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Abstract: The paper is concerned with observation of discrete-time, nonlinear, deterministic, and maybe
chaotic systems via communication channels with finite data rates, with a focus on minimum data-
rates needed for various types of observability. With the objective of developing tractable techniques to
estimate these rates, the paper discloses benefits from regard to the operational structure of the system in
the case where the system is representable as a feedback interconnection of two subsystems with inputs
and outputs. To this end, a novel estimation method is elaborated, which is alike in flavor to the celebrated
small gain theorem on input-to-output stability. The utility of this approach is demonstrated for general
nonlinear time-delay systems by rigorously justifying an experimentally discovered phenomenon: Their
topological entropy stays bounded as the delay grows without limits. This is extended on the studied
observability rates and appended by constructive finite upper bounds independent of the delay. It is
shown that these bounds are asymptotically tight for a time-delay analog of the bouncing ball dynamics.
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1. INTRODUCTION

One of the fundamental issues in the rapidly emerging area
of control of networked systems is about constraints on com-
munication among the network agents. Some key aspects of
such constraints are commonly modeled based on a concept of
communication channel with a limited data transmission rate.
In this framework, a primary inquiry is about the minimal rate
needed to achieve a desired control objective. This momentous
threshold has been a subject of recent extensive studies; see
e.g., (Baillieul, 2004; De Persis and Isidori, 2004; Nair et al.,
2004; Liberzon and Hespanha, 2005; De Persis, 2005; Savkin,
2006; Nair et al., 2007; Matveev and Savkin, 2009) and liter-
ature therein. This data-rate threshold has appeared to be alike
in spirit to the topological entropy (Donarowicz, 2011) of the
system at hands, but is not always identical; and these studies
have introduced various analogs of this entropy (Nair et al.,
2004; Savkin, 2006; Colonius and Kawan, 2009, 2011; Kawan,
2011; Hagihara and Nair, 2013; Colonius et al., 2013; Matveev
and Pogromsky, 2016).

Unlike linear plants, computation or even fine estimation of
these thresholds is an intricate matter for nonlinear systems
� A. Pogromsky acknowledges his partial support during his stay with the
ITMO university by Government of Russian Federation grant (074-U01),
Russian Federation President Grant N14.Y31.16.9281-HIII, and the Ministry of
Education and Science of Russian Federation (project 14.Z50.31.0031), (Secs.
1,3,4). A. Matveev acknowledges his support by RSF 14-21-00041p and the
Saint Petersburg State University (Secs. 2,5,6). A. Proskurnikov acknowledges
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so that, e.g., the exact value of the topological entropy is still
unknown even for many prototypical low-dimensional chaotic
systems. This is consonant with rigorous uncomputability facts;
e.g., even for piece-wise affine continuous maps and ε ≈ 0, no
program can generate a rational number in a finite time that
approximates this entropy with precision ε (Koiran, 2001).

Nevertheless, it was recently shown that data rate thresholds
concerned with observability and introduced in (Matveev and
Pogromsky, 2016) can yet be computed in closed form for some
of the above nonlinear prototypical systems, e.g., the bounc-
ing ball system, Hénon system and logistic and Lozy maps
(Matveev and Pogromsky, 2016; Pogromsky and Matveev,
2016a). This is thanks to the novel techniques for upper estima-
tion of these thresholds that are elaborated in (Pogromsky et al.,
2013; Pogromsky and Matveev, 2013, 2011, 2016b; Matveev
and Pogromsky, 2016) and turn off the classic road of the first
Lyapunov approach in study of topological entropy and the
likes towards the second Lyapunov method.

The objective of this paper is to add more functionality to the
just discussed approach of (Matveev and Pogromsky, 2016;
Pogromsky and Matveev, 2016a) via its further elaboration in a
situation where the observed dynamics result from a feedback
interconnection of two subsystems with inputs and outputs.
Such interconnection is very common in engineering practice
so that certain whole chapters of control theory assume that
the plant is given in this form. Among them, there are stud-
ies of absolute and robust stability, see, e.g. (Willems, 1972;
Yakubovich, 2000, 2002; Megretski and Rantzer, 1997), where
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interconnection customarily joins a nominal system to uncer-
tainty. By following the lines of the famous small-gain theorem,
where input-to-output stability of the system is guaranteed in
terms of input-to-output features of open-loop subsystems, this
paper discloses their input-to-output characteristics and rela-
tions among them that enable observability of the overall plant
via communication channel with a given capacity.

To illustrate utility of these developments, we use them to rigor-
ously prove a fact previously discovered via numerical studies
for a few particular chaotic delayed systems: Their topological
entropy remains bounded as the delay grows without limits
(Manffra, 2002; Manffra et al., 2001). We prove that this phe-
nomenon is common and extends on the studied observability
rates, and also offer explicit upper bounds on them that are
uniform over all delays.

The paper is organized as follows. Section 2 presents necessary
background information. The problem statement and the main
result are formulated in Sect. 3. Section 4 deals with time-delay
systems, whereas Section 5 illustrates respective findings via an
example.

2. OBSERVATION VIA FINITE-RATE CHANNELS

This section sets up key concepts to be used in our main results.

2.1 Observation Problem Statement and Topological Entropy

This paper is aimed at characterization of the minimal data rate
needed to effectively observe, in real time, the current state
x(t) ∈ Rn of a discrete-time invariant nonlinear system

x(t+ 1) = φ[x(t)], t = 0, 1, . . . , x(0) ∈ K ⊂ Rn. (1)
Here the continuous map φ : Rn → Rn and compact set K
of initial states are known to the designer of observer. Whereas
the full state is perfectly measured at the system’s site, the state
estimate is needed at a remote site, where sensory data can be
delivered only over a discrete communication channel. It can
transmit only a finite part of the infinity of bits embodying the
perfect knowledge of the state. So it is preordained that at the
remote site, the state estimate is inexact. Its accuracy depends
on the content of the transmitted data and the transmission rate,
with the latter being the main subject of interest to us.

At time t, only a discrete symbol e(t) can be communicated
across the channel. This necessitates a coder, which converts
sensor readings x(t) ∈ Rn into such symbols. At the receiving
end, a decoder produces (at time t) an estimate x̂(t) ∈ Rn of
the current state x(t) based on prior transmissions. The overall
observer is composed of the coder and decoder, which are
described by equations of the following respective forms:

e(t) = C[t, x(0), . . . , x(t)|x̂(0), δ], t ≥ 0,

x̂(t) = D [t, e(0), . . . , e(t− 1)|x̂(0), δ] , t ≥ 1. (2)
They assume that the coder and decoder both have access to a
common initial estimate x̂(0) and its accuracy δ

‖x(0)− x̂(0)‖ < δ. (3)
As for the transmission rate, we attend to its time-averaged
value c by assuming that no less/more than b−(r)/b+(r) bits of
data can be transferred across the channel for any time interval
of duration r, and the respective averaged rates are close to a
common value c (the channel capacity) for r ≈ ∞:

r−1b−(r) → c and r−1b+(r) → c as r → ∞. (4)

According to (Matveev and Savkin, 2009, Sect. 3.4), this model
admits unsteady instant rate, transmission delays, and dropouts.

Our first definition addresses the possibility to merely keep the
estimation error below an arbitrarily small level.
Definition 1. The system (1) is said to be observable via a
communication channel if for any ε > 0, there exists an
observer (2) and δ(ε,K) > 0 such that

‖x(t)− x̂(t)‖ ≤ ε ∀t ≥ 0

whenever (3) holds with δ := δ(ε,K), x(0), x̂(0) ∈ K.

The related demand to the channel rate refers to the topological
entropy (Donarowicz, 2011) of the plant (1) on K

H(φ,K) := lim
ε→0

lim
k→∞

1

k + 1
log2 q(k, ε). (5)

Here q(k, ε) is the minimal number of elements in a set Q ⊂
R(k+1)n that fits to approximate, with accuracy ε and for k
steps, any trajectory x(t, a) of (1) outgoing from a ∈ K:

min
{x�

0 ,...,x
�
k
}∈Q

max
t=0,...,k

‖x(t, a)− x�
t ‖ < ε ∀a ∈ K. (6)

Specifically, the following claim holds, which is well-known
for linear systems and conforms to a number of nonlinear
observability results, e.g., (Matveev and Savkin, 2009, Ch. 2).
Theorem 2. For observability via a communication channel, its
capacity must be no less than the topological entropy of the
system c ≥ H(φ,K). Conversely, if the set K is positively
invariant, the system is observable whenever c > H(φ,K).

2.2 Regular and Fine Observability

Definition 1 does not exclude critical degradation of accuracy
over time: ε � δ(ε,K). The next definition disallows a violent
regress: The accuracy stays proportional to its initial value.
Definition 3. The observer (2) is said to regularly observe the
system (1) if there exist δ∗ > 0 and G > 0 such that the
estimation accuracy ‖x(t) − x̂(t)‖ ≤ Gδ ∀t ≥ 0 whenever
x(0), x̂(0) ∈ K and in (3), δ is small enough δ < δ∗.

A stronger property is that the initial accuracy is also restored
and exponentially improved.
Definition 4. The observer (2) is said to finely observe the
system (1) if there exist δ∗, G > 0, and g ∈ (0, 1) such that

‖x(t)− x̂(t)‖ ≤ Gδgt ∀t ≥ 0

whenever x(0), x̂(0) ∈ K and δ < δ∗ in (3).
Definition 5. The system (1) is said to be regularly/finely ob-
servable via a communication channel if there exists an ob-
server (2) that regularly/finely observes the system (1) and
operates via the channel at hands.

What channel capacity c is needed for observability in each of
the above senses and how the answers relate to one another?

The averaged rate (4) is a comprehensive figure of merit for
channel evaluation regarding these issues, and the larger this
rate the better (Matveev and Pogromsky, 2016). So the posed
question in fact addresses the infimum R(φ,K) of the needed
c’s, where R is equipped with the index either o, or ro, or fo,
which refers to “observability”, “regular” and “fine observabil-
ity”, respectively. These quantities are called the observability
rates and are fully determined by the plant (1). It is clear that
observability ⇐ regular observability ⇐ fine observability and

H(φ,K) = Ro(φ,K) ≤ Rro(φ,K) ≤ Rfo(φ,K). (7)

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

15968



	 A. Pogromsky  et al. / IFAC PapersOnLine 50-1 (2017) 15397–15402	 15399

The first equation holds by Theorem 2. The second inequality
turns into an equality in an important particular case.
Lemma 6. (Matveev and Pogromsky, 2016) For any positively
invariant φ(K) ⊂ K compact set K, the regular and fine
observability rates are the same: Rro(φ,K) = Rfo(φ,K).

Theorem 2 and the results of, e.g., (Matveev and Savkin, 2009,
Sect. 3.5) imply that for any linear x(t + 1) = Ax(t) system
(1), all three rates from (7) coincide and are explicitly given
by Ro(φ,K) = Rro(φ,K) = Rfo(φ,K) = H(A), where the
quantity H(A) is defined by the eigenvalues λ1, . . . , λn of A

H(A) :=
n∑

i=1

log2 max{|λi|; 1}. (8)

For nonlinear systems, computation or even fine estimation of
the topological entropy is an intricate matter so that its exact
value is still unknown even for many popular low-dimensional
chaotic systems, like the Hénon map, Dufing and van der Pol
oscillators, and bouncing ball system, etc.

Paradoxically, the regular and fine observability rates can be
computed in closed form for a number of prototypical chaotic
systems, e.g., the bouncing ball system and, under certain
circumstances, Hénon system (Matveev and Pogromsky, 2016),
as well as logistic and Lozy maps (Pogromsky and Matveev,
2016a). This potentiality stems from novel techniques for upper
estimation of these rates that are elaborated in (Pogromsky and
Matveev, 2013, 2011, 2016b; Matveev and Pogromsky, 2016)
and follow the lines of the second Lyapunov method.

Meanwhile, these techniques inherit the main problem related
to the second Lyapunov approach to stability analysis: the
lack of systematic procedures to construct proper Lyapunov
functions for nonlinear systems. Somewhat general methods
are available only for particular classes of systems and kinds of
stability. An example emerged in the absolute stability theory,
which has reached a certain degree of exhaustiveness in the
part concerned with the so called integral quadratic constraints
in both time and frequency domains (Yakubovich, 2000, 2002;
Megretski and Rantzer, 1997). The involved system’s analysis
via integral quadratic constraints (SAIQC) is backed by both
efficient analytical results, like KYP lemma, and numerical
procedures, like LMI or matrix Ricatti equation solvers.

This paper is aimed to inject these merits into the data-rate
estimation techniques from (Pogromsky et al., 2013; Pogrom-
sky and Matveev, 2013, 2011, 2016b; Matveev and Pogromsky,
2016) in order to acquire a method with improved efficacy. To
this end, the following steps are undertaken:

(1) The plant is studied in the form of a feedback interconnec-
tion of two sub-systems;

(2) Each of them is in fact replaced by its linear approxima-
tion, which injects linearity into the matter at hands;

(3) Every linearized sub-system is characterized by the input-
to-output gain properties termed as quadratic constraints
by using quadratic “storage-” and “supply-”like functions
in a fashion portrayed in, e.g., (Willems, 1972; Megretski
and Rantzer, 1997);

(4) The final data-rate estimate is underpinned by an argument
in the spirit of a small gain theorem.

Here the hints 1) and 3) are typical for SAIQC and H∞-control,
whereas the small gain theorem is generally attributed to them.

3. TOPOLOGICAL ENTROPY AND OBSERVABILITY
RATES OF INTERCONNECTED SYSTEMS

3.1 Problem statement

We consider a system in the form of feedback interconnection
of two subsystems Σ1 and Σ2 with inputs and outputs, see
Fig. 1. The subsystem Σi is governed by the following equa-
tions:

Σi :

{
xi(t+ 1) = φi[xi(t), ui(t)],

yi(t) = hi[xi(t)],
i = 1, 2. (9)

Here xi ∈ Rni , ui ∈ Rmi , y1 ∈ Rm2 , y2 ∈ Rm1 . The
interconnection is described by the following static relation

u1(t) = y2(t), u2(t) = y1(t). (10)
The maps φi(·), hi(·) are continuously differentiable. The con-

 ∑  

1

 ∑  
2

Fig. 1. A feedback interconnection

sidered interconnection does give a system of the form (1) with

φ(x) =

[
φ1(x1, h2(x2))
φ2(x2, h1(x1))

]
, x =

[
x1

x2

]
.

Our goal is to provide estimates of its observability rates in
terms of input-output properties of the subsystems.

3.2 Basic constructions and assumptions

Further analysis will address the subsystems (9) via their first
order approximation in a vicinity of a particular solution. To
this end, we introduce the following matrix sequences

Ai(t) =
∂φi

∂xi
[xi(t), ui(t)], Bi(t) =

∂φi

∂ui
[xi(t), ui(t)],

Ci(t) =
∂hi

∂xi
[xi(t)], i = 1, 2.

These approximations are described by the following linear
time-varying systems of difference equations, where i = 1, 2

zi(t+ 1) = Ai(t)zi(t) +Bi(t)wi(t),

ζi(t) = Ci(t)zi(t). (11)
Here zi ∈ Rni , wi ∈ Rmi , ζ1 ∈ Rm2 , ζ2 ∈ Rm1 , whereas the
interconnection equations (10) entail that

w1(t) = ζ2(t), w2(t) = ζ1(t). (12)

A productive approach to characterization of input-to-output
properties of linear systems is by using quadratic dissipation
inequalities (Willems, 1972). We shall follow these lines and
associate (11) with a quadratic “storage” z�

i Pizi function and a
“supply” rate in the form z�

i [Qi − Pi]zi − 1
γi
ζ�
i ζi + γiw

�
i wi.

More precisely, the following assumption is adopted.
Assumption 7. For i = 1, 2, there exist ni × ni matrices Pi =
P�
i > 0, Qi = Q�

i ≥ 0 and a positive number γi > 0 such that
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interconnection customarily joins a nominal system to uncer-
tainty. By following the lines of the famous small-gain theorem,
where input-to-output stability of the system is guaranteed in
terms of input-to-output features of open-loop subsystems, this
paper discloses their input-to-output characteristics and rela-
tions among them that enable observability of the overall plant
via communication channel with a given capacity.

To illustrate utility of these developments, we use them to rigor-
ously prove a fact previously discovered via numerical studies
for a few particular chaotic delayed systems: Their topological
entropy remains bounded as the delay grows without limits
(Manffra, 2002; Manffra et al., 2001). We prove that this phe-
nomenon is common and extends on the studied observability
rates, and also offer explicit upper bounds on them that are
uniform over all delays.

The paper is organized as follows. Section 2 presents necessary
background information. The problem statement and the main
result are formulated in Sect. 3. Section 4 deals with time-delay
systems, whereas Section 5 illustrates respective findings via an
example.

2. OBSERVATION VIA FINITE-RATE CHANNELS

This section sets up key concepts to be used in our main results.

2.1 Observation Problem Statement and Topological Entropy

This paper is aimed at characterization of the minimal data rate
needed to effectively observe, in real time, the current state
x(t) ∈ Rn of a discrete-time invariant nonlinear system

x(t+ 1) = φ[x(t)], t = 0, 1, . . . , x(0) ∈ K ⊂ Rn. (1)
Here the continuous map φ : Rn → Rn and compact set K
of initial states are known to the designer of observer. Whereas
the full state is perfectly measured at the system’s site, the state
estimate is needed at a remote site, where sensory data can be
delivered only over a discrete communication channel. It can
transmit only a finite part of the infinity of bits embodying the
perfect knowledge of the state. So it is preordained that at the
remote site, the state estimate is inexact. Its accuracy depends
on the content of the transmitted data and the transmission rate,
with the latter being the main subject of interest to us.

At time t, only a discrete symbol e(t) can be communicated
across the channel. This necessitates a coder, which converts
sensor readings x(t) ∈ Rn into such symbols. At the receiving
end, a decoder produces (at time t) an estimate x̂(t) ∈ Rn of
the current state x(t) based on prior transmissions. The overall
observer is composed of the coder and decoder, which are
described by equations of the following respective forms:

e(t) = C[t, x(0), . . . , x(t)|x̂(0), δ], t ≥ 0,

x̂(t) = D [t, e(0), . . . , e(t− 1)|x̂(0), δ] , t ≥ 1. (2)
They assume that the coder and decoder both have access to a
common initial estimate x̂(0) and its accuracy δ

‖x(0)− x̂(0)‖ < δ. (3)
As for the transmission rate, we attend to its time-averaged
value c by assuming that no less/more than b−(r)/b+(r) bits of
data can be transferred across the channel for any time interval
of duration r, and the respective averaged rates are close to a
common value c (the channel capacity) for r ≈ ∞:

r−1b−(r) → c and r−1b+(r) → c as r → ∞. (4)

According to (Matveev and Savkin, 2009, Sect. 3.4), this model
admits unsteady instant rate, transmission delays, and dropouts.

Our first definition addresses the possibility to merely keep the
estimation error below an arbitrarily small level.
Definition 1. The system (1) is said to be observable via a
communication channel if for any ε > 0, there exists an
observer (2) and δ(ε,K) > 0 such that

‖x(t)− x̂(t)‖ ≤ ε ∀t ≥ 0

whenever (3) holds with δ := δ(ε,K), x(0), x̂(0) ∈ K.

The related demand to the channel rate refers to the topological
entropy (Donarowicz, 2011) of the plant (1) on K

H(φ,K) := lim
ε→0

lim
k→∞

1

k + 1
log2 q(k, ε). (5)

Here q(k, ε) is the minimal number of elements in a set Q ⊂
R(k+1)n that fits to approximate, with accuracy ε and for k
steps, any trajectory x(t, a) of (1) outgoing from a ∈ K:

min
{x�

0 ,...,x
�
k
}∈Q

max
t=0,...,k

‖x(t, a)− x�
t ‖ < ε ∀a ∈ K. (6)

Specifically, the following claim holds, which is well-known
for linear systems and conforms to a number of nonlinear
observability results, e.g., (Matveev and Savkin, 2009, Ch. 2).
Theorem 2. For observability via a communication channel, its
capacity must be no less than the topological entropy of the
system c ≥ H(φ,K). Conversely, if the set K is positively
invariant, the system is observable whenever c > H(φ,K).

2.2 Regular and Fine Observability

Definition 1 does not exclude critical degradation of accuracy
over time: ε � δ(ε,K). The next definition disallows a violent
regress: The accuracy stays proportional to its initial value.
Definition 3. The observer (2) is said to regularly observe the
system (1) if there exist δ∗ > 0 and G > 0 such that the
estimation accuracy ‖x(t) − x̂(t)‖ ≤ Gδ ∀t ≥ 0 whenever
x(0), x̂(0) ∈ K and in (3), δ is small enough δ < δ∗.

A stronger property is that the initial accuracy is also restored
and exponentially improved.
Definition 4. The observer (2) is said to finely observe the
system (1) if there exist δ∗, G > 0, and g ∈ (0, 1) such that

‖x(t)− x̂(t)‖ ≤ Gδgt ∀t ≥ 0

whenever x(0), x̂(0) ∈ K and δ < δ∗ in (3).
Definition 5. The system (1) is said to be regularly/finely ob-
servable via a communication channel if there exists an ob-
server (2) that regularly/finely observes the system (1) and
operates via the channel at hands.

What channel capacity c is needed for observability in each of
the above senses and how the answers relate to one another?

The averaged rate (4) is a comprehensive figure of merit for
channel evaluation regarding these issues, and the larger this
rate the better (Matveev and Pogromsky, 2016). So the posed
question in fact addresses the infimum R(φ,K) of the needed
c’s, where R is equipped with the index either o, or ro, or fo,
which refers to “observability”, “regular” and “fine observabil-
ity”, respectively. These quantities are called the observability
rates and are fully determined by the plant (1). It is clear that
observability ⇐ regular observability ⇐ fine observability and

H(φ,K) = Ro(φ,K) ≤ Rro(φ,K) ≤ Rfo(φ,K). (7)
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the following inequality is true along all solutions of (9), (10)
starting in the given compact set K:

[Ai(t)zi +Bi(t)wi]
�Pi[Ai(t)zi +Bi(t)wi] ≤ z�

i Qizi

− 1

γi
ζ�
i ζi + γiw

�
i wi, ζi = Ci(t)zi ∀zi, wi, t. (13)

If Qi ≤ Pi, this yields the upper estimate γi of the l2-gain of
the system (11) from the input wi to output ζi∑

t

ζ2i (t) ≤ γ2
i

∑
t

w2
i (t)

and Assumption 7 thus gives an upper bound γi on the incre-
mental l2-gain for the subsystem (9). With this in mind, we
proceed in the spirit of the small-gain theorem.
Assumption 8. In Assumption 7, γ1γ2 ≤ 1.

We introduce the following subsets of Rn, n := n1 + n2

X(t) := {x = x(t, a) : a ∈ K}, X∞ :=

∞⋃
t=0

X(t), (14)

where x(t, a), t ≥ 0 is the solution of the primal interconnected
system (9), (10) that starts with x(0) = a. Our last assumption
is purely technical and employs the following.
Definition 9. A map f(x) from Rn to an Euclidean space is
said to be uniformly continuous near a subset X∗ ⊂ Rn if for
any ε > 0, there exists δ > 0 such that

x ∈ X∗ ∧ ‖x− x′‖ < δ ⇒ ‖f(x)− f(x′)‖ < ε.

As is well known, any continuous function is uniformly contin-
uous near any compact set.
Assumption 10. Let ji denote the element of the set {1, 2}
complementary to i ∈ {1, 2}. For i = 1, 2, the derivatives of
the associated functions from (9)

∂φi

∂xi
[xi, hi(xji)] ,

∂φi

∂ui
[xi, hi(xji)] ,

∂hi

∂xi
[xi]

are bounded on X∞ and uniformly continuous near this set.

This holds if the set X∞ is bounded, in particular, if the given
compact set K of initial states is positively invariant.

In conclusion, we note that the afore-mentioned inequality
Qi ≤ Pi is not assumed and was discussed for an illustra-
tive purpose only. So Assumption 7 can be always satisfied
since Ai(t), Bi(t) are bounded thanks to Assumption 10: for
arbitrary γi, it suffices to pick Pi and Qi “small” and “large”
enough, respectively. This choice influences our estimate of the
observability rates and will be discussed in more details further.

3.3 The main result

Let P > 0 and Q ≥ 0 be square symmetric matrices of a
common size. The roots of the algebraic equation

det(Q− λP ) = 0 (15)
are equal to the eigenvalues of each of the matrices QP−1,
P−1Q and P−1/2QP−1/2 ≥ 0. Since the latter matrix in sym-
metric and positive semi-definite, these roots are nonnegative.

We enumerate them λ1 = λ1(P,Q) ≥ . . . ≥ λn = λn(P,Q)
in the descending order, repeating any root in accordance with
its algebraic multiplicity. Partly inspired by (8), we introduce

HL(P,Q) :=
1

2

∑
j

max{0, log2 λj}, (16)

where the sum is over all j’s and log2 0 = −∞.

Theorem 11. Let Assumptions 7—10 hold and let Pi, Qi be
taken from Assumption 7. Then the observability rates of the
system (9)—(10) obey the following inequalities

H(φ,K) ≤ Rro(φ,K)

≤ Rfo(φ,K) ≤ HL(P1, Q1) +HL(P2, Q2). (17)

Proof: We put z = (z�
1 , z

�
2 )

�, P := diag{P1, P2}, Q :=
diag{Q1, Q2}. By using zero averaging functions vi(·), Theo-
rem 12 from (Matveev and Pogromsky, 2016) yields that
Rfo(φ,K) ≤ sup

x∈X∞
HL[P,Q(x)], Q(x) := φ′(x)�Pφ′(x).

By invoking (13), we observe that

z�Q(x)z = (A1z1 +B1w1)
�P1(A1z1 +B1w1)

+ (A2z2 +B2w2)
�P2(A2z2 +B2w2)

≤ z�
1 Q1z1+z�

2 Q2z2+γ1ζ
�
2 ζ2−

1

γ2
ζ�
2 ζ2+γ2ζ

�
1 ζ1−

1

γ1
ζ�
1 ζ1

≤ z�
1 Q1z1 + z�

2 Q2z2 = z�Qz,

or briefly, Q(x) ≤ Q. Then P−1/2Q(x)P−1/2 ≤ P−1/2QP−1/2

and thus λj [P,Q(x)] ≤ λj [P,Q] due to Weyl’s inequalities
for eigenvalues of symmetric matrices (Franklin, 1993, Sect.
6.7). Hence HL[P,Q(x)] ≤ HL[P,Q] and so Rfo(φ,K) ≤
HL[P,Q]. Since both P and Q are block-diagonal, it is easy
to see that HL[P,Q] = HL(P1, Q1) + HL(P2, Q2). The proof
is completed by (7).

This theorem provides an estimate of the observability rates for
the feedback interconnection of two subsystems via their input-
output properties. These properties are captured by the pair
[HL(Pi, Qi), γi], which is not unique for a given subsystem.
For example, (13) survives the change γi := τγi, Pi :=

τPi, Qi := Qi +
1−τ2

τγi
C�

i Ci with any τ ∈ (0, 1), which
decreases γi but increases HL(Pi, Qi). By picking τ small
enough, γi can be made as small as desired, in particular, such
that Assumption 8 is satisfied. However, the accompanying
trend in HL(Pi, Qi) worsens the right-hand side of (17) and
so larger γi’s carry a potential of a finer estimate.

The next section illustrates the utility of Theorem 11 via its
application to time delay systems. To this end, such a system
is represented as a feedback interconnection of a controlled
undelayed system and a pure delay line. Irrespective of the
delay value, this line is linear, its incremental l2-gain does not
exceed 1, and due to stability, the related quantity HL = 0.
So Theorem 11 entails an estimate of the observability rates
that is independent of the delay and shows that these rates stay
bounded as the delay increases without limits.

4. ENTROPY OF SYSTEMS WITH LARGE DELAYS

Now we turn to delayed discrete-time systems of the form
x(t+ 1) = f [x(t), Cx(t− τ)], t = 0, 1, . . . . (18)

Here τ > 0 is an integer delay, x(t) ∈ Rn, the smooth function
f(x, r) ∈ Rn of x ∈ Rn, r ∈ Rd is given, and the r×n-matrix
C typically “cuts out” a certain part of the state x. The initial
states are restricted by a given compact set K ⊂ Rn as follows

x(0) ∈ K, x(−1) ∈ K, . . . , x(−τ) ∈ K. (19)
The standard state augmentation

x(t) := [x(t), x(t− 1), . . . , x(t− τ)] (20)
shapes this system into (1) with
φ(x) = [f(x0, Cx−τ ), x0, . . . , x−τ+1] ∀x = [x0, . . . , x−τ ]
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and K := {x : xj ∈ K ∀j}. So all concepts from Section 2 are
fully applicable to (18), (19).

Given f(·, ·) and K, we are interested in behavior of the
topological entropy H(τ) and the observability rates Rro(τ)
and Rfo(τ) of the system (18), (19) as the delay τ increases to
∞. This interest is partly inspired by (Manffra, 2002; Manffra
et al., 2001) where it is discovered via numerical studies that
for particular chaotic delayed systems, H(τ) remains bounded
as τ → ∞. Now we rigorously prove that this phenomenon
is common and also extends on Rro/fo, and offer explicit upper
bounds on these quantities that are uniform over all delays.

We impose the following analog of Assumption 10.
Assumption 12. There is K∗ ⊂ Rn such that the following holds:

i. Irrespective of the delay, any solution of (18) satisfying
(19) lies in K∗, i.e., x(t) ∈ K∗ ∀t ≥ 0;

ii. The first derivatives of f(·, ·) are bounded on K∗ × CK∗
and uniformly continuous near this set.

This is true with K∗ := K if the compact set K is positively
invariant for any τ , and with K∗ := Rn if the derivatives are
bounded and uniformly continuous on the entire space Rn×Rd.

For any � = (x, r), x ∈ Rn, r ∈ Rd, we put

A(�) :=
∂f

∂x
(�), B(�) :=

∂f

∂r
(�).

The next assumption is inspired by Assumption 7 with γi := 1.
Assumption 13. There are symmetric n × n-matrices P >
0, Q ≥ 0 such that for any � ∈ K∗ × CK∗,

[A(�)z +B(�)w]�P [A(�)z +B(�)w] ≤ z�Qz

− ζ�ζ + w�w, ζ = Cz, ∀z ∈ Rn, w ∈ Rd. (21)
Theorem 14. Suppose that Assumptions 12 and 13 hold. Then

H(τ) ≤ Rro(τ) ≤ Rfo(τ) ≤ HL(P,Q) ∀τ.

Proof: We represent the system (18) as the interconnection
(10) of the following two subsystems

Σ1 :

{
x1(t+ 1) = f [x1(t), u1(t)] ∈ Rn, u1(t) ∈ Rd

y1(t) = Cx1(t) ∈ Rd

Σ2 :

{
x2(t+ 1) = Ax2(t) +Bu2(t) ∈ Rdτ , u2(t) ∈ Rd

y2(t) = Cx2(t) ∈ Rd

Here the second subsystem is a τ -step delay line:

A =




0 0 · · · 0 0
Id 0 · · · 0 0
0 Id · · · 0 0
...

...
. . . 0 0

0 0 · · · Id 0




,B =




Id
0
0
...
0




,C = ( 0 0 · · · 0 Id )

and Is is the s× s-identity matrix. For Σ1, Assumption 7 holds
with P1 := P,Q1 := Q, γ1 := 1 thanks to Assumptions 12
(part i) and 13. For the second subsystem, it is easy to see that
x1(t+1)�x1(t+1) = x1(t)

�x1(t)+u1(t)
�u1(t)−y1(t)

�y1(t)

and so Assumption 7 is true with P2 = Q2 = Idτ and
γ2 = 1. Thus Assumption 8 holds, whereas Assumption 10
follows from Assumption 12. Theorem 11 completes the proof
by noting that HL(P2, Q2) = 0.

Assumption 13 can be always satisfied in the most general case
where C = In and so (18) shapes into

x(t+ 1) = f [x(t), x(t− τ)], t = 0, 1, . . . . (22)

Indeed, by ii in Assumption 12, there is η ∈ (0,∞) such that[
∂f

∂x′ (�),
∂f

∂x′′ (�)

]� [
∂f

∂x′ (�),
∂f

∂x′′ (�)

]
≤ ηI2n

for all � ∈ K∗ ×K∗. Then Assumption 13 clearly holds with
P := η−1In, Q := 2In and so Theorem 14 yields the following
Corollary 15. For any system (22) satisfying Assumptions 12,

H(τ) ≤ Rro(τ) ≤ Rfo(τ) ≤
n

2
max{1+ log2 η; 0} < ∞ ∀τ.

5. EXAMPLE

We consider a delayed analog of the “bouncing-ball dynamics”
(Matveev and Pogromsky, 2016), which is among celebrated
prototypic examples of low-dimensional chaotic behavior,
y(t+1) = (1+α)y(t)−β cos y(t)−αy(t−τ), t ≥ 0. (23)

Here τ > 0 is an integer delay, y ∈ R, and α, β > 0
are given parameters. Since equation (23) is invariant under
the transformation y �→ y ± 2π, the phase space of the
system can be viewed as the unit circle S1

0 . By (Matveev and
Pogromsky, 2016, Remark 5), the concepts from Section 2
are fully applicable to this system (S1

0 -system). Theorem 14
immediately implies the following delay-independent estimate.
Corollary 16. For the system (23) with any delay τ ,

H(τ) ≤ Rro(τ) ≤ Rfo(τ) ≤ log2(1 + 2α+ β). (24)

Proof: At first, we treat (23) as a system (18), (19) in R, where
x = y, C = 1, f(x′, x′′) = (1 + α)x′ − β cosx′ − αx′′

in (18) and K := [−π, π] in (19). Then Assumption 12 holds
with K∗ := R. To check Assumption 13, we note that in (21),
A(�)z+B(�)w = (1+α+ β sin y)z−αw ∀� = (y, y1).

Now P = p ∈ (0,∞), Q = q ∈ [0,∞) and z�Pz =
pz2, z�Qz = qz2. So the left-hand side L of (21)

L = p|(1 + α + β sin y)z − αw|2 ≤ p[γ|z| + α|w|]2,
where γ := 1 + α+ β. Hence (21) does hold whenever

(q − 1)|z|2 + |w|2 − p[γ|z|+ α|w|]2 ≥ 0.

By treating the left-hand side as a quadratic form in |z|, |w| and
applying Sylvester’s criterion, we see that (21) is true whenever

1− pα2 > 0 and 0 ≤
∣∣∣∣
q − 1− pγ2 −pγα

−pγα 1− pα2

∣∣∣∣
= q(1− pα2)− [1 + p(γ2 − α2)].

Thus (21) holds with

p ∈
(
0, α−2

)
, q :=

1 + p(γ2 − α2)

1− pα2
.

Then the algebraic equation (15) has the unique root λ = q/p.
From now on, we consider the point p = 1

α(γ+α) ∈ (0, α−2),
where λ attains its maximum value λ = (α + γ)2. Modulo
elementary calculations, Theorem 14 and (16) then imply (24).

However, (24) has been established for the system (23) con-
sidered in R (R-system), whereas the corollary addresses the
S1
0 -system. Due to the state augmentation (20), the state space

XR of the former is Rτ+1 = {x = [x0, . . . , x−τ ]}, whereas
the state space XS1

0
of the latter is the multidimensional torus

{[s0, . . . , s−τ ] : s−j ∈ S1
0 ∀j}. There is a covering projection

J(x) := [eıx0 , . . . , eıx−τ ]

of XR onto XS1
0
. For any one step, the projection of the next

state of R-system is clearly the next state of S1
0 -system starting
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the following inequality is true along all solutions of (9), (10)
starting in the given compact set K:

[Ai(t)zi +Bi(t)wi]
�Pi[Ai(t)zi +Bi(t)wi] ≤ z�

i Qizi

− 1

γi
ζ�
i ζi + γiw

�
i wi, ζi = Ci(t)zi ∀zi, wi, t. (13)

If Qi ≤ Pi, this yields the upper estimate γi of the l2-gain of
the system (11) from the input wi to output ζi∑

t

ζ2i (t) ≤ γ2
i

∑
t

w2
i (t)

and Assumption 7 thus gives an upper bound γi on the incre-
mental l2-gain for the subsystem (9). With this in mind, we
proceed in the spirit of the small-gain theorem.
Assumption 8. In Assumption 7, γ1γ2 ≤ 1.

We introduce the following subsets of Rn, n := n1 + n2

X(t) := {x = x(t, a) : a ∈ K}, X∞ :=

∞⋃
t=0

X(t), (14)

where x(t, a), t ≥ 0 is the solution of the primal interconnected
system (9), (10) that starts with x(0) = a. Our last assumption
is purely technical and employs the following.
Definition 9. A map f(x) from Rn to an Euclidean space is
said to be uniformly continuous near a subset X∗ ⊂ Rn if for
any ε > 0, there exists δ > 0 such that

x ∈ X∗ ∧ ‖x− x′‖ < δ ⇒ ‖f(x)− f(x′)‖ < ε.

As is well known, any continuous function is uniformly contin-
uous near any compact set.
Assumption 10. Let ji denote the element of the set {1, 2}
complementary to i ∈ {1, 2}. For i = 1, 2, the derivatives of
the associated functions from (9)

∂φi

∂xi
[xi, hi(xji)] ,

∂φi

∂ui
[xi, hi(xji)] ,

∂hi

∂xi
[xi]

are bounded on X∞ and uniformly continuous near this set.

This holds if the set X∞ is bounded, in particular, if the given
compact set K of initial states is positively invariant.

In conclusion, we note that the afore-mentioned inequality
Qi ≤ Pi is not assumed and was discussed for an illustra-
tive purpose only. So Assumption 7 can be always satisfied
since Ai(t), Bi(t) are bounded thanks to Assumption 10: for
arbitrary γi, it suffices to pick Pi and Qi “small” and “large”
enough, respectively. This choice influences our estimate of the
observability rates and will be discussed in more details further.

3.3 The main result

Let P > 0 and Q ≥ 0 be square symmetric matrices of a
common size. The roots of the algebraic equation

det(Q− λP ) = 0 (15)
are equal to the eigenvalues of each of the matrices QP−1,
P−1Q and P−1/2QP−1/2 ≥ 0. Since the latter matrix in sym-
metric and positive semi-definite, these roots are nonnegative.

We enumerate them λ1 = λ1(P,Q) ≥ . . . ≥ λn = λn(P,Q)
in the descending order, repeating any root in accordance with
its algebraic multiplicity. Partly inspired by (8), we introduce

HL(P,Q) :=
1

2

∑
j

max{0, log2 λj}, (16)

where the sum is over all j’s and log2 0 = −∞.

Theorem 11. Let Assumptions 7—10 hold and let Pi, Qi be
taken from Assumption 7. Then the observability rates of the
system (9)—(10) obey the following inequalities

H(φ,K) ≤ Rro(φ,K)

≤ Rfo(φ,K) ≤ HL(P1, Q1) +HL(P2, Q2). (17)

Proof: We put z = (z�
1 , z

�
2 )

�, P := diag{P1, P2}, Q :=
diag{Q1, Q2}. By using zero averaging functions vi(·), Theo-
rem 12 from (Matveev and Pogromsky, 2016) yields that
Rfo(φ,K) ≤ sup

x∈X∞
HL[P,Q(x)], Q(x) := φ′(x)�Pφ′(x).

By invoking (13), we observe that

z�Q(x)z = (A1z1 +B1w1)
�P1(A1z1 +B1w1)

+ (A2z2 +B2w2)
�P2(A2z2 +B2w2)

≤ z�
1 Q1z1+z�

2 Q2z2+γ1ζ
�
2 ζ2−

1

γ2
ζ�
2 ζ2+γ2ζ

�
1 ζ1−

1

γ1
ζ�
1 ζ1

≤ z�
1 Q1z1 + z�

2 Q2z2 = z�Qz,

or briefly, Q(x) ≤ Q. Then P−1/2Q(x)P−1/2 ≤ P−1/2QP−1/2

and thus λj [P,Q(x)] ≤ λj [P,Q] due to Weyl’s inequalities
for eigenvalues of symmetric matrices (Franklin, 1993, Sect.
6.7). Hence HL[P,Q(x)] ≤ HL[P,Q] and so Rfo(φ,K) ≤
HL[P,Q]. Since both P and Q are block-diagonal, it is easy
to see that HL[P,Q] = HL(P1, Q1) + HL(P2, Q2). The proof
is completed by (7).

This theorem provides an estimate of the observability rates for
the feedback interconnection of two subsystems via their input-
output properties. These properties are captured by the pair
[HL(Pi, Qi), γi], which is not unique for a given subsystem.
For example, (13) survives the change γi := τγi, Pi :=

τPi, Qi := Qi +
1−τ2

τγi
C�

i Ci with any τ ∈ (0, 1), which
decreases γi but increases HL(Pi, Qi). By picking τ small
enough, γi can be made as small as desired, in particular, such
that Assumption 8 is satisfied. However, the accompanying
trend in HL(Pi, Qi) worsens the right-hand side of (17) and
so larger γi’s carry a potential of a finer estimate.

The next section illustrates the utility of Theorem 11 via its
application to time delay systems. To this end, such a system
is represented as a feedback interconnection of a controlled
undelayed system and a pure delay line. Irrespective of the
delay value, this line is linear, its incremental l2-gain does not
exceed 1, and due to stability, the related quantity HL = 0.
So Theorem 11 entails an estimate of the observability rates
that is independent of the delay and shows that these rates stay
bounded as the delay increases without limits.

4. ENTROPY OF SYSTEMS WITH LARGE DELAYS

Now we turn to delayed discrete-time systems of the form
x(t+ 1) = f [x(t), Cx(t− τ)], t = 0, 1, . . . . (18)

Here τ > 0 is an integer delay, x(t) ∈ Rn, the smooth function
f(x, r) ∈ Rn of x ∈ Rn, r ∈ Rd is given, and the r× n-matrix
C typically “cuts out” a certain part of the state x. The initial
states are restricted by a given compact set K ⊂ Rn as follows

x(0) ∈ K, x(−1) ∈ K, . . . , x(−τ) ∈ K. (19)
The standard state augmentation

x(t) := [x(t), x(t− 1), . . . , x(t− τ)] (20)
shapes this system into (1) with
φ(x) = [f(x0, Cx−τ ), x0, . . . , x−τ+1] ∀x = [x0, . . . , x−τ ]
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from the projection of the initial state of R-system. Then for
the S1

0 -system, any data rate from (24) does not exceed the
respective data rate for the R-system by Lemma 13 in (Matveev
and Pogromsky, 2016), which completes the proof.

Whenever only an upper bound on the quantities of interest is
given, like in (24), a question arises how tight this bound is.
Theorem 15 in (Matveev and Pogromsky, 2016) offers an exact
formula for Rro/fo(0) and thus displays a gap in (24) for the zero
delay: Rro(0) = Rfo(0) < log2(1 + 2α + β). Whereas direct
computation of Rro/fo(τ) is not easy for τ > 0, asymptotic (as
τ → ∞) lower estimates can be found in closed form to assess
the gap in (24) for very large delays.

To this end, we start with a simple lemma.
Lemma 17. Whenever α > 0 and a > 1 + α, the equation

χn(λ) = λn − aλn−1 + α = 0 (25)
has a root λ ∈ (a(n− 1)/n; a) if the integer n is large enough.

Proof: It suffices to note that χn is continuous, χn(a) = α > 0,

χn [a(n− 1)/n] = α− an

n− 1

[
1− 1

n

]n
→ −∞ as n → ∞.

Now we consider the linearization of (23) at the equilibrium
point π/2. It is easy to see that the eigenvalues of the respective
Jacobian matrix are the roots of (25), where a = 1+α+ β and
n = τ + 1. Due to Lemma 17, this Jacobian has an eigenvalue
that converges to a as τ → ∞. Withal, (25) has no roots on the
unit circle S1

0 (since |λ| = 1 ⇒ |λn−1(a−λ)| ≥ a−1 > α) and
so the equilibrium is hyperbolic. Then Theorem 9 in (Matveev
and Pogromsky, 2016) entails the following.
Corollary 18. For any α, β > 0 the following inequality holds

lim inf
τ→∞

Rro(τ) ≥ log2(1 + α+ β). (26)

Thus for α � β, the estimates (24) become tight as τ → ∞.
The smaller the ratio α/(β + 1), the narrower the gap between
the upper (24) and lower (26) bounds on the observability rates.

By applying the Kalman-Szegö lemma like in (Matveev and
Pogromsky, 2016, Sect. 5), it can be shown that the bound (26)
is tight and the observability rates converge to a common limit
Rro(∞) = Rfo(∞) = log2(1 + α + β) as τ → ∞. Due to the
page limit, this analysis will be given in the full version of the
paper; it is also available upon request.
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