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Abstract
In this thesis we have analysed the behaviour of a physics informed neural network and it’s
competence in predicting a wave in a non-homogeneous medium. During this project we have
used a fully connected network with labelled input data of a 2D acoustic wave. On top of this
we used a special loss function that calculated whether the output of the network satisfies the
wave equation. Our experiment consisted of the tuning of the hyper parameters, analysing the
optimal choice of activation function and the optimisation of the input data and improving the
loss function. During this project the unpredictable nature of machine learning has become
very clear. We have experimented with several activation functions and have found that the
optimal choice of activation function depends on how long you are willing to train the network,
as the development of the loss function differs immensely between activation functions. When
we looked at the optimal scaling of the input values we find that a non-trivial scaling seems
to work better than for example, normalisation of these values. Furthermore we have tried to
improve the sampling of the points we use to calculate whether the prediction of the neural
network satisfies the wave equation and got interesting results. When we implement all op-
timisation techniques, we find that the neural network is extremely capable of predicting the
wave’s behaviour in a high contrast media within the time frames of the input data. Prediction
outside of this time frame does work but the results do deteriorate especially in the positive
time direction. Predicting in the negative time direction yield slightly better results.
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1. Introduction
The wave equation can be extremely hard to solve in complex media. In these kinds of media
the wave gets reflected and transmitted a lot and because of the differing wave velocities, a wide
variety of wavelengths and wave fronts exists. It is possible to simulate this behaviour using
a finite difference model but this is a timely task and has it’s limitations[1]. Machine learning
could offer a much more efficient approach than the current techniques. Lately there has been
a lot of public interest in machine learning, this is partly because the field benefits from a lot of
exotic sounding names, ranging from "neural networks" to "deep learning" terms that seem to
grab the imagination of many people as well as Hollywood. There are also some valid reasons
for this enthusiasm. Thanks to the development of computers and wide spread access to state
of the art machine learning libraries, machine learning has become a very accessible field to
whoever is interested.
During this thesis we will utilise these developments, we will create a Physics Informed Neural
Network, or PINN for short. This is a type of supervised learning that uses not only the classi-
cal way of determining the correct prediction of the network, by comparing it to the input data.
But also compares the predicted output of the network to the underlying physical principles, in
our case the wave equation. Currently most of these simulations are done using finite difference
simulation, this type of simulation is widely used to solve differential equations. A down side
to this method is that the calculation has to be done on a grid and discretised. Another problem
with this technique is that in order to know the state of the wave at a certain point in time you
would need to calculate all time-stamps before that.
In this thesis we will try to analyse and attempt to improve a physics informed neural network,
the network previously worked on by Jesse Buijs [2]. We will do this by investigating what
activation function work best and how combining these affect the results, data processing of
the input data, and improving the method the physics loss is calculated.
In Chapter 2, we discuss the underlying theory. Chapter 3 explains our the experimental
method. Chapter 4 shows the results of the experiment and finally in chapter 5, we draw
conclusions and give recommendations for possible further research.
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2. Theory

2.1. Neural Network
A neural network is a programming technique that is inspired by the networks found in the
brains of animals and humans[3]. Essentially it is an abstract way of statistical pattern recogni-
tion that allows computers to "train" on a given data set and find the underlying patterns. In this
case we are using a supervised network. A supervised neural network is given a labelled input
data set[4]. A common example would be a dog/cat classifier. To train this neural network you
would provide a set of images, the input data, and a label for each image whether it is a dog or
a cat. After letting the neural network train on this training data, you could input a new image,
not yet seen by the neural network, and the neural network could predict whether a cat, or a dog
would be in the picture. A deep learning neural network, a neural network that consists of 3 or
more layers. These layers between the input and output layers are known as "hidden" layers.
Each of these layers consist of a set of "neurons". The basic structure of a neural network is
shown in figure 1.

Figure 1: Basic structure of a fully connected deep neural network.[5]

2.2. A Neuron
A neuron takes in a set of variables, in our case this is equivalent to the amount of neurons in the
previous layer, and linearly scales each of these values with a certain weight and adds a bias.

2



This resulting value is then passed through an activation function. An activation function is,
except in some special cases, a nonlinear function that converts the input values in a non-linear
output values [6]. Activation function can take a wide variety of shapes, but often it is desirable
if it’s a differentiable function. A few examples of activation functions are given in 3.4. The
output of the neuron k of layer l can be expressed as follows

Xl[k] = f(WlkXl−1 + blk) (1)

where Wk is a n × 1 matrix containing the weights and Xl−1 a 1 × n matrix containing the
output variables from the previous layer and b the bias, a scalar. f(x) is the activation function
which varies.

2.3. The Loss Function
After the last layer of the neural network we calculate the error in the output of the network, we
call this the loss. This can be defined in different ways and enables you to guide the learning
process. An example of one of the more common and simple loss functions is the so called L1
function[6]:

JL1 = |Y ′ − Y |, (2)

where Y’ is the output of the last layer and Y the desired output, (the label of the labeled data).
We will be using a combined loss function consisting of a L2 part and a Physics-loss part. The
L2 loss function is given below with the same parameters as the L1 loss function.

JL2 = |Y ′ − Y |2. (3)

The physics loss is where the physics informed part of the PINN comes in. This physics loss
part not only ensures that the neural network produces a wave that is optically close to the
desired wave, It also forces the output to satisfy our physical constraint, the wave equation:

∂2p

∂x2
+

∂2p

∂z2
=

1

c2
∂2p

∂t2
. (4)

We use this function as the basis for the physics loss function. Rewriting it a bit and taking the
absolute value gives us:

fph(p) = |∂
2p

∂x2
+

∂2p

∂z2
− 1

c2
∂2p

∂t2
|. (5)

Since we are not concerned about just the loss of one input data set, but more on how well the
algorithm predicts the pressure for all data sets we take the average of all the loss values of all
input values, resulting in the following equation for the total physics loss:

Jphi =
1

Mph

Mph∑
i=1

fph(p
(i)). (6)

Were Mph the amount of points where the physics loss is calculated and Jphi the total physics
loss.
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2.4. Backpropagation
During training this loss is then used for fine tuning of the weights for each neuron, with a
process known as back propagation. This technique determines the "gradient" of each neuron
on a per layer basis. First we determine how the loss changes with the output of each neuron,
then we determine how much the neuron output was influenced by the bias (b) and the weights
(w). Using the chain rule we can easily repeat this process on a layer by layer basis [7].
Concretely for a 1 neuron network it works as follows: We start at the output layer and plug in
the values for W and b, at the start these are set as small random values. Then using a process
know as "Forward propagation", or just plugging in the numbers, we determine the Loss for
these values. The next step is to determine the influence of the output on the loss, this is done
by calculating the derivative of the loss function with respect to the output value. For the L2

loss function this is shown in equation 7.

∂loss

∂Y l
= 2(Y l − Y ) (7)

Where Y is the correct prediction, Y l the output of the neuron at layer l.
Next up is determining how much each parameter (W and b) influenced this output, this can be
calculated with the chain rule as shown in equation 8.

δlayerl =
∂Y l

∂w

∂loss

∂Y l
(8)

With δ being the gradient. In this case it is done for a weight but for the bias it is analogous.
Since all neurons within a layer are independent from each other we can calculate this for every
weight of every neuron for that layer. Once we have determined the gradients for all neurons
in a layer we propagate one layer back and do the exact same for that layer. This is easily done
because once again we can use the chain rule. As shown in equation 9.

δlayerl−1 =
∂Y l−1

∂w

∂Y l

∂w

∂loss

∂Y l
(9)

Once all gradients for all weights and biases for all neurons have been calculated you can
update these values, all at the same time. The stepsize with which you update the values is
know as the "learning rate". If this is too big, the network might overshoot the optimal weight
value, if it is too small it takes a enormous amount of time to train the network. Mathematically
this can be expressed like in equations 10 and 11.

wnew = wold − kδl (10)

bnew = bold − kδl (11)

Where k is the learning rate, w the old and new weights and δ the gradients.
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3. Experimental Method

3.1. Training data
For this experiment we used computer generated data. First we created a so called velocity
profile, this is essentially a two dimensional map that defines the wave velocity on every point,
an example of such a map is shown in figure 2.

Figure 2: Example of a 2D velocity map, the unit of the velocity is m/s.

After having created this velocity map we simulated the behaviour of the wave using a finite
difference model. The results of this simulation are pressure values for 5 dimensional coordi-
nates: x coordinate in meters, z coordinate in meters, time (t) in seconds, wave velocity (v)
in meter per seconds, and density (ρ) in kilogram per cubic meter. This simulation data can
then be used for the training of our neural network. This data is not directly inputted into the
network, it will be sliced, a process where we remove certain parts of the data, and scaled. This
gives us a few degrees of freedom to change the results and training time of the network.

Slicing is a technique where not all training data is offered to the network and parts that
slow down the training or even degrade the final results are cut off. This can be done in all
5 input dimensions (x,z,t,v,ρ) and we have done it in 3 dimensions (x,z,t). During the entire
experiment the data has been sliced in the time dimension to be limited to 50 different data sets
spread evenly over a range of 100 time stamps. This has been done for two reasons. The first
reason is to cut off edge cases, timeframes where the simulation is inaccurate because of the
limitations simulation, examples can be seen in figures 3 and 4.
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Figure 3: Edge case with little to no valuable information for the network.

Figure 4: Edge case with little to no valuable information for the network.

Secondly, we increase the time step between input data and therefore cut off parts of the
data. We do this because it’s very similar to the other data and provides little improvement to
the overall results of the neural network. A similar reasoning is used for the slicing in the x
and z dimensions. Because we are only interested in the behaviour of the wave, the parts of
the data where the wave is not (yet) present are simply not of interest of us, this null data only
slows down the training process and even can reduce the quality of the results.

Scaling is a more nuanced technique of processing the raw data, it can be done in a different
ways and the results are harder to predict. Part of the research done during this project has been
done in optimising this scaling. We have experimented with scaling of the input variables and
it’s label (pressure P ). We have scaled (P ,t,v,ρ) independently and (x,z) with a shared scaling
factor.

3.2. Configuration of the neural network
Like we mentioned before, we are using a supervised network, where each layer is fully con-
nected to each other. The network consists of 6 hidden layers with 80 nodes each. Other
constant parameters can be found in table ??.

Table 1: Constants of the neural network.

Learning rate 2.5 e-4
Batch size 500
Test/Validation Ratio 1.86
Input Features 5
NN/PINN ratio 10
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3.3. Defining our dynamic loss function
The loss function for this experiment is not static, the first few hundred epochs it runs with a
simple loss function (L2) and after this first run the physics loss part will be enabled and will
train about 10% more epochs. This is done because we don’t just want the output of the net-
work to satisfy the wave equation, but satisfy precisely the right solution of the wave equation
that matches our finite difference data, that acts as "boundary condition" to the network. Since
calculating the physics loss is a much more time consuming process involving much more steps
then just calculating the L2 loss, it also saves us a lot of time by running most epochs without
the physics loss part.

As can be see in equation 12, there is the factor Pinc that scales the losses relatively to each
other, during this project we have experienced that this factor plays a big role in getting the
optimised results.

J = JL2 + Pinc ∗ Jph (12)

For example, if the physics loss would be much bigger and thus much more influential than
the data loss, it could force the network to output the simplest solution to the wave equation, the
trivial solution in this case, where the pressure is zero everywhere. Like we already mentioned,
it takes a lot of time to calculate the physics loss. Therefore we only calculate the physics
loss for a limited amount of points. Which points you choose to do this heavily influences
the results of your network. During this experiment there have been two techniques used for
the sampling of these points, the technique used by Jesse Buijs[2], Latin hyper cube sampling,
and the technique we used which we used which goes as follows. We pick a random data
point, when it’s pressure value is above a pre-determined threshold it will be added to the list
of points, when it’s below the threshold it has a 20 % chance to be added to the list of points.
This process continues until you have a the desired amount of data points, these points are then
used in the physics loss function.

3.4. Activation functions
Another part of the project has been on analysing what activation function works best for our
network. A problem that became clear directly from the start of this experiment is that the loss
seems to be stagnant for some period and then suddenly starts to drop again, clearly visible in
figure 5. This problem is often caused by the fact that during the process of back propagation the
change in certain weights is so small that the entire networks seems to "wait" on the required
change to happen. This problem is known as the vanishing gradient problem [8]. Figure 6
shows the development of the weights that have reach such a point of stagnation.
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Figure 5: Stagnation of the loss with a sudden drop after that.

Figure 6: Literature example of weights during stagnation of the data loss[4].
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What becomes really clear in figure 6 is that the even though the loss seems to be stagnant,
the weights are not. They are just moving in such a slow pace that it takes a large number of
epochs before making a dent in the data loss. The gradient of the activation function has a direct
influence on this phenomenon and, therefore, we have experimented to find what kind activa-
tion functions gave the best performance and whether combining these would yield interesting
results. We have looked at 4 activation functions, ReLu, Leaky ReLu, Sigmoid and Softplus.

Figure 7: The Leaky ReLu function.

Figure 8: The ReLu Function.
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Figure 9: The Sigmoid Function.

Figure 10: the Softplus function.
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4. Results
In this chapter we discuss the results found through-out the project. The order we do this in is
based on the the amount of influence each parameter had on the behaviour of the network. We
will begin by discussing activation function, then we will continue with the scaling of the input
variables. After that we will show our findings regarding the physics loss and finally we look
at how the network performs with very long training intervals.

4.1. Activation function
We start by investigating what would be the optimal activation function. As can be seen in the
figure 5 the initial network seems to suffer from vanishing gradients [8]. We find that when
we use a ReLu activation function, this problem seemingly disappears, as shown in figure 11.
Sadly this improvement is only temporary, as is shown figure 12 the initial gain diminishes after

Figure 11: 300 epochs of the neural network with a ReLu activation function, PINN is disabled.

a few hundred epochs, therefore the soft plus activation is still superior to the ReLu function.
We have also experimented whether combining activation functions would yield better re-

sults. Even though this has little theoretical rationale, we did do experiment with it. As be-
haviour of neural networks can be very unpredictable. What we have tried is implementing
a leaky ReLu that starts as a ReLu and then gradually increases it’s "leaky" part. We tried
switching the activation function with a similar one halfway through the training process. This
all yielded significantly worse results. In figure 13 this behaviour can be observed.
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Figure 12: 300 epochs of the neural network with a softplus activation function, PINN is dis-
abled.

Figure 13: An example of a the development of the loss function after 120 epochs. In this case
the network started with a ReLu function.
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4.2. Scaling
Another part of our project has been focused on investigating what scaling would be the opti-
mal, for what range of values does the network create the best results? Common practice for
machine learning is to normalise the input parameters, so we have tried this. The results of the
first 100 epochs with normalised input can be found in figure 14.

Figure 14: 100 epochs of the neural network with normalised input values.

Figure 15: Target (left) and prediction (middle) and their difference (right) for 100 epochs with
normalised input values.
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Figure 16: Target (left) and prediction (middle) and their difference (right) for 100 epochs with
normalised input values.

Figure 17: Target (left) and prediction (middle) and their difference (right) for 100 epochs with
normalised input values.
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Very clearly normalising the values does not work, the data loss is almost stagnant and the
prediction of the algorithm is not even close to what it should be. Therefore we have used
empirical methods to determine the optimal scaling. After running countless experiments with
different scaling values we find that the values in the table below work best.These values greatly
improved the accuracy of the network. This can bee seen in figures 18, 19, 20 and 21.

Table 2: Ideal scaling of the input features and the label of this data.

x z t v ρ P
min 30 1.0 0 12.5 10.9 -1
max 40 29.8 23.8 25 13.0 1

Figure 18: Loss development for optimal scaling for a 100 epochs with PINN disabled.

15



Figure 19: Target (left) and prediction (middle) and their difference (right) for 100 epochs with
optimal input values.

Figure 20: Target (left) and prediction (middle) and their difference (right) for 100 epochs with
optimal input values.

Figure 21: Target (left) and prediction (middle) and their difference (right) for 100 epochs with
optimal input values.
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4.3. Including the Physics Loss
A problem we ran into during the start of this project was that when the PINN was enabled
the network would collapse. All the progress the neural network had made would be lost and
the L2 loss function would get a value comparable to it’s initial value. This problem arose
because the Pinc factor in equation 12 was too big, therefore after having trained the network
for a bit without the physics loss component the L2 loss was much smaller than the physics
loss. Because of this the network only focused on reducing the physics loss component and
reverted to the trivial solution of the wave equation. This is shown in figures 22 and 23. After
investigating this phenomenon and trying out different values for Pinc we have found that it is
optimal for Pinc to be roughly equal to the size of the L2 loss at the epoch where the PINN is
enabled.

Figure 22: Development of the L2 loss function (left) and the physics loss function (right),
PINN is enabled at epoch 400.

Figure 23: Target (left) and prediction (middle) and their difference (right) for 420 epochs with
the last 20 PINN enabled.
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4.4. Sampling the physics loss points
As explained in the theory section we are using a new method to sample the physics points.
Previously to this method Latin hypercube sampling was used[2]. The results of this change
can be found in Figures 24 and 25. As you can see the decrease is more consistent and less
erratic, and it also yields a overall better result. This way of sampling also creates a more
symmetric wave as can been seen in figures 26 and 27.

Figure 24: Physics loss development with the Latin hypercube sampling method.
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Figure 25: Physics loss development with the new method.

Figure 26: Target (left) and prediction (middle) and their difference (right) with the Latin hy-
percube sampling method.
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Figure 27: Target (left) and prediction (middle) and their difference (right) with the new
method.
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4.5. Extensive training times
Finally, we have looked at what happens when we train for a very long period of time, namely
3000 epochs without PINN and 30 with PINN enabled. We find that loss function roughly
stagnates but does still decrease even after 3000 epochs, however the physics loss function
starts to go up again after a certain amount of epochs, this could be attributed to overfitting.
The exact reasons why this happens is uncertain. The loss development and predictions of the
network can be found in figures 28, 29, 30 and 31.

Figure 28: Loss development with 3000 epochs without PINN and 300 with PINN.

Figure 29: Target (left) and prediction (middle) and their difference (right) of the network.
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Figure 30: Target (left) and prediction (middle) and their difference (right) of the network.

Figure 31: Target (left) and prediction (middle) and their difference (right) of the network.
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5. Conclusion
We have analysed the the behaviour of a physics informed neural network and its competence
in predicting a wave in a non-homogeneous medium. We have looked at many aspects of the
network and have achieved significantly better results than we had in the past. During the
project it has become clear that neural networks are very capable of predicting the behaviour of
the wave within and in between the timeframe of the given training data. The network is also
somewhat capable of predicting the past and future development of the wave. The predictive
capabilities of the network stagnate relatively quick when you train for extensive amounts of
time.
During this project we have been focused on reducing the loss function in the shortest possible
time, this has made us extremely vulnerable to overfitting. In literature it is shown that the
PINN allows the network to find the underlying generalisation. It is uncertain whether our net-
work achieved this as the network in literature is much better at predicting the behaviour of the
wave outside of the range of the training data than our network.
For future research we would recommend to look at a network structure with much more neu-
rons per layers, this is also one of the main differences between our network and networks
found in literature with better results. We should seriously ask ourselves, is it possible to cap-
ture a generalisation of this complex physical phenomenon in only 80 neurons? Using the 1024
neurons like is done in literature, is out of the scope of this project, as the training time required
to train such a network changes from hours to weeks. Another thing that more research should
be done on is that the network accuracy has a negative correlation with the time parameter, why
does the network prefer earlier timestamps? Is this part of the nature of the network or is it
because of a underlying systemic error? Addressing these problems may yield better results
and improve the predictions of the network outside of the given timeframe.
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Appendix
To get a hands on experience on how machine learning works I would recommend checking
out this fun tool tensorflow made: https://playground.tensorflow.org/
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