

Delft University of Technology

Bicategorical type theory
Semantics and syntax
Ahrens, Benedikt; North, Paige Randall; Van Der Weide, Niels

DOI
10.1017/S0960129523000312
Publication date
2023
Document Version
Final published version
Published in
Mathematical Structures in Computer Science

Citation (APA)
Ahrens, B., North, P. R., & Van Der Weide, N. (2023). Bicategorical type theory: Semantics and syntax.
Mathematical Structures in Computer Science, 33 (10), 868-912.
https://doi.org/10.1017/S0960129523000312

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1017/S0960129523000312
https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science (2023), 1–45
doi:10.1017/S0960129523000312

PAPER

Bicategorical type theory: semantics and syntax
Benedikt Ahrens1,2 , Paige Randall North3 and Niels van der Weide4

1Delft University of Technology, Delft, Netherlands, 2University of Birmingham, Birmingham, UK, 3Utrecht University,
Utrecht, Netherlands and 4Radboud University, Nijmegen, Netherlands
Corresponding author: Niels van der Weide; Email: nweide@cs.ru.nl

(Received 28 September 2022; revised 2 September 2023; accepted 4 September 2023)

Abstract
We develop semantics and syntax for bicategorical type theory. Bicategorical type theory features con-
texts, types, terms, and directed reductions between terms. This type theory is naturally interpreted in a
class of structured bicategories. We start by developing the semantics, in the form of comprehension bicat-
egories. Examples of comprehension bicategories are plentiful; we study both specific examples as well as
classes of examples constructed from other data. From the notion of comprehension bicategory, we extract
the syntax of bicategorical type theory, that is, judgment forms and structural inference rules. We prove
soundness of the rules by giving an interpretation in any comprehension bicategory. The semantic aspects
of our work are fully checked in the Coq proof assistant, based on the UniMath library.

Keywords: Directed type theory; dependent types; comprehension bicategory; computer-checked proof

1. Introduction
In recent years, efforts have been made to develop directed type theory. Roughly, directed type
theory should correspond to Martin-Löf type theory (MLTT) as ∞-categories correspond to ∞-
groupoids. Besides theoretical interest in directed type theory, it is hoped that such a type theory
can serve as a framework for synthetic directed homotopy theory and synthetic ∞-category the-
ory. Applications of those, in turn, include reasoning about concurrent processes (Fajstrup et al.
2016).

Several proposals for syntax for directed type theory have been given (reviewed in
Section 2.3.2), but are ad hoc and are not always semantically justified. The semantic aspects of
directed type theory are particularly underdeveloped; a general notion of model of a directed type
theory is still lacking. Indeed these proposals often provide an interpretation of their syntax in
categories. They either employ preexisting 1-categorical semantical tools, thus forcing them to
interpret their syntax into a 1-category of categories, as in the work by North (2019), or, in the
absence of 2-categorical tools, give an ad hoc interpretation of their syntax into the 2-category
of categories, as done by Licata and Harper (2011). We rectify this situation by providing a
2-categorical semantical structure.

Specifically, in this work, we introduce comprehension bicategories as a suitable mathematical
structure for higher-dimensional (directed) type theory. Approaching the development of directed
type theory from the semantic side, we extract from this the core syntax – judgment forms and
structural inference rules – of a two-dimensional dependent type theory that can accommodate
directed type theory. We also give a soundness proof of our structural rules. In future work, we
will equip our syntax and semantics with variances and type and term formers for directed type
theory.

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312
https://orcid.org/0000-0002-6786-4538
https://orcid.org/0000-0003-1146-4161
mailto:nweide@cs.ru.nl
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129523000312&domain=pdf
https://doi.org/10.1017/S0960129523000312

2 B. Ahrens et al.

To motivate our approach, we analyze in Section 1.1 how higher-groupoidal structure arises
in MLTT through an interplay of judgmental equality and typal identity. Our analysis thus leads
to the desiderata listed in Section 1.2. In Section 1.3, we discuss the foundations we work in, and
aspects of the computer formalization of some of our results.

1.1 Judgmental and typal higher dimensions
The judgment forms of traditional MLTT specify types, contexts, terms, and judgmental equality
(conversion) between types and terms. There is, prima facie, nothing higher-dimensional about
these judgments, and an interpretation of types as sets and terms as elements of sets seems per-
fectly adequate. In this sense, Martin-Löf type theory is 1-dimensional. However, MLTT is often
said to be ∞-dimensional. The higher dimensions are generated by the identity type, which
internalizes the judgmental equality; specifically, the well-known reflexivity rule generates a typal
identity from a judgmental equality. Since the identity type can be iterated, judgmental equality
then also becomes available for terms of the identity type itself. This mutual interaction between
judgmental equality and typal identity provides the infrastructure to “lift” judgmental equality
to higher dimensions without extending the judgmental structure of MLTT. The tower of types
(A, IdA, IdIdA , . . .) then can be given the structure of an ∞-groupoid, as shown by Van den Berg
and Garner (2011) and Lumsdaine (2010).

When developing a directed type theory, with models in ∞-categories, the analogous ingredi-
ents are the following:
I1: A judgment of directed reductions between types and terms, analogous to judgmental

equality;
I2: A type former for homomorphisms between terms, analogous to identity types;
I3: A notion ofmodel in which to interpret the judgments and type formers.

In the present work, we propose a judgmental framework (I1), and a suitable general notion
of semantics (I3), for higher-dimensional and directed type theory. In a separate work, we will
expand this core by a system of variances suitable for accommodating a type former akin to North’s
hom-types (I2), to build a fully functional higher-dimensional type theory.

1.2 Deriving syntax from semantics
Previous work on higher-dimensional and directed type theory – reviewed in detail in Section 2 –
has focused on syntax (I1/I2). Licata and Harper (2011, 2012) and Nuyts (2015) devise judgmental
structure for higher-dimensional and directed type theory. North (2019) devises a type former for
directed homomorphisms between terms, on top of the judgmental structure of MLTT. None of
these works propose a general definition ofmodel of directed type theory. Garner (2009) defines a
notion of higher-dimensional model, but considers only undirected type theory.

Our approach is different from that of previous work on directed and higher-dimensional type
theory. Specifically, we choose to approach the challenge from the other direction: we start by
devising a suitable categorical structure for directed type theory and extract a syntax from it.

We refine the ingredients above to the following list of desiderata for our work:
D1: A system of inference rules for dependent types with directed reductions;
D2: A definition of mathematical structures suitable for the mathematical modelling of the

syntactic rules;
D3: An interpretation of the inference rules in such a mathematical structure;
D4: A syntax for type and term formers on top of D1;
D5: A semantic structure for the interpretation of type and term formers.
In the present work, we achieve desiderata D1, D2, and D3. The study of variances and type and
term constructors will be reported on elsewhere. In Section 2, we refer back to these desiderata for
describing related work.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 3

The semantics we propose are described in Section 5, and the extracted syntax is described
in Section 8. Both our syntax and semantics are quite general; for instance, our reductions are
proof-relevant – like those considered by Licata and Harper (2011, 2012), and unlike judgmental
equality in MLTT, which is proof-irrelevant. Syntax and semantics could reasonably be simplified
or specialized. Crucially, our work provides a framework to modify syntax and semantics in lock-
step, with a clear mechanism to analyze changes to the syntax on the semantic side and vice versa.
We suggest some possible variants in Section 10.

1.3 Foundations and formalization in UniMath
The main results presented here are agnostic to foundations: they can be formalized in both set
theory and type theory.

However, some of the notions we employ can economically be formulated using dependent
types. In particular, we work with cloven (Grothendieck) fibrations of (bi)categories, whose for-
mulation in set theory usually relies on postulating equality of objects. Using dependent types, a
formulation of such concepts can be given that avoids any reasoning about equality of objects;
instead, these concepts are formulated in terms of fibers. For this reason, we use type-theoretic
language throughout the paper; see also, e.g., Remark 25.

We carefully distinguish data and property; in particular, we postulate entities in categories
(e.g., limits) to be explicitly given as data rather than to merely exist. We do not rely on any choice
axioms or on excluded middle.

The results of Sections 3–7 of this work are checked in Coq (Coq Development Team 2022),
based on the UniMath library (Voevodsky et al. 2022) of univalent mathematics. In univa-
lent mathematics, we distinguish strict (bi)categories and univalent (bi)categories (Ahrens et al.
2021, Section 4). Our definitions are agnostic to this difference; hence, our definition of bicat-
egory (Definition 1) does not make a commitment to either strictness or univalence. Specific
examples can then be strict (such as Example 11) or univalent (such as Example 49); see also
Remark 2.

Our code has been integrated into UniMath in commit 840ac16. The computer-checked def-
initions and results are accompanied by a link (e.g., bicat) to the corresponding definition
in an HTML version of that commit. The code written specifically for this work comprises
approximately 33,600 lines of code; specifically, the coqwc tool counts as follows:

spec proof comments
13143 20553 449 total

We build upon an existing library of (bi)category theory by Ahrens et al. (2015, 2021) and use
heavily the displayedmachinery, developed for 1-categories by Ahrens and Lumsdaine (2019) and
extended to bicategories by Ahrens et al. (2021). In particular, the formalized notions of cloven
Grothendieck fibration we are using (in the 1-categorical case) and developing (in the bicate-
gorical case) are based on displayed (bi)categories; we can thus discuss these notions without
postulating equality of objects.

The syntax presented in Section 8 and its interpretation given in Section 9 are not computer-
checked; we therefore give these constructions in more detail in the paper.

1.4 Synopsis
In Section 2, we review related work. In Section 3, we review (displayed) bicategories and functors.
In Section 4, we define cloven global and local (op/iso)fibrations of bicategories, and we use these

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath/commit/840ac16608d642606e6ac4d6eab47fb2507a5256
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Core.Bicat.html#bicat
https://doi.org/10.1017/S0960129523000312

4 B. Ahrens et al.

notions to define comprehension bicategories. In Section 5, we discuss some examples of compre-
hension bicategories. In Section 6, we discuss Street (op)fibrations internal to bicategories, which
form ourmain examples of comprehension bicategories. In Section 7, we define displaymap bicat-
egories, and we show how any display map bicategory gives rise to a comprehension bicategory.
In Section 8, we present structural type-theoretic rules for the syntax of a two-dimensional type
theory, which we call BTT. In Section 9, we give an interpretation of BTT in any comprehension
bicategory. In Section 10, we discuss variations of BTT and the semantic structures these variations
correspond to. In Section 11, we explain the difference between terms in BTT and terms in other
approaches to directed type theory.

1.5 Version history
A shorter version of this paper was published in the proceedings of Logic in Computer Science
under a different name (Ahrens et al. 2022). Compared to that shorter version, the following
material has been added in the present version:

• We provide more instantiations of Example 57. In particular, we show that several bicate-
gories of structured categories have pullbacks (Example 19).

• We give more detail on the specific comprehension bicategory given by functors into the 1-
category of strict categories, in Example 44.We also present a formalization of that example.

• We introduce display map bicategories and show that any display map bicategory gives rise
to a comprehension bicategory.

• We present the type theory BTT in more detail and specify more of its type-theoretic rules.
• We give more detail in the interpretation of the rules of BTT in any comprehension
bicategory.

Furthermore, compared to the short version, we have added the definition ofweak comprehension
bicategory (see Definition 38 and Remark 40), where the comprehension χ is not required to
preserve (op)cartesian cells. Our interpretation of BTT works in any such weak comprehension
bicategory.

2. Related Work
In this section, we review work with a similar goal to ours, as well as work we rely on. We pay par-
ticular attention to the desiderata outlined in Section 1.2 and to the difference between judgmental
and typal dimensions.

2.1 Nondependent type theories
The following works satisfy a nondependent variant of D1, together with suitable adaptations of
D2 and D3. However, due to the absence of type dependency, they do not immediately compare
to our work.

Seely (1987) presents a syntax for a two-dimensional simply-typed lambda calculus, consist-
ing of types, terms, and reductions between terms. Seely then constructs a 2-category out of that
syntax. Tabareau (2011) frames aspect-oriented programming in a 2-categorical way, developing a
lambda calculus that provides an internal language for 2-categories. Hirschowitz (2013) constructs
a 2-adjunction between 2-signatures for lambda calculi (where such signatures specify types,
terms, and reductions) and the category of Cartesian closed 2-categories. Fiore and Saville (2019)
construct an internal language for cartesian closed bicategories; the result is a class (parametrized
by a notion of signature for constants) of simple 2-dimensional type theories or lambda calculi.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 5

This last work shares one aspect with ours that the others do not: it uses (weak) bicategorical
structure, rather than (strict) 2-categorical structure.

2.2 Theories for higher categories
There is a body of work on designing type theories for ω-groupoids and ω-categories. In these
type theories, one works, semantically speaking, within one fixed ∞-groupoid (or ω-category).
Compare this to, e.g., Martin-Löf type theory, where one manipulates ∞-groupoids (types and
identity types) and ∞-functors (functions) between them. Analogously, in our type theory, each
type can be thought of as a category. Despite these different goals, we mention some of the work
in this area.

Brunerie (2016) constructs a type theory whose models are weak∞-groupoids. Benjamin et al.
(2021) (see also the work by Finster and Mimram 2017) design a type theory whose models are
precisely ω-categories à la Grothendieck–Maltsiniotis. Finster et al. (2022) study meta-theoretic
properties of a language for strictly unital ∞-categories. There are also computer tools imple-
menting such type theories, see, e.g., the work by Bar et al. (2018) and Reutter and Vicary (2019).

2.3 Theories with dependent types
In this section, we review work on higher-dimensional and directed type theory with dependent
types. We start with a review of work on undirected type theory.

2.3.1 Undirected type theory
The idea of considering higher-dimensional interpretations of type theory stems from Hofmann
and Streicher’s groupoid interpretation of Martin-Löf type theory by Hofmann and Streicher
(1994). This interpretation is generalized to stacks (poset-indexed groupoids satisfying a sheaf
condition) in order to prove the independence of several logical principles by Coquand et al.
(2017). It is furthermore generalized, from different angles, to higher dimensions, see, e.g., work
by Van den Berg and Garner (2011), Lumsdaine (2010), and Kapulkin and Lumsdaine (2021). All
of this work considers the Martin-Löf identity type, which is undirected.

Licata and Harper (2012) develop a two-dimensional dependent type theory with a judgment
for equivalences � � α :M �A N between terms M,N :A. These equivalences are postulated to
have (strict) inverses. The authors give an interpretation of types as groupoids: terms are (inter-
preted as) objects in the interpreting groupoid, and equivalences are morphisms, necessarily
invertible. No general notion of semantic structure is discussed; this work hence satisfies an
undirected version of D1, but not D2.

Coraglia and Di Liberti (2021) introduce judgmental theories and calculi for them as a general
framework to present and study deductive systems. They instantiate their framework to obtain
a type theory that describes an internal language of 2-toposes (Coraglia and Di Liberti 2021,
Section 5.3); however, they only consider a one-dimensional type theory à la Martin-Löf, and
thus their work does not satisfy D1.

Garner (2009) studies a typal two-dimensional type theory à la Martin-Löf: the forms of judg-
ment are the same as in Martin-Löf type theory. Garner calls a type X “discrete” if it satisfies
identity reflection (that is, if any identity p : x= y between elements x, y : X induces a judg-
mental equality x≡ y. Rules are then added that turn any identity type into a discrete type,
effectively making every type into a 1-type, in the sense of the h-levels of homotopy type theory.
Garner defines a notion of two-dimensional model based on (strict) comprehension 2-categories.
Exploiting the restriction to 1-truncated types, a sound and complete interpretation of that two-
dimensional type theory in any model is then given. The Martin-Löf identity type is undirected;
correspondingly, Garner defines their comprehension 2-categories to consist of locally groupoidal

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

6 B. Ahrens et al.

2-categories. Thus, Garner’s work satisfies D1 for undirected reductions, using the identity type for
this purpose. Garner also considers type constructors such as dependent pair types and dependent
product types, thus satisfying D4 and D5 in this case.1

2.3.2 Directed type theory
Licata and Harper (2011) (see also Licata 2011, Chapter 7) also design a directed two-dimensional
type theory and give an interpretation for it in the strict 2-category of categories. Their syntax has
a judgment for substitutions between contexts, written � � θ : �, and transformations between
parallel substitutions. An important aspect of their work is variance of contexts/types, built into
the judgments. The type formers there have a certain variance – covariance or contravariance – in
each of the arguments. They do not define a general notion of model for their theory; this work
hence satisfies D1, but not D2.

Nuyts (Nuyts 2015, Section 1.3.1) observes that the type theory developed by Licata andHarper
(2011) does not allow for a nontrivial Martin-Löf identity type – any such type would coincide
with the directed transformations. Nuyts thus attempts to generalize the treatment of variance by
Licata and Harper, and designs a directed type theory with additional variances, such as isovari-
ance and invariance. Nuyts does not provide any interpretation of their syntax, and thus no proof
of (relative) consistency; the work hence does not satisfy D2.

North (2019) develops a type former for directed types of morphisms, resulting in a typal
higher-dimensional directed type theory based on the judgments ofMLTT. North’s work thus does
not satisfy D1. The model given by North is in the 2-category of categories, similar to the model
by Licata and Harper (2011).

Shulman (2012), in unfinished work, aims to develop 2-categorical logic, including a two-
dimensional notion of topos and a suitable internal language for such toposes. Specifically,
Shulman sketches two internal languages for 2-toposes. The first language (Shulman 2011) is undi-
rected, consisting only of types and terms. The second language (Shulman 2010) is only described
in a short sketch; it is a kind of directed type theory featuring, in particular, variances. Our work
is similar to Shulman’s in the sense that both start from a (bi)categorical notion and extract a lan-
guage from it, with the goal of developing a precise correspondence between extensions of the
syntax and additional structure on the semantics. Unfortunately, Shulman’s work is unfinished,
which makes a more complete evaluation difficult. However, it contains several ideas that have
influenced the present work. For instance, Shulman (2019) emphasizes the usefulness of restrict-
ing to (op)fibrations instead of considering all 1-cells when constructing bicategories of arrows –
we do this in our main examples of comprehension bicategory, Examples 45 and 57.

Riehl and Shulman (2017) design a simplicial type theory (STT) featuring a directed interval
type, as a synthetic theory of (∞, 1)-categories. As a notion of model, they introduce “compre-
hension categories with shapes” (Riehl and Shulman 2017, Def. A.5). These are (1-categorical)
towers of fibrations accounting for several layers of contexts. Further work on STT was done,
among others, by Weaver and Licata (2020) and Buchholtz and Weinberger (2021). STT is not
higher dimensional in the sense of Licata and Harper (2011) or the present work; in particular,
reductions, both in the tope layer and in the type layer, are undirected. This work thus does not
satisfy D1.

Summary In the present work, we define bicategorical semantics for the interpretation of types,
terms, and reductions and derive from it a system of inference rules; our work thus satisfies D1,
D2, and D3. We do not handle D4 and D5 in this work.

Among the described related work, our work is closest to work by Licata and Harper (2011)
and Garner (2009). Compared to Licata andHarper (2011), we add a general definition of “model”
of a directed two-dimensional type theory and provide many examples of models. Compared to
Garner (2009), we cover directed reductions and provide many instances of our general definition
of model. Compared to both works, we do not handle type and term formers.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 7

3. Preliminaries
Here, we sketch some definitions used later on. Many would be very long if given in full; instead,
we try to convey some intuition while pointing to the formalized definitions. As a reference for
bicategory theory, see Bénabou (1967). We use here the vocabulary and notation introduced by
Ahrens et al. (2021).

Definition 1 (bicat). A bicategory consists of a type B0 of 0-cells (or objects), a type a→ b of 1-
cells from a to b for every a, b : B0, and a set f ⇒ g of 2-cells from f to g for every a, b : B0 and
f , g : a→ b. We have identity id1 (a) : a→ a and composition of 1-cells f · g : a→ c (also written
fg), which we write in diagrammatical order. These operations do not satisfy the axioms for a 1-
category. Instead, we have, for instance, the left unitors, that is, invertible 2-cells �f : id1 (a) · f ⇒ f
for any 1-cell f , and similarly right unitors rf : f · id1 (b)⇒ f . Analogously, we have the associators,
a family of invertible 2-cells α(f , g, h) : f · (g · h)→ (f · g) · h. For 2-cells θ : f ⇒ g and τ : g ⇒ h
(where f , g, h : a→ b for some a, b : B0), we have a vertical composition θ • τ : f ⇒ h. For any 1-cell
f : a→ b, we have an identity 2-cell id2 (f) : f ⇒ f , which is neutral with respect to vertical com-
position: id2 (f) • θ = θ . For any two objects a and b, the 1-cells from a to b, and 2-cells between
them, form the objects and morphisms of the hom-category B(a, b), with composition given by ver-
tical composition of B. We also have left and right whiskering; given a 2-cell θ : f ⇒ g : b→ c and
a 1-cell e : a→ b, we have the left whiskering e� θ : e · f ⇒ e · g, and, similarly, the right whisker-
ing θ � h : f · h⇒ g · h for h : c→ d. We do not list the axioms that these operations satisfy; the
interested reader can consult, e.g., Def. 2.1 of Ahrens et al. (2021).

We occasionally write 1a for id1 (a) and 1f for id2 (f).

Remark 2. We do not generally require that our bicategories (and displayed bicategories, see
Definition 4) are univalent in the sense of Ahrens et al. (2021).

Sometimes it is still interesting to assume that a given (displayed) bicategory is univalent; in
such cases, fibrations are better behaved, since lifts can be shown to be actually unique rather than
just essentially unique (see, for instance, Proposition 26). Whenever we state such a result, the
assumption on the (displayed) bicategory to be univalent is stated explicitly.

We denote by Cat the bicategory of categories, and by Grpd the bicategory of groupoids. The
bicategory Bop has the same objects as B, but 1-cells from x to y in Bop are 1-cells f : y→ x in B.
The 2-cells in Bop are 2-cells in B. The bicategory Bco has the same objects and 1-cells as B, but
2-cells from f to g in Bco are the same as 2-cells from g to f in B.

Definition 3 (psfunctor). Given two bicategories B and B′, a pseudofunctor F : B→ B′ is given
by maps F0 : B0 → B′

0, F1 : (a→ b)→ (F0a→ F0b),2 and p2 : (f ⇒ g)→ (F1f ⇒ F1g), preserving
structure on 1-cells up to invertible 2-cells in B′ (specified as part of the functor F) and preserving
structure on 2-cells up to equality.

We build complicated bicategories from simpler ones by adding structure at all dimensions.
The additional structure should come with its own composition and identity, which should lie
suitably over composition and identity of the original bicategory. This idea is formalized in the
notion of displayed bicategory – a layer of data over a base bicategory – and the resulting total
bicategory – the bicategory of pairs (b, b) of a cell b in the base and a cell b “over” b. We also
obtain a pseudofunctor from the total bicategory into the base, given at all dimensions by the first
projection.

Definition 4 (Ahrens et al. 2021, Def. 6.1, disp_bicat). Let B be a bicategory. A displayed
bicategory D over B consists of

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Core.Bicat.html#bicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.PseudoFunctors.PseudoFunctor.html#psfunctor
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.DispBicat.html#disp_bicat
https://doi.org/10.1017/S0960129523000312

8 B. Ahrens et al.

(1) for any b : B0, a type Db of objects over b;
(2) for any f : a→ b and x : Da and y : Db, a type x f−→ y of 1-cells over f ;

(3) for any θ : f ⇒ g and f : x f−→ y and g : x g−→ y, a set f θ=⇒ g of 2-cells over θ ;

together with suitably typed composition (over composition in B) and identity (over identity in B)
for both 1- and 2-cells. These operations are subject to “axioms over axioms in B”.

Definition 5 (Ahrens et al. 2021, Def. 6.2, total_bicat). Given a displayed bicategory D over B,
we define the total bicategory

∫
D to have, as cells at dimension i, pairs (b, b) where b is a cell of B at

dimension i and b is a cell of D over b, with the obvious source and target.
We define the projection pseudofunctor π : ∫D→ B to be given, on any cell, by (b, b) 	→ b.

Definition 6 (disp_subbicat). Suppose that we have a bicategory B, a predicate P0 on the 0-
cells (by which we mean a proposition P0(a) for every 0-cell a), and a predicate P1 on the 1-cells.
Furthermore, we assume that P1 is closed under identity and composition; that is, P1(id (x)) holds
for every x satisfying P0 and that for all f : x→ y and g : y→ z between 0-cells satisfying P0 we have
P1(f · g) if we have both P1(f) and P1(g). Then we define a displayed bicategory SubBicat(P0, P1)
on B such that

• the type of displayed objects over x is P0(x);
• the type of displayed 1-cells over f : x→ y is P1(f); and
• the type of displayed 2-cells over θ : f ⇒ g is the unit type.

The total bicategory of this bicategory selects 0-cells and 1-cells from the original bicategory
B. Its objects are objects x : B such that P0(x), its 1-cells are 1-cells f : x→ y in B such that
P1(f), and its 2-cells are the same as 2-cells τ : f ⇒ g in B. The projection pseudofunctor π :
SubBicat(P0, P1)→ B is the inclusion.

Remark 7. Note that Definition 6 is defined slightly differently in the formalization. In
disp_subbicat, we do not require that P0 and P1 are propositions. Instead, we only require
this in the theorem is_univalent_2_subbicat that shows the univalence of this displayed
bicategory.

We instantiate Definition 6 to define bicategories of categories with a certain structure.

Example 8 (StructuredCategories.v). We define the following displayed bicategories over
Cat:

• DTerminal where P0(C) says that C has a terminal object and P1(F) says that F preserves
terminal objects. We denote its total bicategory by CatTerminal.

• DBinProd where P0(C) says that C has binary products and P1(F) says that F preserves binary
products. We denote its total bicategory by CatBinProd.

• DPullback where P0(C) says that C has pullbacks and P1(F) says that F preserves pullbacks.
We denote its total bicategory by CatPullback.

• DFinLim where P0(C) says that C has finite limits and P1(F) says that F preserves finite limits.
We denote its total bicategory by CatFinLim.

• DInitial where P0(C) says that C has an initial object and P1(F) says that F preserves initial
objects. We denote its total bicategory by CatInitial.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.DispBicat.html#total_bicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Examples.Sub1Cell.html#disp_subbicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Examples.Sub1Cell.html#disp_subbicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Examples.Sub1Cell.html#is_univalent_2_subbicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Core.Examples.StructuredCategories.html
https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 9

• DBinSum where P0(C) says that C has binary coproducts and P1(F) says that F preserves
binary coproducts. We denote its total bicategory by CatBinSum.

The above examples can be defined using Definition 6 assuming that the categories involved are
univalent, since then the type families P0 and P1 stating a choice of limits are indeed predicates.
For nonunivalent categories, one could consider instead the truncated predicates stating mere
existence of limits.

The total bicategories of the displayed bicategories in Example 8 are bicategories of categories
with certain (co)limits. In addition, we can combine the structure of these by taking the prod-
uct of the suitable displayed bicategories. Note that we could use similar methods to construct
bicategories of extensive categories, regular categories, exact categories, and (pre)toposes.

The following (displayed) bicategories are used:

Example 9 (trivial_displayed_bicat). Given bicategories B1 and B2, we define a displayed
bicategory B1+B2 over B1 as follows:

• The displayed 0-cells over x : B1 are 0-cells y : B2.
• The displayed 1-cells over f : x1 → x2 from y1 : B2 to y2 : B2 are 1-cells g : y1 → y2 in B2.
• The displayed 2-cells over θ : f ⇒ g from g1 : y1 → y2 to g2 : y1 → y2 are 2-cells τ : g1 ⇒ g2
in B2.

The total bicategory is
∫
B1+B2 � B1 × B2 with projection π : B1 × B2 → B1.

Example 10 (cod_disp_bicat). Let B be a bicategory. Define a displayed bicategory B↓ over B
as follows:

• The displayed objects over y : B are 1-cells x→ y.
• The displayed 1-cells over g : y1 → y2 from h1 : x1 → y1 to h2 : x2 → y2 are pairs consisting
of a 1-cell f : x1 → x2 and an invertible 2-cell γ : g · h2 ⇒ h1 · f .

• Given displayed 1-cells f1 : x1 → x2 with γ1 : g1 · h2 ⇒ h1 · f1, and f2 : x1 → x2 with γ2 : g2 ·
h2 ⇒ h1 · f2, we define the displayed 2-cells over θ : g1 ⇒ g2 from (f1, γ1) to (f2, γ2) as 2-cells
τ : f1 ⇒ f2 such that γ1 • (h1 � τ)= (θ � h2) • γ2.

The generated total bicategory is the arrow bicategory,
∫
B↓ = B→ with projection given by the

codomain, cod : B→ → B.

In the next example, we write StrictCat for the bicategory of strict categories and StrictCat for
the category of strict categories.

Example 11 (disp_bicat_of_functors_into_cat). We define a displayed bicategory
IndexedCat over StrictCat as follows:

• The displayed objects over C : StrictCat are functors G : C→ StrictCat.
• The displayed 1-cells over F : C1 → C2 from G1 : C1 → StrictCat to G2 : C2 → StrictCat are
natural transformations γ :G1 ⇒ F ·G2.

• The displayed 2-cells over n : F1 ⇒ F2 from γ1 :G1 ⇒ F1 ·G2 to γ2 :G1 ⇒ F2 ·G2 are proofs
that for all x : C we have γ1(x) ·G2(n(x))= γ2(x).

The associated projection pseudofunctor π : ∫IndexedCat→ StrictCat maps functors C→
StrictCat to their domain.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Examples.Trivial.html#trivial_displayed_bicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Examples.Codomain.html#cod_disp_bicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Examples.FunctorsIntoCat.html#disp_bicat_of_functors_into_cat
https://doi.org/10.1017/S0960129523000312

10 B. Ahrens et al.

Example 12 (disp_bicat_of_opcleaving). We define a displayed bicategory OpCleav over
Cat as follows:

• The displayed objects over C : Cat are displayed categories D over C together with an
opcleaving.

• The displayed 1-cells over F : C1 → C2 from D1 to D2 are displayed functors F from D1 to D2
that preserve opcartesian morphisms.

• The displayed 2-cells over θ : F ⇒G from F : D1 F−→ D2 to G : D1 G−→ D2 are displayed natural
transformations from F to G over θ .

The associated projection pseudofunctor π : ∫OpCleav→ Cat maps any opcleaving to its
codomain category.

Similarly, we define displayed bicategories Cleav and IsoFib of cleavings and isocleavings,
respectively.

The idea of displayed (bi)categories transfers to functors:

Definition 13 (Ahrens et al. 2021, Def. 8.2, disp_psfunctor). Given F : B→ B′ and D and D′
displayed bicategories over B and B′, respectively, a displayed pseudofunctor F over F consists of

• for all objects x : B and x : Dx an object F(x) : D′
F(x);

• for all displayed morphisms f : x f−→ y, a displayed 1-cell F(f) : F(x) F(f)−−→ F(y);
• for all displayed 2-cells θ : f θ=⇒ g, a displayed 2-cell F(θ) : F(f) F(θ)==⇒ F(g);
• coherence isomorphisms for identity and composition of displayed 1-cells, over the analogous
isomorphisms in the base;

• satisfying suitable equations over the corresponding equations in the base.

We denote by
∫
F : ∫D→ ∫

D′ the induced total pseudofunctor.

Remark 14. The square of pseudofunctors∫
D

∫
D′

B B′

∫
F

πD πD′

F

induced by F over F commutes up to judgmental equality.

Furthermore, we need pullbacks and products in bicategories.

Definition 15 (has_pb). Let B be a bicategory, and suppose we have two 1-cells f : a→ c and
g : b→ c. A pullback structure for f and g on an object x : B together with two 1-cells π1 : x→ a and
π2 : x→ b and an invertible 2-cell γ : p · f ⇒ q · g is given by the following data:

• for all 1-cells p′ : z → a and q′ : z → b and invertible 2-cells γ ′ : p′ · f ⇒ q′ · g, we have a 1-cell
u : z → x together with invertible 2-cells θ : u · p⇒ p′ and τ : u · q⇒ q′ such that

α • θ � f • γ ′ = u� γ • α−1 • τ � g.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Examples.DispBicatOfDispCats.html#disp_bicat_of_opcleaving
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.DispPseudofunctor.html#disp_psfunctor
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Limits.Pullbacks.html#has_pb
https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 11

• for all 1-cells u1, u2 : z → x and 2-cells θ : u1 • p⇒ u2 • p and τ : u1 • q⇒ u2 • q such that
u1 � γ • α • τ � q • α−1 = α • θ � f • α−1 • u2 � γ ,

we have a unique 2-cell ν : u1 ⇒ u2 such that ν � p= θ and ν � q= τ .

In Definition 15, it is irrelevant if we postulate data to be given explicitly or to merely exist,
provided the bicategory B is univalent:

Proposition 16 (isaprop_has_pb_ump). If B is univalent, then the type of pullback structures on
(x, π1, π2, γ) is a proposition.

Remark 17. There are different notions of pullback in bicategories depending on whether p · f
and q · g are postulated to be related up to an equality, invertible 2-cell or even just a 2-cell. In
Definition 15, the square commutes up to invertible 2-cell. One could also define strict pullbacks:
this is done similarly to Definition 15, but all involved squares must commute up to equality rather
than just up to invertible 2-cell.

Example 18 (one_types_has_pb, has_pb_bicat_of_univ_cats). The bicategory of
groupoids has pullbacks.

The bicategory Cat also has pullbacks, and they are given by iso-comma categories. These are
defined as follows: given categories C1, C2, and C3 and functors F : C1 → C3 and G : C2 → C3, we
define the iso-comma category F /� G

• Its objects consist of objects x : C1 and y : C2 together with an isomorphism f : F(x)→G(y)
• The morphisms from (x1, y1, f1) to (x2, y2, f2) consists of morphisms g : x1 → x2 and h :
y1 → y2 such that the following diagram commutes:

F(x1) G(y1)

F(x2) G(y2)

F(g)

f1

G(h)

f2

We define functors π�
1 : F /� G→ C1 and π�

2 : F /� G→ C2 and a natural isomorphism n� :
π�
1 · F ⇒ π�

2 ·G. The category F /� G together with the functors π�
1 , π�

2 and natural isomor-
phism n� is universal among such data, making it the pullback of F and G.

Example 19 (LimitsStructuredCategories.v). The bicategories defined in Example 8 all
have pullbacks as well. This is because taking the iso-comma category preserves the desired
(co)limits and the projections and pairing functors preserve them.

As a special case of pullbacks in the presence of terminal objects, we can define products in
bicategories (has_binprod_ump). If B has chosen products, we write x× y for the product of x
and y, and we denote the projections by π1 : x× y→ x and π2 : x× y→ y.

Notation 20. In the following, given a cloven fibration, we notate the pullback (or reindexing) of A
along f by f ∗A. Given a cloven opfibration, we notate the pushforward of A along f by f!A.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Limits.Pullbacks.html#isaprop_has_pb_ump
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Limits.Examples.OneTypesLimits.html#one_types_has_pb
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Limits.Examples.BicatOfUnivCatsLimits.html#has_pb_bicat_of_univ_cats
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Limits.Examples.LimitsStructuredCategories.html
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Limits.Products.html#has_binprod_ump
https://doi.org/10.1017/S0960129523000312

12 B. Ahrens et al.

4. Comprehension Bicategories
In this section, we define the notion of global cleaving and local (op)cleavings of bicategories.
Afterward, we use these notions to define comprehension bicategories. We are guided by Buckley
(2014), where local and global fibrations are defined, and we add definitions for local cloven iso-
and opfibrations. However, there is an important difference: while Buckley works in a set-theoretic
setting, we reformulate the definitions in a type-theoretic setting using the displayed technology
developed by Ahrens et al. (2021) and reviewed in Section 3 – see also Remark 25.

Throughout this section, we assume that B is a bicategory andD is a displayed bicategory overB.

Definition 21 (Buckley 2014, Def. 3.1.1, cartesian_1cell). Let f : a→ b be a 1-cell in B, and

let f : a f−→ b be a displayed 1-cell over f in D. A cartesian structure on f consists of the following
data. Note that we draw diagrams in the displayed category on the left side and diagrams in the base
category on the right side.

(1) For any g : c h·f−→ b, a choice of a displayed morphism h : c h−→ a and a displayed isomorphism
θ over the identity isomorphism on h · f in B.

c

a b

g
h

f

θ

c

a b

h
h·f

f

id2

We call (h, θ) the lift of (h, g).
(2) Given lifts (h1, θ1) and (h2, θ2) of (h1, g1) and (h2, g2), respectively, and δ : h1 ⇒ h2, and a

2-cell σ : g1 ⇒ g2 over δ � f , we have a unique 2-cell δ : h1 ⇒ h2 over δ such that δ � f • θ2 =
θ1 • σ .

c

a b

g1

g2

h1 h2

f

σδ

c

a b

h1 h2

f

δ

Given a cartesian structure on f , we call F1(f , g) := h and F2(f , g) := θ . We also call E(δ, σ) := δ.

Proposition 22. We have the following cartesian 1-cells:

• (cartesian_ 1cell_ id) The identity id1 : a→ a is cartesian.
• (comp_ cartesian_ 1cell) If f : a→ b and g : b→ c are cartesian, then so is f · g.

Problem 23. Given two cartesian 1-cells f : a→ b and f ′ : a′ → b, to construct an adjoint
equivalence e : a→ a′ over the identity and an invertible 2-cell from f to e · f ′.

Construction 24 for Problem 23; (EquivalenceBetweenCartesian.v). The 1-cells of the
adjoint equivalence are constructed as cartesian factorizations (first item of Definition 21). In that
way, we also obtain the desired invertible 2-cell.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#cartesian_1cell
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Cartesians.html#cartesian_1cell_id
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Cartesians.html#comp_cartesian_1cell
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.EquivalenceBetweenCartesian.html
https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 13

Remark 25. Recall that a displayed 1-cell f : a f−→ b in D gives rise to the 1-cell (f , f) in the total
bicategory

∫
D. The definition of cartesian structure on f in D of Definition 21 gives rise to a notion

of cartesian structure for (f , f) in
∫
D. By expressing the definition of cartesian 1-cell in the dis-

played bicategory (instead of in the resulting projection π : ∫D→ B), we can postulate that a lift
in
∫
D lies definitionally over a given cell in B, not just modulo an invertible 2-cell.
Buckley (2014) shows, in Remark 3.1.6, that these two definitions are equivalent.

Proposition 26 (isaprop_cartesian_1cell). Suppose that D is a univalent displayed bicate-
gory over B, and let f be a displayed 1-cell in D over f in B. Then the type of cartesian 1-cell structures
on f is a proposition.

Definition 27 (global_cleaving). A global cleaving on D is a choice, for any f : a→ b in B and
b : Db, of

(1) a displayed object a over a;

(2) a displayed 1-cell f : a f−→ b;
(3) a cartesian structure on f .

Given a global cleaving on D, we use the notation b[f] := a and Lf (b) := f to denote the choice given
by the cleaving.

Remark 28. The notion of global cleaving as in Definition 27 gives rise to a notion of cloven
fibration on the total bicategory

∫
D.

Next we look at local cleavings and opcleavings. A 2-cell is opcartesian if and only if it is
opcartesian in the 1-categorical sense for the hom-functor. However, in the formalization, we
give the following direct definition not relying on hom-categories and prove the characterization
via hom-categories afterward (opcartesian_2cell_weq_opcartesian). Similarly, we give an
unfolded definition of local opcleaving.

Definition 29 (is_opcartesian_2cell). Suppose we have 1-cells f , g : x→ y, a 2-cell θ : f ⇒ g,

and displayed objects x and y over x and y, respectively. Given displayed 1-cells f : x f−→ y and g :
x

g−→ y and a displayed 2-cell θ : f θ=⇒ g, we say that θ is 2-opcartesian (or just opcartesian) if for all
1-cells h : x→ y, displayed 1-cells h : x h−→ y, 2-cells τ : g ⇒ h, and displayed 2-cells γ : f τ•θ==⇒ h, there
is a unique displayed 2-cell τ : g τ=⇒ h such that θ • τ = γ .

Being an opcartesian 2-cell is always a property. The notion of cartesian 2-cells is analogous.

Definition 30 (local_opcleaving). A local opcleaving on D is given by, for every θ : f ⇒ g and

f : x f−→ y, a displayed 1-cell g : x g−→ y and an opcartesian 2-cell θ : f θ=⇒ g.
The notions of local cleaving and local isocleaving are defined analogously.

Remark 31. Every displayed bicategory on a univalent bicategory has a local isocleaving. The
construction is the same as for categories (Ahrens and Lumsdaine 2019, Construction 5.12).

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Cartesian.html#isaprop_cartesian_1cell
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#global_cleaving
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#opcartesian_2cell_weq_opcartesian
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#is_opcartesian_2cell
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.CleavingOfBicat.html#local_opcleaving
https://doi.org/10.1017/S0960129523000312

14 B. Ahrens et al.

Remark 32. The notions of opcartesian 2-cell and of local opcleaving as in Definition 30 give rise
to notions of opcartesian 2-cell and of cloven local opfibration on the total bicategory

∫
D.

Note that one can construct a local isocleaving from either a local cleaving or a local opcleaving.

Proposition 33 (CleavingOfBicatIsAProp.v). Suppose that B is a univalent bicategory and D
is a univalent displayed bicategory over D. Then the types of local (resp. global) (op)cleavings on D
are propositions.

Now let us look at some examples of these notions.

Example 34 (TrivialCleaving.v). The trivial displayed bicategory B1+B2 over B1 comes
equipped with a cloven global fibration. Cartesian 1-cells in B1+B2 correspond to adjoint equiva-
lences in B2. As such, we can take the identity 1-cell as the global lift. In addition, B1+B2 also has
both a cloven local fibration and a cloven local opfibration.

Example 35 (CodomainCleaving.v). Suppose that B is a locally groupoidal bicategory with
pullbacks. Since cartesian 1-cells in B↓ correspond to pullback squares, we can construct a global
cleaving for B↓ by taking pullbacks. Note that all 2-cells in B↓ are cartesian, because B is locally
groupoidal, and thus B↓ also has a local cleaving and a local opcleaving.

Example 36 (FunctorsIntoCatCleaving.v). The displayed bicategory IndexedCat has a
global cleaving and a local opcleaving. To construct these, we first observe that a displayed 1-
cell γ :G1 ⇒ F1 ·G2 from G1 : C1 → StrictCat to G2 : C2 → StrictCat is cartesian if and only if it
is a natural isomorphism. Now we construct a global cleaving for IndexedCat as follows: when-
ever we have functors F : C1 → C2 and G : C2 → StrictCat, then we also get a functor F ·G : C1 →
StrictCat.

Every displayed 2-cell in IndexedCat is opcartesian. To find local opcartesian lifts, suppose
that we have functors F1, F2 : C1 → C2, G1 : C1 → StrictCat and G2 : C2 → StrictCat, and natural
transformations n : F1 ⇒ F2 and γ :G1 ⇒ F1 ·G2. Our goal is to construct a natural transforma-
tion G1 ⇒ F2 ·G2, and for the desired transformation we take γ • (n�G2). Hence, IndexedCat
has a local opcleaving.

Example 37 (OpFibrationCleaving.v). The displayed bicategory OpCleav has a global cleav-
ing and a local opcleaving. Given a functor F : C1 → C2 and a displayed category D2 over C2, we
construct a displayed category F∗(D2) over C1:

• The displayed objects over x : C1 are displayed objects in D2 over F(x).

• The displayedmorphisms over f : x→ y from x to y are displayedmorphisms over x
F(f)−−→ y.

Note that F∗(D2) inherits any opcleaving from D2. In addition, we have a displayed functor over F
from F∗(D2) to D2 that preserves cartesian morphisms.

Opcartesian 2-cells in OpCleav correspond to displayed natural transformations of which all
components are opcartesian. We form local lifts pointwise. Since displayed 1-cells in OpCleav
preserve cartesianmorphisms, cartesian 2-cells are preserved under both left and right whiskering.

Similarly, we can show that the displayed bicategory Cleav has a global and a local cleav-
ing (FibrationCleaving.v). We finish this section by defining comprehension bicategories.
Examples of those are given in Section 5.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.CleavingOfBicatIsAProp.html
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.TrivialCleaving.html
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.CodomainCleaving.html
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.FunctorsIntoCatCleaving.html
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.OpFibrationCleaving.html
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.FibrationCleaving.html
https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 15

Definition 38 (comprehension_bicat). A weak comprehension bicategory is given by a bicate-
gory B, a displayed bicategory D over B, and a displayed pseudofunctor χ over the identity on B as
pictured below,

D B↓

B

χ

satisfying the following properties (see also Proposition 33):

(1) D is equipped with a cloven global fibration;
(2) D has a cloven local opfibration;
(3) opcartesian 2-cells of D are preserved under both left and right whiskering.

A comprehension bicategory is a weak comprehension bicategory such that

(4) χ preserves cartesian 1-cells and opcartesian 2-cells.

Remark 39. Recall from Remarks 14, 28, and 32 that the displayed pseudofunctor χ : D→ B↓ of
Definition 38 gives rise to a strictly commuting diagram of pseudofunctors∫

D
∫
B↓ = B→

B

∫
χ

cod

with the structure of a global fibration and local opfibration in the sense of Buckley (2014).

Remark 40. In the definition of comprehension categories, one usually requires that the functor
χ preserves cartesian morphisms. The analogous requirement for comprehension bicategories is
that the pseudofunctorχ preserves both cartesian 1-cells and opcartesian 2-cells – this is condition
4 in Definition 38.

We have factored out this requirement, since for our interpretation of the language BTT (intro-
duced in Section 8), we do not need this condition; that is, we can interpret BTT in any weak
comprehension bicategory. The reason has to do with how we interpret terms of the language BTT
in a (weak) comprehension bicategory. Traditionally, in a comprehension category, terms ofMLTT
are interpreted as sections of projections. Specifically, every type A in context � gives rise, in the
interpretation, to a morphism πA : �.A→ � in the arrow category. A term of type A in context �
in MLTT is then interpreted as a section of πA.

In our setting, terms of BTT will be interpreted differently. Instead of interpreting BTT terms
as sections of projections, we interpret them as morphisms over the identity. More concretely, in
a bicategory D displayed over B, a term in context � of type B with source A of BTT is interpreted
as a morphism from A to B over the identity of �.

In the 1-categorical case, these two ways of interpreting terms are equivalent inmany examples.
The reason is that, in practice, most comprehension categories are full, which means that χ is fully
faithful, and that every fiber has a terminal object. From these two assumptions, one can conclude
that these two ways of interpreting terms are actually equivalent. However, in the bicategorical
setting, these two ways are often not equivalent: for example, in the comprehension bicategory
of displayed categories with opcleavings, i.e. opfibrations (Examples 12, 37, and 45). There, mor-
phisms over the identity are required to preserve opcartesian morphisms, but such a requirement
is not present for sections of the projection. If one were to include MLTT style terms (which are

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Logic.ComprehensionBicat.html#comprehension_bicat
https://doi.org/10.1017/S0960129523000312

16 B. Ahrens et al.

interpreted as sections of projections) in BTT, then to give an interpretation one would also need
that χ preserves cartesian 1-cells and opcartesian 2-cells in order to interpret substitution. This is
why we present here both definitions.

In short, all the examples presented in Section 5 are comprehension bicategories; the interpre-
tation of BTT given in Section 8 only requires a weak comprehension bicategory.

Remark 41. Contravariant and isovariant comprehension bicategories are defined analogously
with the notions of (iso)cleaving and (iso)cartesian taking the place of opcleaving and opcarte-
sian in Items 2 and 3 of Definition 38. Some of our examples of comprehension bicategories can
similarly be equipped with a contravariant and isovariant comprehension structure.

5. Examples of Comprehension Bicategories
In this section, we give several (classes of) instances of comprehension bicategories. In some of
these instances, we recognize structures studied previously in the context of higher-dimensional
and directed type theory.

Example 42 (trivial_comprehension_bicat). Supposewe have a bicategory Bwith products.
Then we have the following comprehension bicategory

B+B B↓

B

χ

The displayed pseudofunctor χ : B+B → B↓ sends the object y2 over y1 to the product projection
y1 × y2 → y1, that is, the corresponding total pseudofunctor B× B→ B↓ is defined by (y1, y2) 	→
π1 : y1 × y2 → y1.

Example 42 corresponds roughly to the semantics studied by Fiore and Saville (2019), but
without the type formers.

Another example of a comprehension bicategory comes from locally groupoidal bicategories,
such as Grpd.

Example 43 (locally_grpd_comprehension_bicat). Let B be a locally groupoidal bicategory
with pullbacks. Then we get the following comprehension bicategory

B↓ B↓

B

id

Since every 2-cell is opcartesian in B↓ if B is locally groupoidal, the displayed bicategory B↓ has a
local opcleaving.

Example 43 models undirected reductions between terms. It is thus related to the groupoid
model of type theory by Hofmann and Streicher (1994) and to the definition of comprehension 2-
category by Garner (2009). A more detailed comparison to Garner’s comprehension 2-categories
is given in Remark 65.

We can also consider directed versions of this example by using categories instead of groupoids.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Logic.Examples.TrivialComprehensionBicat.html#trivial_comprehension_bicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Logic.Examples.PullbackComprehensionBicat.html#locally_grpd_comprehension_bicat
https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 17

Example 44 (functors_into_cat_comprehension_bicat).We construct the following com-
prehension bicategory using cloven split opfibrations.

IndexedCat StrictCat↓

StrictCat

χ

To define χ , we use the Grothendieck construction. Specifically, from a functor G : C→ StrictCat
we construct a category

∫
G as follows

(1) The objects of
∫
G are pairs (x, y) where x : C and y :G(x).

(2) The morphisms from (x1, y1) to (x2, y2) are pairs (f , g) where f : x1 → x2 and g :
G(f)(y1)→ y2.

Note that we also have a projection π1 : ∫ G→ C. In addition, from a displayed 1-cell γ :G1 ⇒
F ·G2, we get a functor

∫
γ : ∫ G1 → ∫

G2 and a natural isomorphism γc : π1 · F ⇒ ∫
γ · π1. If we

have p : γ1(x) ·G2(n(x))= γ2(x) for every x : C1, then we get a natural transformation
∫
p from∫

γ1 to
∫

γ2.

Example 44 is related to the interpretations given by Licata andHarper (2011) andNorth (2019)
in their works on directed type theories, albeit without considering type formers. However, their
notion of term, in both the syntax and the interpretation, is different from ours; see Section 10 for
details.

In Example 44, contexts are categories and types over a context C are cloven split opfibrations
on C. We also consider a version of this interpretation where there are more types: instead of
looking at only those opfibrations that are split, all opfibrations are considered.

Example 45 (opcleaving_comprehension_bicat). From opcleavings we build the following
comprehension bicategory:

OpCleav Cat↓

Cat

χ

The pseudofunctor χ sends a displayed category D over C to the functor π1 : ∫D→ C.

Similarly, we can define a contravariant comprehension bicategory
(cleaving_contravariant_comprehension_bicat) using cleavings instead of opcleavings.

6. Internal Street (Op)Fibrations
In this section, we discuss Street (op)fibrations internal to a fixed bicategory B. They will yield,
in Section 7, many examples of comprehension bicategories, see Example 57 and Remark 59. The
examples of Street opfibrations internal to bicategories of stacks are particularly interesting (see
Remark 59).

Note that B↓ comes equipped with a cloven global fibration if B has pullbacks. However, to
obtain a local (op)cleaving, we used that B is locally groupoidal in Example 35. This assumption is
avoided in Example 37 where B= Cat: instead of looking at arbitrary functors, one only consid-
ers the opfibrations. We can generalize this idea to arbitrary bicategories by using internal Street
(op)fibrations (Buckley 2014).

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Logic.Examples.FunctorsIntoCatComprehensionBicat.html#functors_into_cat_comprehension_bicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Logic.Examples.OpfibrationsComprehensionBicat.html#opcleaving_comprehension_bicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.ComprehensionBicat.html#cleaving_contravariant_comprehension_bicat
https://doi.org/10.1017/S0960129523000312

18 B. Ahrens et al.

The displayed bicategory OpCleav has a local opcleaving where the desired lifts are constructed
pointwise. To generalize this to arbitrary bicategories, we need to adjust this definition so that we
can lift arbitrary 2-cells. Furthermore, the notion of cloven Grothendieck opfibration of categories
is stricter than appropriate for bicategories. If we have x→ y and an object over y, then a cloven
Grothendieck fibration gives an object strictly living over x, while a Street fibration only gives an
object living weakly over x (i.e., up to an isomorphism). More information can be found in work
by Loregian and Riehl (Loregian and Riehl 2020, Example 4.1.2).

Definition 46 (internal_sfib). Let p : e→ b be a 1-cell in a bicategory B. Then p is an internal
Street fibration if

• For every x : B, the functor p∗ : B(x, e) → B(x, b) of hom-categories is a Street fibration.
• For every f : x→ y, the following square is a morphism of Street fibrations:

B(y, e) B(x, e)

B(y, b) B(x, b)

p∗

f ∗

p∗
f ∗

A 1-cell is called an internal Street opfibration if it is an internal Street fibration in Bco
(internal_ sopfib).

In Cat, internal Street fibrations are the same as Street fibrations of categories. However, the
notion of internal Street fibrations can be applied in a wider variety of settings: for example, one
could also look at internal Street fibrations in the bicategories from Example 8 or in presheaves
or stacks valued in Cat. A classical result on internal Street (op)fibrations is that they are closed
under taking pullbacks, see Gray (1966) and Street (1980).

Proposition 47 (pb_of_sfib_cleaving). Street (op-)fibrations are closed under pullback.
Concretely, given a pullback square

e1 e2

b1 b2

p1 p2

where p2 is a Street (op)fibration, then p1 is so, too.

7. Display Map Bicategories
In this section, we introduce “display map bicategories” as a convenient way to build comprehen-
sion bicategories.

Let B be a bicategory with pullbacks. We aim to construct a displayed bicategory SOpFib(B)
of Street opfibrations over B with both a global cleaving and a local opcleaving. The construction
should be done in amodular and general way, since using the same techniques we aim to construct
a displayed bicategory SFib(B) of Street fibrations over B with a global and local cleaving. One
can imagine more examples, such as the intersection of Street opfibrations with discrete or fully
faithful 1-cells.

The common pattern among all these examples is that the displayed bicategory actually rep-
resents a subbicategory of the arrow bicategory of B. In the 1-categorical case, such examples

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Morphisms.InternalStreetFibration.html#internal_sfib
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Core.InternalStreetOpFibration.html#internal_sopfib
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Morphisms.Properties.ClosedUnderPullback.html#pb_of_sfib_cleaving
https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 19

are captured by display map categories (Taylor 1999). We adapt that notion to the bicategorical
setting.

However, there is a difference between the 1-categorical and the bicategorical case. A display
map category on a 1-category C is a full subcategory of the arrow category on C satisfying some
requirements. Such a notion would not be useful in the bicategorical case, since neither SOpFib(B)
nor SFib(B) are full subbicategories of B↓. Indeed, the 1-cells in SOpFib(B) and SFib(B) are
required to preserve (op)cartesian cells, which is not required in B↓. As such, to obtain a notion
of display map bicategory that captures these two examples, some care is needed in the definition
of display map bicategories.

For that reason, our notion of display map bicategory comes in three different flavors.3

Definition 48 (disp_map_bicat). Let B be a bicategory. A display map bicategory on B consists
of

(1) a predicate P on the 1-cells of B, and
(2) a choice of pullbacks along 1-cells satisfying P

such that

(3) if a morphism satisfies P, then it is an internal Street opfibration, and
(4) P is closed under pullback.

Given a display map bicategory B, a display map of B is a 1-cell of B together with a proof of the
predicate P.

We also define notions of contravariant display map bicategory and isovariant display map
bicategory: for the former, condition (3) above is replaced by the condition that the display maps
are required to be internal Street fibrations, while for the latter, condition (3) is omitted. The
reason for this terminology is that every display map bicategory of a given variance gives rise to a
comprehension bicategory with the same variance.

Example 49 (sopfib_disp_map_bicat_is_covariant). Let B be a locally univalent bicate-
gory with pullbacks. Since B has pullbacks, pullbacks exist along all 1-cells, and in particular, along
Street opfibrations. In addition, Street opfibrations are closed under pullbacks by Proposition 47.
Hence, we have a display map bicategory in which the predicate P says that a 1-cell is an internal
Street opfibration.

Remark 50. Note that in Example 49, we assume B to be locally univalent. This is to guarantee
that the notion of being a Street opfibration is actually a proposition as required in Definition 48.
However, we expect that this assumption can be dropped by suitably truncating the notion of
Street opfibration.

Analogously, one can define a contravariant display map bicategory of Street fibrations. There
are other examples of display map bicategories as well, for instance discrete Street opfibrations.
To define those, we first need the notion of discrete morphisms.4

Definition 51 A 1-cell f : a→ b in a bicategory B is called

• (faithful_ 1cell) faithful if for every object x, the functor f∗ : B(x, a)→ B(x, b) given by
postcomposition with f is faithful;

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Logic.DisplayMapBicat.html#disp_map_bicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Logic.DisplayMapBicat.html#sopfib_disp_map_bicat_is_covariant
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Morphisms.FullyFaithful.html#faithful_1cell
https://doi.org/10.1017/S0960129523000312

20 B. Ahrens et al.

• (conservative_ 1cell) conservative if for every object x, the functor f∗ : B(x, a)→ B(x, b)
is conservative;

• (discrete_ 1cell) discrete if for every object x, the functor f∗ : B(x, a)→ B(x, b) is faithful
and conservative.

Example 52 (discrete_sopfib_disp_map_bicat_is_covariant). Let B be a bicategory
with pullbacks. Since both faithful and conservative 1-cells are closed under pullbacks, discrete
1-cells are as well. Hence, we get a display map bicategory of discrete Street opfibrations.

Every display map bicategory gives rise to a displayed bicategory as follows.

Definition 53 (disp_map_bicat_to_disp_bicat). Let B be a bicategory and let D be a display
map bicategory on B. We define a displayed bicategory D over B as follows:

• The objects over b : B are pairs e : B and p : e→ b such that p is a display map;
• The 1-cells over f : b1 → b2 from p1 : e1 → b1 to p2 : e2 → b2 are pairs of a 1-cell g : e1 → e2
and an invertible 2-cell g · p2 ⇒ p1 · f such that g preserves opcartesian 2-cells;

• The 2-cells are as in Example 10.

Similarly, every contravariant display map bicategory gives rise to a displayed bicategory.
However, the 1-cells are required to preserve cartesian 2-cells. For isovariant display map bicate-
gories, we do not make any restriction on the 1-cells. This way, we obtain displayed bicategories
SOpFib(B) and SFib(B) over a bicategory B with pullbacks. In SOpFib(B), 2-cells are the same as
2-cells in B→. However, 1-cells are a bit different: while 1-cells in B→ are squares

e1 e2

b1 b2

fe

p1 p2

fb

that commute up to invertible 2-cell, 1-cells in SOpFib(B) have the additional requirement that
whiskering with fe preserves opcartesian 2-cells. Similarly, we can define the bicategory SFib(B)
where the objects are internal Street fibrations and where the 1-cells preserve cartesian 2-cells.

Now we can construct the desired cleavings.

Example 54 (DisplayMapBicatCleaving.v). Let B be a bicategory and let D be a display map
bicategory. As in Example 35, cartesian 1-cells are the same as pullback squares. Hence, we can
construct a global cleaving for D using pullbacks and Proposition 47. To construct a local opcleav-
ing for D, we use that it is contained in SOpFib(B), and then we can use the same construction as
for SFib(B) (Buckley 2014, Example 3.4.6).

Similarly, given a contravariant display map bicategory, one obtains both a global and a local
cleaving. However, from an isovariant display map bicategory, one only gets a global cleaving
and a local isocleaving. One can instantiate Example 54 to internal Street opfibrations to obtain a
global cleaving and a local opcleaving for SOpFib(B) if B has pullbacks.

Using Example 54, we can generalize the example of (op)fibrations to arbitrary display map
bicategories. We discuss the interest in this generalization in Remark 59.

Problem 55. Given a display map bicategory D on a bicategory B, to define a comprehension
bicategory.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Morphisms.DiscreteMorphisms.html#conservative_1cell
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Morphisms.DiscreteMorphisms.html#discrete_1cell
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Logic.DisplayMapBicat.html#discrete_sopfib_disp_map_bicat_is_covariant
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.Examples.DisplayMapBicatToDispBicat.html#disp_map_bicat_to_disp_bicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.DisplayMapBicatCleaving.html
https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 21

Construction 56 for Problem 55; disp_map_bicat_comprehension_bicat. From bicategory
B and a display map bicategory D on B, we construct the comprehension bicategory

D B↓

B

χ

The (displayed) pseudofunctor χ is the inclusion of D into B↓.

Similarly, we get a contravariant comprehension bicategory from a contravariant display
map bicategory, and an isovariant comprehension bicategory from an isovariant display map
bicategory. We can instantiate Example 56 to internal Street opfibrations to get the following
comprehension bicategory.

Example 57 (internal_sopfib_comprehension_bicat). For a bicategory B with pullbacks
(see, e.g., Example 19), we construct the comprehension bicategory

SOpFib(B) B↓

B

χ

The (displayed) pseudofunctor χ forgets that the morphisms in SOpFib(B) are internal Street
opfibrations.

Example 58 By Example 57 any bicategory with pullbacks, thus in particular any bicategory of
stacks (Street 1982), gives rise to a comprehension bicategory.

Remark 59. Recall from Section 2.3.1 that Coquand et al. (2017) constructed models of MLTT
in stacks valued in groupoids. Using those models, they proved the independence of countable
choice in univalent foundations.

With our comprehension bicategories of stacks (not just ones valued in groupoids), one could
follow Coquand et al. (2017) and study the validity and independence of logical principles in
directed type theory.

Note that we can specialize Example 57 to each of the examples given in Example 8. This is
because we showed in Example 19 that those bicategories have pullbacks. In the case of CatTerminal,
we get a comprehension bicategory in which

• the “contexts” are categories with a terminal object; and
• the “types” are cloven opfibrations of categories which preserve terminal objects.

Similarly, we can instantiate this to the other categories mentioned in Example 8.

Remark 60. Note that, similarly, we can construct a contravariant comprehension bicategory
from SFib(B).

8. The Type Theory BTT
In this section, we extract a core syntax for two-dimensional type theory from our semantic
model. We call the resulting type theory Bicategorical Type Theory (BTT). In Section 9, we prove

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Logic.Examples.DisplayMapComprehensionBicat.html#disp_map_bicat_comprehension_bicat
https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.Logic.Examples.DisplayMapComprehensionBicat.html#internal_sopfib_comprehension_bicat
https://doi.org/10.1017/S0960129523000312

22 B. Ahrens et al.

soundness of our syntax by giving an interpretation of the syntax in any weak comprehension
bicategory.

The syntax extracted here is maximally general, in the sense that it reflects the structure of
a general comprehension bicategory. In Section 10, we propose several orthogonal simplifica-
tions to the syntax, along with the corresponding semantic structure and properties. As such,
our syntax and semantics are to be viewed as a framework to study different semantic struc-
tures and their corresponding internal languages, rather than as one particular pair of syntax and
semantics.

In Section 8.1 we present the judgment forms of BTT, as well as the rules extracted from
the bicategories of contexts and of types, respectively. In Sections 8.2 and 8.3 we present the
comprehension and substitution rules, respectively.

For reasons of space we omit here several rules, namely the naturality rules in Figs. 8 and 9, and
the coherencies of trifunctors. Such rules, written out in the “linear” syntax used here, would take
up several lines and would be difficult to understand. Consequently, the syntax presented here is
not complete. The presentation of the complete syntax and a suitable completeness theorem is left
for future work.

8.1 Judgments and basic rules
BTT features contexts, substitutions, types, generalized terms, and reductions between terms.
As befits the bicategorical semantics, judgmental equality is only postulated between parallel
reductions.

There are eight kinds of judgments in BTT:

(1) � ctx, which is read as “� is a context”;
(2) � � s : � (given �, � ctx), which is read as “s is a substitution from � to �”;
(3) � � r : s� t : � (where � � s, t : �), which is read as “r is a reduction from s to t”;
(4) � � r ≡ r′ : s� t : � (where � � r, r′ : s� t : �), which is read as “r is equal to r′”;
(5) � � T type (where � ctx), which is read as “T is a type in context �”;
(6) � | S� t : T (where � � S, T type), which is read as “t is a term in T depending on S in

context �”;
(7) � | S� ρ : t� t′ : T (where � | S� t, t′ : T), which is read as “ρ is a reduction from t

to t′”;
(8) � | S� ρ ≡ ρ′ : t� t′ : T (where � | S� ρ, ρ′ : t� t′ : T), which is read as “ρ is equal

to ρ′”.

We often abbreviate the above judgments and write, e.g., just ρ : t� t′ instead of � | S� ρ : t�
t′ : T. For these judgments, we have rules that express the bicategorical structure of contexts and
types. Rules are given in Fig. 1 for the bicategory of contexts, and in Fig. 2 for the bicategory of
types.

We also introduce symbols which read like judgments but stand for several judgments, using
the composition and identities introduced in Figs. 1 and 2.

(1) � � ρ : s �̃ t : � stands for the following four judgments.
• � � ρ : s� t : � � � ρ−1 : t� s : �
• ρ • ρ−1 ≡ 1s ρ−1 • ρ ≡ 1t

(2) � | S� ρ : t �̃ t′ : T stands for the following four judgments.
• � | S� ρ : t� t′ : T � | S� ρ−1 : t′� t : T
• ρ • ρ−1 ≡ 1t ρ−1 • ρ ≡ 1t′

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 23

� ctx
� � 1� : �

�,� ctx � � s : �
� � 1s : s� s : �

�,� ctx � � s, s′ : � � � ρ : s� s′ : �
� � ρ ≡ ρ : s� s′ : �

�,�,� ctx � � s : � � � t : �
� � st : �

�,�,� ctx � � s : � � � t, t′ : � � � ρ : t� t′ : �
� � s� ρ : st� st′ : �

�,�,� ctx � � s, s′ : � � � t : � � � σ : s� s′ : �
� � σ� t : st� s′ t : �

�,� ctx � � s, s′ , s′′ : � � � ρ : s� s′ : � � � σ : s′� s′′ : �
� � ρ • σ : s� s′′ : �

�,�,� ctx � � s : � � � t : �
� � 1s� t ≡ 1st : st� st : �
� � s� 1t ≡ 1st : st� st : �

�,�,� ctx � � s : � � � t, t′ , t′′ : � � � ρ : t� t′ : � � � ρ ′ : t′� t′′ : �
� � (s� ρ) • (s� ρ ′)≡ s� (ρ • ρ ′) : st� st′′ : �

�,�,� ctx � � s, s′ , s′′ : � � � t : � � � σ : s� s′ : � � � σ ′ : s′� s′′ : �
� � (σ� t) • (σ ′� t)≡ (σ • σ ′)� t : st� s′′ t : �

�,�,� ctx � � s, s′ : � � � t, t′ : � � � σ : s� s′ : � � � ρ : t� t′ : �
� � (σ� t) • (s′� ρ)≡ (s� ρ) • (σ� t′) : st� s′ t′ : �

�,� ctx � � s : �
� � �s : 1�s�̃ s : �
� � rs : s1� �̃ s : �

�,�,�, Z ctx Z� r : � � � s : � � � t : �
Z� αr,s,t : r(st)�̃ (rs)t : �

�,� ctx � � s, s′ : � � � ρ : s� s′ : �
� � r−1

s • (ρ� 1�) • rs′ ≡ ρ : s� s′ : �
� � �−1

s • (1�� ρ) • �s′ ≡ ρ : s� s′ : �
�,�,�, Z ctx Z� s : � � � t : � � � u, u′ : � � � ρ : u� u′ : �

Z� α−1
s,t,u • (s� (t� ρ)) • αs,t,u′ ≡ st� ρ : (st)u� (st)u′ : �

�,�,�, Z ctx Z� s : � � � t, t′ : � � � u : � � � ρ : t� t′ : �
Z� α−1

s,t,u • (s� (ρ� u)) • αs,t′ ,u ≡ (s� ρ)� u : (st)u� (st′)u : �

�,�,�, Z ctx Z� s, s′ : � � � t : � � � u : � Z� ρ : s� s′ : �
Z� α−1

s,t,u • (ρ� tu) • αs′ ,t,u ≡ (ρ� t)� u : (st)u� (s′ t)u : �

�,� ctx � � s, s′ : � � � ρ : s� s′ : �
� � 1s • ρ ≡ ρ : s� s′ : �
� � ρ • 1s′ ≡ ρ : s� s′ : �

�,� ctx � � s, s′ , s′′ , s′′′ : � � � ρ : s� s′ : � � � σ : s′� s′′ : � � � τ : s′′� s′′′ : �
� � (ρ • σ) • τ ≡ ρ • (σ • τ) : s� s′′′ : �

�,�,� ctx � � s : � � � t : �
� � αs,1� ,t • (rs� t)≡ s� �t : s(1� t)� st : �

�,�,�, Z, H ctx H� s : Z Z� t : � � � u : � � � v : �
H� αs,t,uv • αst,u,v ≡ (s� αt,u,v) • αs,tu,v • (αs,t,u� v) : s(t(uv))� ((st)u)v : �

Figure 1. Rules for the bicategory of contexts.

(3) �
∼� s : � stands for the following four judgments.
• � � s : � � � s−1 : �
• s� : ss−1 �̃ 1� sρ : s−1s �̃ 1�

We also require that s� and sρ form an adjoint equivalence. This can be specified by
formulating the usual triangle equalities as equality judgments.

(4) � | S ∼� t : T stands for the following four judgments.
• � | S� t : T � | T � t−1 : S
• t� : tt−1 �̃ 1S tρ : t−1t �̃ 1T

Remark 61. By abuse of notation, we write several topically related rules that share all the same
hypotheses as one rule with several conclusions. These rules then also share the same name,
e.g., extend-con-Ty. When referring to a rule by name, it will be clear from the context which
of the possible rules we refer to. The names of inference rules in the text are hyperlinks to the
corresponding rules (e.g., map). The equality ≡ is assumed to be a congruence for every other
constructor and judgment. For brevity, we have not recorded here the resulting rules. When
parentheses are omitted, everything is associated to the left: that is, rst stands for ((rs)t). Note
also that in several rules in which it is necessary to re-associate several four or more terms or sub-
stitutions, we have written α instead of a long composition of whiskered associators α•,•,• in the
interest of readability.

8.2 Comprehension structure
Comprehension, that is, context extension, is extracted from the pseudofunctor χ . The rules
for comprehension are given in Fig. 3. There are some notable differences to comprehension in
MLTT. First, the rule extend-con-Tm, which forms a substitution, comes together with a reduction

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

24 B. Ahrens et al.

� � T type

� | T � 1T : T
� � S, T type � | S� t : T

� | S� 1t : t� t : T
� � S, T type � | S� t, t′ : T � | S� ρ : t� t′ : T

� | S� ρ ≡ ρ : t� t′ : T

� � R, S, T type � | R� s : S � | S� t : T
� | R� st : T

� � R, S, T type � | R� s : S � | S� t, t′ : T � | S� ρ : t� t′ : T
� | R� s� ρ : st� st′ : T

� � R, S, T type � | R� s, s′ : S � | S� t : T � | R� σ : s� s′ : S
� | R� σ� t : st� s′ t : T

� � S, T type � | S� t, t′ , t′′ : T � | S� ρ : t� t′ : T � | S� σ : t′� t′′ : T
� | S� ρ • σ : t� t′′ : T

� � R, S, T type � | R� s : S � | S� t : T
� | R� 1s� t ≡ 1st : st� st : T
� | R� s� 1t ≡ 1st : st� st : T

� � R, S, T type � | R� s : S � | S� t, t′ , t′′ : T � | S� ρ : t� t′ : T � | S� ρ ′ : t′� t′′ : T
� | R� (s� ρ) • (s� ρ ′)≡ s� (ρ • ρ ′) : st� st′′ : T

� � R, S, T type � | R� s, s′ , s′′ : S � | S� t : T � | R� σ : s� s′ : S � | R� σ ′ : s′� s′′ : S
� | R� (σ� t) • (σ ′� t)≡ (σ • σ ′)� t : st� s′′ t : T

� � R, S, T type � | R� s, s′ : S � | S� t, t′ : T � | R� σ : s� s′ : S � | S� ρ : t� t′ : T
� | R� (σ� t) • (s′� ρ)≡ (s� ρ) • (σ� t′) : st� s′ t′ : T

� � S, T type � | S� s : T
� | S� �s : 1S s�̃ s : T
� | S� rs : s1T �̃ s : T

� �Q, R, S, T type � |Q� r : R � | R� s : S � | S� t : T
� |Q� αr,s,t : r(st)�̃ (rs)t : T

� � S, T type � | S� s, s′ : T � | S� ρ : s� s′ : T
� | S� r−1

s • (ρ� 1T) • rs′ ≡ ρ : s� s′ : T
� | S� �−1

s • (1S� ρ) • �s′ ≡ ρ : s� s′ : T
� �Q, R, S, T type � |Q� s : R � | R� t : S � | S� u, u′ : T � | S� ρ : u� u′ : T

� |Q� α−1
s,t,u • (s� (t� ρ)) • αs,t,u′ ≡ st� ρ : (st)u� (st)u′ : T

� �Q, R, S, T type � |Q� s : R � | R� t, t′ : S � | S� u : T � | R� ρ : t� t′ : S
� |Q� α−1

s,t,u • (s� (ρ� u)) • αs,t′ ,u ≡ (s� ρ)� u : (st)u� (st′)u : T
� �Q, R, S, T type � |Q� s, s′ : R � | R� t : S � | S� u : T � |Q� ρ : s� s′ : R

� |Q� α−1
s,t,u • (ρ� tu) • αs′ ,t,u ≡ (ρ� t)� u : (st)u� (s′ t)u : T

� � S, T type � | S� s, s′ : T � | S� ρ : s� s′ : T
� | S� 1s • ρ ≡ ρ : s� s′ : T
� | S� ρ • 1s′ ≡ ρ : s� s′ : T

� � S, T type � | S� s, s′ , s′′ , s′′′ : T � | S� ρ : s� s′ : T � | S� σ : s′� s′′ : T � | S� τ : s′′� s′′′ : T
� | S� ρ • (σ • τ)≡ (ρ • σ) • τ : s� s′′′ : T

� � R, S, T type � | R� s : S � | S� t : T
� | R� αs,1S ,t • (rs� t)≡ s� �t : s(1S t)� st : T

� � P,Q, R, S, T type � | P � q :Q � |Q� r : R � | R� s : S � | S� t : T
� | P � αq,r,st • αqr,s,t ≡ (q� αr,s,t) • αq,rs,t • (αq,r,s� t) : q(r(st))� ((qr)s)t : T

Figure 2. Rules for the the bicategory of types.

that expresses the commutativity of a triangle. Second, we also have a rule extend-con-Red that
extends a substitution with a reduction. Since reductions are proof-relevant, this rule comes with
a coherency on the commutativity.

8.3 Substitution structure
Substitution is given, in the semantics, by the global and local (op)cleaving structure. We reflect
this into the syntax as explicit substitution, as was also used, e.g., by Fiore and Saville (2019), Licata
and Harper (2012) in their respective settings.

The rules for substitution are given in Figs. 4, 5, 6, 7, 8, and 9. We distinguish them based on
whether we need the global cleaving or the local opcleaving to interpret them. There are several
important observations to be made about these rules. First, in line with our truly bicategorical
approach, we do not assume the comprehension bicategory is split. In particular, no equality
between T[id] and T is postulated. Instead, there is an equivalence between them (see sub-id
and sub-comp), and terms of these types are transported along the equivalence.

The rulemap expresses that each type T behaves “functorially”: for each� � s : � (i.e., object in
“hom (�, �)”) we get a type T[s] (i.e., object in “the category of types in context�”) by sub-ty and
for each r : s� s′ (i.e., morphism in ‘hom (�, �)’) we get a term � | T[s]�map T θ : T[s′] (i.e.,
morphism in “the category of types in context �”) by map. The rules map-id and map-comp

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 25

� ctx � � T type
extend-con-Ty

�.T ctx

�.T � π�.T : �

� ctx � � S, T type � | S� t : T
extend-con-Tm

�.S� �.t : �.T
�.S� c�.t : π�.S �̃ (�.t)π�.T : �

� ctx � � S, T type � | S� t, t′ : T � | S� r : t� t′ : T
extend-con-Red

�.S� �.r : �.t� �.t′ : �.T
�.S� c�.t′ ≡ c�.t • (�.r� π�.T) : π�.S� (�.t′)π�.T : �

� ctx � � T type
extend-con-id

�.T � χ id
T : �.1T �̃ 1�.T : �.T

�.T � c�.1T • (χ id
T � π�.T) • �π�.T ≡ 1π�.T : π�.T� π�.T : �

� ctx � � R, S, T type � | R� s : S � | S� t : T
extend-con-comp

�.R� χ
comp
s,t : (�.s)(�.t)�̃ �.(st) : �.T

�.R� c�.s • (�.s� c�.t) • α�.s,�.t,π�.T • (χ comp
s,t � π�.T)≡ c�.st : π�.R� (�.st)π�.T : �

� ctx � � S, T type � | S� t : T
�.S� �.1t ≡ 1�.t : �.t� �.t : �.T

� ctx � � S, T type � | S� t, t′ , t′′ : T � | S� ρ : t� t′ : T � | S� ρ ′ : t′� t′′ : T
�.S� �.(ρ • ρ ′)≡ �.ρ • �.ρ ′ : �.t� �.t′′ : �.T

� ctx � � S, T type � | S� t : T
�.S� (χ id

S � (�.t)
) • ��.t ≡ χ

comp
1S ,t • (�.�t) : (�.1S)(�.t)� �.t : �.T

�.S� ((�.t)� χ id
T

) • r�.t ≡ χ
comp
t,1T • (�.rt) : (�.t)(�.1T)� �.t : �.T

� ctx � �Q, R, S, T type � |Q� r : R � | R� s : S � | S� t : T
�.Q� ((�.r)� χ

comp
s,t

) • χ
comp
r,(st) • (�.αr,s,t)≡ α�.r,�.s,�.t • (χ comp

r,s � (�.t)
) • χ

comp
(rs),t : (�.r)((�.s)(�.t))� �.((rs)t) : �.T

� ctx � � R, S, T type � | R� s, s′ : S � | S� t : T � | R� ρ : s� s′ : S
�.R� χ

comp
s,t • �.(ρ� t)≡ (�.ρ� �.t) • χ

comp
s′ ,t : (�.s)(�.t)� �.(s′ t) : �.T

� ctx � � R, S, T type � | R� s : S � | S� t, t′ : T � | S� ρ : t� t′ : T
�.R� χ

comp
s,t • �.(s� ρ)≡ (�.s� �.ρ) • χ

comp
s,t′ : (�.s)(�.t)� �.(st′) : �.T

Figure 3. Rules for comprehension.

�,� ctx � � s : � � � T type
sub-ty

� � T[s] type
�,� ctx � � s : � � � S, T type � | S� t : T

sub-tm
� | S[s]� t[s] : T[s]

�,� ctx � � s : � � � S, T type � | S� t, t′ : T � | S� ρ : t� t′ : T
sub-red

� | S[s]� ρ[s] : t[s]� t′[s] : T[s]
�,� ctx � � s : � � � T type

sub-pres-id
� | T[s]� SubI(s) : 1T[s] �̃ 1T [s] : T[s]

�,� ctx � � s : � � � R, S, T type � | R� r : S � | S� t : T
sub-pres-comp

� | R[s]� SubC(r, t, s) : r[s]t[s]�̃ (rt)[s] : T[s]
�,� ctx � � s : � � � S, T type � | S� t : T

sub-red-pres-id
� | S[s]� 1t [s]≡ 1t[s] : t[s]� t[s] : T[s]

�,� ctx � � s : � � � S, T type � | S� t, t′ , t′′ : T � | S� ρ : t� t′ : T � | S� ρ ′ : t′� t′′ : T
sub-red-pres-comp

� | S[s]� (ρ • ρ ′)[s]≡ ρ[s] • ρ ′[s] : t[s]� t′′[s] : T[s]
�,� ctx � � s : � � � S, T type � | S� t : T

sub-pres-lunitor
� | S[s]� �t[s] ≡ (SubI(s)� t[s]) • SubC(1S , t, s) • �t [s] : 1S[s] t[s]� t[s] : T[s]

�,� ctx � � s : � � � S, T type � | S� t : T
sub-pres-runitor

� | S[s]� rt[s] ≡ (t[s]� SubI(s)) • SubC(t, 1T , s) • rt [s] : t[s]1T[s]� t[s] : T[s]
�,� ctx � � s : � � �Q, R, S, T type � |Q� q : R � | R� r : S � | S� t : T

sub-pres-assoc
� |Q[s]� (q[s]� SubC(r, t, s)) • SubC(q, rt, s) • αq,r,t [s]≡ αq[s],r[s],t[s] • (SubC(q, r, s)� t[s]) • SubC(qr, t, s)

: q[s](r[s]t[s])� ((qr)t)[s] : T[s]
�,� ctx � � s : � � � R, S, T type � | R� r : S � | S� t, t′ : T � | S� ρ : t� t′ : T

sub-pres-lwhisker
� | R[s]� SubC(r, t, s) • (r� ρ)[s]≡ (r[s]� ρ[s]) • SubC(r, t′ , s) : r[s]t[s]� rt′[s] : T[s]

�,� ctx � � s : � � � R, S, T type � | R� r, r′ : S � | S� t : T � | R� ρ : r� r′ : S
sub-pres-rwhisker

� | R[s]� SubC(r, t, s) • (ρ� t)[s]≡ (ρ[s]� t[s]) • SubC(r′ , t, s) : r[s]t[s]� r′ t[s] : T[s]

Figure 4. Rules for global substitution.

ensure that T[−] preserves identity and composition. With rew-tm we can then understand
terms to be “natural transformations.”

Remark 62. For contravariant comprehension bicategories (Remark 41), the rule map would
be in the opposite direction, while for isovariant comprehension bicategories, this rule would be
restricted to isomorphisms in the base.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

26 B. Ahrens et al.

� ctx � � T type
sub-id

� | T[1�]
∼� subid(T) : T

� ctx � � S, T type � | S� t : T
tm-sub-id

� | S� STmI(t) : sub−1
id t[1�] subid �̃ t : T

� ctx � � S, T type � | S� t, t′ : T � | S� ρ : t� t′ : T
sub-red-id

� | S� STmI(t) • ρ ≡ (sub−1
id � ρ[1�]� subid) • STmI(t′) : sub−1

id t[1�] subid� t′ : T
� ctx � � T type

sub-id-pres-id
� | T � (sub−1

id � SubI(1�)� subid) • (rsub−1
id
� subid) • subρ

id ≡ STmI(1T) : sub−1
id 1T [1�] subid� 1T : T

� ctx � � S, R, T type � | S� t : T � | T � r : R
sub-id-pres-comp

� | S� (sub−1
id � SubC(t, r, 1�)� subid) • STmI(tr)≡

α • (sub−1
id t[1�]�

(
�−1
r[1�] • ((sub�

id)−1� r[1�]
))� subid

) • α • (sub−1
id t[1�]subid� STmI(r)

) • (STmI(t)� r)

: sub−1
id (t[1�] r[1�]) subid� tr : R

Figure 5. Rules for global substitution (preservation of identity).

�,�,� ctx � � s : � � � s′ : � � � T type
sub-comp

� | T[s′][s] ∼� subcomp(s, s′) : T[ss′]
�,�,� ctx � � s : � � � s′ : � � � S, T type � | S� t : T

tm-sub-comp
� | S[ss′]� STmC(t, s, s′) : subcomp(s, s′)−1 t[s′][s] subcomp(s, s′)�̃ t[ss′] : T[ss′]

�,�,� ctx � � s : � � � s′ : � � � S, T type � | S� t, t′ : T � | S� ρ : t� t′ : T
sub-red-comp

� | S[ss′]� STmC(t, s, s′) • ρ[ss′]≡ (sub−1
comp(s, s′)� ρ[s′][s]� subcomp(s, s′)) • STmC(t′ , s, s′)

: subcomp(s, s′)−1 t[s′][s] subcomp(s, s′)� t′[ss′] : T[ss′]

�,�,� ctx � � s : � � � s′ : � � � T type
sub-comp-id

� | T[ss′]� subcomp(s, s′)−1� ((SubI(s′)[s] • SubI(s))� subcomp(s, s′) • �) • subcomp(s, s′)ρ ≡ STmC(1T , s, s′) • SubI(ss′)

: subcomp(s, s′)−1 1T [s′][s] subcomp(s, s′)� 1T[ss′] : T[ss′]

�,�,� ctx � � s : � � � s′ : � � � S, T, R type � | S� t : T � | T � r : R
sub-comp-comp

� | S[ss′]� (sub−1
comp(s, s′)� (SubC(t[s′], r[s′], s) • SubC(t, r, s′)[s])� subcomp(s, s′)

) • STmC(tr, s, s′)≡

α •
(
(sub−1

comp(s, s′)t[s′][s])�
(

�−1
r[s′][s] • (subcomp(s, s′)�)−1� r[s′][s]

)
� subcomp(s, s′)

)
• α •

(
STmC(t, s, s′)�

(
sub−1

comp(s, s′)r[s′][s]sub
−1
comp(s, s′)

)) •
(
t[ss′]� STmC(r, s′ , s)

)
• SubC(t, r, ss′)

: sub−1
comp(s, s′) (t[s′][s] r[s′][s]) subcomp(s, s′)� tr[ss′] : R[ss′]

Figure 6. Rules for global substitution (preservation of composition).

�,� ctx � � s, s′ : � � � ρ : s� s′ : � � � T type
map

� | T[s]�map T ρ : T[s′]
�,� ctx � � s, s′ : � � � ρ : s� s′ : � � � S, T type � | S� t : T

rew-tm
� | S[s]�map t ρ : t[s](map T ρ)�̃ (map S ρ)t[s′] : T[s′]

�,� ctx � � s, s′ : � � � ρ : s� s′ : � � � S, T type � | S� t, t′ : T � | S� τ : t� t′ : T
rew-red

� | S[s]�map t ρ • (map S ρ� τ [s′])≡ (τ [s]�map T ρ) •map t′ ρ : t[s](map T ρ)� (map S ρ)t′[s′] : T[s′]
�,� ctx � � s, s′ : � � � ρ : s� s′ : � � � T type

rew-pres-id
� | T[s]� SubI(s)�map T ρ •map 1T ρ • (map T ρ� SubI(s′)) • rmap T ρ ≡ � : 1T[s] (map T ρ)�map T ρ : T[s′]

�,� ctx � � s, s′ : � � � ρ : s� s′ : � � � S, T, R type � | S� t : T � | T � r : R
rew-pres-comp

� | S[s]�map (tr) ρ • (map S ρ� SubC(t, r, s′)−1) • α ≡
(SubC(t, r, s)−1�map T ρ) • α • (t[s]�map r ρ) • α • (map t ρ� r[s′])

: (tr)[s](map R ρ)� (map S ρ)t[s′]r[s′] : R[s′]

Figure 7. Rules for local substitution.

Remark 63. Using the Grothendieck construction, we can view the rules from the perspective
of fiber bicategories. If P : E→ B has a global cleaving and a local opcleaving, and furthermore
opcartesian 2-cells are preserved under whiskering, then we obtain a trifunctor Bop → Bicat,
which sends every x : B to the fiber of x along P. The rules given in Fig. 4 say that any 1-cell

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 27

�,� ctx � � s : � � � T type
map-id

� | T[s]�mapT
id s :map T 1s �̃ 1T[s] : T[s]

�,� ctx � � s, s′ , s′′ : � � � ρ : s� s′ : � � � τ : s′� s′′ : � � � T type
map-comp

� | T[s]�mapT
comp(ρ, τ) :map T (ρ • τ)�̃map T ρ ·map T τ : T[s′′]

�,�,� ctx � � s : � � � s′ , s′′ : � � � ρ : s′� s′′ : � � � T type
map-lwhisker

� | T[ss′]�mapT
l (s, ρ) :map T (s� ρ)�̃ sub−1

comp(s, s′) · (map T ρ)[s] · subcomp(s, s′′) : T[ss′′]
�,�,� ctx � � s, s′ : � � � s′′ : � � � ρ : s� s′ : � � � T type

map-rwhisker
� | T[ss′′]�mapT

r (ρ, s′′) :map T (ρ� s′′)�̃ sub−1
comp(s, s′′) ·map (T[s′′]) ρ · subcomp(s′ , s′′) : T[s′s′′]

The naturality rules for map-comp, map-lwhisker, and map-rwhisker have been omitted.

Figure 8. Some rules for local substitution (preservation).

�,� ctx � � s : � � � T type
sub-comp-map-id-r

� | T[s][1�]� subcompidr(T, s) : subcomp(s, 1�)(map T rs)�̃ subid : T[s]
�,� ctx � � s : � � � T type

sub-comp-map-id-l
� | T[1�][s]� subcompidl(T, s) : subcomp(1� , s)(map T �s)�̃ subid[s] : T[s]

�,�,�, Z ctx Z� s : � � � t : � � � u : � � � T type
sub-comp-map-assoc

Z | T[u][t][s]� sub2comp(T, u, t, s) : subcomp(t, u)[s] subcomp(s, tu)map T α �̃ subcomp(s, t) subcomp(st, u) : T[stu]
The naturality rules for sub-comp-map-id-r, sub-comp-map-id-l, and sub-comp-map-assoc have been omitted.

Figure 9. Some of the rules for coherence of substitution.

in the base gives rise to a pseudofunctor. For example, the rules sub-ty, sub-tm, and sub-red
represent the actions on objects, 1-cells, and 2-cells, respectively, while sub-pres-id and sub-pres–
comp represent the invertible 2-cells that witness the preservation of the identity and composition
of 1-cells. The other rules in that table are the coherence laws of pseudofunctors: for example,
sub-red-pres-id is the preservation of identity 2-cells.

Figs. 5 and 6 give pseudonatural equivalences expressing that the assignment of the pre-
viously mentioned pseudofunctor is actually pseudofunctorial: the identity and composition
are preserved up to pseudonatural equivalence. For example, the rules sub-id and tm-sub-
-id in Fig. 5 represent the action on objects and the naturality squares. On the other hand,
sub-red-id, sub-id-pres-id, and sub-id-pres-comp are the usual coherencies of pseudonatural
transformations.

The rules of Fig. 7 state that we obtain a pseudonatural transformation from a 2-cell in
the base. The action on objects and 1-cells is given by map and rew-tm, respectively, while
rew-red, rew-pres-id, and rew-pres-comp describe the usual coherencies of pseudonatural
transformations. The remaining rules can be found in Fig. 8. In this figure, four invertible mod-
ifications are described: map-id and map-comp describe the preservation of identity and com-
position, respectively, while map-lwhisker and map-rwhisker describe the preservation of both
left and right whiskering. Note that we left out the naturality conditions of these modifications. In
addition, two additional coherencies are required which express that all this data together forms
a trifunctor. We do not write them down, but instead, we refer the reader to Definition 3.3.1 of
Gurski (2006).

Remark 64. A similar rule to map of Fig. 7 appears in work of Johnstone (1993). There, it is
shown that a 1-cell p in a 2-category is an internal fibration in a sense similar to our Definition 46
if and only if a specific functor given by precomposition with p has a semi-oplax right adjoint
satisfying some properties, assuming that pullbacks along p exist. In Lemma 2.5 of Johnstone
(1993), another equivalent characterization of p being a fibration is given assuming that pullbacks
of p exist. This characterization uses several operations and compatibility requirements. One of
the operations is described by the following diagram:

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

28 B. Ahrens et al.

f ∗e

g∗e e

a b

f

g

p

p̂(α)

α

We assume that pullbacks along p are given; in particular, we have f ∗e and g∗e. The characteri-
zation of p being a fibration entails, in particular, that for every 2-cell α : f ⇒ g there is a 1-cell
p̂(α) : f ∗e→ g∗e. This takes place in a 2-category, though Johnstone claims that such a character-
ization would also hold in a bicategory. Modulo this difference, this operation is expressed by rule
map of Fig.7.

9. Soundness: Interpretation in Comprehension Bicategories
In this section, we give an interpretation of BTT in any weak comprehension bicategory. To this
end, we fix a comprehension bicategory D χ−→ B↓ over B. We interpret the judgments as follows.

• � ctx is interpreted as an object [[�]] of B.
• � � s : � is interpreted as a 1-cell [[s]] : [[�]]→ [[�]] in B.
• � � r : s� t : � is interpreted as a 2-cell [[r]] : [[s]]⇒ [[t]] in B.
• � � r ≡ r′ : s� t : � is interpreted as an equality [[r]]= [[r′]].
• � � T type is interpreted as an object [[T]] in D over [[�]].
• � | S� t : T is interpreted as a 1-cell [[t]] : [[S]]→ [[T]] over the identity on [[�]].
• � | S� r : t� t′ : T is interpreted as a 2-cell [[r]] : [[t]]⇒ [[t′]] over the identity 2-cell.
• � | S� r ≡ r′ : t� t′ : T is interpreted as an equality [[r]]= [[r′]].

Regarding the “bicategorical” rules of Figs. 1 and 2, each rule is analogous to one of the oper-
ations or laws of a bicategory – see, for instance, Definition 3.1 of Ahrens et al. (2021). This also
indicates how it is interpreted.

9.1 Comprehension
In this section, we interpret the rules related to comprehension of Fig. 3. Suppose that we have a
context � : B and a type T over �. Its image χ(T) in B↓ gives rise to an object �.T : B and a 1-cell
π�.T : �.T → � which interprets extend-con-Ty. For a 1-cell t from S to T over the identity, the
resulting 1-cell χ(t) is part of a triangle

�.S �.T

�

χ(t)

π�.S π�.T

which commutes up to invertible 2-cell. This yields the interpretation of the rules in extend–
con-Tm. Furthermore, a reduction r : t� t′ is mapped by χ to a 2-cell from χ(t) to χ(t′) in B↓,
and this is how we interpret extend-con-Red. The rules extend-con-id and extend-con-comp are
interpreted by the identitor and compositor of χ , respectively, while the remaining rules in Fig. 3
are satisfied because they translate to the laws that express that this data forms a pseudofunctor.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 29

9.2 Global substitution
Next, we interpret the rules for global substitution of Fig. 4 (in Sections 9.2.1, 9.2.2, 9.2.3,
and 9.2.4) and the rules regarding preservation of identity under global substitution of Fig. 5
(in Sections 9.2.6, 9.2.5, and 9.2.7). The interpretation of the rules regarding preservation of
composition of Fig. 6 is analogous to that of Fig. 5 and is not spelled out.

The interpretation of the rule sub-ty is given directly by the global cleaving. The interpretation
of the other rules require more explanation.

9.2.1 Interpretation of sub-tm
To interpret sub-tm, we assume that we have a substitution s : � → � between contexts � and �.
We also assume that we have types S, T over � and a morphism t : S→ T over 1� . This situation
is encapsulated in the following diagram, using the notation introduced in Definition 27.

S[s] S

T[s] T

� �s

t

Ls(S)

Ls(T)

Our goal is to construct a 1-cell t[s] : S[s]→ T[s] that lies over the identity on �. Since the
morphism Ls(T) : T[s]→ T is cartesian, it suffices to construct a 1-cell, say, β : S[s]→ T that
lies over 1� · s. We then obtain the desired 1-cell as the factorization F1(Ls(T), β) of that 1-
cell via Ls(T). (Recall that F1(_, _) was defined in Definition 21.) We have an invertible 2-cell
rs • �s

−1 : s · 1� ⇒ 1� · s, and we set β := (rs • �s
−1)!(Ls(S) · t). Define

t[s] := F1(Ls(T), β).

Overall, we can summarize the construction with the following diagram.

S[s] S

S[s] T

T[s] T

� � � �

Ls(S)

t

β

t[s]

Ls(T)

1�
s 1�

∼=

∼=

9.2.2 Interpretation of sub-red
To interpret sub-red, we assume that we have a substitution s : � → � and types S and T in con-
text �. We also assume that we have 1-cells t, t′ : S→ T over 1� and a 2-cell ρ : t ⇒ t′. Consider

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

30 B. Ahrens et al.

the following diagram.

S[1�] S

T[1�] T

� �s

t

Ls(S)

Ls(T)

t′[s] t′t[s] ρ

Our goal is to construct a 2-cell from t[s] to t[s′] over the identity on �. The source and target,
respectively, were constructed by factoring a 1-cell via a cartesian 1-cell, as follows.

S[s] S

S[s] T

T[s] T

� � � �

Ls(S)

t

β

t[s]

Ls(T)

1�
s 1�

∼=

∼=

S[s] S

S[s] T

T[s] T

� � � �

Ls(S)

t′

β ′

t′[s]

Ls(T)

1�
s 1�

∼=

∼=

To construct the desired 2-cell ρ[s] : t[s]⇒ t[s′], we use Item 2 of Definition 21. More specifically,
it suffices to construct

• a 2-cell δ from 1� to 1�, and
• a 2-cell σ from β to β ′.

Once we have defined those, we define ρ[s] := E(δ, σ).
For the first of the two, we take the identity 2-cell 11� . For the second, we take the composition

of 2-cells shown in the following diagram.

S[s] S T

β

β ′

Ls(S)
t

t′

∼=

∼=

ρ

The interpretation of the rules sub-red-id and sub-red-comp follows from the uniqueness of
factorization 2-cells.

9.2.3 Interpretation of sub-pres-id
The rules sub-pres-id and sub-pres-comp are interpreted similarly, and we show the interpre-
tation of sub-pres-id. Suppose that we have a substitution s : � → � and a type T in context �.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 31

We consider two morphisms: the identity on T[s] and 1T[s]. These are illustrated in the following
diagram.

T[s] T

T[s] T

1T

Ls(S)

Ls(T)

1T [s] 1T[s]

Our goal is to construct an invertible 2-cell from 1T[s] to 1T[s]. To do so, we first recall the
construction of 1T[s].

T[s] T

T[s] T

T[s] T

� � � �

Ls(T)

1T

β

1T [s]

Ls(T)

1�
s 1�

∼=

∼=

To construct the desired invertible 2-cell, we again use Item 2 of Definition 21. As such, we need
to construct the following:

• An invertible 2-cell δ from 1� to 1�; and
• An invertible 2-cell σ from 1T[s] · Ls(T) to 1T[s] · Ls(T).

With those in place, we define SubI(s)−1 := E(δ, σ). For δ, we take the identity, while for σ , we
take the following composition.

1T[s] · Ls(T)∼= Ls(T) · 1T ∼= β ∼= 1T[s] · Ls(T)

9.2.4 Interpretation of sub-pres-lunitor
The remaining laws stating equalities of 2-cells, such as sub-pres-comp and sub-id-pres-id, are
all proven in a similar way. Our goal is to prove an equality α = β with 1-cells and 2-cells as in the
diagram below:

S

T[s′′] T

� � �
s′′

Ls′′ (T)

s

t′

t

s′

α

β

βα

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

32 B. Ahrens et al.

Here t and t′ live over s and s′, respectively, while α and β live over α and β , respectively. To prove
the equality, we take the following steps.

(1) We construct an invertible 2-cell θ from t · Ls′′(T) to t′ · Ls′′(T).
(2) We prove that α = β .
(3) We prove that α � Ls′′(T)= θ = β � Ls′′(T).

From the first item, we get that both t and t′ are cartesian factorizations of the same S→ T. From
the second and third item, we get that both α and β are factorization 2-cells from t to t′, and since
such 2-cells are unique, we get α = β .

We demonstrate this for sub-pres-lunitor. Suppose we have a substitution s : � → �, types S
and T in context �, and a morphism t : S→ T over 1� . We are in the following situation.

S[s]

T[s] T

� � �

Ls(T)

s

t[s]

1S[s]·t[s]

1�

1�·1�

α

β

α β

Here, we define α := (11� � 1�) • �1� and β := 11�·1� • �1� . We also define α and β as follows.

α := (SubI(s)−1 � t[s]) • �t[s] β := SubC(1S, t, s) • �t[s]

Then by construction, both α and β are equal to �1� , and hence, α = β .
Next we construct an invertible 2-cell from 1S[s] · t[s] · Ls(T) to t[s] · Ls(T). By construction of

t[s], we have an invertible 2-cell θ1 : t[s] · Ls(T)∼= ·Ls(S) · t. In addition, we have an invertible 2-cell
θ2 : 1S[s] · Ls(S)∼= Ls(S) · 1S. This is illustrated in the following diagram.

S[s] S

S[s] S

T[s] T

t

1S

Ls(S)

Ls(S)

Ls(T)

1S[s]

t[s]

θ1

θ2

Now we define an invertible 2-cell θ3 : 1S[s] · t[s] · Ls(T)∼= Ls(S) · t as follows.
θ3 := α−1 • (1S[s]� θ2) • α • (θ1 � t) • (rσ � t)

The desired invertible 2-cell θ : 1S[s] · t[s] · Ls(T)∼= t[s] · Ls(T) is θ3 • θ−1
2 .

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 33

For the last step, we only prove that α � Ls(T)= θ . We first recall how we constructed SubI(s).
For brevity, we write σ := Ls(S) and τ := Ls(T).

S[s] S

S[s] S

σ

σ

1S1S[s] 1S[s]
SubI(s)−1

θ1

By construction, we have that (SubI(s)−1 � σ) • �σ • r−1
σ = θ1. In particular, we have SubI(s)−1 �

σ = θ1 • rσ • �−1
σ .

To show that ((SubI(s)−1 � t[s]) • �t[s])� τ = θ3 • θ−1
2 , it suffices to show that ((SubI(s)−1 �

t[s]) • �t[s])� τ • θ2 = θ3. This follows from the following chain of equalities.

α−1 • (1S[s]� θ−1
2) • α • ((SubI(s)−1 � t[s]) • �t[s])� τ • θ2 • (rσ � t)−1

= α−1 • (1S[s]� θ−1
2) • α • (SubI(s)−1 � t[s])� τ • (�t[s] � τ) • θ2 • (rσ � t)−1

= α−1 • (1S[s]� θ−1
2) • SubI(s)−1 � (t[s] · τ) • α • (�t[s] � τ) • θ2 • (rσ � t)−1

= α−1 • SubI(s)−1 � (σ · t) • (1S[s] � θ−1
2) • α • (�t[s] � τ) • θ2 • (rσ � t)−1

= SubI(s)−1 � σ � t • α−1 • (1S[s] � θ−1
2) • α • (�t[s] � τ) • θ2 • (rσ � t)−1

= (θ1 • rσ • �−1
σ)� t • α−1 • (1S[s] � θ−1

2) • α • (�t[s] � τ) • θ2 • (rσ � t)−1

= θ1 � t • (rσ • �−1
σ)� t • α−1 • (1S[s] � θ−1

2) • α • (�t[s] � τ) • θ2 • (rσ � t)−1

= θ1 � t • (rσ • �−1
σ)� t • α−1 • (1S[s] � θ−1

2) • �t[s]τ • θ2 • (rσ � t)−1

= θ1 � t • (rσ • �−1
σ)� t • α−1 • �σ ·t • θ−1

2 • θ2 • (rσ � t)−1

= θ1 � t • (rσ • �−1
σ)� t • α−1 • �σ ·t • (rσ � t)−1

= θ1 � t • (rσ • �−1
σ)� t • �σ � t • (rσ � t)−1

= θ1 � t

9.2.5 Interpretation of sub-id
Next we interpret sub-id. Suppose we have a context � and a type T in �. Note that we have a
diagram as follows.

T

T[1�] T

� �1�

1T

L1� (T)

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

34 B. Ahrens et al.

We interpret subid(T)5 by L1� (T), so it suffices to show that L1� (T) is an equivalence. To construct
the inverse, we use the following diagram.

T T

T[1�] T

� � �

1T

F1(L1� (T),1T ·1T)
1T

L1� (T)

1� 1�

∼=

We set ι := F1(L1� (T), 1T · 1T), and it remains to show that we have an invertible 2-cell from
L1� (T) · ι to 1T . To do so, we use Item 2 of Definition 21, and we consider the following
diagram.

T[1�] T[1�]

T[1�] T

� � � �

1T[s]

L1� (T)

1� 1�

L1� (T)·ι

1�

We need to construct an invertible 2-cell δ from 1� · 1� to 1� and an invertible 2-cell σ from
L1� (T) · ι · L1� (T) to 1T[s] · L1� (T). For δ, we take λ. For σ , we use that ι · L1� (T)∼= 1T · 1T , and
thus we have the following composition of invertible 2-cells.

L1� (T) · ι · L1� (T)∼= L1� (T) · 1T · 1T
∼= L1� (T)∼= 1T[s] · L1� (T)

The desired invertible 2-cell is thus defined by E(δ, σ).

9.2.6 Interpretation of sub-comp
To interpret sub-comp, we suppose that we have substitutions s′ : � → � and s : � → �, and a
type T in �. Hence, we have the following diagram.

T[s · s′]

T[s′][s] T[s′] T

� � �
s′s

Ls·s′ (T)

Ls′ (T)Ls(T[s′])

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 35

Note that both Ls·s′(T) and Ls(T[s′]) · Ls′(T) are cartesian 1-cells over s · s′, since cartesian 1-cells
are closed under composition by Proposition 22. For that reason, we get an adjoint equivalence
subcomp(s, s′) : T[s′][s]→ T[s · s′] making the diagram below commute up to invertible 2-cell by
Construction 24.

T[s · s′]

T[s′][s] T[s′] T

� � �
s′s

Ls·s′ (T)

Ls′ (T)Ls(T[s′])

subcomp(s,s′)
∼=

9.2.7 Interpretation of tm-sub-id
Next we interpret tm-sub-id, and for that, we suppose that we have a context �, types S
and T over �, and a 1-cell t : S→ T over 1� . We need to construct an invertible 2-cell from
sub−1

id · t[1�] · subid to t, and for that, it suffices to construct an invertible 2-cell from t[1�] · subid
to subid · t. Recall that we defined subid to be L1� (T) and recall that we defined t[1�] as
follows.

S[s] S

S[1�] T

T[1�] T

� � � �

L1� (S)

t

β

t[1�]

L1� (T)

1� 1� 1�

∼=

∼=

By composing the two invertible 2-cells depicted in this diagram, we get the desired invertible
2-cell. The rule tm-sub-comp is interpreted analogously.

9.3 Local substitution
Next we interpret the rules in Fig. 7 (in Sections 9.3.1 and 9.3.2), Fig. 8 (in Sections 9.3.3 and 9.3.4),
and Fig. 9 (in Section 9.3.5). For the interpretation, we use the local opcleaving.

9.3.1 Interpretation of map
We start with map. Suppose we have two substitutions s, s′ : � → � and a 2-cell ρ : s⇒ s′. In
addition, we assume that we have a type T in context �. Our goal is to construct a 1-cellmap T ρ :
T[s]→ T[s′]. From the local opcleaving, we obtain μρ(Ls(T)) over 1� · s′ as the pushforward of
Ls(T) along ρ • �−1

s′ .

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

36 B. Ahrens et al.

T[s] T

� �

μρ (Ls(T))

Ls(T)

s

1�·s′

ρ•�−1
s′

Since Ls′(T) is cartesian, we can factor μρ(Ls(T)) through it. From that, we obtainmap T ρ.

T[s]

T[s′] T
Ls′ (T)

μρ (Ls(T))map T ρ

9.3.2 Interpretation of rew-tm
Next, we give the interpretation for the rule rew-tm. Suppose we have two 1-cells s, s′ : � → � and
a 2-cell ρ : s→ s′. In addition, we assume that we have types S, T in context � and a 1-cell � | S�
t : T. Our goal is to construct an invertible 2-cell between t[s] • (map T ρ) and (map S ρ) • t[s′].
For that it suffices to construct:

(1) An invertible 2-cell δ from 1� · 1� to 1� · 1�; and
(2) An invertible 2-cell σ from t[s] • (map T ρ) • Ls′(T) to (map S ρ) • t[s′] • Ls′(T).

Then we define t[ρ] to be E(δ, σ). For δ we take 11�·1� .
To construct σ , we first note that by construction of t[s′], we have the following invertible

2-cell.

(map S ρ) • t[s′] • Ls′(T)∼= (map S ρ) • Ls′(S) • t
Note that by construction ofmap S ρ, the following triangle commutes up to invertible 2-cell.

S[s]

S[s′] T
Ls′ (S)

μρ (Ls(S))map S ρ

Hence, we get

γ1 : (map S ρ) • Ls′(S) • t ∼= μρ(Ls(S)) • t.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 37

Similarly, we have an invertible 2-cellmap T ρ · Ls′(S)∼= μρ(Ls(T)), and thus we obtain

γ2 : t[s] • (map T ρ) • Ls′(T)∼= t[s] • μρ(Ls(T)).

It thus suffices to construct an invertible 2-cell from t[s] • μρ(Ls(T)) to μρ(Ls(S)) • t. We can
depict the situation with the following square.

S[s] S

T[s] T

tt[s]

Ls(S)

Ls(T)

μρ (Ls(S))

μρ (Ls(T))

τ

τ ′

In this diagram, τ and τ ′ are the opcartesian 2-cells coming from the opcartesian lift. Note that
by construction of t[s], the outer square of this diagram commutes. More precisely, we have an
invertible 2-cell θ : t[s] · Ls(T)∼= Ls(S) · t.

To construct an invertible 2-cell fromμρ(Ls(S)) · t to t[s] · μρ(Ls(T)), we are going to construct
two opcartesian 2-cells. First, note that we have a 2-cell

τ � t : Ls(S) · t ⇒ μρ(Ls(S)) · t′
that lies over β1 := (ρ • l−1)� 1� : s · 1� ⇒ (1� · s′) · 1� . This 2-cell is opcartesian, because
opcartesian 2-cells are closed under right whiskering.

Note that we also have the 2-cell

θ−1 • t[s]� τ : Ls(S) · t ⇒ t[s] · μρ(Ls(T))

which lies over β2 := r • �−1 • 1� � (ρ • �−1) : s · 1� ⇒ 1� · (1� · s′). It is opcartesian, because left
whiskering also preserves opcartesian 2-cells.

We also have the following invertible 2-cell

β3 := r • �−1 : (1� · s′) · 1�
∼= 1� · (1� · s′),

and note that β1 • β3 = β2 by naturality of the unitors. From all of this we get the desired invertible
2-cell μρ(Ls(S)) · t ∼= t[s] · μρ(Ls(T)).

9.3.3 Interpretation of map-id
To interpret map-id, we assume that we have a 1-cell s : � → � and a type T in context �. Our
goal is to construct an invertible 2-cell between the following compositions.

T[s] T[s] TLs(T)
1T[s]

map T 1s

To do so, we need to construct:

(1) An invertible 2-cell δ from 1� to 1�; and
(2) An invertible 2-cell σ frommap T 1s · Ls(T) to Ls(T).

The desired 2-cell is then defined to be E(δ, σ). For δ we take 11� .

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

38 B. Ahrens et al.

To construct σ , we first note that by construction ofmap T ρ, the following triangle commutes
up to an invertible 2-cell τ :map T ρ · Ls′(T)∼= μρ(Ls(T)).

T[s]

T[s′] T

map T ρ

Ls′ (T)

μρ (Ls(T))

τ

Next we recall that μρ(Ls(T)) was constructed as the following pushforward.

T[s] T

� �

μ1s (Ls(T))

Ls(T)

θ

s

1�·s

�−1
s

Since �−1
s is invertible, the opcartesian lift θ is invertible as well. Hence, we define σ := τ • θ−1.

We interpretmap-comp similarly.

9.3.4 Interpretation of map-lwhisker
To interpret map-lwhisker and map-rwhisker, we use the same idea, and we need to use that
we assumed that opcartesian 2-cells are closed under whiskering. We give the precise details
for map-lwhisker. Suppose we have a 1-cell s : � → �, a 2-cell ρ : s′ ⇒ s′′ where s′, s′′ : � → �,
and a type T in context �. Our goal is to construct an invertible 2-cell from map T (s� ρ)
to sub−1

comp(s, s′) · (map T ρ)[s] · subcomp(s, s′′). Since map T ρ was constructed as a cartesian
factorization, it suffices to construct:

(1) An invertible 2-cell δ from 1� to 1� · 1� · 1�; and
(2) An invertible 2-cell σ from map T (s� ρ) · Ls·s′′(T) to sub−1

comp(s, s′) · (map T ρ)[s] ·
subcomp(s, s′′) · Ls·s′′(T).

With those in place, the desired invertible 2-cell is defined to be E(δ, σ). We define δ to be �−1
1�

·
�−1
1�·1�

.
For the construction of σ , let us start by recalling the construction ofmap T (s� ρ).

T[s · s′]

T[s · s′′] T
Ls·s′′ (T)

map T (s�ρ)
Ls·s′ (T)

μs�ρ (Ls·s′ (T))

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 39

Next we inspect the definition of subcomp(s, s′′).

T[s · s′′]

T[s′′][s] T[s′′] T

Ls·s′′ (T)

Ls′′ (T)Ls(T[s′′])

subcomp(s,s′′)

∼=

From this, we already get the following invertible 2-cell.

γ1 :sub−1
comp(s, s

′) · (map T ρ)[s] · subcomp(s, s′′) · Ls·s′′(T)
∼=
sub−1

comp(s, s
′) · (map T ρ)[s] · Ls(T[s′′]) · Ls′′(T)

We also inspect the construction of (map T ρ)[s], from which we get the following invertible
2-cell.

T[s′][s] T[s′]

T[s′′][s] T[s′′]

map T ρ

Ls(T[s′′])

Ls(T[s′])

(map T ρ)[s]
∼=

As such, we get another invertible 2-cell as follows.

γ2 :sub−1
comp(s, s

′) · (map T ρ)[s] · Ls(T[s′′]) · Ls′′(T)
∼=
sub−1

comp(s, s
′) · Ls(T[s′]) ·map T ρ · Ls′′(T).

Let us recall the construction ofmap T ρ as well.

T[s′]

T[s′′] T

map T ρ

Ls′′ (T)

μρ (Ls′ (T))

∼=

From this, we obtain yet another invertible 2-cell.

γ3 :sub−1
comp(s, s

′) · (map T ρ)[s] · Ls(T[s′′]) · Ls′′(T)
∼=
sub−1

comp(s, s
′) · Ls(T[s′]) · μρ(Ls′′(T))

Hence, we achieve our goal if we construct an invertible 2-cell of the following form.

γ4 : sub−1
comp(s, s

′) · Ls(T[s′]) · μρ(Ls′(T))∼= μs�ρ(Ls·s′(T))

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

40 B. Ahrens et al.

We can depict this situation as follows.

T[s · s′] T

T[s′][s] T[s′] T

� � �s

s′

s′′

Ls′ (T)

μρ (Ls′ (T))

sub−1
comp(s,s′)

Ls(T[s′])

Ls·s′ (T)

μs�ρ (Ls·s′ (T))

ρ

τ

τ ′

Here τ and τ ′ are the 2-cells coming from the opcartesian lifts.
Since whiskering preserves opcartesian 2-cells, the following 2-cell is opcartesian.

(sub−1
comp(s, s

′) · Ls(T[s′]))� τ : sub−1
comp(s, s

′) · Ls(T[s′]) · Ls′(T)
⇒
sub−1

comp(s, s
′) · Ls(T[s′]) · μρ(Ls′(T))

Now we unfold the definition of subcomp(s, s′), and from that we get the following invertible
2-cell.

T[s · s′]

T[s′][s] T[s′] T

Ls·s′ (T)

Ls′ (T)Ls(T[s′])

sub−1
comp(s,s′) ∼=

Since invertible 2-cells are opcartesian and opcartesian 2-cells are closed under composition, we
get an opcartesian 2-cell

θ : Ls·s′(T)⇒ sub−1
comp(s, s

′) · Ls(T[s′]) · μρ(Ls′(T)).

Since we already had an opcartesian 2-cell τ ′ : Ls·s′(T)⇒ μs�ρ(Ls·s′(T)), we get an invertible 2-cell
between the codomains of θ and τ ′. Hence, we obtain an invertible 2-cell

γ5 : sub−1
comp(s, s

′) · Ls(T[s′]) · μρ(Ls′(T))∼= μs�ρ(Ls·s′(T)).
By chaining all the invertible 2-cells, we get the desired 2-cell σ .

9.3.5 Interpretation of sub-comp-map-id-r
Finally, we show how to interpret sub-comp-map-id-r. Suppose that we have objects � and �,
an object T over �, and a 1-cell s : � → �. Our goal is to construct an invertible 2-cell from

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 41

subcomp(s, 1�)(map T rs) to subid. To do so, it suffices to construct an invertible 2-cell from
subcomp(s, 1�) · (map T rs) · Ls(T) to subid · Ls(T). Our situation is depicted in the following
diagram.

T[s · 1�]

T[s][1�] T[s] T
Ls(T)subid

subcomp(s,1�) map T rs

Recall that subid : T[s][1�]→ T[s] is defined to be L1�(T[s]). By construction, we have an
invertible 2-cell

ϕ1 :map T rs · Ls(T)⇒ μrs(Ls·1�(T)).
In addition, sincemap T rs was constructed as an opcartesian lift, we have the following invertible
2-cell.

ϕ2 : Ls·1�(T)⇒ μrs(Ls·1�(T))
Note that ϕ2 is invertible: this is because it is the opcartesian lift of an invertible 2-cell. By
construction of subcomp(s, 1�), we have the following invertible 2-cell.

ϕ3 : subcomp(s, 1�) · Ls·1�(T)⇒ L1�(T[1�]) · Ls(T).
The composition ϕ3 • ϕ2 • ϕ−1

1 yields the desired 2-cell.
We omit the description of the verification of several equalities. All in all, we can state the

following theorem.

Theorem (Soundness).We can interpret BTT in any weak comprehension bicategory.

10. Variations on Syntax
BTT is a very complicated type theory and might not be feasible to implement or use in practice.
Its main purpose is to serve as a framework for studying specialized syntax and the corresponding
semantics. Based on a user’s goal, they might adopt some of the following simplifications.
V1: Strictness. The rules in Figs. 1 and 2 are aimed at bicategories. When working with strict

2-categories instead, the unitors and associators would become equalities, and as a result,
rules for inverse laws, naturality, and the pentagon and triangle equations are not needed.
For this variant, an equality judgment on contexts, types, substitutions, and terms would be
added to BTT.

V2: Splitness. We could assume the comprehension bicategory to be split in addition to being
strict; thus, in particular, the rules sub-id and sub-comp would collapse into ordinary
equalities.

V3: Undirected TT. We could add a rule postulating inverses of reductions. Semantically, this
would amount to working in groupoid-enriched categories.

V4: Proof-irrelevant reductions. Our syntax and the semantics allow us to distinguish paral-
lel reductions (2-cells). We could instead “truncate” them, by moving to proof-irrelevant
reductions, making the judgmental equality on them superfluous. This would yield a
directed analog to the judgments of MLTT; semantically, it corresponds to working in
poset-enriched categories instead of general bicategories.

We have developed comprehension bicategories with the explicit goal of encompassing pre-
viously defined interpretations of higher-dimensional and directed type theory. In the following
remarks, we summarize the relationship with two previous works.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000312

42 B. Ahrens et al.

Remark 65. (Comparison to Garner 2009). To summarize the differences between Garner’s com-
prehension 2-categories (Garner 2009) and our comprehension bicategories: the former are full,
strict, split, undirected (i.e., locally groupoidal), and incorporate type constructors.

Remark 66. (Licata and Harper’s work). Licata and Harper (2011) interpret a type in context � as
a strict 1-functor from the category interpreting � into a 1-category CAT of categories. Formally,
they thus consider the slice bicategory Cat/CAT, where Cat is the bicategory of categories, in which
CAT is assumed to be a 0-cell. The “domain” pseudofunctor dom : Cat/CAT→ Cat carries the
structure of a global cleaving and local opcleaving; this is more generally the case for any “domain”
pseudofunctor dom : B/a→ B (DomainCleaving.v). To construct the comprehension pseudo-
functor, one needs to use specifics of the category of strict categories, namely the Grothendieck
construction of functors into CAT.

11. Terms in Directed Type Theory
The notion of term in BTT, and the interpretation of these terms, is different from the notion
of term studied in the syntax and semantics by Licata and Harper (2011) or North (2019).
Specifically, our terms correspond to 1-cells in the (total) category of types and are interpreted as
such. Terms in the sense of Licata and Harper, and North, instead correspond to particular 1-cells
in the category of contexts, specifically, to sections of the canonical projections π�,A : �.A→ �.

One might attempt to reconcile these two, on the syntactic side, by
(1) adding a unit type to BTT; and
(2) asking for context morphisms to be built from terms, that is, from type morphisms.

(Semantically, this corresponds to asking for χ to be full.)

However, note that most of our comprehension bicategories are not full. Furthermore, this syntac-
tic modification would still leave a difference between the interpretations of terms given by Licata
and Harper, and North, on the one hand, and our interpretation on the other hand. Specifically, in
Example 45, terms are interpreted as functors that preserve opcartesian cells; by the Grothendieck
construction, terms can equivalently be interpreted as pseudonatural transformations. In con-
trast, terms are interpreted as lax natural transformations by others (Licata and Harper 2011;
North 2019). Hence, there is a mismatch between how terms are interpreted in comprehension
bicategories compared to other interpretations.

We can analyze this mismatch more closely and suggest a potential way of reconciling it,
by looking again at the intended interpretation of two-dimensional and directed type theory in
categories via the opcleaving model. Taking this mismatch seriously leads us in the direction of
directed type theory, where there can be different flavors of terms. For example, in work by Nuyts
(2015) terms can be used isovariantly, covariantly, and contravariantly. In the opcleaving model
(Example 45), these different notions of terms would correspond to different kinds of natural
transformations: pseudonatural transformations, lax natural transformations, and oplax natural
transformations.

To reconcile this difference, one would need tomodify the syntax and the definition of compre-
hension bicategory. In the syntax, one would need to add a term judgment for every kind of term
present in directed type theory. Accordingly, one would also add the corresponding operations
like substitution. The notion of comprehension bicategory would also require slight modifica-
tions for this purpose; one necessary requirement would be that χ preserves both cartesian 1-cells
and opcartesian 2-cells. The reason for this change is that this would be necessary to interpret sub-
stitution of a certain class of terms. More precisely, in the opfibration model, lax transformations

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://benediktahrens.gitlab.io/sem2dtt/840ac16/UniMath.Bicategories.DisplayedBicats.ExamplesOfCleavings.DomainCleaving.html
https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 43

can be identified with sections of the projections
∫
D→ C. To interpret substitution for these, we

need that certain squares in the arrow bicategory are pullbacks; to guarantee that, one requires
that χ preserves cartesian 1-cells.

It is an open problem to develop categorical semantics for type theories that feature terms with
different variances.

12. Conclusion
We have introduced the notion of comprehension bicategory, inspired by the notion of compre-
hension category. From this semantic notion, we have extracted a two-dimensional core syntax
for dependent types, terms, and reductions and an interpretation of that syntax in comprehension
bicategories. In future work, we hope to accompany this soundness result with a completeness
result.

Our work is very general. We hope that it gives future investigations into two-dimensional and
directed type theories a firm foundation. For instance, as outlined in Section 1.1, in future work,
we will extend our structural rules with variances and a suitable hom-type former à la North
(2019).

Acknowledgements. We gratefully acknowledge the work by the Coq development team in providing the Coq proof assis-
tant and surrounding infrastructure, as well as their support in keeping UniMath compatible with Coq. We are very grateful
to Dan Licata and Bob Harper for their help in understanding their interpretation and how it relates to our framework. We
thank the anonymous referees of the short version, and of the present long version, as well as editor Richard Garner, for their
insightful comments and helpful advice. This work was partially funded by EPSRC under agreement number EP/T000252/1.
This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-21-
1-0334. This research was supported by the NWO project “The Power of Equality” OCENW.M20.380, which is financed by
the Dutch Research Council (NWO).

Competing interests. Ahrens is employed at Delft University of Technology, North is employed at Utrecht University, and
Van der Weide is employed at Radboud University.

Notes
1 Garner also relies on Hermida’s (Hermida 1999) slightly incomplete definition of fibration of 2-categories; see Buckley’s
work (Buckley 2014, Remark 2.1.9) for details. We have not checked if Garner’s work extends to Buckley’s corrected definition
of 2-fibration.
2 Note that → is used for both 1-cells and function types.
3 The definitions in the formalization differ slightly from the definitions in the paper. This is because the focus in the
formalization is more general as it considers arbitrary display map bicategories that are not necessarily covariant.
4 In the formalization, we actually use unfolded versions of these definitions, and we prove these two versions are equivalent.
5 We omit the argument T in what follows.

References
Ahrens, B., Frumin, D., Maggesi, M., Veltri, N. and Van der Weide, N. (2021). Bicategories in univalent foundations.

Mathematical Structures in Computer Science 31 (10) 1232–1269.
Ahrens, B., Kapulkin, K. and Shulman, M. (2015). Univalent categories and the Rezk completion. Mathematical Structures in

Computer Science 25 (5) 1010–1039.
Ahrens, B. and Lumsdaine, P. L. (2019). Displayed categories. Logical Methods in Computer Science 15 (1) 20:1–20:18.
Ahrens, B., North, P. R. and Van der Weide, N. (2022). Semantics for two-dimensional type theory. In: Baier, C. and Fisman,

D. (eds.) LICS’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2–5, 2022, ACM,
12:1–12:14.

Bar, K., Kissinger, A. and Vicary, J. (2018). Globular: an online proof assistant for higher-dimensional rewriting. Logical
Methods in Computer Science 14 (1) 1–16.

Bénabou, J. (1967). Introduction to bicategories. In: Reports of the Midwest Category Seminar, Lecture Notes in Mathematics,
vol. 47, Berlin, Heidelberg, Springer Berlin Heidelberg, 1–77. https://doi.org/10.1007/BFb0074299.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://doi.org/10.1007/BFb0074299
https://doi.org/10.1017/S0960129523000312

44 B. Ahrens et al.

Benjamin, T., Finster, E. and Mimram, S. (2021). Globular weak ω-categories as models of a type theory. CoRR,
abs/2106.04475. https://arxiv.org/abs/2106.04475.

Brunerie, G. (2016). On the Homotopy Groups of Spheres in Homotopy Type Theory. Phd thesis, Université Nice Sophia
Antipolis.

Buchholtz, U. andWeinberger, J. (2021). Synthetic fibered (∞, 1)-category theory. CoRR, abs/2105.01724. https://arxiv.
org/abs/2105.01724.

Buckley, M. (2014). Fibred 2-categories and bicategories. Journal of Pure and Applied Algebra 218 (6) 1034–1074.
Coq Development Team, T. (2022). The Coq Proof Assistant. https://doi.org/10.5281/zenodo.5846982.
Coquand, T., Mannaa, B. and Ruch, F. (2017). Stack semantics of type theory. In: 32nd Annual ACM/IEEE Symposium on

Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20–23, 2017, IEEE Computer Society, 1–11.
Coraglia, G. and Di Liberti, I. (2021). Context, judgement, deduction. CoRR, abs/2111.09438. https://arxiv.org/abs/

2111.09438.
Fajstrup, L., Goubault, E., Haucourt, E., Mimram, S. and Raussen, M. (2016). Directed Algebraic Topology and Concurrency,

Springer. https://doi.org/10.1007/978-3-319-15398-8.
Finster, E. andMimram, S. (2017). A type-theoretical definition of weakω-categories. In: 32nd Annual ACM/IEEE Symposium

on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20–23, 2017, IEEE Computer Society, 1–12.
Finster, E., Reutter, D., Vicary, J. and Rice, A. (2022). A type theory for strictly unital ∞-categories. In: Baier, C. and Fisman,

D. (eds.) LICS’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2–5, 2022, ACM,
48:1–48:12.

Fiore,M. and Saville, P. (2019). A type theory for cartesian closed bicategories (extended abstract). In: 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24–27, 2019, IEEE, 1–13.

Garner, R. (2009). Two-dimensional models of type theory. Mathematical Structures in Computer Science 19 (4) 687–736.
Gray, J. W. (1966). Fibred and cofibred categories. In: Eilenberg, S., Harrison, D. K., MacLane, S. and Röhrl, H. (eds.)

Proceedings of the Conference on Categorical Algebra, Berlin, Heidelberg, Springer Berlin Heidelberg, 21–83.
Gurski, M. N. (2006). An Algebraic Theory of Tricategories. Phd thesis, University of Chicago.
Hermida, C. (1999). Some properties of fib as a fibred 2-category. Journal of Pure and Applied Algebra 134 (1) 83–109.
Hirschowitz, T. (2013). Cartesian closed 2-categories and permutation equivalence in higher-order rewriting. LogicalMethods

in Computer Science 9 (3) 1–22.
Hofmann, M. and Streicher, T. (1994). The groupoid model refutes uniqueness of identity proofs. In: Proceedings of the

Ninth Annual Symposium on Logic in Computer Science (LICS’94), Paris, France, July 4–7, 1994, IEEE Computer Society,
208–212.

Johnstone, P. T. (1993). Fibrations and partial products in a 2-category. Applied Categorical Structures 1 141–179.
Kapulkin, K. and Lumsdaine, P. L. (2021). The simplicial model of Univalent Foundations (after Voevodsky). Journal of the

European Mathematical Society 23 (6) 2071–2126.
Licata, D. R. (2011). Dependently Typed Programming with Domain-Specific Logics. Phd thesis, USA. AAI3476124.
Licata, D. R. and Harper, R. (2011). 2-dimensional directed type theory. In: Mislove, M. W. and Ouaknine, J. (eds.) Twenty-

seventh Conference on the Mathematical Foundations of Programming Semantics, MFPS 2011, Pittsburgh, PA, USA, May
25–28, 2011, Electronic Notes in Theoretical Computer Science, vol. 276, Elsevier, 263–289.

Licata, D. R. and Harper, R. (2012). Canonicity for 2-dimensional type theory. In: Field, J. and Hicks, M. (eds.) Proceedings
of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, January 22–28, 2012, ACM, 337–348.

Loregian, F. and Riehl, E. (2020). Categorical notions of fibration. Expositiones Mathematicae 38 (4) 496–514.
Lumsdaine, P. L. (2010). Weak omega-categories from intensional type theory. Logical Methods in Computer Science 6 (3)

1–19.
North, P. R. (2019). Towards a directed homotopy type theory. In: König, B. (ed.) Proceedings of the Thirty-Fifth Conference

on the Mathematical Foundations of Programming Semantics, MFPS 2019, London, UK, June 4–7, 2019, Electronic Notes
in Theoretical Computer Science, vol. 347, Elsevier, 223–239.

Nuyts, A. (2015). Towards a Directed Homotopy Type Theory Based on 4 Kinds of Variance. Master’s thesis, KU Leuven.
https://anuyts.github.io/files/mathesis.pdf.

Reutter, D. and Vicary, J. (2019). High-level methods for homotopy construction in associative n-categories. In: 34th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24–27, 2019, IEEE, 1–13.

Riehl, E. and Shulman, M. (2017). A type theory for synthetic ∞-categories. Higher Structures 1 (1) 147–224.
Seely, R. A. G. (1987). Modelling computations: a 2-categorical framework. In: Proceedings of the Symposium on Logic in

Computer Science (LICS’87), Ithaca, New York, USA, June 22–25, 1987, IEEE Computer Society, 65–71.
Shulman, M. (2010). Functorially dependent types. https://ncatlab.org/michaelshulman/show/functorially+

dependent+types.
Shulman, M. (2011). Internal logic of a 2-category. https://ncatlab.org/michaelshulman/show/internal+logic+

of+a+2-category.
Shulman, M. (2012). 2-categorical logic. https://ncatlab.org/michaelshulman/show/2-categorical+logic.

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://arxiv.org/abs/2106.04475
https://arxiv.org/abs/2105.01724
https://arxiv.org/abs/2105.01724
https://doi.org/10.5281/zenodo.5846982
https://arxiv.org/abs/2111.09438
https://arxiv.org/abs/2111.09438
https://doi.org/10.1007/978-3-319-15398-8
https://anuyts.github.io/files/mathesis.pdf
https://ncatlab.org/michaelshulman/show/functorially+dependent+types
https://ncatlab.org/michaelshulman/show/functorially+dependent+types
https://ncatlab.org/michaelshulman/show/internal+logic+of+a+2-category
https://ncatlab.org/michaelshulman/show/internal+logic+of+a+2-category
https://ncatlab.org/michaelshulman/show/2-categorical+logic
https://doi.org/10.1017/S0960129523000312

Mathematical Structures in Computer Science 45

Shulman, M. (2019). Fibrational slice. https://ncatlab.org/michaelshulman/show/fibrational+slice.
Street, R. (1980). Fibrations in bicategories. Cahiers de Topologie et Géométrie Différentielle Catégoriques 21 (2) 111–160.
Street, R. (1982). Characterization of bicategories of stacks. In: Kamps, K., Pumplün, D. and Tholen, W. (eds.) Category

Theory, Lecture Notes in Mathematics, vol. 962, Springer.
Tabareau, N. (2011). Aspect oriented programming: a language for 2-categories. In: Rajan, H. (ed.) Proceedings of the 10th

InternationalWorkshop on Foundations of Aspect-Oriented Languages, FOAL 2011, Porto de Galinhas, Brazil, March 21–25,
2011, ACM, 13–17.

Taylor, P. (1999). Practical Foundations of Mathematics, Cambridge Studies in Advanced Mathematics, vol. 59, Cambridge,
United Kingdom: Cambridge University Press.

Van den Berg, B. and Garner, R. (2011). Types are weak ω-groupoids. Proceedings of the London Mathematical Society 102
(2) 370–394.

Voevodsky, V., Ahrens, B., Grayson, D., et al. (2022). UniMath — a computer-checked library of univalent mathematics.
Available at https://unimath.org.

Weaver, M. Z. and Licata, D. R. (2020). A constructive model of directed univalence in bicubical sets. In: Hermanns, H.,
Zhang, L., Kobayashi, N. and Miller, D. (eds.) LICS’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
Saarbrücken, Germany, July 8–11, 2020, ACM, 915–928.

Cite this article: Ahrens B, North PR and van der Weide N (2023). Bicategorical type theory: semantics and syntax.
Mathematical Structures in Computer Science. https://doi.org/10.1017/S0960129523000312

https://doi.org/10.1017/S0960129523000312 Published online by Cambridge University Press

https://ncatlab.org/michaelshulman/show/fibrational+slice
https://unimath.org
https://doi.org/10.1017/S0960129523000312
https://doi.org/10.1017/S0960129523000312

	Bicategorical type theory: semantics and syntax
	Introduction
	Judgmental and typal higher dimensions
	Deriving syntax from semantics
	Foundations and formalization in UniMath
	Synopsis
	Version history

	Related Work
	Nondependent type theories
	Theories for higher categories
	Theories with dependent types
	Undirected type theory
	Directed type theory

	Preliminaries
	Comprehension Bicategories
	Examples of Comprehension Bicategories
	Internal Street (Op)Fibrations
	Display Map Bicategories
	The Type Theory BTT
	Judgments and basic rules
	Comprehension structure
	Substitution structure

	Soundness: Interpretation in Comprehension Bicategories
	Comprehension
	Global substitution
	Interpretation of sub-tm
	Interpretation of sub-red
	Interpretation of sub-pres-id
	Interpretation of sub-pres-lunitor
	Interpretation of sub-id
	Interpretation of sub-comp
	Interpretation of tm-sub-id

	Local substitution
	Interpretation of map
	Interpretation of rew-tm
	Interpretation of map-id
	Interpretation of map-lwhisker
	Interpretation of sub-comp-map-id-r

	Variations on Syntax
	Terms in Directed Type Theory
	Conclusion

