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A B S T R A C T

This work addresses a novel technique for selecting the best process parameters for the 4H–SiC
epitaxial layer in a horizontal hot-wall chemical vapor reactor using a transient multi-physical
(thermal-fluid-chemical) simulation model and combined with a machine-learning model. An ex-
periment was performed to validate the feasibility of the numerical model. Secondly, a single-
factor analysis was conducted to investigate the effects of process parameters, including the depo-
sition temperature, inlet-flow volume, rotational speed of the susceptor, and cavity pressure, on
the quality of the 4H–SiC epitaxial layer. Finally, a machine learning algorithm, the ant colony
optimization-back propagation neural network (ACO–BPNN), was employed to develop the in-
put/output model and optimize process parameters for obtaining a high-quality epitaxial layer
and reducing the optimization cycle and costs. Notably, the optimized process was validated by
real experiments, where the error between calculation and experiment is 4.03 % for deposition
rate and 0.49 % for coefficient of variation, respectively. The results highlight the model as reli-
able and lay the foundation for the CVD growth of the 4H–SiC epitaxial layer.

1. Introduction
Wide-bandgap (WBG) semiconductors are considered next-generation semiconductor materials because of their potential in man-

ufacturing electronic and optoelectronic devices. Silicon Carbide (SiC) is a promising material among WBG semiconductors. SiC has a
band gap of almost three times that of silicon (Si) and a critical breakdown electric field of 10 times that of Si [1], which can realize
the performance of power devices with higher blocking voltage, power, and switching frequency. Furthermore, 4H–SiC exhibits a
high saturation electron velocity and thermal conductivity. These characteristics enable the 4H–SiC-based power devices to provide
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considerable advantages over Si-based power devices in high-temperature and high-power areas [2,3]. Several methods were devel-
oped for the SiC epitaxial growth, including sublimation, molecular beam epitaxy, and chemical vapor deposition. As proposed by
Jokubavicius et al. [4], the growth temperature required by sublimation is the highest, which increases the cost of epitaxial growth.
Kitabatake et al. [5] found that molecular beam epitaxy can obtain a high-quality epitaxial layer, but the deposition rate is low. With
the emergence of chlorine into the gas mixture [6–8] and the theory of “Step-controlled epitaxy” using off-axis substrates [9,10],
chemical vapor deposition (CVD) has become a superior method in 4H–SiC epitaxy compared to others because of the high deposition
rate, excellent surface morphology, controllable composition uniformity, and easy mass production.

However, the thickness and uniformity of the 4H–SiC epitaxial layer with CVD growth are affected by many process parameters
such as the reactor temperature, cavity pressure, susceptor rotational speed, and flow rate. The conventional process optimizations
are mostly based on “trial-error” approaches that require considerable experimentation, which is costly and time-consuming. There-
fore, more and more researchers used numerical analysis, i.e. computational fluid dynamics (CFD), to improve the efficiency of their
research. Mollick et al. [11] combined CFD with a two-step kinetic mechanism to simulate the deposition rate of SiC on the C/C com-
posite substrate using methytrichlorosilane in a vertical tubular reactor. They revealed that in addition to process parameters such as
the flow rate at the inlet and initial wall temperature of the reactor, the sample position and inlet diameter were key parameters for
obtaining a high coating rate. Ito et al. [12] studied the effect of wafer rotation and system pressure in the vertical CVD reactor by 2D
CFD analysis. The simulation model was consistent with experimental results. They revealed that increasing the rotational speed of
the wafer and system pressure was effective in enhancing the epitaxial deposition rate. Nishizawa and Pons [13] combined a 2D CFD
model of a horizontal hot-wall reactor (Epigress VP508) with the gas-phase and surface reactions to simulate and study the SiC epitax-
ial growth and doping in SiH4, C3H8, N2, and Al(CH3)3 growth system. They focused on the molar fraction of Si and C under various C/
Si ratios and revealed that the site competition due to doping can be calculated by using the C/Si ratio on the growth surface. Dang et
al. [14] developed a CFD model of a crucible for top-seeded solution SiC growth to simulate the transport of aluminum, which is cru-
cial for the surface morphology of crystals but easily evaporates. They developed a fin structure in the model to prevent aluminum
evaporation and achieved superior surface morphology of crystal experimentally using a fin structure crucible. Deivendran et al. [15]
proposed a 3D model for a commercial hot-wall vertical reactor for SiC coating and investigated the effect of various process parame-
ters on flow field stability in a CVD reactor. They determined response surface morphology (RSM) to obtain optimum deposition rate
and film uniformity.

Artificial intelligence and machine learning algorithms, including genetic algorithm [16,17], particle swarm optimization [18],
neural network [19], and K-nearest neighbor (KNN) [20], becoming increasingly popular, they have been applied in multi-object op-
timization in engineering to save time and costs. Li et al. [21,22] not only used CFD simulation software to simulate the growth
process in the ZnO–MOCVD reaction chamber but also used a neural network model and genetic algorithm to determine the optimal
input process parameters for improving film quality. Wang et al. [23] created a surface methodology hybrid with the KNN model to
optimize and improve film uniformity by 30 % under a high deposition rate in the plug flow state. Tsunooka et al. [24] used neural
network and supported vector regression to develop a rapid prediction of the flow field of CFD simulation for the top-seeded solution
growth (TSSG) method in SiC growth. Model prediction of the proposed model was 107 times that of CFD simulation only. Isono et al.
[25] demonstrated a rapid and precise prediction mode for temperature and fluid flow in the TSSG crucible by changing the structure
and process parameters using a neural network. They used a genetic algorithm to determine the optimal variable parameters for the
6-inch TSSG condition. To date, limited studies have been conducted on 3D modeling and optimization of process parameters to im-
prove the quality of 4H–SiC epitaxial growth in the commercial horizontal hot-wall reactor based on TCS and C2H4 growth system.

In this study, we simulated the 4H–SiC epitaxial growth process through CFD calculations coupled with the thermal-fluid-
chemical multi-physical model, and we compared the deposition rate of simulation with the experimental results to confirm the relia-
bility of the numerical model. Single parameter analysis was conducted through simulation on the process parameters that affect the
deposition rate and uniformity of 4H–SiC epitaxial growth. These parameters included the inlet-flow volume, rotational speed of sus-
ceptor, growth temperature, and cavity pressure. The relationship between the combination of process parameters and film quality
was developed through a back propagation neural network (BPNN) to predict the epitaxial uniformity and deposition rate within the
allowable range. Further, optimization was performed on the ant colony algorithm. This study indicated the direction for 4H–SiC epi-
taxial growth process debugging.

2. Models and process condition
2.1. Apparatus

In this study, an industrialized hot-wall horizontal “Epi-150” 4H–SiC epitaxial CVD equipment was used, as shown in Fig. 1(a).
The system mainly consisted of six subsystems, namely the reaction chamber system, gas-delivering system, load-lock system for
wafer transfer, software and hardware control system, vacuum system, and heating system. The reaction chamber was placed hori-
zontally, and the outermost layer of the reaction chamber was surrounded by an induction heating coil and a translucent quartz tube.
The induction coil and quartz tube are hollow in the middle, which is filled with deionized water as a coolant, as shown in Fig. 1 (b).

Fig. 1 (c) shows the structural front view of the CVD reactor in which the down and up crucible consists of dense graphite, and
semicircular shaped hollow inside crucibles are designed to create an eddy current to heat the 4H–SiC wafer in the middle of the
cavity. Furthermore, two graphite crucibles are wrapped with graphite felt for thermal insulation. Fig. 1 (d) shows a part of the gas-
delivering system. Here, C2H4 as a C source gas and TCS as a Si source gas are partially mixed with purified carrier gas H2 in three
gas transportation pipelines before introduction into the cavity. Three needle valves at upstream of the cavity were used to control
these three gas flow volumes.
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Fig. 1. Hot-wall horizontal 4H–SiC epitaxial growth system: (a) Appearance of whole equipment. (b) Reaction chamber and heating system. (c) Front view of reaction
cavity. (d) Part of the gas-delivering system.

2.2. Standard condition, numerical model, and characterization
Fig. 2(a) shows the structure diagram of the whole reaction chamber. Here, H2 carried the reaction gas (TCS and C2H4) through

three gas flow tunnels, whose objective was to uniformly mix the flow before entering the cavity. The substrate was placed at the cen-
ter of the gas-foiled rotational susceptor. The substrate was spun with the susceptor during the growth process. The flow volume of
flotation gas, which has a pipeline beneath the susceptor, adjusted the rotating speed. The exhaust vent was connected with a butter-
fly valve downstream of the cavity to control the reaction chamber pressure. Fig. 2 (b) shows the schematic diagram of deposition un-
der standard operating conditions. The flow rate of the inlet gas includes the carrier gas (H2) and reaction gas (C2H4, TCS). The sum
of H2, C2H4, and TCS at the chamber inlet was Q = 100 slm. Among them, the ratio of the Si source (TCS) and C source (C2H4) was
fixed at 1.3. The ratio of the inlet-flow volume was 1:2:1 at the left side, middle, and the right-side spray tunnel, respectively. The ro-
tational speed of the susceptor inside the cavity was 60 rpm, and the pressure of the cavity was set to 100 mbar.

In the experiment, the thickness was measured by using Fourier transform infrared spectroscopy (Nicolet iS50). The root mean
square (RMS) of roughness values was determined and surface morphology was observed using Bruker Dimension Icon atomic force
microscope system. The crystallinity and element content were characterized by high resolution X-ray diffraction systems (XRD,
Bruker AXS) using Cu Kα radiation (40 kV, 40 mA, λ = 1.54 Å) and energy dispersive X-Ray spectra (EDS) function in double beam
electron microscopy (Helios 5 Hydra CX), respectively.

2.3. Governing equations and chemical reaction kinetics in the multi-physics simulations
SiC epitaxial growth is complex and relates to the temperature filed, flow field, chemical reaction, etc. Thus, a multi-physics simu-

lation coupled the thermal-fluid-chemical model was performed with the following equations: continuity, momentum, energy, and
species transport. Here, SiC epitaxial layer grow in a low-pressure and laminar flow state environment. In this condition, the reaction
gas was subsonic and incompressible.

The continuity equation is as follows:

∇ ∙
(
𝜌v
)
= 0 (1)
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Fig. 2. SiC epitaxial reaction cavity of (a) structure diagram and (b) schematic diagram of deposition under standard operating conditions.

where ρ is the mass density, and v is the gas mixture velocity.
The momentum balance equation is as follows:

∇ ∙ (𝜌 ∙ ) = ∇ ‐∇𝑝 + 𝜌𝑣
→

𝑣
→

𝜏
═ g

→ (2)

where p is the pressure inside the cavity, g represents the gravitational acceleration, and τ═ is the sheer stress tensor, which is given by

= μ(∇ + )‐ μ(∇ ) ∙ I𝜏
═

𝑣
→

(∇ )𝑣
→ T 2

3
𝑣
→ (3)

where μ is the dynamic viscosity, and I is the unit tensor.
The energy balance equation is expressed as follows:

Cp∇ ∙
(
𝜌vT

)
= ∇ ∙ (k∇T) +

N∑

i=1

Hi

Mi

∇ ∙ Ji-

N∑

i=1

Hi,0

Mi

Ri (4)

where Cp is the specific heat capacity, k is the thermal conductivity, and T is the temperature in the cavity. Here, Hi, Mi, Ji, and Hi,0
represent molar enthalpy, molar mass, diffusion flux of mass, and enthalpy of formation, respectively. In Eq. (4), the expression on the
left describes heat transfer due to convection, whereas the three expressions on the right represent heat conduction, species diffusion,
and chemical reactions. Here, Ri is the net volumetric rate of the ith component in the chemical reaction.

Ri = Mi

K∑
i=1

vik

(
R

i

k

)
(5)

Species transport equation can be expressed as follows:

∇ ∙
(
𝜌vwi

)
= -∇ ∙ Ji + Mi

K∑

j=1

Ri
j

(6)

where wi is the mass fraction of the ith component, and Rji is the net volumetric rate of i species produced in reaction j. According to
Maxwell–Stefan theory, the diffusive flux Ji includes diffusive flux due to the concentration gradient and diffusive flux driven by the
temperature. This phenomenon can be represented as follows:
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Ji = -

N∑

j=1

𝜌Di,j∇wi-D
T
i

∇T

T
(7)

where Di,j and DiT are the multicomponent diffusion coefficient matrix and multicomponent thermal diffusion coefficient matrix, re-
spectively.

The density of a gas mixture is defined as follows:

𝜌 =

PopMw

RT
(8)

where Pop, Mw, and R are the pressure inside the reaction cavity, the molecular weight of the gas, and the universal gas constant, re-
spectively.

The numerical simulation of the CVD reactor of 4H–SiC in the SiHCl3/C2H4/H2 system was described by four chemical reactions,
including three gas phase reactions and one surface reaction. These equations were obtained from the literature [26–28] as shown in
the following:

Gas-phase reactions:

SiHCl3→SiCl2+HCl (9)
C2H4 → C2H2+H2 (10)
6SiCl2+3C2H2+3H2 →6SiC + 12HCl (11)

The surface reaction is as follows:

2SiCl2+C2H2+H2 → 2SiC + 4HCl (12)

2.4. Mesh description and boundary conditions
To control the mesh quality (Fig. 3), a hexahedral mesh was designed in ICEM software. The number of grids was 1 million. CFD

simulation was conducted by the commercial software FLUENT 14.0 with a pressure-based solver. SIMPLEC was used for the pressure
and velocity-coupling algorithm, and second-order upwind spatial discretization was used for the momentum, component, and en-
ergy equations. The standard scheme was used for pressure interpolation. The residual convergence criterion was 1E−6 for the energy
equation and 1E−4 for the other equations. Numerical calculation was performed on HPZ820 work-stations (dual Intel Xeon E5-
2690/128G DDR3 memory/NVIDIA Quadro 5000). The time for computing a single case was approximately 2 h.

Moreover, the following assumptions and boundary conditions were set to solve the mathematical model of the system.
1. The growth of materials was stable and the flow field was laminar because the Reynolds number was <2300.
2. The inner wall was assumed to be nonadiabatic, and the inlet wall and flow rate was set to 323 K.
3. The dense graphite exhibits excellent thermal conductivity, and the epitaxial growth region temperature was 1903 K, which is

identical to that of the substrate.

Fig. 3. Mesh model diagram of the SiC reactor.
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3. Results and discussion
3.1. Multi-physics model validation and analysis under the standard condition

The substrates in the model were 6 inches in diameter. Seven sampling points, as shown in Fig. 4(a), were set to monitor the film's
thickness and uniformity, which were measured and calculated using the average deposition rate and coefficient of variation, as ex-
pressed in Eq. (13) and Eq. (14), respectively.

x =

n∑

i=1

x
i
× S

i

S

(13)

Cv =

√
1

n−1

∑n

i=1

(
xi − x

)2

x

(14)

where xi and x are the radial deposition rate in region i and the average deposition rate, respectively. Here, Si and S are the area of re-
gion i and the area of the growth region, respectively. A higher average deposition rate indicates a greater thickness, and a larger coef-
ficient of variation indicates inferior uniformity.

Fig. 4 (b) shows a comparison between the experimental and simulation results of seven monitoring points on the 6-inch 4H–SiC
epitaxial layer under standard operating conditions. The simulation results were consistent with the experimental results. The over-
all average error of the deposition rate between numerical simulation (55.90 μm/h) and experiment (57.57 μm/h) was 2.88 %. The
maximum and minimum errors among these monitoring points were 4.57 % and −0.81 %, respectively. Furthermore, the coefficient
of variation of the experiment was 4.24 % and that of the numerical simulation was 5.89 %. Therefore, the simulation model was
feasible and accurate, which could be used for the optimization of process parameters.

Fig. 5 (a) reveals that the inlet-flow into the reaction chamber was categorized into three spray tunnels. The streamline was
smooth and no vortices were generated inside the cavity reaction chamber. In this structure and condition, the flow was stable and
suitable for material growth. Fig. 5 (b) shows the temperature distribution in the simulation. Since the reactant flows towards the ex-
haust vent, the temperature the downstream of reactor chamber has a slight influence on the upstream deposition rate of the suscep-
tor area. To simplify the simulation process and reduce the simulation time, the temperature of the whole reaction chamber was origi-
nally set the same such as 1903 K under standard conditions, which is not the case in reality. In the simulation, the influence of the in-
let flow on the temperature occurred in the spray tunnel, and the temperature remained the same as the pre-set 1903K. Under this
flow rate, the temperature of the deposition core area was not affected.

3.2. Influence of process parameters on thin-film property
Several process parameters, such as inlet-flow volume, rotational speed of susceptor, cavity pressure, and temperature, affect the

properties of the epitaxial SiC film. In the epitaxial growth process, the higher deposition rate contributed to the production efficiency
and reduction of defects [29–32]. The higher uniformity directly affects the film quality as well as the subsequent yield of power de-

Fig. 4. (a) Monitoring points for 6-inch SiC epitaxial wafers. (b) Comparison of experimental and simulated SiC film deposition rates under the standard process condi-
tion.
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Fig. 5. SiC epitaxial reaction chamber under standard condition of (a) velocity streamline and (b) temperature distribution.

vices [33].To analyze the effects of these parameters on the deposition rate and uniformity of SiC thin film, we changed one factor at
one time as presented in Table 1, and the other parameters were consistent with the standard operating condition.

3.2.1. Effect of inlet-flow volume
The volume of carrier and reaction gases plays a crucial role in CVD 4H–SiC epitaxial growth. The inlet-flow volume (the sum of

carrier gas and reaction gas) affects the transport and diffusion rate of reaction gases, the distribution of the reactant in the cavity, and
the deposition rate and uniformity of the thin film. Fig. 6 (a) shows the deposition map of seven monitoring points. Fig. 6 (b) shows
the average deposition rate and coefficient of variation under various inlet-flow volumes. With the increase in the inlet-flow volume,
the average deposition rate of the thin film gradually increased. The increase in the inlet-flow volume accelerated the decomposition
and reaction rate of the reactant. By contrast, the coefficient of variation gradually decreased as the inlet-flow volume increased,
which improved the uniformity of the thin film and achieved superior quality of the film growth. The larger the inlet-flow volume
was, the faster the transportation and diffusion rate of the reaction gas were, and the more uniform the distribution of the reaction gas
in the reaction chamber was. The pre-reaction of the reactant was also reduced. Thus, film uniformity was better with increase of in-
let-flow volume.

3.2.2. Effect of cavity pressure
Fig. 7 (a) and (b) show the deposition rate of seven monitoring points, the average deposition rate, and the coefficient of variation

at various pressures of the cavity. As the pressure increased, the deposition rate of the thin film increased first. However, when the
cavity pressure surpassed 100 mbar, the deposition rate decreased with the increase in pressure. The coefficient of variation in-
creased with the increase in pressure. With the increase in pressure, the molecular density of the reactant gradually increased, but the
flow speed in the cavity gradually decreased. Molecular density had a significant effect on the deposition rate when the pressure was
less than 100 mbar. By contrast, the influence of the slow flow speed exceeded that of the molecular density and became a primary

Table 1
Parameters of single-factor analysis.

Process Parameters Values

Q (slm) 25 50 100 125 150
P (mbar) 75 100 125 150 175
ω (rpm) 0 25 50 75 100
Temperature (K) 1843 1873 1903 1943 1973
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Fig. 6. SiC epitaxial growth under various inlet-flow volumes. (a) Seven points distribution maps. (b) Average deposition rates and coefficient of variations.

Fig. 7. SiC epitaxial growth at various pressures. (a) Seven-point distribution maps. (b) Average deposition rates and coefficient of variations.

factor with a consistent increase in pressure. Flow speed gradually conduced to decrease transport and diffusion rate of the reactant,
which reduced the deposition rate and uniformity of thin-film growth. Furthermore, the “boundary layer theory” proposed by Ref.
[34], i.e., the greater the pressure, the thicker the boundary layer, can explain the tendency of the deposition rate. When the pressure
was lower than the critical value, the higher flow speed carried the reactant get through the boundary layer and deposited it on the
substrate. However, when the pressure exceeded the critical value, the slower flow speed rendered carrying the atoms of reactant dif-
fusion to the substrate difficult. Thus, this resulted in a decrease of the deposition rate to a large extent.

3.2.3. Effect of the rotational speed of susceptor
During SiC epitaxial growth, the susceptor, which carries the substrate, was given a certain rotational speed to promote the uni-

form distribution of the reactant on the surface of the substrate. Fig. 8(a) and (b) show the distribution trend of deposition rate at
seven monitoring points, as well as the average deposition rate and coefficient of variation at various rotational speeds. Comparing
the stationary and rotational susceptors, the stationary susceptor exhibits a high coefficient of variation and poor uniformity. For the
rotational susceptor, the deposition rate of seven monitoring points tended to be consistent at various rotational speeds. The average
deposition rate was greater than the condition of the stationary susceptor. Furthermore, the coefficient of variation of the rotational
susceptor decreased sharply. Thus, a significant improvement occurred in the uniformity of the thin film. The rotational speed of the
susceptor positively affect the deposition rate and thin film uniformity.
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Fig. 8. SiC epitaxial growth at various rotational speeds. (a) Seven-point distribution maps. (b) Average deposition rates and coefficient of variations.

3.2.4. Effect of the growth temperature
SiC epitaxial growth should be performed in a high-temperature environment, and the temperature considerably affects the qual-

ity of thin-film deposition. Fig. 9(a) shows the distribution trend of deposition rate at seven monitoring points. The deposition rate in
the middle of the wafer was slow, but it became fast at the edge of the wafer. Fig. 9 (b) shows the average deposition rate and coeffi-
cient of change under various temperatures. With the increase in temperature, the deposition rate of the thin film gradually decreased
and the coefficient of variation increased because the increase in temperature resulted in the decomposition of the reaction gas, re-
sulting in uneven gas mixing or parasitic reactions in the reaction chamber, which affects the composition of 4H–SiC and subse-
quently affects the thickness uniformity and deposition rate of the film.

4. Optimization of process parameters based on the ACO-BPNN
In the 4H–SiC CVD system, the thermal and flow fields interact with each other, resulting in various combinations of multiple

process parameters that are not linear in their effect on the film deposition rate and uniformity. Figuring out this nonlinearity and de-
termining optimal process parameters based on actual growth experiments are time consuming and cumbersome. The BPNN and ACO
combined with numerical simulation are applicable and cost-saving methods to develop the nonlinear model on input/output and to
determine the optimal combination of process parameters. From the results of the single-factor analysis, except for the various rota-
tional speeds of the susceptor, the inlet-flow volumes, cavity pressure, and growth temperature have huge impact on the quality of the
4H–SiC epitaxial layer. In such a case, the rotational speed of the susceptor was the same as the standard condition at 60 rpm, and

Fig. 9. SiC epitaxial growth at various growth temperatures. (a) Seven point distribution maps. (b) Average deposition rates and coefficient of variations.
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three other process parameters were picked for a subsequent input of ant colony optimization-BPNN (ACO–BPNN) algorithm to deter-
mine the optimal thin-film uniformity and deposition rate.

4.1. Optimization procedure
As shown in Fig. 10, the operation of ACO–BPNN is detailed as follows:
We randomly generated 60 groups with a combination of process parameters including 50 groups as the training set of the neural

network and the remaining 10 groups as the validation set for the BPNN model verification. As shown in Fig. 11, the NN had three lay-
ers: an input layer (inlet-flow volume, cavity pressure, and growth temperature), an output layer (deposition rate and coefficient of
variation), and a hidden layer. Table 2 presents the range of these process parameters. Table S1 presents these 50 groups’ experiments
and their corresponding epitaxial deposition rate and coefficient of variation by calculating the deposition rate at seven monitoring
points. Table S2 presents a comparison of the BPNN prediction and numerical simulation results. The errors were <1 %, which im-
plied that the BPNN had high prediction accuracy.

After BPNN training and error calculation based on the dataset, the ACO was used, and the BPNN model was integrated into the
ant colony algorithm for the optimization of multiple process parameters. The steps for ACO are as follows.

(1) Initialization of algorithm parameters: set the number of ants m in the ant colony algorithm to 20; the maximum number of
iterations was 400; the pheromone evaporation coefficient Rho was 0.9; the transfer probability constant was set to 0.2; the
local searching step size was set to 0.1; to increase the convergence speed, the importance factor of pheromone α was set to 1
and that of heuristic function β was set to 8.

Fig. 10. Flowchart of the ACO–BPNN.
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Fig. 11. Neural network topology diagram.

Table 2
Range of processing parameters for the ant colony optimization-back propagation neural network (ACO–BPNN).

Parameters Inlet-flow volume (slm) Pressure (mbar) Temperature (K)

Input Lower bound 50 75 1873
Upper bound 150 150 1943

Output Deposition rate (μm/h) and coefficient of variation (%)

(2) Generate ant positions randomly, and subsequently, generate initial pheromone paths according to the neural network.
Calculate the probability of state transfer.

(3) Perform local search when the state transfer probability is less than the transfer probability constant. After local search,
perform a global search to generate new ant positions. The boundary absorption method is adopted to deal with the boundary
conditions.

(4) Recalculate the fitness to determine whether the ant has moved. If the ant has moved, then the pheromone path is updated
using the BPNN.

(5) Check whether the termination condition is satisfied; if so, terminate the procedure to output the optimized value; otherwise,
return to process (2) to continue the iteration.

4.2. Results of optimization
As shown in Fig. 12, after 200 iterations using the ant colony algorithm, fitness became stable, and the path with the most

pheromones was identified. The optimal combination of process parameters for both deposition rate and coefficient of variation was
determined after ACO-BPNN.

The deposition rate and coefficient of variation results of the standard condition, simulated optimized combination of the process
parameter, and the results of the experiment are presented in Table 3. The optimal combination of process parameters after ACO-
BPNN was 135.28 slm, 1887.2 K, and 81.4 mbar. The corresponding deposition rate and coefficient of variation were 69.526 μm/h
and 2.04 %, respectively. Compared with the standard conditions, the optimized results enhanced the deposition rate by 17.2 % and
the coefficient of variation by 51.88 %.

To investigate the film quality and ensure the correctness of ACO-BPNN results, an experiment was conducted after ACO-BPNN.
The error between prediction results of ACO-BPNN and real experiments under the prediction condition was 4.03 % for the deposi-
tion rate and 0.49 % for the coefficient of variation. The thickness distribution for experiments under ACO-BPNN conditions and stan-
dard conditions can be seen in Fig. 13(a). It shows an enormous improvement in thin-film growth efficiency and uniformity. The epi-
taxial wafer that grows under ACO-BPNN condition can be seen in Fig. 13(b). Furthermore, 9 scanning points for surface morphology
and roughness characterization can be also seen in Fig. 13(b). The corresponding 2D and 3D surface morphology images of L-1, Cen-
ter, R-1, U-1, and D-1 are shown in Fig. 14. Fig. S1 displays the other surface morphology images of L-2, R-2, U-2, and D-2. Under the
optimized combination of the process parameter, the average surface RMS value (Ra) for these 9 points was 0.177 nm, which indi-
cates that the epitaxial surface was smooth.

Fig. 15(a) depicts the rocking curve spectra of 5 scanning points, which are measured with typical XRD spectra of a 4H–SiC single
crystal whose medium incident angle is around 21.7° [35]. The average full width at half maximum (FWHM) of this peak is 19.19 arc-
sec. Fig. 15(b) demonstrates a dimension of 5 μm ✕5 μm EDS pattern at the epitaxial wafer center. The result showed that only Si and
C were found. They accounted for 54.22 % and 45.78 %. It implies that the Si atom and the C atom successfully intertwine to form
SiC epitaxial layer. All these characterization results denote that the epitaxial wafer satisfies the requirement for the subsequent pro-
duction of power devices. Additionally, the uniformity of doping concentration and defect distribution are also important for the
quality of SiC epitaxial layer, which will be studied by using multi-scale simulations and experiments in our future works.
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Fig. 12. Fitness evolution curve.

Table 3
Comparison of the standard condition and optimal combination of the process parameter after ACO-BPNN.

Condition Inlet-flow Volume (slm) Growth Temperature (K) Cavity Pressure (mbar) Deposition Rate (μm/h) Coefficient of Variation (%)

Standard Condition 100 1903 100 57.57 4.24
Optimized (Calculation) 135.28 1887.2 81.4 69.53 2.04
Optimized (Experiment) 135.28 1887.2 81.4 72.45 2.05
Improvement of Deposition Rate: 17.2 % and Coefficient of Variation: 51.88 %.
Error between calculation and experiment after optimized with ACO-BPNN: 4.03 % for deposition rate and 0.49 % for coefficient of variation.

Fig. 13. (a) Thickness distribution of experiment under ACO-BPNN condition and standard condition. (b) 4H–SiC epitaxial wafer and characterization points.

5. Conclusion
In this study, the 4H–SiC epitaxial growth numerical simulation of horizontal hot-wall “Epi-150” 4H–SiC CVD reactor was estab-

lished by the thermal-fluid-chemical multi-physics model. The influence of process parameters including inlet-flow volume, cavity
pressure, growth temperature, and rotational speed of the susceptor on the film quality was studied. Prediction and optimization be-
tween the combination of multiple process parameters and film quality were carried out by using the ACO–BPNN method. The con-
clusions are as follows.

(1) Under standard operating conditions, the deposition rate and coefficient of variation errors between numerical simulation
and experiment were 2.88 % and 1.65 %, respectively. This proved the feasibility of numerical simulation, and it can be
used for further optimization on both reactor design and growth process.



Fig. 14. Two-dimensional (2D) and three-dimensional (3D) 10 × 10 μm2 AFM image of the epitaxial wafer at characterizing point of (a) Left-1; (b) Center; (c) Right-1; (d) Up-1; (e) Down-1.

Z.Tangetal.
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Fig. 15. (a) XRD rocking curve spectra of the 5 points on epitaxial wafer. (b) EDS pattern of epitaxial wafer.

(2) For single-factor analysis, increasing the cavity pressure and growth temperature leads to poor film quality, while enhancing
the inlet-flow volume leads to superior film quality. The rotating susceptor improves the quality of the film compared with
the stationary susceptor.

(3) The BPNN was adopted as a prediction model to fit the nonlinearity relationship between the combination of process
parameters and film quality. The prediction results revealed that the BPNN exhibited superior performance in predicting the
deposition rate and uniformity. The ant colony algorithm was introduced to search for the optimal combination of process
parameters. Through ACO, the overall deposition rate increased by 17.2 % and the uniformity increased by 51.88 % compared
with the standard condition. Notably, the error between the optimized after ACO-BPNN and the experiment was 4.03 % for
the deposition rate and 0.49 % for the coefficient of variation. The average RMS value of surface roughness in the epitaxial
wafer was 0.177 nm. Through analysis of XRD and EDS spectra, the epitaxial layer has outstanding crystallinity.

These results proved that superior film quality could be achieved from this machine learning-assisted multi-physics simulation
method, which is valuable for future engineering applications in 4H–SiC epitaxial growth.
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