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Abstract

The rise of streaming and video technologies highlights the need for
efficient access and navigation of digital content, especially for schol-
ars in history and art. Scholars seek streamlined methods to index,
retrieve, and explore digital content, with an emphasis on finding
specific instances. Searching for these instances in video content is in-
tricate, involving video sequence analysis and relevant segment iden-
tification. Utilizing advanced techniques and algorithms is crucial for
effective content-based retrieval.

In response to the escalating demand for accurate and swift access
to relevant visual data in video resources, our research focuses on novel
efficient content-based image retrieval from videos using deep learning.
The system involves keyframe extraction, where significant frames
are extracted, and content-based image retrieval, which finds similar
frames to query images through feature extraction and ranking. This
thesis analyzes various feature extraction techniques from compact
deep learning networks and compares our proposed system to state-
of-the-art systems for accuracy and speed. Our proposed method
leverages compact deep learning network features for the first stage of
ranking, effectively ranking frames, and subsequently incorporates re-
ranking using a larger network. This approach presents a promising
avenue to achieve high efficiency while maintaining valid accuracy in
content-based video retrieval.
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Abstract

The rise of streaming and video technologies has underscored the significance of efficient
access and navigation of digital content, particularly for scholars in fields like history
and art. Scholars actively seek streamlined approaches to index, retrieve, and explore
digital content, with a focus on locating specific instances. The process of searching for
specific instances in video search is complex that requires the analysis of video sequences
and the identification of relevant video segments. Advanced techniques and algorithms
are necessary to ensure effective content-based retrieval of the required information.

In response to the escalating demand for accurate and swift access to relevant visual
data within the vast spectrum of video resources, our research has been dedicated to the
development of novel, efficient content-based image retrieval methods tailored for videos
by integrating deep learning methodologies. Our comprehensive system contains two
crucial components: keyframe extraction and content-based image retrieval. Keyframe
extraction involves identifying significant frames within videos, while content-based
image retrieval enables the retrieval of similar frames to a query image through feature
extraction and ranking.

A unique aspect of our research lies in the exploration and analysis of a diverse range
of feature extraction techniques derived from compact deep learning networks. We
have compared our proposed method with state-of-the-art retrieval systems, evaluating
performance metrics in terms of both accuracy and speed. Our method harnesses the
power of compact deep learning network features in the initial ranking stage, effectively
sublisting frames, and subsequently introduces re-ranking using a larger network. This
innovative approach promises to deliver the best of both worlds: exceptional efficiency
without compromising retrieval accuracy. The code for our proposed system is available
at https://github.com/dorukbarokas/Efficient-CBVIR.git.
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Introduction 1
The main objective of this project is to construct an effective and reliable content-
based retrieval system for video images, enabling the automatic identification of query
images within video content. While the potential applications of this system are broad,
our primary focus is directed toward its particular utility in historical research. This
initiative is an integral part of the broader project known as ’Engineering Historical
Memory’ (EHM), spearheaded by Dr. Andrea Nanetti. The central aim of this project
is to leverage emerging digital technologies, including artificial intelligence, with the
purpose of consolidating and sharing historical knowledge [12].

This chapter provides an introduction to the video-based image search engine pow-
ered by deep learning. We start with the project’s underlying reasoning and goals and
then delve into a comprehensive overview of the entire process. Notably, this thesis
focuses on the content-based image retrieval aspect of the proposed pipeline, which
will be elaborated on in detail further. The concluding section gives an outline of the
thesis’s layout.

1.1 Image Retrieval from Videos

Image retrieval from videos refers to the process of identifying and extracting specific
frames from video content that matches a given query image. This could be based
on visual features, semantic content, or a combination of both. Essentially, instead
of sifting through an entire video or multiple videos manually to locate a particular
scene or image, this automated process rapidly scans and identifies the relevant frames,
streamlining access to desired visual content within vast video databases.

1.1.1 Problem Statement

With the evolution of streaming and video technologies, fields such as history and art
have seen a revolutionary shift in how information is conveyed. Efficiently accessing,
filtering, and navigating digital historical content is a challenge for scholars. Therefore,
optimizing research endeavors is urgent. The aspiration to maximize the utility of time
and resources has transformed from a mere desire to an essential need.

Deep learning has emerged as a promising solution in this environment [13]. By
refining searches, trimming away redundant data, and spotlighting only the most rele-
vant content, deep learning techniques have revolutionized the research process. This
technological innovation has not only rendered searching more effective but has also
provided scholars with the tools necessary to harness the overwhelming volume of data
that now lies at their fingertips.
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However, the challenge persists in constructing an adept content-based image re-
trieval (CBIR) system capable of proficiently retrieving relevant images from videos.
One promising method is the adoption of compact deep-learning networks [14]. These
models, characterized by their diminished layers or parameters, contrast with their
deeper, more intricate counterparts. While compact networks bring to the table bene-
fits like reduced computational complications, swifter processing speeds, and diminished
memory demands—qualities that make them indispensable in scenarios with limited re-
sources or when real-time actions are essential—their architecture can have both ben-
efits and drawbacks. Their streamlined design, although encouraging interpretability,
may fail when tasked with capturing challenging visual representations. This could
compromise retrieval efficacy, potentially sidelining critical details and subtle concepts
that deeper networks might effortlessly discern.

Hence, the main problem we confront is: The need to develop an efficient content-
based video image retrieval (CBVIR) system that can adeptly pull relevant images from
videos. This system should integrate the advantages of compact deep learning networks
while incorporating re-ranking techniques, thereby ensuring both high retrieval accu-
racy and computation speed.

1.1.2 Objectives

Motivated by a multitude of practical applications, we aim to introduce and verify our
image retrieval method that meets the subsequent objectives:

1. Enabling accurate representation of image content feature vectors by at most 5%
drop of mAP compared to a state-of-the-art system.

2. The feature representation is efficient and adaptable enough to support many
types of datasets as digital historical media.

3. The search performance of the semantic features of image material is effective
and can reply fast and precisely to user search query requests by at least 10 times
faster than the duration of input videos.

4. To establish a video-based image search system for digital historical materials and
construct an open-source retrieval platform with an improved model algorithm and
scheme.

1.1.3 General Pipeline

We present a two-stage strategy for our image retrieval task: initially detecting the
keyframes and subsequently engaging in content-based image retrieval (CBIR), as por-
trayed in Figure 1.1.
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Figure 1.1: General Pipeline of Content-Based Image Retrieval from Videos.

In the first stage, our innovative video image retrieval approach initiates by sub-
sampling the input videos. Given that videos typically consist of numerous frames, we
extract keyframes from these videos to efficiently analyze and retrieve relevant visual
content. This is achieved by employing a color histogram-centric clustering mecha-
nism. To further enhance the process’s efficacy, Singular Value Decomposition (SVD)
is employed for dimensionality reduction on the feature matrix. By leveraging cosine
similarity, the clustering algorithm assesses the feature space, facilitating the extraction
of keyframes. This technique ensures that while crucial frames are singled out, essential
data remains intact, fortifying subsequent retrieval steps.

Transitioning to the second phase, CBIR can be broadly split into Feature Extrac-
tion (FE) and the Search and Match (SaM) processes. Here, feature extraction emerges
as a pivotal element, instrumental in striking a balance between efficiency and precision.
Initial feature extraction is executed via a pre-trained, compact CNN model, namely
MobileNetV2 [10]. Remarkably, compared with other cutting-edge pre-trained frame-
works, MobileNetV2 exhibits superior computational performance, thus positioning it
as the most rapid alternative for video querying within a CBIR framework. Its effi-
ciency is underlined by its capability to operate at double the speed of contenders like
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VGG16 or ResNet50. While employing a less complex network as the foundation re-
sults in time savings, it might marginally compromise accuracy, resulting trade-off. The
search procedure capitalizes on approximate nearest-neighbor (ANN) methodologies to
discern the top-K features resonating with the query attribute, defining this segment
of CBIR as the filtration process. Through relevant threshold selections, non-essential
frames are strategically filtered out.

Addressing potential accuracy drops, a subsequent re-ranking module is introduced,
harnessing global attributes to refine retrieval outcomes. This utilizes a CNN configura-
tion of ResNet101 combined with SOLAR (Second-Order Loss and Attention for Image
Retrieval). This prototype was co-developed by Sinian Li and myself. I was responsible
for the development of the Content Bases Image Retrieval part by using CNN-based
feature extraction with filtering using compact networks and jointly building the final
retrieval system.

1.1.4 Contributions and Innovation

The primary contribution of this thesis lies in showcasing a content-based video image
retrieval system that prioritizes speed, tolerating a nominal accuracy decline, thus
making it a valuable asset for historical researchers aiming to expedite their investigative
endeavors.

Our work introduces a novel approach to image retrieval from videos, significantly
transforming the landscape of historical research methodologies. The center of our
innovation is the development of an efficient CBIR system. Our primary contribu-
tion lies in the enhancement of the CBIR phase where we’ve built a filtering stage.
This stage is adept at meticulously filtering out irrelevant frames from the gallery of
keyframes, ensuring that researchers are presented with only the most relevant visual
data. The keystone to this filtering process is our choice of the compact network -
MobileNetV2. By harnessing the computational efficiency and streamlined architec-
ture of MobileNetV2, we achieve rapid filtering without compromising the richness of
relevant data. This approach not only amplifies the speed but also provides an inno-
vative method of feature extraction, setting a new benchmark for CBIR systems. As
such, our approach stands as a testament to the integration of advanced deep learning
techniques in the service of academic and historical research with swift, efficient, and
accurate video-based image retrieval.

1.2 Efficient Feature Extraction

Imagine you are trying to describe a friend to someone who has never met them. You
would not describe every tiny detail about your friend. Instead, you would mention
the most noticeable features, such as ”she has curly red hair,” or ”he is really tall and
always wears glasses.” In this scenario, these distinguishing attributes like hair color,
height, or always wearing glasses are the ’features’ you have extracted to describe your
friend. Similarly, for an image, feature extraction involves identifying and describing
the unique parts or patterns that can help recognize or categorize that image. It is like
the computer’s way of understanding or describing an image.
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In the case of ’efficient’ feature extraction, it is like being able to describe your friend
quickly yet accurately. In the world of images, this means identifying those unique parts
or patterns in an image without spending too much time or computer resources. The
essential factors are fast and precise.

1.2.1 Significant Factors in Feature Extraction:

1. Adaptability: A major quality of the proposed feature extraction methodology
is its adaptability across countless image types. This can be understood as the
adeptness in determining challenging tasks of comparing buildings in Oxford, a
testament to its versatile capabilities.

2. Reliability: Central to the effectiveness of any feature extraction technique is
its reliability. Upon repeated exposure to an identical or similar image, the pro-
cedure should invariably yield consistent features. A suitable analogy would be
the persistent recognition of a familiar individual predicated upon a distinctive
attribute, such as curly hair.

3. Scalability: A robust feature extraction algorithm should be resilient to the scale
of data it encounters. Identical to the capability of consistently recognizing an
expanding circle of understandings without failing in descriptiveness, the method
should remain productive regardless of the magnitude of the dataset.

4. Relevance: The extracted features must encapsulate the salient characteristics
of an image. The emphasis should align with consistently defining attributes
rather than transient or irrelevant details. One might compare this to highlighting
notable traits like hair color and facial features over mutable aspects like clothing.

In summation, the essence of efficient feature extraction in imaging is to fast and
accurately contrast pivotal and distinct patterns within the image. Such work should
consistently maintain adaptability, reliability, and relevance, irrespective of the volume
of images encountered.

1.3 Outline

The outline of this thesis is as follows:

Chapter 1 initiates with an introduction to a digital historical video image retrieval
system. It delves into the motivation behind the research, and the set objectives, and
offers a comprehensive view of the pipeline. This chapter underscores the primary aims
and the significance of the image retrieval module, before discussing the methodology
employed. It concludes by presenting the overall framework of the thesis.

Chapter 2 delves into the exploration of various aspects related to content-based
image retrieval systems, beginning with a review of early approaches to image retrieval,
including traditional feature extraction methods such as Local Descriptors (e.g., SIFT,
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ORB) and Compact CNN Networks. Additionally delves into the domain of deep learn-
ing in image retrieval, focusing on Convolutional Neural Networks and notable compact
network architectures like VGG, ResNet, and MobileNetV2. Moreover, presents video
image retrieval techniques, including sections on keyframe extraction, nearest neighbor
search, and re-ranking in image retrieval.

Chapter 3 provides details of the key steps and techniques involved in our image
retrieval system, beginning with keyframe extraction and feature extraction methods
with mentioning the distinct separation between the online and offline phases. Fol-
lowed by an exploration of compact and larger deep learning network architectures
(MobileNetV2 and ResNet101 + SOLAR features), and then delving into search and
match algorithms, including ANNOY for approximate nearest neighbors and linear
search. Additionally, the chapter includes a discussion of storage and optimization
strategies, with a particular focus on shortlisting keyframes.

Chapter 4 provides a comprehensive analysis of our proposed image retrieval sys-
tem’s performance through a series of tests and experiments. These experiments will
encompass tests related to the filtering algorithm selection of compact network, com-
putation time, and accuracy, with each test exploring specific aspects of the system’s
functionality. Further provides details on the experiment setup, including the datasets
used, evaluation metrics such as Mean Average Precision (mAP), and computation
time, and then delves into the results obtained from these experiments. Additionally,
a discussion will be included to provide insights and interpretations of the findings.

Chapter 5 summarizes the main contributions of the work and offers insights for
potential future research avenues.
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Related Work 2
This chapter delves into the landscape of video-based image retrieval, underscoring its
evolution and current methodologies. Beginning with exploring the conception and
development of image retrieval in Section 2.1, we delve into the historical development
of image retrieval, including early approaches and the emergence of Content-Based
Image Retrieval. Section 2.2 monitors efficient traditional feature extraction methods,
encompassing local descriptors like SIFT[15], ORB [16], and AKAZE [17]. Moving
on to section 2.3, we focus on the transformative impact of deep learning in image
retrieval, emphasizing the significance of Convolutional Neural Networks (CNNs) and
highlighting notable compact network architectures such as VGG [18], ResNet [11],
and MobileNetV2 [10]. In the final section, 2.4, our exploration extends to video image
retrieval, covering keyframe extraction, nearest neighbor search, and the pivotal role
of re-ranking. Throughout this chapter, we trace the evolution of image retrieval,
providing insights into both traditional and modern methodologies, and ultimately
setting the stage for the subsequent research chapters.

2.1 Background on Image Retrieval

Since its inception, image retrieval as a domain has gone through enormous develop-
ments. Historically, the principal methods of image retrieval were based on text-based
annotations, in which images in databases were manually labeled with descriptive terms,
allowing search and retrieval based on textual queries [19, 20]. While beneficial, such
systems have inherent drawbacks such as the tediousness of human labeling, the sub-
jectivity of descriptions, and the inability to express the rich essence of an image with
words alone. As visual data grew exponentially in the digital era, the necessity for more
advanced, autonomous, and content-centric retrieval methods became clear. This paved
the way for Content-Based Image Retrieval (CBIR), a game-changing strategy that en-
abled systems to search and retrieve images based on their inherent visual properties
such as patterns, colors, and dimensions [21].

2.1.1 Early Approaches to Image Retrieval

In the initial stages of image retrieval, text-based image retrieval (TBIR) methods dom-
inated, where images were annotated with textual descriptions for retrieval purposes
[19, 20]. While straightforward, this approach had notable limitations. Manual tagging
was a primary method, which was both time-intensive and inconsistent due to its re-
liance on human interpretation. As image databases expanded, the challenges of main-
taining uniformity across tags became apparent. Moreover, the inherent subjectivity of
textual descriptions often led to varied interpretations of an image’s content, resulting
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in retrieval mismatches. This inconsistency underscored the need for more objective,
content-driven retrieval techniques. Consequently, image retrieval based on text does
not reach optimal efficiency and effectiveness [21]. To address these constraints of TBIR
systems and find a better search method, more intuitive and user-centric content-based
image retrieval systems were introduced.

2.1.2 Content Based Image Retrieval(CBIR)

Content-based image retrieval, also known as Query By Image Content (QBIC) [22],
represents an innovative approach to image searching. Instead of relying on textual
descriptors, CBIR processes use an image’s inherent visual attributes like color, texture,
shape, and spatial arrangements to identify and retrieve similar images from a database
[21]. When a user provides an image or sketch, the system converts it into a feature
vector, similar to those in the database. It then calculates the similarity or distance
between the query’s feature vector and those of the target images, using an efficient
indexing mechanism to facilitate retrieval.

The advantages of CBIR over traditional text-based image retrieval are significant.
Firstly, CBIR offers a retrieval method that aligns more closely with human visual
perception, eliminating the need for severe manual annotations. Furthermore, to refine
the process, many systems incorporate user feedback, ensuring that results are not only
visually but also semantically relevant.

Despite its advantages, CBIR faces challenges, primarily the ’semantic gap’. This
gap emphasizes the disparity between low-level features that computers extract and
the high-level human interpretations of images [23, 24]. Bridging this gap has been a
central challenge in CBIR research, and various strategies, such as machine learning,
relevance feedback, and semantic templates, have been developed to address it.

Historically, the journey of CBIR has been marked by significant advancements since
the 1990s. The USA’s National Science Foundation [25], recognizing the need for more
intuitive image management solutions, catalyzed early discussions. This era heralded a
collaboration of experts from diverse fields like computer vision, database management,
and human-computer interaction. Since then, both research and practical applications
in the domain have expanded exponentially, with a myriad of systems being introduced
worldwide.

In summary, CBIR stands at the intersection of computer vision and human inter-
pretation. While it offers automated, efficient image retrieval based on visual features,
its true challenge and potential lie in harmonizing this process with the complex realm
of human perception.
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Figure 2.1: A Typical CBIR System Architecture [1].

2.2 Traditional Feature Extraction in Image Retrieval

Before the emergence of deep learning methodologies, which enable computers to learn
image features directly from data, traditional feature extraction techniques served as
the cornerstone of CBIR systems. These handcrafted features, meticulously designed
by experts, were tailored to capture specific visual properties of images such as color [26,
27], texture [28, 29], and shape [30, 31]. In contrast to learning-based approaches, these
handcrafted features are predefined and are not learned from data. During their peak
usage, these techniques played a critical role in a wide array of applications, including
image retrieval. Despite the rise of deep learning, these traditional techniques continue
to be valued for their unique strengths, especially in scenarios where interpretability,
computational efficiency, and resistance to overfitting are paramount.

This section provides an overview of some of the most influential traditional fea-
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ture extraction methods, shedding light on their key principles and delineating their
enduring relevance in the ever-evolving landscape of image retrieval.

2.2.1 Local Descriptors for Image Retrieval

Local feature descriptors [32] are techniques that extract and describe localized features
or key points from images. These key points are distinctive and can be used for tasks
like image matching, object recognition, and image retrieval. The approach of local
feature extraction is more efficient compared to the global feature extraction process.

2.2.1.1 Scale-Invariant Feature Transform (SIFT)

SIFT [15], introduced by David Lowe in 1999, is a well-regarded algorithm for detect-
ing and describing local features inside the target images. The key strengths of SIFT
include its invariance to image scaling, rotation, and its robustness to changes in view-
point and illumination. SIFT works by identifying key points (or interest points) in an
image, and then computing a descriptor for each key point based on the local image
gradients.

The algorithm demonstrates resilience against alterations in scale, rotation, and
illumination conditions. The SIFT methodology can be divided into four primary
stages [33]:

1. Scale-Space Extreme Detection:

• Scanning the entire image to identify potential keypoints.

• Constructing the scale-space.

• Using Gaussian blurring to approximate the Laplacian.

2. Keypoint Localization:

• Selecting stable keypoints resilient to changes in scale and orientation.

• Removing less significant keypoints to diminish noise.

3. Orientation Determination:

• Assigning a consistent orientation for each keypoint that remains unaltered
across image transformations.

4. Descriptor Generation for Keypoints:

• Formulating vectors that characterize each feature of keypoints.

During the construction of the scale space, the image undergoes re-scaling to deter-
mine pronounced and enduring features, resulting in the creation of octaves. Following
this, a scale-space pyramid is assembled, encompassing these octaves ranked from the
largest to the smallest. The subsequent phase involves the application of Gaussian blur,
facilitated by a specific Gaussian operator,

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.1)
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where L represents the resulting image, G denotes the Gaussian operator, and I
is the input image. Subsequently, the Laplacian is determined to identify edges. Ide-
ally, this should involve calculating the second derivative. However, this operation
is computationally intensive. To address this challenge, the Difference of Gaussians
(DoG) method is employed. The ensuing phase in the SIFT algorithm pertains to the
localization of keypoints, containing two crucial procedures:

• Detecting local extrema on DoG images.

• Defining the position of these extrema.

The strategy for local extrema detection involves comparing pixel values with their
neighboring counterparts. In a discrete image representation, the most luminous pixel
does not always coincide with the position of the local extrema. To rectify this incon-
sistency, Taylor’s theorem is utilized.

D(x) = D +
∂DT

∂x
x+

1

2
xT
∂2D

∂x2
x (2.2)

Each keypoint is characterized by two attributes: intensity and the direction in
which it points. These are determined by the gradients of surrounding pixels. The
resulting SIFT keypoint descriptor comprises two vectors. The primary vector en-
compasses the point’s coordinates (x, y), the identified scale, the feature’s response
or intensity, orientation (measured counter-clockwise from the positive x-axis), and the
Laplacian’s sign (utilized for rapid matching). The secondary vector carries a descriptor
of length 128 [34].

2.2.1.2 Oriented FAST and Rotated BRIEF (ORB)

ORB [16] is a fast binary descriptor based on the combination of the FAST [35] keypoint
detector and the BRIEF [36] descriptor. It was developed as a free alternative to
patented algorithms like SIFT. ORB is rotation invariant and resistant to noise. By
combining the strengths of FAST and BRIEF, ORB provides a highly efficient and
robust method for feature extraction and matching.

To break down the algorithm,

1. FAST Keypoint Detection

The FAST (Features from Accelerated Segment Test) algorithm examines a circle of
sixteen pixels around the corner candidate p. The symbol I denotes the intensity
function of the image, where given a pixel location p, I(p) provides the intensity value
of the image at that pixel location. If a set of n contiguous pixels in the circle are
either brighter or darker than the intensity of the candidate p by a threshold t, then p
is considered a corner. Mathematically:

I(p) + t < I(pi) or I(p)− t > I(pi) (2.3)

where pi are the pixels in the circle around p.
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2. Orientation Assignment

For each feature detected by FAST, ORB computes the centroid C using:

C =
(∑

m01 × x,
∑

m10 × y
)

(2.4)

where m01 and m10 are the central image moments. The orientation θ is then:

θ = arctan

(
m01

m10

)
(2.5)

3. Rotation-Invariant BRIEF Descriptor

ORB utilizes the rBRIEF [37] descriptor, a rotated version of BRIEF. The learning of
pair (x, y) in BRIEF is rotated by θ:[

x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
(2.6)

4. Binary Descriptor

Given the rotated test locations, the rBRIEF descriptor is computed. For each pair of
locations (xi, yi) and (xj, yj), the binary test is:

τ(p;xi, xj) =

{
1 if I(p+ xi) < I(p+ xj)

0 otherwise
(2.7)

Here, I(p + xi) and I(p + xj) represent the intensity values at pixel locations offset
by xi and xj from the keypoint p, respectively. The BRIEF descriptor is then the
concatenated results of these binary tests.

5. Efficiency Techniques

ORB processes the image in resized versions to detect features at multiple scales using
a pyramid approach. The Harris corner measure is:

R = det(M)− k(trace(M))2 (2.8)

where M is the structure tensor matrix and k is an empirically determined constant.
The ORB algorithm stands out as an efficient and effective feature descriptor, espe-

cially in comparison to other traditional methods such as SIFT [38]. Its combination
of the FAST keypoint detector with the rBRIEF descriptor results in a binary descrip-
tor that’s computationally more efficient than its predecessors. Furthermore, ORB’s
rotation invariance and resistance to noise make it particularly robust in practical ap-
plications. ORB offers a compelling balance between performance and computational
efficiency, reinforcing its popularity in numerous computer vision tasks.
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2.2.1.3 Accelerated KAZE (AKAZE)

AKAZE [17] is an evolution of the KAZE [39] algorithm, designed to improve speed
without compromising performance. The term ’KAZE’ is derived from the Basque
word for ’wind’, and ’AKAZE’ from the word for ’fast wind’. AKAZE is particularly
adept at handling wide baselines and significant rotations. It employs a novel approach
to scale-space called the nonlinear scale space, which helps it detect features in images
more effectively. Like SIFT, AKAZE provides a descriptor for each detected key point,
which can be used for matching [38].

1. Nonlinear Scale Space

AKAZE uses a nonlinear scale space, which is built using a diffusion process rather
than Gaussian blurs. The diffusion equation for this is:

∂L

∂t
= div(c(x, y, t)∇L) (2.9)

where L is the image at a given scale, c is the conductivity function (which controls
the amount of diffusion), and ∇L is the gradient of the image.

2. Keypoint Detection

Keypoints are detected by finding the local extrema across scales and space in the
nonlinear scale space. The determinant of the Hessian matrix is used for this purpose:

Det(H) = Dxx ×Dyy − (Dxy)
2 (2.10)

where Dxx, Dyy, and Dxy are the second order partial derivatives.

3. Orientation Assignment

Similar to other feature detectors, AKAZE also assigns an orientation to each key-
point to achieve rotation invariance. The orientation θ is computed using gradient
information around the keypoint.

4. Modified Local Difference Binary (MLDB) Descriptor

AKAZE uses a descriptor called Modified Local Difference Binary (MLDB). It computes
the binary string by comparing the intensity differences between pixels around the
keypoint:

τ(p;xi, xj) =

{
1 if L(p+ xi) < L(p+ xj)

0 otherwise
(2.11)

This binary descriptor is more memory efficient and faster to compute than traditional
descriptors.
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5. Multi-scale Feature Matching

AKAZE utilizes a multi-scale approach to detect features at various resolutions, en-
hancing its robustness against varying image scales.

The AKAZE algorithm is recognized for its efficiency, especially when comparing the
time-performance trade-offs. Its use of a nonlinear scale space and a binary descriptor
results in a fast and memory-efficient feature detection method. Furthermore, AKAZE’s
capability to reliably detect features across different scales makes it versatile for various
computer vision applications like image retrieval.

2.3 Deep Learning in Image Retrieval

Over the past decade, deep learning has not only emerged as a powerful tool but has
also radically transformed the domain of image retrieval [40]. The intricate design and
architectures of neural networks, notably CNNs, stand as a testament to this revolution.
Their inception has steered the field towards outstanding levels of accuracy across a va-
riety of image retrieval benchmarks. What sets these networks apart is their adeptness
at seamlessly integrating low-level image features into more comprehensive, high-level
representations. This transformative shift has been characterized by a marked move
from hand-crafted classical image-processing feature representation to a learning-based
approach, largely attributable to the emergence of deep learning [41]. This is achieved
through intricate non-linear transformations, which act as the cornerstone for deriving
deep, semantically rich interpretations directly from visual data.

Taking a closer look, CNNs emerge as a pivotal entity that has left a memorable
mark on the broader spectrum of computer vision [40]. Their dominance is under-
pinned by an overload of empirical studies, each echoing their remarkable performance
over conventional feature extraction techniques. The wide array of tasks where CNNs
includes scene recognition, fine-grained recognition, attribute detection, and image re-
trieval [42].

Their success is not merely a sensation in academia; the real-world implications are
profound. This is evident as image search services, with an emphasis on image-by-image
search, have trended across mainstream search engines.

2.3.1 Convolutional Neural Networks (CNNs)

CNNs are specialized neural architectures specifically tailored for processing grid-like
data structures, with images being their primary focus. Originating from their foun-
dational design, these networks boast convolutional layers. These layers are recognized
by their ability to automatically and adaptively discern spatial hierarchies of features,
making them particularly adept at recognizing patterns, textures, and objects within
visual data.
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Figure 2.2: A Typical CNN Architecture [2].

Furthermore, the resilience and versatility of CNNs stem from their multi-layered
structure, which allows them to capture both coarse details and broad contextual in-
formation from images. As they process an image, early layers typically detect simple
features like edges, while deeper layers capture more complex structures and patterns.

Over the years, the consistent superiority of CNNs over traditional image-processing
techniques has become evident. Their ability to learn from vast amounts of data,
adapt to varied tasks, and provide precise results has made them the preferred choice
in numerous visual recognition challenges [40]. This relentless ascent and unmatched
performance have solidified their position as the gold standard in image retrieval, setting
a benchmark that’s hard to surpass [42].

2.3.2 Notable Compact Network Architectures

In the evolving landscape of deep learning, there’s a rapidly increasing interest in com-
pact neural network architectures. As deep learning models, notably CNNs, expand in
complexity, there arises an inherent trade-off between computational time and accuracy.
While deeper architectures can potentially offer better performance, they invariably
require greater computational resources and storage [40]. This often renders them un-
suitable for real-time applications or deployment on devices with limited resources, like
smartphones or edge devices. Compact architectures elegantly navigate this trade-off
by designing efficient, yet powerful models. By leveraging techniques such as param-
eter pruning, quantization, and knowledge distillation, these architectures manage to
drastically reduce the model’s size without a proportional decline in performance. The
significance of these shallow structures cannot be overdrawn, particularly in the age
of widespread computing. They enable the deployment of sophisticated deep learning
capabilities on devices with limited processing power, ensuring that advanced image
retrieval and recognition tasks can be executed swiftly, even in decentralized settings.

VGG

The VGG [18] network, short for Visual Geometry Group, represents a significant mile-
stone in the development of convolutional neural networks (CNNs). Its architecture,
characterized by its depth and simplicity, laid the foundation for many subsequent neu-
ral network designs. One notable variant of the VGG architecture is VGG16, which
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comprises 16 weight layers, as well as an additional fully connected layer, making a
total of 19 layers.

Figure 2.3: VGG16 Architecture [3].

VGG16’s structure is defined by stacking convolutional layers and using small 3x3
filters, followed by max-pooling layers that downsample the spatial dimensions. This
repeated pattern allows VGG16 to learn progressively complex features from the input
image.

Below is a table outlining the layers and sizes of VGG16:
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Layer Name Type Output Size Number of Parameters

Input Image - 224x224x3 0

Conv1-64 Conv2D 224x224x64 1,792

Conv1-64 Conv2D 224x224x64 36,928

Pool1 MaxPooling2D 112x112x64 0

Conv2-128 Conv2D 112x112x128 73,856

Conv2-128 Conv2D 112x112x128 147,584

Pool2 MaxPooling2D 56x56x128 0

Conv3-256 Conv2D 56x56x256 295,168

Conv3-256 Conv2D 56x56x256 590,080

Conv3-256 Conv2D 56x56x256 590,080

Pool3 MaxPooling2D 28x28x256 0

Conv4-512 Conv2D 28x28x512 1,180,160

Conv4-512 Conv2D 28x28x512 2,359,808

Conv4-512 Conv2D 28x28x512 2,359,808

Pool4 MaxPooling2D 14x14x512 0

Conv5-512 Conv2D 14x14x512 2,359,808

Conv5-512 Conv2D 14x14x512 2,359,808

Conv5-512 Conv2D 14x14x512 2,359,808

Pool5 MaxPooling2D 7x7x512 0

Flatten - 25088 0

FC1 Dense 4096 102,764,544

FC2 Dense 4096 16,781,312

FC3 Dense 1000 4,097,000

Table 2.1: Detailed structure of VGG16.

The choice of VGG16, despite its computational intensity, stems from its remark-
able feature extraction capabilities. Its relatively shallow architecture, when compared
to more modern counterparts, allows it to strike a balance between performance and
computational complexity. This makes VGG16 a preferred choice when resource con-
straints need to be considered, such as in edge computing scenarios or when working
with limited hardware resources. VGG16’s approach to deep learning serves as a cor-
nerstone in the evolution of neural network architectures, paving the way for subsequent
innovations that balance efficiency and performance.

ResNet

ResNet [11], short for Residual Networks, introduced a novel concept of skip connections
or shortcut connections. These connections help in training very deep networks by
easing the vanishing gradient problem. ResNet architectures have been widely adopted
in various image-processing tasks due to their remarkable performance. Among the
notable variants of ResNet, ResNet50 stands out as a milestone in the evolution of
deep neural networks.
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Figure 2.4: ResNet50 Architecture [4].

ResNet50 [11], as the name suggests, comprises 50 weight layers. It has demon-
strated exceptional performance and efficiency in various image classification and fea-
ture extraction tasks. The structure of ResNet50 is defined by the use of residual blocks,
which allow information to flow across layers more efficiently. The skip connections in
each block bypass the vanishing gradient issue, making it possible to train deep net-
works effectively. This architecture enables ResNet50 to extract intricate features from
images, enhancing its image retrieval capabilities.

Below is a table outlining the layers and sizes of ResNet50:

Layer Name Type Output Size Number of Parameters

Input Image - 224x224x3 0

Conv1 Conv2D 112x112x64 9,408

Conv2 MaxPooling2D 56x56x64 0

Conv3x Residual Blocks 28x28x256 -

Conv4x Residual Blocks 14x14x512 -

Conv5x Residual Blocks 7x7x1024 -

AvgPool GlobalAveragePooling2D 1x1x2048 0

FC Dense 1000 (output classes) -

Table 2.2: Detailed structure of ResNet50.

The choice of ResNet50 is motivated by its impressive performance and its capability
to handle deeper architectures. Despite its depth, ResNet50 has managed to maintain
computational efficiency, making it a versatile choice for image retrieval applications.
Its success lies in its ability to extract meaningful features while avoiding the pitfalls
of vanishing gradients. This balance of depth and efficiency makes ResNet50 a go-to
choice for various computer vision tasks, particularly image retrieval, where complicated
feature extraction is crucial [43].

MobileNetV2

MobileNetV2 [10], a compact network tailored with the aim for mobile devices, rep-
resents a significant leap in the field of embedded vision applications. Introduced by
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Sandler, Howard, Zhu, Zhmoginov, and Chen in 2018 [10], this architecture not only
achieves state-of-the-art performance across a spectrum of tasks but also ensures reason-
able utilization of computational resources. Central to MobileNetV2 is the innovative
’inverted residual block’ that employs depthwise separable convolutions. This block
encompasses two novel attributes: linear bottlenecks and shortcut residual connections
situated between these bottlenecks. Within the mechanics of the inverted residual layer,
an input tensor with k channels is initially expanded into a higher-dimensional space
employing pointwise 1 × 1 convolutions, succeeded by the Relu6 activation function.
Subsequent to this, a depth-wise convolution is deployed, capturing the inherent spatial
correlations. Following this is another pointwise convolution, reverting the data to its
original low-dimensional tensor state. Crucially, this step is linear, safeguarding against
undue information attrition. Concluding the process, a residual connection seamlessly
links the input and output mappings, solidifying the network’s effectiveness. Consti-
tuted of 54 layers and trained exhaustively on the ImageNet dataset, MobileNetV2 is
optimized for an input image resolution of 224× 224. Through its intricately efficient
design, it establishes a harmonious balance between processing speed and accuracy,
marking it as an optimal choice for diverse mobile and embedded vision initiatives.

Below is a table outlining the layers and sizes of MobileNetV2:

Layer Name Type Output Size Number of Parameters

Input Image - 224x224x3 0

Conv1 Conv2D 112x112x32 864

Conv2 Bottleneck Blocks 112x112x16 5,056

Conv3 Bottleneck Blocks 56x56x24 9,408

Conv4 Bottleneck Blocks 28x28x32 14,592

Conv5 Bottleneck Blocks 14x14x64 21,760

Conv6 Bottleneck Blocks 7x7x96 32,320

Conv7 Bottleneck Blocks 7x7x160 46,720

Conv8 Conv2D 7x7x320 51,520

AvgPool GlobalAveragePooling2D 1x1x1280 0

FC Dense 1000 (output classes) -

Table 2.3: Detailed structure of MobileNetV2.

2.4 Video Image Retrieval

Video image retrieval poses unique challenges, given the temporal nature of videos, as
they consist of a sequence of frames with valuable information contributing to the overall
context. Video instance retrieval, a specific aspect of video retrieval, further highlights
these challenges by requiring the localization and retrieval of specific instances within
video data. Traditional image-based retrieval techniques may fall short in scenarios like
video surveillance systems aimed at identifying criminals. As video data increases, the
need to locate specific objects, places, or actions within videos grows more pronounced,
underscoring its importance for various applications.

To address the sophistication of video instance retrieval, advanced techniques are
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being developed to extract meaningful representations from video content. This involves
constructing models that leverage 3D Convolutional Neural Networks (3D-CNNs) to
grasp the temporal information of videos [44]. These models are tailored to learn
and encode the dynamic changes and interactions over time, enabling the computation
of semantic similarities between instances. The utilization of 3D-CNNs represents a
significant step forward in capturing the nuances of videos beyond static frames [45].
By modeling the temporal evolution of scenes, objects, or actions, these models enhance
the precision and relevance of video instance retrieval. However, due to the added
dimensionality and increased computational complexity, 3D CNNs often require more
computational resources compared to their 2D counterparts. Therefore, in order to
achieve ultimate efficiency our proposed system will be based on 2D CNNs.

In contrast to the recent advancements focusing on real-time Content-based Image
Retrieval and precise intelligent image search capabilities, the topic of video-based re-
trieval is relatively novel [46]. VISIONE, developed for the Video Browser Showdown
2019 challenge, introduces novel capabilities in supporting various query types, such
as keyword-based search and object location search through real-time object detection
algorithms [47]. Yet, these methods heavily lean on text-based indexing, potentially
limiting their ability to capture complex visual nuances [48, 49]. A review of CBVIR
highlights the challenges posed by excessive video frames, necessitating techniques like
shot boundary detection and keyframe selection [50]. While some progress has been
made in image retrieval techniques, the focus on video content retrieval remains rela-
tively under-explored.

In the domain of content-based visual media retrieval, an adaptable framework has
emerged that tackles Convolutional Neural Networks (2D CNNs), 3D Convolutions (3D
CNNs), and Long short-term memory networks (LSTMs) to process both images and
videos for retrieval purposes [51]. This framework employs a recurrent convolutional
architecture, incorporating LSTM processing to generate a comprehensive feature rep-
resentation for videos, thereby enabling effective retrieval for both images and videos
[44].

Their 3D model exhibits proficiency in retrieving familiar data instances, while their
2D model excels at handling unseen data, thus showcasing complementary strengths.
The incorporation of Long Short-Term Memory units within their framework con-
tributes to enriched video comprehension and the identification of key moments. This
architectural configuration takes into account both the sequence information and scene
relationships present within the video, as reported [45]. However, it’s important to
note that the entire processing pipeline aims to clarify the entirety of a video into a
single feature vector, encapsulating the video’s core essence. Although this approach
may trade off temporal information for efficiency gains, it underscores the multifaceted
nature of designing video retrieval systems.

In the context of video image retrieval, there exists a noticeable absence of significant
literature within the academic sphere. This scarcity highlights the evolving nature of
this research area and the considerable scope for further investigation.
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2.4.1 Keyframe Extraction

In the context of video instance retrieval, the process of identifying keyframes takes on
a new dimension. These keyframes are not only representative snapshots but also hold
the potential to encapsulate instances of interest. Their selection must align with the
specific requirements of video instance retrieval, aiming to contain instances that carry
vital semantic significance. Thus, the field of video instance retrieval seeks to bridge
the gap between the intricacies of video data and the efficiency of retrieval systems,
setting the stage for robust video content analysis and retrieval in complex real-world
scenarios. This part is investigated by my colleague Sinian Li, further literature study
is available in her thesis [52].

2.4.2 Nearest Neighbour Search

Once the feature vectors of keyframes and query images are extracted, the nearest
neighbor search is performed to retrieve similar frames from a database. This step is
crucial and determines the efficiency and accuracy of the retrieval process.

In our pursuit of optimizing our system with efficient searching and matching algo-
rithms, rigorously searched a range of methods from various categories and integrated
the most suitable ones into our final pipeline. Our selection criteria included the ability
to seamlessly integrate with other modules, state-of-the-art performance in relevant cat-
egories, and applicability in real-world scenarios. Notably as mentioned by Yuanyuan
Yao [53], ANNOY [9] emerged as a standout choice among tree-based methods such as
Product Quantization [54], Product Quantization Network [55], Greedy Hash [56], and
Hierarchical Navigable Small World [57] methods, consistently demonstrating compet-
itive results in prior research. Its practical effectiveness makes it a robust selection for
our purposes. We further delve into the specifics of these chosen methods in the sub-
sequent chapters, with a focus on their application in Approximate Nearest Neighbors
(ANN) search.
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Figure 2.5: The Representation of the Nearest Neighbour Search (The Example Provides Top
5 Neighbours Closer to Query) [5].

2.5 Re-ranking in Image Retrieval

Re-ranking is a post-processing step in image retrieval, where initially retrieved results
are further refined or sorted based on additional criteria or algorithms. This process
helps in enhancing the precision of retrieval, especially when the initial results are
sub-optimal. Various methods, ranging from spatial verification to utilizing contextual
information, have been proposed for re-ranking in image retrieval.

In the context of image retrieval, it’s essential to highlight the current state of re-
ranking methods. These re-ranking approaches can be broadly categorized into two
fundamental types: local feature-based methods and global feature-based methods.
Local feature-based re-ranking, often distinguished as geometric re-ranking or spatial
verification methods by esteemed researchers [58, 59, 60, 61], revolves around harnessing
the geometric properties of image features to refine search results. In contrast, global
feature-based re-ranking, commonly labeled as non-geometric re-ranking methods [61],
is centered on exploiting the overall characteristics and semantic information embedded
within image features to optimize retrieval outcomes.

These dual facets of re-ranking techniques form the keystone of modern image re-
trieval, and understanding their complications is crucial for navigating the dynamic
field of information retrieval.
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Figure 2.6: The Representation of the Local Keypoints (Top) and Global Descriptors (Bot-
tom).
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Methodology 3
In the domain of content-based image retrieval, the efficient retrieval of relevant images
from a vast database remains a significant challenge. This work proposes a novel CBIR
on video image system that effectively combines the power of deep learning feature
extraction with the speed of the Approximate Nearest Neighbors Oh Yeah (ANNOY)
[9] nearest neighbor algorithm. The system employs a two-phase approach, strategically
divided into an offline phase for the pre-processing and preparation stage and an online
phase for query processing. The proposed phases are described as follows:

• Offline Phase: This is a preparation stage consisting of KFE, MobileNetV2
feature extraction of keyframes, and building ANNOY index tree for MobileNetV2
features.

• Online Phase: This stage requires the user to input query images. Both Mo-
bileNetV2 and ResNet101 + SOLAR features are extracted for query images.
Next, the pre-built ANNOY index for MobileNetV2 features is then utilized to
search and match the most similar keyframes. These keyframes are then short-
listed for the re-ranking stage. The ResNet101 + SOLAR features of the short-
listed keyframes are extracted, and finally, re-ranking is applied through linear
search. ResNet101 + SOLAR features are stored for each run, enabling faster
performance progressively as more input queries are inserted into the system by
the user.

In the next sections, each section of the system will be explained in detail and the
offline phase and online phase will be described in per module of our proposed system.

3.1 Keyframe Extraction

The offline phase includes KFE, to prepare the significant frames (keyframes) among
the videos to form the gallery of the CBIR. The thesis covers only the CBIR part of
the proposed system. For keyframe extraction analysis Sinian Li provided her thesis
research on various methods of KFE using deep-learning and traditional methods [52].
The most promising method utilizes the traditional algorithm of the color-based method
with an improvement to the algorithm by constructing sub-matrices within the feature
matrix and reducing the dimension by singular value decomposition to accelerate the
process of keyframe extraction.

25



3.2 Feature Extraction

In our proposed system, we employ two distinct deep-learning architectures for descrip-
tor extraction for images: MobileNetV2 and ResNet101 + SOLAR. The choice of these
architectures is driven by the specific needs of our CBIR system.

MobileNetV2, renowned for its compact structure, serves as an excellent choice for
our system. Its design prioritizes computational efficiency, making it an ideal candidate
for feature extraction. This computational efficiency translates into faster processing
times and reduced resource requirements, ensuring that our system remains responsive
and cost-effective [62].

In contrast, we have also incorporated ResNet101 + SOLAR features into our sys-
tem. ResNet101 is a deep convolutional neural network known for its exceptional
accuracy in image recognition tasks [63]. When combined with second-order loss and
attention, this architecture produces wider and more precise feature vectors. By lever-
aging ResNet101 + SOLAR, our system excels in delivering accurate and contextually
relevant search results [6].

In the following subsections, we will delve deeper into the feature extraction methods
for both MobileNetV2 and ResNet101 + SOLAR. This comprehensive explanation will
shed light on how these architectures contribute to the effectiveness of our CBIR system.

3.2.1 Compact Deep Learning Network: MobileNetV2 Features

• Offline: Extraction of MobileNetV2 features from keyframes. These features will
be used to build ANNOY indexes with MobileNetV2 features.

• Online: Extraction of MobileNetV2 features from query images.

Detailed Mechanics of MobileNetV2:

Input Operator t c n s

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1x1 - 1280 1 1
72 × 1280 avgpool 7x7 - - 1 -

1× 1× 1280 conv2d 1x1 - k -

Table 3.1: Detailed structure of MobileNetV2 [10].

• t: Expansion factor, determining the number of output channels in a bottleneck
block compared to the number of input channels.
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• c: Number of output channels produced by a specific layer or block in the network.

• n: Number of times a particular type of block is repeated within the architecture.

• s: Stride used in convolutional layers or blocks, determining the spatial downsam-
pling factor of the output compared to the input.

Standard Convolutional Layer

The initial phase of the MobileNetV2 architecture involves processing the input image
X through a standard convolutional layer. This layer employs a set of 32 filters with
learnable weights and biases Wconv to perform convolutions on the input data. Impor-
tantly, this convolutional layer operates with a stride of 2 (stride = 2), which results in
a down-sampling effect. Mathematically, the output C of this convolutional layer can
be represented as:

C = Conv2D(X,Wconv, stride = 2)

This operation efficiently reduces the spatial dimensions of the data while simultane-
ously increasing the number of feature channels. The transformed output serves as a
critical starting point for the subsequent feature extraction stage.

Bottleneck Residual Blocks

Following the initial convolutional layer, the architecture integrates a sequence of ’bot-
tleneck’ residual blocks. These blocks represent the balanced mixture of computational
efficiency and feature representation richness. Each bottleneck block comprises three
fundamental layers:

1. 1x1 Convolution (Pointwise Convolution): This layer strategically intro-
duces a 1x1 convolution, often denoted as ’pointwise convolution’. The main goal of
this layer is to expand the number of channels, thereby enhancing the capacity of the
model to represent complex visual patterns and transformations. Mathematically, the
output P of this layer can be expressed as:

P = Conv2D(C,Wpw)

Here, Wpw represents the pointwise convolution weights.

2. 3x3 Depthwise Convolution: The subsequent layer entails a 3x3 depthwise
convolution, a distinctive operation that applies a single convolutional filter per input
channel. This ’depthwise’ convolution is followed by batch normalization and the Rec-
tified Linear Unit (ReLU) activation function. This combination enhances the model’s
capability to learn intricate patterns and features. Mathematically, the output D of
the depthwise convolution can be represented as:

D = DepthwiseConv2D(P,Wdw, stride = 1)

Here, Wdw represents the depth-wise convolution weights.
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3. 1x1 Convolution (Pointwise Convolution): The final layer within each bot-
tleneck block is another 1x1 convolution. This operation projects the channel dimen-
sions into a more compact space, effectively reducing computational load and conserving
memory. Mathematically, the output B of this convolution can be defined as:

B = Conv2D(D,Wpw2)

Here, Wpw2 represents the point-wise convolution weights.
The orchestration of these layers in each bottleneck block leads to the extraction of

multi-faceted, nuanced features, all while maintaining computational efficiency.

Average Pooling Layer

After spanning the sequence of bottleneck residual blocks, the model’s output B un-
dergoes a pivotal transformation via the average pooling layer. This layer plays an
instrumental role in further diminishing the spatial dimensions of the data while re-
taining essential features. The average pooling operation calculates the mean value
within predefined windows of the feature maps, resulting in a profound reduction in
the number of spatial dimensions. Mathematically, the output AvgP of the average
pooling layer can be defined as:

AvgP = AveragePooling2D(B, pool size)

Here, pool size signifies the dimensions of the pooling windows used for aggregation.
The completion of the average pooling process highlights the model’s focus on essential
features while mitigating the influence of irrelevant spatial information.

Fully Connected Layer

In the final phase of the MobileNetV2 architecture, the output F that has undergone
average pooling is channeled into a fully connected (dense) layer. This layer holds
immense significance for the classification task, as it diligently computes probabilities
corresponding to the target classes. Each neuron in this dense layer corresponds to a
specific class, illustrating a set of weights and a bias term. The output of the fully con-
nected layer FC is obtained through a linear combination of the transformed features
F and the weights Wfc, followed by the addition of the bias term bfc:

FC = F ×Wfc + bfc

Afterward, the softmax activation function is applied to the output FC, yielding the
final probabilities that signify the model’s prediction for each class. This operation is
the final step in MobileNetV2’s feature extraction and transformation journey, enabling
it to make precise and informed class predictions.

The process of feature extraction within the MobileNetV2 architecture culminates
in the creation of representations known as feature maps, manifested in the form of 4-
dimensional (4D) tensors. These tensors encapsulate crucial visual information about
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the input images and serve as the foundation for subsequent analysis and processing.
The specific structure and properties of these tensors hold valuable insights into the
characteristics of the extracted features.

The feature maps are selected at a particular layer within the MobileNetV2 ar-
chitecture, specifically the penultimate layer before the final classification layer. This
choice of layer is strategic, as it ensures that the feature vectors capture a high-level
abstraction of the input image, making them suitable for a wide range of tasks.

The shape of these 4D tensors can be denoted as (batch size, 1280, 1, 1). This rep-
resentation encompasses several dimensions, each of which contributes to the overall
understanding of the features extracted:

• batch size: This dimension refers to the number of images that are processed
simultaneously within a single batch. Each batch may contain a variable number
of images, and this parameter influences the efficiency of computation during
training and inference.

• 1280: Within the MobileNetV2 architecture, this value holds significant impor-
tance. It signifies the number of filters present in the final convolutional layer of
the model. These filters play a pivotal role in detecting and emphasizing various
visual patterns and attributes within the input images.

• 1: The dimensions of height and width for each feature map are both repre-
sented by the value 1. This signifies that each feature map retains a condensed,
one-dimensional representation of the visual features extracted from the original
image.

• 1: Similarly, the second instance of the value 1 underscores that the feature
map maintains a single-dimensional representation of the visual elements. This
emphasizes the focus of the model on capturing and conveying essential features
in a brief manner.

Each image within a batch is characterized by a distinct 1280-dimensional vector,
which encapsulates the intricate features extracted by the MobileNetV2 architecture.
These vectors serve as robust descriptors, encapsulating distinctive aspects of the visual
content present in each image. Due to their compact comprehensive nature, these de-
scriptors are well-suited for subsequent processing steps, enabling efficient and effective
handling of a wide array of content within the image video database.

3.2.2 Larger Deep Learning Network: ResNet101 + SOLAR Features

• Online: Extraction of ResNet101 + SOLAR features from both query images
and shortlisted keyframes.
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Figure 3.1: An illustration of the SOLAR descriptor representing second-order spatial rela-
tions. The feature maps are re-weighted to provide a better global representation of the image
[6].

ResNet101 + SOLAR is a combination of the ResNet101 [11] architecture and the
SOLAR [6] global descriptor. ResNet101 is a deep convolutional neural network that
is widely used for image classification tasks. SOLAR, on the other hand, is a global
descriptor that leverages second-order information through spatial attention and de-
scriptor similarity to improve large-scale image retrieval. By combining ResNet101 as
a CNN backbone with SOLAR, the performance of image retrieval can be enhanced,
achieving state-of-the-art results in terms of mean average precision and top-k precision
[6].
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Figure 3.2: The Pipeline of SOLAR Global Features. Incorporating several Second-Order
Attention (SOA) blocks at various stages of the ResNet101 backbone, along with subsequent
steps involving GeM pooling, whitening, and L2 normalization, is performed [6].

The pipeline of ResNet101 + SOLAR involves utilizing the ResNet101 architecture
as the backbone network for feature extraction. The SOLAR method is then applied
to enhance the global descriptor representation for large-scale image retrieval. SOLAR
incorporates second-order information through both spatial attention (SOA) and de-
scriptor similarity (SOS) to re-weight feature maps and produce better representations
for retrieval. The ResNet101 + SOLAR pipeline includes fine-tuning the SOAs and the
whitening layer using the Google Landmark 18 [64] dataset, training with the triplet
loss, and utilizing SOSNet for local descriptor learning. The pipeline aims to improve
image retrieval performance by leveraging second-order attention and similarity infor-
mation.

CNN Backbone: ResNet101

ResNet101, short for Residual Network with 101 layers, represents a pioneering archi-
tecture in the domain of deep convolutional neural networks. Introduced as an evolution
of the original ResNet, it is renowned for its unprecedented depth, comprising a stag-
gering 101 convolutional layers [11]. The fundamental innovation behind ResNet101
is the introduction of residual connections, also known as skip connections or short-
cut connections [65, 66, 67]. These connections enable the network to bypass certain
layers during forward propagation, allowing the model to learn residual mappings. In
essence, ResNet101 mitigates the vanishing gradient problem encountered in very deep
networks and facilitates the training of exceptionally deep architectures. The network
is organized into a series of residual blocks, each containing multiple convolutional lay-
ers and a shortcut connection that skips one or more blocks. This architecture has
revealed remarkable performance across a wide array of computer vision tasks, from
image classification to object detection and semantic segmentation [11].
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The architecture of ResNet101 displays a hierarchical structure, beginning with a
standard convolutional layer that captures low-level image features. Subsequently, a
series of residual blocks are stacked together, and these blocks become increasingly
complex as they progress through the network. The depth of ResNet101 enables it to
learn intricate and abstract features, making it particularly suited for tasks requiring
fine-grained image analysis. Within each residual block, convolutional layers are inter-
leaved with batch normalization and rectified linear unit (ReLU) activation functions.
Additionally, bottleneck architectures are employed within the blocks, consisting of
1x1, 3x3, and 1x1 convolutions, further enhancing the model’s representational power
while minimizing computational overhead. ResNet101 is capped with a global average
pooling layer, followed by fully connected layers for classification tasks. The unique
combination of depth, residual connections, and bottleneck structures make ResNet101
a cornerstone architecture in modern deep learning, facilitating the development of
highly accurate and robust computer vision models [11].

Detailed Mechanics of ResNet101:

Input Operator t c n s

2242 × 3 conv2d - 64 1 2
1122 × 64 m axpool - - - 3
562 × 64 Residual Block 1 (x3)
562 × 256 Residual Block 2 (x4)
282 × 512 Residual Block 3 (x23)
142 × 1024 Residual Block 4 (x3)
72 × 2048 avgpool 7x7 - - 1 -

1× 1× 2048 fc - k - -

Table 3.2: Detailed structure of ResNet101 [11].

Second Order Attention (SOA) Layer

Figure 3.2 illustrates the structure of the SOA Layer, a critical component of the ar-
chitecture. Second-order attention is crucial in image retrieval tasks because it allows
for the re-weighting of feature maps, emphasizing salient image locations. This re-
weighting helps the network learn the relative contributions of various features into the
final descriptor. By focusing on distinctive regions within landmarks and connecting
structures within patches, second-order attention improves the performance of image
descriptors and enhances the network’s ability to learn from different features. The
consistent attention maps generated by second-order attention provide qualitative ev-
idence of its effectiveness in assisting the network in learning and improving image
retrieval results [6].

From an input image I ∈ RH×W×3 processed through a Fully-Convolutional Network
denoted by θ, we obtain a feature map f = θ(I) ∈ Rh×w×d where h, w, and d are the
height, width, and feature dimensionality, respectively.
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Generalized Mean (GeM) Pooling

After obtaining the feature maps, the global descriptor of the input image I is generated
by the GeM pooling [68] operation. which takes the weighted average of the feature
map according to the absolute magnitude of each feature. At first, the feature map
is consolidated into the global descriptor vector d = GeM(f, p), where p denotes the
pooling parameter.

The GeM pooling operation is mathematically defined as:

GeM(f , p) =

(
1

N

N∑
i=0

fp
i

) 1
p

, (3.1)

plays a crucial role in shaping the global descriptor. In the following, we briefly explain
the idea behind GeM.

The Generalized Mean Pooling technique [68], strikes a balance between the char-
acteristics of maximum and average pooling methods. This equilibrium is achieved
through the incorporation of a learnable pooling parameter p. The versatility of GeM
arises from its ability to adapt to various fine-grained regions within an image by ad-
justing the value of p. When applied to an input feature map X, GeM generates a
single D-dimensional feature vector denoted as f.

To shed light on its behavior, GeM can be likened to maximum pooling when p
takes on values approaching infinity (e.g., p → ∞), and it resembles average pooling
when p equals 1 (i.e., p = 1). This characteristic makes GeM a flexible pooling method
capable of capturing different aspects of information within an image, depending on
the chosen value of the pooling parameter p. This vector in the case of the traditional
global max pooling [69] is presented by
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while for average pooling [70] the vector is represented by
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The generalized mean pooling is represented by

f (g) =
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The pooling parameter pk can be manually set or learned through the back-
propagation algorithm, as it is differentiable. The corresponding derivatives are pro-
vided.

∂fk
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f1−pk
k xpk−1
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)
.
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The pooling parameter, p, can be adjusted for each local contribution of feature
map F to the global descriptor d based on its associated feature activation. The GeM
[68] method is considered a first-order measure and assumes that each location on the
map is independent, disregarding the influence of each spatial characteristic in relation
to others. However, the global descriptor d has a finite receptive region, resulting in
limited contribution from each local feature. To incorporate spatial information into
feature pooling, the second-order attention (SOA) layer [6] is a useful method. Figure
3.3 illustrates the structure of the SOA layer.

Figure 3.3: The pipeline of SOA layer [7].

To begin, two projections from the feature map f are created, corresponding to the
query q and the key k. Subsequently, both the query q and the key k are reshaped and
converted into a matrix with dimensions D ×HW . The subsequent step involves the
computation of the second-order attention map, denoted as z, and can be expressed as
follows:

z = softmax
(
α · q⊤k

)
.

Here, α serves as the scaling factor and z takes on the shape of HW×HW , enabling
the feature map f to combine all the local features across the entire map. Subsequently,
as same as of q and k, a third projection value head v for f is generated with dimensions
HW ×D. As a final step, the second-order attentional feature map f so is derived from
the first-order attentional feature map. An additional 1× 1 convolution, denoted as ψ,
is employed to supervise the influence of the attention. Within the feature map f so, a
novel feature f so

i,j is redefined as a function of features from all positions within f , thus
making it interpretable as a function encompassing the entirety of the input image:

f so ≡ f + ψ(z× v),

f so
i,j = g (zij ⊙ f) .
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After the conclusion of the last second-order attention layer, the recently-formed
feature map f so will be employed as the input for the subsequent pooling layer, fa-
cilitating further feature enhancement and pooling steps [6]. This culminates in the
generation of final global features through GeM pooling, which encapsulates a richer
set of local information:

GeM (f sop) =

(
1

N

N∑
i=0

f sop

i

) 1
p

.

Whitening

In this section, we delve into the post-processing of feature vectors. Following the
pooling aggregation, it becomes critical to apply whitening to the feature descrip-
tors. Whitening, a crucial step in image retrieval, plays a pivotal role in handling
high-dimensional features [71]. These features carry an abundance of information, and
whitening serves the purpose of eliminating inter-feature correlations through linear
transformations. Its importance lies in not only reducing the dimensionality of feature
vectors but also in eliminating redundant information. This significance is particularly
pronounced when dealing with CNN-based descriptors [72, 70].

3.2.2.1 Discriminative Learned Whitening

The discriminative learned whitening [68] approach makes use of labeled data provided
by 3D models and linear discriminant projections, as initially introduced by Mikola-
jczyk [33]. This projection consists of two components: whitening and rotation. The
whitening coefficient is calculated as the inverse of the square root of the covariance

matrix of matching pairs, denoted as C
− 1

2
S .

Here, CS is computed as:

CS =
∑

Y (i,j)=1

(f(i)− f(j))(f(i)− f(j))⊤.

The rotation component involves Principal Component Analysis (PCA) applied to
the covariance matrix of non-matching pairs in the whitened space, denoted as eig(
C

− 1
2

S CDC
− 1

2
S

)
, where CD is calculated as:

CD =
∑

Y (i,j)=0

(f(i)− f(j))(f(i)− f(j))⊤.

The projection can be expressed as:

P = C
− 1

2
S eig

(
C

− 1
2
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− 1

2
S

)
.

where P⊤⊤
(f(i)− µ), and µ represents the pooled feature vector.
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To limit the dimensionality of the descriptors to D, only the eigenvectors corre-
sponding to the D largest eigenvalues are utilized. Subsequently, l2 normalization is
applied to the projected vectors.

This whitening method leverages all available training pairs while focusing on the
discriminative information between matched and unmatched pairs, ultimately achieving
superior performance compared to the commonly used PCA whitening.

3.2.2.2 End-to-End Whitening

The end-to-end whitening method [73] incorporates a whitening layer at the network’s
end. This whitening is optimized end-to-end during fine-tuning, using the same training
data in batch mode and convolutional filters.

The whitening layer is directly modeled from a fully connected layer and encom-
passes both the projection and rotation discussed earlier. In essence, discriminative
learning whitening is integrated into a layer responsible for whitening the training
batch directly. This approach requires a significant amount of training data. While it
offers high integration and ease of application to multiple datasets, it has the drawbacks
of being computationally intensive and slow to converge.

In terms of final mAP performance, both discriminative learned whitening and
end-to-end whitening are comparable, and they both significantly outperform PCA
whitening [68].

L2 Normalization

After obtaining the feature maps, the next step is to perform L2 normalization on
them. L2 normalization, also known as Euclidean normalization, is a common technique
in deep learning to scale feature vectors to have a unit norm. It ensures that all
feature vectors have the same scale, which can be important for many machine-learning
algorithms.

The L2 normalization is applied element-wise to each feature vector v of dimension
D in the feature maps:

vnormalized =
v

∥v∥2
, (3.2)

where ∥v∥2 represents the L2 norm of the feature vector v. This operation scales
each feature vector so that its Euclidean (L2) norm becomes equal to 1.

L2 normalization is an important step in many deep learning applications, as it helps
assemble the model’s training more stable and ensures that features with different scales
do not dominate the learning process [74].

The ResNet101 + SOLAR system combines the power of the ResNet101 deep con-
volutional neural network for feature extraction with the advanced capabilities of the
SOLAR system for enhancing feature representations. The feature extraction process
begins with ResNet101, which takes as input an image and produces a feature map
with dimensions of 1 × 1 × 2048. Subsequently, the SOLAR system further processes
this feature map. Finally, the system applies GeM pooling to generate global features,
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resulting in a feature vector whose size is typically 1×1×D, where D represents the fea-
ture dimensionality determined by the specifics of the SOLAR processing and pooling
operations following by whitening and L2 normalization steps. The output descriptor
produced by this comprehensive pipeline is typically a feature vector with dimensions
of 1× 1× 2048, representing an informative global feature representation of the input
image. This combined approach leverages deep learning and attention mechanisms to
create discriminative feature representations for our retrieval task.

3.3 Search and Match Algorithms

Following the acquisition of feature vectors from both query images and keyframes, the
subsequent step involves employing search and matching algorithms for video image
retrieval. This section will delve into a detailed exploration of these search and matching
algorithms.

3.3.1 ANNOY: Approximate Nearest Neighbors with Tree-Based Methods

Tree-based methods for approximate nearest neighbor search are known for their effec-
tiveness in partitioning high-dimensional spaces efficiently. A notable example is the
ANNOY library [9], which stands out by its randomized approach to space partitioning.
In contrast to structured partitioning methods like kd-trees, the partitioning scheme of
ANNOY is driven by randomness rather than strict mathematical criteria [9].

The split of the algorithm for each phase is described as follows:

• Offline: Build an ANNOY index for MobileNetV2 features using the extracted
features from the gallery images.

• Online: Search and match relevant keyframes to the query using a pre-build
ANNOY tree with MobileNetV2 features.

In the ANNOY framework, the construction of a tree involves the following steps:

1. Random Hyperplane Selection: Two data points are arbitrarily selected, and
a hyperplane centered from these points is used to partition the space into two
subspaces.

2. Node Creation: The random split is saved as a node, and two branches are
created. Data points on the left subspace are assigned to the left branch, while
those in the right subspace go to the right branch. This process is repeated
recursively for each subspace, incrementing the depth, until a specified condition,
such as having at most K items in each area created by the splitting hyperplanes,
is met.
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Figure 3.4: Configuration of the partitioning between hyperplanes [8].

An illustration of this tree-building process is depicted in Figure 3.5, where squares
represent intermediate nodes holding splitting hyperplanes, and circles denote data
points within subspaces.

Figure 3.5: Building a binary tree in ANNOY [9].

To find the nearest neighbor of a given query point, ANNOY employs a search
mechanism that traverses the tree. The search starts at the root, following the same
rule used during tree construction: moving to the left or right branch depending on
whether the query lies on the left or right side of the splitting plane. The search
terminates upon reaching a leaf node, whose enclosed data points are considered the
nearest neighbors. Figure 3.7 provides an example of this search process, with the red
cross indicating the query and the colored route representing the steps taken to find
the relevant data points.
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Figure 3.6: Searching with the binary tree in ANNOY [9].

Figure 3.7: Configuration of the search process on hyperplanes [8].

However, two challenges arise in this process. First, some neighbors closer to the
query may be overlooked as they fall into adjacent subspaces. Second, the number of
data points within the shaded region may not meet the desired criteria. To address these
issues, ANNOY incorporates a priority queue mechanism. It builds a forest of trees,
aggregates the results from all trees into a list, and sorts them based on their distances
to the query. Additionally, ANNOY provides an option to retain the wrong side of
the tree when the points in that branch are not farther away than a predetermined
threshold.

ANNOY is versatile and is effective for vectors of dimensions up to 1000, despite
being initially designed for vectors with fewer than 100 dimensions. It offers a search
complexity close to O(logN), making it suitable for various applications. However, it’s
important to note that ANNOY lacks theoretical guarantees on its search performance.

In practice, increasing the number of trees is often a recommended strategy, provided
memory constraints are not an issue. ANNOY’s randomized approach to tree-based
partitioning, combined with these search optimizations, makes it a valuable tool for
approximate nearest neighbor search in high-dimensional spaces.
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3.3.2 Linear Search

Linear comparison, also known as brute-force comparison [75], represents the simplest
and most direct method for comparing feature vectors. In this approach, each query
vector is systematically compared with every keyframe vector within the dataset. As the
term implies, the computational complexity of linear search grows linearly in proportion
to the size of the data, resulting in a time complexity of O(n), where ’n’ represents the
total number of keyframes in the dataset.

The linear search algorithm is available only in the online phase.

• Online: Search and match relevant keyframes to the query using linear search
with ResNet101 + SOLAR features of shortlisted keyframes.

The primary advantage of employing linear search lies in its straightforwardness
and its lack of reliance on data partitioning or complex data structures. In contrast to
tree-based or indexed approaches, linear search directly conducts pairwise comparisons
between query vectors and keyframe vectors. Consequently, the total time required for
linear search depends solely on the duration of individual vector comparisons.

Mathematically, the time complexity (Tlinear) of linear search can be expressed as:

Tlinear = O(n)

Here: Tlinear signifies the time complexity of linear search and ’n’ denotes the number
of keyframes in the dataset.

While linear search is a conceptually simple method, its applicability to large
datasets may be limited due to its linear time complexity. As the dataset size increases,
the duration of comparisons grows proportionally, potentially resulting in impractical
execution times for extensive collections of keyframes [53].

3.4 Storage and Optimization Strategies

Storage and optimization are crucial aspects of our proposed efficient image retrieval
system. The main advantage of this proposed method is directly related to efficient
feature extraction results in energy saving with a memory-friendly structure.

• Efficient: Employing the compact MobileNetV2 network for feature extraction
accelerates the offline phase’s feature extraction process significantly. This swift-
ness is particularly advantageous in scenarios requiring instant searches, such as
forensic applications where rapidly creating galleries from video frames is essential.

• Energy Cost: Leveraging the compact MobileNetV2 network for feature extrac-
tion results in a faster process, translating into energy savings. Since the offline
stage typically consumes a substantial amount of energy and computation time,
this optimization directly addresses a key bottleneck.

• Memory Friendly: The utilization of the compact MobileNetV2 network yields
feature vectors that are half the length of those obtained using ResNet + SOLAR.
Consequently, in cases involving extensive video databases, employing shortlisting
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techniques for similar frames enables the avoidance of storing large descriptions
of irrelevant keyframes.

The online phase of our system progressively accelerates as users submit more
queries. This phase is intelligently designed to store ResNet101 + SOLAR features
of keyframes when they match input query images. For consecutive runs with similar
query images, the online phase eliminates the need for redundant feature extraction
from ResNet101 + SOLAR, substantially reducing processing requirements. As a re-
sult, re-ranking only necessitates the loading of features from ResNet101 + SOLAR,
streamlining the online retrieval process.

3.4.1 Shortlisting Keyframes

The selection of an appropriate threshold for shortlisting keyframes depends on the
dataset characteristics and user priorities. Our system inherently involves a trade-off
between efficiency and accuracy.

For scenarios necessitating rapid retrieval with acceptable accuracy, a lower thresh-
old, such as shortlisting 100 keyframes per query image, suffices. This approach effec-
tively filters out challenging matches, ensuring prompt results.

In contrast, when precision is vital, selecting a higher threshold is advisable, with
the expense of increased computation time and a slightly slower search process. This
fine-tuning of the threshold allows users to strike the desired balance between speed
and accuracy in the retrieval process.
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Experiments and Results 4
In order to comprehensively evaluate the effectiveness of our proposed Content-Based
Video Image Retrieval (CBVIR) system, a series of three distinct tests were conducted,
each shedding light on different aspects of its performance and capabilities. These
tests were executed using the Condor server of TU Delft equipped with the following
setup: CPU: 64 processors, 32 cores, AMD Ryzen Threadripper PRO 3975WX CPU
@ 2.20GHz, 125 GiB RAM, GPU: 1x NVIDIA RTX A6000 48 GiB RAM.

Tests 1: Filtering Algorithm

The initial test focused on benchmarking our filtering algorithm against various com-
pact network features and well-established classical image processing algorithms. The
primary metrics employed in Test 1 were the mean Average Precision (mAP) and the
computation time required for feature extraction. This test aimed to establish the
system’s ability to effectively filter irrelevant frames and identify relevant candidates
within the gallery images. By comparing mAP scores and computation times, we gained
insights into the trade-offs between feature extraction efficiency and retrieval accuracy.
The features extraction algorithm for filtering is implemented using the best-fitted al-
gorithm on the results of these tests.

Test 2: Computation Time

The second test revolved around the computation time involved in different stages of our
proposed CBIR system. We meticulously measured the time taken by each component,
from feature extraction to re-ranking, and contrasted these timings with those of state-
of-the-art CBIR systems. This test provided a comprehensive understanding of the
computational demands of our system and identified potential areas for optimization.
In addition, we compared the feature extraction methods of our proposed system to
various well-known techniques.

Test 3: Accuracy

The third and final test delved into the accuracy of our CBIR system using well-known
image databases such as Oxford5k [76], Paris6k [77], ROxford5k [78], RParis6k [78],
and our proposed database: Historical databases. The evaluation criterion for this test
was once again the mAP score, which quantified the system’s ability to retrieve relevant
images accurately. Additionally, we conducted a comparative analysis by comparing
our proposed system against several other state-of-the-art CBIR systems. This test
not only validated the accuracy of our system but also highlighted its performance in
real-world scenarios.
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Through a combination of these three tests, we were able to comprehensively assess
the effectiveness, efficiency, and accuracy of our proposed CBIR system. The results
obtained from these experiments provided valuable insights into the system’s strengths
and areas for enhancement, ultimately contributing to its refinement and potential
future advancements.

4.1 Experiment Setup

The Experiment Setup section of the thesis will comprehensively outline the method-
ology and framework used to evaluate the proposed Content-Based Image Retrieval
system. It will define the core evaluation metrics, including mean Average Precision
and computation time. The three pivotal tests will be explained: Test 1, where the
efficiency of the filtering algorithm will be assessed against diverse compact network
features and classical image processing algorithms; Test 2, which will monitor the com-
putation time across different system components in comparison to state-of-the-art
CBIR systems; and Test 3, focusing on accuracy by evaluating mAP scores across
multiple datasets and comparing the proposed CBIR system with other prominent so-
lutions. Furthermore, the section will introduce the datasets used for experimentation
and establish relevant benchmarks. The Experiments subsection will delve into spe-
cific test cases, beginning with an in-depth exploration of experiments conducted on
ROxford5k and RParis6k datasets, followed by an analysis of experiments on histori-
cal databases. Lastly, the Discussion section will reflect upon the implications of the
experimental results, bridging the gap between the conducted experiments and the
subsequent conclusions.

4.1.1 Datasets

Datasets play a pivotal role in evaluating the performance of CBIR systems. In our
experiments, we utilize a diverse collection of image databases to comprehensively as-
sess the system’s retrieval capabilities across various domains. The datasets selected
include well-established benchmarks such as Oxford5k [76], Paris6k [77], ROxford5k
[78], RParis6k [78], and historical video databases. These datasets encompass a wide
range of image types, including urban scenes, landmarks, historical artifacts, and natu-
ral landscapes. The diversity in content and context allows us to evaluate the system’s
robustness in handling different image categories and its adaptability to varied retrieval
scenarios. By conducting experiments across multiple datasets, we gain insights into the
generalization and scalability of the proposed CBIR system, enhancing its applicability
to real-world use cases.
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Name of Database Number of Gallery Images Number of Query Images

Oxford5k 5063 55

Paris6k 6392 55

ROxford5k 4993 70

RParis6k 6322 70

ROxford + 1M Distractors 4993 + 1M 70

RParis6k + 1M Distractors 6322 + 1M 70

Historical Database 5435 (from 51 videos) 25

Table 4.1: Summary of Databases.

Oxford5k and Paris6k Datasets:

The Oxford5k [76] and Paris6k [77] datasets are widely used benchmarks for evaluat-
ing CBIR systems in urban scene recognition and landmark retrieval. The Oxford5k
dataset contains 5,062 images of Oxford landmarks, while the Paris6k dataset contains
6,412 images of Paris landmarks. These datasets come with ground truth annotations
that specify the correct retrieval results for each query image. Our experiments involve
querying these datasets with various test images and analyzing the retrieval perfor-
mance in terms of precision, recall, and mAP.

Revisited Oxford5k and Revisited Paris6k Datasets:

ROxford5k and RParis6k [78] are enhanced versions of Oxford5k and Paris6k, respec-
tively. These databases address annotation errors present in the original datasets and
expand the number of query images, providing a more robust evaluation framework.
For both Revisited databases, the number of query images increased from 55 to 70. For
both ROxford5k and RParis6k, three difficulty settings—Easy, Medium, and Hard—are
defined, each considering different subsets of images as positive and adjusting the treat-
ment of other images accordingly. Notably, these datasets introduce an additional
challenge through the inclusion of one million distractor images, significantly augment-
ing the difficulty in terms of accuracy and speed. This challenge is intended to test
the performance limits of image search pipelines under extreme conditions, demanding
high-level hardware capabilities. While only a limited number of methods have tested
ROxford5k and RParis6k with one million distractors, we are committed to taking on
this challenge, further pushing the boundaries of our system’s capabilities.

Figure 4.1: Example of a Query and Relevant Images per Category from ROxford5k Database.
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Historical Video Database:

In our quest to evaluate the proposed CBIR system comprehensively, we also include a
historical video database containing frames from selected 51 videos related to historical
figures such as Ibn Battuta, Zheng He, and Marco Polo. This dataset introduces
unique challenges owing to variations in imaging conditions like degradation on frames
or various spectrums of contracts. Through experiments on historical datasets, we
aim to shed light on the system’s adaptability to specialized domains, showcasing its
potential to contribute to the preservation and aid researchers in the history area. The
total duration of the videos in this database is 26632 seconds from 51 videos.

Preparation of Historical Video Database:

The preparation of a well-structured and representative database is a fundamental step
in the evaluation of our Content-Based Video Image Retrieval system. In our pursuit
of a comprehensive assessment of historical content, we build a database tailored to
historical video content. This involved a series of steps to ensure the authenticity,
relevance, and accuracy of the dataset.

Figure 4.2: Historical Videos Dataset.

Firstly, we collaborated with Professor Andrea Nanetti, a recognized expert in the
field, to curate a test set of 51 historical videos. These videos were carefully selected
to encompass a diverse range of historical figures and events. Each video was mapped
to retain its original identification, preserving the integrity of the historical context.

To facilitate the retrieval process, we proceeded to extract keyframes from the his-
torical videos. Employing a color histogram algorithm, we identified and extracted
keyframes that captured pivotal moments within each video. These keyframes were
then compiled to form the gallery of our CBIR system. In total, our gallery boasts an
impressive collection of 5,435 keyframes, each serving as a potential retrieval candidate.
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Figure 4.3: Mapping Videos and Original Names.

Figure 4.4: Keyframe Extraction and Gallery Creation.
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Figure 4.5: Annotation of Extracted Keyframes.

In order to validate the accuracy and efficacy of our CBIR system, a rigorous valida-
tion process was undertaken. We handpicked 25 query images, each featuring historical
figures of significance. To ensure precision, the relevant frames within the videos were
carefully annotated as ground truth. It’s important to note that the selection of both
query images and their corresponding relevant frames underwent validation by Profes-
sor Andrea Nanetti.

Figure 4.6: Selection and Validation Process for Query Images and Relevance Annotations.

This preparation process forms the keystone of our evaluation efforts. By assembling
an authentic and expert-validated database, we aim to guarantee that our experiments
reflect real-world retrieval scenarios. The collaboration with Professor Nanetti, his
expertise, and validation further reinforce the reliability and accuracy of our assessment.
With a curated gallery of keyframes and a carefully annotated set of queries, we are well-
equipped to comprehensively evaluate the performance and capabilities of our CBIR
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system in the context of historical video content.

Figure 4.7: Example of Query and Selected Ground Truth Relevant Frames.

Through our experimentation with diverse datasets, we aim to provide a compre-
hensive evaluation of the proposed CBIR system’s capabilities, addressing various chal-
lenges associated with image retrieval across different contexts and domains.

4.1.2 Evaluation Metrics

The evaluation of the proposed system is guided by a comprehensive set of metrics,
each tailored to assess different facets of its performance. One of the fundamental
metrics employed is the mean Average Precision. mAP is a widely adopted measure
to evaluate the retrieval accuracy of the system. It quantifies the system’s ability to
rank and retrieve relevant images across various query instances. For each query, the
precision values at different ranks are computed, and the average of these precision
values is taken, yielding the mAP score. Additionally, the computation time is a
crucial metric in assessing the system’s efficiency. The time taken for different stages of
the system, including feature extraction and retrieval, is meticulously measured. This
provides insights into the computational demands of each component and allows for
comparisons with state-of-the-art CBIR systems. For instance, the computation time
of feature extraction from a query image can be calculated as the difference between
the start and end timestamps of the process. These evaluation metrics collectively
offer a comprehensive understanding of the system’s accuracy, efficiency, and retrieval
capabilities.

4.1.2.1 Mean Average Precision (mAP)

The Mean Average Precision is a widely used metric in information retrieval and object
detection tasks, including CBIR. It provides a comprehensive measure of the retrieval
accuracy of the system by considering both precision and recall across multiple queries.
Notably, while the core concept of mAP remains consistent between instance retrieval
and object detection, there are nuanced differences in their application. In instance
retrieval, mAP assesses the retrieval performance of relevant images from a dataset
in response to specific queries. In contrast, in object detection, mAP evaluates the
accuracy of localizing and classifying objects within images, often considering detection
at varying levels of precision and overlap. Despite these variations, mAP remains a
valuable tool for quantifying retrieval accuracy across diverse applications.
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Precision and recall are fundamental concepts in information retrieval. Precision
is the ratio of relevant items retrieved to the total number of retrieved items, while
recall is the ratio of relevant items retrieved to the total number of relevant items in
the dataset.

Mathematically, precision and recall can be expressed as:

P =
Number of Relevant Items Retrieved

Total Number of Retrieved Items
=

TP

TP + FP

R =
Number of Relevant Items Retrieved

Total Number of Relevant Items in the Dataset
=

TP

TP + FN

Here, TP represents the number of true positives (relevant items correctly retrieved),
FP represents the number of false positives (irrelevant items incorrectly retrieved), and
FN represents the number of false negatives (relevant items not retrieved).

For each query, the precision-recall curve is constructed by varying the retrieval
threshold. Precision is plotted on the y-axis, and recall on the x-axis. The area under
this curve is the Average Precision (AP) for that query. AP captures the system’s
ability to rank relevant images higher than irrelevant ones. Mathematically, the AP for
a query is calculated as the area under the precision-recall curve:

AP@n =
1

GTP

n∑
k

P@k × rel@k

Where:

AP@n is the Average Precision at threshold n

GTP is the total number of ground truth positive items in the dataset
n∑
k

signifies summation over the range of retrieved items from 1 to n

P@k is the Precision at the kth retrieved item

rel@k is a binary indicator (0 or 1) for the relevance of the kth retrieved item

The mAP is computed by averaging the AP values across all queries. It provides a
single value that summarizes the system’s retrieval performance over the entire dataset.
Mathematically, mAP can be expressed as:

mAP =
1

N

N∑
i=1

APi

Where N is the total number of queries, and APi is the Average Precision for the
ith query.

Example on the calculation of mAP:
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Consider a Content-Based Image Retrieval (CBIR) experiment using a dataset of 10
images. We will calculate the Mean Average Precision (mAP) for two different queries
within this dataset.

Query 1: Out of the 10 images, assume that 4 images are relevant to Query 1
(True Positives, TP = 4), and 6 images are irrelevant (False Positives, FP = 6). Our
retrieval system ranks these images based on similarity scores as follows:

Ranked list for Query 1: Image 2: Correct, Image 5: Incorrect, Image 8:
Incorrect, Image 9: Correct.

Image Is Relevant?

1. Image 2 ✓
2. Image 5 ×
3. Image 8 ×
4. Image 9 ✓

Table 4.2: Ranked list and Correctness of Ranking for Query 1.

We calculate the precision and recall for each position in the ranked list for Query
1:

• Precision (P@1) = 1/1 = 1.0, Recall (R@1) = 1/4 = 0.25.

• Precision (P@2) = 1/2 = 0.5, Recall (R@2) = 1/4 = 0.25.

• Precision (P@3) = 1/3 = 0.33, Recall (R@3) = 1/4 = 0.25.

• Precision (P@4) = 2/4 = 0.5, Recall (R@4) = 2/4 = 0.5.

Calculating the Average Precision (AP) for Query 1 using the earlier definition:

AP@Query1 =
1

4
(1× 1 + 0.5× 0 + 0.33× 0 + 0.5× 1) = 0.208.

Query 2: Now, assume that 3 images are relevant to Query 2 (TP = 3), and 7
images are irrelevant (FP = 7). The ranked list for Query 2 is not provided for briefness.

Precision, recall, and AP for Query 2 are also calculated in the same manner as for
Query 1.

Mean Average Precision (mAP): The mAP is the average of the AP values for
all queries. In this case, let’s assume that AP@Query2 = 0.65.

mAP =
AP@Query1 + AP@Query2

2
=

0.208 + 0.65

2
= 0.429.

In this example, the mAP value of 0.429 indicates the average correctness of the
retrieval system in returning relevant images across both queries. It captures the sys-
tem’s performance in terms of both precision and recall, providing a comprehensive
measure of its retrieval accuracy across different scenarios.
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4.1.2.2 Computation Time

Efficiency is a crucial aspect of a CBIR system, extending beyond retrieval accuracy
to encompass the system’s processing speed. Computation time serves as a pivotal
performance metric, directly influencing the user experience and the system’s applica-
bility to real-time scenarios. In our comprehensive evaluation, we not only focus on
retrieval accuracy but also delve into the intricacies of computation time associated
with different stages of the proposed CBIR system.

For computation time, we consider two distinct metrics that provide valuable in-
sights into the system’s efficiency. The first metric involves calculating the ratio between
the input video length and the total computation time. This ratio offers a measure of
the system’s throughput, highlighting how quickly the system can process queries rel-
ative to the duration of the input video. A higher ratio indicates greater efficiency in
handling longer videos.

The second metric corresponds to the computation time for individual stages within
the system. We specifically examine the time required for critical processes such as fea-
ture extraction per frame and matching per query image. By quantifying the time
needed for these stages, we can identify potential bottlenecks or areas for optimiza-
tion. This detailed breakdown of computation time aids in fine-tuning the system’s
performance and ensuring that each stage operates efficiently.

To provide a comprehensive assessment, we compare these computed times with
those of state-of-the-art CBIR systems, allowing us to measure the efficiency of our
approach in the context of existing solutions.

Examining computation time offers a practical perspective on the feasibility of the
proposed system. It enables us to determine its suitability for handling large-scale
image databases and its ability to cater to real-time retrieval demands. Ultimately, a
well-rounded evaluation of computation time contributes to a holistic understanding of
the system’s performance, ensuring that it not only delivers accurate results but also
does so efficiently, meeting the requirements of a wide range of applications.

4.2 Experiments

4.2.1 Tests 1: Filtering Algorithm

In this section, we conduct a series of experiments to evaluate various algorithms,
including both compact deep learning models and traditional algorithms, to identify
a suitable, efficient, and accurate algorithm for filtering out irrelevant frames. The
experiments focus on two key metrics: computation speed and retrieval accuracy.

4.2.1.1 Speed Test:

For the speed test, we evaluate the efficiency of different algorithms in terms of their
processing time. We use two metrics to assess the speed performance. First, we calcu-
late the average ratio of video duration divided by the computation time of the CBIR
system using the Historical Videos database. This metric helps us understand how
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efficiently the algorithms can process videos of varying lengths. We experiment with
compact deep-learning models and traditional algorithms to compare their performance.

We first evaluate the speed performance of various compact deep learning mod-
els, including MobileNetV2, VGG16, ResNet50, and InceptionV3. The following table
presents the average ratios for these models:

Deep Learning Models MobileNetV2 VGG16 ResNet50 InceptionV3

Average Ratio 39 18 22 30

Table 4.3: Comparison of Average Ratios for Models from Compact Networks.

We also assess the speed performance of traditional algorithms, including ORB,
SIFT, and AKAZE. The following table displays the average ratios for these algorithms:

Traditional Algorithms ORB SIFT AKAZE

Average Ratio 209 36 58

Table 4.4: Comparison of Average Ratios for Models from Traditional Algorithms.

4.2.1.2 Accuracy Test:

Moving on to the accuracy test, we evaluate the retrieval accuracy of the different
algorithms. We employ two popular benchmark datasets, Oxford5k and Paris6k, to
measure the performance.

We begin by assessing the accuracy of the compact deep learning models on the Ox-
ford5k and Paris6k datasets. The following table presents the mean Average Precision
(mAP) values for each model:

MobileNetV2 VGG16 ResNet50 InceptionV3

Oxford5k 38.4 30.3 36.1 41.8

Paris6k 50.1 37.5 48.0 47.6

Table 4.5: Performance Comparison of Different Models on Oxford5k and Paris6k Datasets.

We also evaluate the accuracy of traditional algorithms, including ORB, SIFT, and
AKAZE, using the Oxford5k and Paris6k datasets. The following table displays the
mAP values for each algorithm:

Traditional Algorithms ORB SIFT AKAZE

Oxford5k 17.8 21.1 14

Paris6k 14.5 16 14.2

Table 4.6: Performance of Traditional Algorithms on Oxford5k and Paris6k.

Through these experiments, we aim to identify algorithms that strike a balance
between speed and accuracy, providing insights into the best choices for our CBIR
system’s filtering algorithm.
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The speed test results are crucial in determining the computational efficiency of
different algorithms, especially when processing historical videos of varying lengths.
Looking at Table 4.3 we observe significant differences in the average ratios across the
compact deep learning models. Notably, MobileNetV2 stands out with an impressive
average ratio of 39, indicating its ability to process video content more efficiently
compared to other models. This result suggests that MobileNetV2 is well-suited for
real-time or large-scale video processing scenarios.

In addition, the traditional algorithms in Table 4.4 exhibit higher average ratios,
with ORB leading at an average ratio of 209. This implies that traditional algorithms
may require fewer computational resources, making them possible choices for applica-
tions demanding swift video retrieval.

Accuracy is a fundamental aspect of any filtering algorithm. The performance
comparison of different models and algorithms on benchmark datasets provides insights
into their ability to accurately filter out relevant frames.

From Table 4.5 we observe that InceptionV3 achieves the second highest for the
Oxford5k dataset and the highest mAP values for the Paris6k dataset, with values
of 41.8 and 47.6, respectively. The MobileNetV2 architecture achieves the highest
mAP for the Oxford5k database and the second highest mAP values for the Paris6k
dataset, with values of 38.4 and 50.1, respectively. This indicates that InceptionV3 and
MobileNetV2 architectures excel in capturing the relevancy of frames within historical
videos, showcasing their potential for accurate retrieval of historical content.

Comparing traditional algorithms in Table 4.6 SIFT and ORB stand out as com-
petitive performers with mAP values of 21.1 and 16, respectively, on the Oxford5k
dataset. These traditional algorithms demonstrate their ability to accurately filter
historical frames based on visual cues.

Overall, the speed and accuracy tests highlight the trade-offs between various filter-
ing algorithms. While compact deep learning models like MobileNetV2 offer superior
speed, models such as InceptionV3 exhibit exceptional accuracy. On the other hand,
traditional algorithms like SIFT and ORB have exceptional computational efficiency
with low accuracy. For the filtering stage of our proposed system, we decided to employ
MobileNetV2 features due to high efficiency with a slight drop of mAP compared to
InceptionV3.

4.2.2 Test 2: Computation Time

In this section, the system is tested in terms of efficiency. The efficiency test consists of
two metrics: the ratio between video duration and computation time of the entire CBIR
process using the Historical Videos database, and the duration of feature extraction per
frame using various databases. The first test involves a comparison between the state-of-
the-art ResNet101 + SOLAR CBIR system and our proposed system. The second test
focuses on comparing different deep-learning models in terms of their feature extraction
duration per frame.
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4.2.2.1 Computation Time Comparison

The first aspect of efficiency testing involves assessing the computation time of the
CBIR system. We compare our proposed system, which employs MobileNetV2 for
filtering and ResNet101 along with SOLAR for re-ranking, against the ResNet101 +
SOLAR system using the historical videos dataset. As a reminder, this dataset contains
5435 keyframes from 51 videos with a total duration of 26632 seconds. The number of
queries is 25 in this database. The results are presented in Table 4.7.

Method Computation Time (s) Video Duration/ Computation Time
MobileNetV2 + ResNet101 + SOLAR 1011 - 1400 26 - 19
MobileNetV2 + ResNet101 + SOLAR Online 16.9 - 406 1575 - 66
MobileNetV2 + ResNet101 + SOLAR Offline 994 27
ResNet101 + SOLAR 3510 7.59

Table 4.7: Comparison of Computation Time and Video Duration.

The table provides a comparison between the computation times of the two systems,
highlighting the advantages of our proposed MobileNetV2 + ResNet101 + SOLAR
system in terms of efficiency. Our proposed configuration shines with a remarkable
efficiency advantage, as evidenced by a significantly higher Video Duration/Computa-
tion Time ratio with at least 19, demonstrating its superiority for real-time retrieval
scenarios. To be more specific the computation time for each stage of our proposed
system is presented for the online phase in table 4.9 and for the offline phase in table
4.8.

For the offline phase:

Process Total Per Frame

Keyframe Extraction 926.2 0.17

MobileNetV2 Feature Extraction 67 0.01

Building ANNOY indices with MobileNetV2 features 0.7 -

Table 4.8: The Computation Time for Each Stage of Offline Phase.

For the online phase:

Process Total Per Frame

MobileNetV2 Feature Extraction 0.24 0.01

ResNet101 + SOLAR Feature Extraction (Query) 5 0.2

ResNet101 + SOLAR Feature Extraction (Keyframes) 0 - 375 0.2

Searching with pre-built ANNOY indices MobileNetV2 0.7 0.03

Linear Search with ResNet101 + SOLAR features 0.2 0.008

Table 4.9: The Computation Time for Each Stage of Online Phase.

In the online phase, the computation time varies significantly based on the avail-
ability of ResNet101 + SOLAR features for shortlisted keyframes. This variation is
due to the loading of features for shortlisted keyframes when available, which signifi-
cantly accelerates the online phase. We account for both scenarios: feature extraction
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(maximum computation time) and feature loading (minimum computation time) of all
shortlisted keyframes in our experiment, providing a comprehensive view of the sys-
tem’s performance. Per query, the computation time of the online phase varies between
7.33 and 43 seconds.

The computation time of the process of ResNet101 + SOLAR Feature Extraction
of keyframes is highly dependent on the threshold of shortlisting and availability of
pre-stored ResNet101 + SOLAR features. Usage of a lower threshold results in a faster
process and using a higher threshold results in a slower process due to more keyframes
being shortlisted. In addition, the availability of pre-stored results in a faster process.

The test is done by selecting a shortlist of the top 100 keyframes similar to the
input query image using MobileNetV2 features. The results provide that the feature
extraction for ResNet101 + SOLAR stage is the bottleneck of our system in terms
of efficiency. Progressively saving features from earlier runs will speed up the online
phase of the proposed system. Lastly, our proposed system overall provides a fast
system and is suitable for video image retrieval tasks with the ratio of video duration
and computation time at least 19 and at most 26.

4.2.2.2 Feature Extraction Duration Comparison

Since we discovered that the bottleneck for the CBIR system is feature extraction, the
second aspect of efficiency testing focuses on the duration of feature extraction per
frame for various deep-learning models. The results are presented in Table 4.10.

CNN Backbone Duration of Feature Extraction per Frame (seconds)

MobileNetV2 0.011

AlexNet 0.042

VGGNet 0.053

ResNet50 0.05

ResNet101 0.054

ResNet150 0.063

ResNet101-GeM 0.114

ResNet101-GeM + SAHA 0.9

ResNet101-GeM + LoFTR 2.28

ResNet101-GeM + QGE 0.115

ResNet101-GeM + SIFT 10.3

ResNet101-GeM + k-reciprocal 1.23

ResNet101 + SOLAR 0.215

Table 4.10: Comparison of Duration of Feature Extraction per Frame for Different CNN
Backbones.

The table unfolds a detailed examination of the time required by various CNN
backbones for extracting features per frame. Strikingly, MobileNetV2 emerges as a
standout choice due to its exceptional efficiency, with 0.011 seconds per frame. The
particular selection of MobileNetV2 for the filtering stage is verified by this impressive
efficiency, ensuring rapid processing and real-time retrieval capability. The contrast
between MobileNetV2 and the state-of-the-art ResNet101 + SOLAR, with a feature
extraction time of 0.215 seconds, underscores the efficiency gains brought by our design.
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4.2.3 Test 3: Accuracy

4.2.3.1 Experiments on Oxford5k and Paris6k

The accuracy of different models is evaluated on the Oxford5k and Paris6k datasets,
and the results are presented in Table 4.11.

Model Oxford5k mAP (%) Paris6k mAP (%)

MobileNetV2 + ResNet101 + SOLAR 86.92 92.58

ResNet101 + SOLAR 88.27 95.04

ResNet101 + GeM 88.74 94.52

ResNet150 88.8 89.2

AlexNet 61.7 71.5

VGGNet 80.3 83.8

ResNet101 85.2 88.8

ResNet101-GeM + QGE (Top-3) 91.02 97.21

ResNet101-GeM + QGE (Top-100) 84.84 97.17

Table 4.11: Comparison of mAP (%) for Different Models on Oxford5k and Paris6k Databases.

4.2.3.2 Experiments on ROxford5k and RParis6k

The accuracy experiments are extended to the more challenging ROxford5k and
RParis6k datasets, and the results are shown in Table 4.12.

Easy Medium Hard
R-Oxford R-Paris R-Oxford R-Paris R-Oxford R-Paris

MobileNetV2 + ResNet101 + SOLAR 82.6 86.74 69.24 75.35 45.71 59.77
ResNet101 + SOLAR 85.88 92.95 69.9 81.57 47.91 64.45

ResNet101-GeM 82.24 92.29 55.8 69.7 28.1 47
ResNet150 − − 57.1 70.1 29.5 48.9
AlexNet − − 43.3 58 17.1 29.7
VGGNet − − 56.2 69.2 28.9 46.9
ResNet101 − − 55.8 69.7 28.1 47

ResNet101-GeM + QGE 84.65 94.13 69.07 87.93 44.26 77.23
ResNet101-GeM + SIFT 78.23 92.26 61.5 77.73 36.63 55.76

Table 4.12: Comparison of mAP (%) for Different Models on ROxford5k and RParis6k
Databases.

The accuracy experiments are extended to the much more challenging ROxford5k
and RParis6k datasets with 1 million distractor images included in the gallery, and the
results are shown in Table 4.13.
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Easy Medium Hard

ROxf+R1M RPar+R1M ROxf+R1M RPar+R1M ROxf+R1M RPar+R1M

MobileNetV2 + ResNet101 + SOLAR 76.06 81.45 58.94 60.32 33.33 37.55

ResNet101 + SOLAR 79.61 85.84 61.45 64.7 35.44 41.2

ResNet101-GeM 57.64 57.6 40.07 40.01 19.11 21

ResNet101-GeM + QGE (Top-3) 74.03 86.47 54.83 66.48 30.45 43.17

ResNet101-GeM + QGE (Top-100) 62.72 84.65 43.3 69 16.66 46.67

Table 4.13: Comparison of mAP (%) for Different Models on Easy, Medium, and Hard Splits
of ROxford5k and RParis6k Databases with 1M Distractors.

4.2.3.3 Experiment on Historical Databases

The accuracy of the models is also evaluated on the Historical Videos Database, as
summarized in Table 4.14.

Historical Videos Database mAP (%)

MobileNetV2 + ResNet101 + SOLAR 70.38

ResNet101 + SOLAR 71.71

Table 4.14: Comparison of mAP (%) for Different Models on Historical Videos Database.

4.3 Discussion

The results presented in the tables highlight the performance in terms of accuracy and
efficiency, of various models on different datasets. We observe that the MobileNetV2
+ ResNet101 + SOLAR model, our proposed system, consistently achieves remark-
able efficiency advantages and competitive accuracy across all datasets, showcasing its
robustness in various scenarios.

• While discussing the computation time comparison, we observed that our pro-
posed system demonstrates remarkable efficiency advantages. Notably, it outper-
forms the baseline ResNet101 + SOLAR in terms of computation time, with a
Video Duration/Computation Time ratio of at least 19, making it highly suit-
able for real-time retrieval scenarios. The breakdown of computation times for
both online and offline phases highlights the efficiency of each stage. The usage
of shortlisting the keyframes and storing/loading available ResNet101 + SOLAR
features for each run gradually makes our proposed system efficient.

• In the assessment of feature extraction duration, we discovered that MobileNetV2
exhibits exceptional efficiency, requiring only 0.011 seconds per frame. This choice
for the filtering stage ensures rapid processing and real-time retrieval capability,
making it a standout option for efficiency-focused applications. In contrast, the
feature extraction time of ResNet101 + SOLAR is 0.215 seconds, underscoring
the efficiency gains achieved by our design.

The efficiency test results provide valuable context for the overall performance of
our CBIR system. When considering these results alongside accuracy metrics, several
key observations emerge:

58



• The superiority of ResNet101 + SOLAR on the Oxford5k and Paris6k datasets
indicates the effectiveness of the SOLAR method for feature extraction. However,
when evaluated on more challenging datasets like ROxford5k and RParis6k, the
performance of this model, including MobileNetV2 + ResNet101 + SOLAR, seems
to degrade with a drop of 0.95% on Oxford5k and 3.8% on Paris6k compared to
ResNet101 + SOLAR, due to the increased complexity of the queries.

• Interestingly, the ResNet101-GeM model demonstrates competitive accuracy on
the RParis6k dataset, while MobileNetV2 + ResNet101 + SOLAR remains a
strong performer across the board, showcasing its potential for certain specific
scenarios. The effectiveness of the ResNet101-GeM + QGE model on the harder
subsets of the datasets suggests the significance of query-guided embedding, which
is also present in MobileNetV2 + ResNet101 + SOLAR.

• Furthermore, the experiments on the Historical Videos Database highlight the
adaptability of our proposed system of MobileNetV2 + ResNet101 + SOLAR
and ResNet101 + SOLAR to historical content, underlining their potential for
real-world applications beyond traditional image datasets. When assessing the
Historical Videos Database, our proposed system, MobileNetV2 + ResNet101
+ SOLAR achieves a competitive mAP of 70.38%. The mAP drop compared to
ResNet101 + SOLAR is only 1.33%, indicating its suitability for historical content
retrieval.

• These observations, including the consistent performance of MobileNetV2 +
ResNet101 + SOLAR, provide a comprehensive view of the strengths and weak-
nesses of each model under various conditions. They also highlight the potential
for further optimization and research in content-based image retrieval, particularly
in addressing challenges posed by complex queries and historical content.

4.4 Visualization of the Retrieval

This section provides a visual representation of the outcomes obtained through the
execution of our proposed CBVIR system. Each search conducted during the evaluation
process results in the display of the top ten matched images, allowing us to gain insights
into the system’s performance. In addition to assessing the search results, to facilitate a
seamless user experience, a user interface is developed for the search engine, available at
https://github.com/dorukbarokas/Efficient-CBVIR.git. This interface empowers users
to upload local videos of interest and initiate searches by inputting query images.
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(a) Visual search results for an easy task. (b) Visual search results for a challenging task.

Figure 4.8: Comparison of visual search results for easy and challenging tasks.
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Conclusion 5
5.1 Summary

Our proposed video retrieval method presents a comprehensive approach to efficiently
and effectively retrieve keyframes from video content while prioritizing speed. This
method capitalizes on two distinct phases: the offline phase, which includes preprocess-
ing steps such as Keyframe Extraction, feature extraction of MobileNetV2 features,
and ANNOY index tree construction, and the online phase, where users input query
images for retrieval.

Throughout our methodology, careful consideration has been given to optimizing the
retrieval process. We employ techniques such as Singular Value Decomposition (SVD)
dimensionality reduction for the keyframe extraction phase, which helps streamline
feature matrices and improve efficiency. Furthermore, the adoption of MobileNetV2
as a compact Convolutional Neural Network backbone enhances computation speed,
making it a standout choice for Content-Based Image Retrieval in video search. The
use of approximate nearest-neighbor (ANNOY) tree-based search methods, coupled
with effectively shortlisting the relevant keyframes, ensures that the retrieval process is
both rapid and precise.

To address any potential trade-offs between speed and accuracy, we introduce a
re-ranking module that utilizes global features and ResNet101 + SOLAR to refine the
retrieval results. This module ensures that our system continues to deliver accurate
results, even in scenarios where speed is paramount.

Our contribution lies in providing a versatile tool that can significantly expedite
image retrieval from videos, making it particularly valuable for applications such as
historical research. As our system progressively enhances its performance with each
query, it offers a valuable resource for researchers and users seeking efficient, high-speed
video retrieval without compromising the quality of results.

5.2 Future Work

While our current system represents a significant step forward in video image retrieval,
there are areas where further research and development could enhance its capabilities:

• Scaling for Larger Datasets: As datasets continue to grow, optimizing our
system’s scalability to handle even larger video databases will be essential. This
includes more efficient memory management and distributed processing. This
project focused on the trade-off of efficiency against accuracy. Efficient memory
management might optimize our proposed system.
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• Efficient Feature Extraction During the Online Phase: Given the increased
computational demands of feature extraction per frame with ResNet101 + SO-
LAR, it is imperative to explore alternative algorithms. After the implementation
of our proposed system, new and innovative models have emerged. For instance,
models like DINOv2: A Self-supervised Vision Transformer by Meta AI [79] or
YOLO-NAS: A Next-Generation Object Detection Model from Deci’s Neural Ar-
chitecture Search Technology [80] offers both speed and accuracy in feature ex-
traction, making them attractive options for our system’s online phase.

• Real-time Video Retrieval: Extending our proposed system to support real-
time video retrieval, where users can retrieve keyframes from live video streams,
opens up new applications in surveillance and video monitoring.
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[68] F. Radenović, G. Tolias, and O. Chum, “Fine-tuning cnn image retrieval with no
human annotation,” 2018.

[69] G. Tolias, R. Sicre, and H. Jegou, “Particular object retrieval with integral max-
pooling of cnn activations,” in ICLR, 2016, pp. 1, 3, 4, 6, 10, 12.

[70] A. Babenko and V. Lempitsky, “Aggregating deep convolutional features for image
retrieval,” in ICCV, 2015, pp. 1, 3, 4, 6, 10, 12.

[71] H. Jegou and O. Chum, “Negative evidences and co-occurrences in image retrieval:
The benefit of pca and whitening,” in ECCV, 2012, pp. 2, 3, 10, 11.

67

https://blog.research.google/2018/03/google-landmarks-new-dataset-and.html
https://blog.research.google/2018/03/google-landmarks-new-dataset-and.html


[72] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-
the-shelf: an astounding baseline for recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, 2014, pp. 806–
813.

[73] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, “Deep image retrieval: Learn-
ing global representations for image search,” in European conference on computer
vision. Springer, 2016, pp. 241–257.

[74] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization techniques
in training dnns: Methodology, analysis and application,” 2020.

[75] D. E. Knuth, Sorting and Searching. Addison-Wesley, 1997.

[76] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with
large vocabularies and fast spatial matching,” in 2007 IEEE conference on com-
puter vision and pattern recognition. IEEE, 2007, pp. 1–8.

[77] ——, “Lost in quantization: Improving particular object retrieval in large scale
image databases,” in 2008 IEEE conference on computer vision and pattern recog-
nition. IEEE, 2008, pp. 1–8.
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