
Analysing machine learning
models for reducing the work-
load of security analysts in a
SOC

Maartje Veraart

Analysing machine learning
models for reducing the
workload of security
analysts in a SOC

Maartje Veraart
by

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday March 31, 2022 at 14:00.

Student number: 4393791
Project duration: April 28, 2021 – March 31, 2022
Thesis committee: Dr. S.E. Verwer, TU Delft, daily supervisor

Dr. A. Panichella, TU Delft
J. Helder, KPN, supervisor

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Preface

This MSc thesis describes the work I have conducted at KPN. This thesis ends my career as a student of the
TU Delft. Starting here as a student of the faculty Technology, Policy and Management at the TU Delft I could
not have imagined that I would be where I am now. I will finish my student career as a graduate of the Master
Computer Science, which makes my journey quite special. Looking back, I am very proud of what I have
achieved.
I am both happy and proud to present to you my work on ’Analysing machine learning models for reducing
the workload of security analysts in a SOC’. I would like to thank my supervisor Sicco Verwer for his guidance,
critical attitude and creative ideas. I would also like to thank Jesse Helder for his guidance, explanations
on the workings of the SOC and his ideas on how to improve the SOC. I would also like to thank Annibale
Paninchella for being part of my thesis committee and taking the time to read my thesis.
Finally, I would like to thank my family, friends for their endless support and for encouraging me during this
challenging time.

Delft, March 23, 2022

iii

Abstract

The rise of alarming cyber breaches and cyber security attacks is causing the world to consider the security of
our cyber space. A Security Operations Center (SOC) is a center where the security of a company is monitored
to prevent cyber breaches. Security analysts in the SOC examine alerts that come from different devices and
analyse what is causing these alerts. The SOC receives a high amount of false positive alerts and duplicates.
Therefore security analysts will only react to alerts that seem critical. The problem is that analysts discard
alerts that look like false positives but are actually genuine attacks. To tackle this problem of alert fatigue,
related work has tried to implement machine learning models to reduce the number of alerts. However, the
amount of workload that is reduced is still unsure. We argue that many machine learning models cluster
the alerts that are easy for analysts to assess. This thesis compares traditional machine learning techniques
with the state-of-the-art neural network DeepCASE and computes the amount of work that is reduced for the
analysts. It also compares the machine learning models with a simple heuristic that reduces the duplicates
in the dataset. We also enhance DeepCASE to find more sophisticated attacks. We show that using a simple
heuristic is as good as using an advanced machine learning algorithm. We also show that using the enhanced
version of a state-of-the-art neural network can find more sophisticated attacks.

v

Contents

1 Introduction 1
1.1 Research questions . 2
1.2 Research contribution . 2
1.3 Thesis structure . 2

2 Background 5
2.1 The Security Operations Center . 5
2.2 Machine learning . 9
2.3 Metrics . 10
2.4 Deep learning . 11
2.5 DeepCASE . 13

3 Related work 21
3.1 Different metrics for measuring the performance of security analysts. 21
3.2 Alert reduction techniques . 24
3.3 Conclusion . 25

4 Methodology 27
4.1 Data collection . 27
4.2 Data preparation . 28
4.3 Selected machine learning models . 30
4.4 DeepCASE . 31
4.5 New clustering techniques datasets . 31

5 Data analysis 33
5.1 Data visualisation . 33
5.2 Feature engineering. 34
5.3 Classification . 38
5.4 Conclusion . 39

6 Exploring DeepCASE model 43
6.1 Preprocessing of data . 43
6.2 Metrics . 44
6.3 Results . 44
6.4 Conclusion . 47

7 Creating new algorithms for reducing the workload 49
7.1 Explanation of the datasets and algorithms . 49
7.2 Results . 51
7.3 Conclusion . 56

8 Conclusion and discussion 57
8.1 Discussion . 57
8.2 Conclusion . 58
8.3 Future work . 59

A Heatmap 63

B Sliding windows and cross-validation parameters 65
B.1 State . 65
B.2 False Positive . 65

C Events and context example 67
C.1 Explanation of context vector and event . 67

vii

viii Contents

C.2 Result DeepCASE - confidence threshold 0.2 . 67

D Analysis of the clusters 71
D.1 0.05_cluster_14_number_1 . 71
D.2 0.05_cluster_24_number_1 . 71
D.3 0.06_cluster_3_number_7 . 71
D.4 0.07_cluster_8_number_1 . 71
D.5 0.08_cluster_5_number_1 . 72
D.6 0.08_cluster_13_number_1 . 72
D.7 0.08_cluster_15_number_1 . 72

1
Introduction

The rise of alarming cyber breaches and cyber security attacks is causing the world to consider the security
of our cyber space. As hackers are becoming more skilled every day, the impact of the attacks and cyber
breaches today are more alarming than it ever was before. When a cyber incident occurs within a company,
it causes a significant impact on an enterprise.
The impact of these incidents is both financially damaging as well as damaging for its reputation as large
cyber breaches usually reach the news. For example, the cyber attack in Maastricht in 2019 caused both
financial and reputational damage. Intruders in the system of the University of Maastricht caused a severe
Distributed Denial of Service (DDoS) attack where the whole network of the university went down. This went
viral in the news ánd it paid 220,000 euros to solve this attack 1.
To mitigate the risk of being breached, many enterprises build a Security Operations Center (SOC) to mon-
itor the cyber security of the company and mitigate risk. Several rules are set up on multiple devices in the
network and these rules will be triggered when an event meets the criteria of the rule. This trigger is called an
alert. An example of such a monitoring system is the Intrusion Detection System (IDS), which monitors the
network and detects anomalous behaviour.
One single attack can cause several alerts because alerts can trigger different sensors at the same time [1].
These attacks are responsible for the enormous number of alerts raised in a Security Operation Center. Ana-
lysts that investigate these alerts have difficulties splitting the relevant ones from the ones that can be ignored.
Thereby, there is always a chance that an alert turns out to be a benign activity, which is called a false pos-
itive [2]. A survey by CriticalStart found that false positives are very common in SOCs, where almost half of
the respondents reports a rate of 50% false positives or higher [3]. It is very common that when SOCs get
overwhelmed with alerts, analysts begin to ignore low to medium priority alerts [3]. If the number of false
positives is high, analysts will only react to critical alerts.
Duplicate alerts (alerts from the same attack) and false positive alerts result in so-called alert fatigue. This
creates a hazardous situation, where analysts will be ignoring the least significant alerts. Research conducted
by the Enterprise Strategy Group found that 34% ignore between 26 and 50% of alerts. 20% ignore between
50 and 75%. And 11 % ignore more than 75% of all alerts [4]. Missing alerts have severe consequences, for
example, missing installed malware, not updating security patches and missing intrusions by hackers.
An example of analysts ignoring specific alerts is the Target data breach in 2013. Here 40 million card records
were stolen 2. Target paid 18.5 million dollars for the data breach. The IT team got several alerts from the un-
folding attack. However, the team did not react because previous similar alerts appeared to be false positives.
The team classified these alerts from the actual attack as false positives and thereby ignoring the attack [5].
To avoid the problem of alert fatigue by the security analysts, the number of false positives and duplicate alerts
need to be reduced. The use of machine learning models helps the reduction of these alerts. Ideally, you want
to get only one alert for real attacks and no false positives. Unfortunately, removing all duplicates and false
positives is a difficult task and exist only in an ideal world. This research will measure the performance of
machine learning models and find out if these machine learning methods help reduce alerts.
Most academic works focus on common performance metrics, such as precision, accuracy and the percent-
age of alerts reduced. Using these metrics give an idea of how many alerts are reduced but do not indicate the

1https://portswigger.net/daily-swig/ransomware-attack-maastricht-university-pays-out-220-000-to-cybercrooks
2https://www.nbcnews.com/business/business-news/target-settles-2013-hacked-customer-data-breach-18-5-million-n764031

1

2 1. Introduction

amount of work that is reduced for the analysts.
When a machine learning model has a high percentage of alerts reduced, this indicates that the model can
find false positives and duplicates quite easily but the amount of work that is reduced for the security analysts
is still unsure. We argue that machine learning models cluster the alerts that are relatively easy for analysts to
assess. This study aims to analyse the reduction of the workload of security analysts using machine learning
models. Is it truly helpful to use machine learning models in the SOC? We try to answer this question with
different machine learning implementations.

1.1. Research questions
Having outlined the problem that has been identified, a research question is defined, that aims to answer the
previously defined problem statement. The main research question is:

How can machine learning models be applied in the SOC to reduce the workload of security analysts?

The main research question can be broken down into three sub-questions. First, we identify different metrics
that can be used for measuring the performance of security analysts. Then, we use multiple machine learning
models to try to predict the false positives and duplicates.

Three sub-questions are now defined to answer different aspects of the problem statement. The sub-questions
are:

1. What are existing metrics for measuring performance of security analysts in a SOC?
To answer this question a literature study is done. Different studies are investigated to find the metrics
that are useful for measuring the performance of security analysts. The metrics are compared to each
other and the pros and cons are weighed. The found metrics can be used in the comparison of the
performance of machine learning models.

2. How do existing machine learning methods perform in a SOC?
Different machine learning methods are used. First, classical machine learning techniques are used
to identify algorithms that predict false positives and duplicates. The performance is measured using
different metrics found by the literature study.

3. How do state-of-the-art neural networks perform in a SOC compared to existing machine learning
methods?
The previous question identifies the performance of classical machine learning models. We now use
a state-of-the-art neural network to see how this algorithm is performing in the SOC. These results of
the machine learning models are compared to a state-of-the-art neural network. This question will be
answered by running several experiments and comparing the results using different metrics.

1.2. Research contribution
While other works focus solely on the creation of machine learning models, the focus of this research is the
comparison of machine learning models. The most important research contributions are listed below:

• We show that a simple heuristic performs as good as the current state-of-the-art neural network.

• We introduce a proof-of-concept for improving DeepCASE that correlates clusters and find attacks that
are difficult to cluster.

• We introduce a new metric for measuring the amount correlation of alerts in the SOC.

1.3. Thesis structure
The remainder of this thesis is organized as follows: Chapter 2 introduces the background which is necessary
for the theoretical framework. Chapter 3 describes related work on the topic of measuring the performance
of security analysts and machine learning models in the SOC. Chapter 4 describes the method used to create
machine learning models. Chapter 5 explores the dataset and attempts to predict the false positives and
merged tickets using machine learning models. Chapter 6 implements the method DeepCASE. Chapter 7

1.3. Thesis structure 3

compares the heuristic with DeepCASE and creates a new method for DeepCASE. Finally, Chapter 8 discusses
its limitations, concludes and describes future work.

2
Background

The background gives a background overview of the information that is needed in the report. First, we explain
what a SOC is, what devices are and we explain a challenge in the SOC (Section 2.1). Then, we outline several
machine learning models (Section 2.2). We also explain different metrics for comparing machine learning
models (Section 2.3). Finally, we explain deep learning (Section 2.4) and the state-of-the-art neural network
DeepCASE (Section 2.5).

2.1. The Security Operations Center
A SOC provides a real-time view of the security status of an enterprise [6]. Deployment of a SOC is the best
practice for companies to detect and mitigate cyber security incidents [7]. A SOC is a central system to mon-
itor computer and network activity. Several use cases are developed and if such predefined use cases are
triggered, SOC analysts investigate these alerts to decide if the alerts are risky. SOC analysts are trained to
check if the alerts are false positives or worth investigating. The SOC acts as an intelligent security ’brain’ that
gathers data from all areas of the enterprise.
Security organisations are commonly divided into a red team and a blue team. The red team tries to attack
the organisations to discover weaknesses and vulnerabilities in the network or on devices. In our research,
we only look at the blue team. The SOC goes further than only passive alerting because it takes a proactive
approach to mitigate security events by hunting for threats and searching for weaknesses in the system.
The framework of this defensive side of the SOC is shown in Figure 2.1. Different devices and sensors in
the network are configured to alert unusual or anomalous behaviour. Events are triggered and stored in the
Security Information and Event Management (SIEM) where a rule engine handles these events and triggers
rules whenever unusual behaviour is taking place. There are many rules set on a device that handles data.
When a rule is triggered an alarm is set off. This alert is handled by the SIEM where a more sophisticated
alarm is triggered and sent to the security analyst.
An example of a rule is that a user unsuccessfully tries to log in to a system 50 times in a row within a short
time. A rule is triggered by the device called the Active Directory (AD) (we will later explain how this works)
and the event is sent to the SIEM. The SIEM normalises the event and stores it in its database and it is sent
the ticket to the security analyst.
Now that we have given an overview of the main flow of an event in the SOC, in the next subsections we ex-
plain every subsystem within the SOC in depth. We first begin at the hear of the SOC, the Security Information
and Event Management. Then, we explain several devices that are used in the network. Next, we explain the
role of the security analyst. We conclude the subsection with the challenges in the SOC.

2.1.1. Security Information and Event Management
The Security Information and Event Management (SIEM) collects and analyses events coming from all sources
within a network, such as firewalls, IDS, AD servers, proxies etc [8]. The SIEM collects, normalises and stores
these events.
Each device and sensor in the network is configured to output security events with unusual or anomalous
behaviour. These events configured in the network are all represented in a device-specific format. After
creating an event by the device, the event is sent to the SIEM in a device-specific format.

5

6 2. Background

Figure 2.1: SIEM overview, source:

The events coming from the devices are represented in a device-specific format. An advantage of the SIEM
is that it can correlate the events from different sources by using common attributes and normalising events
to discover meaningful attack patterns. The SIEM can correlate the events from all different devices into a
common format.
After the normalisation of the events, they are forwarded to a security management platform and stored in a
historical database for future look-ups. The security management platform analyses a window of events with
the created rules. The rules in the SIEM allow the correlation of events from different devices. There are two
most used approaches for the creation of the rules of the SIEM. One approach is the use of SIEM developers
such as Splunk, IBM, LogRhythm [9]. The other approach is the creation of rules by the analysts of the SOC
themselves [8].
The difference between events triggered by devices and the alerts triggered by the SIEM is the correlation of
the events in the SIEM. For example, devices will trigger an event if one failed login attempt has been made.
But the SIEM will trigger an alert if the SIEM recognises multiple failed login attempts by the same user within
a specific time window.
After the generation of alerts in the SIEM, the alert is shown to the SOC analysts. The security analysts will
analyse the triggered alert. If the alert is a false positive, the analyst will discard the alert and will continue
acknowledging alerts. On the other hand, if the alert is suspicious and needs more analysis and mitigation
the security analyst will decide what to do next and whom to involve.
A SIEM is an important system within the SOC because it can handle a large number of events coming from
different sources, with different formats. When an enterprise starts growing, the number of devices in the
network will grow together with the number of events. It also increases the need for one main system to
analyse threats. The SIEM can collect a large number of events and store them in a normalised database.
This makes it easier to search through the history of events and use that in today’s threat analysis.

2.1.2. Devices
Ticketing system After the normalisation of events by the SIEM, the alerts that need to be reviewed are sent
to the security analyst. Showing the alerts to the security analyst is mostly done using a ticketing system [10].
The SIEM creates a ticket of the alerts and via the ticketing system, the analyst can examine the ticket. By
using a ticketing system the analysts can track the status of the alert and measure different indicators, such
as the creation time and the response time.

Network IDS Unauthorised activities within the network pose a threat to any kind of information system,
which can be defined as an intrusion. An intrusion is a threat to the confidentiality, integrity or availability of
the information within a system. The goal of a network IDS is to identify different kinds of malicious network
traffic, such that the confidentiality, integrity and availability of the information system can be protected [11].
There are two types of IDS systems: Signature-based IDS and Anomaly-based IDS. Signature-based IDS use

2.1. The Security Operations Center 7

pattern matching techniques to find a known attack and prevent the attack from happening again. When an
intrusion signature matches with the signature of a previous intrusion, the IDS triggers an alarm. The down-
side of signature rules is that they cannot react to zero-day attacks, because it depends only on previous intru-
sions. Anomaly-based IDS create a normal model of computer systems using machine learning, statistical-
based or knowledge-based methods. When a significant deviation between the observed behaviour and the
normal behaviour is detected, an alarm is triggered. It is the strength of Anomaly-based IDS that it can detect
zero-days because abnormal user activity does not rely on a knowledge database. When we talk about an IDS
in this report we mean a Signature-based Network IDS.

AD The AD is a common repository for information about objects that are in the network [12]. It first started
as a centralised domain management. but it became an umbrella title for a broad range of identity-related
services, such as users, endpoints, WiFi access points. The AD is used for identity-related services, such as
authentication and authorisation of users in a Windows domain network. The best-known service that the
AD has is the information about members in the domain is stored and credentials are verified as well as the
access rights of the users.
The AD is a crucial part of the network because it plays part in authentication, access management, account
management and authorisation. A breach in the AD could lead to unauthorised access of malicious actors.
The SOC needs to monitor and alert when suspicious or invalid activities appear in the AD.

2.1.3. Security analyst
To determine where security analysts spend the most time on, we first need to define what security analysts
do and what their tasks are. The SOC has different areas of expertise and all departments have their tasks.
Chandran et al. list the following tasks as the different roles within the SOC [13]. The tasks of the SOC can be
split into multiple Tiers. An overview of the different Tiers is shown in Figure 2.2.

Figure 2.2: Tiers soc analysts [7]

In general, the analyst escalates tickets to a higher Tier and as the Tier level increases, the responsibility of the
analyst increases. In general, the higher the Tier, the analysts have a more specific skill-set, as for the lower
Tiers, their skill-sets are broad. The duration of resolving a ticket increases in a higher-level Tier because
escalated incidents are more complex.
Below we give a rough overview of the different Tiers in the SOC. It is important to note that there may be dif-
ferences between SOCs of organisations. Or there may be more tiers that perform other tasks, such as tooling,
vulnerability assessment and penetration testing.

The first tier is the one where analysts are monitoring activities within the network and on user devices. The
Tier 1 analyst receives alerts when a specific rule is triggered in the SIEM. For example, when a user tries to
perform SQL injection on a website. These analysts are responsible for determining whether the alerts are
real threats, and if so, they will escalate the alert to the Tier 2 analyst. The Tier 2 analyst performs an in-depth

8 2. Background

analysis of the incidents escalated by the Tier 1 analyst. The analyst collects data, performs malware analysis
and scans the affected systems to measure the threat level of the incident. A Tier 3 analyst has experience
with penetration testing tools, data visualisation and scans for vulnerabilities in the systems and network.
The Tier 3 analysts join the Tier 2 analysts when major incidents occur.

Next to the Tier analysts, there are other tasks and teams in the SOC that cannot be classified in a Tier. The
engineering team is responsible for providing and supporting the SOC with the necessary hardware and soft-
ware infrastructure. The team makes sure that the SIEM is fed with the data coming from the sensors. They
will troubleshoot the performance issues in the infrastructure. Furthermore, an intelligence team will provide
information on threats that might affect the organisation, for example, when a new vulnerability in a software
system has been discovered or a new IP address that is likely to communicate with Command and Control
servers.
The focus of this research is on the tasks of the first Tier analyst of the SOC.

2.1.4. Challenges in the SOC
We will review our example with the unsuccessful login attempts in Section 2.1.1. The SIEM triggers an alert
when there are more than 50 times in a row within a short period. This rule identifies a problem in the SOC
that is quite difficult for security analysts. This alert can be triggered by two actions:

• A malicious actor performs a brute-force attack on a system (True positive).

• An automatic service attempts to log in a user by using an old password (False positive).

Both of these explanations could be the reason of the alert and it is hard to define rules that only triggers the
alerts that are harmful for the organisation. Acknowledging the false positives in the system is quite time-
consuming and inefficient and the existing false positives make it difficult for a SOC analyst to distinguish
the harmful alerts from the not harmful ones. Ideally, you want to filter out the false positive alerts by using
specific rules. The rules that trigger the alerts need to be accurate enough that the false positives are distin-
guished from the true positives.

We examine a use case for the SOC, to give an in-depth explanation. We want to trigger an alert whenever
a brute force attack is taking place but we do not want any invalid attempts by users. The rules that trigger
the alerts need to be specific enough that the alerts will rule out the false positives. Let’s say that a computer
needs 1 second to guess one password. Although this is far too slow for modern computers, it is only an
example. The human can fill in a password 1 time per 10 seconds. We have specified the use case and we
need a rule that only alerts the brute-force attack. In Table 2.1 different rules are explained.

Table 2.1: Example alerts

Access attempts Time frame
Rule 1 Alert when there are 3 access attempts Too broad
Rule 2 Alert when there are 10 access attempts Within 1 second Too narrow
Rule 3 Alert when there are 10 access attempts Within 1 minute Good

Rule 1 in Table 2.1 shows an example of a rule that will trigger an alert when there are 10 invalid login attempts.
This alert will cause many false positive attempts because humans may fill in an invalid password 3 times in
a row. Next to that, the rule did not specify a time frame making the rule far too broad.
Rule 2 shows a rule that can be too narrow. An alert is triggered when there are 10 access attempts within
1 second. In our example, a human, as well as an automated process by an attacker, is not able to fill in a
password 10 times in a row within 1 second. Then we can say that rule 2 is far too narrow for our example and
the rule needs to be re-visioned to create a better rule for our use case.
The last rule, rule 3, is specific enough. A human is not able to fill in a password that fast because. In our
example it will take 10x10 seconds for the human. The brute-force attack is on the other hand triggered by
the rule because it takes a computer 10 seconds to complete the brute-force attack.
What we show here is that the creation of a rule is an iterative process. The example we have shown is simple
but it can get quite difficult. The analysts that create rules begin at a rule that is broad and results in many
false positives. The analyst will look at how the rule can be narrowed down to only the necessary alerts. It is

2.2. Machine learning 9

often seen that rules need to be re-visioned a few times until only the true positives are triggered. This means
that rule creation is a time-consuming process, as the rules may not produce too many false positives and
may not miss any true positives.
In an ideal world, a security analyst sees no false positives and all harmful events that need to be seen are
triggered. However, a perfect world does not exist and there needs to be a right balance of a low number of
false positives a low number of missed true positives.

2.2. Machine learning
Machine learning focuses on the process of learning from the surrounding environment and using input
data to produce a particular outcome [14]. The algorithms can automatically alter the model, such that they
become better at achieving the desired task.

2.2.1. Supervised vs unsupervised
Machine learning can generally be grouped into two categories, supervised and unsupervised learning. In a
dataset, machine learning models are represented using a set of features. When a machine learning model
is supervised the data is given with known labels. In contrast to supervised learning, unsupervised learning
instances can learn to identify patterns themselves and no labels are needed. For the machine learning tasks,
we only use supervised learning techniques.

2.2.2. Classification
Classification uses a model that is trained on data. Classification models are trained to predict a class that has
a binary outcome, for example, malicious or not malicious. Every observation in the dataset has multiple fea-
tures that the model can use to identify patterns or distributions. The aim is to label the unseen observations
in the dataset.

2.2.3. Naive Bayes classifier
The Naive Bayes classifier is a logical approach that uses the foundation of the Bayes’ theorem for classifica-
tion [15]. The conditional probability is the probability of an event happening when it has a relationship with
another event. We will try to find a probability for event A given that B is true. For example, the probability of
getting breached given that you have a vulnerability in your computer system.
The following formulas will explain Bayes’ theorem.

P (A | B) = P (A∩B)

P (B)
(2.1)

The same holds for P(B | A):

P (B | A) = P (A∩B)

P (A)
(2.2)

From the last formula we can derive that:

P (A∩B) = P (B ∩ A)P (A) (2.3)

Then Bayes theorem is:

P (A | B) = P (B | A)P (A)

P (B)
(2.4)

Calculating the probability of A given B can be used for training the data for the prediction of a class. Variable
A is the class label that needs to be predicted and variable B is the feature that we have information of. The
formula will be applied to the training dataset. In general, we will need to find P(Ai |Bi) for every Ai in A and
Bi in B. By calculating the probability of A given B, we can predict the outcome for every A in the test dataset.

2.2.4. Decision tree classifier
The Decision Tree classifier is described in a tree structure [16]. The tree consists of a root node, the internal
nodes and the leave nodes that have no child nodes in the tree. When classifying a data sample the tree is
used to classify the sample into a class using multiple decision functions in sequence. The algorithm begins

10 2. Background

at the top of the tree and for each node, the algorithm picks the best path. The algorithm is done when it
reaches the leaf node which represents one class.
The methods for identifying the attributes in the nodes in each level are the Gini impurity and Information
gain. There are multiple ways to select the attribute for the node. The most used variant for attribute selection
is the Gini index.

Gini Impurity The Gini Impurity is a metric to measure how often a randomly chosen element would be
incorrectly predicting a label. The best performing Gini Impurity is chosen for the next node.

Gi ni = 1−
N∑

i=1
pi (1−pi) (2.5)

where p is the probability of i.

Information Gain The Information Gain is calculated using the concept of information entropy. It can be
thought of as the amount of information in a dataset.

Entr opy =−
N∑

i=1
pi l og2pi (2.6)

For every branch of a feature, the entropy is calculated. If the entropy’s are known for the branches, the quality
of the split can be calculated by weighing the entropy of each branch by the number of elements. We want
the Information Gain that is as high as possible, then it will remove the most information from the dataset.

2.2.5. Random forest classifier
A Random Forest classifier consists of many decision trees on randomly selected data samples [17]. Each
decision tree uses a subset of all features of the dataset. After the generation of the decision trees, each tree
votes for each predicted result. The prediction with the most votes is the final prediction.

2.3. Metrics
The machine learning classifiers that are explained in the previous paragraphs need to be evaluated using
different metrics. We will define multiple metrics that are used while building such learning models. The
different metrics explained are accuracy, precision, recall and Receiver Operating Characteristic curve (ROC-
curve) and Area Under the Curve (AUC).

2.3.1. Accuracy
When building classifiers the first classification metric that is widely used is accuracy. Accuracy is the met-
ric to define the proportion of correct predictions, both True Positives and True Negatives among the total
number of cases examined [18]. The equation of calculating the accuracy is shown below where TP is true
positive, TN is true negative, FP is false positive and FN is false negative.

Accur ac y = T P +T N

T P +T N +F P +F N
(2.7)

2.3.2. Precision
While accuracy is the metric that is widely known in the learning field, it has its drawbacks because it is only
useful when the dataset is balanced with an equal number of positives and negatives [19]. We present another
set of metrics that can extend the metric accuracy. Precision is the fraction of the predicted true positives that
are true positive [20]. Precision is a good metric when the cost of having false positive is high, for example
in a spam filter no benign emails must end up as spam in the spam e-mail box. Below is the formula of the
Precision metric.

Pr eci si on = T P

T P +F P
(2.8)

2.3.3. Recall
Recall calculates how many of the actual true positives are correctly captured as positive by the model [20].
Recall is a good metric when the cost of having false negatives is very high. This is quite important for our

2.4. Deep learning 11

example because leaving threats in the network undetected increases the risk of an adversarial intruding in
the network. Below is the formula of the recall metric.

Recal l = T P

T P +F N
(2.9)

The metrics explained above hold that the highest possible value is 1 and the lowest possible value is 0.

2.3.4. ROC
The ROC curve plots two parameters: True Positive Rate (TPR) and False Positive Rate (FPR).
TPR is defined as:

T PR = T P

T P +F N
(2.10)

FPR is defined as:

F PR = F P

F P +T N
(2.11)

The ROC curve plots the TPR vs. FPR at different classification thresholds. The curve prints different outputs
at the classification thresholds and show them in a graph. An example is shown in Figure 2.3.

Figure 2.3: Example ROC curve

To evaluate the ROC curve the AUC is measured. The AUC measures the area underneath the ROC curve. A
higher AUC means that the curve is better compared to a lower AUC.

2.4. Deep learning
Deep learning is a sub-field of machine learning methods and works with algorithms inspired by the structure
of the brain [21]. For this work, activation functions, the recurrent neural network, the encoder-decoder
framework the attention mechanism and the loss function is explained. We use these techniques because
they are helpful for the algorithms that DeepCASE uses, which is explained in Section 2.5 this section.
The neural network is a collection of simulated neurons of the brain. The neuron can pass electrical signals,
to other parts of the brain. This way the brain can pass on bits of information to another part of the body.

2.4.1. Activation functions
A neuron has a threshold and an impulse must exceed that threshold to initiate the impulse. This is how the
activation function in artificial neural networks can be explained as well. An activation function defines if

12 2. Background

a neuron is activated or not given a set of inputs. An example is the Rectifier Linear Unit (ReLU), which is
defined as the positive part of the input. This means that the input can only be 0 or higher. The following
equation is used for the ReLU function:

φ(v) = max(0, x) (2.12)

where x is the input to a neuron. When an input is 0 or less than 0, the output of the neuron is 0. When the
output is greater than 0, for example, 5, the output of the neuron is 5.
In our research, we use the softmax function in many parts of the research. The softmax function normalises
a vector that sums to 1, such that they can be interpreted as probabilities. It is often used as the last activation
function to normalise the output of a neural network. The output values of the neural network represent the
probabilities as a sum to 1. The following function is used for the softmax function:

σ(z)i = ezi∑K
j=1 ez j

for i = 1, . . . ,K and z = (z1, . . . , zK) ∈RK (2.13)

It applies the standard exponential function to each element zi and normalises it by dividing it by the sum of
all exponentials.

2.4.2. Recurrent neural network
A recurrent neural network (RNN) can be used to process sequence data because they allow previous outputs
to be used as inputs and have hidden states [22]. The network can be used for sequential and temporal
problems, such as language translation, natural language processing and speech recognition. In our research,
this is very useful for dealing with time-series data and alert title processing.
While traditional deep neural networks, such as feedforward neural networks, assume that inputs and out-
puts are independent of each other, outputs of recurrent neural networks are dependent on their previous
data point. As shown in Figure 2.4 a regular RNN has sequential connections between the hidden states and
every input is the output from the previous hidden state.

Figure 2.4: Recurrent Neural Network, adapted from [23]

A traditional RNN is a network that consists of a hidden state h and an output which operates on a variable-
length sequence x = (x1, ..., xt). At each timestep, the RNN uses an activation function f, such as SoftMax or
ReLU to calculate the output of the hidden state, which is used as input for the next state. The formula for
creating the network is shown below:

h〈t〉 = f
(
h〈t−1〉, xt

)
(2.14)

2.4.3. Encoder-decoder framework
The encoder-decoder framework is useful for encoding a variable-length input sequence into a fixed-length
vector representation [24]. The encoder-decoder framework is widely used in machine translation and speech
recognition. The encoder encodes the length to a fixed-length vector and the decoder can decode the fixed-
length vector back to the variable-length sequence. This is useful for the alerts that come in through the
ticketing system and are not all of the same length.
In Figure 2.5 is the framework for the encoder-decoder architecture visualised. At every step, the RNN hidden
state ht−1 is used from the previous step together with the input xt to generate the new hidden state ht with
the next sequence.
The encoder summarises the entire input sequence. First, the encoder reads the variable-length input se-
quence. At each time step, the network will take one token of the input sequence. The hidden state of the

2.5. DeepCASE 13

Figure 2.5: encoder-decoder framework, obtained from []

output of the RNN is used as input for the next RNN. The resulting hidden state of the encoder is a summary
c of the whole input sequence. The intermediate hidden states are discarded. The output of the encoder
encapsulates the input sequence as a whole, which is called the encoder vector.
The final states of the encoder are the initial states of the decoder. The decoder predicts at each time step t
the output yt . The output of the prediction is compared to the actual outcome. By this means, the decoder
model learns the true output.

2.4.4. Attention mechanism
A drawback of the encoder-decoder model is its inability to extract strong contextual relations when sen-
tences are quite long. To improve the encoder-decoder model the attention mechanism is introduced by
Bahdanau et al [22]. The intuition of the attention mechanism is that solely the crucial parts of the sequence
will be paid attention to.
The encoder is similar to the original encoder-decoder model. Instead of computing a single-fixed vector
summary of the input, it now develops a context vector for each output time step.
The decoder is slightly different as well because it decides which parts of the context vector will be paid
attention to. The decoder still trains to predict the next item, if you give it the context vector and the previously
predicted tokens. The decoder calculates an alignment model. The alignment model scores how well each
encoded input matches the current output of the decoder. A softmax function is used to normalise the output.
These so-called alignment weights indicate the likelihood of each token to be relevant for the current output.
These alignment weights will be multiplied by the encoder outputs. If the score of an input element is closer
to 1, the effect is highlighted.

2.4.5. Loss
The decoder in the previous paragraphs trains on predicting the correct token. To measure the difference
between the probability distribution of the predicted event and the actual event the loss is calculated. Here
the Kullback-Leibler divergence is used as loss [25].
The Kullback-Leibler divergence is formally defined as

DK L(p∥q) =
N∑

i=1
p (xi) log

(
p (xi)

q (xi)

)
(2.15)

where p(x_i) is the true distribution for event x and q(x_i) is the predicted distribution of event x. The in-
tuition here is that when p(x) is large and q(x) is small, the divergence is large. When the two have equal
probabilities, the divergence is closer to zero.

2.5. DeepCASE
The previous section is relevant for the model that we will explain next because it uses the encoder-decoder
framework with an attention-based mechanism for contextual analysis and clustering of security events. Van
Ede et al. implemented a semi-supervised analysis of security events with the main goal to reduce the num-

14 2. Background

ber of alerts that security analysts are receiving from the SIEM [26]. The idea behind this tool is that besides
examining the security event itself, it is also necessary to analyse the security events preceding it. The re-
search claims that it can reduce the manual workload of security analysts by 90.53%.

A high-level overview of a SOC with a DeepCASE implementation can be seen in Figure 2.6. First, the data
is sent to a network security monitor or IDS. This system will handle the vast amount of packets and send
the packets that are flagged as malicious to the DeepCASE tool. Normally, when security-relevant events are
detected, a security analyst would receive this event and investigate the event as one single security incident.
DeepCASE adds a new element in-between the device and the SOC. This intermediate step can be seen in
Figure 2.6. Each event is analysed in the context of preceding events and the goal is to correlate relevant
events that are similar. After sending the alert through the algorithm, the tool presents a piece of the cluster
to the security analyst that can mitigate the alert.

Figure 2.6: SOC with DeepCASE

2.5.1. Model
Using the overview in Figure 2.7 we will go through each step in the model.

Figure 2.7: Overview of DeepCASE algorithm

First, the algorithm creates sequences of security events by grouping them per device. To reduce search space
for relevant contextual events, DeepCASE takes a sliding window for each different device and a maximum
time difference between each event and its context. They used a sliding window of 10 and a time difference
between the event and its context of t = 84,600 seconds (1 day). The last event is the actual event that is
coming in, the events before the event are called the context.
As an example we show a sequence with a sliding window of 3 below:

|−−−−−−−−Sequence−−−−−−−−|
| − −Context − −| | − Event − |
[1 , 2 , 3] −−> 4
[4 , 5 , 3] −−> 4
[6 , 7 , 3] −−> 4

After the creation of the sequences per device, we will use these event sequences in the Context Builder. Fig-
ure 2.8 gives an overview of the network architecture of the Context Builder. The aim is to identify relevant

2.5. DeepCASE 15

contextual events by building an attention vector. This idea that an attention mechanism is used is borrowed
from the natural language processing domain, which is similar to our problem, as alerts are titles that have
textual descriptions and are of variable length. Attention is used to focus a neural network on identifying
relevant parts of a sequence. DeepCASE uses the approach of an encoder-decoder construction, explained in
Section 2.4.3, in combination with an attention mechanism in Section 2.4.4.

The encoder builds a recurrent layer for each contextual event, which will together form an abstract single
vector, which is called the context event.
Second, in the attention decoder, the context vector is transformed into an attention vector. This attention
vector represents the degree to which each corresponding context event contains information regarding the
security event.

In the event decoder, we train a neural network to predict the next event in the sequence, such that it can be
used to assign attention to the relevant parts of the contextual event. Because relevant context events give a
higher attention score than irrelevant events, a neural network must be able to predict the following event,
given the context events weighed by the attention vector. The event decoder takes the embedded context
events and weighs them with the attention vector by using element-wise multiplication. The probability dis-
tribution over all possible events is now given.

What we want to achieve is to train the Context Builder to learn to calculate the attention vector. We are
not interested in predicting the event itself as this is already known but we are interested in calculating the
attention vector. After training the prediction of the next event, we can use the same model to calculate the
attention vector, using contextual events with the next event.

Figure 2.8: Context builder

The output of the predicted event is compared with the desired next event. While fitting the model in the
Context Builder the generated output e_i needs to be compared to the desired output e_i through a loss. The
loss function that is used here to calculate the loss is the Kullback-Leibler divergence [25].

Third, the interpreter groups the sequences into clusters, based on the total attention for each distinct event
in a sequence. The interpreter uses the total attention to compare different sequences. The idea here is that
event sequences with similar attention values for the same events are treated the same way by security ana-
lysts. This only makes sense if the correct event was predicted.

By combining the attention vector with the corresponding events, the sequences with similar attention vec-
tors can be grouped into a cluster. Two clusters are similar if the distance function is smaller than the thresh-
old ϵ=0.1. The distance function that is used here is the L1-distance given in Equation 2.16.

16 2. Background

d(x, y) = ∥x − y∥1 =
m∑

i=1

∣∣xi − yi
∣∣ (2.16)

After the creation of these clusters, these are either evaluated by the security analyst in what they call manual
mode or semi-automatic mode. In the manual mode, each cluster is presented to an analyst who decides
how the cluster should be treated. These clusters are stored and can be used in the semi-automatic mode by
comparing new clusters with previously classified clusters and automatically warning the analyst in case a
sequence matches a known malicious cluster.

2.5.2. Toy example
To explain the intuition of the DeepCASE model a toy example is used. Below are sequences shown from
the dataset, with the context and the next event. We want to create clusters that show how the attention is
calculated and the cluster is created. We outline several examples that will be used in the DeepCASE model.
We explain the examples and their results below.

Sequence in place First, we use sequences that end with 3 and 4. This will be in place and the numbers in
the rest of the numbers in the sequence are chosen at random.
The attention decoder will generate the attention vector. From the example, we see that the context event
with the highest value is 3. We can simply say that this event has more weight. Our attention vector for the
cluster looks as follows:

|−−−−−−−Sequence−−−−−−|
| Context | | − Event − |
[1 , 7 , 3] −−> 4
[1 , 2 , 3] −−> 4
[8 , 0 , 3] −−> 4
[7 , 7 , 3] −−> 4
[0 , 2 , 3] −−> 4
[4 , 8 , 3] −−> 4
[0 , 9 , 3] −−> 4
| Context | | − Event − |
|−−−−−−−Sequence−−−−−−|

[0 .0022 , 0.0046 , 0.9932]
[0 .0027 , 0.0029 , 0.9944]
[0 .0024 , 0.0019 , 0.9958]
[0 .0042 , 0.0037 , 0.9921]
[0 .0027 , 0.0013 , 0.9960]
[0 .0028 , 0.0015 , 0.9957]
[0 .0020 , 0.0076 , 0.9905]

In the event decoder, the attention weights can be used to learn to predict which event comes next. This
is done by multiplying the context vector to the attention weights. From this example, we can see that the
attention vector is highest for all events that have a 3. Using simple math we can conclude that the first two
context vectors are ruled out and the third context has all the attention. The model has learned now that
when a 3 is in the sequence, the 4 is the next event.

Sequence not in place DeepCASE also recognises that the number is in the sequence but not at the same
place. This can be seen in the next example. We shuffled the number 3 throughout the tables but we made
sure that 4 is always in the same place. See for example the following sequence:

|−−−−−−−Sequence−−−−−−|
| Context | | − Event − |
[7 , 3 , 9] −−> 4
[3 , 6 , 2] −−> 4
[3 , 6 , 1] −−> 4

2.5. DeepCASE 17

[1 , 5 , 3] −−> 4
[3 , 7 , 6] −−> 4
[7 , 6 , 3] −−> 4
[3 , 6 , 7] −−> 4
[3 , 9 , 5] −−> 4
[8 , 1 , 3] −−> 4
[2 , 3 , 5] −−> 4
[8 , 1 , 3] −−> 4
| Context | | − Event − |
|−−−−−−−Sequence−−−−−−|

Then we have the following attention vector:

[0 .0451 , 0.9528 , 0.0021]
[0 .9951 , 0.0021 , 0.0028]
[0 .9910 , 0.0021 , 0.0069]
[0 .0072 , 0.0022 , 0.9906]
[0 .9638 , 0.0340 , 0.0022]
[0 .0453 , 0.0023 , 0.9525]
[0 .9640 , 0.0023 , 0.0338]
[0 .9954 , 0.0023 , 0.0022]
[0 .0043 , 0.0049 , 0.9909]
[0 .0030 , 0.9947 , 0.0023]
[0 .0043 , 0.0049 , 0.9909]

We can see here that the location of the number 3 is not important for DeepCASE. The attention vector gives
the attention to the most relevant part of the sequence. After learning the next event, the model knows that
when a 3 is in the sequence, a 4 comes next.

Multiple events in sequence in-place We can also show that when multiple events in one sequence are
repeated, the attention vector has difficulty paying attention to all the important events. As can be seen in
the next example, the most attention is given to the last event, but the second event also is present in every
sequence.

−−−−−−−Sequence−−−−−−|
| Context | | − Event − |
[0 , 2 , 3] −−> 4
[7 , 2 , 3] −−> 4
[5 , 2 , 3] −−> 4
[1 , 2 , 3] −−> 4
[1 , 2 , 3] −−> 4
[6 , 2 , 3] −−> 4
[0 , 2 , 3] −−> 4
[7 , 2 , 3] −−> 4
[0 , 2 , 3] −−> 4
[7 , 2 , 3] −−> 4
[5 , 2 , 3] −−> 4
[8 , 2 , 3] −−> 4
[9 , 2 , 3] −−> 4
[8 , 2 , 3] −−> 4
| Context | | − Event − |
|−−−−−−−Sequence−−−−−−|

[0 .0022 , 0.0027 , 0.9951]
[0 .0019 , 0.0028 , 0.9953]
[0 .0053 , 0.0025 , 0.9922]
[0 .0039 , 0.0024 , 0.9937]
[0 .0039 , 0.0024 , 0.9937]

18 2. Background

[0.0045 , 0.0025 , 0.9929]
[0 .0022 , 0.0027 , 0.9951]
[0 .0019 , 0.0028 , 0.9953]
[0 .0022 , 0.0027 , 0.9951]
[0 .0019 , 0.0028 , 0.9953]
[0 .0053 , 0.0025 , 0.9922]
[0 .0018 , 0.0029 , 0.9953]
[0 .0018 , 0.0027 , 0.9956]
[0 .0018 , 0.0029 , 0.9953]

Multiple events in sequence random This also holds for when these events are placed at random. In the
example, we randomly shuffle 2 and 3. We even place the 3 before the 2. Similar to the previous example, the
attention vector assigns attention to the 3 in the sequence.

|−−−−−−−Sequence−−−−−−|
| Context | | − Event − |
[2 , 3 , 0] −−> 4
[1 , 2 , 3] −−> 4
[3 , 1 , 2] −−> 4
[3 , 0 , 2] −−> 4
[3 , 2 , 0] −−> 4
[2 , 3 , 8] −−> 4
[2 , 9 , 3] −−> 4
[2 , 3 , 8] −−> 4
| Context | | − Event − |
|−−−−−−−Sequence−−−−−−|

[0 .0019 , 0.9958 , 0.0023]
[0 .0024 , 0.0017 , 0.9960]
[0 .9961 , 0.0020 , 0.0019]
[0 .9957 , 0.0023 , 0.0020]
[0 .9953 , 0.0020 , 0.0027]
[0 .0018 , 0.9966 , 0.0017]
[0 .0018 , 0.0022 , 0.9960]
[0 .0018 , 0.9966 , 0.0017]

Similar events Another example we can show is when all events are similar. In the next example, we can
see that 0 is the event and 1 is the padding event. We would expect that the attention in each attention vector
is equally divided because the events are all similar but this is not the case.

|−−−−−−−Sequence−−−−−−|
| Context | | − Event − |
[1 , 1 , 0] −−> 0
[1 , 0 , 0] −−> 0
[0 , 0 , 0] −−> 0
[0 , 0 , 0] −−> 0
[0 , 0 , 0] −−> 0
[0 , 0 , 0] −−> 0
[0 , 0 , 0] −−> 0
[0 , 0 , 0] −−> 0
[0 , 0 , 0] −−> 0
[0 , 0 , 0] −−> 0
[0 , 0 , 0] −−> 0
| Context | | − Event − |
|−−−−−−−Sequence−−−−−−|

2.5. DeepCASE 19

[0.0043 , 0.0046 , 0.9911]
[0 .0056 , 0.4838 , 0.5105]
[0 .2771 , 0.3463 , 0.3766]
[0 .2771 , 0.3463 , 0.3766]
[0 .2771 , 0.3463 , 0.3766]
[0 .2771 , 0.3463 , 0.3766]
[0 .2771 , 0.3463 , 0.3766]
[0 .2771 , 0.3463 , 0.3766]
[0 .2771 , 0.3463 , 0.3766]
[0 .2771 , 0.3463 , 0.3766]
[0 .2771 , 0.3463 , 0.3766]

Removing the event with the most attention It would be interesting to see if the events that have the high-
est attention is removed, the second time that DeepCASE is run, would give a different result and can find the
rest of the sequence. We explore this using 2 and 3 in the context and 4 as the event.

|−−−−−−−Sequence−−−−−−|
| Context | | − Event − |
[0 , 2 , 3] −−> 4
[7 , 2 , 3] −−> 4
[5 , 2 , 3] −−> 4
[1 , 2 , 3] −−> 4
[1 , 2 , 3] −−> 4
[6 , 2 , 3] −−> 4
[0 , 2 , 3] −−> 4
[7 , 2 , 3] −−> 4
[0 , 2 , 3] −−> 4
[7 , 2 , 3] −−> 4
[5 , 2 , 3] −−> 4
[8 , 2 , 3] −−> 4
[9 , 2 , 3] −−> 4
[8 , 2 , 3] −−> 4
| Context | | − Event − |

|−−−−−−−Sequence−−−−−−|
[0 .0057 , 0.0016 , 0.9927]
[0 .0038 , 0.0022 , 0.9940]
[0 .0030 , 0.0021 , 0.9949]
[0 .0030 , 0.0024 , 0.9946]
[0 .0030 , 0.0024 , 0.9946]
[0 .0026 , 0.0026 , 0.9948]
[0 .0057 , 0.0016 , 0.9927]
[0 .0038 , 0.0022 , 0.9940]
[0 .0057 , 0.0016 , 0.9927]
[0 .0038 , 0.0022 , 0.9940]
[0 .0030 , 0.0021 , 0.9949]
[0 .0021 , 0.0027 , 0.9952]
[0 .0032 , 0.0021 , 0.9946]
[0 .0021 , 0.0027 , 0.9952]

With the knowledge that 3 has the most attention, we remove all 3’s from the dataset to find out if the 2 will
be having the most attention. Hereby we remove one item from the sequence length because if we remove
the 3, the following context vector will be formed: [4, random, 2]. Thus, removing 3 from the dataset creates
an unwanted pattern. This is not supposed to and therefore we only use 2 context events.

|−−−−−Sequence−−−−−|
| Context | | − Event − |

20 2. Background

[0 , 2] −−> 4
[7 , 2] −−> 4
[5 , 2] −−> 4
[1 , 2] −−> 4
[1 , 2] −−> 4
[6 , 2] −−> 4
[0 , 2] −−> 4
[7 , 2] −−> 4
[0 , 2] −−> 4
[3 , 2] −−> 4
[5 , 2] −−> 4
[8 , 2] −−> 4
[9 , 2] −−> 4
[8 , 2] −−> 4
| Context | | − Event − |
|−−−−−Sequence−−−−−|

[0 .0036 , 0.9964]
[0 .0050 , 0.9950]
[0 .0047 , 0.9953]
[0 .0035 , 0.9965]
[0 .0035 , 0.9965]
[0 .0058 , 0.9942]
[0 .0036 , 0.9964]
[0 .0050 , 0.9950]
[0 .0036 , 0.9964]
[0 .0037 , 0.9963]
[0 .0047 , 0.9953]
[0 .0034 , 0.9966]
[0 .0036 , 0.9964]
[0 .0034 , 0.9966]

We can see here that after removing the 3 in the dataset, the model will know that the 2 has the most attention.

In conclusion, we have seen that the model correctly clusters the events when the events have obvious pat-
terns. The model correctly clusters the events despite the position of the most important event of We have
also seen that the model has more difficulty dividing attention to the important context events when there
are more patterns in the context. It was shown that when 2 and 3 are in every sequence, the last event would
have the most attention. After removing the context event with the most attention, the other event that was
in every sequence has now all the attention.

3
Related work

The purpose of this research is to try to give an idea of the performance metrics in a SOC and to compare
different machine learning models that reduce security alerts. For this research, there are two relevant fields
of work. First, in Section 3.1 related work is explained that define metrics for measuring the performance of
security analysts. Most of these works discuss several challenges in the SOC as well. Second, in Section 3.2
we analyse different tools to reduce the number of alerts for security analysts and discuss which tools are
relevant for our research. These tools can be divided into two subcategories. The first is the clustering of
tickets that come from the same attack type. The second is the removal of false positives.

3.1. Different metrics for measuring the performance of security analysts
In this section, an outline of different works on measuring the performance of security analysts in a SOC is
given. We define what metrics exist and what problems arise using these metrics. We also define different
challenges in the SOC.

3.1.1. Early work on metrics in cyber security
Early work on the metrics and measures of cyber security cover the difference between measure and metrics
[27]. A measure is a concrete, objective attribute, whereas a metric is an abstract, subjective attribute. Metrics
can be approximated by an analyst, by collecting and analysing groups of measures. They state that metrics
have different purposes in the SOC. It can help organisations verify that security controls comply with poli-
cies, processes and procedures, as well as can identify strengths and weaknesses. While this research solely
defines problems on the use of measures, they do not define new metrics or measures.
Problems that arise are as follows: Measures are often defined imprecisely, the measurement methods are
inconsistently used, the use of qualitative measures can often produce inaccurate or skewed results and the
meaning of measures and metrics changes over time.
It is important to note that the use of measures and metrics are used interchangeably throughout related
work. For consistency, we use the word metric throughout the report as an analysis of the metrics in a SOC.

3.1.2. On challenges and metrics in the SOC
Kokulu et al. discuss several issues in the SOC [7]. One of the problems the work discusses is the issue of the
performance evaluation of the SOC. Current measures appear to be ineffective for measuring the success of
SOCs because alerts have often different severity and consequences.
Kokulu et al. interview both SOC analysts and SOC managers. The opinions about implementing automa-
tion in the SOC are divided. Managers respond that the speed of response will increase by implementing
automation. The analysts worry that the number of false positives and false negatives will increase [7].
About the false positives in the SOC Kokulu et al. state that false positives and false negatives are always a
balancing act [7]. Tuning out the false positives can cause some of the true positives to be missed. Some
analysts mentioned that the use of automation will help to reduce the repetitiveness of the tasks.
The speed of response and level of automation, evaluation metrics, and tool functionality are the top three
controversial issues between analysts and managers. More issues are raised by the experts such as low visi-
bility on devices, insufficient analyst training and high false positive rates.

21

22 3. Related work

The metrics that this paper addresses are as follows:

• Number of incidents, number of vulnerabilities discovered

• Number of tickets per analyst

• Time of ticket creation

• Elapsed time of resolution

• Elapsed time of remediation

• Elapsed time of mitigation

• Number of total tickets that are created and resolved

• Mean detection time

• Mean response time

• Mean time of incident closure

• Time taken to react to an incident

• Number of incidents that are not closed

• Number of known attacks prevented

Agyepong et al. give a systematic review of the challenges faced by SOC analysts and the performance metrics
[28]. Especially the manual and repetitive processes, sophisticated attacks and workloads are a challenge. Via
systematic literature review, they define metrics to measure the performance of the security analyst. The
study observes that devising a useful metric for measuring the performance in the SOC is difficult because
the number of existing metrics is limited.
Using systematic literature review, they find metrics and create a distinction between quantitative and qual-
itative metrics. Our focus is on quantitative metrics. In the research, the following quantitative metrics are
examined:

• Time to detect an incident

• Average time taken to respond

• Number of alerts analysed

• The number of tickets closed per day

• The number of incidents detected within a specific timeframe

• Time spent on operations by the analyst

• Time spent on each ticket

Another work of Agyepong et al. proposes a framework to measure the performance of security analysts [29].
They notice that security metrics that are specific to SOCs is still an open area of research. The study defines
new metrics for measuring the performance including the advantages and the drawbacks. The following
defined metrics are:

• Number of incidents raised by an analyst

• Time taken to detect, respond

• Number of tickets closed

3.1. Different metrics for measuring the performance of security analysts 23

The following advantages and drawbacks of the defined metrics are observed: The number of incidents raised
is how many incidents one analyst raises. The number of tickets closed is closely related to the number of
incidents raised. These metrics are quite easy to implement and analysts get the drive to want to do more. On
the other hand, they do not take into account the difficulty, severity or priority of an incident. Using one of
these metrics an analyst can take up multiple simple alerts and will get approval from its peers and manager,
whereas another analyst will take up one difficult alert and gets a lower score.
Another metric that the work defines is the time taken to detect and respond to an incident. This is useful for
tracking if analysts are taking too long to respond to an incident and to test the analyst’s vigilance. It is diffi-
cult to put a timeline on how quick analysts should identify an incident, as almost all incidents are different.
It can also lead to analysts spending less time on defining the root cause of the incident.

When it comes to assessing the performance of SOCs, the industry generally rely on statistical data generated
from algorithms [30]. The problem is that it fails to take into account the human factor. Sundaramurthy et al.
sell this as a problem because it fails to take into consideration human factors [30]. The authors argue that
the different functions and tasks expected from analysts could be one of the reasons why researchers find it
difficult to devise an objective metric.

The success of the SOC depends on having the right tools and effective and efficient analysts. One of the
issues in the SOC is the high burnout rates of security analysts [30]. This results in analysts making poor
judgements and alert fatigue. They state that metrics can affect the perception that the management has
about the usefulness of the SOC. The metrics they propose are:

• Number of events received per day

• Number of events that were bulk processed

• Number of events left unprocessed per day

• Average time taken to analyse an event

This paper raises concerns about these metrics as well. For example, analysts were concerned that the average
amount of time taken to analyse an alert did not account for the time spent on meetings, operational tasks
and projects. This metric can also not be projected to the actual effort spent in resolving an incident. When
an analyst spends a few hours on a false positive, this will not be calculated as an incident. By this means,
analysts waste time analysing false positives. This is a reason for analysts to discard alerts that look as if they
are false positives.
Automation serves two main purposes in creating a human capital SOC. First, analysts can engage in chal-
lenging and interesting tasks by automating repetitive tasks. Also, the platform could provide analysts to
express their creativity. They can, for example, build more tools to improve the platform.

The goal of Chandran et al. is to take an anthropological approach to address certain problems, such as team
structure, training methodologies and metrics used for measuring SOC efficiency [13]. They state that much
work towards the performance of security analysts is done through interviews in the SOC. However, they are
useful, it is difficult to quantify their performance. There is also an issue of trust that limits the amount of
information an analyst shares, which can create a quite shallow interview. Chandran et al. state that analysts
are spending a few hours on an alert that appears to be a false positive. Current metrics are not able to capture
the effort of the security analysts.

3.1.3. On creating tools for the SOC
Rosso et al. create a tool that enables security analysts to evaluate the performance of deployed SOCs [31].
The tool is called SAIBERSOC and relies on a framework that generates and injects synthetic attacks into a
SOC. The experiment is done with 124 students that have the role of a security analyst. The goal of the project
is to evaluate if the proposed method is effective in identifying differences in the performance of a SOC. They
evaluate the results considering the following variables: the total number of reports submitted, the number
of submitted reports dealing with one attack, the correctness of the submitted reports compared against the
ground truth.
The results show that the methodology is effective in identifying the performance of the SOC. Although they
identify differences in performance, the SOC is in a simulated environment. The students that joined the

24 3. Related work

experiment were already familiar with the specific attacks that were presented to them. In contrast to this
experiment, attacks in a real SOC are not known.

Oesch et al. try to identify concerns in machine learning models [32]. They create attack campaign templates
that contain several attacks. Both experts and students handle the simulated attack incidents. They con-
clude that there exists a lack of sufficient explanation of machine learning concepts. The usability of machine
learning models must be improved to help analysts, who are not experts in machine learning, to know to use
machine learning models.

Jaferian et al. propose multiple heuristics for evaluating the usability of IT security management tools [33].
The heuristics are visibility of activity status, flexible representation of information, rule and constraints,
planning and dividing work between users, capturing, sharing and discovery of knowledge and verification
of knowledge The project validates the effectiveness of the heuristics by using them in an evaluation process.
The results show that no single heuristic can uncover all problems and there must be more heuristics applied
while evaluating the IT security management tools. These metrics however are qualitative and will not be
used in our research.

3.2. Alert reduction techniques
There are two methods for reducing the number of alerts in a SOC. One is the clustering of events that are
from the same attack. The second is the filtering of false positives. We will discuss the related work for both
methods.

3.2.1. Clustering techniques
Haas et al. propose a novel clustering algorithm that uses graphs to find and cluster multiple stages of an
attack in the alerts [1]. Alerts are clustered based on the similarity between alert attributes, such as source IP
and destination IP. Then, the attack patterns among the hosts within each cluster are identified. For example,
one attacker is attacking one victim, or multiple attackers are attacking one victim. Third, when a multi-step
attack is present, clusters of single attack steps are compared based on the communication patterns within
clusters.

Husak et al. [34] present a framework for processing and clustering alerts. The components in the framework
use sequential rule mining and complex event processing. In contrast to other works, the focus of the frame-
work is on real-time stream-based processing of the data.

Hassan et al. present an algorithm to combat threat alert fatigue using contextual and historical informa-
tion of generated threat alerts [35]. It generates a causal dependency graph of an alert event and assigns an
anomaly score, based on the frequency with which related events have happened before. They state that their
system decreases the volume of false positives by 84%. Following, they estimate that this saves time of more
than 90 hours. This result is based on the estimate of the average time analysts analyse one ticket. One ticket
can be more time-consuming than the other ticket. Therefore we do not know how much time the algorithm
reduces.

Van Ede et al. design a system that leverages the context around events to determine which events require
further inspection [26]. They make use of a recurrent neural network that highlights important events in the
history of events. Then, the clusters are presented to the security analyst, who determines whether the com-
bination of events poses a threat to the infrastructure. The model learns this decision and applies it to similar
event sequences found in future events. They show that this approach automatically filters 86.72% of the
events and reduces the workload of security analysts by 90.53%.

3.2.2. Filtering false positives
Meng et al. study the use of supervised machine learning methods to filter false positives in IDS. they con-
struct labelled datasets and use this to train K-Nearest Neighbour, Support Vector Machines, Decision Trees
and Naive Bayes [36]. They manage to filter out more than 80% of false positives.

3.3. Conclusion 25

Jallad et al. [37] study the difference between traditional machine learning models and deep learning models.
They obtain a 10% better false positive rate than a Support Vector Machine.

Aminanto et al. [38] state that the enormous number of threat alerts leads to a severe problem known as
threat-alert fatigue. To combat this problem, they propose a real-time screening scheme based on a fully-
unsupervised isolation forest. Their research contribution is to use an automated screening system that is
fully unsupervised. The system takes temporal information into account and predicts the current day’s data
trained on the previous days. Their results show that they reduced threat-alert alert logs by 87.41% without
missing any true alerts. They do not examine the time reduction of the isolation forest in comparison with
the normal set-up.

3.3. Conclusion
In summary, we have seen some works that outline metrics that measure the performance of security ana-
lysts. We have defined several problems that exist using these metrics and the challenges faced by security
analysts in a SOC. We have defined tools that use machine learning to cluster alerts and reduce false positives.

3.3.1. Metrics
We see throughout the works a need for evaluation of the performance metrics in the SOC. The performance
of security analysts is often done through interviews in the SOC. It is hard to devise useful metrics and appear
to be ineffective for the success of the SOC. The performance metrics are usually hard to quantify, imprecise
and inconsistently used. It is stated that are limited metrics available. The metrics that are stated in the works
are combined and summarised in the following table together with their challenges:

Table 3.1: metrics

Metric Author Challenges

Time to detect an incident [28], [29], [7]
Difficult to define the
starting point of the incident.

Time taken to respond [28], [29], [7]
Can lead to analysts spending less time to
understand the root cause.

Time spent on each ticket [28], [30], [7], [13]
Some tickets take longer than others,
do not take into account the number of false positives.

Number of incidents raised by an analyst [29]
Do not take into account the number of false positives,
do not take into account the complexity of the ticket.

Number of alerts analysed [28] Do not take into account the complexity of the ticket.
Number of tickets closed per day [28], [29], [7] Do not take into account the complexity of the ticket.
Number of alerts received per day [30], [7] Does not measure the performance of analysts.
Number of events left unprocessed per day [30], [7] Some events need answers from others.
Number of tickets created per analyst [7] , [29] Do not take into account the number of false positives.
Number of known attacks prevented [7] Difficult measure.

The metric ’time spent on each ticket’ is used as a measure for examining the reduction of the workload of
the security analysts.

3.3.2. Clustering and filtering false positives
In Section 3.2 we have seen several tools that can be used for clustering events and filtering false positives.
We have seen that several tools use the metric ’percentage of alerts reduced’. Although this can say a lot about
the performance of the tool itself, it does not say anything about the workload reduction for the analyst. The
papers do not have information on the amount of work an individual ticket costs for the analyst.
Thereby, automation in the SOC is often stated as a challenge overall and should be researched on how this
could be applied in the SOC. Automation can remove repetitive processes and create room for analysts to
express their creativity. The problem is that people do not trust automation and worry about the increasing
number of false positives and false negatives. Another problem of machine learning models in a SOC that
arises is that the security analysts are often not experts in machine learning. The usability of the models

26 3. Related work

needs to be improved to help analysts use and understand machine learning models.

3.3.3. Research gap
As best to our knowledge there is no research conducted on the actual workload reduction of alert reduction
tools in a SOC. Previous works assume an average workload per ticket. They define the workload that is
reduced by using this assumption. But there is no knowledge on what tickets costs more time than other
tickets. Therefore, it is unclear what the workload reduction is of the alert reduction tools.
We will use the tool DeepCASE and use it on our dataset, obtained from the SOC, containing information on
ticket processing time. We can use the metric ’time spent on each ticket’ and compare the models with this
metric. Because we have availability of the time on each ticket, we can analyse how much time the models
reduces.

4
Methodology

This chapter describes the methodology for answering if machine learning models can help security analysts
with the reduction of the workload. We describe here how we have collected the data (Section 4.1), prepared
the data (Section 4.2) and what models we will use for our analysis (Section 4.3 and 4.4) .

4.1. Data collection
We collected data from the ticketing system of the SOC of KPN. As explained in the background in Chapter 2
the SIEM correlates events and sends them to the SOC as one ticket. When the SIEM has triggered an alert,
the ticketing system automatically creates a ticket. These tickets are stored and security analysts examine the
tickets. After the analysis of the analyst, the security analyst closes the ticket. The time between the creation
of the ticket and the closing of the ticket is calculated and stored as the ticket duration. We can use this feature
in our model to analyse the performance of different machine learning models.
Next to the ticket duration, the security analysts can check a box when an event is a false positive. In the
following table, the features are outlined.

Table 4.1: Features and their description

Features Description of feature
Title Alert description
Queue Which Inbox the ticket is in, senior investigation or SOC inbox
State merged or closed
Agent Agent that has committed the ticket
Priority Low/Medium/High
Service Name of the system that the alert is about, such as IDS or Windows ATP
Customer Customer
False Positive Checked/Unchecked, analyst checks when the alert is a false positive
Year What year is the ticket created
Quarter Which quarter of the year is the ticket created
Month Which month is the ticket created
Week Which week in the year is the ticket created
Day Which day in the week is the ticket created
24x7 When is the alert generated
Response time (in minutes) Time between ticket creation and first response
Ticket duration (in minutes) Time between ticket creation and closing and merging ticket
Merged Ticket number to where the merged ticket is merged to

4.1.1. Merged tickets
The feature State is a Boolean and can either be merged or closed. The closed tickets signify that the ticket
has been seen for the first time. The merged ticket is a ticket that is from an attack that has been seen before.

27

28 4. Methodology

For example, when someone commits a vulnerability scan and the attacker tries to find vulnerabilities on
multiple devices in the network, different devices can trigger multiple alerts. Security analysts merge these
tickets of the same alert to the first closed ticket. In Table 4.2 is an example shown of alerts that belong
together. In our research, we call these tickets ’duplicate tickets’.
The feature Merged keeps track of where a merged ticket has been merged to. Every ticket has an index and if
a ticket has been merged, this feature will state what the index is of the parent ticket. If the state of the ticket
is closed.

Table 4.2: Example closed ticket with merged tickets

index Title State Merged
1 [Sightline] Host Detection alert #1256406 incoming to IP closed 1
2 [Sightline] Host Detection alert #1256407 incoming to IP merged 1
3 [Sightline] Host Detection alert #1256408 incoming to IP merged 1

4.1.2. Ticket duration time
It is important to note that the duration time of the ticket is not the time that an analyst spends on the ticket.
It is the time that a ticket has not yet been closed or merged. It could be that the analyst is waiting for answers
from other departments or analysts. The dataset gives little information on the actual time that an analyst
spends on one ticket.

4.2. Data preparation
The dataset needs to be altered in a way that it can be used with the machine learning models. In the next
section, we will explain what needs to be modified before using DeepCASE on the dataset. Table 4.3 shows
two examples before all modifications.

Table 4.3: Before modifications

Title Created Queue State Priority Service Customer
[Sightline] Host Detection alert
#1381424 incoming to <IP> done

2021-08-29
11:45:10

SOC Inbox merged 4 high Anti-DDoS Customer KPN

[Sightline] Host Detection alert
#1381425 incoming to <IP> done

2021-08-29
11:45:08

SOC Inbox merged 4 high Anti-DDoS Customer KPN

Table 4.4: Continued

False Positive Year Quarter Month Week Day 24x7
Response time
(in minutes)

Ticket duration
(in minutes)

Unchecked 2021 3 8 34 Sunday Day 3 0
Unchecked 2021 3 8 34 Sunday Day 3 0

4.2.1. Modifications
Now we modify the dataset. First, we remove random numbers in the titles to reduce the differences between
titles that belong together. For example, one title is called [Sightline] Host Detection alert #1381424 incoming
to <IP> done. This detection alert is a DDoS alert, which indicates a DDoS attack on a specific IP address. The
number #1219233 is the specific ID for this alert. The alert is similar to other events that have the same IP
address, but with a different ID, such as the next alert: "[Sightline] Host Detection alert #1381425 incoming to
<IP> done."
The Service column is changed such that every column has its customer. The dataset has more customers,
however, the dataset is not making a distinction between these customers. For example, in the column Ser-
vice Customer 1 is called Siem Extern and this is also the case for Customer 2 where Service is called Siem
Extern. Because these customers are completely different events, there needs to be a distinction between
these customers.

4.2. Data preparation 29

Table 4.5: After modifications

Title Created Queue State Priority Service Customer
[Sightline] Host Detection alert
incoming to <IP> done

2021-08-29
11:45:10

SOC Inbox merged 4 high Customer 1 Customer KPN

[Sightline] Host Detection alert
incoming to <IP> done

2021-08-29
11:45:08

SOC Inbox merged 4 high Customer 1 Customer KPN

Table 4.6: Continued

False Positive Year Quarter Month Week Dag 24x7
Response time
(in minutes)

Ticket duration
(in minutes)

Unchecked 2021 3 8 34 Sunday Day 3 0
Unchecked 2021 3 8 34 Sunday Day 3 0

There are some null values in the dataset as the workflow of the analysts changed over time. At the beginning
of the dataset, we see that the analysts only filled in features such as Service, Customer and False Positive when
an alert is not a merged ticket. This creates null values when the ticket is indeed merged. Assuming that the
merged tickets have the same specifications as their parent ticket, we modify the merged ticket such that it
matches its parent ticket. Later in the dataset, we see that the analysts change the way they operate and they
fill in the information in the merged tickets as well.
In the ticket system, the analyst needs to check themselves if the ticket is a false positive. One setback is that
the analyst does not check the box when the false positive is a merged ticket. We solve this by using the feature
’Merged’ to collect for all merged tickets the parent tickets. When a parent ticket is a false positive, then the
merged ticket needs to be a false positive as well.

4.2.2. Encoding
The dataset contains text and categorical values, for example, the alert title and the day in the week. An
alert title can be for example: ’SERVER-WEBAPP F5 BIG-IP Traffic Management User Interface remote code
execution attempt [1:54484] - Prio: High’. We have to convert these labels from categorical and text values to
numerical values. The conversion is done by using Label-Encoding, One-Hot-Encoding and CountVectorizer.
If the data is ordinal, which means that there is a hierarchy in the data, we use Label-Encoding. Label-
Encoding is a well-known encoding technique because it is the easiest way of encoding a value. The way
Label-Encoding is done is by converting every text value to a number in a sequence [39]. Take for example
the feature Priority. Priority high is 3, Priority medium is 2 and Priority low is 1. The features we convert using
this method are State, Priority, False Positive.

If there is no hierarchy in the data, the data is nominal. Using one-hot encoding is a good alternative for
nominal data [39]. Each categorical value is converted into a value, assigning a 1 or 0 to each value in the row.
Rows containing the value of the column are assigned a 1, otherwise a 0. The downside of this method is that
you add more columns to the dataset. Especially when multiple features have a wide variety of values. For
the features Agent, Day, Queue, Service, 24x7, Customer the one-hot encoding is used.

The alert titles need a different approach. The approach here is to use a vectorizer to deal with natural lan-
guage data. We used the library scikit-learn to do this [40].
We use an easy algorithm that is the Count Vectorizer. The vectorizer creates a matrix that counts all words
and presents every unique word in a column. The row represents the word count in the sentence. When we
have two alerts the matrix looks as follows:

Table 4.7: Count vectorizer

Apache Struts remote code execution attempt class access
Apache Struts remote
code execution attempt

1 1 1 1 1 1 0 0

Apache Struts class
access attempt

1 1 0 0 0 1 1 1

30 4. Methodology

4.3. Selected machine learning models
The techniques we use are machine learning models. First, the classical classifiers are used to predict the
labels. Then a state of the is neural network DeepCASE is used to try to cluster the events based on previous
events.

4.3.1. Machine learning
The models are implemented in Python, using the algorithms from the library scikit-learn [40]. After training
the model, we try to predict two features, the False Positive and State features. To predict the features the clas-
sifiers Naive Bayes Classifier, Decision Tree Classifier and Random Forest Classifiers are used. These models
are widely used in anomaly detection.

4.3.2. Cross-validation
Cross-validation is a statistical method for evaluating and comparing machine learning models. The idea
is that one sample is used for training a model and the other one is used for testing [41]. Multiple cross-
validation methods are available. The method we use is the rolling cross-validation technique [42]. The data
is split into several folds. Every fold is split into a training and test dataset. Starting with a small subset of the
dataset. After the prediction of the test set, this dataset is included as part of the training data in the next fold.
Figure 4.1 shows an example of a 4-fold cross-validation model. The last round includes the whole dataset.

Figure 4.1: Time Series cross-validation. Obtained from medium.com 1

4.3.3. Sliding windows
Sliding windows is a window of a defined size that slides across the dataset. The window contains the number
of instances that the window can hold. In the example, the sliding window is 8 and at every time step, the
window is moved one step to the right.

4.3.4. Hyper-parameters of Models
We use the default parameters that the classifying methods were given. We tune the parameters of the cross-
validation and the sliding windows. The parameter tuning is explained in Appendix B.
In our models, the number of folds that are used is 10 because this was the best of our experiments shown in
Appendix B. The size of the sliding windows is 1.

4.3.5. Evaluation Metrics
Different evaluation metrics are applied to evaluate the results. These are explained in Chapter 2.3. The
metrics most used are accuracy, recall and precision, ROC curve and AUC.

4.4. DeepCASE 31

Figure 4.2: Sliding window

4.4. DeepCASE
The dataset that is applied to the machine learning models is now used in Chapter 6. For the DeepCASE
model, the same dataset is used. The goal is to create clusters that are based on sequences of events on a
device. DeepCASE is written in Python. The MIT licensed code is open-source and can be downloaded by
using the Pip installation manager or from source, from Github: https://github.com/Thijsvanede/DeepCASE.
The overview of the model is displayed in Figure 2.7.

4.4.1. Features in DeepCASE
DeepCASE uses the features Event, Machine, Timestamp. The feature Event is where the information about
the alert is stored. In Section 4.1 is explained that Title is the name of the event is information on the event is
stored. This is our Event feature. The Machine feature is the device for which the event is created. The Service
column is the column where the relation is most similar to this explanation. The Timestamp is evaluated by
the Created column.

4.5. New clustering techniques datasets
In Chapter 7, a new dataset is used. We will still use DeepCASE but there will be multiple stages and multiple
datasets used in this chapter. The first dataset that is used on DeepCASE is directly coming from IDS devices
in the network. These IDS devices have rules installed and whenever a rule is triggered by an event, the event
is forwarded to the Security Information and Event Management where the events will be filtered and format-
ted. This leads to a reduced number of security events sent to the security analyst. This dataset is applied to
DeepCASE to see how many events can be filtered by DeepCASE. This result can be compared to subsequent
datasets, where duplicate events already have been filtered.

After the use of the IDS dataset with many events and many duplicates, we compare this dataset with the IDS
tickets from the ticketing system. Previous chapters use the complete ticketing system dataset. It is important
to note that in this Chapter only IDS tickets from the tickets are used because the IDS tickets of the ticketing
system dataset have information on source IP and destination IP.
This is useful for combining the duplicates, which we will be explaining next. Out of all tickets, the number
of IDS events in this dataset is 7015. This IDS data will be filtered out of the ticket system dataset.
Below we can find an overview of all the datasets.

https://github.com/Thijsvanede/DeepCASE

32 4. Methodology

Table 4.8: Overview datasets

Dataset In Chapter Number of alerts
Ticketing system dataset 5, 6 20,744
IDS dataset 7 9,372,579
IDS - ticketing system dataset 7 7015

5
Data analysis

In this chapter, the tickets are obtained from the KPN SOC. First, different features of the tickets are visualised
and analysed (Section 5.1). Then we give an explanation of the engineering of multiple features for the pre-
diction (Section 5.2). Afterwards, we try to predict different classifiers try to predict when a ticket is a false
positive and when a ticket is a merged ticket (Section 5.3).

5.1. Data visualisation
In the following section, we use different visualisation techniques to deepen our understanding of the ticket
dataset. We hypothesise that the time that it takes for a false positive to process takes less time than the true
positives, as these must be mitigated and sent to different departments within the SOC.
A merged ticket is a ticket that is the same as a ticket that has been alerted before and is merged with the
parent ticket. We argue that these duplicate tickets take less time than the original tickets.

In the heatmap in Appendix A, we see that there are some correlations between features. For example, it can
be seen that Title has a positive correlation with Service because an IDS has similar alerts, as well as Windows
ATP that have similar looking Titles. In the next subsections, we built on this and try to find more correlations
between different features.

5.1.1. False positives
In Table 5.1 the number of false positives is shown. In total there are 19.595 tickets after cleaning the data.
We can see here that the number of false positives is less than the number of true positives. There are a few
explanations for this result. A lot of the false positives are already filtered by the SIEM that has a static white
list that compares the incoming alerts with the white list and marks these as false positives and removes them
from the list of alerts.
Moreover, the analyst marks the false positive alert and only when the analyst acknowledges and checks the
false positive as a false positive, the alert will be ’Checked’ at the False positive feature. Due to human er-
ror and inconsistent use of the checkbox by different analysts, it could be that the number of false positives
should be more than that is stated here.

While the number of these false positives are quite low, we can see that the average duration of analysing
these tickets are less than the true positives, but still more than 60 minutes. If one ticket will take on average
67 minutes and we have 1840 false positives per year. Then the sum of all these tickets is 122,785 minutes
over one year. This means that the analysts spend 122,785 minutes on all false positives combined. This is an
enormous number that needs to be reduced.

In the box plot of Figure 5.1 the number of false positives is divided into bins of 30 minutes. This means that
the first bar consists of all false positives that have a ticket duration of 30 minutes or less. The second bar has
ticket durations of 30 minutes to 60 minutes and so forth. The most false positives cost less than 30 minutes,
however, there are a lot of false positive alerts that require more time. More tickets take more time than 30
minutes than there are tickets that take less time than 30 minutes.

33

34 5. Data analysis

Table 5.1: Number of false positives and average ticket duration

Number of tickets Average ticket duration (in minutes) Total ticket duration (in minutes)
Unchecked 17787 286.251 4,774,960.0
Checked 1840 67.096 122,785.0
Total 19685 264.590 4,897,745.0

Figure 5.1: Number false positives per bin duration

5.1.2. Merged tickets
The number of closed and merged tickets and the average ticket duration are shown in Table 5.2. We can see
that the number of merged tickets is more than the number of closed tickets. The average ticket duration of
all these merged tickets is less than 1 minute.
In Table 5.2 the number of closed and merged tickets are shown, with the average ticket duration of that type
of ticket. There are far more merged tickets than closed tickets. The number of tickets that are merged is
15026 and the number of actual unique tickets are 4659. Although the average ticket duration is quite low, it
is important to examine how these merged tickets can be reduced because the analyst needs to merge them
manually.

Table 5.2: Number of merged and closed tickets and average ticket duration

Number of tickets Average ticket duration (in minutes)
Closed 4659 1181.615257
Merged 15026 0.559

5.1.3. Ticket duration
In Figure 5.2 we see that there are several outliers in the dataset. However, we cannot see any clear correlations
between the time of year and the ticket duration.
The agent who handles the ticket is dependent on the ticket duration. This can be seen in Figure 5.3. Some
agents analyse the tickets that require more time, this could mean that these agents are Tier 2 agents, as the
other agents handle the easier cases. The agent is also dependent on the length of the ticket duration.
In Figure 5.4 can be seen that during the evening the tickets are taking more time to be analysed. This could
be explained by the fact that during the evening and night normal operations are closed and will continue in
the morning. security analysts will need to wait for a response to their questions until the morning. However,
during the night the tickets do not take much time, because there is not much happening at night.
In Figure 5.5 we see that the average ticket duration is more on Saturday.

5.2. Feature engineering
We can see from the data visualisation that the features that are created by the security analysts, such as Ticket
Duration (in minutes), State and False Positive are quite important for predicting labels. In Figure 5.1 can be
seen that a large amount of false positive tickets take no longer than 30 minutes.
After the process of handling the ticket, new metrics are created that can be used by managers to analyse
the performance of the SOC and the security analysts. These metrics are the features Ticket Duration (in

5.2. Feature engineering 35

Figure 5.2: Duration per ticket

Figure 5.3: Agent owner duration

Figure 5.4: Duration per part of the day

minutes), State and False Positive. To predict a False Positive, we cannot use these features, because, at the

36 5. Data analysis

Figure 5.5: Average ticket duration per day

moment of analysis by the security analyst, we do not know the values of these features.
Instead of using the features directly, we can find correlations between other features and create new features
using the heatmap in Appendix A. In Table 5.3 an overview is given of the created features. In the heatmap can
be seen that State and False Positive are correlating with the label and with Title, we first build multiple fea-
tures based on State and False Positive. Especially State and False Positive are interesting and these correlate
with the Title feature, which may be used.
We often use the information of the previous ticket with the same title. That means that the latest alert that
has the same alert title will be used for the current alert. For all designed features a table is used to explain
the creation of these features.

Table 5.3: Feature engineering

Features Description of feature
Cumul_Title Cumulative count of the same titles
Duration_Mean Average duration of alerts that have the same title
Prev_State_Title Previous alert that had the same title is merged will have a 1
Prev_DLT_Title Duration of the previous ticket with the same title
Title_State Cumulative count of merged tickets with the same title
Title_FP Cumulative count false positive is checked with the same title
Cumul_Alerts_per_day Cumulative count of the number of alerts on the same day

In sequence-based data, the training must be trained on historic data. The counting and averaging will be
done based on previous data, not future data. Therefore, we use the cumulative count, sum and mean to
create our features.

5.2.1. Cumul_Title
First is the number of alerts that have the same title. An example of how this works is shown in Table 5.4.

Table 5.4: Cumul_Title

Title Cumul_Title
Title1 0
Title1 1
Title1 2
Title1 3
Title2 0
Title2 1

5.2. Feature engineering 37

5.2.2. Duration_Mean
We can create a measure for the duration of alerts that have the same title. We take the average of all previous
alerts that have the same title as the current alert. An example of how this works is shown in Table 5.5.

Table 5.5: Duration_mean

Title Ticket Duration (in minutes) Duration_Mean
Title 5 0
Title 10 5
Title 8 10
Title 16 15.3

5.2.3. Prev_State_Title
When the alert of the previous ticket is also merged, then the value of this feature will be 1. If the previous
ticket with the same title is closed, it will be 0. We do this because seen in the dataset is that there are often
more merged tickets of the same title than just one. An example of how this works is shown in Table 5.6.

Table 5.6: Prev_State_Title

Title State Prev_State_Title
Title merged 0
Title merged 1
Title closed 1
Title merged 0

5.2.4. Prev_DLT_Title
We also use the duration of the previous ticket with the same title. An example of how this works is shown in
Table 5.7

Table 5.7: Prev_DLT_Title

Title Ticket Duration (in minutes) Prev_DLT_Title
Title 5 0
Title 10 5
Title 8 10
Title 16 8

5.2.5. Title_State
We now count the number of merged tickets with the same title. An example of how this works is shown in
Table 5.8.

Table 5.8: Title_State

Title Merged Title_State
Title merged 0
Title merged 1
Title closed 1
Title merged 2
Title merged 0
Title merged 1

38 5. Data analysis

5.2.6. Title_FP
The same is done for the number of false positives, where the number of false positives is counted by the
same title. An example of how this works is shown in Table 5.9.

Table 5.9: Title_FP

Title False Positive Title_FP
Title FP 0
Title FP 1
Title TP 1
Title FP 2

5.2.7. Cumul_Alerts_per_day
We now use the Day feature to create a feature that counts the number of alerts per day. An example of how
this works is shown in Table 5.10.

Table 5.10: Cumul_Alerts_per_day

Day Cumul_Alerts_per_day
1 0
1 1
2 0
2 1

An overview is seen in the following table:

5.3. Classification
With the use of different classifiers explained in Section 2.2, we predict the labels False Positive and State. The
label False Positive is a 1 when the alert is a false positive. The label Merged is a 1, when the alert is a merged
ticket. We want the label False Positive to have good precision because we do not want any true positives
being defined as false positives. We want for the label State, to have good precision because we do not want
any closed tickets being predicted as merged.

5.3.1. Prediction of false positive
The label for False positive is 0 when the ticket turns out to be a true positive, thus a real incident, and 1 when
the ticket is a false positive.

Table 5.11: False Positive classifiers comparison

NaiveBayes Decision Tree Random Forest
Accuracy 0.56 0.78 0.90
Precision 0.14 0.26 0.21
Recall 0.56 0.36 0.04
AUC 0.56 0.61 0.84

Here we see that the models are not very good at predicting Precision and Recall.

5.3.2. Prediction of state
The label for State is 0 when the incident is closed and 1 when the incident is merged. Now we try to predict
with the same methods when a ticket is merged or closed.
We see that the recall metric is 95%, which means that it can correctly predict if an event is merged with
another event. We can explain this by the knowledge that events that are merged are similar to their par-
ent events. Therefore we see that the recall is good. The precision is not good, this means that the model
incorrectly classified closed tickets as merged tickets.

5.4. Conclusion 39

Figure 5.6: ROC False Positive Naive Bayes

Figure 5.7: ROC False Positive Decision Tree

5.4. Conclusion
In this chapter, we have explored the dataset with real SOC tickets and used classifiers on predicting two
separate labels. The first label is the number of false positives in Section 5.3.1. The second label is the merged
tickets in Section 5.3.2. The machine learning models did not show any significant results for predicting the
false positives in a SOC and for predicting the merged tickets. The most remarkable result to emerge from the
data analysis is that the number of merged tickets is very high. Section 5.1.2 showed that are more merged
tickets than new alerts are coming from new suspicious events. The findings of this analysis would suggest

40 5. Data analysis

Figure 5.8: ROC False Positive Random Forest

Table 5.12: Merged or closed classifiers comparison

NaiveBayes Decision Tree Random Forest
Accuracy 0.50 0.69 0.78
Precision 0.82 0.82 0.80
Recall 0.42 0.75 0.95
AUC 0.60 0.62 0.81

that the workload of the security analysts is not increased by the merged tickets. However, we have also
discovered that the ticket duration of a merged ticket is quite low. The mean ticket duration of a merged ticket
was less than one minute. Constantly merging tickets to other tickets is no challenge for security analysts and
this will cause repetition. We can address alert fatigue by removing this number of merged tickets.
This forms the opportunity to research how we can reduce these tickets and cluster them such that the analyst
only receives the original ticket. Although it is useful to remove these merged tickets, we have seen that
removing these tickets does not remove the time that security analysts spend on a ticket.
We have tried to predict the false positives and the merged tickets using machine learning classifiers. The
results of predicting using machine learning on both labels were poor. Predicting the false positives turned
out to be more difficult than predicting the merged tickets. In Table 5.11 the results of predicting false positive
alerts are shown. This shows that the Random Forest Classifier is best at predicting.
Table 5.12 shows that the recall is fairly good for the Random Forest Classifier. This means that the merged
tickets are almost all predicted as merged tickets. On the other hand, we see that the precision is lower and
this means that closed tickets are incorrectly predicted as merged tickets.
Using these classifiers increase the chance of incorrectly classifying a true positive or a closed ticket. For the
algorithm to be working in a SOC this must not happen. We must be aware of such alerts. Implementing this
model in the SOC is not advised because the SOC will miss such alerts. Using this information we move on to
a state-of-the-art neural network and compare the performance of the classifiers with the neural network.

5.4. Conclusion 41

Figure 5.9: ROC State Naive Bayes

Figure 5.10: ROC State Decision Tree

42 5. Data analysis

Figure 5.11: ROC State Random Forest

6
Exploring DeepCASE model

This chapter describes the DeepCASE model that implements a state-of-the-art neural network for reducing
the number of security events in a SOC. The aim here is to evaluate the performance of the tool on our dataset.
We first explain the preprocessing of the data (Section 6.1). Then we define the metrics that we use (Section
6.2). We outline the results (Section 6.3) and we end the chapter with a conclusion (Section 6.4)

6.1. Preprocessing of data
To evaluate the performance of the implementation of DeepCASE in a SOC, it needs to be assessed with a
dataset of real SOC tickets created by the SIEM. As explained in the background in Chapter 2 the SIEM will
correlate events and send them to the SOC as one ticket. Via the ticketing system, these tickets are stored and
the security analysts will access these tickets and analyse the tickets. After this analysis, the security analyst
will close the ticket. The time of the ticket created and the ticket closed will be calculated and stored as the
processing time. It is useful to pick this ticketing system dataset for our evaluation of the DeepCASE model
because we can calculate how much time the model reduces while clustering the events.
This dataset is similar to the dataset that is used in the data analysis in Section 5. Now it needs to be altered
in some way for it to work on the DeepCASE model. In the next section, we will explain what needs to be
modified before using DeepCASE on the dataset. To make the explanation more clear, Table 6.1 shows an
example of the KPN dataset.

Table 6.1: Data from KPN

Title Created Dienst
Windows Defender ATP - microsoft_atp: Outbound
connection to IP with a history of unauthorized access attempts

12-9-2020 19:20 Windows Defender ATP

[KPN intern] IDS - sourcefire - SQL generic sql with
comments injection attempt - GET parameter [1:16431] - Prio: High

24-12-2020 12:20 IDS

DeepCASE solely uses the features Event, Machine, Timestamp. The feature Event is where the information
about the alert is stored. In Table 6.1 can be seen that the column table is the feature where the information
is stored. The Machine feature is the device for which the event is created, for example nl-zl2-idps-ss01 and
nl-zl2-idps-ss02. The Service column is the column where the relation is most similar to this explanation. The
Timestamp is the time of the event that is alerted and is the column name Created in Table 6.1.
The Title will remove ’[KPN intern] IDS - sourcefire -’ and ’Prio: High’ because not in every dataset this is used
consistently. We will also remove [1:16431]. The modified version of the table is shown in Table 6.2.
Van Ede et al. use the Hadoop Filesystem (HDFS) dataset to verify the model with the LastLINE dataset [26].
The HDFS dataset is an open-source dataset used in the security log analysis tool DeepLog [43]. Because the
HDFS dataset is open-source, thus available for everyone to use, we will test our model with the HDFS dataset.
The dataset consists of log entries generated by over 200 Amazon EC2 nodes. We will use the training dataset,
which consists of 44915 events. We use the training dataset because the number of events is comparable
to the number of events in our ticketing system dataset. The dataset was labelled by experts as normal and
anomalous events. It does not contain context-explaining information, exclusively numbers. Therefore, we

43

44 6. Exploring DeepCASE model

Table 6.2: Modified Data from KPN

Title Created Dienst
Windows Defender ATP - microsoft_atp: Outbound
connection to IP with a history of unauthorized access attempts

12-9-2020 19:20 Windows Defender ATP

SQL generic sql with
comments injection attempt - GET parameter

24-12-2020 12:20 IDS

can only use the dataset to compare the model with our dataset and verify that the model works. We will use
the training dataset, as this dataset is roughly the same size, which is good for comparing the datasets.

6.2. Metrics
Different metrics are used by van Ede et al. such as the percentage of the tickets removed by the model [26].
This section is explained what metrics we use to verify and validate the results of the model in a ticketing
system.
We expect that the tickets that will be removed are easier to recognise than the tickets that are not clustered
by the model. The easy tickets are expected to cost less time than the hard ones. Therefore, we expect to see
a lower ticket processing time in the clustered ticket than in the not-clustered tickets.

In the Context Builder the model uses a metric that defines how well the model predicts the next events. This
is expressed by the Kullback-Leibler divergence as the loss function, which is explained in Section 2.4.5. We
will use these metrics as well to compare the HDFS dataset with our dataset of the SOC.

The Interpreter will use different evaluation metrics. One of which is the number of clusters that the Inter-
preter can create from the events.
Another metric that flows directly from the number of clusters is the percentage of tickets that are removed.
During the semi-automatic analysis, there are 10 samples from every cluster taken. 10 alerts are shown to the
security analyst as one cluster. In their research, these samples will be shown to the security analyst and these
analysts will define if the clusters are malicious or benign. There will be 10 events per cluster including their
context per cluster shown to the analyst.

The total _workload_reduction is measured as the number of alerts sent to the security analyst by the tool and
the uncovered_events divided by the total_events. The number of alerts that are sent to the security analyst is
based on 10 sequences per cluster. The uncovered events are the alerts that are not able to cluster in a specific
cluster.

tot al_wor kload_r educti on = 1− #samples +#uncover ed_event s

#tot al_event s
(6.1)

The percentage of tickets that will be reduced is the number of clusters times 10 divided by the total number
of tickets. The number of samples is the number of clusters times 10.

samples = 10∗ cluster s (6.2)

We take another metric that is useful to evaluate alert fatigue in the SOC. The SOC measures how much time
an analyst has to spend on each ticket and is noted in our dataset. We can use this information to find out
how much the merged tickets takes time. Do merged tickets take less time than uncovered tickets?

6.3. Results
The results will now be evaluated. We first compare the results of the ticketing system dataset with the HDFS
dataset. Then we show more results of the ticketing system dataset. Afterwards, we give an in-depth analysis
of the clusters. We end this section with a conclusion.

6.3.1. Comparing the results with the HDFS dataset and ticketing system dataset
The HDFS dataset is compared to the ticketing system dataset. The metrics explained earlier are compared
to see which dataset performs better. Since we do not have information about the false positives in the HDFS

6.3. Results 45

dataset, we only use the HDFS dataset for evaluation in terms of workload reduction and not in accuracy or
time reduction. Thus, we only use the HDFS dataset to verify the model.

During the training of the ContextBuilder, the model will train to predict the next event that follows the con-
text events. The loss of predicting the next event per epoch of both datasets can be seen in Figure 6.1. Of
both datasets the loss decreases per epoch, which is what is expected because while training the model, the
model will learn to predict the correct event. The performance of the model will increase and thus the loss
will decrease per epoch.

Figure 6.1: Loss comparison

Overall the loss of the HDFS is lower than the loss of the ticketing system dataset. We can see that after 10
epochs the loss of the ticketing system dataset is around 0.2 and 0.3. And the loss of the HDFS dataset is
almost 0. This means that the ticketing system dataset is more difficult for predicting the next event than the
HDFS dataset. This has to be taken into account when clustering because the clustering relies on the trained
ContextBuilder.
We now compare the results obtained from the Interpreter and use multiple metrics to compare them. After
clustering the similar attention vectors we evaluate the number of clusters and how many of the tickets will
be removed when we do the manual analysis.

We also evaluate the percentage of tickets that are removed. Combining these metrics, we can calculate the
total_workload_reduction. In Table 6.3 we see the results of the comparison between the SOC and HDFS
datasets.

Table 6.3: Comparison of HDFS dataset and ticketing system dataset

Number of events Min loss Number of clusters total_workload_reduction
HDFS 95,125 0.0267 320 92.0%
Ticketing system dataset 20,744 0.2923 129 47.4%

We can see that the HDFS dataset has more events. The HDFS dataset is also performing better than the
ticketing system dataset. In the paper of van Ede et al., the workload reduction was 92.26%. The dataset that
is used in this research is working as expected but it is not able to cluster as many events as the HDFS dataset.

6.3.2. Results of ticketing system dataset
In Table 6.4 we see the results of the clustering. The implementation can identify 154 clusters. The number
of events that the implementation can identify within a cluster is 9427. From all events, 11,347 cannot be
clustered. When we calculate the workload reduction of the SOC using DeepCASE we can see in Equation 6.1
that the total_workload_reduction is 47.4%.
We see that there is a significant difference in the ticket duration between the clustered tickets and the uncov-
ered tickets. This validates our hypothesis that the tickets that can be clustered are easy. This means that the
total_workload_reduction is not saying that the workload is reduced. The metric does not take into account
the time of security analysts and we have seen that time does play a role in workload reduction.

46 6. Exploring DeepCASE model

Table 6.4: Results ticketing system dataset

Number of tickets Ticket duration (in min)
Clustered 9427 142.81
Not clustered 11,347 385.83

6.3.3. Analysis of clusters
The analysis of the clusters is done by going through all clusters one by one and looking for interesting con-
nections between the events and the context of the events. We found for example the cluster which outputs
mining activity. The results are shown in Figure 6.2, where the events are only the number 849. The explana-
tion of how the results are displayed is shown in Appendix C. We see that before the event the context consists
of repeating 848 and 849. The contexts are similar, which show why they have been clustered.

Figure 6.2: Miner cluster

There exist other events that are clustered because in the context the number that is in the event is repeated
before the actual event. For example, in Figure 6.3 we can see that most events of the contexts are 853. This is
exactly why this cluster has been created because the events are repeating.

Figure 6.3: Cluster Remote Code Execution Attempt

We have found a lot of repeating events in the context as explained above. Unfortunately, we have not found
interesting attack patterns in the clusters. The goal of DeepCASE was to find these patterns, as the context is
included in the analysis. We need more research on the way these patterns can be found by the model.

6.4. Conclusion 47

6.4. Conclusion
There is a significant difference in the results when the ticketing system dataset is used and when the HDFS
dataset is used on the DeepCASE model. In Table 6.3 the ticketing system dataset is performing not as well as
the HDFS dataset.
Moreover, we hypothesised that the alerts that have been clustered are quite easy. We expected to see that the
average ticket duration of the clustered tickets is lower than the tickets that are not clustered. The results in
Table 6.4 show that this hypothesis is correct. We have seen that the number of tickets removed is 47.4% and
the time that is reduced is on average 142.81 minutes. This is less than the average ticket duration of the events
that were not clustered, which was 385.83 minutes. The average ticket duration of the clustered events is less
than the rest of the events that were not clustered. We have seen that the metric total_workload_reduction
does not say much about the actual workload of the security analyst that has been reduced.
From the analysis of the clusters, we have gained insight into what kind of events are clustered and therefore
removed for the security analyst. There are a lot of clusters created and the algorithm was able to reduce
the number of tickets. Considering that the DeepCASE model mostly clusters the events that are only the
simple events that have been clustered, for example only repeating events are clustered, one could ask why
such an algorithm is needed to cluster the events to reduce the workload. Perhaps there could be easier ways
to improve on this model and create an easier model, for example counting the number of events that are
repeated and clustering them and giving them to the security analyst.
Thereby, we need more research on what the difficult events and the sophisticated attack patterns are and
why these can not be clustered by DeepCASE. We need more research on how difficult clusters can be created.
In Chapter 7 we try to find an answer to this problem.

7
Creating new algorithms for reducing the

workload

In this chapter, we build upon the DeepCASE model explained in Chapter 2 and the results of Chapter 6. The
possibilities of DeepCASE are further explored. First, we explain the datasets and algorithms that are used in
this chapter (Section 7.1). Then, we explore the results (Section 7.2) and we end the chapter with a conclusion
(Section 7.3).

7.1. Explanation of the datasets and algorithms
In this section, we explain different datasets and explain what algorithms are used for our experiments. The
goal is to remove duplicates from the dataset and to discover more correlations than can be found with du-
plicates.

7.1.1. Datasets
An overview of the datasets that are used here can be seen in Table 4.8. First, DeepCASE is performed on a
dataset that is the largest: the IDS dataset before the SIEM. The SIEM already introduces correlation between
events and clusters them before showing it to the security analysts. It is useful to compare these results with
the other dataset to examine what the SIEM does with the alerts.
The second dataset is used is extracted from the ticketing system dataset. This dataset was used in the pre-
vious chapter. In this chapter, we only use the IDS tickets of this dataset. The SIEM processes the incoming
IDS events and creates a dataset that is already enormously smaller than the dataset before the SIEM. This
dataset is also our starting point for the rest of the algorithms. We try to reduce this dataset to a point where
no duplicates exist.

7.1.2. Algorithms
In this section, we create a new model that uses a heuristic to remove the merged tickets from the dataset.
By this means, a new dataset is created and this dataset is used in the enhanced DeepCASE model. Below we
explain both algorithms.

Remove duplicates Given is the next example in Table 7.1. The events are removed if the events are similar
to an earlier alerted malicious event. The idea behind this process is to remove the repetitive alerts in the
dataset, such that the analyst does not have to check similar alerts twice.
As an example, the two events in Table 7.1 are produced by the same attacker. This attacker is attempting to
inject a SQL statement into a text field. The second event comes in 3 seconds after the first event. The source
IP, destination IP and title are the same. Possibly the attacker tries to attack the target twice using the same
method. We assume that when two events have a similar source IP, destination IP and alert title and happen
within a given time frame, the two events originate from the same attack. The next paragraph describes how
these duplicates are deleted.
To remove the duplicates we use a simple algorithm that is shown below. First, the data is looped over once
and then the data runs again over their next tickets until the tickets are no longer within the given time range.

49

50 7. Creating new algorithms for reducing the workload

Table 7.1: Example similar events

Event Timestamp Source IP Destination IP
SQL 1 = 1 - possible sql injection attempt 2021-05-28 02:50:15 x.x.x.1 x.x.x.2
SQL 1 = 1 - possible sql injection attempt 2021-05-28 02:50:12 x.x.x.1 x.x.x.2

If there is a ticket in the second loop that has the same source IP, destination IP and title then this event is
removed from the list.

d u p l i c a t e s l i s t = dataframe
for i in 0 : dataframe :

for j in i +1: dataframe :
i f created time [i] − created time [j] < timeframe #events within the given timeframe
and created time [i] − created time [j] i s not 0
and source ip [i] i s source ip [j]
and destination ip [i] i s destination ip [j]
and t i t l e [i] i s t i t l e [j]) :

i f event e x i s t s in duplicates l i s t :
remove from duplicates l i s t

e lse : break

The example in the previous paragraph is extended in Table 7.2. This table shows a ticket that is removed
from the dataset because it is a duplicate and it shows a ticket that is not removed. The events in bold are
duplicates from the first event because they match the given criteria. The third event is not similar because
it has a different event title and Destination IP. The last event looks similar as well but has the property that it
has been alerted the next day.

Table 7.2: Example similar events - removed, bold is removed

Event Timestamp Source IP Destination IP
IDS - sourcefire - SQL 1 = 1 - possible sql injection attempt 2021-05-28 02:50:12 x.x.x.1 x.x.x.2
IDS - sourcefire - SQL 1 = 1 - possible sql injection attempt 2021-05-28 02:50:15 x.x.x.1 x.x.x.2
IDS - sourcefire - remote execution attempt 2021-05-28 02:50:18 x.x.x.1 x.x.x.3
IDS - sourcefire - SQL 1 = 1 - possible sql injection attempt 2021-05-28 02:50:20 x.x.x.1 x.x.x.2
IDS - sourcefire - SQL 1 = 1 - possible sql injection attempt 2021-05-29 02:50:15 x.x.x.1 x.x.x.2

Using the duplication heuristic it is helpful to find out which time frame is best to use in the rest of our exper-
iments. When the timestamp is small the algorithm is not able to find all duplicates, because an attack may
take longer. When the algorithm has a bigger time frame, the chance is that tickets are incorrectly classified as
duplicates. Running multiple experiments will define the best outcome for the time frame. Beginning small
with 2700 seconds (0.75 hours) and we double that until we hit 32 days.

Compression algorithm After removing the duplicates we use the created dataset, without duplicates, to
see if we find more sequences of events that can be merged. How we do this is explained next.
We have already seen in Chapter 2 in Section 2.5.2 that when multiple context events are important, Deep-
CASE has difficulty dividing the attention to all important events. What DeepCASE usually does is that it
assigns attention to one event instead of all important events. With this knowledge, we aim to enhance Deep-
CASE, such that it can assign attention to the important context events in the sequence as well.
We use the same method we used in the toy example in Section 2.5.2 by removing the event with the most
attention. The way we do this is to run DeepCASE on the dataset that has removed the duplicates. Then,
the context of the clustered events is examined by the attention query. The goal is to find the event with the
highest attention. Hereby we find what event has the most impact on the predicted event. After finding that
context event this event is removed from the dataset. Using this technique we hope to find more correlations
in the dataset after removing the event with the highest attention value.
In the example below, the context event 40 has the most attention, because it is available in all the tensors.
The context events that has the number 40 is be removed from the dataset.

7.2. Results 51

Events : tensor ([4 0 , 40 , 40])
Context : tensor ([[1 6 3 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 40 , 40] ,

[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 40 , 40] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 9 , 40 , 4 0]])

tensor ([[0 . 0 0 2 3 , 0.0023 , 0.0023 , 0.0023 , 0.0023 , 0.0023 , 0.0023 , 0.0023 , 0.1229 ,
0.8586] ,

[0 .0023 , 0.0023 , 0.0023 , 0.0023 , 0.0023 , 0.0023 , 0.0023 , 0.0023 , 0.1229 ,
0.8586] ,

[0 .0022 , 0.0022 , 0.0022 , 0.0022 , 0.0022 , 0.0022 , 0.0022 , 0.0011 , 0.1165 ,
0 . 8 6 6 7]])

Figure 7.1: Events

We repeat this sequence until we do not find any more clusters. In Figure 7.2 is an overview shown of the
algorithms.

Figure 7.2: Extended model

7.2. Results
7.2.1. Duplicate algorithm
As can be seen in Figure 7.3, the longer the time frame is, the more tickets can be found. Most duplicates can
be found within the first 24 hours of the attack but there are still duplicates that can be found after 1 week.
When the time frame is too short the time frame is not able to see all duplicates. The first part of the graph is
growing exponentially but at some point, this changes into a linear line.

52 7. Creating new algorithms for reducing the workload

Figure 7.3: Time frame comparison

This is interesting because this does not support the expectation that at a certain point no duplicates can be
found. These findings have led to the conclusion that attackers target the same victims with similar means.
It is not desired that events are being falsely classified as duplicates. Therefore, we assume that one attack
ends after 1 day. We then still have enough duplicates, but we do not risk events being falsely classified as
duplicates.
The algorithm can reduce 3872 events of the IDS events in the ticketing system dataset. This is 55.19% of all
IDS events in the ticketing system dataset. When we compare that with the number of events that DeepCASE
can remove this is more than DeepCASE does with 3573 number of events for removing from the IDS dataset.
This is 50.93% using the same dataset.

7.2.2. Comparison of different datasets using DeepCASE
In Table 7.3 can be seen that when the number of events goes down, the loss increases. When there is a high
correlation between different alerts, the model can predict the next event in the sequence better. The dataset
before the SIEM has the lowest loss ánd has the largest dataset. This is because before the SIEM the events are
not filtered. Thereby, the events are strongly correlated. After the filtering of the SIEM, the dataset has fewer
events. Now the events are less correlated. This can be seen in the results of the loss. Duplicates have a strong
correlation with each other. When the duplicates are removed from the dataset, the loss increases further.

Table 7.3: Results datasets

Loss Number of events Number of clusters
Number of
tickets clustered

Workload
reduction

IDS before SIEM 0.0383 5,000,000 1590 4,856,616 96.81%
IDS after SIEM 0.2296 7015 45 3573 55.85%
After remove duplicates 0.3350 2993 1 88 2.94%
After compression
algorithm

0.3415 2918 0 0 0%

7.2. Results 53

7.2.3. Take the loss as a measure
To measure how well the dataset is correlating with the other events, we can use the metric used to measure
the correctness of the prediction of the next event in the dataset. The loss that DeepCASE uses is the Kullback-
Leibler divergence. This indicates how a probability distribution of the predicted event is different from the
actual event. What is not yet known is how much correlation still exists in the dataset.

7.2.4. Compression algorithm
Now we zoom in to the compression algorithm. This algorithm was made to find more clusters than initially
found before. The intuition here is that when we remove the context events that have the highest attention,
we can find more events that also have a strong correlation with the event. The compression algorithm does
not work as expected. The number of times the algorithm runs is exactly one.

7.2.5. Analysis security analyst - compression algorithm
The analysis of the created clusters can be enhanced by the review of a security analyst at KPN. Security
analysts see alerts daily and know best when an alert is a duplicate, a false positive or true positive. We give
the security analyst two datasets and a set of questions. The questions are:

• Are there events that are clustered that should not be clustered?

• Events that can yet be clustered?

• Where in the SOC could the DeepCASE model be deployed?

The first dataset is before removing the duplicates and running the DeepCASE model. The second dataset
contains only the events that have not been removed by the heuristic or the DeepCASE model. The analyst
compares both datasets using the questions above.

Events that are clustered that should not be clustered The first question we had was if the events that are
removed are legitimately removed. Or are there events removed that must not be removed? According to the
security analyst, this is not the case. He can see that all source and destination IPs are there, but the duplicates
are removed. So no source and destination IPs are missed.

Events not clustered that can yet be clustered The second question was if there were events that could still
be clustered to other events but are missed by the model. This was the case when different alerts from the
same attack were created. This mostly happened when a vulnerability scan in the network appeared. Such a
scan searches for different vulnerabilities on different devices, thereby creating distinct alerts. An example of
a scan like this is shown in Table 7.4. The scans appear fairly often in the dataset but could not be found by
the models. For example:

Table 7.4: Example vulnerability scan

Event Timestamp Machine Source IP Destination IP Destination Port
Apache Struts remote code execution
attempt - GET parameter [1:21072]

3-6-2021 09:05 Machine1 IP1 IP2 80 (http) / tcp

Apache Struts remote code execution
attempt - DebuggingInterceptor [1:21075]

3-6-2021 09:05 Machine1 IP1 IP2 80 (http) / tcp

Apache Struts remote code execution
attempt [1:39191]

3-6-2021 09:05 Machine1 IP1 IP2 80 (http) / tcp

Apache Struts allowStaticMethodAccess
invocation attempt [1:21073]

3-6-2021 09:05 Machine1 IP1 IP2 80 (http) / tcp

Apache Struts remote code execution
attempt [1:39190]

3-6-2021 09:05 Machine1 IP1 IP2 80 (http) / tcp

Where to deploy DeepCASE in the SOC The third question was if the DeepCASE model could be installed
in the SOC and where in the SOC could this then be placed. The answer to this question is two-fold.

54 7. Creating new algorithms for reducing the workload

First, where in the SOC can DeepCASE be installed. The answer was to be before the SIEM because DeepCASE
turns out to be fairly suitable for the processing of raw unfiltered network events, as was shown in Table 7.3.
He explained that he would make clusters out of the IDS data and instead of sending all IDS events to the
SIEM, he can send a sample of clusters to the security analyst.
He added that the use of the heuristic is more interesting because it is easy to install and understand. The
duplicates can be removed fairly good. As the analysts are security experts but no machine learning experts
this would also be a great option to install in the SOC.

7.2.6. Confidence threshold
The number of clusters depends on the confidence output of the attention query. The clustering algorithm
has a certain confidence threshold and the attention query must pass this threshold to create a cluster. Deep-
CASE works as such that if the confidence threshold is not reached, the sequence is passed to the security
analyst without a cluster.
Using the dataset after the removal of the duplicates we use different confidence thresholds when the value
is too low or too high. The first confidence threshold is 0.2. The next example is clustered by the algorithm.
We see that the confidence threshold is above 0.2 and can therefore be clustered. In appendix C the context
and events for the cluster found here are displayed.

[0 .2607 , 0.2599 , 0.2601 , 0.2603 , 0.2587 , 0.2590 , 0.2590 , 0.2611 , 0.2600 ,
0.2600 , 0.2600 , 0.2587 , 0.2605 , 0.2581 , 0.2585 , 0.2600 , 0.2582 , 0.2555 ,
0.2602 , 0.2598 , 0.2579 , 0.2610 , 0.2591 , 0.2602 , 0.2584 , 0.2604 , 0.2599 ,
0.2559 , 0.2604 , 0.2594 , 0.2602 , 0.2603 , 0.2561 , 0.2590 , 0.2603 , 0.2595 ,
0.2546 , 0.2606 , 0.2593 , 0.2534 , 0.2561 , 0.2584 , 0.2559 , 0.2568 , 0.2587 ,
0.2594 , 0.2591 , 0.2598 , 0.2578 , 0.2608 , 0.2598 , 0.2558 , 0.2595 , 0.2587 ,
0.2580 , 0.2605 , 0.2605 , 0.2605 , 0.2602 , 0.2592 , 0.2600 , 0.2601 , 0.2590 ,
0.2602 , 0.2602 , 0.2608 , 0.2591 , 0.2590 , 0.2604 , 0.2586 , 0.2584 , 0.2596 ,
0.2588 , 0.2603 , 0.2573 , 0.2581 , 0.2590 , 0.2607 , 0.2579 , 0.2598 , 0.2590 ,
0.2598 , 0.2590 , 0.2582 , 0.2604 , 0.2562 , 0.2603 , 0.2595]

Figure 7.4: Confidence of cluster that is found by DeepCASE

Now we lower the confidence threshold to 0.1. The number of events that are left is 2835, which is quite a
difference compared to the confidence threshold of 0.2. The number of events that are clustered that can
be found here is 196 and the number of clusters is 4. Below is an example of an attention vector that has a
confidence level between 0.1 and 0.2. What is important to note is that we can find context events that are
different from the next event.
At confidence threshold 0.07 the algorithm started to work. DeepCASE was able here to cluster tickets af-
ter running the model for the second time. In Table 7.5 we show how much time the model has run at the
confidence threshold.
When the threshold is set at 0.05, it can be seen in Figure 7.6 that context events are no duplicates of the
events.
Though there are signs of sequences that do not belong together. For example in Figure 7.7. As can be seen,
the context events do not have any relationship with the next event, because 163 is no event, this is the
padding event. In this regard, these events should not be merged into one cluster. Instead, these sequences
should be forwarded to a security analyst individually. The analyst can examine if the clusters are correctly
clustered together.

7.2.7. Analysis security analyst - confidence threshold
For the analysis of the different clusters, we showed samples of the clusters to the security analyst. The analyst
can use his knowledge about the alerts to accurately see which clusters should be together and which should
not. We show the clusters to the analyst using the context event with the highest attention and the event itself.
Especially the lower confidence thresholds, there were many clusters, therefore we selected clusters that were
interesting and unique. A summary of the sample clusters is shown in Appendix D. Every cluster has its name
we use in the analysis. In the appendix, this is explained as well. For the clusters with confidence thresholds
0.09 and 0.1, the events showed all logical correlations in the clusters. In some clusters, the context events

7.2. Results 55

Event :
[42 , 42 , 42 , 42 , 42]
Context event :
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 39]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 39]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 39]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 107 , 45 , 39]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 107 , 39]

Confidence threshold : [0 .1750 , 0.1750 , 0.1750 , 0.1762 , 0.1758]

Attention vector :
[0 .0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.9841]
[0 .0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.9841]
[0 .0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.0018 , 0.9841]
[0 .0012 , 0.0012 , 0.0012 , 0.0012 , 0.0012 , 0.0012 , 0.0012 , 0.0029 , 0.0122 , 0.9764]
[0 .0015 , 0.0015 , 0.0015 , 0.0015 , 0.0015 , 0.0015 , 0.0015 , 0.0015 , 0.0051 , 0.9833]

Figure 7.5: Cluster with different context event

Event : tensor ([6 3 , 63 , 63 , 63 , 63])
Context events : tensor ([[1 6 3 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 91 , 103] ,

[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 103] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 103] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 103] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 1 0 3]])

Figure 7.6: Context events and events

Table 7.5: Comparison of confidence threshold

Confidence threshold Number of clusters
Number of times DeepCASE
is executed

Number of events left Loss

0.2 2 1 3053 0.3356
0.1 4 1 2851 0.3417
0.09 9 1 2818 0.3453
0.08 10 1 2789 0.3464
0.07 21 2 2612 0.3524
0.06 32 4 2644 0.3513
0.05 68 10 2471 0.3563

and events were all the same, for example, 0.09_cluster_9_number_1. Some clusters showed some interesting
vulnerability scans, for example, 0.09_cluster_8_number_1.
When we set the confidence threshold to 0.08, there were some clusters that were found to be logical:

• 0.05_cluster_14_number_1

• 0.05_cluster_24_number_1

• 0.07_cluster_8_number_1

• 0.08_cluster_5_number_1

• 0.08_cluster_15_number_1

The rest of the clusters showed some anomalies in the clusters. In 0.08_cluster_13_number_1 the clusters
there were two different events in the cluster. The first event is a Citrix arbitrary code execution attempt

56 7. Creating new algorithms for reducing the workload

[68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 , 68 ,
68 , 68 , 68 , 68])
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163] ,
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163]

Figure 7.7: Context event no relationship with the next event

and the second event is an Apache Tomcat FileStore directory traversal attempt. DeepCASE clustered these
events incorrectly, according to the security analyst, the two services should not be clustered together. In
0.06_cluster_3_number_7 there was one event that showed an Apache Struts access attempt. The other events
in this cluster were SQL injection attempts. These should not belong together.

7.3. Conclusion
In this chapter, we aimed at enhancing the state-of-the-art neural network to improve the results obtained
previously. We first removed duplicates by using a simple heuristic. Then we implemented an algorithm that
removed the context event with the highest attention value from the list of events. Then we ran DeepCASE
again until no other clusters were found.
Using the heuristic the number of tickets can be decreased. Comparing this to the number of tickets Deep-
CASE can remove we see that the simple algorithm is good as well. Also, the analyst that was asked to give an
analysis of the clusters was especially interested in the method of the heuristic because of the ease of use of
this method.
At a confidence threshold of 0.07 or lower, the algorithm ran more than 1 time which means that more events
can be found when the context event with the highest attention value is removed. We have evaluated when
the confidence threshold was too low, to see if this.
We have evaluated the clusters by an analyst and found that at the confidence threshold of 0.08 or lower,
the clusters began to show anomalies. We can conclude that the confidence threshold is best set at 0.09
because this has no anomalies in the clusters and the number of clusters that are made is better than 0.1.
This, unfortunately, was not at the level that the enhanced algorithm started to work.
We see an increase in the number of clusters when the confidence threshold is lower. What is not yet known
is how the confidence threshold affects the number of false negatives. We have seen that when you set the
threshold too low the sequences being clustered do not belong together.
We have seen that the loss goes up when duplicate events are removed and the number of events is less. One
way of using this measure is to use it as a measure for the correlation between events, this could be a good
option to use in a SOC.

8
Conclusion and discussion

In this research, we have evaluated different metrics and methods for reducing the workload of security ana-
lysts in the SOC. In Section 8.1 we discuss several limitations. In Section 8.2 we conclude explain the answers
to the research questions and we suggest the possibilities for future work in Section 8.3.

8.1. Discussion
We begin with a discussion of several limitations in our work.

8.1.1. False positive check
In the data analysis in Chapter 5, one major challenge was that the label False Positive in the dataset of the
ticketing system was not always accurate. Whenever an alert occurred in the system that turned out to be a
false positive, the analysts needed to mark it as a false positive themselves. In the ticketing system, there is a
check box that the analyst needs to check when the alert is a false positive. The problem is that analysts are
not always consistent in checking this box. Due to human error, the analysts can forget to check the box or
accidentally check the box when it was not a false positive.
It is also important to note that when the parent ticket was a false positive, its merged tickets were not checked
as false positive. We needed to modify the false positive merged ticket to match with the parent ticket. By this
means we have verified that analysts are not always consistent in using the check box for a false positive. This
will influence the prediction of the machine learning models because the models learn when an alert is a false
positive. When a true positive is a false positive, the model will learn the wrong label.

8.1.2. Service as Machine in DeepCASE
In Chapter 6, we used the feature Service as the feature Machine that needed to be used in the DeepCASE
model. The feature Machine in the DeepCASE model has a slightly different definition than the feature Service
in the ticketing system dataset. Service is the way the SOC describes the type of device it is using, such as IDS,
Firewall etc. Machine is the particular device in the network, such as nl-zl2-idps-ss01 and nl-zl2-idps-ss02.
Service is less specific because there are multiple Intrusion Detection Systems in the network.

8.1.3. Improvements in the SOC
Security analysts are constantly improving the way they operate. At the time of the data collection, several
considerable changes were implemented to improve the information in the tickets. At the beginning of the
dataset, merged tickets had multiple empty columns, such as Service and False Positive, as explained in Sec-
tion 4.2. After a while, the columns were filled and we could use these as well. We modified the columns
manually by using the information of the parent ticket. When this parent ticket does not exist or was too far
in the past, the merged ticket was simply removed from the dataset. This should be taken into consideration
because this could have influenced the results of predicting labels as mistakes can be made when modifying
the dataset manually.

57

58 8. Conclusion and discussion

8.1.4. Loss interpretation
The results in Section 7 showed that the loss could be a good metric to define the amount of correlation in a
dataset. We could show this metric to the security analysts, who can use this metric to see if there are many
tickets in the ticketing system that should be merged to other tickets.
The analyst could have difficulty interpreting the loss and when the loss is good. It is not known yet what
ticket is indeed merged. Therefore, the security analysts will not know what parts of the data are unique and
what are duplicates. Moreover, we saw an increase in loss when the amount of correlation went down but this
research did not connect the exact amount of correlation of the dataset to the loss.

8.2. Conclusion
In this study, the goal was to explore the possibility of implementing machine learning models in a SOC.
We first explored different metrics to use as a metric for machine learning models. Then, classical machine
learning methods tried to predict false positives in the ticket dataset. Next, a state-of-the-art neural network
is used to examine this technique on our ticketing system dataset. We also built a simple heuristic that is
compared with the rest of the models. At last, a new approach for evaluating the dataset is introduced. The
sub-questions as defined in Chapter 1 are answered below:

8.2.1. What are existing metrics for measuring the performance of security analysts in a
SOC?

To answer this question, a literature study has been done to find the metrics for measuring the performance
of machine learning models in a SOC. Multiple metrics are explained in the literature study. Often they were
defined differently but they have been combined into consistent metrics. An overview of these metrics can
be found in Table 3.1. We include multiple challenges of these metrics that some of the authors have raised.

One problem of the metric ’number of tickets created’ was that the metric often does not take into account
the number of false positives. The first problem is that when an analyst takes a long time to analyse an event
that turns out to be a false positive, no ticket will be created. When this metric is used, the number of false
positives is of negative influence for analysts who research many false positives. We have seen that false pos-
itives are not taking more time than true positives but they take on average around 60 minutes (Section 5.1.1).

Moreover, measuring the performance of analysts by using the metric the ’time taken to respond’ will encour-
age the analysts to be as fast as possible to analyse tickets. The analysts will automatically spend less time
understanding the root cause of the incident. It will learn less about why the event is happening.

Some of the metrics do not take into account the complexity of the ticket. Especially the number of alerts
analysed, the number of tickets closed per day and the average time spent on each ticket. Some tickets are
more difficult to examine and the complexity of the ticket decreases the number of tickets that an analyst
examines and the average ticket duration.

8.2.2. How do existing machine learning methods perform in a SOC?
We have evaluated different models to examine if the alerts in a SOC can be reduced. First, we tried to classify
the labels False Positive and State with the traditional machine learning models Naive Bayes Classifier, Deci-
sion Tree Classifier and Random Forest Classifier. The most important aspect for classifying the label False
Positive is that a true positive must not be predicted as a false positive. When this happens, the ticket will
be discarded by the model. An ideal situation for predicting the label False Positive is that the model does
not predict that a true positive is a false positive. We use the metric precision to define the model’s ability to
predict if the true positive is a true positive. Similar to the label False Positive, the most important aspect for
predicting the label State is that a closed ticket (unique ticket) must not be predicted as a merged ticket. In
this case, the ticket will be discarded by the model. The precision of these labels shows that the models had
difficulty predicting the true positives and the closed tickets correctly.

In Section 5.1.2 we have seen that when a ticket has been merged, the duration of the ticket being evaluated
is less than when this is not a merged ticket. We used the model DeepCASE to find out if we can cluster the
tickets by using the history of the dataset. We have seen in Table 6.4 that the tickets that are clustered take less
time than the tickets that were not clustered. These results support the idea that a machine learning model

8.3. Future work 59

clusters tickets that are easy and require little time.

It should be noted that it remains useful to remove the merged tickets because the repetitiveness of the du-
plicate tickets is causing alert fatigue for the security analysts. Therefore, it is still necessary to improve on
these machine learning models and to find good ways to filter the duplicate tickets in the SOC.

8.2.3. How do state-of-the-art neural networks perform in a SOC compared to existing
machine learning methods?

To answer this question, we compare DeepCASE with the machine learning methods and various things are
important here. The machine learning methods are performing poorly on the ticketing system dataset. The
best algorithm was the Random Forest Classifier and it still had a lot of false positives and false negatives.
The Random Forest classifier had too many true positives and closed tickets classified as false positives and
merged tickets. Implementing these predictors in the SOC will lead to the false investigation of tickets. This
means that it is not yet suitable to implement in the SOC.

DeepCASE is better at recognising the next event and recognising similar events. Therefore, it is better at
clustering events. However, DeepCASE is a difficult method and many security analysts would have difficulty
understanding the inner workings of this method. The model is said to be explainable, but the model remains
a black-box model.

What is interesting is that the loss outputted by the ContextBuilder in DeepCASE fits to be a metric for evaluat-
ing the correlation of a ticketing system dataset. When a dataset correlates well with other events, DeepCASE
is better at predicting the next event. This is directly dependent on the loss that will be lower. Conversely, the
loss in a SOC must be as high as possible because a SOC wishes the tickets to be as unique as possible. This
means that every attack should be alerted only once.
Interestingly, the simple heuristic that removes the duplicates, is performing quite well. A high number of
duplicates were found by the heuristic. The heuristic is even performing better than DeepCASE does. The
same dataset gave a better result for the heuristic than DeepCASE. Thereby, the security analysts that were
asked to give an analysis were especially interested in the heuristic because of the ease of use of this method.

8.3. Future work
We discovered some improvements in the analysis and the models. We list them below.

8.3.1. Explore the use of multiple metrics in the SOC
This work has shown that the metrics for measuring machine learning models in a SOC are important to focus
on in this field of research. We have established that previous work mostly evaluate metrics by conducting
interviews and little work has been done on the use of metrics for machine learning in a SOC. These findings
show the need for quantifying the value of various metrics for machine learning. One possible approach of
this evaluation is to implement machine learning models, then use different metrics to compare the perfor-
mance. Then, using the models as a comparison we can compare different metrics to explore the possibilities
of these metrics.

8.3.2. Use more years of data
Our research was limited to investigating one year of SOC tickets. Especially in Chapter 7, the number of
events of the IDS alerts from the ticketing system were 7015, which is not a lot. More years of tickets in the
dataset can increase the performance of the models. Future work can add more years of tickets to the dataset
to use a larger dataset for the models to train on.

8.3.3. Stream events
Next to the metrics found in the literature review, a new metric has been found. This metric is the loss in
DeepCASE used to measure the correctness of the prediction of the next event. The loss turned out to measure
the correlation of a dataset very well.
It is useful to investigate whether security analysts would benefit from having information on the correlation
of the SOC. At the moment we can only see that the loss is higher when there are fewer duplicates in a dataset.

60 8. Conclusion and discussion

Future work needs to define a perspective on when the data has more duplicates.
Future work could offer the security analysts the loss produced by DeepCASE to review this metric. Security
analysts could be offered two types of methods. The first one is a normal situation where the analysts do their
job as normal. The second one would be the one where DeepCASE is implemented and the loss is shown.
We could use this information to evaluate when the correlation of the dataset is correct and every alert is one
incident.

8.3.4. Detect vulnerability scans
We have discovered that DeepCASE finds it difficult to detect vulnerability scans in the network. We have
analysed an enhanced version of DeepCASE to find out if this is possible. We have seen some good results
that show signs that this could be possible. We have seen several vulnerability scans, but certainly not all of
them. Future work could enhance the detection of vulnerability scans in the network by improving DeepCASE
even further.

Bibliography

[1] Steffen Haas and Mathias Fischer. “GAC: graph-based alert correlation for the detection of distributed
multi-step attacks”. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing. 2018,
pp. 979–988.

[2] Carson Zimmerman. “Cybersecurity Operations Center”. In: The MITRE Corporation (2014), pp. 34–35.

[3] Critical Start. Why security alert fatigue matters and how to address it. URL:https://www.criticalstart.
com/resources/why-security-alert-fatigue-matters-and-how-to-address-it/.

[4] Jon Oltsik. Dealing with overwhelming volumes of security alerts. URL: https://www.esg-global.
com/blog/dealing-with-overwhelming-volume-of-security-alerts.

[5] Imperva. Alert fatigue. 2021. URL: https://www.imperva.com/learn/data-security/alert-
fatigue/.

[6] Diana Kelley and Ron Moritz. “Best practices for building a security operations center”. In: Inf. Secur. J.
A Glob. Perspect. 14.6 (2006), pp. 27–32.

[7] Faris Bugra Kokulu et al. “Matched and mismatched socs: A qualitative study on security operations
center issues”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 2019, pp. 1955–1970.

[8] Sandeep Bhatt, Pratyusa K Manadhata, and Loai Zomlot. “The operational role of security information
and event management systems”. In: IEEE security & Privacy 12.5 (2014), pp. 35–41.

[9] Oskars Podzins and Andrejs Romanovs. “Why siem is irreplaceable in a secure it environment?” In: 2019
Open Conference of Electrical, Electronic and Information Sciences (eStream). IEEE. 2019, pp. 1–5.

[10] I Putu Elba Duta Nugraha. “A Review on the Role of Modern SOC in Cybersecurity Operations”. In:
International Journal of Current Science Research and Review 4.05 (2021), pp. 408–414.

[11] Ansam Khraisat et al. “Survey of intrusion detection systems: techniques, datasets and challenges”. In:
Cybersecurity 2.1 (2019), pp. 1–22.

[12] Robbie Allen and Alistair Lowe-Norris. Active directory. " OŔeilly Media, Inc.", 2003.

[13] Sathya Chandran Sundaramurthy et al. “A Tale of Three Security Operation Centers”. In: Proceedings of
the 2014 ACM Workshop on Security Information Workers. SIW 1́4. Scottsdale, Arizona, USA: Association
for Computing Machinery, 2014, pp. 43–50. ISBN: 9781450331524. DOI: 10.1145/2663887.2663904.
URL: https://doi-org.tudelft.idm.oclc.org/10.1145/2663887.2663904.

[14] Issam El Naqa and Martin J Murphy. “What is machine learning?” In: machine learning in radiation
oncology. Springer, 2015, pp. 3–11.

[15] David D Lewis. “Naive (Bayes) at forty: The independence assumption in information retrieval”. In:
European conference on machine learning. Springer. 1998, pp. 4–15.

[16] Philip H Swain and Hans Hauska. “The decision tree classifier: Design and potential”. In: IEEE Trans-
actions on Geoscience Electronics 15.3 (1977), pp. 142–147.

[17] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[18] Charles E Metz. “Basic principles of ROC analysis”. In: Seminars in nuclear medicine. Vol. 8. 4. Elsevier.
1978, pp. 283–298.

[19] Mohamed Bekkar, Hassiba Kheliouane Djemaa, and Taklit Akrouf Alitouche. “Evaluation measures for
models assessment over imbalanced data sets”. In: J Inf Eng Appl 3.10 (2013).

[20] David L Olson and Dursun Delen. Advanced data mining techniques. Springer Science & Business Me-
dia, 2008.

[21] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation Learning: A Review and New Per-
spectives”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.8 (2013), pp. 1798–
1828. DOI: 10.1109/TPAMI.2013.50.

61

https://www.criticalstart.com/resources/why-security-alert-fatigue-matters-and-how-to-address-it/
https://www.criticalstart.com/resources/why-security-alert-fatigue-matters-and-how-to-address-it/
https://www.esg-global.com/blog/dealing-with-overwhelming-volume-of-security-alerts
https://www.esg-global.com/blog/dealing-with-overwhelming-volume-of-security-alerts
https://www.imperva.com/learn/data-security/alert-fatigue/
https://www.imperva.com/learn/data-security/alert-fatigue/
https://doi.org/10.1145/2663887.2663904
https://doi-org.tudelft.idm.oclc.org/10.1145/2663887.2663904
https://doi.org/10.1109/TPAMI.2013.50

62 Bibliography

[22] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation by jointly learn-
ing to align and translate”. In: arXiv preprint arXiv:1409.0473 (2014).

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[24] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[25] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. In: The annals of mathe-
matical statistics 22.1 (1951), pp. 79–86.

[26] Thijs van Ede et al. “DeepCASE: Semi-Supervised Contextual Analysis of Security Events”. In: Proceed-
ings of the IEEE Symposium on Security and Privacy (S&P). IEEE. 2022.

[27] Paul E Black, Karen Scarfone, and Murugiah Souppaya. “Cyber security metrics and measures”. In:
Wiley Handbook of Science and Technology for Homeland Security (2008), pp. 1–15.

[28] Enoch Agyepong et al. “Challenges and performance metrics for security operations center analysts: a
systematic review”. In: Journal of Cyber Security Technology 4.3 (2020), pp. 125–152.

[29] Enoch Agyepong et al. “Towards a framework for measuring the performance of a security operations
center analyst”. In: 2020 International Conference on Cyber Security and Protection of Digital Services
(Cyber Security). IEEE. 2020, pp. 1–8.

[30] Sathya Chandran Sundaramurthy et al. “A human capital model for mitigating security analyst burnout”.
In: Eleventh Symposium On Usable Privacy and Security ({SOUPS} 2015). 2015, pp. 347–359.

[31] Martin Rosso et al. “SAIBERSOC: Synthetic Attack Injection to Benchmark and Evaluate the Perfor-
mance of Security Operation Centers”. In: Annual Computer Security Applications Conference. 2020,
pp. 141–153.

[32] Sean Oesch et al. “An Assessment of the Usability of Machine Learning Based Tools for the Security
Operations Center”. In: 2020 International Conferences on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). IEEE. 2020,
pp. 634–641.

[33] Pooya Jaferian et al. “Heuristics for evaluating IT security management tools”. In: Proceedings of the
Seventh Symposium on Usable Privacy and Security. 2011, pp. 1–20.

[34] Martin Husák and Jaroslav Kašpar. “AIDA framework: real-time correlation and prediction of intrusion
detection alerts”. In: Proceedings of the 14th international conference on availability, reliability and se-
curity. 2019, pp. 1–8.

[35] Wajih Ul Hassan et al. “Nodoze: Combatting threat alert fatigue with automated provenance triage”. In:
Network and Distributed Systems Security Symposium. 2019.

[36] Yuxin Meng et al. “Adaptive false alarm filter using machine learning in intrusion detection”. In: Practi-
cal applications of intelligent systems. Springer, 2011, pp. 573–584.

[37] Khloud Al Jallad, Mohamad Aljnidi, and Mohammad Said Desouki. “Anomaly detection optimization
using big data and deep learning to reduce false-positive”. In: Journal of Big Data 7.1 (2020), pp. 1–12.

[38] Muhamad Erza Aminanto et al. “Combating threat-alert Fatigue with online anomaly detection us-
ing isolation forest”. In: International Conference on Neural Information Processing. Springer. 2019,
pp. 756–765.

[39] Dinesh Yadav. Categorical encoding using Label-Encoding and One-Hot-Encoder. 2019.

[40] David Cournapeau. A set of python modules for machine learning and data mining. URL: https://
pypi.org/project/sklearn/.

[41] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-validation.” In: Encyclopedia of database systems
5 (2009), pp. 532–538.

[42] Christoph Bergmeir and José M Benıtez. “On the use of cross-validation for time series predictor eval-
uation”. In: Information Sciences 191 (2012), pp. 192–213.

[43] Wei Xu et al. “Detecting large-scale system problems by mining console logs”. In: Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles. 2009, pp. 117–132.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://pypi.org/project/sklearn/
https://pypi.org/project/sklearn/

A
Heatmap

Different features in the heatmap on the next page shows correlations with other features of the ticketing
system dataset. First, Jaar, Kwartaal, Week and Dag correlate because they are always dependent on each
other. It is also obvious that different devices, such as IDS alert different alerts with different title names. This
can be derived from the fact that Dienst and Title are strongly correlating. More interesting things can be
seen. For example, the feature State is correlated with the Doorlooptijd (in min). A closed ticket in the system
is taking more time than the tickets that are merged.
It is also interesting to see that False Positive correlates with Kwartaal, Week, Dag. This could mean that at a
certain time in the year, multiple false positives were coming in.
What is interesting is to see that different services have a higher priority than other services. This could be
derived from the fact that Priority and Dienst correlate with each other.
We see that False Positive depends a lot on Title, Agent/Owner, Priority and Dienst and the time of year. For
State, this is different because few features do not correlate with the label State. Only the Doorlooptijd (in
min) is important for the feature.

63

64 A. Heatmap

F
igu

re
A

.1:H
eatm

ap
o

fco
rrelatin

g
featu

res

B
Sliding windows and cross-validation

parameters

We use several folds and sliding windows and predict the label State and the label False Positive. The folds
that we use are 3,5,10,15. The sliding windows we use are 1,2,3. We can see that a sliding window of 1 is
performing slightly better than larger sliding windows. This is the case for both features and all different
folds. The number of folds that we will use is 10 because they have a better prediction when we look at the
results overall.

B.1. State

Table B.1: Parameter tuning folds and sliding windows - label State

Folds Sliding windows Accuracy AUC Precision Recall
3 1 0.81 0.83 0.82 0.96
3 2 0.80 0.82 0.81 0.96
3 3 0.77 0.8 0.79 0.95
5 1 0.80 0.82 0.80 0.97
5 2 0.79 0.83 0.79 0.97
5 3 0.78 0.80 0.78 0.98
10 1 0.82 0.84 0.83 0.95
10 2 0.79 0.82 0.81 0.94
10 3 0.79 0.81 0.80 0.96
15 1 0.81 0.84 0.83 0.94
15 2 0.80 0.83 0.82 0.95
15 3 0.79 0.82 0.81 0.95

B.2. False Positive

65

66 B. Sliding windows and cross-validation parameters

Table B.2: Parameter tuning folds and sliding windows - label \textit{False Positive}

Folds Sliding windows Accuracy AUC Precision Recall
3 1 0.88 0.88 0.00 0.00
3 2 0.89 0.89 0.00 0.00
3 3 0.88 0.88 0.00 0.00
5 1 0.89 0.83 0.13 0.01
5 2 0.89 0.84 0.02 0.00
5 3 0.89 0.83 0.16 0.00
10 1 0.90 0.83 0.28 0.04
10 2 0.89 0.83 0.18 0.05
10 3 0.90 0.83 0.2 0.04
15 1 0.90 0.75 0.16 0.03
15 2 0.90 0.79 0.08 0.03
15 3 0.89 0.78 0.12 0.03

C
Events and context example

C.1. Explanation of context vector and event
For an explanation of the DeepCASE results, we use two context events and two events. The array next to the
event is the event of the incident that needs investigation. The context events are the context of the actual
event and have happened before the event. The results can be read in such a way that the first event in
the event array matches the first event in the context event array. Then the second event in the event array
matches the second event in the context event array.

Event : [40 ,40]

Context event : ([[1 6 3 , 163 , 163 , 163 , 163 , 103 , 39 , 46 , 38 , 40] ,
[163 , 163 , 163 , 163 , 163 , 70 , 62 , 42 , 42 , 40] ,

C.2. Result DeepCASE - confidence threshold 0.2
Below we see the cluster of the DeepCASE model that is used at a confidence threshold of 0.2. The events are
all the same and for the context, the events are the same as well. For the context event holds here that ’40’ is
in every context event the even with the highest attention. We can derive this because ’40’ is the event that is
present in every context event.

Event :
[40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 ,
40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 ,
40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 ,
40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 ,
40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40 , 40]
Context event :
[163 , 163 , 163 , 163 , 163 , 103 , 39 , 46 , 38 , 40]
[163 , 163 , 163 , 163 , 163 , 70 , 62 , 42 , 42 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 91 , 37 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 89 , 88 , 40]
[64 , 64 , 106 , 86 , 38 , 42 , 41 , 56 , 40 , 38]
[163 , 47 , 42 , 39 , 103 , 91 , 41 , 38 , 40 , 42]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 40]
[163 , 64 , 83 , 83 , 103 , 43 , 49 , 106 , 80 , 40]
[89 , 88 , 40 , 42 , 62 , 89 , 88 , 40 , 40 , 40]
[163 , 89 , 88 , 40 , 42 , 62 , 89 , 88 , 40 , 40]
[163 , 163 , 89 , 88 , 40 , 42 , 62 , 89 , 88 , 40]
[163 , 163 , 163 , 89 , 88 , 40 , 42 , 62 , 89 , 88]
[80 , 91 , 83 , 83 , 68 , 68 , 76 , 93 , 42 , 40]
[163 , 163 , 76 , 42 , 64 , 40 , 94 , 41 , 38 , 79]

67

68 C. Events and context example

[163 , 163 , 163 , 163 , 163 , 163 , 58 , 41 , 40 , 38]
[163 , 163 , 163 , 163 , 163 , 103 , 42 , 62 , 42 , 40]
[163 , 163 , 163 , 163 , 163 , 50 , 64 , 40 , 42 , 62]
[163 , 163 , 163 , 163 , 50 , 42 , 40 , 40 , 40 , 37]
[163 , 163 , 163 , 163 , 163 , 163 , 50 , 42 , 40 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 50 , 42 , 40]
[163 , 163 , 163 , 163 , 43 , 95 , 42 , 40 , 42 , 62]
[163 , 163 , 163 , 64 , 63 , 43 , 83 , 83 , 103 , 40]
[45 , 39 , 42 , 47 , 103 , 64 , 91 , 40 , 38 , 42]
[42 , 41 , 79 , 38 , 41 , 64 , 80 , 71 , 71 , 40]
[40 , 42 , 41 , 79 , 38 , 41 , 64 , 80 , 71 , 71]
[163 , 163 , 163 , 163 , 163 , 163 , 79 , 43 , 50 , 40]
[40 , 42 , 62 , 42 , 106 , 76 , 79 , 43 , 37 , 40]
[40 , 40 , 42 , 62 , 42 , 106 , 76 , 79 , 43 , 37]
[64 , 76 , 71 , 93 , 76 , 42 , 38 , 103 , 41 , 40]
[94 , 49 , 39 , 45 , 42 , 46 , 39 , 47 , 40 , 38]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 71 , 43 , 40]
[163 , 16 , 11 , 76 , 70 , 47 , 42 , 39 , 42 , 40]
[94 , 94 , 46 , 68 , 62 , 42 , 40 , 42 , 40 , 75]
[45 , 71 , 94 , 94 , 46 , 68 , 62 , 42 , 40 , 42]
[46 , 42 , 39 , 93 , 76 , 71 , 94 , 42 , 38 , 40]
[42 , 63 , 41 , 42 , 40 , 38 , 40 , 91 , 64 , 40]
[40 , 42 , 63 , 41 , 42 , 40 , 38 , 40 , 91 , 64]
[42 , 83 , 83 , 45 , 106 , 71 , 93 , 68 , 95 , 40]
[40 , 42 , 83 , 83 , 45 , 106 , 71 , 93 , 68 , 95]
[40 , 42 , 62 , 40 , 42 , 63 , 41 , 42 , 40 , 38]
[106 , 76 , 40 , 42 , 62 , 40 , 42 , 63 , 41 , 42]
[163 , 39 , 42 , 45 , 43 , 106 , 76 , 40 , 42 , 62]
[40 , 39 , 40 , 46 , 42 , 103 , 43 , 40 , 42 , 41]
[163 , 163 , 163 , 40 , 39 , 40 , 46 , 42 , 103 , 43]
[163 , 163 , 163 , 163 , 163 , 71 , 71 , 41 , 40 , 38]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 40 , 39]
[163 , 108 , 104 , 107 , 39 , 71 , 42 , 41 , 40 , 38]
[42 , 40 , 42 , 62 , 81 , 95 , 91 , 62 , 38 , 40]
[63 , 42 , 40 , 42 , 62 , 81 , 95 , 91 , 62 , 38]
[163 , 163 , 163 , 163 , 163 , 83 , 83 , 80 , 93 , 40]
[163 , 40 , 42 , 40 , 62 , 42 , 50 , 93 , 75 , 40]
[163 , 163 , 40 , 42 , 40 , 62 , 42 , 50 , 93 , 75]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 37 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 40 , 42]
[163 , 163 , 163 , 163 , 163 , 163 , 70 , 38 , 40 , 41]
[163 , 163 , 163 , 79 , 51 , 83 , 83 , 41 , 42 , 40]
[163 , 163 , 71 , 71 , 38 , 95 , 93 , 41 , 42 , 40]
[163 , 163 , 163 , 107 , 39 , 42 , 45 , 89 , 88 , 40]
[103 , 30 , 103 , 80 , 87 , 75 , 42 , 62 , 42 , 40]
[163 , 163 , 163 , 163 , 75 , 66 , 104 , 40 , 30 , 62]
[163 , 163 , 163 , 163 , 163 , 163 , 42 , 38 , 68 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 91 , 91 , 40]
[87 , 50 , 50 , 50 , 50 , 50 , 62 , 42 , 40 , 42]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 50 , 106 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 106 , 50 , 42 , 40]
[75 , 68 , 68 , 89 , 88 , 94 , 50 , 49 , 106 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 68 , 68 , 40 , 42]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 108 , 104 , 62 , 40]
[40 , 62 , 104 , 108 , 104 , 80 , 108 , 62 , 40 , 39]

C.2. Result DeepCASE - confidence threshold 0.2 69

[39 , 40 , 40 , 62 , 104 , 108 , 104 , 80 , 108 , 62]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 39 , 40]
[163 , 163 , 163 , 163 , 163 , 62 , 40 , 42 , 103 , 42]
[163 , 163 , 62 , 40 , 103 , 40 , 75 , 31 , 62 , 40]
[163 , 163 , 163 , 62 , 40 , 103 , 40 , 75 , 31 , 62]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 62 , 40 , 103]
[163 , 163 , 163 , 163 , 163 , 26 , 39 , 104 , 40 , 62]
[163 , 163 , 163 , 163 , 163 , 163 , 103 , 104 , 39 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 43 , 40 , 74 , 16]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 40 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 40 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 40]
[9 , 40 , 40 , 40 , 62 , 37 , 40 , 40 , 108 , 108]
[163 , 163 , 163 , 9 , 40 , 40 , 40 , 62 , 37 , 40]
[163 , 163 , 163 , 163 , 9 , 40 , 40 , 40 , 62 , 37]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 9 , 40 , 40]
[163 , 163 , 163 , 163 , 163 , 163 , 163 , 163 , 9 , 40]

D
Analysis of the clusters

In Section 7.2.7, we show the analyst examples of the clusters. In this Appendix we explain the clusters that
are sent to the security analyst. We take the example 0.05_cluster_14_number_1 and show how the name is
built up. 0.05 is the value of the confidence threshold. Then we have the number of the cluster, which is 14.
Then we have the times that the algorithm has run which is in this case 1. Do note that the cluster number is
the number in the run, not in the whole run. So, there could exist a cluster that is 0.05_cluster_14_number_2.
We show the unique titles of the clusters and show what the analysts had to say about these clusters. He
analysed the clusters together with the Source IP and Destination IP. The clusters had two types of events, the
context event and the event itself. We did not have information on what the context event is and what the
event is but we can still analyse if the titles should be together.

D.1. 0.05_cluster_14_number_1
These clusters were correctly classified, as in the data was seen that the Source IPs and Destination IPs were
all similar. These come all from the same scan.

• Cisco ASA directory traversal attempt

• Citrix ADC and Gateway arbitrary code execution attempt

D.2. 0.05_cluster_24_number_1
These were scans as well, coming from the same Source IP and going to the same Destination IP.

• JBoss JMXInvokerServlet access attempt

• SQL 1 = 1 - possible sql injection attempt

D.3. 0.06_cluster_3_number_7
The Apache Struts class access attempt was not correlating with the SQL injection attempt. This was not a
logical cluster.

• SQL 1 = 1 - possible sql injection attempt

• Apache Struts java.lang.ProcessBuilder class access attempt

D.4. 0.07_cluster_8_number_1
This was a logical cluster.

• Apache Struts remote code execution attempt

• Apache Struts OGNL getRuntime.exec static method access attempt

71

72 D. Analysis of the clusters

D.5. 0.08_cluster_5_number_1
This was a logical cluster.

• Apache Struts remote code execution attempt

• Apache Struts2 blacklisted method redirect

D.6. 0.08_cluster_13_number_1
The Source IPs were different and did not match as well as the alerts did not seem to correlate. The analyst
did not know why these were clustered.

• Citrix ADC and Gateway arbitrary code execution attempt

• Apache Tomcat FileStore directory traversal attempt

D.7. 0.08_cluster_15_number_1
This was a logical cluster.

• Citrix ADC and Gateway arbitrary code execution attempt

• JBoss JMXInvokerServlet access attempt

	Introduction
	Research questions
	Research contribution
	Thesis structure

	Background
	The Security Operations Center
	Machine learning
	Metrics
	Deep learning
	DeepCASE

	Related work
	Different metrics for measuring the performance of security analysts
	Alert reduction techniques
	Conclusion

	Methodology
	Data collection
	Data preparation
	Selected machine learning models
	DeepCASE
	New clustering techniques datasets

	Data analysis
	Data visualisation
	Feature engineering
	Classification
	Conclusion

	Exploring DeepCASE model
	Preprocessing of data
	Metrics
	Results
	Conclusion

	Creating new algorithms for reducing the workload
	Explanation of the datasets and algorithms
	Results
	Conclusion

	Conclusion and discussion
	Discussion
	Conclusion
	Future work

	Heatmap
	Sliding windows and cross-validation parameters
	State
	False Positive

	Events and context example
	Explanation of context vector and event
	Result DeepCASE - confidence threshold 0.2

	Analysis of the clusters
	0.05_cluster_14_number_1
	0.05_cluster_24_number_1
	0.06_cluster_3_number_7
	0.07_cluster_8_number_1
	0.08_cluster_5_number_1
	0.08_cluster_13_number_1
	0.08_cluster_15_number_1

