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A Systematic Evaluation of Profiling Through
Focused Feature Selection

Stjepan Picek, Senior Member, IEEE, Annelie Heuser , Alan Jovic , Member, IEEE,
and Lejla Batina, Senior Member, IEEE

Abstract— Profiled side-channel attacks consist of several steps
one needs to take. An important, but sometimes ignored, step is
a selection of the points of interest (features) within side-channel
measurement traces. A large majority of the related works start
the analyses with an assumption that the features are preselected.
Contrary to this assumption, here, we concentrate on the feature
selection step. We investigate how advanced feature selection
techniques stemming from the machine learning domain can be
used to improve the attack efficiency. To this end, we provide a
systematic evaluation of the methods of interest. The experiments
are performed on several real-world data sets containing software
and hardware implementations of AES, including the random
delay countermeasure. Our results show that wrapper and hybrid
feature selection methods perform extremely well over a wide
range of test scenarios and a number of features selected.
We emphasize L1 regularization (wrapper approach) and linear
support vector machine (SVM) with recursive feature elimination
used after chi-square filter (Hybrid approach) that performs well
in both accuracy and guessing entropy. Finally, we show that the
use of appropriate feature selection techniques is more important
for an attack on the high-noise data sets, including those with
countermeasures, than on the low-noise ones.

Index Terms— Feature selection, guessing entropy (GE),
machine learning (ML), profiled side-channel attacks (SCAs),
random delay countermeasure.

I. INTRODUCTION

PROFILED side-channel attacks (SCAs) have received a
lot of attention in recent years because this type of

attack defines the worst case security assumptions. Besides
the more traditional choice of template attack (TA), a num-
ber of machine learning (ML) techniques have been investi-
gated in this context [1]–[3]. The common knowledge from
those results suggests that profiled side-channel analysis can
be extremely powerful for key recovery, with ML being a
highly viable choice. Contrarily, feature selection, in particular,
the usage of ML-based techniques, did not receive significant
attention. Early works on TAs introduced sum of squared
pairwise T-differences (SOST)/sum of squared differences
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(SOSD) [4] as feature selection methods, and consequently,
most of the follow-up works assume that this step has some-
how been performed in a satisfactory, if not optimal, manner.
A common strategy often also suggests using the Pearson
correlation for this purpose (see [2] and [5]).

First, we ask a question on the importance of the number
of features in a data set. For a fixed number of training sam-
ples, the predictive power of a classifier algorithm eventually
reduces as the dimensionality (the number of features) of the
problem increases. Consequently, for scenarios with a large
number of features, we need to use more training examples,
where that number increases exponentially with the number of
dimensions. This results in the so-called curse of dimension-
ality (and the closely related Hughes effect). When discussing
features (also known as points of interest, points in time,
variables, and attributes), we can distinguish among relevant,
irrelevant, and redundant features. A meaningful separation
in these categories is very important when optimizing the
attack strategy and can be divided into the following general
directions:

1) feature selection—where the most important subsets of
features are selected;

2) dimensionality reduction—where methods like principal
component analysis (PCA) transform the original fea-
tures into new features;

3) deep learning techniques like convolutional neural net-
works that perform implicit feature selection.

The last two techniques can be very successful but they
do not provide information about the original features. Such
techniques either completely transform the features or use
them in a manner too complicated to be understood by
human experts. Moreover, deep learning could often have no
performance advantage against “standard” ML if the number
of measurements is not very large [6]. Note that, in this article,
we do not consider comparisons with deep learning techniques,
but we refer interested readers to [7]–[9].

There are many articles considering profiled SCA, where
the number of features is fixed and the analysis is conducted
by considering only the changes in the number of traces or
by selecting a more powerful classifier (see [10] and [11]). It
is indeed somewhat surprising that the SCA community (until
now) did not take a closer look at the feature selection part of
the classification process. Similar to the powerful classification
methods coming from the ML domain, there are also feature
selection techniques one could utilize. To the best of the
authors’ knowledge, there exists one work that focuses on the
feature selection for profiled SCA, but it does not consider
ML techniques and it compares only methods known for side-
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channel analysis either as feature selection techniques or as
distinguishers [12]. Note that, in leakage detection (see [13]),
one is identifying data-dependent but not necessarily model-
agnostic leakage information. Consequently, detecting features
(points in the power trace) is a task orthogonal to leakage
detection, as leakage detection [according to, e.g., test vector
leakage assessment (TVLA)] may not necessarily lead to a
successful key recovery. One approach could be as follows:
first, use leakage detection to identify possible leakages in the
trace, then analyze the corresponding operation, in particular,
determine if the model is key sensitive, and finally use feature
selection in combination with the underlying model for a
profiled distinguisher.

In this article, we concentrate on feature selection tech-
niques but we also investigate PCA to give insights into
performance differences between feature selection and dimen-
sionality reduction techniques. More precisely, we investigate
how the efficiency of SCA distinguishers can increase due
to feature selection techniques. For this, we employ several
feature selection techniques ranging from “simple” ones like
the Pearson correlation, which is a de facto standard in the
side-channel community, to more complex approaches such
as various wrapper and hybrid methods used in ML. To the
best of the authors’ knowledge, the use of such advanced tech-
niques has never been reported in the context of SCA before.

We show that feature selection is an important step in
profiled attacks. We give insights on its use for the following
goals: 1) faster training of models; 2) reducing model com-
plexity; 3) improving model performance (when suitable fea-
tures are selected); 4) reducing overfitting; and 5) “correcting”
the covariance matrix in TA when the number of features is
too large with respect to the number of traces.

A. Our Contributions

1) We introduce a novel approach of using ML techniques
for the important problem of feature selection in SCA.

2) We demonstrate the potential of wrapper and hybrid
methods in SCA as they often perform the best for
feature selection on the examined data sets.

3) We show how to overcome some previously identified
shortcomings of TAs by the ML techniques, which not
only solves the problems but also improves upon the
performance of templates as well.

4) We show that our feature selection methods may also
be used for dimensionality reduction, having similar or
better results than PCA in most cases.

5) All our results are verified on the real-world data sets
in different settings. The analysis is explained in detail.
In total, we consider and run more than 600 experimental
scenarios in this work.

B. Previous Work

Ever since the seminal work of Chari et al. [14] introducing
TAs, efforts were put into optimizing those and enlarging their
scope. The observation on the profiling, i.e., training phase in
TAs, has naturally led to ML techniques and their potential
impact on the key recovery phase.

With that respect, a number of ML techniques has been
investigated (see [1]–[3]). The results suggested the unques-
tionable potential of ML techniques for templates and, as such,
they were stimulating for further research. However, the limi-
tations of ML approaches were unveiled and their full potential
remained unclear. Lerman et al. [15], in particular, compared
TAs and ML on dimensionality reduction. They concluded that
TAs are the method of choice as long as a limited number of
features can be identified in leakage traces containing most
of the relevant information. Accordingly, an increase in the
number of points of interest favors ML methods. Our results
show that the answer is not so simple, i.e., it depends on
several factors, such as the number of features, classifiers,
implementation details, and so on.

Regarding the feature selection problem in SCA, there were
very few attempts and works devoted to this topic, as some
simple techniques were considered sufficient. Early works
introduced SOST/SOSD [4] as feature selection methods and
the majority of follow-up papers skipped this step completely.
One strategy also suggested using the Pearson correlation for
this purpose [1], [2], [5], which is an obvious solution, but
does not answer the question on whether we can do better.

Some authors noticed the importance of finding adequate
time points in other scenarios. Reparaz et al. [16] introduced
a technique to identify tuples of time samples before key
recovery for multivariate differential power analysis (DPA)
attacks. Here, typically, the attacker is confronted with a
masked implementation, requiring higher order attacks (hence,
multiple features corresponding to the right time moments,
e.g., when a mask is generated and manipulated). Zheng
et al. [12] looked into this specific feature selection question
but left ML techniques aside. Picek et al. [17] considered
several ML techniques for profiling attacks and investigated
the influence of the number of features in the process by
applying information gain feature selection. Finally, we also
question the previous results on dimensionality reduction as
our comparison of ML feature selection and PCA [18] (which
is feature extraction) favors the former.

II. BACKGROUND

A. Notation

Calligraphic letters (e.g., X ) denote sets, capital letters
(e.g., X) denote random variables taking values in those sets,
and the corresponding lowercase letters (e.g., x) denote their
realizations. Let k∗ be the fixed secret cryptographic key (byte)
and the random variable T is the plaintext or ciphertext of
the cryptographic algorithm, which is uniformly chosen. The
measured leakage is denoted as X and we are particularly
interested in multivariate leakage �X = X1, . . . , X D , where D
is the number of time samples or features (attributes) in ML
terminology.

Considering a powerful attacker who has a device and
the knowledge on the secret key implemented, a set of N
profiling traces �X1, . . . , �X N is used to estimate the leakage
model beforehand. Note that this set is multi-dimensional (i.e.,
it has dimension D× N). In the attack phase, the attacker then
measures additional traces �X1, . . . , �X Q from the device under
attack to recover the unknown secret key k∗.
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B. Data Sets

We use three data sets that we consider to be a representative
sample of commonly encountered scenarios. More precisely,
one data set is without countermeasures and with a small
amount of noise, which is a relatively easy scenario for profiled
attack when the number of measurements is sufficient. Next,
we consider one data set without countermeasures but with
a large amount of noise. There, we are approaching more
realistic scenarios where profiled techniques have problems
in reaching high performance. Finally, the last data set has a
countermeasure in the form of random delays, which repre-
sents a realistic scenario for evaluation. We do not consider
data sets with masked implementations since we assume that
the mask is different in the training and testing phase, which
makes feature selection more complex.

1) DPAcontest v4 Data Set [19]: The fourth version of
the DPAcontest data set provides measurements of a masked
AES software implementation. As the mask is known, one can
easily turn it into an unprotected scenario. As this is a software
implementation, the most leaking operation is not the register
writing but the processing of the S-box operation, and thus
the attack targets the first round. Hence, the leakage model is

Y (k∗) = Sbox[Pb1 ⊕ k∗] ⊕ M︸︷︷︸
known mask

(1)

where Pb1 is a plaintext byte and we choose b1 = 1. Compared
to the measurements from the second version of the data set,
the SNR is much higher with a maximum value of 5.8577.
For our experiments, we start with a preselected window
of 3500 features from the original trace (we simply preselect
all features around the S-box operation).

2) AES_HD Data Set: This data set is chosen in order to
target an unprotected implementation of AES-128 encryption
specification. The core of AES-128 was written in VHDL in
a round-based architecture, taking 11 clock cycles for each
encryption. A universal asynchronous receiver–transmitter
(UART) module is wrapped around the core to enable external
communication. The module is designed to allow accelerated
measurements so avoid any dc shift due to environmen-
tal variation over prolonged measurements. The total area
footprint of the design contains 1850 lookup tables (LUTs)
and 742 flip-flops. Xilinx Virtex-5 field-programmable gate
array (FPGA) of a SASEBO GII evaluation board was used
to implement the design. Side-channel traces were measured
using a high sensitivity near-field electromagnetic (EM) probe,
which was placed over a decoupling capacitor on the power
line. Measurements were sampled on the Teledyne LeCroy
Waverunner 610zi oscilloscope. A suitable and commonly
used (HD) leakage model, when attacking the last round of an
unprotected hardware implementation, is the register writing
in the last round [19], that is,

Y (k∗) = H W (Sbox−1[Cb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

) (2)

where Cb1 and Cb2 are two ciphertext bytes, and the relation
between b1 and b2 is given through the inverse ShiftRows
operation of AES. b1 = 12 was chosen, which resulted in

b2 = 8, as it is one of the easiest bytes to attack. The obtained
measurements that form the data set are relatively noisy and
the resulting model-based SNR (signal-to-noise ratio), i.e.,
(var(signal)/var(noise)) = (var(y(t, k∗))/var(x − y(t, k∗)))
has a maximum value of 0.0096. In total, 500 000 traces
were captured corresponding to 500 000 randomly generated
plaintexts, each trace with 1250 features. However, not all
the traces were used for training and testing the model. The
evaluation details are given in Section IV. As this imple-
mentation leaks in the HD model, we denote this imple-
mentation as AES_HD. The data set is publicly available at
https://github.com/AESHD/AES_HD_Data set.

3) Random Delay Data Set [20]: As our third use case,
we use an actual protected implementation to prove the
potential of our approach. Our target is a software imple-
mentation of AES on an 8-bit Atmel AVR microcontroller
with implemented random delay countermeasure, as described
by Coron and Kyzhvatov [20]. We mounted our attacks
against the first AES key byte by targeting the first S-box
operation. The data set consists of 50 000 traces of 3500 fea-
tures each. For this data set, the SNR has a maximum
value of 0.0556. This data set is publicly available at
https://github.com/ikizhvatov/randomdelays-traces.

C. Profiled Attacks and Guessing Entropy

In this section, we introduce the methods we use in the
classification tasks. Note that we opted to work with only a
small set of techniques, since we aim to explore how to find
the best possible subset of features, while the classification
task should be considered as just a means of comparison
among feature selection methods. Consequently, we try to
be as “method-agnostic” as possible and we note that for
each set of features, one could probably find a classification
algorithm performing slightly better. As noted in [21], there
is no need to include many classifiers to obtain the best
solutions. Generally, one of the best classifiers suffices, which
is certainly the random forest (RF) algorithm. We use RF for
classification in all the experiments since it provides stable and
accurate results [3], [17]. Also, the linear kernel support vector
machine (SVM) is used because of its efficiency and accuracy
for wrapper and hybrid-based feature selection, as explained
in continuation. As mentioned in Section I-B, the TA (i.e.,
TA classifier) is the traditional method of choice in SCA,
especially when the number of features is small. Consequently,
we use TA classifier and its pooled version [22] for comparison
with RF.

1) Random Forest: RF is a well-known ensemble decision
tree learner [23]. Decision trees choose their splitting attributes
from a random subset of k attributes at each internal node. The
best split is taken among these randomly chosen attributes
and the trees are built without pruning. RF is a stochastic
algorithm because of its two sources of randomness: bootstrap
sampling and attribute selection at node splitting. Learning
time complexity for RF is approximately O(I · k · N · logN),
where I is the number of trees in the forest, k is the number of
features considered at each node in each tree (usually k = √

D,
D being the total number of features), and N is the number of
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samples. We use RF as the classifier of choice for multiclass
classification in our work. This is mainly in line with available
research [21], where it is expected that RF will perform among
the best classifiers. RF is used in all evaluations of the reduced
sized feature sets.

2) Support Vector Machines: SVM is a kernel-based ML
family of methods used to accurately classify both linearly
separable and linearly inseparable data [24]. The basic idea
when the data are not linearly separable is to transform them
to a higher dimensional space by using a transformation kernel
function. In this new space, the samples can usually be classi-
fied with higher accuracy. We use SVM with the linear kernel
as the classification algorithm for wrapper and hybrid-based
feature selection (see Sections III-B and III-C). Linear kernel
SVM is used instead of a polynomial- or radial-based SVM,
because advanced feature selection approaches require the con-
struction of many models, which is computationally intensive
and, therefore, unsuitable for nonlinear kernel function-based
SVM. The time complexity range for linear kernel SVM is
O(DN), which is significantly less than O(DN3) for the
time complexity of radial kernel SVM. We note that utilizing
a linear kernel is an efficient choice when the number of
dimensions is high (as in our case) or when we can assume
that there is a linear separation between data.

3) Template Attack: The TA relies on the Bayes theorem
and considers the features as dependent. In the state-
of-the-art, TA relies mostly on a normal distribution.
Accordingly, TA assumes that each P( �X = �x |Y = y) follows
a (multivariate) Gaussian distribution that is parameterized by
its mean and covariance matrix for each class Y . Choudary
and Kuhn [22] propose to use only one pooled covariance
matrix averaged over all classes Y to cope with statistical
difficulties and thus a lower efficiency. Besides the standard
approach, we additionally use this version of the TA in our
experiments. The time complexity for TA is O(N D2) in the
training phase and O(|Y|D2) in the testing phase (|Y| is the
number of classes).

D. Guessing Entropy

After running profiled attacks, we obtain accuracy as the
measure of performance for our classifiers. Since this measure
can be often misleading in SCA, especially in the Ham-
ming weight (HW) scenario [7], we also use the guessing
entropy (GE) to properly assess the performance of our feature
selection and classification techniques [25]. A side-channel
adversary AEK ,L conducts experiment ExpAEK ,L

, with time-
complexity τ , memory complexity m, and making Q queries
to the target implementation of the cryptographic algorithm.
The attack outputs a guessing vector g of length o and is
considered a success if g contains the correct key k∗. o is also
known as the order of the success rate.

GE measures the average number of key candidates to test
after the attack. The GE of the adversary AEk ,L against a key
class variable S is defined as

G E AEK ,L (τ, m, k∗) = E[ExpAEK ,L
].

Fig. 1. Filter methods.

III. FEATURE SELECTION TECHNIQUES

A successful feature selection algorithm should output an
optimal or near-optimal subset of features while ignoring
the rest. Such algorithms can be classified into three broad
classes of feature selection techniques: filter methods, wrapper
methods, and hybrid methods [26]. The wrapper and hybrid
classes of methods are known to either increase or retain the
accuracy of the filter methods [26], [27].

Only the first three presented filter methods (Pearson corre-
lation coefficient, SOSD, SOST) have been used as feature
selection techniques for side-channel analysis in previous
works, whereas the remaining methods, to the best of the
authors’ knowledge, have never been studied to find the
most important features in SCA traces. We consider methods
from all three classes of feature selection techniques in order
to cover a wide set of feature selection cases. The choice
of individual methods from these classes is based on our
previous experience and the fact that all the methods are
well-established in the field of feature selection, as noted in
Sections III-A–III-d. We also consider in this section the PCA.
Although PCA is, strictly speaking, dimensionality reduction
and not feature selection technique, we compare it with the
feature selection methods, because it is often used in SCA
attacks.

A. Filter Selection Methods

The selection of features using filter methods is independent
of the classifier method. Features are selected based on their
scores obtained after running various types of statistical tests.
We depict the filter methods principle in Fig. 1, with methods
and numbers pertaining to our work.

Pearson Correlation Coefficient: It measures linear depen-
dence between two variables, x and y, in the range [−1, 1],
where 1 is the total positive linear correlation, 0 is no linear
correlation, and −1 is the total negative linear correlation. The
Pearson correlation for a sample of the entire population is
defined by [28]

Pearson(x, y) =
∑N

i=1((xi − x̄)(yi − ȳ))√∑N
i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

. (3)

We calculate the Pearson correlation for the target class
variables HW and intermediate value, which consists of cat-
egorical values that are interpreted as numerical values. The
features are ranked in descending order of the coefficient.

SOSD: Gierlichs et al. [4] proposed the SOSD as a selection
method, simply as

SOSD(x, y) =
∑
i, j>i

(x̄ yi − x̄ y j )
2 (4)
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where x̄ yi is the mean of the traces where the model is equal to
yi . Because of the square, SOSD is always positive. Another
advantage of using it is to emphasize big differences in means.

SOST: It is the normalized version of SOSD [4] and is thus
equivalent to the pairwise student’s t-test

SOST(x, y) =
∑
i, j>i

⎛
⎝(x̄ yi − x̄ y j )/

√√√√σ 2
yi

nyi

+
σ 2

y j

ny j

⎞
⎠

2

(5)

with nyi and ny j being the number of traces where the model
is equal to yi and y j , respectively.

Chi-Square: (χ2) is a measure of dependence between two
stochastic variables. It is a cumulative test statistic, which
asymptotically approaches a χ2 distribution. In the general
case, χ2 distribution may be obtained from the sum of squares
of the set of k standard normal random variables, where k are
the degrees of freedom. χ2 test statistic for each feature-class
pair may be calculated using the expression

χ2 =
n∑

i=1

(xyi − Eyi )
2

Eyi

. (6)

Here, n is the number of discrete categories, xyi is the
observed value of category yi , and Eyi is the expected (the-
oretical) frequency of category yi . Note that, for numerical
features, the values need to be discretized to obtain categories
before calculation of the statistic. By using the statistic,
we proceed to remove the features that are the most likely
to be independent of class attribute and therefore irrelevant
for classification. Finally, since this measure works only for
nonnegative values, before using it, we normalize the data
into [0, 1] range. The complexity of calculating the measure
is O(N · D).

B. Wrapper Selection Methods

In wrapper methods, there is a feature selection algorithm
implemented as a wrapper around a classifier [29]. The feature
selection algorithm searches for a good subset by using a
classifier algorithm as a part of the function evaluating feature
subsets, as depicted in Fig. 2. Here, the classifier algorithm
is considered as a black box and is run on the data set with
different sets of features removed from the data. The subset of
features with the highest evaluation is chosen as the final set
on which to run the classifier [30]. Note that, since wrapper
methods check many different subsets, the feature selection
process is often treated as a high-dimensional problem. L1 reg-
ularization with linear SVM is used for wrapper-based feature
selection in all the experiments, because the combination
is sufficiently fast, accurate, and memory-undemanding. The
other potential candidates that could have been used are
naive Bayes, linear SVM, and k-nearest neighbors. However,
although the sole use of these classifiers may be faster com-
pared to L1 regularization with linear SVM, they may not be as
accurate in estimating the accuracy of feature subsets. On the
other hand, methods such as RF, neural network, nonlinear
SVM, etc., are more complex and are not typically used as
wrappers, since they exhibit nonlinear complexity dependence
on the number of instances.

Fig. 2. Wrapper methods.

L1-Based Feature Selection: In general, regularization
encompasses methods that add a penalty term to the
model, which then reduces the overfitting and improves
generalizations. L1 regularization works by adding a
regularization term α · R(θ), where θ represents the parameters
of the model that is used to penalize large weights/parameters.
For a D-dimensional input (i.e., the number of features equal
to D), R(θ) is equal to

∑D
i=1 |θi |. In the regularization

term, α controls the tradeoff between fitting the data and
having small parameters. By adding a penalty for each
nonzero coefficient, the expression forces weak features
to have zero as coefficients, where a zero value means
that the feature is omitted from the set. The usage of
L1 regularization as a tool for feature selection is well
known, for example, the linear least-squares regression with
L1 regularization (Lasso) algorithm [31]. There can be certain
effects with L1 regularization when used for feature selection:
most notably, out of a group of highly correlated features,
L1 regularization will tend to select an individual feature [32].

C. Hybrid Selection Methods

Hybrid methods combine filter and wrapper techniques.
First, a filter method is used in order to reduce the feature
space dimension space. Then, a wrapper method is utilized
to find the best candidate subset. Hybrid methods usually
achieve high accuracy that is characteristic to wrappers and
high-efficiency characteristic to filters. We depict a diagram
for hybrid methods, as used in this article, in Fig. 3. In our
experiments, we first use χ2 to reduce the number of features
to 250 in order to further reduce the runtime of hybrid selection
techniques. Then, we apply either the linear SVM selection or
the stability selection technique.

Linear SVM-Based Hybrid Selection: We use a recursive
feature elimination approach with linear SVM wrapper to
obtain the target reduced feature sets. The method was first
described in [33]. Here, the “best-first” backward direction
search method is used. This strategy uses greedy hill climbing,
starting from the full feature subset and inspecting how the
elimination of a feature or a set of features from the starting
set influences the output of the classifier. The feature(s) whose
removal influences the accuracy the least is eliminated from
the set.

Stability Selection: It is a method based on subsampling in
combination with some classification algorithm (that can work
with high-dimensional data) [34]. The key concept of stability
selection is the stability paths, which is the probability for
each feature to be selected when randomly resampling from
the data. In other words, a subsample of the data is fitted to the
L1 regularization model, where the penalty of a random subset
of coefficients has been scaled. By repeating this procedure n
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Fig. 3. Hybrid methods.

times, the method will assign high scores to the features that
are repeatedly selected. We use multinomial logistic regression
for this task and we set the number of randomized models n
to 25. Multinomial logistic regression uses a linear predictor
function f (k, i) to predict the probability that observation i
has the outcome k, of the form f (k, i) = β0,k + β1,kx1,i +
. . . + βM,k xM,i where βM,k xM,i is a regression coefficient of
the mth variable and the kth outcome. The β coefficients are
estimated using the maximum likelihood estimation, which
requires finding a set of parameters for which the probability
of the observed data is the greatest.

D. Principal Component Analysis

PCA is a well-known linear dimensionality reduction
method that may use singular value decomposition (SVD)
of the data matrix to project it to a lower dimensional
space [18]. PCA creates a new set of features (called principal
components) that are linearly uncorrelated, orthogonal, and
form a new coordinate system. The number of components
is equal to the number of original features. The components
are arranged in a way that the first component covers the
largest variance by a projection of the original data and the
subsequent components cover less and less of the remaining
data variance. The number of kept components, designated
with L, maximizes the variance in the original data and
minimizes the reconstruction error of the data transformation.
The Python implementation of PCA uses either the Linear
Algebra Package (LAPACK) implementation of the full SVD
or a randomized truncated SVD by the method of Halko
et al. [35], depending on the shape of the input data and the
number of components selected to extract. We experiment with
L values in the range [10, 25, 50, 75, 100].

IV. EXPERIMENTAL EVALUATION

In our experiments, we are interested in supervised (pro-
filed) problems that have a large number of features (sample
points from power traces) D but where there could exist a
small subset D� of features that is sufficient to classify the
features X according to the classes Y . We use the previously
described filter, wrapper, and hybrid methods to reduce the
number of features found in the original data sets to the
smaller subsets of sizes [10, 25, 50, 75, 100]. The investi-
gated subset sizes are selected based on the usual number
of features considered in related work (see Section I-B).
We have also tried increasing the number of features, inspect-
ing up to 200 features. The results were not better and the

TABLE I

ACCURACY FOR DPACONTEST V4—HW MODEL

analysis was prolonged. Specifically, the features in the range
of 101–200 lead to no improvement in accuracy or GE with
respect to only the first 100 included features, for all methods.

Once the best feature subsets are selected, we run three
profiled attacks: RF, TA, and TA pooled (TAp) for each
feature selection technique to evaluate its efficiency. We use
multiple profiled attacks to avoid potential effects that a certain
feature selection technique could have on a specific attack. We
emphasize that the goal, here, is not to compare the efficiency
of attacks and, consequently, we do not give such an analysis.
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Fig. 4. GE, DPAcontest v4 data set. (a) 10 features, HW, RF. (b) 100 features,
HW, RF.

Finally, we note that for the wrapper methods, selecting the
exact number of features can be difficult (since the methods
can simply discard multiple features) and, consequently, subset
sizes of [10, 25, 50, 75, 100] represent an upper bound on the
number of actually selected features.

From the initial data sets, we randomly select 10 000 power
traces for training and another 25 000 randomly selected
traces for testing. We opted to have a larger test set to
obtain meaningful results with GE. For evaluation on the
training set, we conduct fivefold cross-validation and use the
averaged results of individual folds to select the best classifier
parameters. We report the results from testing phase only
and we present them as the accuracy (%) of the classifier,
where the accuracy is the number of correctly classified
traces divided by the total number of traces. All experiments
are done with MATLAB and Python (scikit-learn library)
tools. For the L1 regularization with linear SVM wrapper,
hybrid linear SVM, and hybrid stability selection, we tune
the parameter C for each subset size. For linear SVM,

TABLE II

ACCURACY FOR DPACONTEST V4—INTERMEDIATE VALUE MODEL

we further select the step equal to 5 to remove features—in
each iteration of the algorithm, we discard five least important
features from the feature set. For RF, we experiment with
I = [10, 50, 100, 200, 500, 1000] trees in the tuning phase,
with no limit to tree size. Based on the tuning phase,
we select 500 trees for the HW model and 100 trees for the
intermediate value model.

A. Results

We give results for test set accuracy in Tables I–VII and
for GE in Figs. 4–6. Due to the lack of space, we do not
show GE results for all tested scenarios, but only for a
representative subset of them. For each size of the feature
subset in Tables I–VI, we give the best-obtained solution in a
cell with the gray background color. For Table VII, the gray
background of a cell indicates a better result for PCA than
for all feature selection methods.

1) DPAcontest v4 Data Set: Tables I and II display the
results for DPAcontest v4 with the HW model and intermediate
value model, respectively. For the HW model, we observe that
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TABLE III

ACCURACY FOR AES_HD—HW MODEL

linear SVM hybrid method is, by far, the best performing
feature selection method when considering accuracy, com-
parable, or outperformed only slightly by PCA for a larger
number of features (see the first row of Table VII). Linear
SVM works very well for the low-noise scenario and when
the number of classes is rather low (nine for the HW model).
Note that the results for linear SVM are comparable to the
results for L1 and stability selection for the intermediate value
model (256 classes), thus suggesting that the method is more
appropriate for the smaller number of classes.

Fig. 4 shows that, for GE, the changes between differ-
ent techniques are rather small with an advantage of linear
SVM, L1, and correlation using ten features. When consider-
ing 100 features, all techniques perform almost equivalently,
except for PCA, which performs the worst. Due to the low
noise present in this scenario, all the feature selection methods
have found highly similar features, see Fig. 7. Comparing
the results for 100 and 10 features, it is shown that when
the number of features is large (i.e., 100), there is a higher
chance that most of the informative features are included by

TABLE IV

ACCURACY FOR AES_HD—INTERMEDIATE VALUE MODEL

all methods than when the number of features is small (i.e.,
10). For ten features, there is a larger difference between the
methods, indicating that some important features are omitted
by some methods.

When considering the intermediate value model (see
Table II), we observe that the wrapper and hybrid methods
have the highest accuracy, outperforming filters and PCA.
Here, even accuracy for 100 features varies significantly.

For GE in the intermediate value model, we observe the
same phenomena as for the HW model: all the techniques
are differing only slightly when considering a low number of
features and become closer when more features are considered.

2) AES_HD Data Set: For AES_HD data set, we give
results in Tables III and IV for HW model and intermediate
value model, respectively. For HW model, some observations
made for DPAcontest v4 also apply for AES_HD. We see
that having more features also, in general, results in higher
accuracy. Still, in some scenarios, accuracy for the smaller
feature set size is even higher than for larger feature set
sizes but those differences are rather small. Differing from
DPAcontest v4, for AES_HD, we do not observe a significant



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PICEK et al.: SYSTEMATIC EVALUATION OF PROFILING THROUGH FOCUSED FEATURE SELECTION 9

Fig. 5. GE, AES_HD. (a) 25 features, HW, TA. (b) 50 features, HW, RF. (c) 75 features, HW, TA. (d) 100 features, HW, RF. (e) 25 features, intermediate
value, TA pooled. (f) 75 features, intermediate value, TA pooled.

drop in performance when using only ten features. PCA
performs well for this case, slightly outperforming feature
selection methods with respect to accuracy (see the third row
of Table VII).

For the intermediate value model, the accuracy is very low
and even looks like random guessing (1/256, see Table IV).
The results show that there is no significant difference in
behavior for any technique. This is expected, since there are
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Fig. 6. GE, random-delay data set. (a) 10 features, HW, RF. (b) 25 features, HW, TA. (c) 10 features, intermediate value, RF. (d) 100 features, intermediate
value, RF. (e) 10 features, intermediate value, TA pooled. (f) 100 features, intermediate value, TA pooled.

256 classes and only 10 000 measurements in the training
phase, which is barely enough to have results better than
random guessing when dealing with such difficult data sets.

We are able to reach a low GE (i.e., retrieve the secret key),
as Fig. 5 clearly illustrates. More specifically, Fig. 5(a)–(f)
depicts GE results for the AES_HD data set for HW
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TABLE V

ACCURACY FOR RANDOM DELAY—HW MODEL

and intermediate value model ranging between 25 and 100 fea-
tures. In this high-noise scenario, we observe a more dis-
tinct behavior for different techniques. Generally, PCA-based
attack mostly performs comparably or worse than the feature
selection techniques. In Fig. 5(b) and (d), one can observe
that correlation for 50 features or correlation and SOSD
for 100 features only become stable when using a large
number of measurements in the attacking phase with RF.
Fig. 5(e) and (f) shows that, despite approximately even accu-
racy for the intermediate model, there are marked differences
among some methods with respect to GE. In these cases,
when using TA pooled classifier, PCA, linear SVM, and
Chi2 underperform with respect to other methods.

3) Random Delay Data Set: Finally, Tables V and VI give
results for the random delay data set for HW and intermediate
value model, respectively. For the HW model, the highest
accuracies are spread among the feature selection methods. For
example, for five scenarios, we have four different techniques
reaching the highest accuracies. PCA performs slightly worse
than feature selection methods for HW model. Fig. 6 shows
that GE results are also widely spread. For HW, as well as for

TABLE VI

ACCURACY FOR RANDOM DELAY—INTERMEDIATE VALUE MODEL

TABLE VII

PCA CLASSIFICATION RESULTS

intermediate value model, linear SVM and L1 usually perform
well; while in some rare cases, SOST also performs well,
while linear SVM underperforms [Fig. 6(f)]. We can observe
that, again, linear SVM is suitable when a small amount of
features is selected [see Fig. 6(a) and (c)]. Comparing the
results of RF and TA pooled classifiers for the intermediate
value model, RF was shown to provide significantly more
stable GE results. PCA-based attacks perform comparably to
most feature selection methods on this data set.
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Fig. 7. Hundred selected features for (a) HW model and (b) intermediate value model. 1) DPAcontest v4, 2) AES_HD, and 3) random delay.

4) Feature Illustration: In Fig. 7(a) and (b), we depict
100 selected features for all data sets, HW and intermediate
value models, respectively. The visualization allows a more
detailed inspection in the behavior of feature selection meth-
ods. For example, if different methods find similar features,
then the selected features are probably globally more relevant
than the others for the classification problem (assuming that
not all the methods are wrong). If different methods find
different features, while obtaining similarly good classification
results, then this suggests that many features are informative
enough to produce accurate models. If, however, different
methods find different features, while obtaining different clas-
sification results (some better than others), then this suggests
that some methods perform better selection than the others. For
DPAcontest v4 and both considered models, a large part of the
selected features for all techniques is the same. Consequently,
the obtained results for both accuracy and GE are similar.
This indicates that in a low-noise scenario, the choice among
the feature selection methods is not crucial. For the AES_HD
data set, we can observe that there are some regions where all
the selection techniques find relevant features. Interestingly,
for L1 regularization and HW model, the selected features
are much less grouped when compared to the other selection
techniques. The similarity in the selected features is reduced
compared to the DPAcontest v4 data set. This indicates that,
for the high-noise scenario, the choice of the methods is more
important than for the low-noise one. Finally, for the random
delay data set, all techniques select quite different features,
which results in a significantly different performance, as seen
in the GE results. This suggests that, for the high-noise with
countermeasures scenarios, the choice of the feature selection

method is very important; however, the overall results are still
lower when compared to the less difficult scenarios.

B. General Observations

After presenting the results for different considered scenar-
ios, we now concentrate on more general findings pertaining
to feature selection in SCA.

1) Different feature selection techniques can result in a
radically different classifier behavior, which is especially
evident from the presented GE results. Consequently,
one should devote the same amount of attention to
feature selection as to classification. This is in line with
the “No Free Lunch” theorem, which states that there is
no single best algorithm for all problems [36].

2) It is important to conduct feature selection individually
for each model considered. For instance, we show that,
if feature selection is done for the HW model, then,
in general, one should not use the same features when
considering the intermediate value model.

3) We confirm that having a higher number of features than
the number of traces per class results in TA becoming
unstable, as also indicated by previous works [22], which
is an observation that does not hold for ML techniques.
In particular, for TA, we observe the effect of instability
in the estimation of the covariance matrix when using
the intermediate value model (= 256 classes) and if
the number of features is > 10. The pooled version
tries to circumvent instabilities by reducing the number
of covariance matrices to be estimated to a single
one, which may include information loss. We show an
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alternative to increasing the number of traces or using
only one pooled covariance matrix as suggested in [22].
More precisely, an alternative approach is to use one of
the wrapper or hybrid techniques, which may result in
improved performance of TA.

4) We show that even a very small subset of features,
if selected properly, can result in better performance than
a superset obtained with other selection techniques (that
may contain redundant or incorrect features).

5) We show that it is possible to conduct feature selection
even in the presence of a random delay countermeasure.
There, although some important features are moved in
the time domain, the amount of information obtained
from traces is sufficient for a reliable feature selection,
resulting in efficient attacks.

6) Data sets with large amounts of noise are difficult for
classification as well as for feature selection. This is
expected, especially for wrapper and hybrid methods,
since there we use ML classifiers for feature selection.

7) When considering data sets with a large amount of noise
or countermeasures, it is possible to conduct a successful
attack even in extremely constrained scenarios where we
have only ten features, if they are well chosen.

V. CONCLUSION

In this article, we addressed the following questions: how
should we select the most informative features from raw data?
and what is the influence of the feature selection step in the
performance of the classification algorithm? Our results show
that the proper selection of features has a tremendous impact
on the final classification results. We notice that often with
a small number of features when using a proper selection
technique, one can achieve approximately the same results as
some other method using a much larger number of features.

We demonstrated how state-of-the-art techniques for feature
selection from the ML area behave for profiling in side-channel
analysis. We observe that much more powerful techniques than
those currently used in the SCA community are applicable and
achieve higher accuracies. Unfortunately, our results do not
reveal a single method as the best performing one. Still, this is
to be expected, since the “No Free Lunch” theorem also holds
for feature selection. We emphasize that the Pearson correla-
tion is rarely the most successful technique for feature subset
selection, which is a common choice for feature selection in
the SCA community. When considering GE results, we empha-
size the linear SVM hybrid method and L1 regularization
wrapper that performed consistently well for all data sets.
This is especially interesting, since L1 regularization did not
perform the best when considering accuracy and the random
delay and AES_HD data sets. Generally, feature selection in
the case of “easy” scenarios (e.g., DPAcontest v4) is not the
most important and effective task, but in scenarios with high
noise and even countermeasures (random delay data set), our
techniques may bring significant improvements.

The obtained accuracy results in most cases favor ML-based
feature selection techniques when compared to PCA-based
feature extraction. At the same time, when considering

GE, we see that PCA is never the best technique. Future
work may compare ML-based feature selection with other
dimensionality reduction methods, e.g., SNR metrics [37],
in detail and determine the superiority in specific contexts.
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