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Long-range interactions play a key role in several phenomena of quantum physics and chemistry. To study
these phenomena, analog quantum simulators provide an appealing alternative to classical numerical methods.
Gate-defined quantum dots have been established as a platform for quantum simulation, but for those experiments
the effect of long-range interactions between the electrons did not play a crucial role. Here we present a
detailed experimental characterization of long-range electron-electron interactions in an array of gate-defined
semiconductor quantum dots. We demonstrate significant interaction strength among electrons that are separated
by up to four sites, and show that our theoretical prediction of the screening effects matches well the experimental
results. Based on these findings, we investigate how long-range interactions in quantum dot arrays may be
utilized for analog simulations of artificial quantum matter. We numerically show that about ten quantum dots
are sufficient to observe binding for a one-dimensional H2-like molecule. These combined experimental and
theoretical results pave the way for future quantum simulations with quantum dot arrays and benchmarks of
numerical methods in quantum chemistry.

DOI: 10.1103/PhysRevResearch.4.033043

I. INTRODUCTION

Electromagnetic forces between electrons play a crucial
role in quantum physics and chemistry. They are a key
ingredient for many phenomena, ranging from molecular
binding [1], Wigner crystallization [2], and exciton forma-
tion [3] to high-temperature superconductivity [4]. While
their exact treatment in quantum many-body systems remains
numerically challenging, analog quantum simulators [5,6] of-
fer an alternative setting for the study of complex quantum
systems with long-range interactions. Yet in most physical
systems, particles interact locally or at short distances only.
It is therefore of great interest to investigate experimental
platforms in which long-range interactions between charged
particles occur naturally.
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Electrons confined to semiconductor quantum dots (QDs)
provide a versatile test bed for analog quantum simulation
of Fermi-Hubbard physics [6–8]. Previous experimental stud-
ies have addressed the transition from Coulomb blockade to
collective Coulomb blockade [9], itinerant ferromagnetism
when doping with a single hole [10], and Heisenberg mag-
netism arising in the Mott-insulator regime [11]. However,
long-range electron-electron interactions have not yet been
capitalized on in gate-defined QD systems, and their effect
was previously either tuned away or remained as an unwanted
disturbance. The character of the electron-electron interaction
is also relevant for the operation of spin qubits in QD arrays
with shared control lines [12].

Transport measurements on double quantum dots (DQDs)
more than two decades ago [13] already revealed interactions
between electrons on neighboring sites. In more recent work,
these interactions have been used to induce entanglement
between spin qubits in separate DQDs [14]. Interactions be-
tween electrons separated by multiple sites have been studied
to assess the readout performance [15] and the tunability
of the interaction between DQD qubits [16] and to induce
a cascade of electrons enabling distant spin readout [17].
However, a detailed study of electron-electron interactions
as a function of distance has not yet been performed. While
such a characterization is technically challenging as it re-
quires a high degree of control over the potential landscape
of a sufficiently large system, recent achievements in tun-
ing and controlling multidot arrays [18–21] facilitate the
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formation of increasingly large and homogeneously coupled
QD arrays.

In this paper, we present a detailed examination of long-
range electrostatic interactions between electrons confined to
a semiconductor QD system. In our paper we operate a six-site
QD array with homogeneous tunnel coupling and two charge
sensors. We record a charge-stability diagram for each dot-dot
pair in the array, thus explicitly accounting for non-nearest-
neighbor interactions. From the analysis of these diagrams we
extract the electron-electron interaction potential as a function
of distance, which is shown and discussed in Sec. II. We
detect interactions between electrons that are up to four sites
away from each other. Furthermore, we model the interaction
numerically, taking screening effects due to metallic gates into
account, and find good agreement between experiment and
theory. As a promising application of our findings, we discuss
prospects for analog simulations of low-dimensional, artificial
atoms and molecules in Sec. III, that may help to benchmark
and improve existing numerical methods in quantum chem-
istry (QC). Inspired by the ideas outlined in a recent proposal
for neutral atoms in optical lattices [22], we start from the
tight-binding description of our QD system and regard it
as a linear discretization of an artificial atom, or molecule.
We calculate the low-lying eigenstates of the tight-binding
model and discuss their relation to the simulated chemical
systems. Based on our numerical results, we project that QD
arrays with approximately ten sites are sufficient for proof-
of-principle simulations of molecular dissociation, which is
within reach of state-of-the-art experiments. We also discuss
relevant experimental techniques for the implementation of
QC with QD arrays. Finally, in Sec. IV, we summarize our
findings and give perspectives for future work.

II. CHARACTERIZATION OF INTERACTION POTENTIAL

In this section, we introduce the experimental system and
its theoretical model, which is employed in the later analysis.
Subsequently we present the experimental characterization of
on-site and intersite interactions in the QD array, and show
that these agree well with results from numerical calculations.

A. Device

The QD system consists of a linear array of six QDs
and two charge sensors, and is formed in a GaAs/AlGaAs
heterostructure. Figure 1(a) shows a scanning electron micro-
graph image of the active region of a device similar to the one
used in this experiment, which is designed for up to eight QDs
with two charge sensors and has previously been operated as
a Heisenberg spin chain [11]. At the GaAs/AlGaAs interface,
90 nm below the surface and 40 nm below a silicon doping
layer, a two-dimensional electron gas forms. The potential
landscape at the interface is shaped by applying voltages on
the gates, which are patterned at the surface with a dot spacing
aQD = 160 nm. The device is cooled in a dilution refrigerator,
which results in an electron reservoir temperature of about
100 mK (roughly 10 μeV).

B. Tight-binding model

To characterize the interaction potential between electrons,
we start from a tight-binding description and consider the
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FIG. 1. Quantum dot system with schematics of chemistry simu-
lations. (a) Scanning electron micrograph of the device. Dot locations
are indicated with dashed circles, and charge sensors are indicated
by resistance meters labeled with �. Barrier gates between sites i
and j are labeled by Bij, and plunger gates at site k are labeled by
Pk. Charge sensors are controlled by gates SP1 and SP2, respectively.
(b) Sketch of competing terms in Eq. (1) describing the quantum dot
array: intersite interaction Vi j , tunnel coupling tkl , and on-site interac-
tion Um. (c) Schematic of the QD array and its relation to atomic QC
simulation, exemplarily shown for ten QDs. The electron-nucleus
interaction potential of an artificial hydrogen atom is encoded in the
local energy offsets εi. (d) Similar setup in the case of the molecular
ion H+

2 with two nuclei at R1 and R2, respectively. The system can
be studied for different internuclear distances |R1 − R2| separately.
Blue squares (red diamonds) indicate the local expectation values
〈n̂i〉 in the ground state (first-excited state), and the blue-dashed
(red-solid) line shows the fit to the ground-state (excited-state) wave
function [23,24]. The orange colorscale encodes the local potential
offset.

single-band extended Fermi-Hubbard model [9,25,26]

H =
∑

i

Uini↑ni↓ +
∑
i �= j

Vi jnin j

︸ ︷︷ ︸
=:Hee

−
∑

i

εini

︸ ︷︷ ︸
=:Hne

−
∑

〈i, j〉,σ
ti jc

†
iσ c jσ

︸ ︷︷ ︸
=:Hkin

, (1)

where the dot occupation at site i is denoted by ni = ni↑ + ni↓
and niσ = c†

iσ ciσ with the annihilation (creation) operator c(†)
iσ

for an electron with spin σ . The last sum is restricted to
nearest-neighbor hopping only, as indicated by 〈·, ·〉. ti j de-
notes the tunnel coupling between sites i and j, εi the local
energy offset, Ui the on-site interaction, and Vi j the intersite
interaction strength [see also Fig. 1(b)]. The local energy
offsets, εi, and the tunnel couplings, ti j , can be tuned with the
gate voltages, and thus can be adjusted to the problem under
study. The Hamiltonian consists of a contribution from elec-
tronic interactions (Hee), potential (Hne), and electron hopping
(Hkin). This notation will prove useful for the discussion in
Sec. III.

C. Experimental results

The interaction potential is characterized based on a set
of charge-stability diagrams. This set contains a diagram
for each dot and a diagram for each pair of dots. Before
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FIG. 2. [(a)–(f)] Charge-stability diagrams showing the sum of signals from both charge sensors as a function of the local energy offsets
for the dots highlighted by the white dashed circles. (a) For the leftmost dot only the left sensor signal is shown, and is measured relative to
the gate for the rightmost sensor. This gate here acts as a dummy, because it has negligible effect on both the leftmost dot and the signal from
the left sensor. The broad vertical band is a Coulomb peak for the left sensor, which appears due to crosstalk from ε1. (b–f) For the leftmost
dot in combination with a dot (b) one, (c) two, (d) three, (e) four, and (f) five sites away. Black dashed lines are fits to the anticrossings, and
are used to extract the interaction elements; the lighter dashed line in (b) is a guide to the eye to indicate the voltage of the shifted vertical
addition line. The voltages are converted to energies with the lever arms {105, 94, 104, 86, 104, 95} μeVmV−1, which were obtained with
photon-assisted tunneling experiments [27]. (g) Interaction matrix elements Vi j vs distance between QDs i and j, which are centered around
τi and τ j , respectively. Blue dots indicate the experimentally obtained interaction elements and the solid line shows the numerical result based
on screening due to the gate metal as described in detail in Appendix B. The uncertainties in the interaction elements are dominated by
uncertainties in the lever arms, estimated to be below 10%, and the electron temperature (≈10 μeV). The inset shows the interaction and fits
on a logarithmic scale for better comparison. For simplicity Ui is denoted as Vii

the diagrams are measured, the voltages are tuned to the
center of the charge region with one electron per dot and ho-
mogeneous nearest-neighbor tunnel couplings, t ≈ 20 μeV.
From that configuration, for each diagram only the chemical
potentials for the respective dots are temporarily changed.
For the pairwise diagrams the respective chemical potentials
are, in addition, offset to center at an anticrossing where a
charge is added on one dot in the pair and removed from the
other. The diagrams involving the leftmost dot are shown in
Figs. 2(a)–2(f). The full set of pairwise diagrams, which for
six QDs consists of 15 diagrams, is shown in Fig. 4. This set
of diagrams can explicitly reveal crosstalk for the control of
chemical potentials, thus also for non-nearest-neighbor sites.
Here this crosstalk has already been compensated for with
virtual gates [9,18,19,28].

The on-site interaction elements, Ui, are obtained from the
separation between the addition lines for the first and second
electron on the respective dot [see Fig. 2(a)]. The intersite
interaction elements, Vi j , are extracted by modeling the an-
ticrossings in the charge-stability diagrams with [9]

δεi + δε j = ±[
Vi j +

√
(δεi − δε j )2 + 4t2

i j

]
, (2)

with δεi = εi − εi,0 where εi,0 is the local energy offset at the
center of the respective anticrossing. The anticrossing model
is converted into a two-dimensional patch, which is fitted onto

the charge-stability diagrams [see Figs. 2(b)–2(f)], using an
edge detection algorithm [29]. Figure 2(g) shows all values
for Ui and Vi j as extracted from the full set of diagrams. The
interaction strength shows a clear decay with distance, and
is significant up to a distance of four sites. The spread in
interaction values for a fixed distance is explained by residual
disorder in the potential landscape, which most noticeably af-
fects the on-site interaction as it strongly depends on size and
shape of the QD confinement. A comparison of the intersite
interaction values between the left and right sides of QDs 2–5
did not reveal asymmetries, which indicates that the QDs are
centered around the intended locations.

D. Numerical results

The dominant source for screening of the interaction is
the metal of the gates above the QDs [see Fig. 1(a)]. Other
sources could contribute to screening, such as the surrounding
two-dimensional electron gas, dopants, and impurities, but are
expected to be less important due to the device geometry or
a relatively low density of mobile charge carriers. The elec-
trons on the QDs themselves are not expected to contribute
to screening much because they are rather strongly confined
to their respective QDs and were kept deep in the Coulomb
blockade regime for the characterization of the interaction
potential. Based on this assumption, the depth of the interface,
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and the gate pattern, we numerically calculate the screened
interaction between two electrons as a function of distance.
It can be evaluated from the charge distribution induced in
the metallic surface layer [30]. The underlying numerical
approach is summarized in Appendix B. We compare the
numerical results with the experimental results by using a
least-squares fit and observe good agreement. In our calcu-
lations, we account for the finite dot size using a Gaussian
basis set to describe the electronic wave functions, which
yields a decay of Vi j as shown in Fig. 2(g). The fitted dot
size is mainly determined by the measurement results of local
(on-site) interactions, Ui, which together with the numerical
approach outlined in Appendix B result in an accurate model
for the nonlocal (intersite) interaction Vi j . Most notably we
find that the electron-electron interaction potential Vee decays
polynomially with distance. At large distance, our prediction
is consistent with a fitted subexponential (power-law) decay
Vee(|r − r′|) ∼ C/|r − r′|α where α � 3. This finding is in
agreement with an analytical estimate, based on the image-
charge method, for a device of which the surface is completely
covered by metal and the fact that the present device is only
partially covered by metallic gates (see Appendix B). That
estimate yields a cubic decay of interactions with distance,
i.e., α = 3, and more closely describes accumulation-mode
devices with a multilayer gate stack, such as those based on
silicon and germanium [15,31].

III. APPLICATIONS IN QUANTUM CHEMISTRY

In Sec. II, we have shown that electrons in the QD array
interact at long distances via a screened Coulomb repulsion.
In the following, we study how this insight may be utilized
in future experiments for the analog simulation of artificial
atoms and molecules.

A. Theoretical framework

A major task in QC is to study the low-energy physics of
systems with Ne electrons and Nc nuclei. Within the usually
employed Born-Oppenheimer approximation, the positions of
the nuclei are fixed at R1, . . . , RNc , and the total Hamiltonian
can be decomposed as HQC = Hkin + Hee + Hne with a kinetic
part and electron-electron and nucleus-electron interactions,
respectively. Here we consider a discretized instance of this
problem, that can be simulated using a QD array with N sites
(see Fig. 1). We investigate a one-dimensional array as in
Sec. II, but we note that the upcoming theoretical analysis can
be extended to two-dimensional lattices.

We start from the model in Eq. (1) with a homogeneous
tunnel coupling t . The kinetic term Hkin describes electrons
hopping at a rate t , that are confined to an electrostatic poten-
tial landscape. With the choice for the energy offsets

εi =
Nc∑

k=1

Vne(|τi − Rk|), (3)

we interpret Hne from Eq. (1) as an analog of the attractive
nucleus-electron interaction in QC, where τi denotes the loca-
tion of the ith dot. In the QD array, the form of the interaction
potential Vne may be adjusted by an adequate choice of chem-
ical potentials. For example, εi = V0/|τi − R| may be chosen

to mirror the Coulomb law in the presence of a single nucleus
at position R, with an interaction strength V0. Finally, the
electron-electron interaction is captured by Hee and has been
characterized in Sec. II. It is dictated by the actual interaction
potential between charge carriers in the semiconductor. While
the exact form of Vee [see Eq. (B1)] differs from the behavior
of electrons in natural systems, it still permits long-distance
interactions and allows for the simulation of artificial mul-
tielectron atoms and molecules. It is partly the presence of
such long-range interactions that poses serious computational
challenges in the numerical treatment of quantum matter, e.g.,
in molecular simulations.

Upon this reinterpretation of terms in the Fermi-Hubbard
model (1), the physical parameters of the QD array can be
associated with the characteristic length and energy scales of
the QC Hamiltonian. In atomic physics, the effective Bohr
radius a0 relates the kinetic and potential energy scales. In our
system, these are characterized by nearest-neighbor hopping,
t , and nearest-neighbor Coulomb interaction, V0/aQD, respec-
tively. This enables us to identify a0 = t/(V0/aQD) and thus to
introduce [32]

η ≡ a0

aQD
= t

V0
, Ry = V 2

0

t
= η−2t, (4)

with the Rydberg energy Ry. The ratio η in Eq. (4) deter-
mines the discretization error introduced by the finite array
and relates to how well the continuum limit can be recovered.
In particular, (i) at too small η the atomic orbitals cannot be
well resolved, as for this the effective Bohr radius should span
several QD sites, and (ii) too large η implies that the simulated
atom or molecule does not fit into the array.

B. Numerical results

In the following we demonstrate that relatively small QD
arrays can be used to study basic properties of simple arti-
ficial atoms and molecules. For this aim, we calculate the
low-energy eigenstates of the tight-binding Hamiltonian [see
Eq. (1)] for realistic system parameters and discuss finite-size
effects.

Atoms. First we study an artificial hydrogen atom by set-
ting εi = V0/|τi − R| to define a single nucleus located at
R in the center of the array [see Fig. 1(c)]. We calculate
the low-energy spectrum of the system described by H in
Eq. (1), and relate the eigenenergy E to an atomic binding
energy Eb = E + 2t . At a fixed tunnel coupling t , V0 = t/η
needs to be optimized in order to approximate the contin-
uum limit well. With system size, N , sufficiently large, the
Balmer-like series En = −Ry/n2 of a one-dimensional hydro-
gen atom [23] is reproduced if η is neither too small nor too
large. Importantly, it can be seen that even relatively small
arrays resolve quantized energy levels at intermediate η and
approximately yield the analytical result of the continuum
case [see Figs. 3(a) and 3(b)]. As comparison see Fig. 3(c)
for a very large N = 300, where the energy plateaus coincide
with the analytical result over a relatively wide range of η.
Signatures of this behavior can already be observed at much
smaller N , which shows that basic atomic properties can be
studied using currently available setups with approximately
ten dots. The probability density of the one-dimensional hy-
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FIG. 3. Numerical results for the atom and the two-electron
molecule. Lowest part of the artificial hydrogenlike atom spectrum as
a function of V0 and η = t/V0 for system sizes (a) N = 6, (b) N = 25,
and (c) N = 300. The left axis (dark squares) shows the atomic
binding energy Eb in Ry, while the right axis (light circles) shows
the corresponding eigenenergies of Eq. (1) in μeV. Shown are the
ground (blue), first-excited-state (green), and second-excited-state
(red) energies. The dashed lines indicate the three lowest Balmer
series values. In all cases, t = 20μeV. (d) Molecular binding energy
	 (see text) for the artificial H2-like molecule with two electrons
interacting via effective potential Vee, and two nuclei separated by
distance R. Shown is the molecular binding energy for different
system sizes N = 6, 10, 15, . . . , 35. Curve fits to guide the eye (solid
line for N = 35 and dash-dotted lines for all other N). Other param-
eters: t = 40 μeV, V0 = 200 μeV, and Ry = 1 meV.

drogen atom is directly related to the ground- and excited-state
occupation numbers 〈n̂i〉, as depicted in Fig. 1(c).

Molecules. Next we demonstrate the simulator’s ability
to uncover essential molecular properties. For this aim we
consider a system composed of two electrons and two nu-
clei. In order to obtain the dissociation curve of this artificial
H2-like molecule, we calculate the low-energy spectrum of
H + Vnn, where Vnn denotes the nucleus-nucleus interaction
potential. The electron-electron interaction is governed by
the screened interaction in the semiconductor, while for the
electron-nucleus and nucleus-nucleus interactions we con-
sider a Coulomb potential, i.e., Vnn = V0/R. The internuclear
distance R can be varied by adjusting the local offsets εi.
Within the Born-Oppenheimer approximation, the positions
of the nuclei are considered to be fixed, and thus the term Vnn

is simply added to the measurement result 〈H〉 in the end.
We note that the interaction potential Vee is device specific

and cannot be altered in situ. Given a suitable gate pattern, the
interaction matrix elements Vi j , the local energy offsets εi, and
nearest-neighbor hopping ti j may in principle still be tuned

independently from one another [33]. For simplicity, we fix t
and V0 in our numerical simulation and treat them as constant
for all distances R. Despite the fact that, in this way, we do
not optimize the scaling parameter η for each R separately, we
obtain a molecular binding curve with a pronounced minimum
as shown in Fig. 3(d). We show the molecular binding energy
	 = E2e− − 2Ee− , and thus compare the ground-state energies
of the two-electron (E2e− ) and single-electron (Ee−) systems.
The results show that basic molecular properties can be re-
solved with arrays of moderate size, e.g., N ≈ 10 dots suffice
for determining the bond length of the artificial molecule.

C. Relevant experimental techniques

For the experimental implementation it is important to con-
sider methods for the initialization of the QC simulator and the
measurement of relevant system parameters. The initialization
requires the QD array to be occupied with the desired total
number of charges. For small systems this can be achieved
based on the fact that the long-range electron-electron inter-
action strength is larger than the reservoir temperature. For a
larger number of sites with only few charges, control over the
tunnel coupling to the reservoirs can allow for first loading the
desired number of charges and then isolating the QD array by
raising the respective tunnel barriers [34,35].

For measurements of the simulator there are various tech-
niques available for gate-defined QDs. The energy splittings
for the artificial atom and molecule (see Fig. 3) are found
to be in the 5-60 μeV range, and thus can be probed with
microwave spectroscopy such as used for the observation of
covalent bonding on a DQD [36]. The microwave excitation
and charge sensor detection require a change in charge dis-
tribution between ground and excited state, which are shown
in Figs. 1(c) and 1(d) for the atom and molecular ion, respec-
tively. In addition, a tilt on local offsets εi could be applied
(see Appendix C), which has a similar effect as an electric
field that induces a dc Stark shift for an atom or molecule.
Applying a tilt can be used to map out a trend in the energy
splitting, which could be used to determine the splitting at
conditions, e.g., zero tilt, where no change in charge distri-
bution is induced. This concept has been used for instance to
extract interdot tunnel couplings [36]. For the QC simulator
a tilt could in particular prove useful for the simulation of
molecules with larger internuclear separation (see Fig. 6). In
addition, the transition probabilities can be increased by ap-
plying the microwave signal on multiple gates. Another useful
technique for QDs is gate-based reflectometry by which the
electrical susceptibility can be measured [37–40]. This offers
an alternative to obtaining the energy splitting at conditions
where no change in charge distribution is induced, but the
quantum capacitance is nonzero.

Complimentary measurements of the energy levels of the
QC simulator, for example, for the ground state of the two-
electron molecule shown in Fig. 3(d), could be performed by
using a well-defined reference level, e.g., the reservoir Fermi
level or another QD. The energy level of the QC simulator
can then be extracted by identifying for which global shift the
simulator level is on resonance with the reference level. In this
way, the energy levels can be compared for different scaling
ratios, η, and different internuclear distances. Combined with
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FIG. 4. Full set of pairwise charge-stability diagrams. The leftmost column shows the diagrams presented in Fig. 2 in the main text. For
non-nearest-neighbor pairs smaller voltage ranges were used to maintain sufficient resolution with the same number of data points.

microwave spectroscopy the energy spectrum can then be
mapped out experimentally in a way similar to the numerical
results shown in Fig. 3.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have experimentally characterized the
long-range electron-electron interactions in a gate-defined
quantum dot array. The interactions were experimentally
found to be detectable between electrons up to four sites away.
We compared a toy model of the electrostatic interaction that
considers metallic gates as the main screening source and
found good agreement with our measurement results. In future
work it will be instructive to analyze in more detail how the
form of long-range interaction potentials can be controlled by
an adequate choice of gate patterns.

We have also discussed how quantum dot systems may
be utilized for future analog simulations of artificial quantum
matter, both in single-electron systems and in many-electron

systems with long-range interactions. Using numerical sim-
ulations, we demonstrated that quantized atomic binding
energies can be resolved and that the interactions are suffi-
ciently strong to explore nontrivial properties like molecular
dissociation curves. We have shown that proof-of-principle
demonstrations may already be performed using state-of-
the-art experimental setups of approximately ten quantum
dots. Hence our paper opens up the path for future quan-
tum simulation experiments and studies of artificial atoms
and molecules using semiconductor quantum dot arrays. Due
to the computationally challenging problems that arise in
the context of quantum chemistry, this may prove beneficial
for the benchmarking of existing numerical techniques and
development of new theoretical methods. In addition, these
well-controlled quantum systems with long-range interactions
are also promising for future investigations of other debated
phenomena, such as Wigner crystallization [41,42], exciton
formation [3], high-temperature superconductivity [4,7], and
the nature of many-body excited states [43,44]. On a different
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note, similar ideas to the ones discussed in this paper may
be explored in other suitable semiconductor systems such as
transition-metal dichalcogenides (TMDs) where screening is
significantly reduced. While these two-dimensional materials
have intriguing optoelectronic properties [45] that may offer
new optical readout schemes, creating well-defined and high-
quality trapping potentials for charge carriers in TMDs using
gate-defined quantum dots [46] or strain fields [47] is an active
topic of research.

The data reported in this paper and scripts to generate the
figures are available in [48].
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APPENDIX A: FULL SET OF CHARGE-STABILITY
DIAGRAMS

In the main text, only the charge-stability diagrams involv-
ing the leftmost dot are provided. The full set of pairwise
charge-stability diagrams is shown in Fig. 4.

APPENDIX B: SCREENED INTERACTION POTENTIAL

In this Appendix, we summarize our theoretical analysis to
estimate the interaction strength as a function of distance, as
depicted in Fig. 2 of the main text. The main task is to derive
a form of the interaction potential Vee. Given that potential,
the matrix elements Vi j and Ui = Vii can be obtained within a
Wannier basis {φi}i=1,...,N as

Vi j =
∫

d2r
∫

d2r′|φi(r)|2Vee(r, r′)|φ j (r)′|2, (B1)

where Vee denotes the two-body interaction potential between
electrons. These elements can be checked for self-consistency
by comparison with the tunnel coupling elements given by

ti j =
∫

d2rφ∗
i (r)

[
− h̄2

2m
∇2 + V (r)

]
φ j (r). (B2)

The basis states φi are constructed from Gaussians centered
around the central locations of the QDs, denoted by τi.

1. Method of image charges

We consider screening due to metallic gates as the dom-
inant screening source in our sample. For a conservative
estimate, we first calculate the screened Coulomb potential
under the assumption that the whole surface layer was covered

{r1, q1} {r2, q2}
{si, λi}

(a)

(b)

τi − τj

FIG. 5. Screened interaction potential. (a) Schematic illustration
of the numerical procedure to calculate the screened interaction po-
tential. The device geometry shown in Fig. 2 is taken and its surface
area discretized. The interaction potential is obtained from the pair-
wise interaction terms of all tile charges λi at position si and the two
electrons at r1 and r2. (b) Interaction matrix elements Vi j , between
dots located at τi and τ j , compared for different cases: unscreened
Coulomb interactions (red, dashed), screened interactions via image-
charge method for a surface completely covered by metal (orange,
dash-dotted), and screened interaction via numerical discretization
of real device geometry (green, solid).

by metal. Using the method of image charges, the screened
interaction between two electrons at r1 = (x1, y1,−d ) and
r2 = (x2, y2,−d ) takes the form

fim(r1, r2) = 1 −
√

(x1 − x2)2 + (y1 − y2)2√
(x1 − x2)2 + (y1 − y2)2 + 4d2

,

V im
ee (r1, r2) = fim(r1, r2)

k0e2

|r1 − r2|
d/|r1−r2|→0−−−−−−−→ 2k0(ed )2

|r1 − r2|3 , (B3)

with k0 = 1/(4πεε0). In our numerical simulations we use
ε = 12.9, the relative dielectric constant for GaAs. As
Fig. 5(b) shows, this ansatz overestimates the screening effect
as expected. In our sample, the surface area is only partially
covered by thin metallic gates. In the following section, we
calculate the screened potential due to the gates in the real
device geometry.
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FIG. 6. Charge occupation numbers 〈n̂i〉 for a system with N = 10 QDs and two electrons. Upper panel: Results for ground (left) and
first-excited (middle) state, respectively. The x axis denotes the site index of the ith dot in the array, and the y axis denotes the internuclear
separation R/aQD. The absolute value of the difference between the first two columns is shown on the right. Lower panel: Same as upper
panel, but for a model with an additional bias term 	εi = (i − xc ) × 10 μeV, where xc denotes the center of the QD array.

2. Charge-tiling method

To calculate the metal-induced screening numerically, we
start from the real device geometry and discretize its surface
area into m tile charges λi(i = 1, . . . , m) centered around po-
sitions si [see Fig. 5(a)]. We derive the interaction Vee(r1, r2)
for two electrons located d = 90 nm below the surface at r1

and r2, respectively. Here, {λi}i=1,...,m refers to the induced
tile charges due to the presence of these two electrons. With
the electron charge q1 = q2 = −e, we obtain the electrostatic
potential at tile i as

Ṽ (si ) =
∑

k=1,2

−k0e

|si − rk| +
∑
j �=i

k0λ j

|s j − si| . (B4)

We assume charge conservation in the metallic layer,
∑

i λi =
0, and a constant potential, Ṽ (si) = Ṽ (s j ),∀i, j. This yields
a system of linear equations that can be solved to determine
the tile charges λi. Finally, the screened interaction potential
energy can be obtained from

Vee(r1, r2) = −e

2

∑
k=1,2

m∑
i=1

k0λi

|rk − si| + k0e2

|r1 − r2| . (B5)

The first term of the right-hand side of Eq. (B5) shows
that the tile charges screen the bare Coulomb interaction
∼1/|r1 − r2|. This is demonstrated in Fig. 5(b). The numer-
ically obtained results lie between the bare Coulomb and
fully screened [based on Eq. (B3)] curves. They are in good
agreement with the measurement outcomes and demonstrate
the long-range character of Vee. We note that the size of the
quantum dots, as described by the full width at half maximum
of the functions φi, is a fitting parameter in our numerical
approach. We find this size to be ≈45 nm.

APPENDIX C: CHARGE OCCUPATION NUMBERS

The expectation values 〈n̂i〉 describe the spread of the
electronic wave function over the QD array (see Fig. 1). As
described in the main text in Sec. III C, resonant microwave
excitations may be employed for probing transitions from
ground to low-lying excited states. In Fig. 6 we show 〈n̂i〉 for
an artificial two-electron molecule, both for the ground and
first-excited states. As shown in the figure, the difference in
local occupation between ground and excited state may be
enhanced by applying a potential bias, e.g., in the form of
εi ∝ i.
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