of U map. (a) The onboard gray scale image. (b) The depth image
and the extracted U map. (c) The U map. (d)The corresponding data to the red column in the
depth image, and (d) is the histogram computed from (d), which is corresponding to the green
column in (c).

Note that the maximum range is set as 5 meters in order to generated histograms with a fixed
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range (from 0 to 5 meters) with a high resolution (the bin’s width is set as 5 centimeters).
Another reason is that the average depth measurement error increase with the distance, the
measurement farther than 5 meters is not reliable.

As can be seen from Figure 5-3(a), there is an obstacle presented around 2 meters in front of
the camera. And in one of its corresponding columns in the depth image (marked by red),
most of the pixels contain the value around 2 m (as shown in Figure 5-3(d)). This then
results in the large bin size in the histogram Figure 5-3(e), which is corresponding to the
green column in the U map. Based on this property, a bin of the histogram is considered as
a point of interest if its value is larger than a threshold TPOI , which is defined as:

TPOI = fThobs

dbin
, (5-1)

where f is the camera’s focal length, Thobs
is a predefined threshold for obstacle’s height in

the space and dbin is the corresponding mean depth of a bin in the histogram.

Then these points of interest are grouped with other candidates located in their neighborhood
so that a two-dimensional bounding box can be extracted from the U map (as demonstrated
in Figure 5-4).

(a)

(c)

(b)

(d)

Figure 5-4: The extraction of bounding boxes from the U map. (a) The computed U map. (b)
The point of interest. (c) Points are connected into line segments. (d) The extracted bounding
boxes.

The contiguous lines (blue lines in Figure 5-4(c)) are generated by horizontally connecting
the point of interest, and only the line whose length is longer than a predefined threshold
TLINE are considered later in the bounding box extraction, which is defined as:

TLINE = fTwobs

dbin
, (5-2)

where Twobs
is a predefined threshold for obstacle’s width in the space.

Then the bounding boxes (red boxes in Figure 5-4(d)) are extracted by finding the top-left
(ul, dt) and bottom-right (ur, db) corners of each line cluster. And the obstacle’s length lo and
width wo as well as horizontal position (xo, yo) can be computed from the bounding box. It
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is expressed as:
xBo = db,

yBo = (ul + ur) db
2f ,

lBo = 2 (db − dt) ,

wBo = (ur − ul) db
2f ,

(5-3)

(5-4)

(5-5)

(5-6)

where the super index B indicates the position expressed in the MAV body frame (while W
indicates the world frame).

Then a corresponding bounding box of the obstacle in the original depth image can be ex-
tracted by grouping depth image points whose horizontal index are within [ul, ur] and depth
values are within [dt, dt + lo]. An example is shown in Figure 5-5, let (ul, ht) and (ur, hb) be
the top-left and bottom-right corners of the bounding box in the original depth image.

(a)

(b)

Figure 5-5: The extraction of bounding boxes from the U-depth map. (a) The bounding box
extracted from the U map. (b) The bounding box extracted from the depth image.

The height of the obstacle ho and its vertical position zo can be computed by

zBo = (ht + hb) db
2f ,

hBo = (ht − hb) db
f

.

(5-7)

(5-8)

And the uncertainty of the obstacle detection is formulated based on the depth measurement
error model in [64], which consists of the obstacle’s position uncertainty covariance ΣB

o and
the obstacle’s size uncertainty covariance ΣB

o,s. Then the detected obstacle and its covariance

Jiahao Lin Master of Science Thesis



5-1 Obstacle Detection 41

matrix are expressed in the world frame by considering the MAV’s real-time state estimation:

pWo = RWB pBo + pW ,
sWo = RWB s

B
o ,

ΣW
o = RW

T

B ΣB
o R

W
B + ΣW ,

ΣW
o,s = RW

T

B ΣB
o,sR

W
B ,

(5-9)
(5-10)

(5-11)

(5-12)

where pW and RWB are the estimated MAV position and orientation, and ΣW is the uncer-
tainty matrix of the estimated MAV position.

5-1-4 Detection Experiment

In order to evaluate the performance of the proposed obstacle detection method, the MAV
hovers in front of two static obstacles in the lab space (as shown in Figure 5-6). For the
ground truth data, the positions of the obstacles are measured by the motion capture system
and the obstacles’ sizes are measured manually. The actual camera pose is measured by the
external measurement as well, however, the camera-MOCAP calibration must be performed
in advance (which is introduced in Section A).

Figure 5-6: The snapshot of the experiment setup: MAV is hovering in front of two static
obstacles.

The logged detection result is then compared with ground truth by simply compared the six
detected facades with their actual positions. As can be seen from the result in Figure 5-7,
for the top facade, the detected result is approximately the same as the ground truth, while
for the bottom facade, the detected one is lower than the actual value because part of the
ground plane is also included in the detection (its depth value lies within [dt, dt + lo]). This
also leads to a large variance in the obstacle’s vertical position and height. As for the back
facade, the difference between the detection and the actual value is larger than the others,
since the back surface can not be seen by the camera, the detector assumes the obstacle is
rounded and estimates the obstacle’s length by multiplying the length of its front surface (see
Equation 5-5).
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(a) (b)

(c) (d)

(e) (f)

Figure 5-7: The comparison between an obstacle’s six detected facades (blue) and their actual
value (red). (a) The top facade. (b) The bottom facade. (c) The left facade. (d) The right
facade. (e) The front facade. (f) The back facade.
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5-2 Obstacle Tracking

In addition to the obstacle detection, the obstacle sensing module is also required to estimate
obstacles’ motions so that their future positions can be predicted. To tackle this problem, the
sensing module store each obstacle’s states, which includes position, size, and velocity. And
to acquire obstacles’ velocities, obstacle tracking module must be implemented to associate
detection at different timestamps and estimate their motions. In this chapter, the proposed
method is introduced and evaluated.

5-2-1 Data Association

To perform data association between two sequential frames, the probability, which determine
if the two detections belong to the same object, is computed with the Gaussian probability
density function:

p = pG(xmo | x̂m|m−1
o , Pm|m−1

o ), (5-13)
where pG(•) is the probability density function of the multivariate Gaussian distribution,
xo = (pWo , sBo )T and Po = diag(ΣW

o ,ΣB
o,s) are the obstacle state (position and size) and their

corresponding uncertainty covariance. The super indexm indicates the current frame, x̂m|m−1
o

and Pm|m−1
o are the predicted states and covariance matrix based on the previous detection. If

the probability p is larger than a threshold, the two detections are then recognized as the same
moving obstacle. If a new detected obstacle is not associated with any previous detection,
its position, size and covariance matrix are then set as the detection result (as introduced in
Section 5-1), while its velocity is initialized as zeros. Nevertheless, in some cases, a previous
obstacle may not be associated with any new detection, its information will be stored in the
memory, and its position will be kept updating by assuming a constant linear velocity until
it is too far away from the MAV. The purpose is that when an obstacle is unseen by the
camera due to occlusion, the sensing module can still estimate its position and velocity until
it appears again in the view.

5-2-2 Estimation and Prediction

Since the detector only extracts obstacles’ positions and sizes, a Kalman filter is then used to
acquire obstacles’ velocities and refine the obstacles’ positions and sizes. Let p̂mo , v̂mo and ŝmo
be an estimated obstacle’s position, velocity and size at step m, and let Σm

o , Σm
o,v and Σm

o,s

be their corresponding covariance matrices. The prediction model used in the Kalman filter
can then be written as: pm+1

o

vm+1
o

sm+1
o

 =

I diag(∆t) 0
0 I 0
0 0 I


pmo
vmo
smo

 , (5-14)

where ∆t is the interval time between step m+ 1 and m.
And since only the obstacles’ positions and sizes are extracted, the innovation matrix H is
written as:

H =
[
I 0 0
0 0 I

]
. (5-15)
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The constant velocity model is used to predict obstacles’ future positions and uncertainty
covariance within a short-time horizon. The prediction function is written as:

pm+1
o = pmo + vmo ∆t,

vm+1
o = vmo ,

Σm+1
o = Σm

o + Σm
o,v∆t2,

Σm+1
o = Σm

o .

(5-16)
(5-17)
(5-18)
(5-19)

Note that obstacles’ sizes are assumed to be constant and their uncertainties are not consid-
ered.

5-2-3 Tracking Experiment

The purpose of this experiment is to evaluate the performance of the proposed obstacle
tracking method. As shown in Figure 5-8, the MAV hovers in front of two pedestrians in the
lab space. The estimated pedestrians’ positions and velocities are compared with the logged
ground truth data measured by the motion capture system.

Figure 5-8: The snapshot of the experiment setup: MAV is hovering in front of two pedestrians.

A comparison is shown in Figure 5-9, as can be seen, when the obstacle is close to the
camera, the estimation result is more accurate than the estimation at farther distances. This
is because the depth measurement error generally increases quadratically with the depth [64].
Another finding is that, when an obstacle is just presented in the camera’s view, the first few
estimations are unreliable. Take the estimation starts at position (−2,−1) as an example, in
the beginning, the estimated velocity is pointing to the bottom-right while the actual velocity
is pointing top-right. This is mainly caused by the changing size of the obstacle, which later
results in an inaccurate estimation of the obstacle’s center position.
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Figure 5-9: The comparison between the detected obstacles and their corresponding ground
truth in top view. The red arrow represent the estimated velocity at the estimated position while
the the blue arrow is the actual value measured by the motion capture system.

Table 5-1 shows the average position and velocity estimation error of the two pedestrians
experiment, which calculated with the estimation and the ground truth. It can be observed
that the average position error is around 0.26 m and that of the velocity is around 0.43 m/s,
which indicates the obstacle sensing uncertainty should be taken into account when MAV
is avoiding moving obstacles. However, the velocity estimation may be very noisy and has
a very large uncertainty covariance. To this end, the uncertainty should be bounded when
predicting the obstacles’ future positions and corresponding uncertainty covariance matrices
(Equation 5-18).

Table 5-1: The estimation error of the two
pedestrians experiment.

Average
Position Error

(m)

Average
Velocity Error

(m/s)
0.26 0.43
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5-3 Concluding Remarks

This chapter introduced the proposed obstacle sensing module which includes obstacle detec-
tion, estimation, and prediction. The proposed sensing module is computationally light and
able to extract obstaclesâĂŸ information (such as their center positions, sizes) and estimate
their motions assuming their linear velocities are constant. These properties are preferable
for a real-time vision-based MAV system to avoid moving obstacles. Nevertheless, the estima-
tion of obstacles’ linear velocities suffers from uncertainties and this leads to our conclusion
that the uncertainty covariance of the obstacles’ positions and velocities should be taken into
account to perform robust moving obstacle avoiding.
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Chapter 6

Robust Trajectory Optimization

Different from other trajectory generation methods (such as reactive avoiding, spline-based
and motion primitives), MPC solves the optimal trajectory taking the MAV’s dynamics into
account. With this property, the generated trajectory’s dynamically feasibility is promised.
In addition, the proposed planning method considers the uncertainties of the MAV state esti-
mation and obstacle sensing, which makes the real-time vision-based system avoid obstacles
robustly. In this chapter, the optimal trajectory generation is expressed as an optimization
problem, and the designed of the MPC is introduced and tested.

6-1 MPC Formulation

The trajectory generation method solves a receding horizon constrained optimization problem
at each time step. The optimization problem considers multiple objectives and constraints
(which is computed with MAV states xk = [pk,vk, φk, θk, ψk]T ∈ X and the control command
uk ∈ U at time step k), overN∆t prediction horizon, where ∆t is the sampling time, as follows:

min
ˆx0:N ,u1:N−1

N−1∑
k=0

Jk(xk,uk) + JN (xN )

s.t. x̂0 = x(t0),
x̂k = f(x̂k−1, x̂k−1),
G(x̂k,Γk),
uk−1 ∈ U ,
xk ∈ X ,
∀k ∈ {1, . . . , N},

(6-1)

(6-2)
(6-3)
(6-4)
(6-5)
(6-6)

where Jk denotes the cost term at time k and JN denotes the terminal cost. f(•) is the
nonlinear dynamic model of the MAV, which is introduced and identified in Section A-4.
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G(•) is a function representing the state constraints, which are described in detail in the
following. Γk is the MAV state uncertainty covariance at time k. We further denote Σk by
the 3× 3 covariance matrix of the MAV’s position pk, extracted from Γk.

6-1-1 Cost Functions

The cost function of the optimization problem (Equation 6-1) consists of multiple objectives,
including waypoint tracking, power save, collision avoidance, etc. In this section, the designed
cost functions are introduced and simulated.

Waypoint Tracking Let pg be the defined waypoint of the Micro Aerial Vehicle (MAV).
The terminal cost term is used to minimize the distance between the terminal position and
the defined waypoint in the prediction horizon. This cost is defined as:

JN (xN ) = ||p̂N − pg||Qg (6-7)

where Qg is a tuning weight coefficient.

The waypoint tracking performance is shown in Figure 6-1, as can be seen, the MAV keeps
accelerating until it is close to the waypoint. This will certainly be detrimental to the MAV’s
obstacle avoiding performance especially when the waypoint is far from the starting point
because the MAV’s velocity will then be so high that the MAV can not react to obstacles.

Figure 6-1: The simulation result of waypoint tracking performance (left view).

Velocity Cost To bound the MAV’s velocity below a certain value, the sigmoid function,
which can create a smooth step function at the defined maximum value vkmax, is used instead
of a simple box constraint. In addition to its smoothness, using the sigmoid function ensures
the optimization problem is always feasible (using a simple box constraint may be infeasible
due to the model inaccuracy, disturbances, estimation error, etc.) The velocity cost function
is defined as:

Jkv (xk) = Qv

1 + exp(v
k
max−1
λv

)
, (6-8)

where Qu is a tuning weight coefficient, λv is a smoothness factor.

Figure 6-2 shows the simulation result of the velocity control. Compared with the trajectory
in Figure 6-1, the MAV will no longer fully pitch before it gets close to the waypoint. Note
that the oscillation in the pitch angle can be eliminated by tuning Qv and λv.
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Figure 6-2: The simulation result of velocity control performance (left view).

Collision Cost To improve flight safety, a collision cost is introduced. Let dko be the distance
between the MAV and the obstacle o. And in order to have a smooth and bounded collision
cost function, the sigmoid function is used in the collision cost term at each stage. The
collision cost is expressed as:

Jko (xk) = Qo

1 + exp(λo(dko)− ro)
, (6-9)

where Qo is a tuning weight coefficient, λo is the smoothness factor of the sigmoid function
and ro is a tuning threshold distance between the MAV and the obstacle where the collision
cost is Qo/2.

Figure 6-3 shows the performance of the collision cost function in the simulation. The MAV
is designed to navigate from left to the right, and an obstacle (marked by yellow) is placed
on the halfway, it can be seen that the MAV successfully overtake the obstacle in the bottom
side.

Figure 6-3: The simulation result of collision avoidance performance (top view).

MAV Yaw Control The purpose of this cost term is that, since the onboard camera has a
limited field of view, the camera axis should be aligned with the direction of motion so that
the free space along the direction of motion can be extracted. Instead of employing a velocity
tracking yaw control method as in [65], which may generate infeasible yaw trajectories, a cost
function that minimizes the deviation between the MAV’s yaw angle and the motion direction
is designed as:

Jkψ(xk) = Qψ(ψk − ψ̄k)2, (6-10)
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where Qψ is a tuning weight coefficient, ψ̄k = arctan
v̂k

y

v̂k
x
indicates te MAV’s motion direction

angle. And in order to reduce the computational time, the desired yaw angle ψ̄k is computed
based on the last optimized trajectory.

A simulated trajectory is shown in Figure 6-4.

Figure 6-4: The simulation result of MAV yaw control performance (top view).

Control Input Cost In order to save the battery power and extend the flight time, the MAV
control input is minimized at each stage with:

Jku(uk) = ||uk||Qu , (6-11)

where Qu is a tuning weight coefficient.

Finally, the overall stage cost function of the formulated optimization is

Jk(xk,uk) = JN (xN ) + Jkv (xk) + Jku(uk) + Jko (xk) + Jkψ(xk). (6-12)

6-1-2 Constraints

Besides of the aforementioned cost functions, the constraints (Equation 6-4) below are intro-
duced to improve flight safety.

Collision Chance Constraints As the detected obstacles are represented by bounding boxes
in Section 5-1-3, which is not computationally efficient for collision checking when compared
with using ellipsoids. The obstacles are modeled as ellipsoids with their positions pko , orien-
tations Rko and semi-principal axes (ako , bko , cko) =

√
3

2 (lo, wo, ho). And the MAV is modeled as
a sphere with position pk and radius r. The collision chance constraints is then defined with
the obstacle’s information as well as the MAV’s information to perform the collision checking.

Cko : (pk − pko)TΩk
o(pk − pko) ≤ 1, (6-13)

where Ωk
o = Rk,To diag

(
1

ak
o+r ,

1
bk

o+r
1

ck
o+r

)
Rko .
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And as discussed in Chapter 4 and Chapter 5, the MAV state estimation and the obstacle
sensing suffer from inaccurate estimation, their uncertainty need to be taken into account.
Thus, the collision avoidance constraints would be satisfied in a probabilistic manner, which
are formulated as chance constraints:

Pr(Cko ) ≤ δ (6-14)

where δ is the probability threshold for the collision.

With the assumption that the pk ∼ N (p̂k,Σk) and pk ∼ N (p̂k,Σk) are Gaussian distribu-
tions (obtained from the state estimator and the obstacle sensing module), Equation 6-14 can
be transformed into a deterministic constraint based on [31]:

nkT

o Ωk
1
2

o (pk − pko)− 1 ≥ erf−1(1− 2δ) ·
√

2nkT

o Ωk
1
2

o (Σk + Σk
o)Ωk

1
2

o nko , (6-15)

where nko = (pk − pko)/||pk − pko ||, and erf(x) = 2√
π

∫ x
0 e
−t2dt is the standard error function

for the normal distribution.

FOV Constraints In order to further improve flight safety, the generated trajectory should
be within its current limited field of view. Known the MAV current pose, its three-dimensional
FOV is modeled by an intersection of five half-spaces:

FOV k := {p|nkjp ≤ mk
j }, j = 1, · · · , 5, (6-16)

where nkj and mk
j are parameters of the half-spaces computed with camera intrinsic parame-

ters. Then the FOV constraints are expressed as:

pk ∈ FOV k (6-17)

6-2 Uncertainty Propagation

In order to evaluate the collision chance constraints in Equation 6-15, the MAV’s position and
its corresponding uncertainty covariance matrix at each time step are required. However, using
a high-precision uncertainty propagation for nonlinear systems (for example the nonlinear
dynamic model used in Section A-4) is computationally heavy. And for the sake of the
system’s real-time performance, an approximate propagation based on Extended Kalman
Filter (EKF) is used to update the MAV position uncertainty.

Γk+1 = FkΓkFkT + Wk, (6-18)

where Wk is the process noise accounting for motion disturbances, Fk = ∂fk

∂x |x̂k,uk is the state
transition matrix of the MAV. The position uncertainty covariance Σk can be then extracted
from Γk.

Note that the computation of Fk correlates the MAV states and control commands, which
will introduce additional variables in the optimization problem (Equation 6-1) and dramat-
ically increase the computational time. To tackle this problem, the MAV state uncertainty
covariance is propagated with the control inputs computed from the last-loop optimization.
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6-3 Simulations

To evaluate the proposed chance-constrained MPC, the robust trajectory optimization method
was tested in 12 × 12 m2 random forests (the simulation environment is introduced in Chap-
ter B). The cylindrical obstacles’ positions po and their horizontal radius were defined ran-
domly, while their velocities were kept as zero and their heights were set as infinity. For their
uncertainties, both Σo and Σo,v were set as diag(0.01). In order to perform real-time MPC,
the ACADO toolkit [26] was used to generate a fast C solver for the trajectory optimization
problem. And for the sake of computational efficiency, only the two closest obstacles in MAV’s
field of view were fed to the MPC in practice. As shown in the simulation result (Figure 6-5),
the MAV can navigate safely within the random forest from the left to the right, which illus-
trates that the proposed trajectory planning method can generate collision-free trajectories
in such cluttered environments.

(a)

(c)

(b)

(d)

Figure 6-5: Four optimal collision trajectories (top view) planned in random forest simulation.
Cylindrical obstacles are marked by yellow while the red arrow represent the past MAV pose.
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6-4 Concluding Remarks

In this chapter, the robust trajectory optimization problem is formulated as a MPC whose
cost functions and constraints are well designed to enable the MAV system to navigate au-
tonomously and safely in dynamic environments with imprecise obstacle sensing result. From
the obstacle avoiding performance in the simulation, the proposed method is computationally
lightweight and successfully navigate within cluttered environments with desired behaviors
(for example MAV yaw angle control, obstacle avoiding, etc.)
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Chapter 7

Robust Obstacle Avoiding Experiments

In this chapter, the proposed MAV autonomous system was tested in two different typical
scenarios. In the first scenario, the MAV was required to navigate from a defined starting
point to the given waypoint within a lab space, where the motion capture system is installed.
The obstacles presented in the lab space and the MAV were equipped with reflective markers
so that their poses could be measured by the motion capture system as ground truth data.
In the second scenario, the MAV was required to fly in a long narrow corridor to test the
obstacle avoiding performance in long flights.

7-1 Collision Avoidance of Static Obstacles

The first experiment is to test the MAV’s obstacle avoidance performance within static envi-
ronments. In this experiment, multiple static obstacles are places in the experimental fields.

7-1-1 Scenario 1

In the first scenario, two static obstacles were placed between the defined starting point and
the given waypoint. To obtain the ground truth data and evaluate the performance of the
obstacle avoidance, the sizes of the two obstacles were measured manually, and their poses
were measured by the motion capture system. Figure 7-1 shows a sequence of snapshots and
the onboard grayscale images captured during the experiment. As can be seen, when the first
static obstacle was presented, the MAV rolled to its right and then overtook it. When the
MAV detected the second static obstacle, it then rolled to its left in order to accelerate in
the y-direction and avoided the second obstacle. After it avoided the two static obstacles, it
decelerates in the y-direction to track the waypoint. Finally, the MAV reached and hovered
at the given waypoint. Figure 7-2 shows the measured distance between the MAV and the
obstacles’ bounding ellipsoids over time in the corresponding run of Figure 7-1, from which
the conclusion can be drawn that the real-time vision-based autonomous MAV system can
navigate safely in the first scenario.
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Figure 7-1: A sequence of images (from the top to the bottom) during the experiment in scenario
1 with static obstacles. The snapshot (left) is captured by the external camera, while the onboard
grayscale image is taken by the MAV onboard camera.
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Figure 7-2: The distance between the MAV and the two static bounding ellipsoids (magenta and
blue) overtime. The red dash line represent the radius of the MAV’s bounding sphere.

7-1-2 Scenario 2

In the second scenario, the MAV was required to navigate along a long narrow corridor, where
five static obstacles were placed. Figure 7-3(a) shows a snapshot of the experiment in the
long narrow corridor. In Figure 7-3(b), the reconstructed map of the experimental field is
shown, the map is reconstructed from the depth images during the flight. And the result is
shown in Figure 7-4, which shows that the MAV’s trajectory as well as a series of the onboard
grayscale images captured during the flight. As can be seen, the MAV successfully navigated
from the defined starting point to the given waypoint without any collision.

Note that the MAV detected the third obstacle and avoided it by flying over its top.

(a) (b)

Figure 7-3: The MAV is required to navigate along a long narrow corridor in scenario 2. (a) A
snapshot of the collision-avoidance of static obstacles in scenario 2. (b) A three-dimensional map
of the experimental field reconstructed from the onboard depth measurement and the estimated
odometry. Points are marked with colors according to their heights.
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Figure 7-4: Left: the top view of the estimated MAV’s trajectory during the experiment. Right:
a sequence of the onboard grayscale images (from the top to the bottom) during the experiment
in scenario 2 with static obstacles.
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7-2 Collision Avoidance of Dynamic Obstacles

To test the autonomous MAV system’s obstacle avoidance performance in dynamic environ-
ments, two pedestrians were presented in the experimental field.

7-2-1 Scenario 1

In the first scenario, the MAV was required to navigate from a starting point to an given
waypoint while avoiding two walking humans. Motion capture system was used to measure
the actual poses of the MAV and the two pedestrians. The pedestrians were modeled as
ellipsoids whose semi-major axes were (0.4, 0.4, 0.9) m, while the MAV was modeled as a
sphere with radius r = 0.4 m. In Figure 7-5, the distance from the MAV’s center to the
two ellipsoids’ surfaces over time, which was measured by the motion capture system, in 6
different runs are shown. It can be observed that in all instances a minimum safe separation
of 0.4 m was achieved and therefore collision with the pedestrians were avoided.

Figure 7-5: The distance between the MAV and the two static bounding ellipsoids (magenta and
blue) overtime. The red dash line represent the radius of the MAV’s bounding sphere.

And a histogram of the measured distance is shown in Figure 7-6.

Figure 7-6: The accumulation of the measured distance. The red dash line represent the radius
of the MAV’s bounding sphere and the green dash line is the defined boundary of the collision
cost (Section 6-1-1).
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Figure 7-7 shows a sequence of snapshots and the onboard grayscale images captured during
the experiment (the third experiment in Figure 7-5).

Figure 7-7: A sequence of images (from the top to the bottom) during the experiment in scenario
1 with two pedestrians. The snapshot (left) is captured by the external camera, while the onboard
grayscale image (right) is taken by the MAV onboard camera.
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7-2-2 Scenario 2

In the experiment with dynamic obstacles in the second scenario, the MAV successfully nav-
igated along the long narrow corridor, where two static obstacles and two pedestrians were
presented. Figure 7-8 shows a series of onboard grayscale images captured by the onboard
camera and their corresponding visualization during the experiment. As can be seen from
the visualization, all static and moving obstacles were detected and all the generated optimal
trajectories were collision-free.

Figure 7-8: A sequence of images (from the top to the bottom) captured during the experiment
in scenario 2 with two pedestrians and two static obstacles. And their corresponding obstacle
sensing results are visualized. In the visualization, moving obstacles are marked by yellow while
static obstacles are marked by red. And the green line represent the generated optimal trajectory.
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7-3 Real-Time Performance

In addition to the obstacle avoidance performance, the real-time performance of the proposed
MAV system was evaluated. Figure 7-9 shows the onboard runtimes of MAV state estimation,
obstacle sensing and trajectory optimization. As can be seen, for the runtimes of the MAV
state estimation, the 75th percentile was always below 30 ms, which could be run at a rate of
15 Hz. For the obstacle detection and tracking, the 75th percentile was always below 8 ms,
which was fast enough to be run at 60 Hz. And for the trajectory optimization framework,
the 75th percentile was always below 22 ms, which indicateed that it could be performed
efficiently in real-time.

Figure 7-9: The computation time of different MAV state estimation, obstacle sensing and
trajectory optimization.

7-4 Concluding Remarks

In this chapter, the autonomous MAV system was tested in different scenarios with static and
moving obstacles. The experiment result shows that the MAV successfully navigated from
the defined starting point to the given waypoint without any collisions, which indicates that
the robust trajectory optimization method used in this thesis work was sufficiently robust.
Besides, the computation time of each onboard module during the experiments suggests that
the method was computationally efficient to be performed in real-time.
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Chapter 8

Conclusions

This chapter summaries this thesis work and presents some guidelines for future improve-
ments.

8-1 Summary

In this thesis work, a MAV system was built for real-time vision-based autonomous navigation
in dynamic environments. The starting point was a study of past relative works on vision-
based MAV autonomous navigation. As previous approaches were generally based on the
assumption that the environment is static, a research question was then drawn: is it possible
to build a real-time vision-based MAV system to navigate autonomously and safely in dynamic
environments with onboard sensing and computing?

From the preliminary study of the state-of-art, approaches such as [3, 29] showed that by
using the model predictive control, MAVs were able to react to dynamic objects (such as
object tracking and obstacle avoidance). Based on this idea, a minimal MAV system was
proposed, which consisted of state estimation, obstacle sensing, and trajectory optimization.
And in order to perform these modules, an experimental platform was designed and built,
which was constructed with a quadrotor, a depth camera, and a single-board computer.

The main challenge of building such an autonomous MAV system was that the computational
modules have to be computationally efficient so that they could be performed on the power-
limited onboard computer. For the state estimation, several state-of-art visual odometry
and simultaneous localization and mapping algorithms were tested and evaluated on the
experimental platform in order to select an accurate and computationally light approach.
S-MSCKF was selected since its relative pose error was comparable with other algorithms
while its average processing time was the lowest (26.9 ms). For the obstacle sensing, obstacles
were detected with a fast obstacle detection method, which was extended from [11], and their
linear velocities were estimated by a Kalman filter. The obstacle sensing module was so
computationally light (has a mean computation time of 8 ms) that could be run at a rate
of 60 Hz. However, the velocity estimation was very noisy and had a very large uncertainty
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covariance, which indicated the obstacle sensing uncertainty should be taken into account
when the MAV was avoiding moving obstacles. To this end, a robust trajectory optimization
method based on [31] was implemented on the experimental platform and was run at a rate of
15 Hz. Finally, to evaluated the proposed system’s performance, flight tests were performed
in a variety of environments with both static and moving obstacles. The result showed that
the obstacle avoidance was robust and computationally efficient.

To conclude, the MAV system constructed in this thesis work was able to navigate au-
tonomously and safely in dynamic environments with only the onboard sensing and com-
puting.

8-2 Limitations and Recommendations

It must be admitted that the autonomous MAV can be further improved. Firstly, the obsta-
cle sensing module models all the obstacles as bounding ellipsoids in order to estimate their
movements, while in practice, this type of obstacle representation is too conservative. To this
end, the detected static obstacles can be represented with occupancy cells (an example is
the OctoMap [59]). Secondly, since the local trajectory planner used in this thesis work only
optimizes a trajectory within a short-time prediction horizon, the MAV may get stuck by
livelock. To avoid this, a global planner is needed so that a set of waypoints can be automat-
ically extracted and the MAV can then navigate in more complex unknown environments. In
addition to the software components, the hardware selection can be improved as well. During
the experiments, flight instability was observed when the MAV was flying over obstacles’ top.
This is mainly caused by the inner controller of Parrot Bebop2, which always ensures the
ranging data, measured by its bottom ultrasonic sensor, larger than a threshold value. Thus,
another SDK (for example Paparazzi1) or another drone kit would be preferable.

1https://wiki.paparazziuav.org/wiki/Main_Page
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Appendix A

System Identifications and Calibrations

In this section, several identifications and calibrations are performed. For example, the identi-
fication of IMU noise parameters gives a hint on how accurate the onboard inertial information
is. The calibration of the visual-inertial sensor provides not only the relative transformation
between camera frame and IMU frame but also time offset between the two sensors. These
information is obviously necessary for fusing the visual-inertial information. Besides, when
comparing the ground truth data (measured by the Motion Capture System (MOCAP)) with
the estimation result, the relative transformation between the camera and MOCAP markers
should be extracted by the calibration of camera-MOCAP system. This process is essential
especially when evaluating the onboard obstacle detection as it is necessary to know the ac-
tual obstacles’ positions relate to the camera. Finally, the model the whole MAV system is
identified, which will be used for MAV control.

A-1 IMU Noise Model Identification

The onboard IMU sensor consists of an accelerometer and a gyroscope, which measures the
linear acceleration ã and the rotational velocity ω̃ respectively. In practice, these two mea-
surements suffer from noises, which is commonly modeled as:

ã[k] = a[k] + ba[k] + na[k]
ω̃[k] = ω[k] + bω[k] + nω[k]

(A-1)

where na and nω are white noises while ba and bω are random walk noises. In the discrete-time
signal, these white noises and random walk noises are expressed as:

n[k] = σnw[k]
b[k] = b[k − 1] + σbw[k]

(A-2)

where w[k] ∼ N (0, 1) is the standard Gaussian noise, σn and σb is the strength of noise.
Allan variance analysis [66] is then used to determine these noise parameters of the onboard
accelerometer and gyroscope (Bosch BMI0551 is integrated in the Intel RealSense D435i). The

1https://www.bosch-sensortec.com/bst/products/all_products/bmi055
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working principle of Allan variance analysis can be simply explained: It calculates the root
Allan variance of the accelerometer and gyroscope measurements in time domain as a function
of different averaging times τ and then it extracts the noise parameter from the log-log scale
slopes of the Allan deviation curves. When the stationary measurement data is averaged
over short periods, the Allan variance is high because of the white noise. By averaging the
same data over longer periods, the Allan variance decrease since the white noise is averaged
out. When the averaging period is even longer, it increases again due to the random walk
noise. An example of the Allan deviation curves of the onboard accelerometer and gyroscope
is shown in Figure A-1, the Allan deviation curves are extracted from a stationary data whose
duration is approximately 4 hours.

(a)

(b)

Figure A-1: The Allan variance of the onboard (a) accelerometer and (b) gyroscope. The red and
blue dashed lines are the fitted straight lines for white noise σn and random walk σb respectively.

And the noise parameter is then extracted from the Allan deviation curves. Given by the
standard specification format [67]. For the white noise σn, it is extracted by fitting a straight
line (red dashed lines in Figure A-1) in the region where the log-log slope is −1/2 in the Allan
deviation curves, and its value is read at τ = 1. And as for the random walk σb, the straight
line (blue dashed lines in Figure A-1) is fitted in the 1/2 slope region in the Allan deviation
curves and the value is read at τ = 3. The identification result of the onboard IMU is listed
in Table A-1.
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Table A-1: The identified noise parameter of the onboard accelerom-
eter and gyroscope.

Accelerometer Gyroscope
σn(

m/(s2√Hz)
) σb(

m/(s3√Hz)
) σn

(rad/(s
√

Hz))
σb(

rad/(s2√Hz)
)

1.317× 10−3 3.163× 10−4 1.143× 10−4 3.013× 10−6

A-2 Camera-IMU Calibration

Although the transformation between the onboard IMU and the global shutter stereo camera
is given by the manufacturer, however, the given transformation is inaccurate. Thus, a
further calibration is performed in order to provide a more accurate transformation in order
to fuse the inertial information with the visual measurement. Besides of estimating the
transformation between the IMU and the onboard camera, the estimation of time offset
between the two sensors is also necessary. In this thesis work, the visual-inertial temporal
and spatial calibration is performed by following a well-known method [68]. Figure A-2 shows
the calibration setup, and for the sake of simplicity, only the right camera is considered.

Figure A-2: The setup of the visual-inertial temporal and spatial calibration consists of a cali-
bration pattern and a visual-inertial sensor. W is the world frame which is attached to the static
calibration pattern1, while C and I represent the right camera and the IMU frame respectively.

In order to perform the calibration, a short period (about 2 minutes) of data, in which all
axis of camera are excited, should be logged. Then the recorded IMU pose is expressed
as a 6 × 1 sixth-order B-spline function, with three degrees of freedom for position and
three for orientation. By using the sixth-order B-spline function, the dynamic motion of the

1https://github.com/ethz-asl/kalibr/wiki/downloads
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sensor is accurately captured as continuous-time signals and the corresponding IMU’s linear
velocity, acceleration and angular velocity can be simply expressed. Besides of these time-
varying states, several time-invariant parameters also need to be estimated, which includes the
gravity direction in world frame gW , the transformation between visual and inertial sensors
TCI and the time offset between them dCI . Finally, the estimated time-varying states and
time-invariant parameters are extracted by using Levenberg-Marquardt (LM) algorithm [69]
to minimize several cost terms including the reprojection error, the measurement error of
accelerometer and gyroscope (Please see [68] for more details).

The calibration result of the onboard visual-inertial sensor can be found in Table A-2.

Table A-2: The calibration result of the onboard visual-inertial sensor.

Camera Left Right

Focal Length
fx 212.13645

211.83443
212.30128
211.99693fy

Principal Point
pu 212.85793

119.22672
213.30177
119.82929pv

Distortion
Coefficients

k1 0.00182
−0.00354

0.00023
0.00034

0.00169
−0.00604

0.00013
0.00075

k2

r1

r2

Translation
(mm)

tx −3.52426
−4.67344
−6.04857

−53.29678
−4.59911
−6.06939

ty

tz

Rotational
Matrix


−0.0029 −0.9999 0.0064
−0.0033 −0.0064 −0.9999

0.9999 −0.0029 −0.0033



−0.0027 −0.9999 0.0064
−0.0033 −0.0064 −0.9999

0.9999 −0.0029 −0.0033


TimeShift

(ms)
6.81776 6.79232

Note that these relative transformations are expressed in the IMU frame, the pinhole camera model
and the radial-tangential model are used as camera model and distortion model respectively.

A-3 Camera-MOCAP Calibration

The external measurement from the Motion Capture System (MOCAP) is millimeter accurate
and is used as ground truth data for the evaluation of vision-based state estimation and
obstacle sensing. However, MOCAP measures the position and orientation of the reflective
markers instead of camera’s. Thus, it is necessary to develop a method to estimate the
relative transformation between the markers and the camera TCM . The main idea of the
proposed method is estimating the relative transformation by adding an extra landmark. The
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landmark should be well designed so that the landmark frame can be measured accurately by
the MOCAP as well as the camera. The relative transformation can be then extracted with the
transformation between the landmark and the camera’s marker TML and the transformation
between the landmark and the camera center TCL :

TCM =
(
TML

)−1
TCL (A-3)

Figure A-3: The setup of camera-MOCAP calibration consists of a MOCAP system, a landmark
which can be detected by MOCAP and camera, a camera with reflective markers. W is the world
frame, which is consistent with the MOCAP coordination, while L is the frame of the additional
landmark, C is the camera frame and M is the frame of the reflective marker which is attached
to the camera.

For the MOCAP measurement, the position of the landmark in the world frame tLW is obtained
by measuring the position of the adhesive marker at the center of the landmark. And its
orientation RLW is obtained by calculating the normalized cross product of the vector from
central adhesive marker to the right one and the vector from central adhesive marker to the
top one (the placement of adhesive markers can be seen from Figure A-3). Then the relative
transformation T̃ML can be computed by:

T̃ML =
([
RLW tLW

0 1

])−1

TMW (A-4)

As for the visual measurement, the calibration pattern on the landmark is detected by image
processing and the feature point on the calibration pattern is then extracted. Known these
feature points’ placement in the real setup, the relative transformation between the landmark
and the camera TCL can then be estimated by using the Perspective-n-Point (PNP) algorithm
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[70]. Since the camera is run at a rate of 15 Hz, the estimated transformation is generated
at the same frequency, the relative transformation between the camera and the marker (com-
puted by Equation A-3) is performed once a new estimated T̃CL is arrived and use the newest
measurement T̃ML . Although the time stamp of T̃CL and T̃ML are not exactly the same, this
problem can be settle down by keeping the camera and the landmark stationary.

Since the initialized camera’s marker’s orientation various each time. It is convenient to
develop an online calibration tool which allow the user to perform the calibration before each
experiment. And in order to perform online and stable calibration, a learning factor α is
introduced to average out the measurement noise. And the final calibration result is obtained
with:

T̂CM = (1− α) T̂CM + α
(
T̃ML

)−1
T̃CL (A-5)

An example of the calibration result is shown in the Figure A-4.

Figure A-4: The comparison between the MOCAP measurement T̃M
W (red lines) and the esti-

mated pose (blue lines) of the camera marker M which is computed with T̂C
M , T̃C

L , T̃L
W and the

learning factor is α = 0.01.

The result shows that the online estimation converge to the true value after approximately
25 seconds. The convergence time is adjustable, for example, increasing the learning factor
α can accelerate this process, nevertheless, using a larger learning factor suggests that the
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measurement noise at a single frame will influence more on the final result. On the other side,
using a small learning factor will slow the calibration process, however, the final result is less
sensitive to a single measurement noise.

An intuitive example of the calibration result is shown in the Figure A-5. The depth camera
is pointing to the ground plane in the world frame. Before applying the calibration result,
the point cloud of the ground plane generated by the depth camera is not consistent with the
plane z = 0 in world frame, this is because the camera marker’s frame M is used instead of
the camera frame C. After the relative transformation T̂CM is applied, the point cloud is well
aligned with the the plane z = 0, which illustrates that the camera pose in the world frame
can be obtained after the calibration.

(a)

(b)

Figure A-5: A comparison between the extracted camera pose and corresponding point cloud
(a) before and (b) after the camera-MOCAP calibration. Before the calibration, as the relative
transformation T̂C

M is unknown, camera marker frame M is used instead of the camera frame C,
while after the calibration, the camera frame is calculated and used.

A-4 Platform Identification

In order to avoid dynamic obstacles with MPC, the system need to perform collision checking
in the short-time prediction horizon. This requires the system to predict the MAV’s position
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and the obstacles’ positions in the future time. Thus, the dynamic model of the MAV need
to be modeled and identified. In this work, a nonlinear dynamic model of the Parrot Bebop
2 is used, which is expressed as below:

ẋ(t) = f(x(t),u(t)) (A-6)

where x is the system state, which consists of MAV’s position x, y, z, linear velocity vx, vy,
vz , attitude φ, θ, ψ and yaw rate ωz relate to the initial pose. While u is the control input
which includes the desired roll φd, pitch θd, yaw rate ωzd

and vertical velocity vzd
. And the

function f(•) is expressed as:



ẋ = vx

ẏ = vy

ż = vz

v̇x = tan θ
cosφg −Axvx

v̇y = tanφg −Ayvy

v̇z = 1
τvz

(Kvzvzd
− vz)

φ̇ = 1
τφ

(Kφφd − φ)

θ̇ = 1
τθ

(Kθθd − θ)

ψ̇ = ωz

ωz = ωzd

(A-7)

(A-8)

(A-9)

(A-10)

where g is the constant gravity, Ax and Ay are air drag coefficients, Kvz , Kφ, Kθ are the gains
and τvz , τφ, τθ are the time constants of the vertical velocity, roll and pitch respectively.

And as can be seen from Equation A-7 to A-9, first-order system is used to model the system
between the desired and actual tilt angle, yaw rate and vertical velocity. Although the
first-order system is less accurate than higher-order systems, it requires less computations
than those higher-order systems which ensures the real-time performance of the autonomous
navigation. The identification result is shown in Table A-3.

Table A-3: The identified parameter of the experimental platform’s dynamic model.

Parameters Kvz Kφ Kθ τvz τφ τθ Ax Ay

Value 1.2270 1.0181 1.0167 0.3367 0.2386 0.2386 0.1840 0.2007
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Appendix B

Simulation Tool

To validate our implementation of the online trajectory optimization, Parrot-Sphinx1 is used
as the simulation tool. Parrot-Sphinx is a Software In The Loop (SITL) simulator that
allows developer to run Parrot Bebop2’s inner controller without any hardware. Gazebo2

is integrated in the simulator, which is mainly used for the simulation of the physical and
visual surroundings. As for the state estimation, MAV’s actual poses are logged at a rate
of 15 Hz and used as the estimated states. For the obstacle detection, virtual obstacles are
fed to the MPC solver. Our implementation of the simulation framework can be accessed via
https://github.com/0Jiahao/bebop_simulator/tree/sim_tool.

1https://developer.parrot.com/docs/sphinx/
2http://gazebosim.org/
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List of Acronyms

MAV Micro Aerial Vehicle

VO Visual Odometry

VIO Visual-Inertial Odometry

IMU Inertial Measurement Unit

ROVIO Robust Visual Inertial Odometry

S-MSCKF Stereo Multi-State Constraint Kalman Filter

VINS Visual-Inertial System

OKVIS Open Keyframe-based Visual-Inertial SLAM

VSLAM Vision-based Simultaneous Localization and Mapping

ATE Absolute Trajectory Error

RPE Relative Pose Error

CPU Central Processing Unit

ORB Oriented FAST and Rotated BRIEF

MPC Model Predictive Controller

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

LIDAR Light Detection And Ranging of Laser Imaging Detection and Ranging

MOCAP Motion Capture System

3D Three Dimensional
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82 Glossary

2D Two Dimensional

RGB Red Green Blue

RGBD Red Green Blue and Depth

RAM Random Access Memory

GPU Graphics Processing Unit

GFLOPS Gigafloating-Point Operations per Second

WIFI Wireless Fidelity

USB Universal Serial Bus

SDK Software Development Kit

ROS Robot Operating System

FOV Field of View

LM Levenberg-Marquardt

PNP Perspective-n-Point

RRT Rapidly-exploring Random Trees

SURF Speed-Up Robust Feature

GMM Gaussian Mixture Model

ICRA International Conference on Robotics and Automation

KLT Kanade-Lucas-Tomasi

EKF Extended Kalman Filter

SITL Software In The Loop

IROS International Conference on Intelligent Robots and Systems

ADR Autonomous Drone Race
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