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Abstract
Non-Intrusive Load Monitoring (NILM) is a tech-
nique used to disaggregate household power con-
sumption data into individual appliance compo-
nents without the need for dedicated meters for
each appliance. This paper focuses on improv-
ing the generalizability of NILM algorithms to un-
seen households using Convolutional Neural Net-
works (CNNs) and one-shot transfer learning. The
research investigates the effectiveness of one-shot
transfer learning in fine-tuning a CNN model to ac-
curately detect the ON/OFF state of appliances in
households not seen during the training phase of the
CNN. The study utilizes the Pecan Street dataset for
training and evaluation, which includes detailed en-
ergy consumption records from various locations in
the United States. The results suggest that one-shot
transfer learning could enhance the performance
of the NILM algorithm, particularly when multi-
ple data samples are used for fine-tuning. How-
ever, the effectiveness of one-shot transfer learning
varies strongly depending on the number of sam-
ples and the characteristics of the target household.

1 Introduction
Non-intrusive load monitoring (NILM) refers to the process
of disaggregating a power time-series into individual compo-
nents that constitute the aggregate signal. Employing NILM
offers an effective means to measure electricity consumption
of multiple appliances without the need to install a smart me-
ter for each one. Such an approach holds various advantages,
including providing electricity consumers with feedback re-
garding their appliance usage and establishing demand pro-
files [1].

The concept of NILM was initially introduced by G. Hart
in the 1990s [2], after which extensive research has been con-
ducted in this domain. Despite considerable research efforts,
several critical issues still require thorough consideration to
render NILM suitable for widespread deployment [3]. These
issues encompass the following aspects:

1. Limited generalization of the algorithm to unseen house-
holds during training.

2. Inadequate detection of low-energy-consuming appli-
ances.

3. Inability to identify appliances that switch on/off simul-
taneously.

4. High computational complexity.

5. Challenges associated with automatic detection of new
appliances without necessitating algorithm retraining.

This research endeavor aims to address the first issue by
attempting to enhance the generalization capability of the
NILM algorithm, particularly concerning unseen households
during training. The challenge of limited generalizability in
NILM algorithms has been acknowledged in various studies,
including [3], [4], and [5]. Solving this problem is essential

to render NILM suitable for widespread deployment. Cur-
rently, achieving effective disaggregation performance in a
building requires training the disaggregator using the appli-
ance set specific to that building. This procedure proves in-
efficient and introduces intrusion [3] which would overthrow
the entire purpose of non-intrusive load monitoring.

Previous attempts have been made to mitigate this chal-
lenge, such as those discussed in [6]. While prior studies have
explored the transferability of houses within the same dataset,
e.g., [7] and [8], as well as the application of one- or few-
shot learning to improve NILM algorithms, e.g., [9], [10],
and [11], none of them specifically address the utilization of
one-shot learning to enhance the performance of a CNN on
households not encountered during the training phase.

To enhance the generalization capability of deep learning
NILM algorithms, we propose extending the deep learning al-
gorithm with layers used for one-shot transfer learning. One-
shot transfer learning refers to a machine learning paradigm
where a model is trained to recognize or classify new objects
or patterns based on only a single example or a very limited
number of examples [12]. We will use a convolutional neural
network as NILM algorithm. Data used for transfer learning
could be gathered from consumers, in a non-intrusive way,
through prompts (e.g., ”Are you currently using the dish-
washer?”) on their smart thermostats. Consequently, the re-
search question that arises is as follows: ”Can one-shot trans-
fer learning be leveraged to enhance the performance of a
CNN-based NILM algorithm on unseen households?”

The main contribution of this study lies in demonstrating
how one-shot transfer learning can be employed in conjunc-
tion with deep learning NILM algorithms to tailor them to
specific households. Section 2 elaborates on frequently used
topics in this paper. Section 3 will describe the methodology
employed and the results will be presented in section 4. Eth-
ical implications of this research will be discussed in section
5, followed by a discussion and conclusion in sections 6 and
7, respectively.

2 Background
This section aims to provide information regarding various
concepts frequently used in this study. These encompass
NILM algorithms, convolutional neural networks and one-
shot transfer learning in sections 2.1, 2.2 and 2.3 respectively.

2.1 NILM algorithms
As is described in [4], NILM algorithms have evolved over
time, transitioning from linear to nonlinear models and bene-
fiting from advancements in deep learning techniques. In the
early era of NILM (1995-2014), combinatorial optimization
(CO) and unsupervised event detection were commonly em-
ployed. Support vector machines (SVMs), neural networks,
decision trees (DTs), hybrid classification methods, and dy-
namic time warping (DTW) were utilized for event classi-
fication. Hidden Markov models (HMMs) and extensions
were also explored, but they faced challenges in classifying
unknown appliances and handling the complexity associated
with increasing numbers of appliances. Linear decomposi-
tion and matrix factorization techniques were proposed as ef-



ficient approaches for estimating energy consumption per ap-
pliance.

Deep learning-based NILM algorithms gained traction
from 2015 onwards, leveraging datasets from smart electric
meters. Denoising autoencoders (DAEs) were used to recon-
struct signals, while recurrent neural networks (RNNs), such
as LSTM and GRU, proved effective for temporal dependen-
cies in power signals. One-dimensional convolutional neural
networks (CNNs), often combined with LSTM or recurrent
convolutional networks, capture the temporal aspects of se-
quential time series data. Sequence-to-point CNN architec-
tures and sequence-to-sequence models were also introduced.

Aside from the variety of techniques that are used, NILM
algorithms also differ with regards to the task that they
perform. Some algorithms exclusively perform appliance
ON/OFF detection whilst others also attempt to predict their
power consumption.

2.2 CNN
As said in [3], a CNN is a deep learning algorithm that per-
forms exceptionally well on image-like (2D) data. This CNN
architecture is also employed for sequence to sequence or se-
quence to point learning as in the case of NILM. Because of
its exceptional success on 2D data NILM researchers have
been motivated to apply this for the energy disaggregation
problem as well.

The key feature of a CNN is its ability to automatically
learn hierarchical representations of data through the applica-
tion of convolutional filters. The network consists of multi-
ple layers, including convolutional layers, pooling layers, and
fully connected layers.

In the convolutional layer, the network applies a set of
learnable filters, also known as kernels or feature detectors, to
the input data. Each filter performs a convolution operation
by sliding across the input, computing element-wise multi-
plications and summing the results to produce a feature map.
These convolutional operations enable the network to capture
local patterns within the data.

The pooling layer is typically inserted after the convolu-
tional layer and helps reduce the spatial dimensions of the
feature maps while preserving important features. Max pool-
ing is a commonly used pooling technique, where the max-
imum value within a small region of the feature map is re-
tained, discarding the remaining values.

The fully connected layers at the end of the CNN receive
the output from the preceding layers and perform high-level
feature extraction and classification. These layers are com-
posed of neurons that are fully connected to the previous
layer, similar to traditional neural networks. The final output
layer typically uses an activation function such as sigmoid to
produce the network’s predictions.

2.3 One-shot transfer learning
One-shot learning is a machine learning approach that aims to
enable models to recognize and classify objects or concepts
with just a single example or a very limited amount of train-
ing data. Unlike traditional machine learning algorithms that
typically require a large number of labeled samples to achieve
high accuracy, one-shot learning leverages techniques that

emphasize generalization and abstraction from a single or few
instances. This approach is particularly useful when dealing
with domains where acquiring abundant labeled data is chal-
lenging or impractical [12].

3 Methodology
This section outlines the methodologies employed in our re-
search to improve the efficacy of Convolutional Neural Net-
works in the context of non-intrusive load monitoring through
the utilization of one-shot transfer learning. We will conduct
a comparative analysis between the performance of the CNN
prior to the application of one-shot transfer learning and its
performance subsequent to the implementation of one-shot
transfer learning. The data from the dataset (section 3.1) is
prepared as described in section 3.2. Consequently, our CNN
as described in section 3.3, is trained as explained in section
3.4.

3.1 Dataset
The evaluation and training of our model will be conducted
using data sourced from Pecan Street. The Pecan Street
dataset1 encompasses an extensive collection of comprehen-
sive energy consumption records derived from numerous
smart meters deployed across various locations within the
United States. The data accessible as a university mem-
ber includes static time-series data at three different tempo-
ral resolutions: 1-second energy, 1-minute energy, and 15-
minute energy. The data consists of measurements from 73
homes, which are distributed across three research regions:
New York, California, and Austin. Specifically, the New York
dataset covers a period of six months and exhibits 100% com-
pleteness. In California, the dataset displays a 99% complete-
ness rate for 23 homes, encompassing both 1-minute and 15-
minute data. Finally, the dataset collected from the Austin,
Texas area encompasses 99% completeness across all inter-
vals for the 25 homes included in the study. The dataset
encompasses a diverse range of building types, comprising
single-family homes, townhomes, and apartments, thereby
offering a broad representation of residential energy con-
sumption patterns.

3.2 Data preparation
To train the CNN for ON/OFF detection, it is necessary to
extract the appliance states (ON or OFF) from the power
consumption data. The data is partitioned into 60-minute
intervals, and during each interval, if the maximum power
consumption surpasses a predetermined threshold, the corre-
sponding device is labeled as ON.

To calculate the aggregate signal, the power consumption
of all measured devices is aggregated. Although the original
dataset includes a measurement of the total power consump-
tion, we opted to construct our own grid signal by summing
the power consumption of all devices. This decision stems
from the disparities between the included grid measurement
in the dataset and the actual sum of all measured devices.
These disparities arise due to some devices in a household
not being monitored by a smart meter and the presence of

1https://dataport.pecanstreet.org/



Figure 1: Graphic representation of the CNN architecture

solar panels, which can lead to negative power consumption
values when excess energy is returned to the grid. In this re-
search, we aim to eliminate the influence of solar panels and
the discrepancy between the total grid measurement and the
sum of all measured devices. Therefore, this data preparation
step was implemented to ensure the integrity of the results.

3.3 Structure of the CNN
The convolutional neural network employed in this study
comprises five distinct layers. Whereas other CNNs employ
many more layers, the CNN is not the focus of this research,
but rather the one-shot transfer learning extension. Therefore,
it has been opted to keep the CNN simple and equip it with
a mere five layers which are the exact amount to encompass
a convolutional layer, max pooling layer, a flatten layer and a
fully connected section (2 layers).

The initial layer is a convolutional layer, where multi-
ple kernels traverse the one-dimensional input data. Subse-
quently, a Max Pooling 1D layer is applied to reduce the di-
mensionality of the feature map. This is followed by a layer
that flattens the data, to consequently input it to two fully con-
nected layers.

The CNN is extended with two layers to apply one-shot
transfer learning. These are two fully connected layers. This
is graphically represented in Figure 1.

3.4 Training
Subsequently, excluding the layers designed for one-shot
transfer learning, the CNN is trained using the preprocessed
data derived from the Pecan Street dataset. Once the training
phase is complete, the layers are frozen, and two additional
layers dedicated to one-shot transfer learning are added. Con-
sequently, the network is trained using one to five data entries
from the specific household for which the CNN is intended to
be applied.

3.5 Evaluation
We will evaluate the complete model using data from the
same household that we fine-tuned the model to using one-
shot transfer learning. We will compare the performance of
the model equipped with layers for one-shot learning to the
performance of the model without layers for one-shot learn-
ing.

household id n=0 n=1 n=2 n=3 n=4 n=5
661 0.0 16.8 41.7 33.7 41.7 33.7
1642 0.0 2.0 1.9 5.2 8.1 7.9
2335 0.7 16.4 25.3 21.6 34.3 29.4
2818 0.9 7.3 14.4 18.0 18.0 18.0
3039 0.0 0.7 19.1 19.0 18.6 18.6
3456 0.0 12.2 15.7 18.3 20.9 13.2
3538 3.2 11.8 7.5 12.7 18.9 16.6
4031 2.3 22.3 32.4 38.2 30.3 29.8
4373 3.3 2.8 14.1 10.2 12.6 15.0
4767 0.3 5.4 9.4 11.5 11.5 11.5
5746 0.0 7.6 20.3 17.3 19.2 20.4
6139 0.5 0.4 1.6 1.3 0.2 0.2
7536 0.9 2.5 17.7 9.1 18.2 20.9
7719 2.1 10.4 12.9 12.7 21.0 18.6
7800 0.0 8.7 9.8 10.0 9.7 9.7
7901 0.9 8.9 8.7 9.2 2.2 6.2
7951 1.5 6.6 12.0 7.2 11.1 10.5
8565 0.1 18.9 35.1 32.7 18.3 18.3
9019 0.3 5.6 4.7 5.3 5.6 5.3
9278 4.6 23.5 24.5 20.4 38.5 33.9
8156 0.7 0.5 1.4 2.1 0.6 0.6
8386 0.0 8.4 8.6 11.3 8.3 10.1
2361 0.7 10.3 27.7 42.5 42.5 42.5
9922 0.0 0.0 0.0 0.1 0.0 0.0
9160 0.0 0.0 0.0 10.7 13.6 20.4
mean 0.9 8.4 14.7 15.2 17.0 16.5

Table 1: The accuracy score in % on an Austin household after feed-
ing n samples to the transfer learning layer.

4 Experimental Setup and Results
The CNN has been trained using the 1-minute data from the
New York dataset2. After training it achieves an accuracy of
30.1% on the validation data. The CNN is acknowledged to
be sub-optimal but performs, in terms of accuracy, far better
than random guess since it does not merely give the prediction
for one appliance, but for the entire appliance set in the house-
hold. Furthermore, achieving the highest accuracy is not the
goal of this study. This CNN merely serves as a mechanism to
construct upon the transfer learning layers, as the main goal of
this study remains to show that one-shot transfer learning can
be leveraged to enhance the generalizability of CNN-based
NILM algorithms.

We want to apply this CNN for appliance ON/OFF detec-
tion for a specific household in the Austin dataset. To com-
pare the results, we first evaluate the model without one-shot
transfer learning using evaluation data from the household in
Austin. Consequently, we apply one-shot learning and we
re-evaluate the model to see whether the score has improved.

To evaluate the model we have taken various samples from
the Austin dataset. Because the set of appliances differs per
household it is interesting to try it out with different house-
holds and see how the model responds to this. Therefore,
Table 1 contains the results from all households in the Austin

2https://gitlab.tudelft.nl/lcavalcantesie/flexibily aggregation
smart grids/-/tree/main wim

https://gitlab.tudelft.nl/lcavalcantesie/flexibily_aggregation_smart_grids/-/tree/main_wim
https://gitlab.tudelft.nl/lcavalcantesie/flexibily_aggregation_smart_grids/-/tree/main_wim


Figure 2: The mean accuracy values across all households, including
standard deviation, after using n samples for transfer learning.

dataset. Additionally, it is interesting to see what happens if
we take more than one sample to perform the transfer learn-
ing. This ranges from 1 to 5 samples. The mean improve-
ments across all households, depending on the amount of
samples used for one-shot transfer learning are plotted in Fig-
ure 2.

Table 1 suggests that one-shot transfer learning improves
the performance of the NILM algorithm. This implies that
one-shot learning could be an effective way for fine-tuning an
algorithm to a specific household. However, as can be seen
in Figure 2, the performance improvement is quite volatile,
when differing the amount of samples used for one-shot trans-
fer learning. Additionally, there is a significant variation in
improvement across households i.e. different appliance sets.
This explains the high standard deviation as shown in Figure
2.

As can be seen from Figure 2 at least two samples are re-
quired to obtain adequate results. The question remains how
much improvement can be obtained from increasing n above
5. Our hypothesis would be that due to the shallowness of
the transfer learning layer that it would easily over-fit on the
training data. This phenomenon is described in [13].

After re-running and extending the number of samples used
for transfer learning from 5 to 10 we obtain the results as in
Figure 3. This plot implies that increasing the number of sam-
ples to train the transfer layers does not necessarily improve
the performance for this implementation. Moreover, a flatten-
ing of the curve can be seen after 3 transfer learning samples
which contradicts the hypothesis of over-fitting.

5 Responsible Research
While NILM holds tremendous potential in promoting energy
efficiency and empowering consumers, it also raises signifi-
cant ethical implications that need careful consideration.

The disaggregation of power consumption data can have
serious implications on people’s privacy. Whereas an aggre-
gated signal does not give away much but the overall power
usage, once it is disaggregated and the usage of the distinct

Figure 3: The mean accuracy values across all households, with
standard deviation, extended to visualize 10 samples for transfer
learning.

appliances can be seen, this can give a detailed insight into
individuals’ habits. Even the TV channel somebody is watch-
ing can be predicted by looking at the aggregated energy con-
sumption of all appliances in a house [14]. This raises ques-
tions about the extent to which individuals should have con-
trol over the collection and use of their data. It is important to
strike a balance between data utility and privacy protection to
prevent potential misuse or unauthorized access to personal
information.

Furthermore, the implementation of NILM could lead to
discriminatory practices. The gathering of more specific data
about energy consumption could lead to differential pricing or
targeted advertising. This may disproportionately affect vul-
nerable populations. It is therefore important that users are
well-informed about the nature of data collection and how it
will be used. Additionally, clear guidelines and regulations
are necessary to ensure responsible data governance, includ-
ing secure data store, data anonymization and restrictions on
data sharing without the user’s explicit consent.

It is important that researchers and companies that imple-
ment NILM are aware of the ethical challenges associated
with data accuracy and reliability. Errors in appliance de-
tection and classification could lead to misleading insight,
impacting energy-saving decisions and potentially wasting
resources. Therefore, manufactures and researchers should
strive for transparency of NILM algorithms and mechanisms
for users to verify and correct inaccuracies.

Since the potential of one-shot transfer learning to improve
these NILM algorithms, they could make aforementioned as-
pects more relevant than ever. It is therefore important for
NILM researchers to bear these ethical implications in mind.
In this study, exclusively anonymized data has been used. Ad-
ditionally, all code is publicly available to enable other parties
to check the proposed methods.



6 Discussion
During this study on non-intrusive load monitoring, we have
explored the use of convolutional neural networks and one-
shot transfer learning to improve the performance of the
NILM algorithm on unseen households. While the CNN em-
ployed in the research is acknowledged to be sub-optimal in
terms of accuracy, the study suggests that one-shot learning
could lead to an improvement in performance. However, we
admit that the benefits of one-shot learning could be even
greater if a better CNN architecture were initially deployed.

We acknowledge that each household possesses a unique
set of appliances, and this variation can pose challenges for
generalizing NILM algorithms to unseen data. This is also
a possible explanation for the significant deviation in accu-
racy improvement across households as shown in Table 1 and
depicted by the standard deviation in Figure 3. It would be in-
teresting to investigate how different appliance sets and their
ON/OFF distribution in the transfer learning training data,
affect the effectiveness of one-shot learning and fine-tuning.
Knowledge regarding this issue could benefit the selection of
data used for transfer learning.

The research findings suggest that the actual improvement
achieved through one-shot learning (n = 1) alone is relatively
small. However, when multiple samples are used for one-shot
transfer learning (n ≥ 2), a more substantial improvement is
observed. This highlights the potential benefits of collecting
multiple data points from a household to fine-tune the NILM
algorithm. Further research could explore the optimal number
of samples required for effective one-shot learning and the
trade-off between the number of samples and the resulting
improvement in performance.

Lastly, the paper raises questions to what extent qualitative
data can be obtained from a household using non-intrusive
methods such as prompts on digital thermostats. The research
suggests that gathering additional data from households can
enhance the fine-tuning process and lead to improved per-
formance. However, it is important to think about whether
this data will be qualitatively sufficient since the labels (i.e.
whether the device is ON or OFF) would be user generated.
Further research would be needed to clarify this.

7 Conclusions and Future Work
In this research paper, we have explored the application of
Convolutional Neural Networks (CNNs) and one-shot trans-
fer learning to improve the performance of Non-Intrusive
Load Monitoring (NILM) algorithms on unseen households.
The main objective was to investigate if one-shot transfer
learning can enhance the generalization of the CNN-based
NILM algorithm to perform better on households not in-
cluded in the training data.

Our findings indicate that one-shot transfer learning can
lead to an improvement in the performance of the NILM algo-
rithm. By fine-tuning the CNN model with a single data entry
from the target household, we observed a noticeable enhance-
ment in appliance ON/OFF detection accuracy. However, the
degree of improvement varied depending on the number of
data samples used for one-shot transfer learning and the spe-
cific household being analyzed. Therefore, further research

has to be done to clarify the difference in accuracy in relation
to the appliance set used in transfer learning data.

Furthermore, the research highlights the ethical implica-
tions associated with NILM, particularly concerning privacy,
data accuracy, and potential discriminatory practices. It is
essential to strike a balance between data utility and pri-
vacy protection, ensuring informed consent, secure data stor-
age, and transparent data governance. Manufacturers and re-
searchers should prioritize transparency and provide mecha-
nisms for users to verify and correct inaccuracies in appliance
detection and classification.

Overall, this study demonstrates the potential of one-shot
transfer learning as a valuable approach to improve the gen-
eralization of CNN-based NILM algorithms to unseen house-
holds. It also underscores the importance of considering eth-
ical considerations and the need for further research in opti-
mizing CNN architectures and understanding the impact of
different appliance sets on disaggregation accuracy.

By addressing these challenges, NILM can become a pow-
erful tool for promoting energy efficiency, providing feed-
back to electricity consumers, and creating demand profiles.
Further advancements in the field of NILM will contribute to
a more sustainable and intelligent energy ecosystem.
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