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Abstract—Federated Learning (FL) is a decen-
tralized machine learning approach that provides
a privacy-friendly way of training models by
keeping the datasets of participating parties pri-
vate. Some challenges FL faces are the lack of in-
centives to encourage participation in the learn-
ing process, as well as preventing potential cyber
attacks that tamper with the model. Blockchain
is an available solution that provides the means to
implement incentives to encourage participation
and issue penalties to disincentivize malicious be-
havior. Hence, recent developments introduced
blockchain-enabled FL (BCFL) designs for var-
ious applications. However, one obstacle that
slows down the widespread adoption of this tech-
nology is the high latency of blockchain networks
due to its laborious consensus protocols. In this
paper, we propose StateFL, a revised BCFL ar-
chitecture that uses state channels (a blockchain
scaling solution) in order to ease the load on the
blockchain by reducing the number of on-chain
transactions, improving the system’s latency, and
minimizing transaction fees as a result. State
channels are governed by smart contracts and en-
able two parties to exchange information and as-
sets off-chain unless disputes occur. Either chan-
nel party can dispute the state of the channel if
suspicious behavior is observed. In that case, the
dispute is settled on the blockchain. We evaluate
StateFL in a series of experiments to establish
latency improvements, identify bottlenecks, and
quantify the impact of disputes on channel la-
tency and transaction fees. The findings show
that the higher the number of FL rounds, the
more StateFL outperforms the baseline BCFL,
with the exception of a very low number of
rounds. In realistic FL scenarios, the rounds are
in the order of hundreds making StateFL a solid
contender even if disputes do occasionally occur.
The bottleneck of StateFL is the channel setup
and closure which require extensive interaction
with the blockchain.

1 Introduction

Machine Learning (ML) is an empowering mechanism
that drives the automation of a variety of tasks, becom-
ing an omnipresent technology in every branch of the
industry [1]. Some of the shortcomings of traditional
centralized ML is that training requires enormous
amounts of high-quality data and the process does not
provide data privacy [2]. To obtain an adequate amount
of data to perform ML, sourcing from different locations
or parties is likely necessary, while preserving the
privacy of data remains an open issue [3]. To mitigate
the data privacy issue, cryptographic methods such as
Differential Privacy [4], Homomorphic Cryptography
[5], and Secure Multi-Party Computation [6] have been
integrated with ML. The main challenges that come

with using cryptography in ML include compromising
model accuracy in favor of privacy, limitations in the
selection of models that are compatible with these
methods, and potential privacy leakages [2]. Hence, the
need for more robust and versatile privacy-preserving
ML motivated the development of a new approach to
perform ML, Federated Learning (FL), introduced by
Google researchers [7].

FL is a technique that enables training ML mod-
els while keeping raw user data on the user’s device to
preserve the privacy of the data. This is achieved by
performing the ML training locally and then sharing the
resulting model that is then aggregated with the results
from other FL participating users into a global model
[7]. While this approach preserves the privacy of the raw
user data, it also introduces new obstacles. Firstly, FL
comes with the cost of local computations and the use
of user resources. As a result, participation in the FL
training process might still not be attractive to users,
even though they would benefit from the improved
model. Secondly, FL lacks a defense mechanism that
prevents malicious user behavior that aims to disrupt
the system. As a result, recent developments have been
made that combine FL with blockchain [8] such that
participation in the process can be incentivized to not
only encourage contributions but also enforce honest
use of the system. This is achieved by rewarding partic-
ipants for contributions or penalizing them for detected
malicious behavior using cryptocurrency tokens and
game theory [9, 10].

Blockchained FL (BCFL) has been integrated into
various systems [11, 12, 13] with a wide range of
applications, in order to facilitate privacy of data
(with FL) and incentives (with blockchain by means of
peer verifications, incentives, and penalties). However,
blockchain, especially when deployed with proof-of-work
consensus (PoW), can become a performance bottleneck
and also requires significant computation and power
resources. As a result, the transaction processing times
and blockchain throughput are significantly higher (ten
transactions per second), when compared to custodial
payment systems, such as Visa, which can process
thousands of transactions per second [14]. Alternative
consensus algorithms, such as proof-of-stake (PoS) [15]
and proof-of-federated-learning (PoFL) [16], have been
proposed to improve the transaction processing rate and
latency. However, the consensus remains a bottleneck
that halted the widespread adoption of blockchain [17].
Thus, to overcome this challenge, payment or state
channel networks running on top of blockchain as a
layer-two protocol, are expected to greatly improve the
latency, resource utilization, scalability, and flexibility
of these systems [18]. Payment channels and state
channels allow two parties to create a temporary private
channel to exchange transactions without broadcasting
them to the blockchain [17]. Only the final balances
of the parties and channel state are broadcast to the



network as a transaction when the channel is closed.
Hence, this approach eases the load on the blockchain
network and lowers the fees because it heavily reduces
the number of transactions that need to be verified.

We propose StateFL, a revised BCFL architecture
that employs a layer-two protocol on top of the
blockchain to improve the latency of the BCFL system
by reducing the interactions with the blockchain. In
StateFL, state channels are established between the FL
server and each FL client, and information about the
model updates and aggregation is exchanged using the
channel. Thus, there is no need to publish intermediate
updates on the blockchain after each FL round, but
only when the FL process is complete and no disputes
occur between the server and the clients. Additionally,
clients are rewarded with cryptocurrency for their
contributions after each round of FL.

The main objective of this study is to determine
whether StateFL outperforms BCFL. To achieve this,
we designed a series of experiments to address the
following research questions (RQs):

e RQ 1: Is the latency of StateFL lower than a base-
line BCFL system?

e RQ 2: What bottlenecks exist in the BCFL and
StateFL systems?

e RQ 3: What is the impact of disputes on channel
latency?

e RQ 4: What is the impact of disputes on transaction
fees?

In summary, the contributions of this paper are:

e Proposing and implementing StateFL, a new sys-
tem design that incorporates state channels into the
BCFL architecture to improve system performance
and scalability.

e Evaluating StateFL by means of experiments mea-
suring the latency of the FL process and its steps,
as well as the time and fees required to set up and
settle channels.

e Analysing and comparing the bottlenecks and limi-
tations in StateFL, as well as the equivalent BCFL
system.

The rest of the paper is structured as follows: Sec-
tion 2 introduces the required background and related
work, Section 3 explains our system model and architec-
ture, Section 4 details our methodology and experimen-
tal setup, Section 5 reports our experiment findings, and
Section 6 concludes the paper and presents future work.

2 Background and Related Work

In this section, we introduce the fundamentals of
blockchain and federated learning. Afterward, we high-
light some of the challenges of federated learning and
how blockchain aids in mitigating them in BCFL sys-
tems. Further, we explore the limitations of blockchain

and identify potential solutions that also benefit BCFL
frameworks.

2.1 Introduction to Blockchain

A Dblockchain is a system composed of a peer-to-peer
network where the participants store and maintain a
ledger using a consensus algorithm to settle on the
current state of the ledger in a decentralized manner
[19]. The ledger takes the form of a data structure con-
structed as a series of blocks linked by a cryptographic
hash, each block containing a series of transactions,
though not necessarily financial transfers, but also
smart contracts [20].

Smart contracts greatly extend the versatility and
applications of blockchain technology since various
algorithms can be embedded into smart contracts and
deployed on the blockchain [21]. As smart contracts
allow the autonomous execution of arbitrary code,
decentralized programmable financial systems can be
implemented [22]. Hence, business models such as
equity crowdfunding, peer-to-peer lending, and online
insurance can run directly on the blockchain without
needing a central authority [23]. This is achieved by
translating each party’s underlying rules and obligations
for each scenario into a digital contract (smart contract)
that is then added to a block in the blockchain and later
executed and enforced.

There are two main types of blockchain systems:
permissionless and permissioned [20]. Permissionless
or public blockchains consist of a fully decentralized
network where any party is free to join or leave the
network and can read or write blocks to the ledger. On
the other hand, in permissioned blockchains, there is a
central authority that manages the access and the rights
of each peer in the network. Permissioned blockchains
can be further classified into private and consortium
blockchains, where the central authority is composed of
a single entity or multiple parties, respectively [8].

To agree on the current state of the ledger, decen-
tralized blockchain systems implement consensus
protocols. Some of the key consensus protocols used
in blockchains are proof-of-work (PoW), proof-of-stake
(PoS), and practical Byzantine fault tolerance (PBFT),
as well as variations of them, such as PBFT (dBFT) and
the delegated versions of PoW (DPoW), PoS (DPoS),
where the participants can vote on which miners get to
verify the next block [21]. A widely adopted consensus
algorithm used in blockchains is PoW [21], in which
nodes (miners) compete to propose blocks on the chain
by attempting to solve difficult cryptographic hash
puzzles. As a result, PoW requires lots of computations
and power to bookkeep the ledger, most of which are
wasteful [21]. In PoS, on the other hand, verifiers stake
a number of assets on the respective chain as collateral,
such that, if tampering is attempted and discovered,
the malicious verifier would lose their collateral. When



compared to PoW, PoS significantly improves compu-
tational resource use; however, its main flaw is that
the verifiers with the higher stakes are favored in the
selection process. DPoS and DPoW additionally include
a voting mechanism to elect the parties, verifying blocks
to make the process more democratic. Delegation
can also be used to improve efficiency and resource
allocation (bandwidth, power, etc.), as employed by
[24] and [25], both being implemented with DPoS. In
contrast to PoW and PoS, PBFT reaches consensus
more rapidly and effectively, although it requires more
than a third of the nodes to be trusted [26].

[8] and [20] presented the key properties of the
blockchain technology:

e Decentralization and public verifiability:  the
blockchain runs as a peer-to-peer network where no
central authority is in charge of the system, and the
network participants verify the state of the ledger
using consensus mechanisms.

e Transparency and traceability: updating the state
of the ledger is a transparent process required for
public verifiability, while the data on the blockchain
is also traceable to its source.

e Privacy: can be achieved; however, there is a trade-
off to be made between the degree of transparency
and the degree of privacy of a blockchain.

e Anonymity: this is achieved through encrypting pri-
vate information.

e Integrity and immutability: on-chain data is diffi-
cult to alter or tamper with due to public verifiabil-
ity.

From an architectural standpoint, blockchain can be
viewed as a layered architecture with four layers, namely:
the hardware layer, layer-zero, layer-one, and layer-two
[14]. The hardware layer corresponds to the hardware
environment in which the software is running. For se-
curity reasons, blockchains may run in a Trusted Exe-
cution Environment (TEE). The TEE is a secure pro-
cessing area that ensures confidentiality and integrity by
separating the software running in the TEE from the op-
erating system to avoid modifications from other (priv-
ileged) software processes [14]. Layer-zero, also called
the network layer, is responsible for the connections be-
tween the nodes of the blockchain network that follow
the peer-to-peer architecture, and it encompasses the
whole network stack as opposed to only the network-
ing protocols. The layer-one is the one responsible for
hosting the blockchain and ensuring its integrity by im-
plementing the consensus protocol. Finally, layer-two
allows for off-chain functionality running on top of the
blockchain and provides the opportunity to more easily
scale blockchain systems with channels, commit chains,
and protocols for referred delegation. Layer-two relies
on layer-one for the integrity of the blockchain and as-
sumes that transactions are added to the ledger within
a time-bound [14].

2.2 Introduction to Federated Learning

Federated learning is a technique used to build and
train machine learning models in a distributed fashion
across multiple devices that contribute to the same
ML task, without exchanging training data between
them. This method enhances privacy and prevents data
leakage [7]. Traditionally, there is a central federator or
aggregator that is in charge of orchestrating the process
by constantly updating and sharing the new model
with the participants, such that there is no need for the
end-devices to communicate with each other.

[3] identifies three FL categories according to the
structure of the end devices’ training sets, with respect
to the data samples and features: Horizontal Feder-
ated Learning (sample-based FL), Vertical Federated
Learning (feature-based FL), and Transfer Learning.
Horizontal Federated Learning applies when the partici-
pants use training data with the same feature space and
varying samples, while in the case of Vertical Federated
Learning, the set of training samples is the same
across devices, but the feature space differs. Finally, in
Transfer Learning, neither the samples nor the features
coincide between participants.

The workflow of FL consists of the following steps
[3, 8, 21, 27], extendable with an additional one if an
incentive mechanism is also available [10]:

1. Initialization and participant selection: a selection
of end devices is created by the federator, and an
initialized global model is distributed across them.
The selection can be random or based on the de-
vices’ capabilities and available resources in terms
of available battery power and the quality of the
network connection.

2. Local training: each participant trains the received
model with their local dataset and sends back pa-
rameter updates to the federator.

3. Aggregation and model update: the federator aggre-
gates the parameter updates from the participants
and updates the global model that is to be redis-
tributed for the next iteration of training. FedAvg
[28] is one of the potential aggregation algorithms
and works by simply having the federator average
the received parameter values from the clients into
the new updated model.

4. Reward allocation: based on individual contribu-
tions, the participants receive rewards from the fed-
erator. Although this step is optional, it encourages
contributions and can help prevent malicious behav-
ior from the participants [10].

To be resilient and robust, FL systems account for
the clients’ performance and resources in the selection
process [7]. Selecting clients with a stable network
connection, sufficient computational resources, and
enough power (or remaining battery) to complete the



training are needed for robustness and timely conver-
gence [10]. Furthermore, evaluating the submissions of
each client gives insight into the extent to which they
are contributing to the model. Therefore, factoring
the contribution into the selection process also makes
the FL more efficient. Additionally, if rewards are
allocated, the high-performing clients are incentivized
to continue to contribute, while enforcing penalties
prevents adversarial attacks aiming at poisoning the
model.

The effectiveness of the incentive mechanism, in
terms of participant selection, is based on game theory
concepts [10]. One type of model that suits FL setup
quite well is the Shapley Value [29, 30] in a cooperative
game [10] where the learning process is abstracted to
a game. In this case, the FL clients form a coalition
working cooperatively towards training and obtaining a
model that would benefit them all. Four main axioms
govern the Shapley Value [31]:

1. Efficiency: The total amount of rewards earned by
the coalition are redistributed among all partici-
pants.

2. Null player: Noncontributing participants receive
no rewards.

3. Symmetry: If two players contribute equally to all
subsets of a coalition, they are rewarded equally.

4. Additivity: The Shapley values of two different
games can be added together to represent a new
combined game where reward distribution remains
possible.

Thus, The Shapley Value makes the game centered on
fairness towards the participants based on the contribu-
tions they are making towards training the model (com-
mon goal), and it is highly applicable to the FL technol-
ogy. As a result, it has been integrated into some FL
frameworks in synergy with blockchains [9, 10, 32].

2.3 Challenges of Federated Learning and
a Blockchain Mitigation

Challenges and Limitations of FL

The main challenges FL faces are datasets that are
non-independent and non-identically Distributed (non-
IID), high communication costs, and vulnerability to
adversarial attacks [33]. Furthermore, in traditional FL,
the learning is centered around the federator, making it
a single point of failure that takes a toll on the system’s
resilience.

In the context of centralized ML, the dataset is
preprocessed, enhanced, and tailored to the model
being trained. Thus, assuming IID data in this case
is a sensible assumption [34]. However, in FL, the
preprocessing of data is not possible since it is stored at
different locations on the edge of the network. Hence,
the IID data assumption is no longer valid. Instead,
the training data is heterogeneous and non-IID. This

introduces a degree of incompatibility between the data
and the ML model since lots of models are built on
statistics that assume IID data. Furthermore, it makes
training and validating the models more difficult due
to the differences in data distributions between clients
that lead to slow convergence and high bandwidth
consumption [35], as well as an overall skewed dataset
resulting in accuracy loss [36].

Due to the continuous interaction between the fed-
erator and each client, the network traffic can be quite
demanding, which can lead to bottlenecks in the system
[33]. Next to that, in some scenarios, such as the
IoT, the clients have limited capabilities or unstable
connections, and that has significant effects on the FL
process [37, 38]. Therefore, recent FL research has
focused on addressing these types of issues, as well as
improving energy use. Zheng et al. [38] tackle the
network unreliability problem in highly dynamic and
mobile networks. The authors also highlight limitations
in offloading tasks to the network edge due to the
limited available bandwidth. The proposed solution
involves transfer learning as the learning approach,
which reduces training and communication costs while
increasing convergence time and accuracy. Addition-
ally, Stackleberg games are in place as a mechanism
for resource optimization [38]. Another approach to
save resources that received recent developments is
intelligently putting devices to sleep whenever possible
[39]. To address the common wireless communication
bottleneck, Mhanna and Assaad [40] propose a modified
gradient descent algorithm to ease the load on the
communication channel.

While FL strengthens client data privacy and can
achieve efficient performance by parallelizing the learn-
ing task across multiple devices, FL still faces some
challenges in its traditional setup. First of all, the trust
and transparency of the federator are not guaranteed
[21].  Second of all, the model is also vulnerable to
attacks and malicious behavior from the clients. As
characterized in [10], attacks on FL can include Target
Poisoning Attacks, Untargeted Poisoning Attacks,
and Free-Rider Attacks. Targeted Poisoning Attacks
consist of submitting a backdoor task in the model
without damaging the accuracy, while Untargeted
Poisoning Attacks mostly aim to deteriorate model
performance and cause a high misclassification rate.
Finally, Free-Rider Attacks simply use the model
without contributing to the training process, submitting
fake updates that do not significantly affect the model’s
accuracy. To prevent such attacks from occurring, the
federator could implement defense mechanisms to audit
and remove suspicious participants from the process [10].

Moreover, clients can also suffer as a result of data
leakage, which occurs when attackers can reconstruct
the dataset to some degree from the published param-
eter updates, hence revealing information about the



clients [33, 41]. According to [33], mitigating leakage
can be achieved through compression, by reducing the
information made available, encryption, or perturbation,
by adding random noise to sensitive information, using
techniques such as differential privacy. Each method
comes with advantages and disadvantages: compression
reduces the communication cost, but degrades the
model; encryption guarantees security, but it is costly in
terms of communication and computation; perturbation
guarantees the data privacy, but impacts the model
accuracy.  Differential privacy provides a balanced
trade-off between efficiency, accuracy, and data privacy
[4]. Therefore, it has been widely integrated into FL
frameworks [41].

Blockchain Mitigation

Despite traditional FL’s novel privacy-preserving ad-
vantages, the method is still facing challenges with
regard to trust between parties, malicious behavior,
and system reliability [3]. Wan and Hu [8] highlight
three open issues in the traditional FL framework. The
first problem is that the whole process is dependent
on the aggregator, who should be online and available
throughout the process, which introduces a single point
of failure in the system. Second, the lack of incentives
makes it challenging to encourage (honest) participation
from the clients. To this end, blockchain technology can
eliminate or at least alleviate some of the shortcomings
of traditional FL [8]. By combining blockchain with FL
in a BCFL framework, the single point of failure can
be eliminated, leaving the aggregation to be performed
by multiple clients. Additionally, the updates can also
be pushed to the blockchain and verified in the mining
process to make sure the model will contain valid data,
while the participants also obtain incentives for training
the model and verifying the updates, encouraging
(honest) participation [8]. Blockchain can also enable
sophisticated approaches to evaluate participants’
performance and protect against poisoning attacks [42,
43].

Wan and Hu also formally classified the BCFL ar-
chitectures in [8], according to the extent to which the
blockchain network is coupled with the FL network.
The three proposed categories are fully coupled BCFL
(FuC-BCFL), flexibly coupled BCFL (FIC-BCFL),
and loosely coupled BCFL (LoC-BCFL). More recent
studies also propose hybrid blockchain networks, i.e.,
combining private and public blockchains to increase
trust while reducing computational load [44].

In fully coupled BCFLs, the FL clients and blockchain
nodes coincide, i.e., the clients train the FL. model, push
updates to the blockchain, and also verify them and
maintain the blockchain, although not all nodes need
to participate in a verification or aggregation process.
As soon as the local model updates are verified, they
are added to a block and stored on the blockchain.
If an incentive mechanism is implemented, rewards

are distributed. Thus, without a central federator,
the single point of failure scenario is avoided, and
communication costs are reduced while privacy leakage
is prevented. However, the limited network bandwidth
can affect latency, and heavy computational resources
are also required to perform the FL and administer the
blockchain [8].

Flexibly coupled BCFL, on the other hand, keeps
the FL and the blockchain as separate networks. The
FL clients train the model with local data and submit
updates to the blockchain, while dedicated miners verify
them and can also aggregate the model and distribute
the incentives accordingly. By keeping the networks
independent, there is less traffic pressure than in fully
coupled BCFL; however, coordination between networks
could be challenging [8].

Similar to flexibly coupled BCFL, loosely coupled
BCFL relies on stand-alone blockchain and FL networks
where the FL clients send model updates to the miners
for verification. However, the aggregation is performed
by a central server that retrieves the verified updates
from the blockchain, performs the aggregation, and
shares the new model with the clients. Additionally,
the miners will calculate a reputation score for each
FL client based on the updates they submit such that
rewards or penalties may be applied [8].

BCFL frameworks have been proposed to be inte-
grated into various IoT systems and telecommunication
networks to increase their autonomy and robustness
[45]. [46] highlight the potential BCFL has to enable
intelligent transport systems to train ML models in a
trustless environment to improve the efficiency of trans-
port infrastructure, safety, facilities, and even energy
use. Furthermore, the applicability can be extended
to training autonomous car models, as indicated by
[47]. Additionally, [25] aims to improve the latency and
reliability of 5G networks with BCFL.

Recent research on the topic of BCFL has brought
various approaches to achieve more practical and
flexible BCFL environments to facilitate reliable FL.
Liu et al. propose the FedCoin framework [9], a
BCFL framework that implements Shapley Values to
distribute incentives. The framework separates the FL
and blockchain into two networks, as in the LoC-BCFL
model. In terms of workflow, an FL model requester
proposes a task to the FL network. Then, a centralized
FL server coordinates the model training and aggregates
the updates from the FL clients. Afterward, the FL
server posts a special task to the blockchain, containing
the set of all local updates, the aggregation function, and
the model loss function, such that the blockchain nodes
can compute each client’s contribution to the model.
The consensus is achieved using a custom protocol,
proof of Shapley (PoSap). Finally, the incentive is dis-
tributed among the clients, according to the established



Shapley Value (SV). According to the payment scheme
defined by FedCoin, at the start of the process, the FL
model requester deposits V FedCoins in the FL server in
exchange for a trained model. The V coins are divided
among the FL clients, FL server, and blockchain miners
as follows: TrainPrice (training payments to the FL
clients), ComPrice (aggregation computation price to
the FL server), and SapPrice (payments to the miner for
computing the SV). Moreover, the exact division of V
into the TrainPrice, ComPrice, and SapPrice amounts is
established by a pre-agreed smart contract. The authors
evaluated FedCoin to establish whether the scheme can
promote training the model with high-quality data and
whether PoSap consensus is computationally feasible.
The framework was evaluated through experiments that
trained models on the MNIST dataset with FedAvg
aggregations using the TensorFlow framework, while
the blockchain network was simulated in a Docker
environment. Finally, the hypothesis is confirmed, and
the authors show that PoSap can reach consensus within
an upper bound in terms of computational resources,
such that clients are incentivized to use high-quality
data in the training process.

Cheng et al. [42] propose a similar framework,
PoShapley-BCFL, that aims to achieve fairness and
robustness for FL. The authors formalize a custom
consensus algorithm, Proof of Shapley-Value, which
is conceptually akin to PoW as the miner computes
a Monte-Carlo-sampling enabled lightweight SV until
agreement is achieved. Furthermore, client selection
and aggregation are performed by employing a smart
contract. The clients are selected based on their SV,
and, in the aggregation process, a weight is assigned to
the client’s update according to the ratios of their SVs,
i.e., a weighted aggregation algorithm. Thus, the lower
quality updates are differentiated to better improve the
next iteration of the model and protect against attacks
[42].

Dias and Meratnia highlight, in [48], the single
point of failure issue of FL, as well as the poten-
tial blockchain has in mitigating it. Blockchain can
eliminate the need for a central aggregator and make
the aggregation process more transparent for the FL
clients, as parameter updates and aggregations are
stored in transactions on the ledger. Hence, the authors
propose, implement, and evaluate a BCFL framework,
BlockLearning: A Modular Framework for Blockchain-
Based Vertical Federated Learning. The framework is
designed to be modular and to easily accommodate
changes in the FL and blockchain algorithms and
protocols.  BlockLearning defines three roles within
the system, namely, trainers, aggregators, and scorers.
Furthermore, the roles can be assigned with flexibility
among the participants, and the assignment of multiple
roles per node is also possible. Thus, the framework
supports all three types of architectures defined in [8]:
FuC-BCFL, FIC-BCFL, and LoC-BCFL. Additionally,

there is a model owner that deploys a smart contract
to initiate the learning process. Then, the participants
are selected, and the trainers begin training and sharing
parameter updates on the ledger while aggregators
compute and share the aggregation results. The scorers
give each update a score based on a predefined metric to
evaluate individual contributions; however, this step is
optional. Lastly, the model owner pushes a transaction
on the blockchain that terminates the learning round if
consensus on the final state of the model is achieved.
Otherwise, the learning round fails. BlockLearning
is implemented for the Ethereum blockchain, and the
smart contracts are written in Solidity due to their
popularity and extensive technical support. Moreover,
the FL component is written in Python, as it offers
plenty of widely used ML libraries. The framework
is evaluated by means of simulations run in a Docker
environment. The authors trained a Split-CNN model
on the MNIST dataset and evaluated the framework’s
performance in terms of execution time, transaction
cost, transaction latency, model accuracy, convergence,
communication, and computation costs. A similar
study by Goh et al. [49] proposes and practically
develops a BCFL framework where the FL is governed
by Ethereum smart contracts. There is no central FL
server orchestrating the learning process, but the smart
contracts. There are three main roles in the process:
the trainers, the evaluators, and the aggregators. The
trainers download the initial model and train it with
their local data; then, they reference the model update
in the smart contract. Next, the evaluators download
the submitted model update, evaluate it, and enter a
score for each trainer in the smart contract. This is done
to potentially exclude low-performing updates or to
provide incentives for high-performing updates. Finally,
the aggregators update the global model according to
the new updates and record a reference to the model in
the smart contract. All models and parameter updates
are uploaded to the IPFS (InterPlanetary File System)
distributed file storage, and they are referenced by their
content identifier in the smart contract. Therefore,
all parties involved can access the data. Goh et al.
[49] mainly focused on verifying the framework for
functionality, proposed a performance evaluation for
future work, and suggested an off-chain approach as a
potential improvement.

2.4 Challenges of Blockchain and an
Off-Chain Mitigation

Challenges and Limitations of Blockchain

While the blockchain has the potential to mitigate some
of the FL’s challenges, it introduces other technical
challenges of its own. On the one hand, the Shapley
Value in a Cooperative Game can be implemented in FL
with the help of blockchain, which can prevent attacks
on the FL model and FL clients. On the other hand,
the blockchain’s security is vulnerable to other types of
attacks [50] such as the 51% attack (Sybil attack) [51],



mining pool attack [52], selfish mining [53], forking, and
double spending [54] and [55] to name a few. Thus,
it is necessary to implement appropriate defenses to
have a secure system. Additionally, state-of-the-art
research aims to find better existing defenses against
these attacks. Chen et al. provide a detailed overview
of blockchain attacks and defenses in [56].

Furthermore, blockchain consumes a lot of energy
to maintain the ledger, especially when consensus is
achieved with PoW [50]. Power consumption has been
an obstacle in the adoption of blockchain technology
to other fields, but also in scaling the network to a
large number. Due to how PoW consensus works, 51%
of the network’s miners need to agree on the state of
the ledger for the mining to continue. Because of this,
consensus in large networks takes longer to resolve,
making the blockchain slow and unable to scale, and
more and more energy is also required. Sharding, side
chains, and other consensus protocols such as PoS and
PBFT alleviate these issues. However, they are still far
behind custodian payment systems in terms of their
transaction execution rate [14]. Moreover, the consensus
protocol cannot be easily changed after a blockchain
network has been deployed and compatibility issues are
almost inevitable [14]. As noted previously, FL systems
might consist of devices with limited available resources
in terms of computation and available battery; hence,
considering the power consumption of the blockchain is
crucial for the efficiency and usability of the system.

Layer-2 Mitigation

Blockchain scaling solutions have been widely re-
searched, and several options have been proposed and
are taking shape and becoming available to developers.
However, there is no silver bullet solution to scaling,
since different security assumptions are in place between
solutions. The essence of the layer-two is to reduce
the load put on the blockchain and on the miners,
which results in a more efficient use of energy, improved
latency, and fewer fees by only putting only a summary
of the executed transaction on the main ledger [57].
Scaling at layer-one can be done through sharding
(splitting the blockchain into smaller blockchains)
and using alternative consensus mechanisms that are
more efficient, similar to the Ethereum 2.0 scalability
update for Ethereum [57]. At the layer-two, channels,
side chains, cross chains, and hybrid solutions can be
implemented and ran alongside the main blockchain,
as presented in the taxonomy of blockchain scaling
methods in [58].

Side chains are independent blockchains that are
anchored on the main ledger, allow for parallelizing
transaction executions, and reduce the load of the main
chain by validating transactions. The main feature of
side chains is the ability to transfer assets from the
main chain to the side chain by means of a two-way
peg, such that more exchanges (transactions) can take

place. One of the pitfalls of side chains is that they can
run into the same scalability issue as the main chain
[57], and it adds more complexity, as well as potentially
more attack vectors to the system [14]. Gangwal et al.
[58] identify two types of side chains: custodial and
non-custodial. In the custodial side chain, funds are
directly transferred to the side chain, and it executes
its chosen consensus protocol under a set of security
and trust assumptions, while non-custodial side chains
secure funds on the main chain via smart contracts.
Non-custodial side chains can be further distinguished
into commit chains and rollups [58].

Commit chains function similarly to channels, specif-
ically payment channel hubs. Furthermore, commit
chains are designed to tackle some of the limitations
in channels. In contrast to payment channels, an
(untrusted) operator manages the transactions be-
tween parties and periodically sends a commitment
to the main chain. Peers need to be online regularly
to check the main chain checkpoint commitments.
Moreover, commit chains run continuously, as opposed
to the three-state model of channels: establishment,
transitions, and dispute or closure [14]. Addition-
ally, the operator is governed by a smart contract
such that it cannot act maliciously, while the peers
lock funds on the main chain via the smart contract [58].

Rollups also rely on smart contracts to maintain
a Merkle Tree (Hash Tree) that bundles multiple
transactions together. Transactions are executed in
batches and maintained off-chain in the Merkle Tree
to significantly improve storage and latency, while
only the root of the Merkle Tree is updated on-chain
via the smart contract [58]. When it comes to the
transaction validation process, two types of rollups can
be distinguished: optimistic rollups and zk rollups.
Optimistic rollups do not verify transactions unless
there is a challenge is requested by submitting a proof
to the chain showing that fraudulent transactions exist.
Afterward, the contract reverts the transaction batch
and the subsequent batches in question. In contrast,
zk rollups verify every batch of transactions with zero
knowledge (zk) proofs constructed with zk-SNARKs [58].

Cross chains act as bridges between blockchains
that allow transferring assets from one chain to another,
for instance, from Bitcoin to Ethereum. Hence, the
cross-chain mediates inter-blockchain transactions and
helps establish mutual trust between users that hold
assets on different blockchains [58].

The taxonomy in [58] identifies two hybrid solu-
tions that change the underlying properties of off-chain
solutions to improve scalability further. Firstly, bi-
section protocols aim to address dispute resolution
happening on-chain and allow it to be outsourced
off-chain in order to reduce the load on the main
blockchain further [58]. Secondly, Trusted Execution



Environments (TEE) [59] allow the blockchain software
to run on physically isolated hardware from the rest of
the operating system, improving security by guarantee-
ing integrity and confidentiality. Next to that, it adds
a layer of trust such that participants are no longer
required to lock collateral on the blockchain, and the
fees to the miner are ensured [14]. Additionally, TEE
can be used with any blockchain system, and it can also
parallelize disputes [14].

Channels are bidirectional connections between two
peers that allow interactions between the two parties
while conforming to a set of rules. Channels can come
in the form of payment channels [60] or state channels
[61], where the rules of payment channels support the
exchange of assets between two parties, while state
channels generalize asset exchanges to arbitrary inter-
actions with smart contracts for extended functionality
[14]. Both payment channels and state channels have
the same lifecycle consisting of three stages: channel
establishment, state transition, and closure or dispute
(in case the parties disagree on the state of the channel).
When establishing a channel, the parties involved lock
a certain amount of collateral on the blockchain, which
can be then used to transfer funds off-chain over the
channel. During state transitions, any of the parties
propose a channel update (which can entail an asset
exchange), and then the other party signs it with their
key to indicate agreement. A dispute is raised and
resolved on the layer-one blockchain if a party chooses
not to sign. A state transition or state replacement in
the channel environment is equivalent to a transaction
[58]. Finally, when there is no further use for a channel,
the parties may close it, and a transaction is sent to the
blockchain such that the ledger is in concordance with
the final state of the channel [14].

The main techniques used to replace channel states
are Replace-by-Incentive (RbI), Replace-by-Timelock
(RbT), Replace-by-Revocation (RbR), and Replace-
by-Version (RbV) [14, 58]. In the case of RbI, the
sender of a transaction announces a new state while
also providing an incentive for the other parties that
sign, and the higher the incentive, the more likely it is
that the proposed state is accepted [58]. RbT works
by assigning each state a time lock that is decremented
with every change, and the state with the lowest lock is
accepted as the new one [14]. RbR provides the means
to revoke a state that has been put on the blockchain;
however, for the revocation to take effect, the parties
need to agree on the new state within a time frame
defined by the main blockchain [58]. When RbV is
used, a version number associated with each state is
incremented at every change. Hence, the higher the
version number, the more recent the state, and the most
recent state is agreed upon [14, 58].

Furthermore, Payment Channel Networks (PCN)
[62] and State Channel Networks [61] can facilitate

payments and smart contracts between parties that
are not directly connected, but they both can be
reached via an intermediary node. The channel net-
works increase the connectivity between parties and
can be used to lower the overall cost of setting up
channels [14]. For brevity, the technical details of
channel networks are not elaborated upon since they are
not a key element of the research presented in this paper.

To sum up, layer-two is designed to be orthogonal
to layer-one, to be compatible with any blockchain [14].
Thus, when scaling becomes a problem in an existing
system where changing the fundamental elements of the
blockchain is not possible, layer-two scaling is available
without significant system changes.

In the context of BCFL, a blockchain scaling solu-
tion is expected to significantly improve the system’s
latency, allowing for a much more efficient training
process. Upon comparing the off-chain solutions syn-
thesized in [58], channels are the most fitting since
they provide high-speed transaction execution at very
low fees, without cumbersome temporal requirements,
and offer support for smart contracts, which is highly
valuable for future system expandability.

3 StateFL: System Overview

In this section, we define our system model, underlying
assumptions, and network structure, followed by the ar-
chitecture of StateFL.

3.1 System Model

The interconnection structure of the network follows
a star shape, with a central federator serving as an
orchestrator for the learning process. This design
provides efficient routing and coordination among
the network participants. Network links utilize TCP
for communication, which guarantees several key
properties. Firstly, messages sent are ensured to be
received without loss. Secondly, received messages are
guaranteed to be correct, without any damage. Thirdly,
the FIFO property ensures that messages sent along a
single connection are received in the order they were
sent.  Although TCP connections may break, such
incidents are detectable. However, whether the other
party is synchronized is uncertain, as acknowledgments
are not received.

Moreover, finite and bounded delays characterize
the network’s message transmission. Messages sent
along a link, assuming they are not lost, are received
within a finite amount of time. Additionally, there
exists a known upper bound on the delay experienced by
messages, ensuring bounded delays even when messages
are not lost.

Synchronous communication is fundamental to the
network’s operations and StateFL assumes synchrony



in communication rounds. Participants synchronously
engage in communication rounds, such as FL rounds.
Moreover, state channels in the incentive network
require synchronous turn-taking between the channels’
actors, enforced within the channel protocol. Synchrony
is also an assumed property of PCNs from which our
incentive network is theoretically derived.

The network also operates on certain security as-
sumptions. Communication within the network is not
encrypted, but chain transactions are signed with the
account keys of the parties involved, ensuring authen-
ticity. Participants are expected to behave rationally
within the network’s protocols. However, privacy and
confidentiality are not provided by default. A rational
adversary may attempt to manipulate the blockchain;
however, such actions are mitigated through signatures.

During the FL process, we assume the parties to
behave rationally.  Using a Shapley Value reward
system can enforce this behavior since the FL clients
are rewarded when submitting adequate data and
potentially penalized when submitting inadequate data.
This Shapley Value scheme can also be extended to
include the server side by having nodes verify the server
aggregations. This can be achieved using a quorum
of nodes recomputing the aggregation and checking it
against the submitted one. Depending on the outcome,
a penalty or reward can be allocated to the server that
submitted the aggregated model. This is viable in a
system with multiple FL servers with a pool of clients
that also verify aggregations with a custom distributed
verification process or consensus to evaluate server
aggregations, such that there is no need to trust the
FL servers. Therefore, rational behavior is a sufficient
security assumption in this context since the Shapley
Value scheme prevents attacks that follow non-rational
behavior. As this paper is not highly focused on the
security aspect of the system, the implementation of
the Shapley Value incentive protocol and the custom
consensus is proposed as future work. Our experiments
focus on evaluating the feasibility and performance of
using state channels in the FL context.

3.2 System Architecture

The architecture of StateFL resembles the loosely
coupled BCFL formalized in [8] that relies on a sep-
arate blockchain network and an FL network where
the FL clients send model updates to the miners
for verification. According to [8], the advantages of
loosely coupled BCFL are that the networks are fully
independent, and the dataset is better retained on the
clients. The separation also contributes to modularity.
This architecture is more likely to be encountered in
practice when commercially available public blockchains
are chosen. Our system consists of an FL network
that implements the traditional FL workflow and a
blockchain that runs state channels on top of the ledger,
which we call an incentive network. As such, the FL
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server opens one channel with each FL client before
starting the learning process. The FL clients and server
are connected to a state channel client where they post
updates about the ongoing process, and, at the end
of each round, a payout is made to the contributing
FL clients. Upon completing the learning process,
the channels are closed, and the updated balances are
reflected on the blockchain via transactions signed by
both the clients and the server. An overview of the
system architecture is visualized in Figure 1.

FL Network Incentive Network

FL Server ﬁ
 —
State

Channel channel Channel
Client Client

FL Clients

Blockchain

J00

¢

Figure 1: System Architecture

The FL algorithm is adjusted to integrate commu-
nication between the FL network and the incentive
network via WebSocket so that the FL clients and
server can interact with the state channels. As such,
the round-based FL workflow is reflected in the state
channel interaction. To illustrate the state channel-level
workflow, we modeled the states that the channel
transitions through during the FL process in the finite
state machine presented in Figure 2. First of all,
the FL server indicated the number of rounds to be
had in the FL process, and a reference to the model
is also provided. Since ML models are substantial
in size, they are stored on the IPFS distributed file
system and referenced by a content identifier, which
is a cryptographic hash of the content. Second, the
FL client uploads the updated model parameters to
IPFS and sets the weight field in the state channel with
the respective content identifier. Third, the FL server
aggregates and evaluates the new model and provides
performance metrics in accuracy and loss. Finally,
when the round ends, the FL client receives a reward,
and the process either continues to the next round or
stops if the agreed number of rounds is reached. If the
client does not provide a parameter update within a set
time interval, it times out to prevent the workflow from
stopping before continuing to the next round. The FL
clients are paid per round instead of per workflow, to
accommodate incidents such as failures that can cause



the client to become unresponsive and time out. Thus,
the FL clients are still compensated for their partial
contribution to the end model.

!

‘ Share initial model ‘

Set model and number of rounds

‘ Waiting for parameter

updates
Setweights  round < number_of_rounds
(Waiting for aggregation

Set accuracy and loss

‘ Client payout

Figure 2: State Channel FSM

The state channel stores a reference to the ML model
being trained and the client model updates, as well as
performance metrics of the newly aggregated model.
The performance metrics slots can be used to estimate
the client’s contributions to the aggregated model that
allows for game theory approaches such as cooperative
games with Shapley Value.

Implementation-wise, the FL network is implemented
with the Flower framework, written in Python, which
supports large-scale heterogeneous FL (up to approxi-
mately 15M clients) [63]. Furthermore, Flower is ML
framework-agnostic and allows custom implementations
of aggregation algorithms. In addition, it supports de-
ployment on edge devices and simulations on single-node
or multi-node compute clusters [63], thus making it a
versatile framework suitable for research experiments
and practical applications.

On the incentive network front, the state channel
infrastructure that our system is built upon is developed
using the Perun framework [64], written in Go. Perun
supports fast off-chain payment and state channels
that parties can use to transact without interacting
with the ledger, unless disagreements require dispute
resolution. When disputes occur, the network relies on
the blockchain consensus to resolve the dispute. In our
case with state channels, the state channel falls back
on the smart contract that governs it to make sure
the channel can be settled fairly. Hence, our ledger is
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an Ethereum blockchain running in the Ganache test
environment [65] with smart contracts written in the
Solidity programming language. The aforementioned
execution flow presented in Figure 2 is implemented
both at the channel level and the blockchain level in
the form of a smart contract to resolve disputes via the
consensus mechanism.

4 Methodology and Experimental
Setup

This section details our methodology, followed by

specifics of the experimental setup.

4.1 Methodology

To answer our research questions, we implemented a cus-
tomizable FL testbed using the Flower FL Framework
[63]. The testbed supports configuring an ML model,
providing the number of federated learning rounds and
the number of clients that should participate in the
learning. Additionally, incentive methods and parame-
ter storage methods can be toggled on or off. As such,
to establish the performance of our proposed system,
we compare the latency of three system architectures:
a traditional FL system with no incentives, a BCFL
system with an Ethereum blockchain (baseline), and
a BCFL system with state channels (StateFL). The
traditional FL system is measured for further reference
as it represents the lower bound for latency since it runs
FL without additional processes or functionalities such
as incentives and storage.

The baseline BCFL system we compare StateFL
against follows the same execution flow as StateFL.
The difference lies in the fact that StateFL stores
the ML model, evaluation metrics of the model, and
the IPFS references in the channel state until closure,
while BCFL stores commits of all intermediate values
in a smart contract transaction. Thus, when the FL
begins, the server initializes a smart contract instance
with each client, and, as the learning progresses, the
values of the contracts’ attributes are updated through
a transaction. First, the initial model and number of
rounds are specified at the creation of each contract.
Then, during each round, the server sets the IPFS
references of parameter updates received from the
clients, as well as the reference of the aggregated model
from that round. Finally, at the end of the round, the
server transfers a reward in ether cryptocurrency (ETH)
to each client that participated in the FL. Both StateFL
and the baseline BCFL use the same type of blockchain
with the same configuration, a Ganache Ethereum test
network. To simplify the complexity of the baseline
BCFL system, we assume that, from an attack model
perspective, the server is a trusted third party, hence the
only party with access to the smart contract. Therefore,
the smart contract will be able to store data relevant to
the model in the ledger, and the client receives a reward
after completing each round, similar to StateFL. The



smart contracts are implemented in Solidity version
0.7.0, and the BCFL accesses them through the Python
Web3 library [66].

To quantify system performance and answer RQ 1
and RQ 2, we investigate the latency of the following
processes and define the following metrics:

e Training per client = The mean time the clients
spend training throughout the entire FL process.
The mean is calculated per client.

e Aggregation per round = The mean time with re-
spect to rounds that the server takes to aggregate
the parameter updates of the clients.

e Completed FL round = The mean time takes to
complete an FL round averaged over all rounds.

e FL process = The FL time from start to finish, i.e.,
since model initialization until completing the last
round.

e Channel opening time = The time the server takes
to open a channel with all clients.

e Channel settling time = The time the server takes
to settle the channel with all clients.

e End-to-end (E2E) time = The time it takes to com-
plete the FL process and settle transactions on the
blockchain (if applicable).

To answer RQ 3 and RQ 4 we compare the latency,
transaction fees, and number of on-chain transactions
of StateFL channels from and including set up until the
closure is concluded. This comparison is conducted un-
der two scenarios: when no disputes occur and when
disputes occur with a specified probability.

4.2 Experimental Setup

The experiments were conducted on a computer with
an Apple M1 Pro SoC and 32 GB RAM. The evalu-
ation testbed and data analysis software used for the
experiments can be found at [67]. The FL state chan-
nel application can be found at [68]. A simplified ver-
sion of the FL state channel application used for test-
ing and development purposes is available at [69]. The
more complex version provides command-line interfaces
as separate processes to interact with the state channel
client, while the simplified version executes prescripted
instructions.

RQ 1 and RQ 2

The input parameters of our experiment design for RQ
1 and RQ 2 are the number of FL clients, the number
of federated rounds, and the FL system in use. We run
our experiments with a varying number of clients {2, 5,
10, 25, 50} and rounds {1, 5, 10} for each of the three
systems {FL, BCFL, StateFL} following a full factorial
design of experiments for the selected values.

In our experiments, we use the CIFARI10 and the
LeNet-5 CNN model [70] implemented in Pytorch [71].
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Since this paper is not focused on investigating the
ML side of the system, a simple CNN model that
trains in a short amount of time is suitable for our
purposes. Furthermore, the FL clients receive the same
model and have equally sized datasets. The IPFS
storage node is available as a Docker container, and the
version used is IPFS version 0.7.0. Network latency
is simulated by artificially delaying transmissions on
each network link by a randomly sampled value from
the PlanetLab Network Latency Dataset released in [72].

To mitigate the misleading effects of variations in
latency due to randomness, the experiment is repeated
for each set of input parameters 10 times, and the
mean values of the 10 runs constitute the final results
illustrated in the upcoming section. Two-tailed ¢-tests
are performed to check if the difference in latency
between systems is statistically significant. Formally,
we compute the difference of two means statistical
tests with two independent samples of size 10 (StateFL
and BCFL). Since the sample size is small, we use a
t-distribution and an alpha of 0.05.

RQ 3 and RQ 4

Since the scope of RQ 3 and RQ 4 is centered solely
on the channel, we simplify our setup and exclude the
FL process, focusing only on the incentive network
of the system. Further, to obtain a more accurate
measurement we study the latency, fees, and number
of transactions on a single link between two parties.
We peruse this approach under the assumption that
the blockchain does not experience congestion that
delays transaction processing or raises transaction
fees. Additionally, if the incentive network is employing
channels for all blockchain interaction, the no congestion
assumption is sound to make since it is highly unlikely
to occur in practice.

The input parameters for this experiment are the
probability p under which a dispute will occur {0, 0.25,
0.5, 0.75, 1} (for RQ 3 only) and the number of rounds
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (for both RQ 3 and RQ
4). The number of rounds is the only parameter of
the channel that influences its runtime and on-chain
fees in case of disputes, while the others are related
to the model identifier and accuracy and loss scores,
thus, they are excluded from the analysis. Similar
to the experiments of RQ 1 and RQ 2, 10 latency
measurements are taken, and the mean value accounts
for the final result we perform the measurements with
no disputes and with 100% disputes. The latency
with intermediate dispute probabilities is calculated
by computing the mean of 10 randomly sampled data
points where p% of them are latencies measured with
100% disputes while the remaining (1—p)% are latencies
measured without disputes. Averaging latencies using a
proportion of measurements with no disputes and 100%
disputes mirrors the results of running experiments with
intermediate probabilities because the random sampling



statistically represents the expected distribution of
dispute occurrences, ensuring equivalent outcomes.

5 Analysis of Results

In this section, we report the results of our experiments
and aim to answer the research questions formulated in
the previous section. We dedicated an individual sub-
section for each research question.

5.1 RQ 1: StateFL latency analysis

The latency of StateFL compared to BCFL and tra-
ditional FL is shown in the figures in Appendix A.
Additionally, Figures 3, 4, and 5 illustrate the cumu-
lative time spent in each step of the process: training,
aggregating, and channel opening/closing (for StateFL).
Noticeable differences between StateFL and BCFL can
be seen in the aggregation time (Figure 10), mean round
time (Figure 12), mean FL time (Figure 9), and E2E
time (Figure 8). StateFL performs significantly better
in aggregation time, round time, and FL time where it
is quite close to the FL system. In E2E time, however,
BCFL has better results when the number of rounds
is low, but StateFL outperforms it when the number
of rounds is higher. In contrast, the difference in mean
training time (Figure 13) is not as pronounced, as
expected, since interaction with the incentive network is
minimal and only present on the client side for StateFL.
Clients updating weights in the state channel do not
create blockchain transactions unless there is a dis-
pute, thus, setting the channel’s state is a fast operation.

The most noticeable difference in latency between
BCFL and StateFL is in the aggregation time (Figure
10) where BCFL takes from ~ 18 s for 2 clients and
1 round until &~ 9 min for 50 clients and 10 rounds
Vs 2.5 s and ~ 27 s in StateFL. This difference is
reflected further in round time (Figure 12) since the
long aggregation time of BCFL causes rounds to take
longer from ~ 55 s until ~ 18 min vs ~ 30 s and ~ 6
min in StateFL for the same configurations. The effect
is further propagated to FL time (Figure 9) as longer
rounds cause the FL to take longer from ~ 38 s to ~
130 min vs & 22 s to &~ 47 min in StateFL. The E2E
time, however, displays a different trend because of
the channel setup and closure that happens before and
after the FL process in StateFL. In Figure 8 we observe
that BCFL performs better when the number of rounds
is low (< 5), while StateFL performs better when the
number of rounds is higher (> 5). When the number
of rounds is 5 BCFL and StateFL tend to have similar
performance.

~
~

~
~

~
~

We confirm these observations with a two-tailed t-
test to determine the statistical significance of the
differences in latency between the two systems. An
alpha of 0.05 is chosen, meaning that p-values smaller
than 0.05 are considered statistically significant. The
t-test results are shown in the tables in Appendix A.
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Table 3 shows some significant differences in training
time with StateFL taking longer than BCFL in most
cases, however, this does not hold for every configuration
(10 clients and 10 rounds, as well as 25 clients and
10 rounds). As there is no apparent trend, this likely
occurs due to randomness in process scheduling. Tables
4,5, and 6 confirm significant differences in aggregation
time, FL time, and round time, respectively, attributed
to the FL server waiting for the transaction updating
the smart contract attributes. Table 7 highlights a
significant difference in E2E time, with StateFL being
slower when the number of rounds is 1 or the number
of clients is below 5. There are no significant latency
differences when the number of rounds is 5 and the
number of clients is 10 or higher. StateFL significantly
outperforms BCFL when the number of rounds is above
5 and the number of clients is 10 or more. This is be-
cause StateFL interacts with the blockchain only when
the channels are created and closed and not in between
rounds, thus, adding more rounds to the FL does not
affect the latency of the FL network. The latency of the
incentive network in StateFL increases with the number
of clients because of the number of channels to open
and close, as there is 1 channel per client. In contrast,
in BCFL, the server updates the smart contracts and
issues coin transfers for each participating client at the
end of each round. Hence, more rounds and more clients
result in more blockchain interactions and higher latency.

In summary, StateFL generally performs better
than BCFL, especially in scenarios with higher numbers
of rounds, due to its efficient channel operations that
minimize blockchain interactions during the FL process.
BCFL, on the other hand, shows better E2E time
performance with fewer rounds as StateFL experiences
increased latency due to the need to open and close more
channels. BCFL’s latency increases more noticeably
with the number of rounds and clients due to frequent
blockchain interactions.

5.2 RQ 2: BCFL and StateFL bottlenecks

In the case of BCFL, the server aggregation process
is the main bottleneck. As the number of FL rounds
and clients increases, system latency also rises. This is
demonstrated when examining the proportions of time
spent training and aggregating, FL time, and aggrega-
tion time in Figures 4, 9, and 10. The bottleneck occurs
because the server must sequentially update a smart
contract instance with each client’s new information and
initiate a coin transfer. Consequently, more clients and
rounds lead to more time spent on aggregation. When
this process is inherently slow, the latency significantly
compounds over time. This effect is clearly shown when
comparing Figures 3 and 4, where BCFL’s aggregation
time is significantly higher than that of FL.

In contrast, for StateFL, the number of rounds
has little impact on the system’s latency resulting from
the addition of incentives. When comparing Figures 9,
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Figure 5: Proportion of time spent opening/settling channels, training, and aggregating in StateFL
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10, 12, and 13 between StateFL and the FL system, the
differences in latency are not substantial. However, the
E2E time, shown in Figure 8, reveals more pronounced
latency differences due to the additional channel setup
and closure times. The main bottleneck in StateFL is
the process of opening and settling channels, which in-
creases with the number of clients since this determines
the number of channels in the system. This effect is
visualized in Figure 5, where data points with 1 and 5
rounds show more time spent on setting up and closing
channels than on training and aggregating. Therefore,
this bottleneck is primarily influenced by the number
of clients. However, it is alleviated when the number
of rounds is high (10 or more), as the benefits of more
rounds outweigh the setup costs.

5.3 RAQ 3: disputes’ impact on latency

Our experiments recorded a channel opening time
of approximately 5 seconds and a closure time of
approximately 15 seconds. If no disputes occur, the
channel can transition between states in the order of
milliseconds. However, when disputes occur, the num-
ber of on-chain transactions that need to be processed
increases, which adds more delays. In case no disputes
occur, 8 transactions are recorded on-chain to deploy
the smart contracts, open, and settle the channel. One
aspect worth noting is that there is an initial one-time
cost of approximately 14 seconds to deploy the state
channel smart contracts on the blockchain before any
channels can be opened.

Table 1 presents the number of FL rounds the channel
recorded, channel latency when transitioning states
until closure, and the number of on-chain transactions
(TX) when disputes occur in every FL round. We can
observe that with each added FL round, 2 on-chain
transactions are added to the total count, and that
results in approximately 10 extra seconds in latency.
The transactions correspond to a dispute from the client
and a dispute from the server when setting the model
weights and aggregating. This indicates a linear increase
in latency with the number of rounds. As a result, the
latency values for higher numbers of rounds can be
predicted using linear regression. One detail to note is
that there is an increase of 3 transactions between the
no disputes configuration and one disputed round. The
extra transaction accounts for registering the channel
dispute on the blockchain as a separate transaction,
which contributes to additional dispute setup latency
when initialing the first dispute on a channel. This
initial transaction is made to register the channel state
on the blockchain and serve as a starting state for the
on-chain verification process.

In Figure 6 we observe two graphs illustrating the
linear regression functions of latency with respect to the
number of rounds and the frequency of disputes. The
first graph plots the channel state transitions, while the
second also includes channel opening and closure. We
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Table 1: 100% Disputes Latency and TX Count

| Rounds | Latency (s) | TX Count |

1 25.82441637 11
2 35.17835116 13
3 45.25600481 15
4 55.38022993 17
5 65.46270877 19
6 75.56843389 21
7 85.60973508 23
8 95.73326700 25
9 105.82886574 27
10 116.04423808 29

plot distinct functions in the cases when disputes do not
occur at all, they occur in 25%, 50%, 75%, and 100%
of rounds. Additionally, we also plot the latency of the
blockchain and smart contract from the BCFL system
for comparison. As expected, the channel with no
disputes’ function increases insignificantly compared to
the others, due to the difference in magnitude, while the
channel with 100% disputes function grows the fastest
out of the channel functions. The blockchain from the
BCFL presents the highest slope but performs better
than the channels with disputes when the number of
rounds is low (< 6). The main reason for the steeper
increase is because in the BCFL system transactions
are made to set the model weights, aggregation results,
and coin transfer reward to the client after each round.
In contrast, in StateFL the client funds are withdrawn
from the channel to the blockchain only when the
channel is settled, as opposed to after each round. In
realistic FL scenarios, the number of rounds is in the
order of hundreds, thus, channels provide a substantial
latency improvement, even if disputes do occasionally
occur.

5.4 RQ 4: disputes’ impact on TX fees

Table 2 presents the number of FL rounds the channel
recorded, the total gas usage of the blockchain, and the
number of on-chain transactions when disputes occur
in every FL round. With every transaction, we observe
an increase of approximately 0.0010 Gwei in the total
gas usage of the network, where 1 Gwei is one-billionth
of 1 ETH. Since each disputed round increases the
total transaction count by 2 transactions, we identify a
linear trend in gas usage with respect to the number of
disputed rounds in the channel. This trend is visualized
in Figure 7 where the network gas usage is plotted with
respect to the number of rounds.

When no disputes occur, the network registers a
gas usage of 0.005385 Gwei for 8 transactions and
stays the same regardless of the number of rounds,
since more rounds do not generate more transactions,
unless disputes are initiated. The initial 3 transactions,
amounting to 0.005019 Gwei in fees, correspond to the
one-time smart contract deployment required before
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we analyze the impact of disputes on channel latency,
40 as well as transaction fees.
20 StateFL outperforms BCFL in scenarios involving
2 4 6 8 10

Number of Rounds

Figure 6: Linear regression functions of the channel
latency according to the number of FL rounds and
dispute probability

opening channels. This highlights the financial benefit
of using channels over on-chain operations for FL as
they reduce the number of transactions on the network,
but also the load, which results in lower fees and fewer
transactions.

1 2 3 4 5 6 7 8 9 10

Number of Rounds

0.00750
0.00725

T 0.00700

0.00600

0.00575

Figure 7: Total blockchain gas usage with disputes
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a high number of FL rounds (generally > 5) because
of its efficient off-chain interactions. BCFL experi-
ences a bottleneck on the FL server side due to the
frequent blockchain interactions required for smart
contract updates and coin transfers that happen during
the aggregation stage at the end of every FL round.
Thus, in the case of BCFL, the long aggregation leads
to longer rounds and subsequently longer FL time,
and the latency increases with a higher number of
clients and rounds. StateFL, however, experiences a
bottleneck during channel setup and closure which
increases with the number of clients, irrespective of the
number of rounds. The performance gains from reduced
blockchain interactions become increasingly significant
as the number of rounds rises. Thus, in typical FL
scenarios with hundreds of rounds, the benefits of
using state channels outweigh the cost of opening and
closing channels and even the cost of occasional disputes.

In our investigation of the impact of disputes on
latency and gas usage, we found that both metrics
increase linearly with the number of FL rounds. Each
disputed round adds 2 on-chain transactions with a
transaction fee of approximately 0.0010 Gwei. The
fact that both parties involved in the channel need to
contribute to the transaction fees desensitizes the misuse
of this mechanism by rational participants. StateFL has
the potential to reduce the load on the blockchain by
offloading transactions to state channels which results
in a much lower number of transactions and, as a result,



gas usage. However, one downside of channels in the FL
context is that client rewards are accessible only after
closing the channel.

To further improve StateFL, we propose implementing
additional security measures to protect against poten-
tial attacks to ensure the robustness of the StateFL
framework. Since we focused our attention on StateFL
from a systems performance perspective, ironing out
the security-related details fell outside of the scope of
this paper. On the FL network front, improvements
can be made by adding mechanisms to prevent data
leakages, such as differential privacy [4]. This addition
would make it difficult to infer information about the
dataset from model updates. Moreover, model poisoning
attacks, free-riding, and other malicious behavior can be
prevented using Shapley Value-based smart contracts
distributing rewards or penalties among clients based on
their input [10]. Furthermore, designing a mechanism
verifying the correctness of the server’s aggregation
process would also enhance trust and reliability in the
FL system. This refinement would provide the means
to hold accountability for both the server and the
clients. Lastly, to obtain more accurate measurements
of StateFL’s latency we propose experimenting on a
distributed network. Thus, delays due to network
latency would be captured more accurately.
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A APPENDIX
A.1 T-test Tables

Table 3: T-test on Mean Training Time

| (#C, #R) | p-value | t-value | significant |

(2, 1) 0.962 | 0.048 False
(2, 5) 0.000 | -5.035 True
(2, 10) 0.000 | -7.848 True
(5, 1) 0.026 | -2.425 True
(5, 5) 0.000 | -10.740 |  True
(5, 10 0.000 |-18.114 | True

)
(10, 1) 0.037 | -2.251 True
(10,5) | 0.134 | -1.511 | False
(10, 10) | 0.000 | 4.980 True
(25,1) | 0.043 | -2.178 True
(25,5) | 0.686 | -0.405 | False
(25,10) | 0.000 | 6.896 True
(50,1) | 0.002 | -3.571 True
(50,5) | 0.143 | -1.477 | False
(50, 10) | 0.120 | -1.560 | False

Table 4: T-test on Mean Aggregation Time

| (#C, #R) | p-value | t-value | significant |

(2, 1) 0.0 86.751 True
(2, 5) 0.0 81.857 True
(2, 10) 0.0 | 69.009 | True
(5, 1) 0.0 |100.240 | True
(5, 5) 0.0 140.923 True
(5, 10) 0.0 | 124915 | True
(10, 1) 0.0 |136.335 | True
(10, 5) 0.0 193.528 True
(10, 10) 0.0 |230454 | True
(25, 1) 0.0 |188.802 | True
(25, 5) 0.0 | 95.378 | True
(25, 10) 0.0 |206.349 | True
(50, 1) 0.0 |422501 | True
(50, 5) 0.0 |348.368 | True
(50, 10) 0.0 | 44334 | True

Table 5: T-test on FL Time

| (#C, #R) | p-value | t-value | significant |

(2, 1)
(2. 5)
(2, 10)
(5, 1)
(5,5)
(5, 10)
(10, 1)
(10, 5)
(10, 10)
(25, 1)
(25, 5)
(25, 10)
(50, 1)
(50, 5)
(50, 10)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

85.780
52.103
32.739
45.575
67.052
69.308
30.854
40.799
66.774
62.492
59.192
59.991
63.229
52.662
48.032

True
True
True
True
True
True
True
True
True
True
True
True
True
True
True

Table 6: T-test on Round Time

| (#C, #R) | p-value | t-value | significant |

(2, 1)
(2. 5)
(2, 10)
(5, 1)
(5, 5)
(5, 10)
(10, 1)
(10, 5)
(10, 10)
(25, 1)
(25, 5)
(25, 10)
(50, 1)
(50, 5)
(50, 10)

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

150.310
33.725
36.340
52.739
64.607
73.316
41.008
14.928
44.743
96.189
33.056
50.761
92.001
38.515

7.094

True
True
True
True
True
True
True
True
True
True
True
True
True
True
True

Table 7: T-test on E2E Time

| (#C, #R) | p-value | t-value | significant |

(2, 1)
(2, 5)
(2, 10)
(5, 1)
(5, 5)
(5,10

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.926
0.000
0.000
0.915
0.000
0.000
0.582
0.000

-338.774
-12.443
18.621
-169.117
-4.972
45.276
-118.161
-0.094
46.849
-65.714
-0.109
42.313
-22.075
-0.561
7.201

True
True
True
True
True
True
True
False
True
True
False
True
True
False
True
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A.2 System
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Figure 8: End-to-End experiment time
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Figure 13: Mean training time per client
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