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Sleepiness is a common human factor among truck drivers resulting from sleep loss or time
of day and causing impairment in vigilance, attention, and driving performance. While dri-
ver sleepiness may be associated with increased risk on the road, sleepy drivers may drive
more cautiously as a result of risk-compensating behaviour. This endogeneity has been
overlooked in the previous driver behaviour studies and may provide new insight into
the effects of sleepiness on driving performance. In addition, the Karolinska Sleepiness
Scale (KSS) has been widely used to quantify sleepiness. However, the KSS is a subjective
self-reported measure and is reliant on honest reporting and understanding of the scale.
An alternative way of quantifying sleepiness is using drivers’ heart rate and correlating it
with their sleepiness. While recent advances in data collection technologies have made
it possible to collect heart rate data in real-time and in an unobtrusive way, their applica-
tion in measuring sleepiness particularly among truck drivers has been unexplored.
This study aims to address these gaps and contribute to analytic methods in road safety

research by collecting truck drivers’ heart rate data in real-time, measuring sleepiness from
those data, and using it in an instrumental variable modelling framework to investigate its
effect on driving performance. To this end, a driving simulator experiment was conducted
in Belgium and heart rate data were collected for 35 truck drivers via sensors installed on
the steering wheel of the simulator. Additional demographic data were collected using a
questionnaire before the experiment. An instrumental variable model consisting of a dis-
crete binary logit and a continuous generalized linear model with grouped random param-
eters and heterogeneity in their means was then developed to study the effects of driver
sleepiness on headway. Results indicate that age, years of holding driver licence, road type,
type of truck transport, and weekly distance travelled are significantly associated with
sleepiness among the participants of this study. Sleepy driving is associated with reduced
headway for 30.5% of the drivers and increased headway for the other 69.5%, and night-
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time shift is associated with such varied effects. These findings indicate that there may be
group- or context-specific risk patterns which cannot be explicitly addressed by hours of
service regulations and therefore, transport operators, driver trainers and fleet managers
should identify and handle such context-specific high risk patterns in order to ensure safe
operations.
� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Driver sleepiness is an important safety hazard within the truck transport industry (Philip and Åkerstedt, 2006), which is
often used interchangeably with fatigue in road safety research. Fatigue is defined as the need for taking a break from a task
that has been continuing for too long and is due to either extended time on task (Bartley and Chute, 2009) or work under- or
over-load May and Baldwin, 2009. Sleepiness is defined as the physiological urge to fall asleep and is resulted from either
sleep loss or time of day (Dement and Carskadon, 1982). Previous studies have shown that driver sleepiness is significantly
associated with increased risk on the roads (Bioulac et al., 2017) and is a major cause of truck crashes (Morrow and Crum,
2004). It can result in decrements in driving performance, including simple and complex tasks, slower reaction times,
impaired attention and even loss of consciousness behind the wheel (Williamson et al., 2011). It can also result in a higher
frequency of lane departures and dangerous manoeuvres (Hallvig et al., 2014). Therefore, it is essential to understand sleepi-
ness in truck drivers, find its contributing factors, and determine its effects on driving performance in order to reduce the
risk. This exercise, however, is confronted with the following important challenges.

Firstly, quantification of sleepiness is not straightforward. While the Karolinska Sleepiness Scale (KSS) (Åkerstedt and
Gillberg, 1990) has been widely used to quantify sleepiness in previous empirical investigations (Shahid et al., 2011), the
scale is self-reported and subjective. Therefore, individuals may not be accurate in judging their level of sleepiness due to
many reasons such as understanding of the scale, pressure of work and schedules, fear of reporting and so forth. In addition,
KSS scores vary depending on earlier sleep, time of day, and many other psychological and physiological factors (Shahid
et al., 2011). Meanwhile, there has been an increase in the use of driver state detection technology, with commercially avail-
able in-vehicle systems (such as steering wheel sensors) and wearable devices (such as smartwatches) (Koesdwiady et al.,
2017; Melnicuk et al., 2016). On the one hand, these technologies can be used to collect heart rate measurements of drivers
and determine their alertness or sleepiness in real-time. On the other hand, they can enhance the communication between
drivers and operators, providing further insight into truck drivers sleep patterns and sleepiness levels, and ultimately mit-
igate the risk associated with sleepiness. However, the application of these technologies in capturing and quantifying sleepi-
ness has remained relatively unexplored.

Secondly, finding a relationship between sleepiness and driving performance is not straightforward because these two
variables may be endogenous. While sleepiness can result in decrements in driving performance, the behaviour of sleepy
drivers may well be influenced by driving performance (or driving conditions) too. Headway –defined as the difference
(in terms of time or distance) between any two successive vehicles when they cross a given point– is one of these driving
performance measures that may be influenced by sleepiness and fatigue (Belz et al., 2004; Zhang et al., 2016). However,
reduced headway may cause drivers to drive more cautiously as a result of risk-compensating behaviour (Oviedo-
Trespalacios et al., 2020). This behaviour may arise due to the difficulty and complexity of controlling the vehicle in shorter
headways (Reimer, 2009) and hence may increase the driver’s situational awareness (Endsley, 1995). In fact, sleepiness is
relatively static from a driver’s perspective but it may be inter-related with several dynamic factors during the drive such
as overtaking, lane-changing, braking, and crossing behaviour of other road users. This inter-relationship between sleepiness
and driving behaviour has been, by and large, overlooked in the literature and is even more acute noting that it may vary
among individuals due to various unobserved factors. This variation which is referred to as unobserved heterogeneity
(Mannering et al., 2016) must be taken into account when defining the relationship between sleepiness and driving perfor-
mance. One way of addressing the above challenges is to create a statistical model with special enhancements for capturing
endogeneity and unobserved heterogeneity. However, such a model does not exist in driver behaviour research.

This study aims to contribute to analytic methods in road safety research by addressing the above gaps. The study is a part
of the European funded Horizon 2020 i-DREAMS project, aiming to develop, test and validate a context aware safe driving
platform, taking into account driver related background factors, risk related real-time physiological indicators and driving
task complexity, to determine if a driver is within the boundaries of safe operation. The i-DREAMS project takes a holistic
approach in driver monitoring, and one aspect considered is driver sleepiness (Pilkington-Cheney et al., 2021).
2. Literature review

2.1. Prevalence of sleepiness in truck drivers

Insufficient sleep is a prevalent issue among truck drivers and has been found to be the leading cause of sleepiness in this
cohort of drivers (Onninen et al., 2021a) which can further accumulate when working irregular shifts (Onninen et al., 2021b).
2
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Previous studies have investigated the risk associated with insufficient sleep and have found that truck drivers who are
reporting significantly less sleep before duty, are more likely to be involved in safety critical events, such as crashes and
near-misses (Hanowski et al., 2007). In addition, shorter sleep hours, sleeping in the early part of the non-work periods
and less sleep between 1:00am and 5:00am have been found to be associated with the highest rate of safety critical events
among truck drivers (Chen et al., 2016). Some studies have shown that duty schedules can be incompatible with circadian
sleep need (for example driving at night or early in the morning), which can result in increased sleepiness and fatigue
(Satterfield and van Dongen, 2013). Finally, an important modulator of sleepiness in truck drivers was found to be hours-
of-service regulations in relation to time on duty or drive duration (Hanowski et al., 2003). While these regulations aim
to mitigate driver sleepiness, they are mainly effective on fatigue and thus they do not completely eliminate sleepiness.
The above studies have shown that truck drivers experience the effects of both sleepiness and fatigue, combining the impact
of sleep loss, shift work, time of day, and extended time on task.
2.2. Quantification of sleepiness

Sleepiness has been commonly quantified by the KSS (Shahid et al., 2011) which is a subjective self-reported 9-point scale
(1 = extremely alert, 3 = alert, 5 = neither alert nor sleepy, 7 = sleepy – but no difficulty remaining awake, and 9 = extremely
sleepy – fighting sleep) and has been verified and validated with drivers’ electroencephalography activity (Åkerstedt and
Gillberg, 1990) and correlated with their lapses (Kaida et al., 2006). Apart from the KSS, a few recent studies have shown
that individuals’ heart rate measurements such as electrocardiogram and heart rate variability are well correlated with their
sleepiness (Awais et al., 2017; Mårtensson et al., 2019). They have shown that with the recent advances in data collection
technologies, it is possible to collect these heart rate measurements in an unobtrusive way and in real-time, and subse-
quently correlate them with drivers’ KSS scores (Rodrigues, 2021). However, the reliability of such quantification of KSS
scores and its effects on driving performance have been unexplored.
2.3. Effects of sleepiness on driving performance

Numerous studies have shown that sleepiness can result in driver impairment in vigilance, attention, and driving perfor-
mance (Anund et al., 2008a, 2008b; Caponecchia and Williamson, 2018; Jackson et al., 2016; Soares et al., 2020). The major-
ity of literature exploring the effects of driver sleepiness on driving performance have focused on the lateral position of the
vehicle, with a recent review of driver sleepiness simulator studies reporting that the most commonly measured driving per-
formance variables were lateral lane position and deviation, and speed (Soares et al., 2020). Research shows that driving
when sleepy results in increased lane crossings and deviations (Anund et al., 2008a; Caponecchia and Williamson, 2018;
Hallvig et al., 2014) and increased lateral variability of the vehicle (Anund et al., 2008b; Jackson et al., 2016; Otmani
et al., 2005). More importantly, previous studies have shown that fatigued and sleepy drivers adopt shorter headways
(Mahajan and Velaga, 2021; Zhang et al., 2016), which can have serious safety implications particularly when coupled with
slowed reaction times and lapses in attention. However, none of these studies have considered the inter-relationship
between sleepiness and driving performance which may provide new insight into the interactions between these two
variables.
2.4. Addressing endogeneity and unobserved heterogeneity

Simultaneous equation models have been largely used in the statistical literature to address endogeneity between two
variables (Washington et al., 2020). These models are divided into two general categories of single-equation methods (indi-
rect least squares, instrumental variables, two-stage least squares and limited information maximum likelihood) and system
equation methods (three-stage least square and full information maximum likelihood) with the latter providing consistent
and more efficient estimates, albeit with higher computational cost and identification problems (Kim andWashington, 2006;
Afghari et al., 2021). Bayesian hierarchical (Oviedo-Trespalacios et al., 2020) and joint econometric models (Bhat et al., 2014;
Afghari et al., 2018) have been introduced as alternative methods for addressing endogeneity.

In addition, latent class and random parameters modelling specifications have been widely used to capture unobserved
heterogeneity in data (Mannering et al., 2016). The former specification assumes that observations may belong to a finite
number of classes in the population, and the effects of independent variables on the dependent variable (e.g. the inter-
relationship between sleepiness and driving behaviour) may vary across these classes (Heydari et al., 2017; Afghari et al.,
2020). The latter specification assumes that model parameters vary across the population implying that the effects of inde-
pendent variables on the dependent variable may vary across observations (Coruh et al., 2015). Many advanced variants of
both specifications have been proposed in road safety research including latent class with random parameters (Chang et al.,
2021), grouped random parameters (Ali et al., 2022), correlated random parameters (Saeed et al., 2019), and random param-
eters with heterogeneity in means and variances (Behnood and Mannering, 2017a,b). Despite these advancements, there is
no model that can adequately capture the complexities (endogeneity and unobserved heterogeneity) underlying the rela-
tionship between sleepiness and driving performance.
3
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2.5. Study scope

The objective of this study is to address the above gaps and contribute to analytic methods in road safety research by
collecting truck drivers’ heart rate data in real-time, measuring sleepiness from those data, and using it in an instrumental
variable modelling framework to investigate its effect on driving performance. To this end, a wide range of data (including
heart rate measurements, driving kinematics, and sociodemographic data) are collected for 35 truck drivers in a driving sim-
ulator in Belgium. The heart rate data are then linked with driver sleepiness using a support vector machine algorithm and
the result is transformed into a binary variable representing alert/sleepy driving. An instrumental variable model consisting
of a discrete binary logit and a continuous generalized linear model is then developed to study the endogenous effect of dri-
vers’ sleepiness on their headway among the sample of truck drivers. The models are specified by random parameters with
heterogeneity in their means to account for unobserved heterogeneity. Moreover, the random parameters are grouped across
repeated observations to account for the panel structure of the data.

3. Methodology

Data collection and data analysis are two pivotal elements of the methodology in this study. First, heart rate measure-
ments of drivers are collected and correlated with their sleepiness levels using a pre-validated algorithm. The resulting data
are then analysed to understand the determinants of driver sleepiness and ultimately the effects of sleepiness on headway.
The following sub-sections describe these two elements of the methodology.

3.1. Heart rate data collection

Driver’s physiological data are collected using the CardioWheel (Lourenço et al., 2015), an off-the-person electrocardio-
gram sensor that uses conductive fabric electrodes as a steering wheel cover (Fig. 1). Such an unobtrusive sensor results in a
lower signal to noise ratio, and at the same time, brings a seamless integration within the vehicle and provides insight into
the driver’s heart dynamics without compromising their normal interaction with the vehicle control. The CardioWheel sys-
tem collects electrocardiogram and lead on detection signals (a binary variable indicating whether both hands are placed on
the steering wheel) directly from the electrodes.

After filtering and windowing the electrocardiogram signal in time periods where the lead on detection signals indicate
contact, the peaks within QRS complexes (the combination of three graphical deflections seen on a typical electrocardio-
gram) are located and the heart rate measurement is obtained from the time elapsed between successive pairs. The sequence
of successive time intervals between heart beats – the Inter Beat Interval (IBI) – is then used to compute heart rate variability
features at two-minute intervals of the collected data. This feature set contains time, frequency and non-linear domain heart
rate variability variables, from simple means and standard deviations of heart rate and IBI values, to spectral power in very
low, low and high bands, and Poincare plot axis lengths. Heart rate variability features are then used in a support vector
machine (SVM) for further analysis. SVM is a machine learning algorithm that splits the data into two classes by finding
a hyper-plane separating those two classes and maximizing the distance between that hyper-plane and the closest data
points from each class. These data points are called support vectors and their position ultimately define the classification
decision. The selection of support vectors is achieved by minimizing the below cost function:
Fig. 1. CardioWheel for collecting drivers’ electrocardiogram and lead on detection signals.
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Min
w;b;f

ð1
2
w!� w!þ C

Xn

i¼1

fiÞ ð1Þ
Subject to the following constraints:
yi w!� /ðxiÞ þ b
� �

� 1� fi ð2Þ
In the above equations, w! is the vector defining the hyper-plane, b is the bias vector, xi; yið Þ represents a data point with
independent variable (or feature) � and the binary dependent variable (or label) y, and C is the regularization term. fi is a
positive slack term that is zero if the data point is correctly classified and falls outside of the margin area; it is between zero
and one if the data point falls inside the margin area (fi � 1); and it is more than one if the data point is totally misclassified
(fi > 1). /ð�Þ is a space transformation that is set to the identity function in this study. A radial basis kernel is also used for the
inner product of the feature vectors in the transformed space after application of /ð�Þ. This SVM algorithm is then applied on
the collected heart rate data in order to classify each 2-minute driving episode into one of two states: alert or sleepy. A flow-
chart describing the steps for such a classification is presented in Fig. 2. The interested readers can refer to Scholkopf and
Smola (2018) for more details about SVM specification.

The use of a binary classification for sleepiness is justified by the need to represent this information in a format that con-
veys driving capability impairment, instead of a higher resolution definition of the driver state. Thus by classifying a driver’s
state into an alert and a sleepy range, the risk that any given state implies is directly described in the two-level indicator.
Another important reason supporting such binary classification is that grouping wide ranges of sleepiness values into two
broader levels mitigates the consequences of measurement error.

3.2. Data analysis – Instrumental variable model

An instrumental variable modelling approach (Washington et al., 2020) is used in this study to investigate the endoge-
nous effect of the binary sleepiness indicator on headway. In this approach, the endogenous variable (the binary sleepiness
indicator) is replaced with an instrumental variable —a variable that is highly correlated with the endogenous variable it
replaces, and is not correlated to the disturbance term of the dependent variable (headway). As such, the proposed modelling
exercise in this context has two stages: (1) obtaining the predicted probability of being sleepy from a binary choice model
using one or more instruments, and (2) regressing headway on the predicted probability of being sleepy obtained from the
first stage in addition to other exogenous covariates. The details of these two stages are described in the following.

3.2.1. Stage 1 – Grouped random parameters binary logit model
Binary logit discrete choice models have been widely used to correlate a binary dependent variable with explanatory vari-

ables (Hensher et al., 2005). These models assume that effects of explanatory variables are fixed across the sample. However,
this assumption may not always hold and the effects of explanatory variables may vary across individuals due to unobserved
heterogeneity (Hensher and Greene, 2003). In addition, the empirical data in this study contain multiple observations for
each driver (multiple episodes of sleepiness per drive for each participant) creating several panels in the data. The grouped
random parameters logit model has been used in the literature to address the above limitations of the simple binary logit
model (Fountas et al., 2018) and thus is used in this study to model the binary sleepiness indicator. The specification of this
model is briefly presented in the following.

Let Yit be a binary dependent variable representing sleepiness (Yit = 0: alert, Yit = 1: sleepy) of the ith driver at time t.
Assuming a random utility theory (Hensher et al., 2005), the utility of sleepiness for this driver (Uit) is stated as:
Flowchart of sleepiness classification using heart rate data and support vector machine (ECG: electrocardiogram, LOD: lead on detection, QRS: the
ation of three graphical deflections seen on a typical electrocardiogram, IBI: Inter beat intervals, SVM: support vector machine).
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Uit ¼ biXit þ eit ð3Þ

where bi are estimable parameters (including the intercept), Xit are explanatory variables and eit is the random error term
assumed to be identically and independently distributed across observations and describing the random part of the utility.
Assuming that eit is generalized extreme value distributed (Mcfadden, 1980), the probability of driving while sleepy can be
presented as:
P Yit ¼ 1ð Þ ¼ 1
1þ e�ðbiXit Þ ð4Þ
Note that the estimable parameters are allowed to vary across individuals to account for unobserved heterogeneity in the
data. However, the parameters are fixed across multiple observations of the same individual, accounting for the panel nature
of the data. This model is referred to as the grouped random parameters model in the literature (Oviedo-Trespalacios et al.,
2020). The likelihood of driving while sleepy across all individuals can then be determined by the product of the above equa-
tion over the entire observations.

3.2.2. Stage 2 – Grouped random parameters generalized linear model with Heterogeneity-in-the-Means
The predicted probability of being sleepy obtained from the first stage is now used in addition to other explanatory vari-

ables to create a generalized linear model of headway. Let Yit be a non-negative continuous dependent variable representing
headway of driver i at time t. This dependent variable is now linked with a number of covariates using a log-linear function:
log Yit�ð Þ ¼ ki Zit þ aiP Yitð Þ þ sit ð5Þ

where ki and ai are estimable parameters, Zit are exogenous explanatory variables and sit is the random error term. P(Yit) is
the predicted probability of being sleepy that is inferred in the first stage from a set of explanatory variables (Xit) with at least
one variable that is exogenous to the set explanatory variables in the second stage (Zit). Such a specification addresses the
endogeneity problem (Washington et al., 2020). Similar to the first stage, the estimable parameters are allowed to vary
across individuals (to account for unobserved heterogeneity) but are fixed across multiple observations of the same individ-
ual (to account for the panel nature of the data).

In addition and to shed more light on the factors behind such unobserved heterogeneity, the means of the random param-
eters are also correlated with explanatory variables in this second stage:
ki ¼ k
�
þcimi þ gi ð6Þ
where k
�
is the mean of the random parameter across all individuals, ci are estimable parameters, mi are explanatory vari-

ables, and gi is a random error term defined based on the distributional assumption of the random parameter. Such a spec-
ification is referred to as the random parameters model with heterogeneity-in-the-means (Mannering et al., 2016; Behnood
and Mannering, 2017a, 2017b; Fountas et al., 2021; Seraneeprakarn et al., 2017; Venkataraman et al., 2014) and the overall
model in the second stage is referred to as the grouped random parameters generalized linear model with heterogeneity-in-the-
means in this manuscript. The probability density function of the dependent variable in this complex model depends on the
distributional assumption for sit which, of course, must be consistent with the nature of the dependent variable –it should be
continuous and non-negative. Assuming an exponential distribution for sit , the probability density function of the dependent
variable can be obtained by:
P yit� ¼ Yit�ð Þ ¼ 1
ki Zit

e�
1

ki Zit
yit� ð7Þ
where the notation are as stated previously. The likelihood of the dependent variable can be determined by the product of
this density function over the entire observations.

3.2.3. Model estimation
While a simultaneous estimation of the two stages in the instrumental variable model may result in more efficient

parameter estimates (Afghari et al., 2018; Afghari et al., 2021), it also brings additional complexity and computational cost.
Therefore, these two stages are estimated separately in this study. Neither of the likelihood functions in the proposed instru-
mental variable model has closed form and thus the models in each stage are estimated using maximum simulated likeli-
hood estimation (Bhat, 2001).

3.2.4. Statistical fit and predictive accuracy
Statistical fit of the models is assessed using McFadden pseudo-rho squared (q2) for the grouped random parameters bin-

ary logit model (McFadden, 1973), and using Likelihood Ratio (LR) test for the generalized linear model (Washington et al.,
2020). The McFadden pseudo-rho squared can be calculated as:
q2 ¼ 1� LLm=LL0½ � ð8Þ
6
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where LLm and LL0 are the log-likelihoods of the full and the null models, respectively. q2 is analogous to R2 in linear models
and so a higher q2 indicates improved statistical fit. Similarly, the likelihood ratio test statistic can be calculated as:
LR ¼ �2 LL0 � LLm½ � ð9Þ

where the notations are as previously stated. LR follows a chi-squared distribution with P degrees of freedom (P being the
number of estimated parameters in the full model) and so the chi-squared statistical test is used to check whether the full
model has improved fit than the null model.

In addition, Mean Absolute Deviance (MAD) and Mean Squared Predictive Error (MSPE) are used to assess the predictive
accuracy of the grouped random parameters logit model as the probability of sleepiness predicted from this model is directly
used as an independent variable in the grouped random parameters generalized linear model. These measures of predicative
accuracy can be calculated as:
MAD ¼ 1
N

XN

i¼1

jYit � PðYitÞj ð10Þ

MSPE ¼ 1
N � P

XN

i¼1

ðYit � PðYitÞÞ2 ð11Þ
where N is the sample size and the rest of notations are as previously stated. Lower (closer to zero) MAD and MSPE indicate
improved predictive accuracy.

4. Empirical data

While the i-DREAMS project intends to detect sleepiness and provide appropriate interventions in a naturalistic driving
environment, a driving simulator experiment is first conducted to test the applicability of driver state monitoring technolo-
gies, which forms the basis of the current paper. A brief description of the driving simulator experimental design and some
specifications of the Belgian truck driving simulator are provided in this section, followed by implementation details of the
SVM algorithm and extraction of sleepiness from heart rate measurements. Descriptive statistics of the data that are used in
this study are then presented, paving the way to the results and discussions in the next section.

4.1. Experimental design

The simulator experiment in this study was designed based on several principles including definition of outcomes, pre-
dictors and hypotheses, selection of sample size and statistical power, selection of design type, distribution of risk scenarios
among participants, selection of drive durations to avoid simulator sickness and learning effects, and consideration of con-
founding effects (Fisher et al., 2011). In line with these design principles, the design of simulator experiment for sleepiness in
this study is as follows: (i) the outcome was sleepiness and the predictors were driving characteristics; the hypothesis was
defined as whether the binary sleepiness variable can be detected using participants heart rate and how it influences driving
headway; (ii) the sample size was pre-defined due to practical constraints; (iii) the experiment was a fractional factorial
design; (iv) the experiment was a within-participant design; (v) the experiment included two practice drives prior to the
trials; (vi) the order of events within the trials were randomized among the participants and during the trials and (vii)
the maximum duration of each trial was 15 min.

Participants were recruited via social media (closed groups from truck organizations) and via e-mails to truck companies
within the Dutch speaking part of Belgium (Flanders). Truck drivers who were interested in this study needed to complete a
recruitment questionnaire, consisting of items related to their demographic information such as gender, age, and driving
experience, and also about their employment such as night-time or daytime driving shifts. The experiments were conducted
throughout the day (from 8:00 until 21:15) to fit the participants’ availability. Simulator lighting was kept on consistently to
ensure all participants experienced the same lighting conditions throughout the experiment.

The simulator scenarios had a total distance of approximately 16.5 km � 18 km, consisting of rural roads and motorway
segments. These different types of road layouts were distinguished by speed limit. Rural roads with two lanes (one in each
direction) were set with the speed limit of 70 km/h for cars (60 km/h for trucks); rural roads with four lanes (two in each
direction) were set with the speed limit of 90 km/h for cars (90 km/h for trucks); and motorway segments were set with
the speed limit of 120 km/h for cars (90 km/h with motorway sign for trucks). The above road layouts are illustrated in
Table 1.

Three experimental scenarios were then designed (according to the fractional factorial design principles) based on a com-
bination of the above road layouts (Table 2) and were evenly assigned (based on random selection) among the participants.

In addition, several events (e.g. overtaking, lane changing, pedestrian crossing) with the lead vehicle suddenly braking
were included in the scenario to investigate headway. These events occurred at a predefined location for each driver. Please
refer to De Vos et al. (2022) for a detailed description of these events. It is important to note that the aim of this study is not
to evaluate the differential effects of these events on sleepiness or headway, but to find the determinants of sleepiness and
7



Table 1
Illustration of different road layouts in the experimental scenarios.

Road
layout

Description Illustration Speed sign Speed limit for
trucks (>3.5 T)

A Rural road with 2 lanes (1x1) 70 km/h 60 km/h

B Rural road with 4 lanes (2x2) and a narrow shoulder,
divided by median section

90 km/h 90 km/h

C Rural road with 4 lanes (2x2) and a wide shoulder,
divided by median section

Motorway
sign

90 km/h

Table 2
Experimental scenarios designed based on the combination of road layouts.

Scenario Total length of drive Order of road layouts

1 16.5 km A, B, C
2 18.0 km B, C, A
3 17.0 km C, B, A
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its effects on headway in common situations of day-to-day driving where these events do take place; hence, the inclusion of
the events in the simulator trial scenario.

Finally, due to study restrictions and practical constraints of recruiting shift working truck drivers (e.g. availability for
work after participation, insurance etc.), sleepiness was not experimentally induced. However, the recruited participants
were all truck drivers currently working shifts. Sleepiness is prevalent within shift working populations, including truck dri-
vers (Onninen et al., 2021a). Therefore, there is potential for the drivers to experience underlying sleepiness at the time of the
experiment as a result of their working schedules and the impact on their sleep.

4.2. Driving simulator specifications

The driving simulator that was used for the experiment was a custom truck simulator by DriveSimSolutions. It was built
to recreate the experience of driving a heavy vehicle, but also to provide the option of hardware-in-the-loop simulation
through serial interfaces and a programmable controller. Original Equipment Manufacturer (OEM) parts, including the steer-
ing wheel, an adjustable driver seat and the turn indicator lever were incorporated into the simulator. A custom digital
instrument cluster was used to display vehicle speed and engine speed. Although a manual shifter mechanism was also
installed, the simulator was set to automatic gearbox mode for all participants. The OEM steering wheel was modified
and connected to a CardioWheel module in order to collect cardiovascular data through the steering wheel. As graphical
setup, three 4 K 42-inch monitors, was used to provide a 135� horizontal field of view. The Belgian truck simulator is shown
in Fig. 3. It is worth mentioning that auditory simulation (sound of the engine) was also created during the simulator exper-
iments in order to recreate a real truck driving experience.

As for the virtual environment, the STISIM Drive 3 software was used in combination with its Open Module extension.
This extension works as a plugin where custom code is executed at every simulation frame. Within Open Module, a software
was developed to interface in real-time with the i-DREAMS intervention algorithms and external i-DREAMS hardware. At
8



Fig. 3. DriveSimSolutions truck simulator in Hasselt University, Belgium.
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each simulation frame, simulation variables were combined with data from external sensors and stored to a log file, thus
data sampling rate was identical to the simulator frame rate at a frequency of around 30 Hz. To account for small variations
in frame rate, timestamps (with 0.1 ls precision) were included in the log file. Externally, an i-DREAMS gateway was used to
interface with the driving simulator and forward sensor data from the CardioWheel.

4.3. Heart rate measurements and sleepiness

The support vector machine was applied on the participants’ heart rate data collected by the CardioWheel and a binary
variable for sleepiness was created accordingly. This machine learning algorithm was previously trained and validated by a
separate dataset from an on-road experiment with prolonged drives along open road courses and constant workload. In that
experiment, drivers reported their KSS and had their electrocardiogram measured using a Holter Monitor. The machine
learning algorithm was trained to correlate the drivers’ self-reported sleepiness scale with their heart rate measurements.
The trained and validated machine learning algorithm was then adopted and applied to the drivers’ heart-rate measure-
ments in this study in order to predict their sleepiness (please refer to Rodrigues (2021) for more details about this process).
The results of implementing the SVMmachine learning algorithm on the heart rate data collected in our study show that the
episodes of alert and sleepy driving constitute 86.2 % and 13.8 % of the drives from all participants, respectively. The average
(� standard deviation) collected heart rate of the participants during these episodes are 87.2 (� 3.6) and 82.6 (� 1.8), respec-
tively. Previous studies have also found that heart rate values in alert and sleepy states are within these same ranges (Jo
et al., 2019; Buendia et al., 2019).

4.4. Descriptive statistics of data

The data were collected from two main sources: (i) driving data collected through the driving simulator (headway, speed,
speed limit) and the CardioWheel (episodes of sleepiness while driving), and (ii) driver demographic data (age, gender, years
of holding driving licence) and individual characteristics (weekly distance travelled per week, type of truck transport, work-
ing shift). The collected sample consists of 35 truck drivers aged between 22 and 61 years old, and who were mostly male.
Table 3 presents descriptive statistics of the variables that are used in this study.

5. Results and discussion

Many of the variables in the simulator experiment are collected on an event basis, which means that their data are only
available when the data collection technology within the simulator detects the event associated with those variables (e.g.
when the sensors on the steering wheel detect the heart rate measurement). Such an event-based data collection results
in blank data entries for the time intervals with no event. As a result, it is necessary to pre-process the data prior to the anal-
ysis. To fill in the blank entries, an algorithm is designed to look back into the data, search for the last valid entry, and replace
the preceding blank entries by that valid entry. Moreover, a flagged event is recorded when no hand is detected on the steer-
ing wheel and all the data produced during the time of flagged events are discarded. This mechanism ensures that noisy data
resulting from hand movements on the steering wheel or other excess motions are not used for classification. In addition, as
the data are recorded in small time intervals (sampling frequency of around 30 Hz) and to simplify the analysis, the data
were aggregated across two minutes during the drives. In doing so, the aggregation method varied depending on the variable
of interest: arithmetic mean was used for continuous variables (e.g. headway) and median was used for discrete variables
9



Table 3
Descriptive statistics of the data used in this study.

Variable Mean Standard deviation Minimum Maximum Sample share

Participants characteristics
Age (years) 41.967 9.821 22 61
Age categories
< 30 years old 0.162
� 30 years old but < 40 years old 0.199
� 40 years old but < 50 years old 0.404
� 50 years old 0.235

Gender:
male 0.827
female 0.173

Weekly distance travelled per week: (1 = <500 km, 2 = between 500
and 1000 km, 3 = between 1000 and 2000 km, and 4 = >2000 km)

2.899 1.005 1 4

Years of holding driving licence 17.588 10.379 1 42
Type of truck transport:
heavy transport 0.119
construction transport 0.173
distributing transport 0.144
other types of transport 0.564

Driver working shift
day time shift 0.505
night time shift 0.090
day time and night time shift 0.405

Experimental setup characteristics
Road type:
two-lane rural road (speed limit 60 km/h for trucks) 0.450
four-lane rural road (speed limit 90 km/h for trucks) 0.270
motorway (speed limit 90 km/h with motorway sign for trucks) 0.280

Dependent variables in the instrumental variable model
Sleepiness
0: alert 0.862
1: sleepy 0.138

Headway (seconds) 472.312 1255.527 2.930 7589.641
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(e.g. sleepiness indicator). Aggregating the data across two minutes resulted in a final dataset consisting of 277 observations
for 35 participants (7 to 9 panels depending on the total duration of the drivers for each participant).
5.1. Determinants of sleepiness

Within the first stage of the instrumental variable modelling approach, the grouped random parameters binary logit
model was first estimated against the empirical data. Explanatory variables were selected using a stepwise variable selection
criterion. In addition, explanatory variables were tested for multicollinearity by computing the Pearson or Spearman corre-
lation coefficients, and the variables with unacceptably high (>0.7) correlation coefficients were not jointly introduced into
the model. The parameters of all variables were tested for random parameters specification and normal distribution was
used as the distribution for all of the random parameters. The parameters were considered random only if their standard
deviations are statistically significant. The model was estimated using the maximum simulated likelihood approach with
500 Halton draws. The required number of Halton draws was selected so that further increasing the number of draws does
not change the estimates significantly. The results of the grouped random parameters logit model are presented in Table 4.
According to these results, age, years of experience, type of road, type of truck transport, and weekly distance travelled are
statistically significant at 5 % significance level (with 95 % certainty) among the sample of truck drivers.

The negative parameter of age (�0.176) indicates that older truck drivers are less likely to be involved in episodes of
sleepiness. The same finding has been reported in the literature suggesting that younger drivers are more likely to suffer
from sleep deprivation (Otmani et al., 2005) and continue to drive when sleepy because they have lower risk perception
of sleepy driving (Watling et al., 2014). Another study has shown that factors such as ‘trip preparations’ and ‘social gather-
ings and parties before departure’ result in higher sleep deprivation among younger drivers (Philip et al., 1996).

Years of holding a driving licence, on the contrary, has a positive parameter (0.479) implying that drivers with more driv-
ing experience are more likely to be involved in episodes of sleepiness. While this finding may be in contrast with the effect
of age on sleepiness, the interaction between age groups1 and years of holding a driving licence clarifies this contrast. The
parameter of this interaction term (�0.141) indicates that driving experience is associated with lower likelihood of sleepiness
1 During model estimation and based on the stepwise variable selection criterion, the last two age categories (� 40 years old but < 50 years old, and � 50
years old) were combined to better capture the effect of age groups.
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Table 4
Results of grouped random parameters logit model of drivers’ sleepiness.

Variable Mean Standard Error Z Score p-Value 95 % Confidence
Interval

Constant 3.068 2.664 1.150 0.250 �2.154 8.291
Standard deviation of constant 0.096 0.266 0.360 0.717 �0.425 0.619

Driver demographics
Age �0.176 0.073 �2.400 0.016 �0.320 �0.032
Operational characteristics
Years of holding driving licence 0.479 0.112 4.270 0.000 0.259 0.698
Weekly distance travelled �2.129 0.465 �4.580 0.000 �3.040 �1.218
Standard deviation of weekly distance travelled 1.419 0.292 4.860 0.000 0.846 1.992

Type of truck: heavy transport �2.186 0.788 �2.770 0.006 �3.730 �0.642
Type of truck: distributing transport �3.217 0.918 �3.510 0.001 �5.015 �1.418
Road environment
Road type: four-lane rural road (speed limit 90 km/h for trucks) 1.119 0.582 1.920 0.055 �0.022 2.259
Interaction effects
Years of holding driving licence in 40 + years old drivers �0.141 0.074 �1.900 0.058 �0.287 0.004
Measures of statistical fit and predictive accuracy
Log-likelihood of null model (LL0) �110.750
Log-likelihood of full model (LLm) �64.090
McFadden rho squared (q2) 0.421
MAD 0.105
MSPE 0.052
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among drivers who are 40 years old or above, and higher likelihoods of sleepiness among drivers who are<40 years old. This
finding may be due to over-confidence among younger and more experienced professional drivers (Arnold et al., 1997) or
the pressure of continuing with their job (McCartt et al., 2000). Road safety research has also shown that years of driving expe-
rience is a significant predictor of involvement of sleep or fatigue as a contributing factor in roadway crashes (Sagberg, 1999).

Four-lane rural roads (with speed limit 90 km/h for trucks) has also a positive parameter (1.119) indicating that, in com-
parison with the other two types of roads, it has increasing effect on the likelihood of being involved in episodes of sleepi-
ness. This finding is intuitive and may be due to monotony and lower cognitive workload (May and Baldwin, 2009) along this
type of roads in comparison with roads with lower speed limits (but fewer lanes) and motorways (higher speed limits). Pre-
vious research has also shown the adverse effects of monotonous driving and speed limit on cognitive workload suggesting
that cognitive workload is lower in a rural environment with a medium speed limit compared to an urban environment with
lower speed limits (Son et al., 2011) or motorways with very high speed limits (Piechulla et al., 2003).

In terms of the type of truck transport, the results show that drivers of heavy and distributing transport trucks are less
likely to be involved in episodes of sleepiness. This finding may be due to the regular monitoring and heavy enforcement
of sleepiness among these groups of professional drivers. Such enforcement may have resulted in a long term sustainable
behavioural change among drivers of these two types of truck transport, which in turn may have affected the behaviour
of these drivers even when driving the truck simulator.

The parameter of weekly distance travelled is random, indicating that this variable has varying effects on sleepiness
across participants. The negative parameter of weekly distance travelled (�2.129) indicates that participants who drive more
regularly during the week are, on average, less likely to be involved in episodes of sleepiness. However, the standard devi-
ation of this parameter (1.419) indicates that the effect of weekly distance travelled is decreasing for 93.3 % of participants
and increasing for 6.7 % of the participants. Bearing in mind that weekly distance travelled is a measure of exposure, the
mixed effects of this variable might be due to gaining more experience or becoming less alert/attentive due to high exposure.
Additional research is needed to unravel the reasons underlying differences in the effects of this variable on sleepiness.

Neither the mean nor the standard deviation of the constant term are statistically significant. However, these non-
significant estimates are retained in the model because they determine the probability of sleepiness when no external factors
are accounted for but also because they keep the panel setting in the model (please refer to the grouped random parameters
specification in section 3.2.1).

Finally, the McFadden pseudo-rho squared (q2 = 0.421), mean absolute deviance (MAD = 0.105) and mean squared pre-
dictive error (MSPE = 0.052) of the model show that the model has acceptable statistical fit and predictive accuracy.

5.2. Effect of sleepiness on headway

Within the second stage of the instrumental variable modelling approach, the grouped random parameters generalized
linear model was estimated using the predicted probabilities of sleepiness obtained from the previous stage and the rest of
the empirical data. All of the considerations in the first stage (variable selection criteria, multicollinearity checks, distribu-
tional assumptions for the random parameters, and the number of Halton draws) were made for estimating the model in the
second stage too. In addition, all of the explanatory variables were considered within the heterogeneity in the means func-
tion for random parameters. The results of the grouped random parameters generalized linear model with heterogeneity in
11



Table 5
Results of grouped random parameters generalized linear model of drivers’ headway.

Variable Mean Standard
Error

Z Score p-
Value

95 % Confidence
Interval

Constant �5.628 0.419 �13.43 0.000 �6.449 �4.806
Driver demographics
Gender: male �0.654 0.194 �3.37 0.001 �1.035 �0.274
Age 0.002 0.007 0.34 0.734 �0.011 0.016
Standard deviation of age 0.005 0.001 3.36 0.001 0.002 0.008
Night-time shift for heterogeneity in the mean of age �0.171 0.055 �3.12 0.002 �0.280 �0.064

Operational characteristics
Weekly distance travelled 0.019 0.062 0.31 0.758 �0.103 0.141
Standard deviation of weekly distance travelled 0.095 0.021 4.48 0.000 0.054 0.137
Night-time shift for heterogeneity in the mean of weekly distance travelled 2.473 0.885 2.79 0.005 0.737 4.208

Sleepiness
Instrumented (probability of) sleepiness 0.399 0.265 1.51 0.132 �0.119 0.917
Standard deviation of instrumented (probability of) sleepiness 0.784 0.228 3.44 0.001 0.337 1.230
Night-time shift for heterogeneity in the mean of instrumented (probability of)
sleepiness

7.191 2.073 3.47 0.000 3.127 11.255

Measures of statistical fit
Log-likelihood of null model (LL0) �1982.67
Log-likelihood of full model (LLm) �1953.11
LR statistic 59.12
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their means are presented in Table 5. According to these results, gender, age, weekly distance travelled, and the instru-
mented sleepiness are statistically significant at 5 % significance level (with 95 % certainty) among the sample of truck dri-
vers. In addition, night-time shift is significantly (5 % significance level) associated with the mean of random parameters in
this model.

The negative parameter of gender (�0.654) indicates that male truck drivers maintain shorter headways. This is in line
with the findings from a recent review of gender differences in various driving behaviour metrics, showing that female dri-
vers exhibit higher longitudinal distance than males (Rezaei et al., 2021); it is noted however that no study was found explic-
itly examining the impact of gender on truck drivers’ headways in particular. While the parameters of age, weekly distance
travelled, and instrumented sleepiness (0.002, 0.019, and 0.399, respectively) are not statistically significant at 5 % signifi-
cance level, the standard deviation of these parameters (0.005, 0.095, and 0.784 respectively) are statistically significant
at this level. These findings indicate that the effects of age, weekly distance travelled, and instrumented sleepiness on head-
way are decreasing for a proportion (34.5 %, 42.1 % and 30.5 %, respectively) of the truck drivers, and increasing for the
others. The parameters of night-time shift shows that this variable is underlying such varied effects. The negative parameter
of night-time shift for age (�0.171) indicates that it decreases the mean effect of age on headway and implies that the major-
ity of older drivers who work night-time shifts maintain shorter headways. This finding may be indicative of the reduced
ability to drive during the night for this cohort of drivers. On the contrary, the positive parameters of night-time shift for
weekly distance travelled and sleepiness (2.473 and 7.191, respectively) indicate that night-time shift increases the mean
effects of these two variables on headway. These findings imply that, for the majority of drivers, higher weekly distance trav-
elled and sleepy driving are associated with increased headway if they work night-time shifts. The former could be a sign
that that more experienced truck drivers maintain safer driving behaviour during the night, and the latter could be a sign
that sleepy truck drivers initiate risk-compensating behaviour during the night. It is noteworthy that this additional infor-
mation is a direct benefit of using a heterogeneity-in-the-means specification for the random parameters in that it reveals
the underlying factors (night-time shift) for the heterogeneous effects of independent variables (age, weekly distance trav-
elled, and sleepiness) on the dependent variable (headway).

Finally, the likelihood ratio test statistic associated with the grouped random parameters generalized linear model
(LR = 59.12) is much larger than the critical chi-squared value for 5 % significance level and 11 degrees of freedom
(v2

0:05;11 ¼ 19.68) indicating that the model has substantially improved statistical fit relative to the null model.
6. Conclusions

Sleepiness is a common human factor among truck drivers which is mainly due to sleep loss and time of day. Previous
studies have shown that sleepiness is significantly associated with increased risk and thus it is very important to detect
sleepiness, understand its underlying contributing factors and assess its effects on driving performance. Although the KSS
has been traditionally used to quantify sleepiness, this self-reported metric is subjective and is reliant on honest reporting
and understanding of the scale. Recent advances in data collection technologies have made it possible to collect heart rate
measurements of drivers in real-time and in an unobtrusive way. However, the application of such technologies in measur-
ing sleepiness among truck drivers has remained unexplored. The endogeneity between sleepiness and driving behaviour
has been overlooked too. As such, this study aimed to investigate the applicability of sensors installed on the steering wheel
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of trucks for measuring sleepiness in truck drivers, and use the measured sleepiness in a proper methodological framework
to understand its effect on driving performance.

The findings from our experiment indicated that heart rate data can be used to identify driving episodes into one of two
states: alert or sleepy. These binary episodes can then be used along with other driving data to investigate determinants of
sleepiness and its effect on headway as a measure of driving performance. An instrumental variable model consisting of a
grouped random parameters binary logit and a grouped random parameters generalized linear model with heterogeneity
in the means were estimated against data collected for 35 truck drivers in a driving simulator study. Results indicated that
younger drivers and drivers with more driving experience are more likely to be involved in episodes of sleepiness. In addi-
tion, four-lane rural roads with speed limit 90 km/h contribute to higher chances of being involved in sleepiness. On the con-
trary, drivers of heavy and distributing truck transports are less likely to be involved in episodes of sleepiness compared to
drivers of other types of truck transport. Weekly distance travelled is also associated with sleepiness among the sample truck
drivers in this study. However, the effect of this factor varies across the participants. Moreover, gender, age, weekly distance
travelled, and sleepiness are significantly associated with driving headway. Out of these factors, age, weekly distance trav-
elled, and sleepiness have mixed effects among truck drivers. Our findings indicate that night-time shift is the factor under-
lying these mixed effects. Future research should be dedicated to better understand driving behaviour mechanisms during
different times of day.

This study is not without limitations. From the empirical perspective, the findings from this study are based on a driving
simulator experiment which is a confined environment andmay not be completely the same as the real driving environment.
As sleepiness was not experimentally induced, the observed episodes of sleepy driving (which only constituted around 14 %
of all driving instances) in this study are most likely due to an underlying level of sleepiness as a result of shift work, poor
sleep, or personal or social commitments. Future research should validate our findings using real driving data from a much
larger sample (such as data obtained from naturalistic driving studies) with sleep restriction protocols. In addition, the time
of day at which experiments are conducted should be standardised, with further considerations given to lighting and dura-
tion of driving. In doing so, additional data about sleeping patterns of truck drivers should also be collected for use in the
analysis. In addition, the binary sleepiness variable was not directly observed but approximated by the support vector
machine in this study. However, such an approximation can lead to some biases such as measurement errors, which are car-
ried to the grouped random parameters logit model of sleepiness too. As such, the results of this model should be interpreted
with caution. Finally, mild and extreme levels of sleepiness were not distinguished from one another in this study. Future
research should disentangle the effects of these two levels of sleepiness on driving performance.

From the methodological perspective, the two stages of the instrumental variable model were estimated separately in this
study. Future research may be dedicated to estimating the model simultaneously and comparing the results with those of
this study. In addition, only one type of distribution was used for the error term of the generalized linear model in the second
stage of the instrumental variable model. Employing alternative types of non-negative distributions, testing their goodness
of fit and comparing the results with those from this study is a worthy research exercise. While a grouped random param-
eters approach was adopted to address unobserved heterogeneity and panel data setting, the correlations between random
parameters were not considered in this study. Future research may be dedicated to extend the proposed model to a corre-
lated random parameters variant (Ali et al., 2022) in order to better understand the interaction effects of independent vari-
ables on the dependent variable. Finally, temporal variations were not considered in the effects of explanatory variables on
sleepiness or headway due to the very short duration of the simulator experiment. However, in real driving conditions and
over long periods of time, such temporal instability may exist due to the availability bias in the external factors such as
changes in truck industry regulations and/or global experiences of truck drivers over time (Mannering, 2018) and may alter
the effects of the aforementioned explanatory variables.

This study, although exploratory, contributes a number of insights to the truck transport industry and policy makers. A
key finding is that, despite the important developments in hours of service regulations (see Goldenbeld (2017) for a review),
the prevalence of sleepiness among professional truck drivers is still non-negligible, and therefore fleet managers and
authorities should not only rigorously implement and enforce these regulations, but also stay aware of their limitations.
Moreover, there may be group- or context-specific risk patterns which cannot be explicitly addressed by regulations. For
instance, in our study the combination of young age with sufficient experience is associated with higher probability of sleepi-
ness. The impact of external factors on fatigue may be heterogeneous; night shifts have positive effects on the headways of
sleepy drivers when combined with exposure, but negative effects when combined with older age. Therefore, transport oper-
ators, driver trainers and fleet managers should identify and handle such context-specific high risk patterns in order to
ensure safe operations.

There are two main directions for policy and management interventions in this respect: (i) through real-time interven-
tions with emerging technologies that allow continuous unobtrusive monitoring of sleepiness-related physiological indica-
tors, and (ii) through post-trip interventions by means of personalized feedback, re-training and incentives. In the next steps
of the i-DREAMS project, both types of interventions on truck drivers will be tested and evaluated (Pilkington-Cheney et al.,
2021).
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