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Abstract

Research in passive Heating, Ventilation, and Air Conditioning (HVAC) systems has gained
traction over the last few years. Although passive HVAC is not a new concept, advances in
environment sensing, control methods, and hardware have made it a more viable method.
Some difficulties still exist, such as optimal sensor placement and optimal control strategies.
Sensor selection is an important aspect of HVAC design. The system can become difficult
to control with incorrect placement of sensors, resulting in higher energy consumption, lower
comfort levels, or poor air quality.

There are essentially three methods to determine the optimal sensor location: model-driven,
data-driven, and simulation-driven. The model-driven methods use mathematical models to
maximize the observability of the system but are mostly used for simplified simulated rooms.
Data-driven methods often use clustering algorithms, or maximize metrics such as entropy or
mutual information. These methods focus on estimating the indoor air temperature distri-
bution. Simulation-driven methods use simulations to determine the airflow or temperature
fields, often with CFD. These are used to find local hot spots or locations for fast detection of
contaminants. No research was found that used sensor data of additional building components
besides of the indoor air temperature.

In this work, the sensors are selected based on model prediction accuracy and the overall
control performance to determine the effect of addition state measurements. A model is
constructed to simulate the building, together with an MPC and an extended Kalman fil-
ter for state estimation. These are combined to run the optimization and determine the
control performance. The sensor set average of each measured state is considered the true
temperature. For all possible sensor combinations, the error of the combination average w.r.t.
the true temperature is assumed Gaussian. The fitted Gaussian error distributions are then
used as measurement noise in the model. The building and control response is simulated
with the measurement error over multiple days. Two algorithms are implemented to find the
optimal sensor set: a predictive method and greedy method. The results are compared to
each other and both methods showed that the indoor air temperature measurements have the
largest effect on performance. Measuring additional states only resulted in a small increase
in performance.
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Chapter 1

Introduction

1-1 Motivation

Reduction of greenhouse gas emissions is becoming increasingly important. Climate objectives
set by the Dutch government, in accordance with the Paris Agreement, aim to reduce the
emission of greenhouse gases by 49% in 2030 compared to 1990 [53]. Households and the
service sector combined account for 36% of the total energy consumption and 25% of the
carbon emissions [53]. For households as well as the service sector about two-thirds of the
energy use is committed to heating, cooling and ventilation [53]. Therefore significant progress
towards the reduction of energy consumption can be made in this sector.

Reducing energy consumption can be accomplished by using more efficient active systems
or implementing passive systems in buildings. The latter has been researched over the past
three decades and is seeing a renewed interest [62]. Passive technologies are of interest, as
they use solar and wind energy directly without converting it to electrical energy first. This
keeps the electrical energy available for other uses and thereby complements the installation
of renewables to reach the climate objectives. Furthermore, they use few to no mechanical
parts that could break down or need maintenance. Using passive techniques for heating,
cooling, and ventilation still has some major challenges regarding controllability. Supply and
demand do not always correspond with each other due to uncertainties in weather conditions
and load. Therefore, an integrated and intelligent design in building, control, and prediction
methods is required.

For thermal comfort and control, temperature measurements are essential. The type of sensors
used and their placement both play a role in determining the current room air temperature.
Different methods for determining sensor positions have been used, but there is no stan-
dard methodology to approach this problem. Most research focuses on sensor placement in
large open spaces, such as offices or greenhouses, to accurately determine the temperature
distribution. There is, however, little research that investigates the potential of measuring
additional building components, e.g. walls and floor. These measurements might provide a
better temperature estimates and could result in better temperature predictions.
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2 Introduction

1-2 Research Goals and Contributions
In building Heating, Ventilation, and Air Conditioning (HVAC) systems design no standard-
ized procedures for optimal sensor placement and control exist. Conventional procedures rely
on intuition or expert knowledge when sensor locations are chosen. This is because buildings
vary widely and have complex interactions with their environments. Situations where sensor
selection or placement is optimized mainly focus on dealing with temperature distribution
within a space, such as office buildings or greenhouses. These papers use sensors placed
throughout the room all measuring the air temperature. No relevant research was found
that investigated the potential of measuring additional building components for temperature
control. These additional measurements could provide a better temperature estimate and
prediction. The goal of this thesis can be summarized by the following research question:

What is the optimal sensor selection for building temperature control?

To study such effects, this work draws on the CONVERGE building, since it provides mea-
surement of additional building components, i.e. walls, floor, and ceiling. One part of this
question is of particular interest, and the question can be rephrased as:

Is there a benefit for control performance if additional building elements are measured?

The optimal in optimal sensor selection and optimal control, refers to minimizing energy con-
sumption while maintaining thermal comfort. To answer these questions a combination of
sensor data and modelling is used. The building model, as used by [6], is slightly modified
to increase computation speed. To determine the effect of sensor selection on control per-
formance, a state estimator and controller were implemented. After a literature search, for
state estimation and control was chosen for an extended Kalman filter and a nonlinear Model
Predictive Control (MPC). Two optimization methods for sensor selection are constructed in
Section 3-4 and their results are compared in Chapter 4.

1-3 Thesis Outline
The remainder of this report is divided into 4 chapters. In Chapter 2 some preliminary
information is given on HVAC design, comfort definition, first-principles of thermodynamics,
and sensor placement strategies. This chapter is a summary of the conducted literature
review. The following Chapter 3 sets up the optimization methodology used in the research.
The model used to simulate the building is described first, followed by the state estimator
and predictive model controller. Lastly, the designed algorithms are given, together with the
method to simulate the effect of the different sensor locations. Chapter 4 contains the results
and discussion of the optimization methods. A conclusion and recommendations for future
work are given in Chapter 5.
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Chapter 2

Background on Building Indoor
Climate Control

This chapter contains the background information needed for building modeling and sensor
placements. A general description of active and passive Heating, Ventilation, and Air Con-
ditioning (HVAC) systems, and comfort definitions is given in Section 2-1 first, followed by
a section about the building considered for the case study in this thesis. Some of the funda-
mentals in thermal modelling are given in Section 2-3. This is followed by a section on sensor
placement methods in Section 2-4. Finally, a summary of the main methods used for control
is given in Section 2-5.

2-1 Heating, Ventilation and Air Conditioning

The task of HVAC systems is to regulate the indoor building environment. Besides temper-
ature, other variables controlled can be humidity, light, CO2, etc. Generally, HVAC systems
consist of both active and passive components.

2-1-1 Active Systems

Active systems, such as fans, pumps, chillers, boilers, etc., are still the most widely used
methods for HVAC. A major advantage is the controllability of these systems, as they can
be easily designed to fit the requirements of the building. This comes at the cost of requiring
energy, e.g. electricity or natural gas, and having more mechanical parts. An overview of a
general active HVAC system can be seen in Figure 2-1. In this figure, VFD stands for variable
frequency drive, which means the speed of the motor is adjustable and with it the flow rate.
The left-hand side of the system circulates heated or cooled air through the building. Fresh
air is mixed with air from the building to maintain air quality and comfort while conserving
energy. The right-hand side consists of a water boiler and chiller controlling the temperature
of the air conditioning and ventilation system.
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4 Background on Building Indoor Climate Control

Figure 2-1: Schematic of a classical HVAC system from [42] with a Variable Frequency Drive
(VFD).

HVAC units can come in constant air volume or variable air volume variants, either being
single zone or multi-zone. Usually, a constant air volume system is implemented in residen-
tial buildings, assuming a relatively uniform distribution of heat [23]. Constant air volume
provides a constant airflow with a variable temperature. Contrary to variable air volume,
where the airflow is variable and the temperature is generally constant. In a study by Lu
and Warsinger [31], the retrofitting of buildings with multi-zone variable air volume is inves-
tigated. These systems can have beneficial energy savings over single constant air volume,
especially for cooling. Besides the energy savings, using variable air volume also results in
more precise temperature control.

2-1-2 Passive Systems

Passive systems, contrary to active systems, do not require energy for heating or cooling.
Some actuators might still be required though, e.g. to open and close windows or to adjust
solar shading. One of the main sources of heat that can be used passively is solar irradiation.
Building orientation and placement of windows can be used, to block or absorb incoming
sunlight when needed. Automated shading systems can be installed to control the incoming
amount. Providing shade for cooling or letting in sunlight to heat the walls and floor of a
room. Ventilation can also be used for cooling when the air temperature outside is lower
than the temperature inside. Air currents can be induced by differences in air temperature or
pressure, using the sun or wind respectively. Passive ventilation systems using sunlight come
in multiple forms, using the same principle of natural convection. The main idea is to heat
the air and use the buoyancy to drive ventilation. The air can be heated in a solar chimney or
transpired solar collectors [63], the latter being essentially a double wall. A simple schematic
is shown in Figure 2-2. To extend the operation time of a solar chimney materials can be
added to store the heat energy and release it over a longer period, for instance overnight.
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2-1 Heating, Ventilation and Air Conditioning 5

These materials, usually phase changing materials, can be beneficial in heating as well as
cooling through buffering. Solar radiation can be used to preheat the incoming air in winter,
and ventilation can be used for cooling in summer. Pre-ventilation can not only reduce the
cost of cooling in summer, but also improve air quality and aid with heating in winter [62].
The effectiveness of these principles depends on the climate in which they are positioned.
Especially for temperate climates such as Germany and the UK, passive systems can add to
better air quality and improved energy efficiency [62]. Letan et al. [30] showed the feasibility
of ventilation in summer and heating in winter for a five-story building. This was done by
simulations and testing on a lab-scale model. Their model showed good performance even
with low solar radiation intensity. Besides solar energy, wind can also be used for ventilation.
Using a chimney effect or simply opening windows to create a pressure difference and drive
air currents in or out of the building.

Figure 2-2: Schematic of a simple passive ventilation system with Phase Changing Materials
(PCM) using solar energy.

2-1-3 Comfort Levels and Air Quality
When it comes to determining comfort levels and indoor air quality, multiple standards exist.
Standards such as ANSI/ASHRAE Standard 62.1 for ventilation rates, and thermal comfort
ASHRAE 55 and EN ISO 7730. While the ASHRAE is more popular in the United States,
the ISO is more internationally orientated [64]. These are originally more focused on, but not
limited to, traditional active HVAC systems. Natural ventilated systems are included in the
European standards EN 15251 [15] and EN 13799 [56]1 for thermal comfort and air quality,
respectively, and hold slightly different recommendations. This is due to different levels of
expectations for active, compared to passive ventilation [54]. In all of the standards, multiple
categories of buildings are defined, each having different recommendations.

Comfort levels are a subjective matter. To objectively quantify comfort, two models were
introduced: Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD). Both
of these are used in ASHRAE as well as the ISO standard. The PMV ranges from −3 (cold) to
+3 (hot) and depends on factors like metabolic rate, clothing insulation, ambient temperature,

1EN 13799 has had some small revisions since EN 16798 [40].
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6 Background on Building Indoor Climate Control

air velocity, mean radiant temperature, and relative humidity [64]. PMV being zero means
that 95% of the occupants are satisfied [14]. EN 15251 uses a running weighted mean of
ambient air temperature as a basis for indoor temperature recommendations. The mean is
generally taken over the preceding week. Different weights are applied to the preceding days
and for different seasons. The reason is the different clothing and expectations of indoor
temperature in winter, compared to summer conditions. This results in an adaptive thermal
comfort level. A more in-depth evaluation of the standard can be found in [48]. Most of
the papers reviewed assume some fixed temperature range, without calculating the PMV and
PPD values. In [33], a temperature comfort level is set between 20 ◦C and 22 ◦C during the
day for an unspecified location, while [19] uses a set-point range between 20 ◦C and 26 ◦C
for the climate of Portugal. For a winter case, [62] uses a set-point between 18 ◦C and 24
◦C with relative humidity between 30% and 70%. All of the parameters and comfort ranges
depend on a multitude of factors, such as climate, HVAC system, activity level, and clothing.

Taking all these parameters into account would make the overall problem more complicated
and they are not necessarily important to meet the research goals of this thesis. To simplify
the overall problem, discomfort is measured by the degree hours criteria method [47] with
fixed comfort bounds. The time spent outside of the specified comfort bounds is multiplied
by which the temperature exceeds that bound. These summed together form the discomfort
index Dind in degrees hour [◦Ch]. The allowed discomfort index is set to Dind ≤ 0.5 ◦Ch per
day, similar to [33]. This means that the temperature is allowed 0.5 ◦C outside of the bounds
for one hour, or 1 ◦C for half a hour, when the building is occupied.

2-2 The CONVERGE Building

The CONVERGE building, located in The Green Village in Delft2, is a test-bed for pas-
sive HVAC systems. This is a cooperation project of the Delft University of Technology
(TU Delft) and multiple companies from the building sector. The project has set multiple
goals to test the feasibility of implementing passive HVAC systems and provide a basis for
thesis and academic research. The main focus points are research and design of a thermal
tower, sensor placement, developing smart shading systems and, testing the use of heat and
cold buffering materials. Keeping the most important aspect in mind, making it realizable
and attractive to use in practice.

The building is equipped with an array of sensors and actuators. All of these sensors are fitted
to test different components and new concepts in passive HVAC design. A picture of the
CONVERGE building is shown in Figure 2-3. Besides passive methods, some active systems
are incorporated in this building as well. The CONVERGE building uses a combination
of the two, which include a thermal tower with phase changing materials, solar shades, a
heat pump, and solar energy-driven fans. The active systems are installed to aid the passive
methods when needed, but the main idea is to avoid the use of the active systems as much
as possible.

The approximately 80 sensors in the building consist of multiple types, including CO2, sound,
movement, and NTC temperature sensors. Of these, 35 are temperature sensors positioned
on different building components to give a precise measurement of the indoor environment,

2More information on The Green Village can be found on: https://www.thegreenvillage.org/
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2-3 Thermal Transport and Solar Radiation 7

Figure 2-3: Picture of the CONVERGE building with the thermal tower.

including air, floor, interior walls, and ceiling temperatures. The building also has its own
local weather station, to give more accurate external environment measurements compared
to a nearby station. This local station provides data on humidity, air temperature, wind
speed and light conditions. Solar global horizontal irradiance is also are measured using a
pyranometer.

2-3 Thermal Transport and Solar Radiation

Before the system modelling is discussed in Section 3-1, it is helpful to understand the ther-
modynamic concepts involved. The model is based on first-principles. For each of the building
elements and room air temperature, an energy balance is considered. This is based on the
first law of thermodynamics, where the energy gain of an element without work done is equal
to the sum of heat transfers, given by:

mcp
dT
dt =

∑
q̇ (2-1)

where m is the components mass, cp is the specific heat, dT is the temperature change, dt the
time step and q̇ the energy flow. The left-hand side of this equation shows heat storage. This
modelling is also called the lumped capacitance approach, where the change in internal energy
of a component is equal to the net energy flow through its boundaries, and the temperature is
considered spatially uniform. The energy flows q̇ consist of conductive, convection, radiation,
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8 Background on Building Indoor Climate Control

and internally generated heat. For more detailed information on heat transfer and solar
radiation is referred to [24] and [13] respectively.

Conduction

Conduction is the heat flow through a material, e.g. insulation layer. The rate at which
heat transfer occurs can be described by Fourier’s law of thermal conduction. In the building
model, this type of energy transfer occurs between roof and ceiling, and between the ground
and the concrete floor. The 1-D heat flow through a insulation layer between two building
components over a surface area, A, is given by:

q̇cond = −κAdT
dx (2-2)

Here, κ is the thermal conductivity and dT/dx is the temperature gradient in the direction
of the heat flow. The temperature distribution within the material, or insulation, becomes
linear when steady-state conditions are assumed. If this condition is assumed, (2-2) can be
approximated by

q̇cond ≈
κ

LA(T2 − T1) (2-3)

where T1 and T2 are the temperatures on each side of the insulation layer, and L is the
thickness of the insulation. Although the components are generally not under steady-state
conditions, this approximation describes the heat transfer reasonably well when L is small in
relation to the surface area A.

Convection

Heat transfer between a solid and a fluid or gas can occur through different mechanisms.
Common method is to consider that the surface is in contact with a bulk fluid, as the temper-
ature of the fluid near the surface is generally unknown. A temperature some distance from
the surface is used. The energy transfer through convection from a surface can be described
by Newton’s law of cooling as:

q̇conv = hA(Ts − T∞) (2-4)

where h is the convective heat transfer coefficient, Ts the temperature of the surface and T∞
is the temperature of the fluid some distance away from the surface. The convective heat
transfer coefficient relates to the Nusselt number by:

h = Nuk
Lc

(2-5)

where Nu is the Nusselt number, k is the thermal conductivity of the fluid, and Lc the char-
acteristic length. Different correlations have been established for the Nusselt number under
certain conditions. These conditions depend for instance on fluid velocity and thermophysical
properties.
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2-3 Thermal Transport and Solar Radiation 9

Radiation

Energy between materials is exchanged continuously through radiation. Different materials
have different efficiencies in absorbing and emitting radiation. The radiation between two
surfaces can be described by :

q̇rad = σ(T 4
2 − T 4

1 )
1−ε1
ε1A1

+ 1
A1F12

+ 1−ε2
ε2A2

(2-6)

where ε1 and ε2 are the surface emissivity of the two layers, σ is the Stefan-Boltzmann
constant, and F12 is the view factor. Emissivity is the fraction of energy emitted compared
the that of a black body at the same temperature. For the building model, two cases are
especially useful: 1) where the view factor F12 is unity and A1 is equal to A2; 2) one small
surface is enclosed by a larger surface, such that A1/A2 approaches zero. The former is the
case for the small insulation cavity between the glass layers in the facade, and the latter is an
approximation for the exterior building components with the sky. Applying the conditions
for the surfaces between the glass layers on (2-6) results in the following equation:

q̇rad,cav = σA(T 4
2 − T 4

1 )
1
ε1

+ 1
ε2

+ 1
(2-7)

In the other special case where the radiation energy transfer between the exterior and sur-
roundings is considered, (2-6) can be written as:

q̇rad,sky = εσA(T 4
ext − T 4

sky) (2-8)

where Text an exterior building component temperature and Tsky the reference sky tempera-
ture. This equation applies to are the wall exterior and the roof. The equations above describe
the radiative interactions between building components and between building components and
surroundings. The input energy from the sun is described by:

q̇sol = IAτnα (2-9)

where I is the incident solar irradiation, τ is the transmittance, n is the number of layers
the radiation has to pass through before reaching the surface, and α is the absorptance.
The transmittance, or transmissivity, is the fraction of radiant energy passing through a
material. Absorptance is the fraction of the energy absorbed by a material. The incident
solar irradiation I is the sum of three different components, Ib, Id, Ig, which are the beam,
diffuse and ground reflected irradiation, respectively. The beam irradiation is the radiation
coming directly from the sun, whereas the diffuse irradiation are the incoming rays that have
been scattered by the atmosphere. The beam radiation is calculated by the following relation:

Ib = Ibn cos θ (2-10)

where Ibn is the solar irradiation normal to a surface and the angle of incidence θ. The angle
of incidence is depicted in Figure 2-4. The calculation of the angle is as follows:
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10 Background on Building Indoor Climate Control

(a) Angles relative to a surface (b) Overview of the sun azimuth angle γs.

Figure 2-4: Diagram of solar angles relative to a surface [25].

cos θ = sinφ(sin δ cosβ + cos δ cos γ cosω sin β)
+ cosφ(cos δ cosω cosβ − sin δ cos γ sin β)
+ cos δ sin γ sinω sin β

(2-11)

where φ is the latitude, δ is the solar declination, β is the slope of the surface, γ the surface
azimuth angle and ω the hour angle. An overview of these angles can be seen in Figure 2-4.

The diffuse irradiation depends on a large amount of factors, e.g. temperature, humidity, cloud
levels, etc. To approximate the diffuse irradiation multiple models have been constructed. A
widely used model that shows good performance is the Perez model. The Perez model is
a sky diffuse model that combines the horizon, isotropic and circumsolar components[50].
The coefficients are derived from empirical data and show a good approximation in most
conditions:

Id = Idh

[
(1− F1)

(1 + cosβ
2

)
+ F1

(
a

b

)
+ F2 sin β

]
(2-12)

with diffuse horizontal irradiance Idh, β is the surface inclination from the horizontal. The
coefficients a and b to account for the angle of incidence. F1 and F2 are coefficients for
circumsolar and horizon brightness, derived from empirical data. This leaves the ground
reflected irradiation, which can be described by:

Ig = Ihρg

(1− cosβ
2

)
(2-13)

where Ih is the horizontal surface irradiation and ρg the albedo. The albedo is the reflective-
ness of a surface. This value depends on the material and conditions, such as rainwater or
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2-4 Sensor Placement Methods 11

snow.

2-4 Sensor Placement Methods
Sensor types and placement are important aspects of HVAC design. With incorrect placement
the system can become difficult to control, resulting in higher energy consumption, lower
comfort levels, or poor air quality. Since cost is usually important in the design process,
there is a trade-off between cost and the number of sensors and the amount of information
available for control. There are essentially three methods to determine the optimal sensor
location: model-driven, data-driven, and a combination of these two which can be seen as a
third method. The model-driven method, also called analytical or principle-based, relies on
knowledge of the system in advance to determine the optimal sensor location. A mathematical
model of the building is constructed and the sensor position is determined by using a control
theory-based approach. In the data-driven approach, multiple sensors are installed and a
selection of sensors is made afterwards. The initial placement is usually done by placing
sensors at a fixed distance, heuristic manner, or relying on the expertise of the engineer. The
third also uses these mathematical models, but uses them to obtain data from simulations.
Usually, a combination is used.

Model-driven Methods

This section uses a control theory or dynamical system-based approach in determining the
optimal sensor positioning. Using a model to carry out simulations could also be seen as
model-driven, but this method is discussed separately in the next section. The dynamical
system approach has the advantage over the purely computational approach to provide some
insight into the solution. The idea here is to determine the optimal placement by optimizing
certain system criteria, such as criteria for controllability and observability Gramian.

The use of linear advection partial differential equations is considered by Vaidya et al. [57],
to describe the dispersion of scalar quantities such as temperature and contaminants. The
equations are used to construct an explicit controllability and observability Gramian. Fi-
nite approximations for sensor placement do not work in this case, because of the transport
properties. A theoretical analysis for optimal sensor placement is constructed based on the
observability Gramian. [57] mention that the simplifications and assumptions made should be
reduced and relaxed to make the results applicable in practice. Fontanini et al. [20] describe
a dynamic system approach in determining sensor locations in a given environment, with the
objective of tracing contaminants in the air. The sensors must be placed to ensure speed and
full coverage for contaminants detection in for example an aircraft. An air velocity vector
field obtained through Computational Fluid Dynamics (CFD) simulations is transformed into
a Markov matrix, describing the diffusion of contaminants. This makes the calculations of
large sets more efficient compared to solving partial differential equations [20]. The sensor
placement is optimized using the observability Gramian constructed from the Markov matrix.
An advantage is that the sensor accuracy and location restrictions are also incorporated in
the Gramian. The contaminants could refer to CO2, although [20] focuses on extreme events,
where detection speed important. Fang et al. [16] approach was to maximize the trace of
the controllability and observability Gramian. This is done as maximizing the trace gener-
ally leads to high-rank matrices. The observability Gramian is relatable to the amount of
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12 Background on Building Indoor Climate Control

output energy. Both sensor and actuator locations are determined using the Gramian. The
optimization problem was computationally simplified by converting it from a maximization
problem to a sorting problem [16]. Some practical limitations were incorporated in the opti-
mization, such as unsuitable locations and sensor clustering avoidance. Simulations of a 2D
data center showed improved state estimation over random deployment. It should be noted
that the location of the sensors is only optimized with respect to the Gramian metric. It is
argued that this gives a good first indication, nonetheless, and its closed-form solution and
low computational cost make it an attractive method.

Data-driven Methods

When enough sensor data is available, an optimal sensor configuration can be obtained by
analysis such as classification methods, selecting those data points containing the most essen-
tial information about the system and removing redundancy.

Clustering algorithms were used by Yoganathan et al. [66] to determine the optimal sensor
placement. The study is carried out for an office floor containing cubicles. Sensors used are for
temperature, relative humidity, and light. The initial placement is done in a heuristic manner,
placing a sensor at each cubicle so that each sensor covers approximately 10m2. Their goal
is to remove 80% of the sensors, basing this percentage on the Pareto Principle. This is,
however, somewhat of an arbitrary statement, as it would depend on the initial number of
sensors. The two partition-based clustering algorithms tested, X-means and Clustering for
Large Applications (CLARA), produce similar results. Partition-based algorithms cluster the
data based on a distance measure. X-means is an extension of K-means clustering, where the
number of clusters is automatically determined based on the Bayesian Information Criterion
[49]. Both X-means and CLARA are supervised clustering algorithms.

Fu et al. [21] used clustering techniques to obtain a simpler model for HVAC controller de-
sign. The same principles apply for optimizing sensor location and number, i.e. selecting the
least amount of sensors that provide a sufficient amount of information. In this case, only the
temperature sensors were optimized with clustering techniques. Other sensors include CO2,
humidity, and airflow at the variable air volume output. Sensors chosen to best represent
a cluster were chosen in a top-down approach. This has the advantage of not making any
assumptions of the sensors following a certain Gaussian process [21]. Two clustering methods
are used: stratified near-mean selection and stratified random selection, which are both spec-
tral based algorithms. They have the advantage over partition-based clustering methods, such
as K-means, to often have better performance and can be solved efficiently by standard linear
algebra methods [60]. These are tested with correlation-based and Euclidean distance crite-
ria. Correlation-based clustering showed better results compared to Euclidean distance. The
best results were obtained with stratified near-mean selection and stratified random selection
outperforming the Gaussian process and simple random selection clustering techniques. The
latter two functioned as a comparison if sensor locations are chosen at random. Yun and Kim
[67] tested multiple clustering methods based on similarity measures to reduce the number
of sensors. The measurements are temperature, humidity, and illumination. The Support
Vector Machine algorithm showed the best classifier results in terms of mean and standard
deviation, compared to Bayes net, Decision tree, Decision table, Instance-based learning,
Multi-layer perceptron, and Naïve Bayes. Support Vector Machine learning performed best,
followed by decision tree. The similarity measures that are compared are Euclidean distance,

Fons ten Klooster Master of Science Thesis
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complexity invariance distance, and dynamic time warping distance. However, the main goal
of this paper was to reduce the number of sensors, while still accurately measuring the indoor
environment and classify comfort.

Maasoumy et al. [34] determined the best sensor configuration by taking the set of sensors
with the least Root Mean Square Error (RMSE), essentially taking the configuration with the
least temperature deviation with respect to the mean temperature value of all the sensors.
The was carried out for a relatively small-sized setup, namely for two connected 20-foot
containers. The goal was to accurately measure the average temperature for a given number
of sensors. Error-based and entropy-based sensor placement methods were conducted by Lee
et al [29] for a greenhouse. Besides the mean temperature, for instance, areas with large
deviations also need to be monitored. The selected sensor locations needed to be able to
detect rapid changes in local temperatures, caused by for example external factors. In this
study, only the air temperature was considered. The error-based method, using the RMSE
and absolute percentage error, performed best in estimating the overall climate conditions
inside the greenhouse. The information entropy-based method was added to find locations
with large temperature variations.

Spatial phenomena can often be modelled as Gaussian processes [28]. This is the approach
Krause et al. [28] used to determine the optimal sensor placement for an office floor. To
define what a good location is, multiple criteria have been mentioned. Krause et al. used
the information-theoretic mutual information criterion of Caselton and Zidek, and showed
it outperforms the entropy criteria. The biggest advantage of information-theory mutual
information criterion over entropy is that the former also considers the uncertainty of the un-
sensed location. Entropy tends to place the sensors at the edges of the areas of interest where
the uncertainty is highest [28]. They created an efficient algorithm with a polynomial-time
approximation, where no other Gaussian Process method or criteria provides such guarantee
[28]. The placement is also robust against node failures and model uncertainties [28] grounded
with theoretical approximation guarantees. The approach is tested with two real-world data
sets.

By doing an extensive literature review and questionnaires, Mahyuddin et al. [35] found
that most professionals and researchers preferred a location for CO2 sensors in the middle of
the room at a height between 1.0 m and 1.2 m. This also corresponds to the recommended
height by multiple industry standards [35]. Furthermore, the sample location should be some
distance away from the occupants for a correct reading. A 2.0 m distance was mentioned by
some to be sufficient [35]. From the databases investigated and results from questionnaires
a p-value analysis was carried out to look at the number of CO2 sensors used and the total
area. For a room with less than 100 m2, one sensor was used, and for a room between 200
and 300 m2, three sensors. Factors with the most significant effect on CO2 monitoring were
the number of occupants, type of ventilation, and the effect of windows and doors.

Simulation-driven Methods

Simulation-driven approach is essentially a combination of the previous two. Here the data
is generated through simulations. The advantage compared to the data-driven approach is
that there is no need to install various sensors first. Different locations can be tested through
simulation. The downside is the need for a numerical model, which has a trade-off between
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computation time and accuracy. The construction of this model itself also requires expert
knowledge.

Chen and Wen [7] tested multiple airflow models to identify suitable applications. The goal
of the sensor placement is harmful contaminant detection and ensuring the safety of the
occupants. The different model types tested were CFD, zonal, and multizone. The CFD
served as a benchmark as it was the most detailed of the methods. The environments for
which tested are a small office, large hall, and an office suite. The multizone approach
seemed to work just as well as the more complex CFD model.,though the impact of different
characteristics, such as obstacles and layout, on the model agreements have not been fully
investigated. A Genetic Algorithm (GA) was used for the sensor locations, minimizing the
detection time and occupant exposure time of contaminants. McGibney et al. [41] used
evolutionary strategies to find the optimal sensors locations using a CFD model of a living
room. As not every point was calculated and/or measured, an inverse weighted distance
interpolation was used during the optimization process.

The CFD and building energy simulation strategies can be combined to provide optimal
control for HVAC systems, which is done by Du et al. [12]. An small office space was
simulated and measurement data is used for validation. The multiple sensor positions have
been simulated to determine the effects on energy consumption and thermal comfort. The
conclusion was that conventional sensor locations, near the inlet and outlet of the HVAC, are
not always optimal. Feng et al. [18] used CFD simulations for a greenhouse to determine the
optimal sensor locations.The best locations were the ones where no large variations occur, i.e.
avoiding the hot spots. It was argued that the sensor locations could be chosen intuitively by
examining the simulation results.

2-5 Control Methods
Control methods used for passive HVAC systems, as well as for active HVAC systems are
reviewed in this section. Active systems are by far used the most and have been in development
for a long time. Most papers consider a hybrid HVAC system, where the passive ventilation
is to assist the active systems. This again, is mainly for controllability purposes as the
effectiveness of passive systems is highly dependent on weather conditions. Belic et al. [4]
have done a review on control methods for active systems. They found that generally the
approach can be considered to be in one of three categories: improving classical control
methods, using predictive methods, and the use of intelligent control methods.

Classical Control Methods

Classical control methods do not rely on models to make predictions of state evolutions. PID
control with feedback and feedforward are also considered, together with ON/OFF types of
control based on rules or thresholds. These are the most basic types of control, while also
used the most in practice [4]. These methods are made more advanced over the years, for
example by combining them with more advanced optimization techniques or expanding on
PID control with MIMO.

Fanti et al. [17] use a particle swarm optimization algorithm for ON/OFF control to open
windows for natural ventilation. The study is carried out for a residential building in the

Fons ten Klooster Master of Science Thesis



2-5 Control Methods 15

Mediterranean. The temperature set-point is determined by the adaptive comfort levels for
passive ventilated buildings. A particle swarm optimization is an evolutionary optimization
algorithm, suitable for nonlinear problems. Compared to GA, particle swarm is robust and
generally requires fewer function evaluations to obtain better or similar results [17, 51]. The
windows are opened by if-then rules, where the comparison is made between the case where
the if set-points are fixed and with the conditions optimized with particle swarm. These
conditions are based on indoor and outdoor temperatures. Simulations showed a significant
reduction in the number of discomfort hours with automated windows. Furthermore showed
a reduction in hours of thermal discomfort for overheating compared to fixed rules. For
undercooling the results for both cases were similar. Goyal et al. [22] compared a feedback
controller with Model Predictive Control (MPC). Their findings showed that MPC had only
a little benefit over a simpler rule-based feedback control at the cost of increased complexity.
Although it should be noted that this was done for a small-sized room. Maasoumy et al. [33]
compared a PID controller with ON/OFF and MPC. The ON/OFF controller, in this case,
opens and closes the air ventilation valve if certain thresholds are met. Their results showed
vast improvements in energy consumption with the ON/OFF and MPC control methods.

Classical control methods have the advantage of being relatively simple and computation in-
expensive. Even though MIMO provides better theoretical results, decoupling it into multiple
SISO systems can be useful in practice [4]. Making it easier to tune the different subsystems.
These methods are widely implemented in practice, but most of these systems are active
HVAC systems. These are less dependent on external disturbances, as the actuators can be
designed with sufficient control capabilities.

Predictive Control Methods

For passive HVAC systems, MPC is a promising method. To utilize changing weather condi-
tions and occupancy for HVAC, predictions have to be made about the near-future conditions.
Control actions that are possible now are not necessarily possible with passive control in the
future and vice versa. Deterministic as well as stochastic MPC types are used for control, ei-
ther linear or nonlinear. While MPC is used in most cases, stochastic MPC showed increased
performance when uncertainties in weather forecasts and occupancy are considered.

Mantovani et al. [37] applied an MPC strategy for temperature control to a shopping mall.
Here the problem lies with vertical stratification in the large open spaces, and the coupled
convection between the zones [37]. It also addresses some extensions with regard to renew-
ables and electricity pricing, as these can be fairly easily included in the objective function.
A nonlinear mathematical model of a real shopping mall is used to carry out the simulations.
Included are external inputs and disturbances, such as solar radiation, external temperature,
and occupancy. The MPC is combined with a Kalman filter as a state observer. Modifications
with regard to the heating system are mentioned to improve the control and energy efficiency
of the shopping mall. The MPC strategy was not able to mitigate the stratification problem,
although their strategy showed promising results with regard to energy savings. Maasoumy et
al. [33] compare a PID, ON/OFF, and MPC strategy for temperature and airflow in a univer-
sity library located in California. Compared to the original PID control strategy, significant
reductions in total airflow rate and energy consumption were achieved with ON/OFF control
and MPC. The MPC showed only a relatively small improvement compared to the simpler
ON/OFF control, although the MPC was able to reduce the maximum airflow. An MPC was
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also designed in [34] in the case of accurate sensors, and a robust MPC in the case of less
accurate sensors. For robust MPC the worst-case scenario is considered while satisfying the
input and temperature constraints. These control algorithms are combined with an unscented
Kalman filter and an extended Kalman filter state observer. With fewer sensors used and a
lower sensing accuracy, the best control approach was unscented Kalman filter-robust MPC.
This resulted in the best combined performance considering thermal discomfort and energy
cost. Vidrih et al. [59] Generalized Model-based Predictive Weather Control for night-time
ventilation of an office room. A prediction of the next 24 hours is made, to utilize the ambient
air at night for cooling. Generalized Model-based Predictive Weather Control is in the form
of control matrices. A control matrix summarizes the dynamics and control. These matrices
are used to determine if and to what extent it is efficient to use night-time ventilation in con-
junction with mechanical ventilation. The algorithm was not implemented into the control
system but functioned as an aid to the monitors. The developed control matrix was rather
static but reasonably accurate and easy to implement [59].

Oldewurtel et al. [46] investigate the potential of stochastic MPC with weather forecasts for
energy-efficient building climate control. Multiple cases from other papers are considered, not
only looking at temperature control, but also illuminance and CO2 levels. To simplify the
calculations disturbances are assumed Gaussian and occupancy is considered known. This
makes it possible to solve a sequence of linearized subproblems. stochastic MPC was found to
be superior compared to deterministic MPC in terms of energy savings and thermal comfort.
Furthermore, it can be made such that easy tuning is possible by a single parameter. [46]
mention that performance is highly dependent on the model and weather prediction used. Ma
et al. [32] used a stochastic MPC approach to minimize energy consumption and maintain
thermal comfort levels. The library building is constructed of multiple thermal zones, each
controlled by an active variable air volume HVAC system. To make the problem computa-
tionally viable a feedback linearization scheme is proposed. Guarantees are provided on the
probability of comfort violations. The uncertainties in load and weather conditions are mod-
elled by finitely supported probability density functions, which are continuously updated as
new data is obtained. Uncertainties in load and occupancy are non-Gaussian in practice, and
exact solutions of stochastic MPC with these disturbances are generally computational in-
tractable [32]. To deal with the non-Gaussian disturbances, multiple scenarios are considered
where the chance constraints are made deterministic. It has the advantage not depending on
the linearized system dynamics [32], as in [46]. A total of five control methods, Perfect (P),
Certainty equivalent (C), Explicit (E) Stochastic, Gaussian (G) stochastic MPC and Sample-
based (S) stochastic MPC, are all compared to the current implemented control method. The
PMPC has a perfect weather forecast, which of course is not possible in practice. This serves
as a comparison of the different uncertainty prediction methods. The CMPC uses the mean
predicted disturbance as a nominal value. This disturbance is essentially an estimated aver-
age of scenarios or average likeliness. The ESMPC uses discrete convolution to approximate
the chance constraints. Explicit MPC uses offline optimization with lookup tables. These
methods are however less suited for large-scale problems [10]. The SSMPC uses a sample-
based method for this approximation, using multiple realizations. To reduce conservatism
some data points are omitted. If many realizations are used this would basically result in
a worst-case scenario in terms of disturbance. Lastly, the GSMPC, which does assume a
Gaussian distribution of the uncertainties. The ESMPC and SSMPC performed almost as
well as the MPC with perfect knowledge of the disturbances.
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Sun et al. [55] combined active and passive HVAC, shading, and lighting for a two-room
building in Beijing. To overcome computational difficulties with regard to optimization,
GA or decomposition methods such as Lagrangian relaxation are used. [55] have chosen
for the latter. Lagrangian relaxation is useful when the problem is separable. In [55] some
modifications had to be made to deal with the nonlinear couplings between rooms. To ease
computation costs two heuristic strategies are developed based on the stochastic dynamic
programming and rollout technique. The new control method reduced the energy cost by
approximately 10% compared to the existing strategy with good computation costs. The
Lagrangian relaxation dynamic programming drastically reduced computation time compared
to dynamic programming and the rollout technique was able to reduce it further at a low cost
of increased energy consumption.

To deal with the increased complexity and computation time of nonlinear MPC, different
variations such as distributed MPC, explicit MPC, hybrid MPC, and stochastic MPC have
been tested with different levels of success [10]. The difficulty still lies with the complexity
when all the factors are considered. A simple model for a medium-sized building can consist
of hundreds of states and control inputs [32]. While disturbances are often modelled as Gaus-
sians [46], Ma et al [32] used non-Gaussian disturbances by transforming chance constraints
into deterministic ones using discrete convolution integrals and sample-based techniques. La-
grangian relaxation methods and heuristics can be used to further simplify computations
[55].

Intelligent Control Methods

Obtaining an accurate model can be a cumbersome task, due to time lag, uncertainties, and
complex interactions of indoor climate variables. This is where intelligent control methods can
be useful. Methods such as fuzzy logic, neural networks, or other machine learning methods.
These are able to deal with the nonlinear dynamics and MIMO systems.

Mirinejad et al. [43] did a review on intelligent control methods in HVAC systems for thermal
comfort improvement and energy consumption reduction. For fuzzy logic controllers, the main
advantage is that there is no need for a complex mathematical model for controller design
[43]. Fuzzy logic is suitable for complex nonlinear systems. A downside is the need for
expert knowledge and usually a trial-and-error design process which can be time-consuming.
Methods, such as neural networks or GA, can be used to tune or learn either rule-base or
membership functions, or both. When a neural network is used this is considered a neuro-
fuzzy system [43]. In the case of GA, there is genetic learning and genetic tuning. With
genetic learning, the membership functions or rule-base, or both at the same time, can be
automatically learned without prior knowledge [9]. For genetic tuning, the general structure is
already defined, and the parameters are optimized automatically. Tuning is less difficult than
learning the whole controller, but for both, there are no guarantees of finding the optimum
control due to complexity. Dounis et al. [11] proposed a fuzzy logic control structure to
control HVAC, shading, and lighting. The building used passive solar energy to decrease
energy consumption. The controller used is hierarchical, with a master outputting new set-
points based on energy consumption prediction and comfort levels. The slave is comprised
of two negotiation machines and a decision-making unit. One negotiation machine looks at
the illuminance difference, and the other at temperature and comfort levels. Tuning the
membership functions can be a difficult task. To optimize the parameters, tuning of the
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membership functions is done with a GA.

Manjarres et al. [36] used machine learning algorithms for an active ON/OFF HVAC system.
Random forest regression techniques are used to make 24-hour predictions for an office build-
ing in Spain. Using black-box models of buildings has some advantages over principle-based
or grey-box models. When data is available, they have higher generalization capabilities and
do not require the time-consuming process of developing physical models [36]. The ON/OFF
scheduling showed good performance. Xu et al. [65] used neural networks with Lagrangian re-
laxation and stochastic dynamic programming to find near-optimal solutions. It was effective
in dealing with uncertainties and reducing peak demands of the HVAC system.

Fuzzy logic does not need a model of the building. Tuning can be done through expert
knowledge or learning methods. The mentioned control methods are by no means all there
is. Each method has its variations and different methods can be combined to supplement
another, such as fuzzy logic combined with MPC in [45]. Black-box methods such as machine
learning techniques have the advantage of being adaptable to system changes. Although this
is only the case when enough data is available. Furthermore, it removes the need for an
intensive modelling process involved with principle-based methods. Over the past few years,
there is an increased interest in using neural networks for energy prediction models over other
machine learning methods, such as support vector machines, random forests, and decision
trees. This is mainly due to advantages in reliability, interchangeability with other building
software, and nonlinear input-output handling capabilities [44].

2-6 Summary

Passive systems for HVAC in buildings are of interest because of their low energy requirements
and mechanical simplicity compared to active systems. Studies have shown that passive sys-
tems can reduce energy consumption in warm as well as in cold climates, through ventilation
and heating, and improve air quality. Though the systems perform best in tempered climates,
where the surrounding temperature is relatively close to the desired indoor temperature. A
downside of these systems is the controllability, as their effectiveness is highly dependent on
local weather conditions. Nevertheless, passive systems are a good supplement for active sys-
tems in HVAC. For the indoor environment, multiple standards can be used for determining
comfort levels. Some models have been introduced to give an objective measure for comfort,
taking into account metabolic rate, clothing insulation, temperature, air velocity, mean radi-
ant temperature, and relative humidity. Although these models are used the most, different
methods of calculating recommended comfort levels exist. The acceptable values depend on
the standard used, building category, and climate conditions.

Models based on first-principles have been able to accurately describe the most important
system dynamics. Some fundamentals of thermal transport effects of solar irradiation have
been given, that form the basis of the building model. The model should also account for
enough of the system dynamics. The basic interactions between building components and
other external factors needed in building modelling have been described.

For sensor placement, data-driven methods such as hidden Markov models and neural net-
works are widely used and show good results. Model-based sensor placement has more poten-
tial than geometric-based sensor placement. The main aspect of model-based sensor place-
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ment is the objective function, deciding which metric is used for optimization, for example,
entropy, maximal mutual information, Gramian, or RMSE. With model-driven sensor place-
ment most popular is observability Gramian. This is an insightful metric to optimize. When
CFD is used sensor locations are often chosen based on intuition. Choosing the position
which best resembles the average temperature in the enclosure. Trial-and-error is also com-
mon, essentially randomly generating the sensor placements with simulation-driven methods
and choosing the configuration with the least amount of error with respect to obtained data.
This method can be effective but is less ideal. Common practice is to place sensors near
HVAC exhaust and in-take, but this only works well for small-sized rooms. When the opti-
mality criteria such as entropy or maximal mutual information are used, the goal is to obtain
as much information as possible about the temperature distribution within the room. Most
papers focus on either sensor placement or control, but rarely consider the effect of the sensor
positioning on the control performance. No other research was found that included additional
state measurements. An overview of the methods used the most can be found in Table 2-6.

Classical control methods have the advantage of being relatively simple and computation
inexpensive. These methods are widely implemented in practice, but most of these are used
for active HVAC systems. These are less dependent on external disturbances, as the actuators
can be designed with sufficient control capabilities. When active systems are supposed to
complement the passive system instead of the other way around, predictive or intelligent
methods are better suited. These control methods show improved performance compared
to the classical methods, at the cost of some increase in complexity. Major downsides for
intelligent systems are the need for training with large amounts of data and the complex
choice for the model structure. A summary of the different control methods can be found in
Table 2-6.

Table 2-1: Summary sensor placement methods most used as described in Section 2-4.

Method Approach Notes Ref.
Model-driven Maximizing support or trace of

observability Gramian
Simulated empty rooms;
assumptions not applicable in
practice.

[57],
[20], [16]

Data-driven Clustering: K-means,
X-means, and clustering for
large Applications, criteria:
minimal information loss.

Maximize spatial temperature
information, assumes measuring
the same variable.

[66]

Minimize error, RMSE Simple, used to estimate
temperature distribution.

[34], [29]

GP-modelling, maximizing
mutual information,
maximizing entropy.

Advanced, no model needed,
accurately describing
temperature distribution.

[28]

Simulation-driven Simulate control with CFD
coupled with Building Energy
Simulation software.

One sensor is used at a time,
CFD high computation time for
a small room.

[12]

CFD and zonal-model to
minimize detection time
contaminants released.

CFD is not much better than a
zonal model, goal: fast detection
of contaminants.

[7]
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Table 2-2: Compact overview of HVAC control methods described in Section 2-5.

Control Complexity Advantage Disadvantage Ref.
PID Simple Easy tuneable, intuitive,

low computation cost.
Not optimal, less efficient
dealing with uncertainty.

[33]

Rule-based Simple No model needed Generally less accurate and
efficient.

[22], [17],
[33], [34].

MPC Moderate Predictive control Uncertainty can affect
control.

[22], [33],
[34], [37],
[46], [55].

Stochastic
MPC

Complex Deal with uncertainty
and noise

Limited use in practice. [46], [32].

robust MPC Complex Robust properties. Mostly theoretical. [34]
Machine-
learning

Complex Generalizable Black-box, no guarantees,
overfitting risks

[36], [43],
[65].

Fuzzy Moderate Intuitive Expert knowledge or
trial-and-error.

[43], [11].
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Chapter 3

Building Model and Controller Design

This chapter contains the general setup for this research. To simulate the building temper-
ature, a transient nonlinear model is used. The model is based on first-principles and later
fitted to sensor data from the CONVERGE building. This is described in Section 3-1. For
state estimation, an Extended Kalman Filter is chosen as described in Section 3-2. This is
followed description of the predictive control system in Section 3-3. The methods used for
optimal sensor selection are given in Section 3-4.

3-1 Nonlinear Model
The thermal behavior of the building is simulated through transient modelling in MATLAB,
which is similar to the model used in [6] and has shown good accuracy compared to sensor data
from the CONVERGE building. The temperature response of the building elements is based
on the thermal energy transfer between the elements and the surrounding. With the building
elements is referred to the walls, floor, ceiling, and roof. For simplicity, some assumptions
are made. The model uses a lumped capacitance for each element. This implies that the
spatial temperature gradients are neglected, i.e. temperatures of the building elements are
considered homogeneous. Often in building simulations, spatial temperature gradients are
disregarded as it drastically simplifies the model, while still providing accurate temperature
approximations. This is furthermore motivated by the building design. All the walls are made
entirely out of glass and the layout is essentially a one-room rectangle box with a flat roof.
A schematic of the building design is shown in Figure 3-1. The air is considered well-mixed
with a homogeneous temperature. While a temperature stratification will be present, due
to buoyancy forces and sunlight hitting only certain parts of the floor, the air is supplied at
low speed over a large area through the tiles. This reduces the local hot or cold spots found
near the exhaust of traditional Heating, Ventilation, and Air Conditioning (HVAC) systems,
where the air is supplied through a small opening. Temperature stratification is not that
significant considering the relatively low ceiling. Another assumption is that the radiation
energy transfer between the indoor building elements is negligible, e.g. between walls, floor,
and ceiling. The building elements and indoor air will have roughly the same temperature
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22 Building Model and Controller Design

and convective heat transfer is dominant. The main dimensions of the building are shown in
Table 3-1. For a complete overview of all the parameters used is referred to Table A.

Figure 3-1: Schematic of the CONVERGE building, with the climate tower on the left-hand side.
Schematic from the CONVERGE project in The Green Village.

Table 3-1: Main dimensions of the building. Thickness refers to one glass panel.

Component State Length [m] Height [m] Thickness [m] Orientation (γ) [◦]
South wall T1-T3 13.5 5.2 0.01 0
East wall T4-T6 22.5 5.2 0.01 -90
West wall T7-T9 22.5 5.2 0.01 90
North wall T10-T12 13.5 5.2 0.01 180

For each building element and the indoor air temperature, an energy balance is considered.
This is based on the first law of thermodynamics, where the energy gain of an element is
equal to the sum of heat flows, given by

micp,i
dTi
dt =

∑
j
q̇j−i + q̇int (3-1)

where mi is the mass of component "i", cp is the specific heat, T the temperature, q̇j−i is the
energy flow from "j"to "i", and q̇int is the internal heat generation. For a complete overview
of all the building parameters and material properties is referred to Table A-1.

State Equations

The building is divided into 17 states, each with an energy balance equation as (3-1). Each
wall is modelled as three separate components. The floor, which consists of a base floor
and raised tiles, is also modelled as two distinct components. In total, the 17 states are
made up of 12 glass facade layers, an external roof, an internal ceiling, a ground floor, raised
floor, and the air. A description of all the states can be found in Table 3-2. The walls of the
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3-1 Nonlinear Model 23

building are constructed from triple-glazed panels. Layered windows mainly lose heat through
radiation. Low emissivity glass, or low-ε, is manufactured by coating a glass surface with a
low emissivity material. This reduces the radiative heat loss through the windows or facade.
To further improve the insulation, each cavity between the layers is filled with argon gas.
Compared to air, argon has low thermal conductivity. The conductive heat transfer between
the layers is neglected, leaving only the radiative and convective heat transfer. Equation (3-1)
is rewritten to obtain the temperature gradient for each layer. This results in the equations
for a wall as shown by:

Table 3-2: Description of the 17 state temperatures.

State Variable Description
x1 T1 South facade external temperature
x2 T2 South facade intermediate temperature
x3 T3 South facade interior temperature
x4 T4 East facade external temperature
x5 T5 East facade intermediate temperature
x6 T6 East facade interior temperature
x7 T7 West facade external temperature
x8 T8 West facade intermediate temperature
x9 T9 West facade interior temperature
x10 T10 North facade external temperature
x11 T11 North facade intermediate temperature
x12 T12 North facade interior temperature
x13 T13 Roof temperature
x14 T14 Ceiling temperature
x15 T15 Room air temperature
x16 T16 Raised floor temperature
x17 T17 Ground concrete floor temperature

dT1 = (q̇sol−1 − q̇rad,1−sky − q̇rad,1−2 − q̇conv,1−amb − q̇conv,1−2) dt
m1cp,gl

(3-2a)

dT2 = (q̇sol−2 + q̇rad,1−2 − q̇rad,2−3 + q̇conv,1−2 − q̇conv,2−3) dt
m2cp,gl

(3-2b)

dT3 = (q̇sol−3 + q̇rad,2−3 + q̇conv,2−3 − q̇conv,3−15) dt
m3cp,gl

(3-2c)

where 1,2,3 refers to the exterior, intermediate, and interior glass layer respectively. q̇i−j is
the heat flow from component "i"to "j". The masses m1, m2, m3 refer to the masses, and cp,gl
is the specific heat of the glass. The layers for the east-facing wall, {T4, T5, T6}, west-facing
wall, {T7, T8, T9}, and north-facing wall, {T10, T11, T12}, are modeled similar to (3-2). The
solar radiation, q̇sol−i with i = 1, 2, 3, absorbed by each layer is given by:

q̇sol−1 = A(Ibαb + (Ig + Id)αd)βblinds (3-3a)
q̇sol−2 = A(Ibαbτb + (Ig + Id)αdτd)βblinds (3-3b)
q̇sol−3 = A(Ibαbτb

2 + (Ig + Id)αdτd
2)βblinds (3-3c)
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24 Building Model and Controller Design

which are derived from (2-9), with the beam irradiation separated from the ground reflected
and diffused irradiation. Here A is the surface area of the considered building facade. τ is
the transmittance and α is the absorptance, with the subscripts "b"and "d"referring to the
relative beam and diffusive components. βblinds is the control input, determining the fraction
of irradiance let through the blinds, ranging from zero to one. All blinds are controlled by
one input. This reduces the number of optimization variables for control, without affecting
the results. Independent control of each facade is useful when light and glare comfort is
considered inside the building. This is not taken into account in this research. The energy
flow from the exterior layer to the ambient air, and the flow from the interior layer to the
indoor air through convection are provided by (2-4), as:

q̇conv,1−amb = h1−ambA(T1 − Tamb) (3-4)
q̇conv,3−15 = h3−15A(T3 − T15) (3-5)

where Tamb is the ambient air temperature. The energy flows inside the cavities between the
glass layers, and from the exterior layer to the surroundings through radiation are provided
by (2-7) and (2-8), respectively. These result in the following equations for the radiation
inside the cavities:

q̇rad,1−2 = σA(T 4
1 − T 4

2 )
1
ε + 1

εlow
+ 1

(3-6)

q̇rad,2−3 = σA(T 4
2 − T 4

3 )
1
ε + 1

εlow
+ 1

(3-7)

and from the exterior layer to the surroundings as:

q̇rad,1−sky = εσA(T 4
1 − T 4

sky) (3-8)

where σ is the Stefan-Boltzmann constant, ε the emissivity of the glass, εlow the emissivity
of the glass with the low-ε coating, and Tsky is the reference sky temperature. Different
correlations are used for the convection coefficients of the exterior, h1−amb, in the cavities,
h1−2, h2−3 and for the interior, h3−15. A summary of the correlations used in this section
is shown in Table 3-3. The heat transfer coefficient depends on the Nusselt correlation,
defined by (2-5). The Nusselt correlation of the exterior surface, h1−amb, is provided by the
Zhukauskas’s correlation for windy conditions, given by:

Nu = 0.037Re0.8Pr0.3334
amb (3-9)

In the vertical cavities between the glass layers, h1−2, h2−3 the MacGregor correlation for
natural convection (3-10) is used.
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Nu = 0.42Ra0.25Pr0.012
(LC

S

)−0.3
(3-10)

where LC and S are the dimensions along the gravity direction and perpendicular to gravity
for the vertical surface respectively. For the interior, h3−air, with no wind the Churchill &
Chu’s correlation is used, given by:

Nu =

0.68 +
(

0.67Ra1/4

[1+(0.492/Pr)9/16]4/9

)
, if Ra < 109(

0.825 + 0.387Ra1/6

[1+(0.492/Pr)9/16]8/27

)2
, if Ra ≥ 109

(3-11)

More information on the Zhukauskas, MacGregor and Churchill & Chu’s correlations can be
found in [8] and [24]. The roof and ceiling temperatures, T13 and T14 respectively, are given
by:

dT13 = (q̇sol−13 − q̇rad,13−sky − q̇conv,13−amb − q̇cond,13−14) dt
mroofcp,roof

(3-12)

dT14 = (q̇cond,13−14 − q̇conv,14−15) dt
mceilcp,ceil

(3-13)

with the masses mroof , mceil and specific heat cp,roof , cp,ceil relate to the roof and ceiling
respectively. The absorbed solar radiation by the roof, q̇sol−13, and conductive heat transfer
from the roof to the ceiling, q̇cond,13−14, are modelled with (2-9) and (2-3), respectively. These
are given by:

q̇sol−13 = IAα (3-14)

q̇cond,13−14 = κ

LA(T13 − T14) (3-15)

where A is the surface area of the roof and ceiling, α is the absorptivity of the roof, and κ and
L are the thermal conductivity and thickness of the insulation layer, respectively. Instead of
a vertical surface, as the case for the wall, now the convection correlations for a horizontal
surface are applied. The Nusselt correlation for the roof in windy conditions, Zhukauskas’s
correlations, is the same as (3-9). This correlation is not dependent on the surface slope. For
the ceiling, a no wind condition is considered. Here, McAdams’s correlations for horizontal
surfaces is applied, given by:

Nu =


0.54Ra0.25, if T14 < T15 ∧Ra ≤ 107

0.15Ra0.3334, if T14 < T15 ∧Ra > 107

0.27Ra0.25, if T14 > T15

(3-16)

The room air temperature, T15, has besides the convective heat transfers from the walls,
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floor, and ceiling, also an energy input from the occupants and HVAC system. The latter
is modelled as a direct input in the energy balance equation for the air, without considering
airflow speed or regenerative heat exchange methods. This results in the following equation
for the air temperature:

dT15 =(q̇hvac + q̇occ + q̇conv,3−15 + q̇conv,6−15 + q̇conv,9−15

+ q̇conv,12−15 + q̇conv,14−15 − q̇conv,15−16) dt
maircp,air

(3-17)

where q̇hvac is the energy supplied by the HVAC system and q̇occ = Poccnocc is the internal
heat gain generated by the occupants. Pocc is the average thermal power generated per person
and nocc is the total number of occupants. Occupants are one of the main sources of internal
heat generation. The average heat generation per person, Pocc, is set to 120W. This is a
typical value used for office buildings [2].

The remaining two states are the raised floor temperature, T16, and the ground floor temper-
ature, T17. The raised floor exchanges energy by convection from the air, conduction from the
ground floor and is heated by incoming sunlight. The ground floor exchanges energy through
conduction with the ground and the raised floor. The temperature differences for the raised
floor and ground floor are given by:

dT16 = (q̇sol−16 + q̇conv,15−16 − q̇cond,16−17) dt
mrfcp,rf

(3-18a)

dT17 = (q̇cond,16−17 − q̇cond,17−grd) dt
mgfcp,gf

(3-18b)

where the masses mrf , mgf and specific heat cp,rf , cp,gf relate to the raised floor and ground
floor respectively. q̇cond,17−grd is the heat transfer from the ground floor the to ground un-
derneath. For the convection correlation between the air and the raised floor, q̇conv,15−16,
the McAdams from (3-16) is used. The incoming sunlight hitting the floor depends on the
position of the sun, the geometry of the building, and state of the blinds. The relation is
given by:

q̇sol−16 = IAuτ
3αβblinds (3-19)

where Au is the unshaded floor area. The light has to pass through three layers of glass, hence
the τ3 factor. All these temperature increments dT are only valid for a small dt, as dT/dt
in (3-1) is the temperature gradient at a specific moment. In the simulations, a time step dt
of 300 s is used. This is the interval at which the sensors log the temperature data and the
model has shown a good fit to the sensor data. The overall nonlinear model is described by:

x(k + 1) = f(x(k), u(k), d(k))
y(k) = Cx(k)

(3-20)

with x ∈ R17, u ∈ R2 and d ∈ R5. The dimensions of y depend on the choice of sensors. The
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states, inputs and disturbances are defined as:

x(k) =


T1(k)
T2(k)

...
T17(k)

 , u(k) =
[
q̇hvac(k)
βblinds(k)

]
, d(k) =


I(k)
nocc(k)
Tamb(k)
Tsky(k)
Tgrd(k)

 (3-21)

solar irradiation, I, relies on a combination of measurement data and model approximation as
described in Section 2-3. The other disturbances, with the exception of Tgrd, can be measured.
The ground temperature is therefore approximated by a model, from [6], as follows:

Tgrd = 5.3 cos
(2π(day − 43.9)

365

)
+ 15 (3-22)

where day is the day of the year. The parameters have been fitted to ground temperature
data from the Royal Netherlands Meteorological Institute [26].

Table 3-3: Convection correlations. H is the height, A is the surface area, and P is its perimeter.

Correlation Condition Applies to Characteristic
length LC

Equation

Zhukauskas Forced; vertical and
horizontal surface

External
components with
surrounding: walls
and roof.

vert. H
horz. A/P

(3-9)

MacGregor Natural; vertical
cavity

Insulation layer glass
facades.

H (3-10)

Churchill & Chu Natural; vertical
surface

Interior walls to air. H (3-11)

McAdams Natural; horizontal
surface

Ceiling and floor to
air.

A/P (3-16)

Computation Time

Initially, the fsolve function was used to solve the energy balance in (3-1) while the Cool-
Prop library [5] is used to determine all the Rayleigh, Reynolds, and Prandtl numbers for
the convection correlations. Removing the fsolve function reduces the computation time by
approximately 10%. Using average values for air properties and removing CoolProp library
further reduces the computation time by 97.6% while producing nearly identical temperature
results. All of the parameters and values used can be found in Table A-1. There is one down-
side to removing the fsolve function. The model starts to deviate from the sensor data if the
time interval dt is set to large. The discretization only works well for small time steps between
300 and 900 seconds. Therefore, the model is simulated with a time step dt of 300 seconds.
This is the same interval at which the sensors log the temperature data in the CONVERGE
building. The predictive model uses a time step of 600 seconds with control inputs applied
over a 3600 seconds interval. This reduces the computation time significantly as the function
is evaluated numerous times during the optimization.
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Optimization and Validation of Model Parameters
While the obtained model could be used to simulate the building temperatures, estimating the
properties of the building components is generally difficult in practice. In order to provide a
more accurate simulation of the building, some of the parameters of the model have been fine-
tuned to fit measurement data. These parameters include, α, τ , ε, εlow, and κ. The parameters
are fitted by minimizing the Root Mean Square Error (RMSE) between the measured states
and sensor data. The fmincon function in MATLAB is used with the sqp algorithm for
optimization. To prevent overfitting, tight bounds of ±10% relative to the initial parameter
have been applied over the A complete overview of the parameters and other properties of
the building can be found in Table A. To analyze the fit, the RMSE and Variance Accounted
For (VAF) are used as performance metrics. The VAF is a widely used measure to verify a
model’s accuracy and is calculated as [58]:

VAF = max
(

0,
(

1−
1
N

∑N
k=1 ||y(k)− ŷ(k)||22

1
N

∑N
k=1 ||y(k)||22

)
· 100%

)
(3-23)

where N is the number of data points, and y(k) and ŷ(k) are the measured and estimated
output respectively. The higher the VAF, to closer the model dynamics follow the data. A
VAF around 90% and above is generally considered a good fit. The RMSE is also calculated,
as the model can still have a 100% fit, but also contain a bias. The ten days of available
sensor data, collected from April 2nd till April 12th in 2020, has been split into two sets:
an optimization data set containing the first five days, and a validation data set with the
remaining five days. The results of the 5 day validation period can be seen in Figure 3-2.

Table 3-4: Optimization and validation values of the building model.

Optimization Validation
State VAF RMSE VAF RMSE
3 92 1.6 90 1.6
6 94 1.3 89 1.3
9 96 1 95 1.1
12 97 0.6 96 0.7
14 95 0.6 94 0.7
15 94 0.6 93 0.6
16 84 1 88 0.8
17 92 0.2 97 0.2

The model shows a good fit to the validation data, although not a 100%. There are a
number of reasons why there will always be some misfit. As mentioned, obtaining accurate
parameters of the building materials is very difficult in practice. The actual values can
vary from component to component, e.g. one insulation layer may be slightly different from
another. The assumptions and simplifications made during the modelling process, discussed
at the start of this section, also play an important part. The uniform temperature assumption
of the building components for instance does not hold in reality. Another possible reason is
the model used to determine the irradiation disturbances. It is difficult to calculate, and even
measure, the actual direct beam and diffuse irradiation. The goal was to obtain a model that
is able to describe the general dynamics of the building temperatures. In this regard, the
model is able to simulate the average measured temperatures within reasonable accuracy.
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3-2 Extended Kalman Filter 29

Figure 3-2: Model validation over 5 days in April. The solid red line is the model output and
the dashed blue line is the averaged sensor data.

3-2 Extended Kalman Filter

The extended Kalman filter is a widely used estimator for nonlinear models [61]. The extended
Kalman filter, as its name implies, is an extension of the regular Kalman filter. It uses a linear
approximation of the nonlinear function and then applies Kalman filtering. Another often
used extension of the Kalman filter is the unscented Kalman filter. The unscented Kalman
filter approximates the mean and covariance by first propagating a chosen set of sample points
through the nonlinear system. More information about the unscented Kalman filter can be
found in [61]. Multiple studies have compared the performance of the extended Kalman
filter and the unscented Kalman filter for building temperature estimation [27, 34]. Both
the extended and unscented Kalman filters were able to accurately estimate the states. The
unscented performed only slightly better and has some other advantages, such as the ability
to deal with large estimate deviations, but this comes at the cost of a higher computation
time. A summary of the most common state estimators is given in Table 3-5. The extended
Kalman filter is chosen, as it performed sufficiently well and has a low computation cost.
Even with large initial errors in the estimate, the filter was able to converge. A graphical
description of an extended Kalman filter is shown in Figure 3-3.
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Table 3-5: Nonlinear state estimators overview [38].

Estimator Model Distribution Computation cost
Kalman filter Linear Gaussian Low
Extended Kalman filter Locally linear Gaussian Low (analytical Jacobians)

Medium (numerically
computed Jacobians)

Unscented Kalman filter Nonlinear Gaussian Medium
Particle filter Nonlinear Non-Gaussian High

Figure 3-3: General depiction of an extended Kalman filter [38], where the nonlinear model is
locally approximated by a linear function.

The temperature gradient with respect to time, dT/dt, at each time step is known from the
equations described in the previous section. A local linear approximation of the nonlinear
system, ẋ = f(x, u, d), is constructed and discretized for the extended Kalman filter to esti-
mate the states. The nonlinear terms come from the radiation heat transfer. The radiation
terms from (2-6) can be rewritten as [13]:

q̇rad = Ahr(T2 − T1) (3-24)

where hr is the radiation transfer coefficient. This is given by:

hr = σ(T 2
2 + T 2

1 )(T2 + T1)
1−ε1
ε1

+ 1
F12

+ 1−ε2
ε2

= 4σT̄ 3

1−ε1
ε1

+ 1
F12

+ 1−ε2
ε2

(3-25)

where T̄ is the average temperature:

T̄ 3 = 1
4(T 2

2 + T 2
1 )(T2 + T1) (3-26)
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This is done for both the radiation heat transfer between the glass layers (2-7) and the
radiation heat transfer with the surroundings (2-8). The approximation above holds for small
temperature differences (10◦ − 20◦K) [3]. The linearized model is discretized using the c2d
command in Matlab with zero-order hold method. The resulting linear model is given by:

x(k + 1) = Akx(k) +Bku(k) + Ekd(k)
= Akx(k) +B

′
ku
′(k)

(3-27)

where the control inputs and disturbances are grouped into B
′
k = [Bk Ek] and u

′(k) =
[u(k) d(k)]T. The state matrices are now dependent on time, as they depend on the location
of the nonlinear system, i.e. states, inputs, and disturbances. The Kalman filter with the
prediction and update step is formulated as:

x̂(k) = Ak−1x̂(k − 1) +B
′
k−1u

′(k − 1)︸ ︷︷ ︸
Prediction

+Kk[y(k)− Cx̂(k)]︸ ︷︷ ︸
Update

(3-28)

where x̂ is the state estimate and Kk is the time-varying Kalman gain. The prediction step
is the estimated state based on the model and previous estimation, while the update step is
the correction factor for the measurements. The Kalman gain is defined as:

Kk = (S +AkPkCT)(CPkCT + R)−1 (3-29)

where Pk is the solution to the discrete-time algebraic Riccati equation at time k, given by
(3-30). Q, R, and S are the correlations matrices of the noise, and C is the output matrix of
the system.

Pk = AkPkA
T
k + Q− (S +AkPkCT)(CPkCT + R)−1(S +AkPkCT)T (3-30)

The Q, R, and S matrices are the correlation matrices of the normally distributed measurement
and process noise, with mean and variance[

v(k)
w(k)

]
∼ N

([
0
0

]
,

[
R S
S Q

]
≥ 0

)
(3-31)

The noise v and w in (3-31) are zero-mean white noise and uncorrelated, i.e. S = 0. In reality,
the noise w is unknown and comes from some uncertainty in the model. For simulations, the
value for w is added to cause some discrepancy between the plant model and model used for
predictions and control, as would occur in the actual building. For the Kalman filter, the
ratio between R and Q essentially determines the amount of trust in the measurement versus
the model. The values of Q are chosen based on the response of the model and Q is a diagonal
matrix with all zeros off-diagonal:

Q =


σ2

1
σ2

2
. . .

σ2
17

 (3-32)
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where σi corresponds to the i-th state. The values for the walls, i.e. T1-T12, are σ1−12 = 0.2.
The other values are chosen to be σ13 = 0.8, σ14 = 0.2, σ15 = 0.2, σ16 = 0.15 and σ17 = 0.03.
The choice for the measurement σ values in R and the noise v are discussed in Section 3-4.
With the additive process and measurement noise, the nonlinear plant model is described by:

x(k + 1) = f(x(k), u(k), d(k)) + w(k)
y(k) = Cx(k) + v(k)

(3-33)

This model will represent the actual building during the simulations. This concludes the plant
model and Kalman filter. To determine the effect on the energy consumption a predictive
controller is implemented. This is discussed in the next section.

3-3 Model Predictive Controller Design
In practice, buildings are often controlled by a simple PID or ON/OFF controller. These
are generally simple to implement, but also lack in performance and are less suitable for
passive buildings. For passive HVAC systems, Model Predictive Control (MPC) is a promis-
ing method. To utilize changing weather conditions and occupancy for HVAC, predictions
have to be made about the near-future conditions. Control actions that are possible now are
not necessarily possible with passive control in the future and vice versa. The main goal is
to investigate the potential benefit of additional state measurements on prediction accuracy
and control performance. For this research, a nonlinear predictive controller is used. This
is more advanced than a linear controller, while still computational feasible with some sim-
plifications. For large-scale buildings, or when considering more control inputs, this would
be a less attractive choice. The number of control inputs is reduced to limit the number of
optimization variables. All the blinds are controlled by one input. The actual building has
independent control of the blinds for each facade. This is useful when lighting conditions and
glare prevention are considered inside the building, but this is not the case in this research.
Controlling all the blinds by one input will not affect the control performance in terms of
energy consumption. Another simplification is the use of q̇hvac as a direct control input in
(3-17). In practice, window opening control, supply air velocity, and heat recovery from the
room would also be considered.

An MPC uses, as its name suggests, a model of a plant to predict future evolution. It then
uses an optimization algorithm to optimize the set of control inputs, according to the defined
objective function and constraints. At each current time step, the set of optimal control
inputs over a horizon N is calculated. The first control input is applied to the system and
this process then repeats itself. The predicted optimal control sequence and model output at
a time step is depicted in Figure 3-4. The optimization has a general structure given as:

Jopt = minimize
u0, . . . , uN−1

N−1∑
k=0

lk(xk, uk) + lf (xk, uk) (3-34a)

subject to (xk, uk) ∈ Xk × Uk, (3-34b)
x0 = x, (3-34c)
xk+1 = f(xk, uk) (3-34d)
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where Jopt is the optimal cost function, lk and lf are the intermediate and final cost function,
and N is the prediction horizon. In the optimization above, (3-34b) is the state and input
constraints, (3-34c) is the initial condition, and (3-34d) is the system dynamics. The allowable
sets X and U are defined by some (non)linear (in)equality constraint functions.

Figure 3-4: General description of MPC, where the control input sequence is optimized over
horizon N and the first input is applied.

Control Structure and Algorithm
The nonlinear MPC is based on the building model (3-20). Important to note is that all
the future disturbances d(k) are assumed to be known. With the goal of minimizing energy
consumption while ensuring thermal comfort the following objective function and constraints
are constructed:

Jopt = min
u(0),...,
u(N−1)

N−1∑
k=0
|u1(k)|+ λ

∑
k∈Socc

(x15(k)− Tref)2 (3-35a)

s.t. x(k + 1) = f(x(k), u(k), d(k)), (3-35b)
Tlb(k) ≤ x15(k) ≤ Tub(k), k = {1, . . . , N}, (3-35c)
q̇min ≤ u1(k) ≤ q̇max, k = {0, . . . , N − 1}, (3-35d)
0 ≤ u2(k) ≤ 1, k = {0, . . . , N − 1}, (3-35e)
x(0) = x0 (3-35f)

The control inputs u1 and u2 are the HVAC supplied power and blinds position respectively.
With a prediction horizon N of 24-hour and a control time step of one hour, there are a
total of 48 optimization variables. The weight λ is a tuning parameter to adjust the relative
dominance of the two objectives. The choice for this parameter is described down below. The
set Socc contains the time steps k for which the building is occupied. When the building is
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unoccupied, no weight is applied to the temperature deviation from the reference temperature
Tref . The lower and upper room temperature bound Tlb and Tub are time-dependent, i.e. a
different bound is considered for night and day. The cooling and heating capacity of the
HVAC system is limited to q̇min = −7 [kW] and q̇max = 7 [kW], respectively.

The Matlab function fmincon is used to solve the optimization in (3-35a). The optimization
problem is nonlinear, constrained, and nonconvex. Based on these properties, the sequential
quadratic programming algorithm, sqp, is chosen. Other algorithms include interior-point,
active-set, and trust-region-reflective. The trust-region-reflective needs to be supplied with
gradient functions for the constraints and objective, which is not available. The interior-
point uses a barrier function and needs all the solutions to be feasible. This could be done by
implementing soft constraints on the state instead of hard constraints. The two algorithms,
sqp, and interior-point, showed comparable results. Therefore, the hard constraint was kept
and the sqp algorithm was used instead. The active-set algorithm is essentially the same as
sqp, but the former only considers the currently violated, also called active, constraints. The
sqp method uses a more efficient linear algebra routine, that is faster than the ones used in
active-set [1]. More information on the different algorithms can be found in [39].

Normally, when dealing with nonlinear nonconvex optimization a multi-start is applied to
find the global optimum. This, however, increases the computation of the optimization. The
solutions were not affected much when using a multi-start. All the local minima lie close
together, indicating a near-convex optimization problem. A convexity analysis was done by
[6] and the multi-start did indeed not improve the solution by much. To reduce computation
time, a multi-start is not considered and the maximum number of iterations is reduced. The
first maximum number of iterations is set to 50, and to 25 thereafter. These values are chosen
based on observations of the objective cost during iterations. The value of the objective
function did not increase significantly after 25 iterations. The first optimization uses more
iterations, given the initial guess. For each new calculation of the optimal control inputs, the
previously found solution is shifted one time step and used as the starting point.

Multi-Objective Optimization

The objective of the controller is to minimize energy consumption, while also satisfying ther-
mal comfort. This results in two competing objective functions in (3-35a) that need to be
minimized. There are several methods to deal with multi-objective optimization, such as the
weighted sum strategy, goal attainment method, and ε-constraint method [39]. The main
difficulty with the weighted sum strategy is the choice of the relative weight between the
objectives. It is not necessarily clear what the relation, in this case, between the sum of
the squared temperature error and power consumption should be. Also, not all the Pareto
optimal points can be found if the solutions are non-convex. The goal attainment method
is more intuitive in the sense that it minimizes the error in the objectives relative to some
predefined objective goals. But again, the goal for both objectives is not directly clear. A
simpler and more intuitive method is the ε-constraint method, where a boundary is put on
one of the objectives. For the objectives, the standard deviation from the reference temper-
ature and the energy consumption are chosen. The constraint for the standard deviation is
set to σ = 0.333. This is a somewhat arbitrary value, but means that during control the
temperature stays within ±1◦C of the reference temperature 99.7% of the time. The con-
straint on the temperature in the remainder of this research is also set to ±1 ◦C within the
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reference temperature of 21 ◦C during occupied hours. This leaves some room for when the
Kalman filter is implemented together with the process and measurement noise. To see the
effect of the weight on the two objective functions, the constraint (3-35c) has temporarily
been removed. The balance between reference tracing and the energy consumption is fully
determined by the two objective costs. The results for different weights λ over a 3 day period
are shown in Figure 3-5. A weight of λ = 400 is chosen for the MPC.

Figure 3-5: Effect of different weights on the standard deviation and energy consumption over
a 3 day period.

3-4 Sensor Selection and Optimization

As mentioned in Section 2-4, there are numerous ways to select the optimal sensor locations.
Most methods use the RMSE or entropy of the selected set average compared to the average of
all sensors as a measure for optimally. However, these studies focus on a collection of sensors
measuring indoor air temperature. The sensors are located throughout an office space or
large room with large spatial temperature differences. Clustering algorithms are employed to
group sensors with similar temperature readings and filter out the redundant sensor locations.
The CONVERGE building is different in this aspect, in that it is one medium-sized room,
and equipped with a lot of sensors, that measure, besides the air temperature, also different
building components, e.g. walls, ceiling, and floor. Therefore, these methods cannot be
directly applied to this research. Two different methods are used to determine the sensor
positions: one method where the sensors are selected before control is applied, and the other
where the sensors are selected based on control performance. The methods are referred
to as the prediction method and the greedy method respectively. Both methods rely on an
assumption that was used by [34] to compare different controllers. They assumed that the
error of a subset of sensors compared to the average of the whole can be described by a
Gaussian distribution. An example is depicted in Figure 3-6, where the number of temperature
error occurrences over a 10 day period are shown. The error is between the average of a sensor
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selection compared to the average of the whole set. The whole set, here, refers to all the sensors
positioned on one building element, i.e. measuring one state. The average of all the sensors
measuring the same state is considered the true temperature of that state. This is done for
all of the measured states and all the sensor combinations.

Figure 3-6: Error histogram of a sensor subset average compared to the whole set over 10 days
with a fitted normal distribution.

The error distributions obtained from different sensor sets are used in (3-33) as an added
sensor measurement error vk. Normally, this error represents the measurement error arising
from the physical properties of the sensors, i.e. measurement noise, but now it is used as a
general uncertainty of the sensor measurement. With the measurement error due to sensor
location assumed to be Gaussian, both the sensor measurement noise, vm, and sensor set
error, vS , can be added together. The sum of two normally distributed random variables, vm
and vS , results in another normally distributed random variable v [52], as shown by:

vm ∼ N (µvm , σ
2
vm

), (3-36a)
vS ∼ N (µvS , σ2

vS ), (3-36b)
v = vm + vS , (3-36c)
v ∼ N (µvm + µvS , σ

2
vm

+ σ2
vS ) (3-36d)

The measurement noise is set to σvm = 0.1, meaning that 95% of the temperature readings
lie within a 0.2◦C deviation. This is value is chosen arbitrarily, but it is a reasonable value
for the temperature sensors. The measurement noise is zero-mean, µvm = 0. The sensor
set noise parameters, µvS and σvS , are chosen to represent the temperature error due to
the sensor position and have the values described above. With this setup, the different
sensor selections are compared. The first method to assess the optimally of a given set is
done without considering the control performance. The potential advantage of measuring
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more states is that better near-future temperature predictions can be made. With better
predictions, control input lack can be reduced, or in other words, the system can respond
faster to changing temperature conditions. This also leads to fewer temperature violations
and possibly more optimal control, i.e. less power consumption. The second method considers
the control action and uses a greedy algorithm to select the best sensors.

Prediction Method

The first method uses the Kalman filter and a temperature prediction to assess the effect of the
sensor selection. This method is similar to methods used in other research, in the sense that it
uses the RMSE and maximum error of the model compared to the actual data. However, there
are some differences. In general, adding more sensors results in a better temperature estimate.
In this case, the sensors are not only measuring the air temperature, but also some additional
states. To take into account the effect of additional state measurements, the predicted model
output is used as a performance metric instead of only the model accuracy at the current time
step. The accuracy of the current temperature estimate is largely determined by the sensor
reading of the air temperature. Using additional state measurements, e.g. of the walls, does
little to improve the accuracy of the current estimate. The predicted temperature evolution,
however, is affected by the temperature of all the building components. Thus, it is reasoned
that having a better estimate for these states will result in a more accurate temperature
prediction in the near future. When making temperature predictions over a longer period
of time, e.g. multiple hours, other uncertainties in the model and disturbance estimates will
become more dominant. Therefore, a prediction period of one hour is used. This is the same
time step used for the control update, for which the control input remains constant. The
RMSE, between the prediction and actual temperatures, is used to compare and evaluate the
performance of the different sensor selections. The calculation of the RMSE is given by:

RMSE =

√√√√ 1
Np

Np∑
k=1

(Tpred(k0 + k)− T15(k0 + k))2 (3-37)

where Np is the number of prediction steps, Tpred and T15 are the predicted and actual air
temperature, and k0 is the initial time step. The maximum error over the prediction horizon
is also used to compare the different sensor sets. The infinity-norm of the error, i.e. maximum
absolute error, is given by:

||e||∞ = max
k∈{1,...,Np}

|Tpred(k0 + k)− T15(k0 + k)| (3-38)

No control in applied when optimizing using the prediction method, but only real sensor
data or simulated sensor data. The simulated sensor data is generated with the plant model,
(3-33), and measurement error v, (3-36d), corresponding to the selected sensor set. The
prediction method with the real sensor data uses the measured sensor data directly, instead
of y(k) = Cx(k) +v(k), to estimate the current state using the Kalman filter. This makes the
method computationally more attractive compared to the other method. The performance of
all the sensor combinations up to six sensors can be evaluated within a reasonable amount of
time. A description is shown in Algorithm 1.

Master of Science Thesis Fons ten Klooster



38 Building Model and Controller Design

Algorithm 1 Prediction Method Algorithm
Input: Maximum number of sensors, weather data, sensor data, number of steps n, and

prediction horizon Np.
1: while number of sensors ≤ maximum number of sensors
2: Chose sensor sets with a specified number of sensors; get noise covariance matrix R
3: Simulated the plant and y over n steps, or use sensor data
4: Run Kalman filter: estimate state temperatures, x̂, over n steps
5: for t = 1 : n
6: for k = 1 : Np
7: Predict the temperature x(t+ k) with x0 = x̂(t)
8: end for
9: Calculate RMSE and ||e||∞ over prediction horizon Np

10: end for
11: Select the next sensor set
12: end while
Output: Average RMSE and ||e||∞ of nest predictions for each sensor set.

Greedy Method

Simulating all the different possible combinations of sensors with control would be extremely
computationally intensive. With 35 sensors, there are 235 − 1 = 34, 359, 738, 367 different
sensor combinations. Even if only one sensor is used for each state there would be 28−1 = 255
combinations possible. While optimization methods such as Genetic Algorithm (GA) and
particle swarm could be used for this problem, they are generally less suitable when the
evaluation of the objective function has a high computation time. Therefore, the method
used to determine the effect of sensor selection on control performance is based on a greedy
algorithm. As for the predictive method, it is reasoned that the accuracy of the temperature
predictions increases when more sensors are added. This gives the possibility to better utilize
the passive systems, in this case, the solar blinds, to make temperature adjustments with
minimal energy consumption. The algorithm starts with one sensor. There are eight different
states measured, so there are a maximum of eight optimization points at each new iteration.
The sensor with the lowest σv value to the corresponding state is chosen as described at the
start of this section. The plant model with the Kalman filter and MPC is simulated over
a period of multiple days. The resulting energy consumptions are compared and the sensor
set with the lowest energy consumption is chosen to initiate the next iteration. In the next
iteration, another sensor is added. This leads, again, to a maximum of eight new options. The
algorithm can choose to add another state measurement, or add another sensor to a state that
is already measured if more sensors are available for that state. In the case where another
sensor is added to one of the already measured states, the set of sensors with the lowest σv
is chosen. This process is repeated until the specified maximum number of iterations, i.e.
number of sensors is reached. A description is shown in Figure 3-7 and Algorithm 2. Only
sensor sets that satisfy the discomfort bound of Dind ≤ 0.3, are considered when choosing the
minimal energy consumption.
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Figure 3-7: Graphical depiction of the greedy algorithm, where the grey nodes have the minimum
values. Each layer adds another sensor and the node values represent the power consumption.
The algorithm selects the next sensors to be added in a greedy fashion by choosing the sensor
with the lowest energy consumption. The resulting combination of four sensors in this example
would be one state 3 sensor, two state 4 sensors, and one state 6 sensor.

Algorithm 2 Greedy Algorithm
Input: Maximum number of sensors, weather data, sensor data, simulation steps tsim, and

control horizon N.
1: Start with zero sensors for each measured state: options = ∅
2: while number of sensors ≤ maximum number of sensors
3: Use previously found optimal option if available
4: for each state with sensors
5: option(state) ⇐ add 1 sensor
6: end for
7: for size(option)
8: Select sensor set with minimal RMSE according to the number of sensors for each

state
9: Create covariance matrix R and set op Kalman filter

10: Simulate control over tsim period with control horizon N
11: Determine control performance: QHVAC and discomfort index
12: end for
13: Select option with minimal QHVAC that satisfies discomfort bound
14: end while
Output: Optimal sensor set for given number of sensors, QHVAC and discomfort index.
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3-5 Conclusions
In this chapter, the general setup that is used to determine the effect of sensor selection in
Chapter 4 has been discussed. In Section 3-1 a white-box model has been established using
the first-principles as described in Section 2-3. Some of the parameters have been optimized
by fitting the model outputs to the sensor data. The results of the model on the validation
data have been shown. Although there is still some discrepancy between the model and sensor
data, the model is able to accurately describe the overall temperature dynamics. For state
estimation, an extended Kalman filter has been implemented in Section 3-2. This filter uses
a linearized version of the building model at each time step to estimate the states based on
the prediction from the model and received sensor data. For the controller, an MPC has been
used as described in Section 3-3. With selected parameters, the controller is able to control
the room temperature within the specified bounds.

Section 3-4 describes the method used to simulate and compare different sensor selections,
and two algorithms constructed to optimize the selection. The goal of the constructed meth-
ods is to determine if additional state measurements lead to improved model and control
performance. One method is based on the prediction accuracy of the model, the prediction
method, and the other is used to optimize the sensors based on control performance, the
greedy method. The former uses the RMSE and infinity-norm of the error of the predicted
temperature versus the actual temperature. The reasoning is that better estimates of the
current states, i.e. temperatures of all the building elements, will lead to a more accurate
predicted temperature evolution for the near future. With this method, both the simulated
sensor data, using the noise v(k) as described in Section 3-4, and actual sensor data can be
used during the state estimation. The estimated states serve as the starting points for the
temperature prediction over the next hour. The greedy method directly selects the optimal
sensors based on the control performance. Starting with one indoor air temperature sensor,
and added a sensor one at a time by selecting the sensor set with the lowest energy consump-
tion that satisfies the thermal comfort bounds. The different models used and their use cases
are summarized in Table 3-6.

Table 3-6: Overview of the different models used.

Use case Model Reference
Plant xk+1 = f(xk, uk, dk) + wk

yk = Cxk + vk

(3-20)

Kalman filter x̂k = Ak−1x̂k−1 +B
′
k−1u

′
k−1 +Kk[yk − Cx̂k] (3-27)

Prediction &
Control

xk+1 = f(xk , uk , dk)
yk = Cxk

(3-33)
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Chapter 4

Simulations and Evaluation

With the model, observer, and controller complete, the methods designed for the sensor
selection in Section 3-4 can be tested. First, the general setup of the two optimization methods
is described in Section 4-1. This is followed by a section on the results and a discussion of
the methods in Section 4-2. Lastly, this chapter is closed with a conclusion of the results
obtained, in Section 4-3.

4-1 Case Study Setup
Interesting periods for passive Heating, Ventilation, and Air Conditioning (HVAC) systems
are spring and autumn. This is due to the variability in weather conditions. To test the
different methods for sensor selection, data is used that has been collected over a period of 10
days in April. This is also the same period the model has been validated for. In Figure 4-1
the indoor air temperature is plotted with and without control applied. During this period
the building needs to be heated, as well as cooled. As can be seen, the temperature would
violate both the lower and upper temperature bounds when no control is applied. This makes
it an interesting choice for the greedy method, to see the effect of the prediction accuracy on
the control performance.

Since considering all of the different sensor combinations would be too computationally ex-
pensive, both methods only consider the sensor sets with the minimal Root Mean Square
Error (RMSE) for a given number of sensors. This reduces the number of combinations for
one state, e.g. the air temperature, with three sensors from eight to three options. The values
used for the air temperature sensors are given in Table 4-1. In this case, if one sensor is used
to measure the air temperature, sensor {2} is selected, and when two sensors are used, the set
{1,3} is selected. The numbers refer to a particular sensor, i.e. sensor 1, sensor 2 and sensor
3. Even with this reduction, considering all of the sensors would still result in a lot of possible
combinations. Both the predictive and greedy method only consider combinations of up to
six sensors. It is unlikely that more than six sensors would be used in practice. A complete
overview of the sensor sets used can be found in Table B-1. Both methods are discussed in
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Figure 4-1: Indoor temperature with and without control simulated over 5 days.

more detail in the next two paragraphs.

Table 4-1: Example of the sensor combinations for the three air temperature sensors.

Sensor set S: {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
RMSE 0.41 0.24 0.45 0.22 0.12 0.21 0
µvS -0.37 0.35 0.02 -0.18 -0.01 0.18 0
σvS 0.18 0.24 0.27 0.14 0.12 0.09 0

All of the simulations are carried out using MATLAB 2021a, with the Optimization Toolbox
for the optimizations.

Predictive Method
For the predictive algorithm, no occupancy is considered. This is not relevant, since this
method does not include temperature control. But more importantly, with no occupants, the
simulated plant model can be compared to the actual sensor data. In the predictive method,
both the simulated sensor and sensor data are used. With simulated sensor data is referred
to the situation where the plant model is:

x(k + 1) = f(x(k), u(k), d(k)) + w(k)
y(k) = Cx(k) + v(k)

(4-1)
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Figure 4-2: Sensor data for some of the states.

with the measurement noise (3-36d) as described in Section 3-4. The general structure, when
the simulated data is used, is shown in Figure 4-3. The prediction model is similar to the
plant model, but without the measurement and process noise added:

xpred(k + 1) = f(xpred(k), d(k)) (4-2)

where the initial starting point for xpred is equal to the estimated state xest at the start of
the predictions over the prediction horizon. All of the models used, observer, plant, and
prediction consider the same time step of 300 seconds. This is the same interval at which the
sensor data is logged.

Figure 4-3: Structure used in the predictive method.
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When the sensor data is used, the same structure as in Figure 4-3 applies. The only difference
is that the plant model and output y are replaced with the sensor data. As not all of the
states are measured, the missing states are added by running the plant model without process
noise and using the averaged sensor data for the measured states. The output y is the sensor
data of the selected sensor set. Both the simulated data and sensor data use the same model,
(4-2), for the predictions.

Greedy Method

To take the control performance into account, a greedy optimization method is also imple-
mented. This method simulated the building over a period of three days with control. The
method uses the same model for the plant and for prediction as in the predictive method but
also incorporates the Model Predictive Control (MPC) designed in Section 3-3. An overview of
the system structure with the model, Kalman filter, and the controller is shown in Figure 4-4.
More details about the algorithm itself can be found in Section 3-4.

Figure 4-4: Overall system structure used in the greedy method.

The greedy method does include occupancy during the morning and afternoon, as it affects
the control performance. A typical occupancy of between 10 and 30 occupants is used for
each of the three days. The occupancy schedule is shown in Figure 4-5. The occupied hours
are set to be from 8 a.m. till 17 p.m. Occupants are one of the main sources of internal heat
generation and need to be included when considering control performance. The occupancy
schedule used is shown in Figure 4-5. For thermal comfort, the lower and upper temperature
bounds are set to 16 ◦C and 26 ◦C during unoccupied hours, and to 20 ◦C and 22 ◦C during
occupied hours, respectively. In the latter, the reference temperature is set to 21 ◦C, and no
reference temperature is used during the unoccupied hours.
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Figure 4-5: Occupancy schedule during the day used in the greedy method.

The time step for the plant and observer is with 300 seconds the same as for the predictive
method. The control input is kept constant over a period of one hour to reduce computation
time. With two control inputs and a control horizon of 24 hours, this results in a total of 48
optimization variables. The objective function is evaluated a considerable amount of times
during each optimization. To reduce the computation time further, the prediction model uses
a time step of 600 seconds. While a larger time step could be used, there is a compromise
between model accuracy and computation time. Using a value of 600 for the time step still
results in an accurate prediction with half the number of simulation steps.

4-2 Case Study Results

Predictive method

The results for the sensor sets up to six sensors are shown in Figure 4-6a and Figure 4-6b for
the simulated and sensor data, respectively. Both the simulated data and sensor data sets
show improved accuracy when more sensors are added, although the difference is quite small.
The sensor sets with minimal RMSE and minimal ||e||∞ in this figure are shown in Table 4-2
and Table 4-3 for the simulated and real sensor data, respectively.

Different results are obtained for the simulated and real sensor data in the worst-case pre-
dictions. The simulated worst-case sensor sets vary slightly in prediction accuracy, but no
general trend can be seen when more sensors are added. When using the predictive method
with real sensor data, however, average RMSE decreases after an initial increase for two
sensors and the maximum absolute error increases. The increase in the average RMSE for
two sensors using the sensors can be explained by a state that is poorly estimated with one
sensor, caused by large local temperature differences within that state. Adding a poorly po-
sitioned sensor will decrease the accuracy of the state observer, and with it the temperature
predictions made. This can be better observed by comparing Table 4-2 and Table 4-3. With
the simulated data, other states are added besides the air temperature when the number of
sensors is increased, whereas in the case of the real sensor data air temperature sensors are
added first. The Gaussian measurement noise and process noise, added in the simulated case,
are more easily approximated by the observer. The actual noise, or error, in the measurement
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(a) (b)

Figure 4-6: Predictive method using simulated sensor data in (a) and using real sensor data in
(b). Each black cross is a different sensor combination, simulated over three days with an one
hour prediction. The x-axis displays the number of sensors used in total. The total number of
sensors used ranges from one to six.
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is not Gaussian. More sensors added to the air temperature results impact the accuracy of
the state estimate more in the case when the sensor data is used. Note that multiple combi-
nations of sensor sets are very close in terms of minimal RMSE and ||e||∞, so there are other
combinations nearly as optimal as the ones shown in Table 4-2 and Table 4-3.

Another difference between the simulated and real sensor data is the maximum absolute error.
The maximum temperature error increases for the worst sensors sets when more sensors are
used. Here, again, the reason is assumed to be due to the Gaussian distribution. In Figure 3-
6, such Gaussian distribution fitted to the measurement error has been shown. The majority
of the errors are spread around the mean, but there are a few larger errors visible to the far
right. When simulating the sensor data, such errors are unlikely to occur. Using more states
with large temperature deviations results in a higher chance of a larger prediction error over
the entire period the optimization is carried out. Some the sensor measurements are shown in
Figure 4-2. Some states have a large temperature deviation between the sensors. This could,
for example, be caused by sensors being located in the shade part of the time. The third
state, indoor south wall temperature, is added only by the real data sensor set. This is also
the state with the largest misfit between the model and sensors data, as seen in Figure 3-2.
It could be the reason why these states are chosen for additional measurement, although the
difference in accuracy with other sets still remains small.

Table 4-2: Twelve sensor sets with minimal RMSE or maximum absolute error with the simulated
sensors for the number of sensors used and minimization criteria.

Minimization Total number Number of sensors per state: Max absolute
criteria of sensors 3 6 9 12 14 15 16 17 RMSE error: ||e||∞
RMSE 1 0 0 0 0 0 1 0 0 0.29 1.12
||e||∞ 1 0 0 0 0 0 1 0 0 0.29 1.12
RMSE 2 0 0 0 0 0 2 0 0 0.26 1.11
||e||∞ 2 0 0 0 0 0 2 0 0 0.29 1.1
RMSE 3 0 0 0 0 0 2 1 0 0.25 1.05
||e||∞ 3 0 0 0 0 1 1 1 0 0.25 1.05
RMSE 4 0 0 0 1 1 1 1 0 0.25 1.02
||e||∞ 4 0 0 0 1 1 1 1 0 0.25 1.02
RMSE 5 0 1 0 1 1 1 1 0 0.24 1.02
||e||∞ 5 0 0 0 1 1 1 2 0 0.24 0.98
RMSE 6 0 1 0 1 1 1 2 0 0.24 0.99
||e||∞ 6 0 0 1 1 1 1 2 0 0.24 0.96

To better visualize the effect of the additional state measurements, Figure 4-7a and Figure 4-
7b show the prediction error for the number of states measured. The number of sensors used
for each data point ranges from one to six. The maximum for both the average RMSE and
absolute error did not improve with multiple states measured for the simulated sensors in
Figure 4-7a. This is likely due to the fact that not measuring an additional state is better
than using a sensor that gives an inaccurate reading of that state. Some states have a wide
range of sensor readings, i.e. one sensor might not be sufficient to approximate the average
temperature value. The accuracy of the measurement for those state improves when multiple
sensors are used. Since in this case, the maximum number of sensors used is limited to six, with
more states measured fewer sensors are used for each state. When six states are measured, for
instance, only one sensor is used per state. The accuracy of the best predictions, with minimal
RMSE and absolute error, does improve when more states are measured. Indicating that there
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Table 4-3: Twelve sensor sets with minimal RMSE or error based on real sensor data for the
number of sensors used and minimization criteria.

Minimization Total number Number of sensors per state: Max absolute
criteria of sensors 3 6 9 12 14 15 16 17 RMSE error: ||e||∞
RMSE 1 0 0 0 0 0 1 0 0 0.23 1.6
||e||∞ 1 0 0 0 0 0 1 0 0 0.46 1.17
RMSE 2 0 0 0 0 0 2 0 0 0.18 1
||e||∞ 2 0 0 0 0 0 2 0 0 0.18 1
RMSE 3 0 0 0 0 0 3 0 0 0.14 1.16
||e||∞ 3 1 0 0 0 0 2 0 0 0.17 1
RMSE 4 0 1 0 0 0 3 0 0 0.13 1.16
||e||∞ 4 1 0 1 0 0 2 0 0 0.17 1
RMSE 5 1 1 0 0 0 3 0 0 0.13 1.16
||e||∞ 5 3 0 0 0 0 2 0 0 0.17 0.97
RMSE 6 1 1 0 1 0 3 0 0 0.13 1.17
||e||∞ 6 4 0 0 0 0 2 0 0 0.17 0.96

is a benefit in using multiple measured states. The increase in performance, however, is only
small.

The results when using the actual sensor data are shown in Figure 4-7b. The results are
similar, with the exception of the maximum values for RMSE, i.e. worst sensor sets. An
explanation for this difference is the Gaussian distribution assumption made for the error,
as shown in Figure 3-6. Some errors of the sensor set displayed in this figure have a large
error in the positive direction, resulting in a wider Gaussian distribution in the negative
direction as well. The averaged values for the RMSE in the case of the real data used will
average out, while the larger errors that occur less often affect the maximum error that occurs
when those states are considered. More states measured with the worst sensor sets lead to a
higher maximum absolute error. Using the simulated data set with Gaussian errors assumed
will average these effects out. Similar to the simulated data, the best cases show a slight
improvement in accuracy when additional states are measured with an exception in case
when six states are measured. As mentioned, one sensor is used per measured state when six
states are measured. Some the the states can not accurately measure the state average with
one sensor. The states are in those cases poorly estimated.
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(a) (b)

Figure 4-7: Effect of additional state measurements on the prediction accuracy of the model.
Using the predictive method with simulated sensor data in (a) and using real sensor data in (b).
Each black cross is with a different sensor combination, simulated over three days with an one
hour prediction. The x-axis displays the number of states that are measured by at least one sensor.
The total number of sensors used ranges from one to six.
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Greedy method

The results for a greedy optimization run are shown in Figure 4-8. The results are comparable
with the previous method, in the sense that the additional state measurements have little
effect. The total energy consumption goes down when multiple sensors are added, although
this effect is very small. The different sensors selected can be more clearly seen in Table 4-
4. Similar to the predictive method, a sensor is added to the air temperature first. This
also shows the biggest decrease in energy consumption. The decrease in energy consumption
coincides with increased discomfort, although the discomfort bound of 0.5 is not violated for
any of the cases. This is due to the hard constraint set on the temperature in (3-35c), which is
incorporated into the objective function by the sqp algorithm when violated. The decreased
energy consumption could be more related to the increased discomfort levels. The greedy
algorithm is only able to the solutions on its current path, so other more optimal solutions
could exist.

Figure 4-8: Minimum energy consumption for different amounts of sensors added by the greedy
method over a three-day simulation period. The discomfort index for each day is shown.
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Table 4-4: Greedy method results with hard constraints on the temperature.

Number of sensors for each state:
Iteration 3 6 9 12 14 15 16 17 Energy [kWh] Difference
1 0 0 0 0 0 1 0 0 94.1 -
2 0 0 0 0 0 2 0 0 90.2 -4.14%
3 0 0 0 0 1 2 0 0 88.8 -1.55%
4 0 1 0 0 1 2 0 0 86.9 -2.14%
5 0 2 0 0 1 2 0 0 86.8 -0.12%
6 0 2 0 0 1 2 0 1 86.5 -0.36%

4-3 Conclusions
The goal of this case study is to determine the effect of additional state measurements on
the control performance. Multiple methods have been constructed, to be able to compare the
results. When the predictive method results are considered, the effect of sensors in the worst
cases average out in the simulated data, which assumes a Gaussian distribution in the data.
Sensor placement within a building element is important, adding a sensor that is not able to
accurately approximate the average temperature makes the predictions worse. It is interesting
to see that both using the simulated data and sensor data only show a slight improvement
in prediction accuracy when additional states are measured. Using state measurements with
a sensor set that is not sufficient to approximate the average value leads to worse prediction
accuracy. The improvement in prediction accuracy is negligible after three sensors. Adding
more does not result in better performance. The impact on energy consumption is limited.
The level of discomfort has a larger effect on the total energy consumption. The greedy
method, in its current form, might not be sufficient to determine the optimal sensor selection.
The algorithm chooses its next sensor only based on the energy consumption and could choose
a sensor location that prioritizes energy consumption over thermal comfort. A stricter bound,
or more comparative discomfort levels should be incorporated during each iteration to fully
compare the effect of the sensors on the energy consumption.
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Chapter 5

Conclusion and Recommendations

5-1 Conclusion
The research in this thesis was carried out based on the CONVERGE building, located in
The Green Village in Delft, which is a test-bed for energy-saving building systems and design.
To fill in the research gap on using multiple building component measurements, this research
set out to answer two questions:

1. What is the optimal sensor selection for building temperature control?

2. Is there a benefit for control performance if additional building elements are measured?

To answer these questions, a nonlinear building model has been implemented to simulate
the temperature evolution of the different states. The overall model showed a good match to
collected sensor data of the building. For the state observer, is chosen for an extended Kalman
filter. This filter was chosen for its good estimation accuracy compared to its relatively low
computation cost. To use the additional state information to its maximum potential, a
nonlinear Model Predictive Control (MPC) has been chosen to simulate the effect on control
performance. The number of control inputs was limited to two and a control update step
of one hour is used to reduce computation time. The overall system was able to control the
temperature to within the specified bounds.

Two methods have been adopted to determine the effect: a predictive and a greedy method.
The first method used the RMSE and maximum absolute error of the predicted temperature
one hour ahead compared to the actual temperature. The second method incorporated the
MPC to add additional sensors in a greedy manner, based on the total energy consumption
over a three-day simulation period. Since there is no direct comparison with previous work,
the results of these methods can only be compared to each other. With the setup and case
study complete, the research questions could be answered.

The optimal sensor selection for building temperature control

The air temperature sensors had the largest impact on both the prediction accuracy and
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energy consumption. If one or two sensors are used, sensors measuring the air temperature
would be chosen first. The improvement in prediction accuracy is negligible after three sensors.
The greedy method showed similar results for the sensor selection. The air temperature
sensors have the most added benefit. When more than two or three sensors are used, sensors
placed on the ceiling or floor showed some improvement in performance.

The added benefit of additional state measurements for control performance

The current work shows some increase in performance with addition state measurements. The
results of the prediction method indicate a higher temperature prediction accuracy over the
next hour, although the relatively small increase might not be worth the cost of additional
sensors. Similar results are obtained when considering energy consumption. If additional
states are added, might be opted for the ceiling or floor. For all of the methods, little
improvement is gained after adding more than three sensors. To fully test the potential of
multiple state measurements, the greedy method would need to be modified. There is a chance
that the greedy method chooses sensors that actually perform worst in terms of temperature
sensing but that do result in lower energy consumption. The results showed an increase in
thermal discomfort simultaneously with a decrease in energy consumption. All the building
temperatures remained well within the specified comfort bounds, but this should be taken
into account during potential next steps for this research.
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5-2 Recommendations and Future Work
During this research, several assumptions and simplifications have been made. To validate the
results of this work, these would need to be addressed. There are a number of areas in which
this method could be extended in the following research. These have not been implemented
in this research, due to time considerations. Some of the possible next steps for this work are
listed down below.

• Extend simulation period: Both methods only optimize the sensor set over a period
of three days in April. This has been done to reduce the computation time, but such a
short window might not be representative for the whole year. More sensor data would
need to be collected over a whole year, also to determine the validity of the model under
different circumstances. The effect of the selected sensors could change the results of
the used optimization methods if more days are considered.

• Changes to the building model: Some simplifications have been made to the build-
ing model to reduce complexity and computation time. One control input, for example,
is the energy added directly added or removed from the air. In reality, supply airflow
rate, supply air temperature, heat recovery, and outside air temperature also need to be
considered. The building elements could also be divided into smaller sections, relaxing
the assumption of uniform temperature in each component, i.e. using a zonal model.
As seen from the sensor data, local temperature differences do exist.

• Different control parameters: In this research, a nonlinear predictive controller has
been used, with one set of parameters. Increasing the control update step, changing
weights or relaxing constraints all have an effect on the energy consumption of the
system. The changes with the largest effect on energy consumption seems to be the
constraint. With the greedy algorithm used in this research, the decrease in energy
consumption seems to be related to the increase in thermal discomfort. A next step
would be to incorporate the bound on thermal discomfort in the MPC constraints. This
would result in a better comparison between the different sensor selections, as all of the
set would adhere to the same maximum level of discomfort.

• Adding disturbance uncertainties: All the disturbances, such as solar intensity,
ambient temperature, and occupancy, have been considered to be known of the predic-
tion horizon. In reality, this will not be the case. The uncertainties in the disturbances
will have an effect on the prediction accuracy, as well as the control performance.

• Different control methods: Besides adjusting the parameters of the current con-
troller, an entirely different method for control could also be used. When the disturbance
uncertainties are added, for instance, a stochastic model predictive controller might be
more suitable. Linear or a combination of linear and nonlinear, model predictive control
could be implemented to reduce computation time.

• Validation with other methods: One of the biggest assumptions made during this
research, is the Gaussian distribution assumption in the sensor error. As shown by the
predictive method in Section 4-2, some discrepancy exists in the results when simulated
data or real sensor data is used. Using a method that does not require a model of
the building is particularly interesting. Of these, GP model predictive control based
on [28] extended with control and sensor selection, and SINDYc, Sparse Identification
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of Nonlinear Dynamics with Control, are noted as interesting possible candidates for
future research. The former has been used before, to select sensors with the largest
amount of information about the temperature distribution within a large room. It has
not been applied to sensor selection considering additional states, or include the control
performance. The latter has, to the best of the author’s knowledge, not been applied
to a building, and by extension the sensor selection in buildings. It has shown great
interest over the past few years and promising results in other applications.
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Table A-1: Dimensions and properties of the CONVERGE building described in Chapter 3

Abbreviation Description Value
Dimension L Building length 22.5 m

W Building width 13.5 m
H Building height 5.2 m

Orientation γsouth South wall 0◦
γwest West wall 90◦
γnorth North wall 180◦
γeast East wall -90◦
βwalls Inclination walls 90◦
βtop Inclination roof 0◦
latitude - 51.996◦
longitude - 4.378◦

Walls tglass Thickness 0.01 m
ρ Density 2470 kg/m3

cp Heat capacity 800 J/g· K
ε Emissivity 0.78
εlow Emissivity of coated low-ε glass 0.14
α Absorptance 0.085
τ Transmissivity 0.81

Raised floor trf Thickness 0.038 m
cp Heat capacity 707 J/K
ρ Density 1550 kg/m3

α Absorptance 0.1
Concrete floor tgf Thickness 0.225 m

cp Heat capacity 840 J/g· K
ρ Density 2000 kg/m3

α Absorptance 0.1
tinsulation Insulation thickness 0.008 m
κinsulation Thermal conductivity 0.0213 W/m· K

Roof t Thickness 0.01 m
cp Heat capacity 1800 J/g· K
ρ Density 1050 kg/m3

α Absorptance 0.87
ε Emissivity 0.93
tinsulation Insulation thickness 0.18 m
κinsulation Thermal conductivity 0.21 W/m· K

Ceiling t Thickness 0.003 m
ρ Density 7850 kg/m3

cp Heat capacity 500 J/g· K
Air µ Dynamic viscosity 1.80× 10−5 kg/m· s

cp Heat capacity 1006 kJ/kg· K
κ Thermal conductivity 0.0255 W/m· K
ρ Density 1.229 kg/m3

Argon µ Dynamic viscosity 2.18× 10−5 kg/m· s
cp Heat capacity 521.7 kJ/kg· K
κ Thermal conductivity 0.017 W/m· K
ρ Density 1.7125 kg/m3
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Appendix B

Table with Sensor Set Data

Only the sensor sets with the minimal Root Mean Square Error (RMSE) are shown, as the
table would be to large otherwise. These are also the sets used in the optimization methods.

Table B-1: Error data for the sensor sets with the lowest RMSE for a given number of sensors,
in [◦C].

Number of sensors in a set:
1 2 3 4 5 6 7 8 9

State
3

RMSE 0.98 0.32 0.33 0
µvS 0.17 -0.14 -0.058 0
σvS 0.96 0.29 0.32 0

State
6

RMSE 1.29 0
µvS -0.70 0
σvS 1.09 0

State
9

RMSE 0.42 0
µvS -0.28 0
σvS 0.32 0

State
12

RMSE 0.64 0
µvS 0.23 0
σvS 0.60 0

State
14

RMSE 0.27 0.14 0.09 0
µvS -0.22 0.027 0.072 0
σvS 0.17 0.13 0.056 0

State
15

RMSE 0.24 0.12 0
µvS 0.016 -0.0081 0
σvS 0.24 0.12 0

State
16

RMSE 0.37 0.17 0.085 0.064 0.051 0.042 0.050 0.047 0
µvS -0.18 0.0011 0.027 0.019 -0.016 -0.013 0.00032 0.022 0
σvS 0.33 0.17 0.081 0.061 0.048 0.040 0.049 0.041 0

State
17

RMSE 0.47 0.15 0.042 0.058 0.046 0.021 0.044 0.059 0
µvS -0.41 -0.10 0.019 -0.042 0.034 -0.0098 0.030 0.052 0
σvS 0.22 0.11 0.037 0.040 0.032 0.018 0.032 0.028 0
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Glossary

List of Acronyms
TU Delft Delft University of Technology
HVAC Heating, Ventilation, and Air Conditioning
VAF Variance Accounted For
PPD Predicted Percentage Dissatisfied
PMV Predicted Mean Vote
MPC Model Predictive Control
RMSE Root Mean Square Error
CFD Computational Fluid Dynamics
GA Genetic Algorithm

Nomenclature

q̇max Maximum heating power [7 kW]
q̇min Maximum cooling power [-7 kW]
q̇j−i Energy flow from component "j"to component "i"[W]
cp,ceil specific heat capacity ceiling [J/kg· K]
cp,gf specific heat capacity concrete ground floor [J/kg· K]
cp,gl specific heat capacity glass [J/kg· K]
cp,rf specific heat capacity raised floor [J/kg· K]
cp,roof specific heat capacity roof [J/kg· K]
mceil Mass ceiling [kg]
mgf Mass concrete ground floor [kg]
mgl Mass glass [kg]
mrf Mass raised floor [kg]
mroof Mass roof [kg]
α Absorptance
β Slope of surface
βblinds Solar blinds, open-closed position from one to zero
δ Solar declination, angle equator to sun plane
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q̇conv Convection energy flow [W]
q̇hvac Energy supplied by HVAC [W]
q̇occ Energy generation from occupants [W]
q̇rad Radiation energy flow [W]
q̇sol−i Energy flow from the sun to component "i"[W]
ε Emissivity
εlow Emissivity of low-ε coating
γ Azimuth surface
κ Thermal conductivity [W/m ·K]
λ Objective function weight for MPC
ω Hour angle
φ Latitude
σ Stefan-Boltzmann constant [5.67× 10−8 W/m2K4]
τ Transmissivity
θz Zenith angle
A Surface area [m2]
Au Unshaded floor area [m2]
Dind Discomfort index [◦Ch]
H Component height [m]
h Convective heat transfer coefficient [W/m2 ·K]
I Solar incidences [W/m2]
Ib Direct beam irradiation [W/m2]
Id Diffusive irradiation [W/m2]
Ig Ground reflected irradiation [W/m2]
Ibn Irradiance normal to surface [W/m2]
Idh diffuse horizontal irradiation [W/m2]
L Component length [m]
LC Characteristic length
N Prediction horizon
nocc Number of occupants
Nu Nusselt number
P Surface perimeter [m]
pair Air pressure [Pa]
Pocc Average thermal heat generation per occupant [120W]
Pr Prandtl number
Ra Rayleigh number
Re Reynolds number
Tref Reference temperature [◦C]
Tamb Ambient air temperature, related to convection [◦C]
Tgrd Ground temperature [◦C]
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Ti Temperature of component "i"[◦C]
Tsky Sky temperature, related to radiation heat transfer [◦C]
v Total measurement noise [◦C]
vS Sensor set error [◦C]
vm Sensor measurement noise [◦C]
W Component width [m]
w Process noise [◦C]
m mass [kg]
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